blob: 106a4a71f93a52bf4588bafd4a181f301337388d [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000016#include "llvm/ADT/APFloat.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
James Molloy493e57d2015-10-26 14:10:46 +000020#include "llvm/ADT/Optional.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000021#include "llvm/ADT/STLExtras.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000022#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000023#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/Analysis/AliasAnalysis.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000028#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000029#include "llvm/Analysis/InstructionSimplify.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000030#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000031#include "llvm/Analysis/LoopInfo.h"
Adam Nemet0965da22017-10-09 23:19:02 +000032#include "llvm/Analysis/OptimizationRemarkEmitter.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000033#include "llvm/Analysis/TargetLibraryInfo.h"
34#include "llvm/IR/Argument.h"
35#include "llvm/IR/Attributes.h"
36#include "llvm/IR/BasicBlock.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000037#include "llvm/IR/CallSite.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000038#include "llvm/IR/Constant.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000039#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000040#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
Matthias Braun50ec0b52017-05-19 22:37:09 +000042#include "llvm/IR/DerivedTypes.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000043#include "llvm/IR/DiagnosticInfo.h"
Hal Finkel60db0582014-09-07 18:57:58 +000044#include "llvm/IR/Dominators.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000045#include "llvm/IR/Function.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000046#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000047#include "llvm/IR/GlobalAlias.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000048#include "llvm/IR/GlobalValue.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000049#include "llvm/IR/GlobalVariable.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000050#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000052#include "llvm/IR/Instructions.h"
53#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000054#include "llvm/IR/Intrinsics.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000055#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/Metadata.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000057#include "llvm/IR/Module.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000058#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000059#include "llvm/IR/PatternMatch.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000060#include "llvm/IR/Type.h"
61#include "llvm/IR/User.h"
62#include "llvm/IR/Value.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/ErrorHandling.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000067#include "llvm/Support/KnownBits.h"
Chris Lattner965c7692008-06-02 01:18:21 +000068#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000069#include <algorithm>
70#include <array>
Eugene Zelenko75075ef2017-09-01 21:37:29 +000071#include <cassert>
72#include <cstdint>
73#include <iterator>
74#include <utility>
75
Chris Lattner965c7692008-06-02 01:18:21 +000076using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000077using namespace llvm::PatternMatch;
78
79const unsigned MaxDepth = 6;
80
Philip Reames1c292272015-03-10 22:43:20 +000081// Controls the number of uses of the value searched for possible
82// dominating comparisons.
83static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000084 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000085
Craig Topper6b3940a2017-05-03 22:25:19 +000086/// Returns the bitwidth of the given scalar or pointer type. For vector types,
87/// returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000088static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000089 if (unsigned BitWidth = Ty->getScalarSizeInBits())
90 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000091
Mehdi Aminia28d91d2015-03-10 02:37:25 +000092 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000093}
Chris Lattner965c7692008-06-02 01:18:21 +000094
Benjamin Kramercfd8d902014-09-12 08:56:53 +000095namespace {
Eugene Zelenko75075ef2017-09-01 21:37:29 +000096
Hal Finkel60db0582014-09-07 18:57:58 +000097// Simplifying using an assume can only be done in a particular control-flow
98// context (the context instruction provides that context). If an assume and
99// the context instruction are not in the same block then the DT helps in
100// figuring out if we can use it.
101struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000102 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000103 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +0000104 const Instruction *CxtI;
105 const DominatorTree *DT;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000106
Sanjay Patel54656ca2017-02-06 18:26:06 +0000107 // Unlike the other analyses, this may be a nullptr because not all clients
108 // provide it currently.
109 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +0000110
Matthias Braun37e5d792016-01-28 06:29:33 +0000111 /// Set of assumptions that should be excluded from further queries.
112 /// This is because of the potential for mutual recursion to cause
113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
114 /// classic case of this is assume(x = y), which will attempt to determine
115 /// bits in x from bits in y, which will attempt to determine bits in y from
116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
Craig Topper6e11a052017-05-08 16:22:48 +0000117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
118 /// (all of which can call computeKnownBits), and so on.
Li Huang755f75f2016-10-15 19:00:04 +0000119 std::array<const Value *, MaxDepth> Excluded;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000120
121 unsigned NumExcluded = 0;
Matthias Braun37e5d792016-01-28 06:29:33 +0000122
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000124 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000125 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000126
127 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000128 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
129 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000130 Excluded = Q.Excluded;
131 Excluded[NumExcluded++] = NewExcl;
132 assert(NumExcluded <= Excluded.size());
133 }
134
135 bool isExcluded(const Value *Value) const {
136 if (NumExcluded == 0)
137 return false;
138 auto End = Excluded.begin() + NumExcluded;
139 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000140 }
141};
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000142
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000143} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000144
Sanjay Patel547e9752014-11-04 16:09:50 +0000145// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000146// the preferred context instruction (if any).
147static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
148 // If we've been provided with a context instruction, then use that (provided
149 // it has been inserted).
150 if (CxtI && CxtI->getParent())
151 return CxtI;
152
153 // If the value is really an already-inserted instruction, then use that.
154 CxtI = dyn_cast<Instruction>(V);
155 if (CxtI && CxtI->getParent())
156 return CxtI;
157
158 return nullptr;
159}
160
Craig Topperb45eabc2017-04-26 16:39:58 +0000161static void computeKnownBits(const Value *V, KnownBits &Known,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000162 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000163
Craig Topperb45eabc2017-04-26 16:39:58 +0000164void llvm::computeKnownBits(const Value *V, KnownBits &Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000165 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000166 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000167 const DominatorTree *DT,
168 OptimizationRemarkEmitter *ORE) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000169 ::computeKnownBits(V, Known, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000170 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000171}
172
Craig Topper6e11a052017-05-08 16:22:48 +0000173static KnownBits computeKnownBits(const Value *V, unsigned Depth,
174 const Query &Q);
175
176KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
177 unsigned Depth, AssumptionCache *AC,
178 const Instruction *CxtI,
Craig Toppera2025ea2017-05-24 16:53:03 +0000179 const DominatorTree *DT,
180 OptimizationRemarkEmitter *ORE) {
181 return ::computeKnownBits(V, Depth,
182 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Craig Topper6e11a052017-05-08 16:22:48 +0000183}
184
Pete Cooper35b00d52016-08-13 01:05:32 +0000185bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
186 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000187 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000188 const DominatorTree *DT) {
189 assert(LHS->getType() == RHS->getType() &&
190 "LHS and RHS should have the same type");
191 assert(LHS->getType()->isIntOrIntVectorTy() &&
192 "LHS and RHS should be integers");
193 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
Craig Topperb45eabc2017-04-26 16:39:58 +0000194 KnownBits LHSKnown(IT->getBitWidth());
195 KnownBits RHSKnown(IT->getBitWidth());
196 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT);
197 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT);
198 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
Jingyue Wuca321902015-05-14 23:53:19 +0000199}
200
Zaara Syeda3a7578c2017-05-31 17:12:38 +0000201bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
202 for (const User *U : CxtI->users()) {
203 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
204 if (IC->isEquality())
205 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
206 if (C->isNullValue())
207 continue;
208 return false;
209 }
210 return true;
211}
212
Pete Cooper35b00d52016-08-13 01:05:32 +0000213static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000214 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000215
Pete Cooper35b00d52016-08-13 01:05:32 +0000216bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
217 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000218 unsigned Depth, AssumptionCache *AC,
219 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000220 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000221 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000222 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000223}
224
Pete Cooper35b00d52016-08-13 01:05:32 +0000225static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000226
Pete Cooper35b00d52016-08-13 01:05:32 +0000227bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000228 AssumptionCache *AC, const Instruction *CxtI,
229 const DominatorTree *DT) {
230 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000231}
232
Pete Cooper35b00d52016-08-13 01:05:32 +0000233bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000234 unsigned Depth,
235 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000236 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000237 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
238 return Known.isNonNegative();
Jingyue Wu10fcea52015-08-20 18:27:04 +0000239}
240
Pete Cooper35b00d52016-08-13 01:05:32 +0000241bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000242 AssumptionCache *AC, const Instruction *CxtI,
243 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000244 if (auto *CI = dyn_cast<ConstantInt>(V))
245 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000246
Philip Reames8f12eba2016-03-09 21:31:47 +0000247 // TODO: We'd doing two recursive queries here. We should factor this such
248 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000249 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
250 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000251}
252
Pete Cooper35b00d52016-08-13 01:05:32 +0000253bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000254 AssumptionCache *AC, const Instruction *CxtI,
255 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000256 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
257 return Known.isNegative();
Nick Lewycky762f8a82016-04-21 00:53:14 +0000258}
259
Pete Cooper35b00d52016-08-13 01:05:32 +0000260static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000261
Pete Cooper35b00d52016-08-13 01:05:32 +0000262bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000263 const DataLayout &DL,
264 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000265 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000266 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
267 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000268 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000269}
270
Pete Cooper35b00d52016-08-13 01:05:32 +0000271static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000272 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000273
Pete Cooper35b00d52016-08-13 01:05:32 +0000274bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
275 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000276 unsigned Depth, AssumptionCache *AC,
277 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000278 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000279 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000280}
281
Pete Cooper35b00d52016-08-13 01:05:32 +0000282static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
283 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000284
Pete Cooper35b00d52016-08-13 01:05:32 +0000285unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000286 unsigned Depth, AssumptionCache *AC,
287 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000288 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000289 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000290}
291
Craig Topper8fbb74b2017-03-24 22:12:10 +0000292static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
293 bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000294 KnownBits &KnownOut, KnownBits &Known2,
Craig Topper8fbb74b2017-03-24 22:12:10 +0000295 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000296 unsigned BitWidth = KnownOut.getBitWidth();
Craig Topper8fbb74b2017-03-24 22:12:10 +0000297
298 // If an initial sequence of bits in the result is not needed, the
299 // corresponding bits in the operands are not needed.
Craig Topperb45eabc2017-04-26 16:39:58 +0000300 KnownBits LHSKnown(BitWidth);
301 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
302 computeKnownBits(Op1, Known2, Depth + 1, Q);
Craig Topper8fbb74b2017-03-24 22:12:10 +0000303
Craig Topperb498a232017-08-08 16:29:35 +0000304 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000305}
306
Pete Cooper35b00d52016-08-13 01:05:32 +0000307static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000308 KnownBits &Known, KnownBits &Known2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000309 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000310 unsigned BitWidth = Known.getBitWidth();
311 computeKnownBits(Op1, Known, Depth + 1, Q);
312 computeKnownBits(Op0, Known2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000313
314 bool isKnownNegative = false;
315 bool isKnownNonNegative = false;
316 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000317 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000318 if (Op0 == Op1) {
319 // The product of a number with itself is non-negative.
320 isKnownNonNegative = true;
321 } else {
Craig Topperca48af32017-04-29 16:43:11 +0000322 bool isKnownNonNegativeOp1 = Known.isNonNegative();
323 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
324 bool isKnownNegativeOp1 = Known.isNegative();
325 bool isKnownNegativeOp0 = Known2.isNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000326 // The product of two numbers with the same sign is non-negative.
327 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
328 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
329 // The product of a negative number and a non-negative number is either
330 // negative or zero.
331 if (!isKnownNonNegative)
332 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000333 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000334 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000335 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000336 }
337 }
338
339 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000340 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000341 // More trickiness is possible, but this is sufficient for the
342 // interesting case of alignment computation.
Craig Topper8df66c62017-05-12 17:20:30 +0000343 unsigned TrailZ = Known.countMinTrailingZeros() +
344 Known2.countMinTrailingZeros();
345 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
346 Known2.countMinLeadingZeros(),
Nick Lewyckyfa306072012-03-18 23:28:48 +0000347 BitWidth) - BitWidth;
348
349 TrailZ = std::min(TrailZ, BitWidth);
350 LeadZ = std::min(LeadZ, BitWidth);
Craig Topperf0aeee02017-05-05 17:36:09 +0000351 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000352 Known.Zero.setLowBits(TrailZ);
353 Known.Zero.setHighBits(LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000354
355 // Only make use of no-wrap flags if we failed to compute the sign bit
356 // directly. This matters if the multiplication always overflows, in
357 // which case we prefer to follow the result of the direct computation,
358 // though as the program is invoking undefined behaviour we can choose
359 // whatever we like here.
Craig Topperca48af32017-04-29 16:43:11 +0000360 if (isKnownNonNegative && !Known.isNegative())
361 Known.makeNonNegative();
362 else if (isKnownNegative && !Known.isNonNegative())
363 Known.makeNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000364}
365
Jingyue Wu37fcb592014-06-19 16:50:16 +0000366void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Craig Topperf42b23f2017-04-28 06:28:56 +0000367 KnownBits &Known) {
368 unsigned BitWidth = Known.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000369 unsigned NumRanges = Ranges.getNumOperands() / 2;
370 assert(NumRanges >= 1);
371
Craig Topperf42b23f2017-04-28 06:28:56 +0000372 Known.Zero.setAllBits();
373 Known.One.setAllBits();
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000374
Rafael Espindola53190532012-03-30 15:52:11 +0000375 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000376 ConstantInt *Lower =
377 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
378 ConstantInt *Upper =
379 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000380 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000381
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000382 // The first CommonPrefixBits of all values in Range are equal.
383 unsigned CommonPrefixBits =
384 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
385
386 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Craig Topperf42b23f2017-04-28 06:28:56 +0000387 Known.One &= Range.getUnsignedMax() & Mask;
388 Known.Zero &= ~Range.getUnsignedMax() & Mask;
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000389 }
Rafael Espindola53190532012-03-30 15:52:11 +0000390}
Jay Foad5a29c362014-05-15 12:12:55 +0000391
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000392static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000393 SmallVector<const Value *, 16> WorkSet(1, I);
394 SmallPtrSet<const Value *, 32> Visited;
395 SmallPtrSet<const Value *, 16> EphValues;
396
Hal Finkelf2199b22015-10-23 20:37:08 +0000397 // The instruction defining an assumption's condition itself is always
398 // considered ephemeral to that assumption (even if it has other
399 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000400 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000401 return true;
402
Hal Finkel60db0582014-09-07 18:57:58 +0000403 while (!WorkSet.empty()) {
404 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000405 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000406 continue;
407
408 // If all uses of this value are ephemeral, then so is this value.
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000409 if (llvm::all_of(V->users(), [&](const User *U) {
410 return EphValues.count(U);
411 })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000412 if (V == E)
413 return true;
414
Hal Finkelb03dd4b2017-08-14 17:11:43 +0000415 if (V == I || isSafeToSpeculativelyExecute(V)) {
416 EphValues.insert(V);
417 if (const User *U = dyn_cast<User>(V))
418 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
419 J != JE; ++J)
420 WorkSet.push_back(*J);
421 }
Hal Finkel60db0582014-09-07 18:57:58 +0000422 }
423 }
424
425 return false;
426}
427
428// Is this an intrinsic that cannot be speculated but also cannot trap?
429static bool isAssumeLikeIntrinsic(const Instruction *I) {
430 if (const CallInst *CI = dyn_cast<CallInst>(I))
431 if (Function *F = CI->getCalledFunction())
432 switch (F->getIntrinsicID()) {
433 default: break;
434 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
435 case Intrinsic::assume:
Dan Gohman2c74fe92017-11-08 21:59:51 +0000436 case Intrinsic::sideeffect:
Hal Finkel60db0582014-09-07 18:57:58 +0000437 case Intrinsic::dbg_declare:
438 case Intrinsic::dbg_value:
439 case Intrinsic::invariant_start:
440 case Intrinsic::invariant_end:
441 case Intrinsic::lifetime_start:
442 case Intrinsic::lifetime_end:
443 case Intrinsic::objectsize:
444 case Intrinsic::ptr_annotation:
445 case Intrinsic::var_annotation:
446 return true;
447 }
448
449 return false;
450}
451
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000452bool llvm::isValidAssumeForContext(const Instruction *Inv,
453 const Instruction *CxtI,
454 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000455 // There are two restrictions on the use of an assume:
456 // 1. The assume must dominate the context (or the control flow must
457 // reach the assume whenever it reaches the context).
458 // 2. The context must not be in the assume's set of ephemeral values
459 // (otherwise we will use the assume to prove that the condition
460 // feeding the assume is trivially true, thus causing the removal of
461 // the assume).
462
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000463 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000464 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000465 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000466 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
467 // We don't have a DT, but this trivially dominates.
468 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000469 }
470
Pete Cooper54a02552016-08-12 01:00:15 +0000471 // With or without a DT, the only remaining case we will check is if the
472 // instructions are in the same BB. Give up if that is not the case.
473 if (Inv->getParent() != CxtI->getParent())
474 return false;
475
476 // If we have a dom tree, then we now know that the assume doens't dominate
477 // the other instruction. If we don't have a dom tree then we can check if
478 // the assume is first in the BB.
479 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000480 // Search forward from the assume until we reach the context (or the end
481 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000482 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000483 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000484 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000485 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000486 }
487
Pete Cooper54a02552016-08-12 01:00:15 +0000488 // The context comes first, but they're both in the same block. Make sure
489 // there is nothing in between that might interrupt the control flow.
490 for (BasicBlock::const_iterator I =
491 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
492 I != IE; ++I)
493 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
494 return false;
495
496 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000497}
498
Craig Topperb45eabc2017-04-26 16:39:58 +0000499static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
500 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000501 // Use of assumptions is context-sensitive. If we don't have a context, we
502 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000503 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000504 return;
505
Craig Topperb45eabc2017-04-26 16:39:58 +0000506 unsigned BitWidth = Known.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000507
Hal Finkel8a9a7832017-01-11 13:24:24 +0000508 // Note that the patterns below need to be kept in sync with the code
509 // in AssumptionCache::updateAffectedValues.
510
511 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000512 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000513 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000514 CallInst *I = cast<CallInst>(AssumeVH);
515 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
516 "Got assumption for the wrong function!");
517 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000518 continue;
519
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000520 // Warning: This loop can end up being somewhat performance sensetive.
521 // We're running this loop for once for each value queried resulting in a
522 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000523
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000524 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
525 "must be an assume intrinsic");
526
527 Value *Arg = I->getArgOperand(0);
528
529 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000530 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000531 Known.setAllOnes();
Hal Finkel60db0582014-09-07 18:57:58 +0000532 return;
533 }
Sanjay Patel96669962017-01-17 18:15:49 +0000534 if (match(Arg, m_Not(m_Specific(V))) &&
535 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
536 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000537 Known.setAllZero();
Sanjay Patel96669962017-01-17 18:15:49 +0000538 return;
539 }
Hal Finkel60db0582014-09-07 18:57:58 +0000540
David Majnemer9b609752014-12-12 23:59:29 +0000541 // The remaining tests are all recursive, so bail out if we hit the limit.
542 if (Depth == MaxDepth)
543 continue;
544
Hal Finkel60db0582014-09-07 18:57:58 +0000545 Value *A, *B;
546 auto m_V = m_CombineOr(m_Specific(V),
547 m_CombineOr(m_PtrToInt(m_Specific(V)),
548 m_BitCast(m_Specific(V))));
549
550 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000551 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000552 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000553 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000554 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000555 KnownBits RHSKnown(BitWidth);
556 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
557 Known.Zero |= RHSKnown.Zero;
558 Known.One |= RHSKnown.One;
Hal Finkel60db0582014-09-07 18:57:58 +0000559 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000560 } else if (match(Arg,
561 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000562 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000563 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000564 KnownBits RHSKnown(BitWidth);
565 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
566 KnownBits MaskKnown(BitWidth);
567 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000568
569 // For those bits in the mask that are known to be one, we can propagate
570 // known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000571 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
572 Known.One |= RHSKnown.One & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000573 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000574 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
575 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000576 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000577 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000578 KnownBits RHSKnown(BitWidth);
579 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
580 KnownBits MaskKnown(BitWidth);
581 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000582
583 // For those bits in the mask that are known to be one, we can propagate
584 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000585 Known.Zero |= RHSKnown.One & MaskKnown.One;
586 Known.One |= RHSKnown.Zero & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000587 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000588 } else if (match(Arg,
589 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000590 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000591 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000592 KnownBits RHSKnown(BitWidth);
593 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
594 KnownBits BKnown(BitWidth);
595 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000596
597 // For those bits in B that are known to be zero, we can propagate known
598 // bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000599 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
600 Known.One |= RHSKnown.One & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000601 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000602 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
603 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000604 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000605 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000606 KnownBits RHSKnown(BitWidth);
607 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
608 KnownBits BKnown(BitWidth);
609 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000610
611 // For those bits in B that are known to be zero, we can propagate
612 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000613 Known.Zero |= RHSKnown.One & BKnown.Zero;
614 Known.One |= RHSKnown.Zero & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000615 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000616 } else if (match(Arg,
617 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000618 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000619 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000620 KnownBits RHSKnown(BitWidth);
621 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
622 KnownBits BKnown(BitWidth);
623 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000624
625 // For those bits in B that are known to be zero, we can propagate known
626 // bits from the RHS to V. For those bits in B that are known to be one,
627 // we can propagate inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000628 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
629 Known.One |= RHSKnown.One & BKnown.Zero;
630 Known.Zero |= RHSKnown.One & BKnown.One;
631 Known.One |= RHSKnown.Zero & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000632 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000633 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
634 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000635 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000636 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000637 KnownBits RHSKnown(BitWidth);
638 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
639 KnownBits BKnown(BitWidth);
640 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000641
642 // For those bits in B that are known to be zero, we can propagate
643 // inverted known bits from the RHS to V. For those bits in B that are
644 // known to be one, we can propagate known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000645 Known.Zero |= RHSKnown.One & BKnown.Zero;
646 Known.One |= RHSKnown.Zero & BKnown.Zero;
647 Known.Zero |= RHSKnown.Zero & BKnown.One;
648 Known.One |= RHSKnown.One & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000649 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000650 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
651 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000652 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000653 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000654 KnownBits RHSKnown(BitWidth);
655 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000656 // For those bits in RHS that are known, we can propagate them to known
657 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000658 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
659 Known.Zero |= RHSKnown.Zero;
660 RHSKnown.One.lshrInPlace(C->getZExtValue());
661 Known.One |= RHSKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000662 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000663 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
664 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000665 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000666 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000667 KnownBits RHSKnown(BitWidth);
668 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000669 // For those bits in RHS that are known, we can propagate them inverted
670 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000671 RHSKnown.One.lshrInPlace(C->getZExtValue());
672 Known.Zero |= RHSKnown.One;
673 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
674 Known.One |= RHSKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000675 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000676 } else if (match(Arg,
Craig Topper7b66ffe2017-06-24 06:24:04 +0000677 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000678 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000679 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000680 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000681 KnownBits RHSKnown(BitWidth);
682 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000683 // For those bits in RHS that are known, we can propagate them to known
684 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000685 Known.Zero |= RHSKnown.Zero << C->getZExtValue();
686 Known.One |= RHSKnown.One << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000687 // assume(~(v >> c) = a)
Craig Topper7b66ffe2017-06-24 06:24:04 +0000688 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000689 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000690 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000691 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000692 KnownBits RHSKnown(BitWidth);
693 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000694 // For those bits in RHS that are known, we can propagate them inverted
695 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000696 Known.Zero |= RHSKnown.One << C->getZExtValue();
697 Known.One |= RHSKnown.Zero << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000698 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000699 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000700 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000701 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000702 KnownBits RHSKnown(BitWidth);
703 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000704
Craig Topperca48af32017-04-29 16:43:11 +0000705 if (RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000706 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000707 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000708 }
709 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000710 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000711 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000712 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000713 KnownBits RHSKnown(BitWidth);
714 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000715
Craig Topperf0aeee02017-05-05 17:36:09 +0000716 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000717 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000718 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000719 }
720 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000721 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000722 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000723 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000724 KnownBits RHSKnown(BitWidth);
725 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000726
Craig Topperca48af32017-04-29 16:43:11 +0000727 if (RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000728 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000729 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000730 }
731 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000732 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000733 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000735 KnownBits RHSKnown(BitWidth);
736 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000737
Craig Topperf0aeee02017-05-05 17:36:09 +0000738 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000739 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000740 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000741 }
742 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000743 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000744 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000745 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000746 KnownBits RHSKnown(BitWidth);
747 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000748
749 // Whatever high bits in c are zero are known to be zero.
Craig Topper8df66c62017-05-12 17:20:30 +0000750 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
751 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000752 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000753 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000754 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000755 KnownBits RHSKnown(BitWidth);
756 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000757
758 // Whatever high bits in c are zero are known to be zero (if c is a power
759 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000760 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper8df66c62017-05-12 17:20:30 +0000761 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000762 else
Craig Topper8df66c62017-05-12 17:20:30 +0000763 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
Hal Finkel60db0582014-09-07 18:57:58 +0000764 }
765 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000766
767 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000768 // have a logical fallacy. It's possible that the assumption is not reachable,
769 // so this isn't a real bug. On the other hand, the program may have undefined
770 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
771 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topperb45eabc2017-04-26 16:39:58 +0000772 if (Known.Zero.intersects(Known.One)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000773 Known.resetAll();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000774
Vivek Pandya95906582017-10-11 17:12:59 +0000775 if (Q.ORE)
776 Q.ORE->emit([&]() {
777 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
778 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
779 CxtI)
780 << "Detected conflicting code assumptions. Program may "
781 "have undefined behavior, or compiler may have "
782 "internal error.";
783 });
Sanjay Patel25f6d712017-02-01 15:41:32 +0000784 }
Hal Finkel60db0582014-09-07 18:57:58 +0000785}
786
Sanjay Patelb7d12382017-10-16 14:46:37 +0000787/// Compute known bits from a shift operator, including those with a
788/// non-constant shift amount. Known is the output of this function. Known2 is a
789/// pre-allocated temporary with the same bit width as Known. KZF and KOF are
790/// operator-specific functors that, given the known-zero or known-one bits
791/// respectively, and a shift amount, compute the implied known-zero or
792/// known-one bits of the shift operator's result respectively for that shift
793/// amount. The results from calling KZF and KOF are conservatively combined for
794/// all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000795static void computeKnownBitsFromShiftOperator(
Craig Topperb45eabc2017-04-26 16:39:58 +0000796 const Operator *I, KnownBits &Known, KnownBits &Known2,
797 unsigned Depth, const Query &Q,
Sam McCalld0d43e62017-12-04 12:51:49 +0000798 function_ref<APInt(const APInt &, unsigned)> KZF,
799 function_ref<APInt(const APInt &, unsigned)> KOF) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000800 unsigned BitWidth = Known.getBitWidth();
Hal Finkelf2199b22015-10-23 20:37:08 +0000801
802 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
803 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
804
Craig Topperb45eabc2017-04-26 16:39:58 +0000805 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Sam McCalld0d43e62017-12-04 12:51:49 +0000806 Known.Zero = KZF(Known.Zero, ShiftAmt);
807 Known.One = KOF(Known.One, ShiftAmt);
Sanjay Patele272be72017-10-12 17:31:46 +0000808 // If the known bits conflict, this must be an overflowing left shift, so
809 // the shift result is poison. We can return anything we want. Choose 0 for
810 // the best folding opportunity.
811 if (Known.hasConflict())
812 Known.setAllZero();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000813
Hal Finkelf2199b22015-10-23 20:37:08 +0000814 return;
815 }
816
Craig Topperb45eabc2017-04-26 16:39:58 +0000817 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000818
Sanjay Patele272be72017-10-12 17:31:46 +0000819 // If the shift amount could be greater than or equal to the bit-width of the
820 // LHS, the value could be poison, but bail out because the check below is
821 // expensive. TODO: Should we just carry on?
Craig Topperb45eabc2017-04-26 16:39:58 +0000822 if ((~Known.Zero).uge(BitWidth)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000823 Known.resetAll();
Oliver Stannard06204112017-03-14 10:13:17 +0000824 return;
825 }
826
Craig Topperb45eabc2017-04-26 16:39:58 +0000827 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
Hal Finkelf2199b22015-10-23 20:37:08 +0000828 // BitWidth > 64 and any upper bits are known, we'll end up returning the
829 // limit value (which implies all bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000830 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
831 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
Hal Finkelf2199b22015-10-23 20:37:08 +0000832
833 // It would be more-clearly correct to use the two temporaries for this
834 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Craig Topperf0aeee02017-05-05 17:36:09 +0000835 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000836
James Molloy493e57d2015-10-26 14:10:46 +0000837 // If we know the shifter operand is nonzero, we can sometimes infer more
838 // known bits. However this is expensive to compute, so be lazy about it and
839 // only compute it when absolutely necessary.
840 Optional<bool> ShifterOperandIsNonZero;
841
Hal Finkelf2199b22015-10-23 20:37:08 +0000842 // Early exit if we can't constrain any well-defined shift amount.
Craig Topperf93b7b12017-06-14 17:04:59 +0000843 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
844 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
Sanjay Patelb7d12382017-10-16 14:46:37 +0000845 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000846 if (!*ShifterOperandIsNonZero)
847 return;
848 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000849
Craig Topperb45eabc2017-04-26 16:39:58 +0000850 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000851
Craig Topperb45eabc2017-04-26 16:39:58 +0000852 Known.Zero.setAllBits();
853 Known.One.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000854 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
855 // Combine the shifted known input bits only for those shift amounts
856 // compatible with its known constraints.
857 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
858 continue;
859 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
860 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000861 // If we know the shifter is nonzero, we may be able to infer more known
862 // bits. This check is sunk down as far as possible to avoid the expensive
863 // call to isKnownNonZero if the cheaper checks above fail.
864 if (ShiftAmt == 0) {
865 if (!ShifterOperandIsNonZero.hasValue())
866 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000867 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000868 if (*ShifterOperandIsNonZero)
869 continue;
870 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000871
Sam McCalld0d43e62017-12-04 12:51:49 +0000872 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
873 Known.One &= KOF(Known2.One, ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +0000874 }
875
Sanjay Patele272be72017-10-12 17:31:46 +0000876 // If the known bits conflict, the result is poison. Return a 0 and hope the
877 // caller can further optimize that.
878 if (Known.hasConflict())
879 Known.setAllZero();
Hal Finkelf2199b22015-10-23 20:37:08 +0000880}
881
Craig Topperb45eabc2017-04-26 16:39:58 +0000882static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
883 unsigned Depth, const Query &Q) {
884 unsigned BitWidth = Known.getBitWidth();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000885
Craig Topperb45eabc2017-04-26 16:39:58 +0000886 KnownBits Known2(Known);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000887 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000888 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000889 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000890 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +0000891 computeKnownBitsFromRangeMetadata(*MD, Known);
Jay Foad5a29c362014-05-15 12:12:55 +0000892 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000893 case Instruction::And: {
894 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000895 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
896 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000897
Chris Lattner965c7692008-06-02 01:18:21 +0000898 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000899 Known.One &= Known2.One;
Chris Lattner965c7692008-06-02 01:18:21 +0000900 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000901 Known.Zero |= Known2.Zero;
Philip Reames2d858742015-11-10 18:46:14 +0000902
903 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
904 // here we handle the more general case of adding any odd number by
905 // matching the form add(x, add(x, y)) where y is odd.
906 // TODO: This could be generalized to clearing any bit set in y where the
907 // following bit is known to be unset in y.
908 Value *Y = nullptr;
Craig Topperb45eabc2017-04-26 16:39:58 +0000909 if (!Known.Zero[0] && !Known.One[0] &&
Craig Toppera80f2042017-04-13 19:04:45 +0000910 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
911 m_Value(Y))) ||
912 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
913 m_Value(Y))))) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000914 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000915 computeKnownBits(Y, Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000916 if (Known2.countMinTrailingOnes() > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +0000917 Known.Zero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +0000918 }
Jay Foad5a29c362014-05-15 12:12:55 +0000919 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000920 }
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000921 case Instruction::Or:
Craig Topperb45eabc2017-04-26 16:39:58 +0000922 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
923 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000924
Chris Lattner965c7692008-06-02 01:18:21 +0000925 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000926 Known.Zero &= Known2.Zero;
Chris Lattner965c7692008-06-02 01:18:21 +0000927 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000928 Known.One |= Known2.One;
Jay Foad5a29c362014-05-15 12:12:55 +0000929 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000930 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000931 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
932 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000933
Chris Lattner965c7692008-06-02 01:18:21 +0000934 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000935 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
Chris Lattner965c7692008-06-02 01:18:21 +0000936 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000937 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
938 Known.Zero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +0000939 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000940 }
941 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000942 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperb45eabc2017-04-26 16:39:58 +0000943 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
944 Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000945 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000946 }
947 case Instruction::UDiv: {
948 // For the purposes of computing leading zeros we can conservatively
949 // treat a udiv as a logical right shift by the power of 2 known to
950 // be less than the denominator.
Craig Topperb45eabc2017-04-26 16:39:58 +0000951 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000952 unsigned LeadZ = Known2.countMinLeadingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +0000953
Craig Topperf0aeee02017-05-05 17:36:09 +0000954 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000955 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000956 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
957 if (RHSMaxLeadingZeros != BitWidth)
958 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Chris Lattner965c7692008-06-02 01:18:21 +0000959
Craig Topperb45eabc2017-04-26 16:39:58 +0000960 Known.Zero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000961 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000962 }
David Majnemera19d0f22016-08-06 08:16:00 +0000963 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +0000964 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000965 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
966 if (SelectPatternResult::isMinOrMax(SPF)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000967 computeKnownBits(RHS, Known, Depth + 1, Q);
968 computeKnownBits(LHS, Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000969 } else {
Craig Topperb45eabc2017-04-26 16:39:58 +0000970 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
971 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000972 }
973
974 unsigned MaxHighOnes = 0;
975 unsigned MaxHighZeros = 0;
976 if (SPF == SPF_SMAX) {
977 // If both sides are negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +0000978 if (Known.isNegative() && Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000979 // We can derive a lower bound on the result by taking the max of the
980 // leading one bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000981 MaxHighOnes =
982 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +0000983 // If either side is non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000984 else if (Known.isNonNegative() || Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000985 MaxHighZeros = 1;
986 } else if (SPF == SPF_SMIN) {
987 // If both sides are non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000988 if (Known.isNonNegative() && Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000989 // We can derive an upper bound on the result by taking the max of the
990 // leading zero bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000991 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
992 Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +0000993 // If either side is negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +0000994 else if (Known.isNegative() || Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000995 MaxHighOnes = 1;
996 } else if (SPF == SPF_UMAX) {
997 // We can derive a lower bound on the result by taking the max of the
998 // leading one bits.
999 MaxHighOnes =
Craig Topper8df66c62017-05-12 17:20:30 +00001000 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001001 } else if (SPF == SPF_UMIN) {
1002 // We can derive an upper bound on the result by taking the max of the
1003 // leading zero bits.
1004 MaxHighZeros =
Craig Topper8df66c62017-05-12 17:20:30 +00001005 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001006 }
1007
Chris Lattner965c7692008-06-02 01:18:21 +00001008 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001009 Known.One &= Known2.One;
1010 Known.Zero &= Known2.Zero;
David Majnemera19d0f22016-08-06 08:16:00 +00001011 if (MaxHighOnes > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001012 Known.One.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001013 if (MaxHighZeros > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001014 Known.Zero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001015 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001016 }
Chris Lattner965c7692008-06-02 01:18:21 +00001017 case Instruction::FPTrunc:
1018 case Instruction::FPExt:
1019 case Instruction::FPToUI:
1020 case Instruction::FPToSI:
1021 case Instruction::SIToFP:
1022 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001023 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001024 case Instruction::PtrToInt:
1025 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001026 // Fall through and handle them the same as zext/trunc.
1027 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001028 case Instruction::ZExt:
1029 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001030 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001031
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001032 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001033 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1034 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001035 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001036
1037 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Craig Topperd938fd12017-05-03 22:07:25 +00001038 Known = Known.zextOrTrunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001039 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Craig Topperd938fd12017-05-03 22:07:25 +00001040 Known = Known.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001041 // Any top bits are known to be zero.
1042 if (BitWidth > SrcBitWidth)
Craig Topperb45eabc2017-04-26 16:39:58 +00001043 Known.Zero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001044 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001045 }
1046 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001047 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001048 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001049 // TODO: For now, not handling conversions like:
1050 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001051 !I->getType()->isVectorTy()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001052 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001053 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001054 }
1055 break;
1056 }
1057 case Instruction::SExt: {
1058 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001059 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001060
Craig Topperd938fd12017-05-03 22:07:25 +00001061 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001062 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001063 // If the sign bit of the input is known set or clear, then we know the
1064 // top bits of the result.
Craig Topperd938fd12017-05-03 22:07:25 +00001065 Known = Known.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001066 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001067 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001068 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001069 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001070 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Sam McCalld0d43e62017-12-04 12:51:49 +00001071 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1072 APInt KZResult = KnownZero << ShiftAmt;
1073 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001074 // If this shift has "nsw" keyword, then the result is either a poison
1075 // value or has the same sign bit as the first operand.
Sam McCalld0d43e62017-12-04 12:51:49 +00001076 if (NSW && KnownZero.isSignBitSet())
1077 KZResult.setSignBit();
1078 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001079 };
1080
Sam McCalld0d43e62017-12-04 12:51:49 +00001081 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1082 APInt KOResult = KnownOne << ShiftAmt;
1083 if (NSW && KnownOne.isSignBitSet())
1084 KOResult.setSignBit();
1085 return KOResult;
1086 };
1087
1088 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001089 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001090 }
1091 case Instruction::LShr: {
Sanjay Patelb7d12382017-10-16 14:46:37 +00001092 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Sam McCalld0d43e62017-12-04 12:51:49 +00001093 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1094 APInt KZResult = KnownZero.lshr(ShiftAmt);
1095 // High bits known zero.
1096 KZResult.setHighBits(ShiftAmt);
1097 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001098 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001099
Sam McCalld0d43e62017-12-04 12:51:49 +00001100 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1101 return KnownOne.lshr(ShiftAmt);
1102 };
1103
1104 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001105 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001106 }
1107 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001108 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Sam McCalld0d43e62017-12-04 12:51:49 +00001109 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1110 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001111 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001112
Sam McCalld0d43e62017-12-04 12:51:49 +00001113 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1114 return KnownOne.ashr(ShiftAmt);
1115 };
1116
1117 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001118 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001119 }
Chris Lattner965c7692008-06-02 01:18:21 +00001120 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001121 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001122 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001123 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001124 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001125 }
Chris Lattner965c7692008-06-02 01:18:21 +00001126 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001127 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001128 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001129 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001130 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001131 }
1132 case Instruction::SRem:
1133 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001134 APInt RA = Rem->getValue().abs();
1135 if (RA.isPowerOf2()) {
1136 APInt LowBits = RA - 1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001137 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001138
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001139 // The low bits of the first operand are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +00001140 Known.Zero = Known2.Zero & LowBits;
1141 Known.One = Known2.One & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001142
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001143 // If the first operand is non-negative or has all low bits zero, then
1144 // the upper bits are all zero.
Craig Topperca48af32017-04-29 16:43:11 +00001145 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +00001146 Known.Zero |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001147
1148 // If the first operand is negative and not all low bits are zero, then
1149 // the upper bits are all one.
Craig Topperca48af32017-04-29 16:43:11 +00001150 if (Known2.isNegative() && LowBits.intersects(Known2.One))
Craig Topperb45eabc2017-04-26 16:39:58 +00001151 Known.One |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001152
Craig Topperb45eabc2017-04-26 16:39:58 +00001153 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001154 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001155 }
1156 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001157
1158 // The sign bit is the LHS's sign bit, except when the result of the
1159 // remainder is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +00001160 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topperda886c62017-04-16 21:46:12 +00001161 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +00001162 if (Known2.isNonNegative())
1163 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +00001164
Chris Lattner965c7692008-06-02 01:18:21 +00001165 break;
1166 case Instruction::URem: {
1167 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001168 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001169 if (RA.isPowerOf2()) {
1170 APInt LowBits = (RA - 1);
Craig Topperb45eabc2017-04-26 16:39:58 +00001171 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1172 Known.Zero |= ~LowBits;
1173 Known.One &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001174 break;
1175 }
1176 }
1177
1178 // Since the result is less than or equal to either operand, any leading
1179 // zero bits in either operand must also exist in the result.
Craig Topperb45eabc2017-04-26 16:39:58 +00001180 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1181 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001182
Craig Topper8df66c62017-05-12 17:20:30 +00001183 unsigned Leaders =
1184 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topperf0aeee02017-05-05 17:36:09 +00001185 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001186 Known.Zero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001187 break;
1188 }
1189
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001190 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001191 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001192 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001193 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001194 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001195
Chris Lattner965c7692008-06-02 01:18:21 +00001196 if (Align > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001197 Known.Zero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001198 break;
1199 }
1200 case Instruction::GetElementPtr: {
1201 // Analyze all of the subscripts of this getelementptr instruction
1202 // to determine if we can prove known low zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001203 KnownBits LocalKnown(BitWidth);
1204 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001205 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001206
1207 gep_type_iterator GTI = gep_type_begin(I);
1208 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1209 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001210 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001211 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001212
1213 // Handle case when index is vector zeroinitializer
1214 Constant *CIndex = cast<Constant>(Index);
1215 if (CIndex->isZeroValue())
1216 continue;
1217
1218 if (CIndex->getType()->isVectorTy())
1219 Index = CIndex->getSplatValue();
1220
Chris Lattner965c7692008-06-02 01:18:21 +00001221 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001222 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001223 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001224 TrailZ = std::min<unsigned>(TrailZ,
1225 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001226 } else {
1227 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001228 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001229 if (!IndexedTy->isSized()) {
1230 TrailZ = 0;
1231 break;
1232 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001233 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001234 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Craig Topperb45eabc2017-04-26 16:39:58 +00001235 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1236 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001237 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001238 unsigned(countTrailingZeros(TypeSize) +
Craig Topper8df66c62017-05-12 17:20:30 +00001239 LocalKnown.countMinTrailingZeros()));
Chris Lattner965c7692008-06-02 01:18:21 +00001240 }
1241 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001242
Craig Topperb45eabc2017-04-26 16:39:58 +00001243 Known.Zero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001244 break;
1245 }
1246 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001247 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001248 // Handle the case of a simple two-predecessor recurrence PHI.
1249 // There's a lot more that could theoretically be done here, but
1250 // this is sufficient to catch some interesting cases.
1251 if (P->getNumIncomingValues() == 2) {
1252 for (unsigned i = 0; i != 2; ++i) {
1253 Value *L = P->getIncomingValue(i);
1254 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001255 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001256 if (!LU)
1257 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001258 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001259 // Check for operations that have the property that if
1260 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001261 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001262 if (Opcode == Instruction::Add ||
1263 Opcode == Instruction::Sub ||
1264 Opcode == Instruction::And ||
1265 Opcode == Instruction::Or ||
1266 Opcode == Instruction::Mul) {
1267 Value *LL = LU->getOperand(0);
1268 Value *LR = LU->getOperand(1);
1269 // Find a recurrence.
1270 if (LL == I)
1271 L = LR;
1272 else if (LR == I)
1273 L = LL;
1274 else
1275 break;
1276 // Ok, we have a PHI of the form L op= R. Check for low
1277 // zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001278 computeKnownBits(R, Known2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001279
1280 // We need to take the minimum number of known bits
Craig Topperb45eabc2017-04-26 16:39:58 +00001281 KnownBits Known3(Known);
1282 computeKnownBits(L, Known3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001283
Craig Topper8df66c62017-05-12 17:20:30 +00001284 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1285 Known3.countMinTrailingZeros()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001286
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001287 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1288 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1289 // If initial value of recurrence is nonnegative, and we are adding
1290 // a nonnegative number with nsw, the result can only be nonnegative
1291 // or poison value regardless of the number of times we execute the
1292 // add in phi recurrence. If initial value is negative and we are
1293 // adding a negative number with nsw, the result can only be
1294 // negative or poison value. Similar arguments apply to sub and mul.
1295 //
1296 // (add non-negative, non-negative) --> non-negative
1297 // (add negative, negative) --> negative
1298 if (Opcode == Instruction::Add) {
Craig Topperca48af32017-04-29 16:43:11 +00001299 if (Known2.isNonNegative() && Known3.isNonNegative())
1300 Known.makeNonNegative();
1301 else if (Known2.isNegative() && Known3.isNegative())
1302 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001303 }
1304
1305 // (sub nsw non-negative, negative) --> non-negative
1306 // (sub nsw negative, non-negative) --> negative
1307 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperca48af32017-04-29 16:43:11 +00001308 if (Known2.isNonNegative() && Known3.isNegative())
1309 Known.makeNonNegative();
1310 else if (Known2.isNegative() && Known3.isNonNegative())
1311 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001312 }
1313
1314 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperca48af32017-04-29 16:43:11 +00001315 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1316 Known3.isNonNegative())
1317 Known.makeNonNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001318 }
1319
Chris Lattner965c7692008-06-02 01:18:21 +00001320 break;
1321 }
1322 }
1323 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001324
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001325 // Unreachable blocks may have zero-operand PHI nodes.
1326 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001327 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001328
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001329 // Otherwise take the unions of the known bit sets of the operands,
1330 // taking conservative care to avoid excessive recursion.
Craig Topperb45eabc2017-04-26 16:39:58 +00001331 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001332 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001333 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001334 break;
1335
Craig Topperb45eabc2017-04-26 16:39:58 +00001336 Known.Zero.setAllBits();
1337 Known.One.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001338 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001339 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001340 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001341
Craig Topperb45eabc2017-04-26 16:39:58 +00001342 Known2 = KnownBits(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001343 // Recurse, but cap the recursion to one level, because we don't
1344 // want to waste time spinning around in loops.
Craig Topperb45eabc2017-04-26 16:39:58 +00001345 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1346 Known.Zero &= Known2.Zero;
1347 Known.One &= Known2.One;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001348 // If all bits have been ruled out, there's no need to check
1349 // more operands.
Craig Topperb45eabc2017-04-26 16:39:58 +00001350 if (!Known.Zero && !Known.One)
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001351 break;
1352 }
1353 }
Chris Lattner965c7692008-06-02 01:18:21 +00001354 break;
1355 }
1356 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001357 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001358 // If range metadata is attached to this call, set known bits from that,
1359 // and then intersect with known bits based on other properties of the
1360 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001361 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +00001362 computeKnownBitsFromRangeMetadata(*MD, Known);
Pete Cooper35b00d52016-08-13 01:05:32 +00001363 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001364 computeKnownBits(RV, Known2, Depth + 1, Q);
1365 Known.Zero |= Known2.Zero;
1366 Known.One |= Known2.One;
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001367 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001368 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001369 switch (II->getIntrinsicID()) {
1370 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001371 case Intrinsic::bitreverse:
Craig Topperb45eabc2017-04-26 16:39:58 +00001372 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1373 Known.Zero |= Known2.Zero.reverseBits();
1374 Known.One |= Known2.One.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001375 break;
Philip Reames675418e2015-10-06 20:20:45 +00001376 case Intrinsic::bswap:
Craig Topperb45eabc2017-04-26 16:39:58 +00001377 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1378 Known.Zero |= Known2.Zero.byteSwap();
1379 Known.One |= Known2.One.byteSwap();
Philip Reames675418e2015-10-06 20:20:45 +00001380 break;
Craig Topper868813f2017-05-08 17:22:34 +00001381 case Intrinsic::ctlz: {
1382 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1383 // If we have a known 1, its position is our upper bound.
1384 unsigned PossibleLZ = Known2.One.countLeadingZeros();
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001385 // If this call is undefined for 0, the result will be less than 2^n.
1386 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
Craig Topper868813f2017-05-08 17:22:34 +00001387 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1388 unsigned LowBits = Log2_32(PossibleLZ)+1;
1389 Known.Zero.setBitsFrom(LowBits);
1390 break;
1391 }
1392 case Intrinsic::cttz: {
1393 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1394 // If we have a known 1, its position is our upper bound.
1395 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1396 // If this call is undefined for 0, the result will be less than 2^n.
1397 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1398 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1399 unsigned LowBits = Log2_32(PossibleTZ)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001400 Known.Zero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001401 break;
1402 }
1403 case Intrinsic::ctpop: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001404 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001405 // We can bound the space the count needs. Also, bits known to be zero
1406 // can't contribute to the population.
Craig Topper8df66c62017-05-12 17:20:30 +00001407 unsigned BitsPossiblySet = Known2.countMaxPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001408 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001409 Known.Zero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001410 // TODO: we could bound KnownOne using the lower bound on the number
1411 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001412 break;
1413 }
Chad Rosierb3628842011-05-26 23:13:19 +00001414 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +00001415 Known.Zero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001416 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001417 }
1418 }
1419 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001420 case Instruction::ExtractElement:
1421 // Look through extract element. At the moment we keep this simple and skip
1422 // tracking the specific element. But at least we might find information
1423 // valid for all elements of the vector (for example if vector is sign
1424 // extended, shifted, etc).
Craig Topperb45eabc2017-04-26 16:39:58 +00001425 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Bjorn Pettersson39616032016-10-06 09:56:21 +00001426 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001427 case Instruction::ExtractValue:
1428 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001429 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001430 if (EVI->getNumIndices() != 1) break;
1431 if (EVI->getIndices()[0] == 0) {
1432 switch (II->getIntrinsicID()) {
1433 default: break;
1434 case Intrinsic::uadd_with_overflow:
1435 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001436 computeKnownBitsAddSub(true, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001437 II->getArgOperand(1), false, Known, Known2,
1438 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001439 break;
1440 case Intrinsic::usub_with_overflow:
1441 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001442 computeKnownBitsAddSub(false, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001443 II->getArgOperand(1), false, Known, Known2,
1444 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001445 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001446 case Intrinsic::umul_with_overflow:
1447 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001448 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Craig Topperb45eabc2017-04-26 16:39:58 +00001449 Known, Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001450 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001451 }
1452 }
1453 }
Chris Lattner965c7692008-06-02 01:18:21 +00001454 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001455}
1456
1457/// Determine which bits of V are known to be either zero or one and return
Craig Topper6e11a052017-05-08 16:22:48 +00001458/// them.
1459KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1460 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1461 computeKnownBits(V, Known, Depth, Q);
1462 return Known;
1463}
1464
1465/// Determine which bits of V are known to be either zero or one and return
Craig Topperb45eabc2017-04-26 16:39:58 +00001466/// them in the Known bit set.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001467///
1468/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1469/// we cannot optimize based on the assumption that it is zero without changing
1470/// it to be an explicit zero. If we don't change it to zero, other code could
1471/// optimized based on the contradictory assumption that it is non-zero.
1472/// Because instcombine aggressively folds operations with undef args anyway,
1473/// this won't lose us code quality.
1474///
1475/// This function is defined on values with integer type, values with pointer
1476/// type, and vectors of integers. In the case
1477/// where V is a vector, known zero, and known one values are the
1478/// same width as the vector element, and the bit is set only if it is true
1479/// for all of the elements in the vector.
Craig Topperb45eabc2017-04-26 16:39:58 +00001480void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1481 const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001482 assert(V && "No Value?");
1483 assert(Depth <= MaxDepth && "Limit Search Depth");
Craig Topperb45eabc2017-04-26 16:39:58 +00001484 unsigned BitWidth = Known.getBitWidth();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001485
Craig Topperfde47232017-07-09 07:04:03 +00001486 assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
Craig Topper95d23472017-07-09 07:04:00 +00001487 V->getType()->isPtrOrPtrVectorTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001488 "Not integer or pointer type!");
Craig Topperfde47232017-07-09 07:04:03 +00001489 assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth &&
Craig Topperb45eabc2017-04-26 16:39:58 +00001490 "V and Known should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001491 (void)BitWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001492
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001493 const APInt *C;
1494 if (match(V, m_APInt(C))) {
1495 // We know all of the bits for a scalar constant or a splat vector constant!
Craig Topperb45eabc2017-04-26 16:39:58 +00001496 Known.One = *C;
1497 Known.Zero = ~Known.One;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001498 return;
1499 }
1500 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001501 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001502 Known.setAllZero();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001503 return;
1504 }
1505 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001506 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001507 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001508 // We know that CDS must be a vector of integers. Take the intersection of
1509 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001510 Known.Zero.setAllBits(); Known.One.setAllBits();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001511 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Craig Topperb98ee582017-10-21 16:35:39 +00001512 APInt Elt = CDS->getElementAsAPInt(i);
Craig Topperb45eabc2017-04-26 16:39:58 +00001513 Known.Zero &= ~Elt;
1514 Known.One &= Elt;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001515 }
1516 return;
1517 }
1518
Pete Cooper35b00d52016-08-13 01:05:32 +00001519 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001520 // We know that CV must be a vector of integers. Take the intersection of
1521 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001522 Known.Zero.setAllBits(); Known.One.setAllBits();
David Majnemer3918cdd2016-05-04 06:13:33 +00001523 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1524 Constant *Element = CV->getAggregateElement(i);
1525 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1526 if (!ElementCI) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001527 Known.resetAll();
David Majnemer3918cdd2016-05-04 06:13:33 +00001528 return;
1529 }
Craig Topperb98ee582017-10-21 16:35:39 +00001530 const APInt &Elt = ElementCI->getValue();
Craig Topperb45eabc2017-04-26 16:39:58 +00001531 Known.Zero &= ~Elt;
1532 Known.One &= Elt;
David Majnemer3918cdd2016-05-04 06:13:33 +00001533 }
1534 return;
1535 }
1536
Jingyue Wu12b0c282015-06-15 05:46:29 +00001537 // Start out not knowing anything.
Craig Topperf0aeee02017-05-05 17:36:09 +00001538 Known.resetAll();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001539
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001540 // We can't imply anything about undefs.
1541 if (isa<UndefValue>(V))
1542 return;
1543
1544 // There's no point in looking through other users of ConstantData for
1545 // assumptions. Confirm that we've handled them all.
1546 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1547
Jingyue Wu12b0c282015-06-15 05:46:29 +00001548 // Limit search depth.
1549 // All recursive calls that increase depth must come after this.
1550 if (Depth == MaxDepth)
1551 return;
1552
1553 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1554 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001555 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001556 if (!GA->isInterposable())
Craig Topperb45eabc2017-04-26 16:39:58 +00001557 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001558 return;
1559 }
1560
Pete Cooper35b00d52016-08-13 01:05:32 +00001561 if (const Operator *I = dyn_cast<Operator>(V))
Craig Topperb45eabc2017-04-26 16:39:58 +00001562 computeKnownBitsFromOperator(I, Known, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001563
Craig Topperb45eabc2017-04-26 16:39:58 +00001564 // Aligned pointers have trailing zeros - refine Known.Zero set
Artur Pilipenko029d8532015-09-30 11:55:45 +00001565 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001566 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001567 if (Align)
Craig Topperb45eabc2017-04-26 16:39:58 +00001568 Known.Zero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001569 }
1570
Craig Topperb45eabc2017-04-26 16:39:58 +00001571 // computeKnownBitsFromAssume strictly refines Known.
1572 // Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001573
1574 // Check whether a nearby assume intrinsic can determine some known bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001575 computeKnownBitsFromAssume(V, Known, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001576
Craig Topperb45eabc2017-04-26 16:39:58 +00001577 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001578}
1579
Sanjay Patelaee84212014-11-04 16:27:42 +00001580/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001581/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001582/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001583/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001584bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001585 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00001586 assert(Depth <= MaxDepth && "Limit Search Depth");
1587
Pete Cooper35b00d52016-08-13 01:05:32 +00001588 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001589 if (C->isNullValue())
1590 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001591
1592 const APInt *ConstIntOrConstSplatInt;
1593 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1594 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001595 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001596
1597 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1598 // it is shifted off the end then the result is undefined.
1599 if (match(V, m_Shl(m_One(), m_Value())))
1600 return true;
1601
Craig Topperbcfd2d12017-04-20 16:56:25 +00001602 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1603 // the bottom. If it is shifted off the bottom then the result is undefined.
1604 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001605 return true;
1606
1607 // The remaining tests are all recursive, so bail out if we hit the limit.
1608 if (Depth++ == MaxDepth)
1609 return false;
1610
Craig Topper9f008862014-04-15 04:59:12 +00001611 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001612 // A shift left or a logical shift right of a power of two is a power of two
1613 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001614 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001615 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001616 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001617
Pete Cooper35b00d52016-08-13 01:05:32 +00001618 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001619 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001620
Pete Cooper35b00d52016-08-13 01:05:32 +00001621 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001622 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1623 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001624
Duncan Sandsba286d72011-10-26 20:55:21 +00001625 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1626 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001627 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1628 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001629 return true;
1630 // X & (-X) is always a power of two or zero.
1631 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1632 return true;
1633 return false;
1634 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001635
David Majnemerb7d54092013-07-30 21:01:36 +00001636 // Adding a power-of-two or zero to the same power-of-two or zero yields
1637 // either the original power-of-two, a larger power-of-two or zero.
1638 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001639 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001640 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1641 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1642 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001643 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001644 return true;
1645 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1646 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001647 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001648 return true;
1649
1650 unsigned BitWidth = V->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00001651 KnownBits LHSBits(BitWidth);
1652 computeKnownBits(X, LHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001653
Craig Topperb45eabc2017-04-26 16:39:58 +00001654 KnownBits RHSBits(BitWidth);
1655 computeKnownBits(Y, RHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001656 // If i8 V is a power of two or zero:
1657 // ZeroBits: 1 1 1 0 1 1 1 1
1658 // ~ZeroBits: 0 0 0 1 0 0 0 0
Craig Topperb45eabc2017-04-26 16:39:58 +00001659 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
David Majnemerb7d54092013-07-30 21:01:36 +00001660 // If OrZero isn't set, we cannot give back a zero result.
1661 // Make sure either the LHS or RHS has a bit set.
Craig Topperb45eabc2017-04-26 16:39:58 +00001662 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
David Majnemerb7d54092013-07-30 21:01:36 +00001663 return true;
1664 }
1665 }
David Majnemerbeab5672013-05-18 19:30:37 +00001666
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001667 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001668 // is a power of two only if the first operand is a power of two and not
1669 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001670 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1671 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001672 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001673 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001674 }
1675
Duncan Sandsd3951082011-01-25 09:38:29 +00001676 return false;
1677}
1678
Chandler Carruth80d3e562012-12-07 02:08:58 +00001679/// \brief Test whether a GEP's result is known to be non-null.
1680///
1681/// Uses properties inherent in a GEP to try to determine whether it is known
1682/// to be non-null.
1683///
1684/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001685static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001686 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001687 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1688 return false;
1689
1690 // FIXME: Support vector-GEPs.
1691 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1692
1693 // If the base pointer is non-null, we cannot walk to a null address with an
1694 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001695 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001696 return true;
1697
Chandler Carruth80d3e562012-12-07 02:08:58 +00001698 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1699 // If so, then the GEP cannot produce a null pointer, as doing so would
1700 // inherently violate the inbounds contract within address space zero.
1701 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1702 GTI != GTE; ++GTI) {
1703 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001704 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001705 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1706 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001707 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001708 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1709 if (ElementOffset > 0)
1710 return true;
1711 continue;
1712 }
1713
1714 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001715 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001716 continue;
1717
1718 // Fast path the constant operand case both for efficiency and so we don't
1719 // increment Depth when just zipping down an all-constant GEP.
1720 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1721 if (!OpC->isZero())
1722 return true;
1723 continue;
1724 }
1725
1726 // We post-increment Depth here because while isKnownNonZero increments it
1727 // as well, when we pop back up that increment won't persist. We don't want
1728 // to recurse 10k times just because we have 10k GEP operands. We don't
1729 // bail completely out because we want to handle constant GEPs regardless
1730 // of depth.
1731 if (Depth++ >= MaxDepth)
1732 continue;
1733
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001734 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001735 return true;
1736 }
1737
1738 return false;
1739}
1740
Nuno Lopes404f1062017-09-09 18:23:11 +00001741static bool isKnownNonNullFromDominatingCondition(const Value *V,
1742 const Instruction *CtxI,
1743 const DominatorTree *DT) {
1744 assert(V->getType()->isPointerTy() && "V must be pointer type");
1745 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1746
1747 if (!CtxI || !DT)
1748 return false;
1749
1750 unsigned NumUsesExplored = 0;
1751 for (auto *U : V->users()) {
1752 // Avoid massive lists
1753 if (NumUsesExplored >= DomConditionsMaxUses)
1754 break;
1755 NumUsesExplored++;
1756
1757 // If the value is used as an argument to a call or invoke, then argument
1758 // attributes may provide an answer about null-ness.
1759 if (auto CS = ImmutableCallSite(U))
1760 if (auto *CalledFunc = CS.getCalledFunction())
1761 for (const Argument &Arg : CalledFunc->args())
1762 if (CS.getArgOperand(Arg.getArgNo()) == V &&
1763 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1764 return true;
1765
1766 // Consider only compare instructions uniquely controlling a branch
1767 CmpInst::Predicate Pred;
1768 if (!match(const_cast<User *>(U),
1769 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1770 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1771 continue;
1772
1773 for (auto *CmpU : U->users()) {
1774 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
1775 assert(BI->isConditional() && "uses a comparison!");
1776
1777 BasicBlock *NonNullSuccessor =
1778 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1779 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1780 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1781 return true;
1782 } else if (Pred == ICmpInst::ICMP_NE &&
1783 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
1784 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
1785 return true;
1786 }
1787 }
1788 }
1789
1790 return false;
1791}
1792
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001793/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1794/// ensure that the value it's attached to is never Value? 'RangeType' is
1795/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001796static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001797 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1798 assert(NumRanges >= 1);
1799 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001800 ConstantInt *Lower =
1801 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1802 ConstantInt *Upper =
1803 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001804 ConstantRange Range(Lower->getValue(), Upper->getValue());
1805 if (Range.contains(Value))
1806 return false;
1807 }
1808 return true;
1809}
1810
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001811/// Return true if the given value is known to be non-zero when defined. For
1812/// vectors, return true if every element is known to be non-zero when
1813/// defined. For pointers, if the context instruction and dominator tree are
1814/// specified, perform context-sensitive analysis and return true if the
1815/// pointer couldn't possibly be null at the specified instruction.
1816/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001817bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001818 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001819 if (C->isNullValue())
1820 return false;
1821 if (isa<ConstantInt>(C))
1822 // Must be non-zero due to null test above.
1823 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001824
1825 // For constant vectors, check that all elements are undefined or known
1826 // non-zero to determine that the whole vector is known non-zero.
1827 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1828 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1829 Constant *Elt = C->getAggregateElement(i);
1830 if (!Elt || Elt->isNullValue())
1831 return false;
1832 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1833 return false;
1834 }
1835 return true;
1836 }
1837
Nuno Lopes404f1062017-09-09 18:23:11 +00001838 // A global variable in address space 0 is non null unless extern weak
1839 // or an absolute symbol reference. Other address spaces may have null as a
1840 // valid address for a global, so we can't assume anything.
1841 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1842 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1843 GV->getType()->getAddressSpace() == 0)
1844 return true;
1845 } else
1846 return false;
Duncan Sandsd3951082011-01-25 09:38:29 +00001847 }
1848
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001849 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001850 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001851 // If the possible ranges don't contain zero, then the value is
1852 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001853 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001854 const APInt ZeroValue(Ty->getBitWidth(), 0);
1855 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1856 return true;
1857 }
1858 }
1859 }
1860
Nuno Lopes404f1062017-09-09 18:23:11 +00001861 // Check for pointer simplifications.
1862 if (V->getType()->isPointerTy()) {
1863 // Alloca never returns null, malloc might.
1864 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
1865 return true;
1866
1867 // A byval, inalloca, or nonnull argument is never null.
1868 if (const Argument *A = dyn_cast<Argument>(V))
1869 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
1870 return true;
1871
1872 // A Load tagged with nonnull metadata is never null.
1873 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1874 if (LI->getMetadata(LLVMContext::MD_nonnull))
1875 return true;
1876
1877 if (auto CS = ImmutableCallSite(V))
1878 if (CS.isReturnNonNull())
1879 return true;
1880 }
1881
Duncan Sandsd3951082011-01-25 09:38:29 +00001882 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001883 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001884 return false;
1885
Nuno Lopes404f1062017-09-09 18:23:11 +00001886 // Check for recursive pointer simplifications.
Chandler Carruth80d3e562012-12-07 02:08:58 +00001887 if (V->getType()->isPointerTy()) {
Nuno Lopes404f1062017-09-09 18:23:11 +00001888 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001889 return true;
Nuno Lopes404f1062017-09-09 18:23:11 +00001890
Pete Cooper35b00d52016-08-13 01:05:32 +00001891 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001892 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001893 return true;
1894 }
1895
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001896 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001897
1898 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001899 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001900 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001901 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001902
1903 // ext X != 0 if X != 0.
1904 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001905 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001906
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001907 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001908 // if the lowest bit is shifted off the end.
Craig Topper6b3940a2017-05-03 22:25:19 +00001909 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001910 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001911 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001912 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001913 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001914
Craig Topperb45eabc2017-04-26 16:39:58 +00001915 KnownBits Known(BitWidth);
1916 computeKnownBits(X, Known, Depth, Q);
1917 if (Known.One[0])
Duncan Sandsd3951082011-01-25 09:38:29 +00001918 return true;
1919 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001920 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001921 // defined if the sign bit is shifted off the end.
1922 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001923 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001924 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001925 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001926 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001927
Craig Topper6e11a052017-05-08 16:22:48 +00001928 KnownBits Known = computeKnownBits(X, Depth, Q);
1929 if (Known.isNegative())
Duncan Sandsd3951082011-01-25 09:38:29 +00001930 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001931
1932 // If the shifter operand is a constant, and all of the bits shifted
1933 // out are known to be zero, and X is known non-zero then at least one
1934 // non-zero bit must remain.
1935 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
James Molloyb6be1eb2015-09-24 16:06:32 +00001936 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1937 // Is there a known one in the portion not shifted out?
Craig Topper8df66c62017-05-12 17:20:30 +00001938 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
James Molloyb6be1eb2015-09-24 16:06:32 +00001939 return true;
1940 // Are all the bits to be shifted out known zero?
NAKAMURA Takumi76bab1f2017-07-11 02:31:51 +00001941 if (Known.countMinTrailingZeros() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001942 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001943 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001944 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001945 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001946 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001947 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001948 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001949 // X + Y.
1950 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Craig Topper6e11a052017-05-08 16:22:48 +00001951 KnownBits XKnown = computeKnownBits(X, Depth, Q);
1952 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001953
1954 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001955 // zero unless both X and Y are zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001956 if (XKnown.isNonNegative() && YKnown.isNonNegative())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001957 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001958 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001959
1960 // If X and Y are both negative (as signed values) then their sum is not
1961 // zero unless both X and Y equal INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001962 if (XKnown.isNegative() && YKnown.isNegative()) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001963 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1964 // The sign bit of X is set. If some other bit is set then X is not equal
1965 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001966 if (XKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001967 return true;
1968 // The sign bit of Y is set. If some other bit is set then Y is not equal
1969 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001970 if (YKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001971 return true;
1972 }
1973
1974 // The sum of a non-negative number and a power of two is not zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001975 if (XKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001976 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001977 return true;
Craig Topper6e11a052017-05-08 16:22:48 +00001978 if (YKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001979 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001980 return true;
1981 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001982 // X * Y.
1983 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001984 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001985 // If X and Y are non-zero then so is X * Y as long as the multiplication
1986 // does not overflow.
1987 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001988 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001989 return true;
1990 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001991 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001992 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001993 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1994 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001995 return true;
1996 }
James Molloy897048b2015-09-29 14:08:45 +00001997 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001998 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001999 // Try and detect a recurrence that monotonically increases from a
2000 // starting value, as these are common as induction variables.
2001 if (PN->getNumIncomingValues() == 2) {
2002 Value *Start = PN->getIncomingValue(0);
2003 Value *Induction = PN->getIncomingValue(1);
2004 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2005 std::swap(Start, Induction);
2006 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2007 if (!C->isZero() && !C->isNegative()) {
2008 ConstantInt *X;
2009 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2010 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2011 !X->isNegative())
2012 return true;
2013 }
2014 }
2015 }
Jun Bum Limca832662016-02-01 17:03:07 +00002016 // Check if all incoming values are non-zero constant.
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002017 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
Craig Topper79ab6432017-07-06 18:39:47 +00002018 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
Jun Bum Limca832662016-02-01 17:03:07 +00002019 });
2020 if (AllNonZeroConstants)
2021 return true;
James Molloy897048b2015-09-29 14:08:45 +00002022 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002023
Craig Topperb45eabc2017-04-26 16:39:58 +00002024 KnownBits Known(BitWidth);
2025 computeKnownBits(V, Known, Depth, Q);
2026 return Known.One != 0;
Duncan Sandsd3951082011-01-25 09:38:29 +00002027}
2028
James Molloy1d88d6f2015-10-22 13:18:42 +00002029/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00002030static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2031 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00002032 if (!BO || BO->getOpcode() != Instruction::Add)
2033 return false;
2034 Value *Op = nullptr;
2035 if (V2 == BO->getOperand(0))
2036 Op = BO->getOperand(1);
2037 else if (V2 == BO->getOperand(1))
2038 Op = BO->getOperand(0);
2039 else
2040 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002041 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002042}
2043
2044/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002045static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
Craig Topper3002d5b2017-06-06 07:13:15 +00002046 if (V1 == V2)
James Molloy1d88d6f2015-10-22 13:18:42 +00002047 return false;
2048 if (V1->getType() != V2->getType())
2049 // We can't look through casts yet.
2050 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002051 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002052 return true;
2053
Craig Topper3002d5b2017-06-06 07:13:15 +00002054 if (V1->getType()->isIntOrIntVectorTy()) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002055 // Are any known bits in V1 contradictory to known bits in V2? If V1
2056 // has a known zero where V2 has a known one, they must not be equal.
Craig Topper8e662f72017-06-06 07:13:11 +00002057 KnownBits Known1 = computeKnownBits(V1, 0, Q);
2058 KnownBits Known2 = computeKnownBits(V2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002059
Craig Topper8365df82017-06-06 07:13:09 +00002060 if (Known1.Zero.intersects(Known2.One) ||
2061 Known2.Zero.intersects(Known1.One))
James Molloy1d88d6f2015-10-22 13:18:42 +00002062 return true;
2063 }
2064 return false;
2065}
2066
Sanjay Patelaee84212014-11-04 16:27:42 +00002067/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2068/// simplify operations downstream. Mask is known to be zero for bits that V
2069/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002070///
2071/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002072/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002073/// where V is a vector, the mask, known zero, and known one values are the
2074/// same width as the vector element, and the bit is set only if it is true
2075/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002076bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002077 const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002078 KnownBits Known(Mask.getBitWidth());
2079 computeKnownBits(V, Known, Depth, Q);
2080 return Mask.isSubsetOf(Known.Zero);
Chris Lattner965c7692008-06-02 01:18:21 +00002081}
2082
Sanjay Patela06d9892016-06-22 19:20:59 +00002083/// For vector constants, loop over the elements and find the constant with the
2084/// minimum number of sign bits. Return 0 if the value is not a vector constant
2085/// or if any element was not analyzed; otherwise, return the count for the
2086/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002087static unsigned computeNumSignBitsVectorConstant(const Value *V,
2088 unsigned TyBits) {
2089 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002090 if (!CV || !CV->getType()->isVectorTy())
2091 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002092
Sanjay Patela06d9892016-06-22 19:20:59 +00002093 unsigned MinSignBits = TyBits;
2094 unsigned NumElts = CV->getType()->getVectorNumElements();
2095 for (unsigned i = 0; i != NumElts; ++i) {
2096 // If we find a non-ConstantInt, bail out.
2097 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2098 if (!Elt)
2099 return 0;
2100
Craig Topper8e8b6ef2017-10-21 16:35:41 +00002101 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
Sanjay Patela06d9892016-06-22 19:20:59 +00002102 }
2103
2104 return MinSignBits;
2105}
Chris Lattner965c7692008-06-02 01:18:21 +00002106
Sanjoy Das39a684d2017-02-25 20:30:45 +00002107static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2108 const Query &Q);
2109
2110static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2111 const Query &Q) {
2112 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2113 assert(Result > 0 && "At least one sign bit needs to be present!");
2114 return Result;
2115}
2116
Sanjay Patelaee84212014-11-04 16:27:42 +00002117/// Return the number of times the sign bit of the register is replicated into
2118/// the other bits. We know that at least 1 bit is always equal to the sign bit
2119/// (itself), but other cases can give us information. For example, immediately
2120/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002121/// other, so we return 3. For vectors, return the number of sign bits for the
2122/// vector element with the mininum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002123static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2124 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00002125 assert(Depth <= MaxDepth && "Limit Search Depth");
Sanjoy Das39a684d2017-02-25 20:30:45 +00002126
2127 // We return the minimum number of sign bits that are guaranteed to be present
2128 // in V, so for undef we have to conservatively return 1. We don't have the
2129 // same behavior for poison though -- that's a FIXME today.
2130
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002131 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002132 unsigned Tmp, Tmp2;
2133 unsigned FirstAnswer = 1;
2134
Jay Foada0653a32014-05-14 21:14:37 +00002135 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002136 // below.
2137
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002138 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002139 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002140
Pete Cooper35b00d52016-08-13 01:05:32 +00002141 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002142 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002143 default: break;
2144 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002145 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002146 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002147
Nadav Rotemc99a3872015-03-06 00:23:58 +00002148 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002149 const APInt *Denominator;
2150 // sdiv X, C -> adds log(C) sign bits.
2151 if (match(U->getOperand(1), m_APInt(Denominator))) {
2152
2153 // Ignore non-positive denominator.
2154 if (!Denominator->isStrictlyPositive())
2155 break;
2156
2157 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002158 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002159
2160 // Add floor(log(C)) bits to the numerator bits.
2161 return std::min(TyBits, NumBits + Denominator->logBase2());
2162 }
2163 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002164 }
2165
2166 case Instruction::SRem: {
2167 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002168 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2169 // positive constant. This let us put a lower bound on the number of sign
2170 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002171 if (match(U->getOperand(1), m_APInt(Denominator))) {
2172
2173 // Ignore non-positive denominator.
2174 if (!Denominator->isStrictlyPositive())
2175 break;
2176
2177 // Calculate the incoming numerator bits. SRem by a positive constant
2178 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002179 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002180 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002181
2182 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002183 // denominator. Given that the denominator is positive, there are two
2184 // cases:
2185 //
2186 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2187 // (1 << ceilLogBase2(C)).
2188 //
2189 // 2. the numerator is negative. Then the result range is (-C,0] and
2190 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2191 //
2192 // Thus a lower bound on the number of sign bits is `TyBits -
2193 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002194
Sanjoy Dase561fee2015-03-25 22:33:53 +00002195 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002196 return std::max(NumrBits, ResBits);
2197 }
2198 break;
2199 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002200
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002201 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002202 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002203 // ashr X, C -> adds C sign bits. Vectors too.
2204 const APInt *ShAmt;
2205 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Sanjoy Das39a684d2017-02-25 20:30:45 +00002206 unsigned ShAmtLimited = ShAmt->getZExtValue();
2207 if (ShAmtLimited >= TyBits)
2208 break; // Bad shift.
2209 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002210 if (Tmp > TyBits) Tmp = TyBits;
2211 }
2212 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002213 }
2214 case Instruction::Shl: {
2215 const APInt *ShAmt;
2216 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002217 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002218 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002219 Tmp2 = ShAmt->getZExtValue();
2220 if (Tmp2 >= TyBits || // Bad shift.
2221 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2222 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002223 }
2224 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002225 }
Chris Lattner965c7692008-06-02 01:18:21 +00002226 case Instruction::And:
2227 case Instruction::Or:
2228 case Instruction::Xor: // NOT is handled here.
2229 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002230 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002231 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002232 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002233 FirstAnswer = std::min(Tmp, Tmp2);
2234 // We computed what we know about the sign bits as our first
2235 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002236 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002237 }
2238 break;
2239
2240 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002241 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002242 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002243 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002244 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002245
Chris Lattner965c7692008-06-02 01:18:21 +00002246 case Instruction::Add:
2247 // Add can have at most one carry bit. Thus we know that the output
2248 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002249 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002250 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002251
Chris Lattner965c7692008-06-02 01:18:21 +00002252 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002253 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002254 if (CRHS->isAllOnesValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002255 KnownBits Known(TyBits);
2256 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002257
Chris Lattner965c7692008-06-02 01:18:21 +00002258 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2259 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002260 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002261 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002262
Chris Lattner965c7692008-06-02 01:18:21 +00002263 // If we are subtracting one from a positive number, there is no carry
2264 // out of the result.
Craig Topperca48af32017-04-29 16:43:11 +00002265 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002266 return Tmp;
2267 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002268
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002269 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002270 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002271 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002272
Chris Lattner965c7692008-06-02 01:18:21 +00002273 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002274 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002275 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002276
Chris Lattner965c7692008-06-02 01:18:21 +00002277 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002278 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002279 if (CLHS->isNullValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002280 KnownBits Known(TyBits);
2281 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002282 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2283 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002284 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002285 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002286
Chris Lattner965c7692008-06-02 01:18:21 +00002287 // If the input is known to be positive (the sign bit is known clear),
2288 // the output of the NEG has the same number of sign bits as the input.
Craig Topperca48af32017-04-29 16:43:11 +00002289 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002290 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002291
Chris Lattner965c7692008-06-02 01:18:21 +00002292 // Otherwise, we treat this like a SUB.
2293 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002294
Chris Lattner965c7692008-06-02 01:18:21 +00002295 // Sub can have at most one carry bit. Thus we know that the output
2296 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002297 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002298 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002299 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002300
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002301 case Instruction::Mul: {
2302 // The output of the Mul can be at most twice the valid bits in the inputs.
2303 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2304 if (SignBitsOp0 == 1) return 1; // Early out.
2305 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2306 if (SignBitsOp1 == 1) return 1;
2307 unsigned OutValidBits =
2308 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2309 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2310 }
2311
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002312 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002313 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002314 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002315 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002316 if (NumIncomingValues > 4) break;
2317 // Unreachable blocks may have zero-operand PHI nodes.
2318 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002319
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002320 // Take the minimum of all incoming values. This can't infinitely loop
2321 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002322 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002323 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002324 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002325 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002326 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002327 }
2328 return Tmp;
2329 }
2330
Chris Lattner965c7692008-06-02 01:18:21 +00002331 case Instruction::Trunc:
2332 // FIXME: it's tricky to do anything useful for this, but it is an important
2333 // case for targets like X86.
2334 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002335
2336 case Instruction::ExtractElement:
2337 // Look through extract element. At the moment we keep this simple and skip
2338 // tracking the specific element. But at least we might find information
2339 // valid for all elements of the vector (for example if vector is sign
2340 // extended, shifted, etc).
2341 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002342 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002343
Chris Lattner965c7692008-06-02 01:18:21 +00002344 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2345 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002346
2347 // If we can examine all elements of a vector constant successfully, we're
2348 // done (we can't do any better than that). If not, keep trying.
2349 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2350 return VecSignBits;
2351
Craig Topperb45eabc2017-04-26 16:39:58 +00002352 KnownBits Known(TyBits);
2353 computeKnownBits(V, Known, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002354
Sanjay Patele0536212016-06-23 17:41:59 +00002355 // If we know that the sign bit is either zero or one, determine the number of
2356 // identical bits in the top of the input value.
Craig Topper8df66c62017-05-12 17:20:30 +00002357 return std::max(FirstAnswer, Known.countMinSignBits());
Chris Lattner965c7692008-06-02 01:18:21 +00002358}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002359
Sanjay Patelaee84212014-11-04 16:27:42 +00002360/// This function computes the integer multiple of Base that equals V.
2361/// If successful, it returns true and returns the multiple in
2362/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002363/// through SExt instructions only if LookThroughSExt is true.
2364bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002365 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002366 const unsigned MaxDepth = 6;
2367
Dan Gohman6a976bb2009-11-18 00:58:27 +00002368 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002369 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002370 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002371
Chris Lattner229907c2011-07-18 04:54:35 +00002372 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002373
Dan Gohman6a976bb2009-11-18 00:58:27 +00002374 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002375
2376 if (Base == 0)
2377 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002378
Victor Hernandez47444882009-11-10 08:28:35 +00002379 if (Base == 1) {
2380 Multiple = V;
2381 return true;
2382 }
2383
2384 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2385 Constant *BaseVal = ConstantInt::get(T, Base);
2386 if (CO && CO == BaseVal) {
2387 // Multiple is 1.
2388 Multiple = ConstantInt::get(T, 1);
2389 return true;
2390 }
2391
2392 if (CI && CI->getZExtValue() % Base == 0) {
2393 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002394 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002395 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002396
Victor Hernandez47444882009-11-10 08:28:35 +00002397 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002398
Victor Hernandez47444882009-11-10 08:28:35 +00002399 Operator *I = dyn_cast<Operator>(V);
2400 if (!I) return false;
2401
2402 switch (I->getOpcode()) {
2403 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002404 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002405 if (!LookThroughSExt) return false;
2406 // otherwise fall through to ZExt
Galina Kistanova244621f2017-05-31 22:16:24 +00002407 LLVM_FALLTHROUGH;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002408 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002409 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2410 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002411 case Instruction::Shl:
2412 case Instruction::Mul: {
2413 Value *Op0 = I->getOperand(0);
2414 Value *Op1 = I->getOperand(1);
2415
2416 if (I->getOpcode() == Instruction::Shl) {
2417 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2418 if (!Op1CI) return false;
2419 // Turn Op0 << Op1 into Op0 * 2^Op1
2420 APInt Op1Int = Op1CI->getValue();
2421 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002422 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002423 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002424 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002425 }
2426
Craig Topper9f008862014-04-15 04:59:12 +00002427 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002428 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2429 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2430 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002431 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002432 MulC->getType()->getPrimitiveSizeInBits())
2433 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002434 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002435 MulC->getType()->getPrimitiveSizeInBits())
2436 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002437
Chris Lattner72d283c2010-09-05 17:20:46 +00002438 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2439 Multiple = ConstantExpr::getMul(MulC, Op1C);
2440 return true;
2441 }
Victor Hernandez47444882009-11-10 08:28:35 +00002442
2443 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2444 if (Mul0CI->getValue() == 1) {
2445 // V == Base * Op1, so return Op1
2446 Multiple = Op1;
2447 return true;
2448 }
2449 }
2450
Craig Topper9f008862014-04-15 04:59:12 +00002451 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002452 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2453 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2454 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002455 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002456 MulC->getType()->getPrimitiveSizeInBits())
2457 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002458 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002459 MulC->getType()->getPrimitiveSizeInBits())
2460 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002461
Chris Lattner72d283c2010-09-05 17:20:46 +00002462 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2463 Multiple = ConstantExpr::getMul(MulC, Op0C);
2464 return true;
2465 }
Victor Hernandez47444882009-11-10 08:28:35 +00002466
2467 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2468 if (Mul1CI->getValue() == 1) {
2469 // V == Base * Op0, so return Op0
2470 Multiple = Op0;
2471 return true;
2472 }
2473 }
Victor Hernandez47444882009-11-10 08:28:35 +00002474 }
2475 }
2476
2477 // We could not determine if V is a multiple of Base.
2478 return false;
2479}
2480
David Majnemerb4b27232016-04-19 19:10:21 +00002481Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2482 const TargetLibraryInfo *TLI) {
2483 const Function *F = ICS.getCalledFunction();
2484 if (!F)
2485 return Intrinsic::not_intrinsic;
2486
2487 if (F->isIntrinsic())
2488 return F->getIntrinsicID();
2489
2490 if (!TLI)
2491 return Intrinsic::not_intrinsic;
2492
David L. Jonesd21529f2017-01-23 23:16:46 +00002493 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002494 // We're going to make assumptions on the semantics of the functions, check
2495 // that the target knows that it's available in this environment and it does
2496 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002497 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2498 return Intrinsic::not_intrinsic;
2499
2500 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002501 return Intrinsic::not_intrinsic;
2502
2503 // Otherwise check if we have a call to a function that can be turned into a
2504 // vector intrinsic.
2505 switch (Func) {
2506 default:
2507 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002508 case LibFunc_sin:
2509 case LibFunc_sinf:
2510 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002511 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002512 case LibFunc_cos:
2513 case LibFunc_cosf:
2514 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002515 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002516 case LibFunc_exp:
2517 case LibFunc_expf:
2518 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002519 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002520 case LibFunc_exp2:
2521 case LibFunc_exp2f:
2522 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002523 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002524 case LibFunc_log:
2525 case LibFunc_logf:
2526 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002527 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002528 case LibFunc_log10:
2529 case LibFunc_log10f:
2530 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002531 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002532 case LibFunc_log2:
2533 case LibFunc_log2f:
2534 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002535 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002536 case LibFunc_fabs:
2537 case LibFunc_fabsf:
2538 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002539 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002540 case LibFunc_fmin:
2541 case LibFunc_fminf:
2542 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002543 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002544 case LibFunc_fmax:
2545 case LibFunc_fmaxf:
2546 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002547 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002548 case LibFunc_copysign:
2549 case LibFunc_copysignf:
2550 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002551 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002552 case LibFunc_floor:
2553 case LibFunc_floorf:
2554 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002555 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002556 case LibFunc_ceil:
2557 case LibFunc_ceilf:
2558 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002559 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002560 case LibFunc_trunc:
2561 case LibFunc_truncf:
2562 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002563 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002564 case LibFunc_rint:
2565 case LibFunc_rintf:
2566 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002567 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002568 case LibFunc_nearbyint:
2569 case LibFunc_nearbyintf:
2570 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002571 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002572 case LibFunc_round:
2573 case LibFunc_roundf:
2574 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002575 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002576 case LibFunc_pow:
2577 case LibFunc_powf:
2578 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002579 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002580 case LibFunc_sqrt:
2581 case LibFunc_sqrtf:
2582 case LibFunc_sqrtl:
Sanjay Patel86d24f12017-11-06 22:40:09 +00002583 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002584 }
2585
2586 return Intrinsic::not_intrinsic;
2587}
2588
Sanjay Patelaee84212014-11-04 16:27:42 +00002589/// Return true if we can prove that the specified FP value is never equal to
2590/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002591///
2592/// NOTE: this function will need to be revisited when we support non-default
2593/// rounding modes!
David Majnemer3ee5f342016-04-13 06:55:52 +00002594bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2595 unsigned Depth) {
Sanjay Patel20df88a2017-11-13 17:56:23 +00002596 if (auto *CFP = dyn_cast<ConstantFP>(V))
Chris Lattnera12a6de2008-06-02 01:29:46 +00002597 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002598
Sanjay Patel20df88a2017-11-13 17:56:23 +00002599 // Limit search depth.
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002600 if (Depth == MaxDepth)
Sanjay Patel20df88a2017-11-13 17:56:23 +00002601 return false;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002602
Sanjay Patel20df88a2017-11-13 17:56:23 +00002603 auto *Op = dyn_cast<Operator>(V);
2604 if (!Op)
2605 return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002606
Sanjay Patel20df88a2017-11-13 17:56:23 +00002607 // Check if the nsz fast-math flag is set.
2608 if (auto *FPO = dyn_cast<FPMathOperator>(Op))
Michael Ilseman0f128372012-12-06 00:07:09 +00002609 if (FPO->hasNoSignedZeros())
2610 return true;
2611
Sanjay Patel9e3d8f42017-11-13 17:40:47 +00002612 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
Sanjay Patel20df88a2017-11-13 17:56:23 +00002613 if (match(Op, m_FAdd(m_Value(), m_Zero())))
Sanjay Patel9e3d8f42017-11-13 17:40:47 +00002614 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002615
Chris Lattnera12a6de2008-06-02 01:29:46 +00002616 // sitofp and uitofp turn into +0.0 for zero.
Sanjay Patel20df88a2017-11-13 17:56:23 +00002617 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
Chris Lattnera12a6de2008-06-02 01:29:46 +00002618 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002619
Sanjay Patel20df88a2017-11-13 17:56:23 +00002620 if (auto *Call = dyn_cast<CallInst>(Op)) {
2621 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002622 switch (IID) {
2623 default:
2624 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002625 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002626 case Intrinsic::sqrt:
Sanjay Patel20df88a2017-11-13 17:56:23 +00002627 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002628 // fabs(x) != -0.0
2629 case Intrinsic::fabs:
2630 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002631 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002632 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002633
Chris Lattnera12a6de2008-06-02 01:29:46 +00002634 return false;
2635}
2636
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002637/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2638/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2639/// bit despite comparing equal.
2640static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2641 const TargetLibraryInfo *TLI,
2642 bool SignBitOnly,
2643 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002644 // TODO: This function does not do the right thing when SignBitOnly is true
2645 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2646 // which flips the sign bits of NaNs. See
2647 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2648
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002649 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2650 return !CFP->getValueAPF().isNegative() ||
2651 (!SignBitOnly && CFP->getValueAPF().isZero());
2652 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002653
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002654 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002655 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002656
2657 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002658 if (!I)
2659 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002660
2661 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002662 default:
2663 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002664 // Unsigned integers are always nonnegative.
2665 case Instruction::UIToFP:
2666 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002667 case Instruction::FMul:
2668 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002669 if (I->getOperand(0) == I->getOperand(1) &&
2670 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002671 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002672
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002673 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002674 case Instruction::FAdd:
2675 case Instruction::FDiv:
2676 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002677 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2678 Depth + 1) &&
2679 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2680 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002681 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002682 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2683 Depth + 1) &&
2684 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2685 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002686 case Instruction::FPExt:
2687 case Instruction::FPTrunc:
2688 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002689 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2690 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002691 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002692 const auto *CI = cast<CallInst>(I);
2693 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002694 switch (IID) {
2695 default:
2696 break;
2697 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002698 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2699 Depth + 1) ||
2700 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2701 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002702 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002703 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2704 Depth + 1) &&
2705 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2706 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002707 case Intrinsic::exp:
2708 case Intrinsic::exp2:
2709 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002710 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002711
2712 case Intrinsic::sqrt:
2713 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2714 if (!SignBitOnly)
2715 return true;
2716 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2717 CannotBeNegativeZero(CI->getOperand(0), TLI));
2718
David Majnemer3ee5f342016-04-13 06:55:52 +00002719 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002720 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002721 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002722 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002723 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002724 }
Justin Lebar322c1272017-01-27 00:58:34 +00002725 // TODO: This is not correct. Given that exp is an integer, here are the
2726 // ways that pow can return a negative value:
2727 //
2728 // pow(x, exp) --> negative if exp is odd and x is negative.
2729 // pow(-0, exp) --> -inf if exp is negative odd.
2730 // pow(-0, exp) --> -0 if exp is positive odd.
2731 // pow(-inf, exp) --> -0 if exp is negative odd.
2732 // pow(-inf, exp) --> -inf if exp is positive odd.
2733 //
2734 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2735 // but we must return false if x == -0. Unfortunately we do not currently
2736 // have a way of expressing this constraint. See details in
2737 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002738 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2739 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002740
David Majnemer3ee5f342016-04-13 06:55:52 +00002741 case Intrinsic::fma:
2742 case Intrinsic::fmuladd:
2743 // x*x+y is non-negative if y is non-negative.
2744 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002745 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2746 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2747 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002748 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002749 break;
2750 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002751 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002752}
2753
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002754bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2755 const TargetLibraryInfo *TLI) {
2756 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2757}
2758
2759bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2760 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2761}
2762
Sanjay Patel6840c5f2017-09-05 23:13:13 +00002763bool llvm::isKnownNeverNaN(const Value *V) {
2764 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
2765
2766 // If we're told that NaNs won't happen, assume they won't.
2767 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
2768 if (FPMathOp->hasNoNaNs())
2769 return true;
2770
2771 // TODO: Handle instructions and potentially recurse like other 'isKnown'
2772 // functions. For example, the result of sitofp is never NaN.
2773
2774 // Handle scalar constants.
2775 if (auto *CFP = dyn_cast<ConstantFP>(V))
2776 return !CFP->isNaN();
2777
2778 // Bail out for constant expressions, but try to handle vector constants.
2779 if (!V->getType()->isVectorTy() || !isa<Constant>(V))
2780 return false;
2781
2782 // For vectors, verify that each element is not NaN.
2783 unsigned NumElts = V->getType()->getVectorNumElements();
2784 for (unsigned i = 0; i != NumElts; ++i) {
2785 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
2786 if (!Elt)
2787 return false;
2788 if (isa<UndefValue>(Elt))
2789 continue;
2790 auto *CElt = dyn_cast<ConstantFP>(Elt);
2791 if (!CElt || CElt->isNaN())
2792 return false;
2793 }
2794 // All elements were confirmed not-NaN or undefined.
2795 return true;
2796}
2797
Sanjay Patelaee84212014-11-04 16:27:42 +00002798/// If the specified value can be set by repeating the same byte in memory,
2799/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002800/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2801/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2802/// byte store (e.g. i16 0x1234), return null.
2803Value *llvm::isBytewiseValue(Value *V) {
2804 // All byte-wide stores are splatable, even of arbitrary variables.
2805 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002806
2807 // Handle 'null' ConstantArrayZero etc.
2808 if (Constant *C = dyn_cast<Constant>(V))
2809 if (C->isNullValue())
2810 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002811
Chris Lattner9cb10352010-12-26 20:15:01 +00002812 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002813 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002814 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2815 if (CFP->getType()->isFloatTy())
2816 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2817 if (CFP->getType()->isDoubleTy())
2818 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2819 // Don't handle long double formats, which have strange constraints.
2820 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002821
Benjamin Kramer17d90152015-02-07 19:29:02 +00002822 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002823 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002824 if (CI->getBitWidth() % 8 == 0) {
2825 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002826
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002827 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002828 return nullptr;
2829 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002830 }
2831 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002832
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002833 // A ConstantDataArray/Vector is splatable if all its members are equal and
2834 // also splatable.
2835 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2836 Value *Elt = CA->getElementAsConstant(0);
2837 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002838 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002839 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002840
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002841 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2842 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002843 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002844
Chris Lattner9cb10352010-12-26 20:15:01 +00002845 return Val;
2846 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002847
Chris Lattner9cb10352010-12-26 20:15:01 +00002848 // Conceptually, we could handle things like:
2849 // %a = zext i8 %X to i16
2850 // %b = shl i16 %a, 8
2851 // %c = or i16 %a, %b
2852 // but until there is an example that actually needs this, it doesn't seem
2853 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002854 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002855}
2856
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002857// This is the recursive version of BuildSubAggregate. It takes a few different
2858// arguments. Idxs is the index within the nested struct From that we are
2859// looking at now (which is of type IndexedType). IdxSkip is the number of
2860// indices from Idxs that should be left out when inserting into the resulting
2861// struct. To is the result struct built so far, new insertvalue instructions
2862// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002863static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002864 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002865 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002866 Instruction *InsertBefore) {
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002867 StructType *STy = dyn_cast<StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002868 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002869 // Save the original To argument so we can modify it
2870 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002871 // General case, the type indexed by Idxs is a struct
2872 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2873 // Process each struct element recursively
2874 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002875 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002876 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002877 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002878 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002879 if (!To) {
2880 // Couldn't find any inserted value for this index? Cleanup
2881 while (PrevTo != OrigTo) {
2882 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2883 PrevTo = Del->getAggregateOperand();
2884 Del->eraseFromParent();
2885 }
2886 // Stop processing elements
2887 break;
2888 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002889 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002890 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002891 if (To)
2892 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002893 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002894 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2895 // the struct's elements had a value that was inserted directly. In the latter
2896 // case, perhaps we can't determine each of the subelements individually, but
2897 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002898
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002899 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002900 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002901
2902 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002903 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002904
2905 // Insert the value in the new (sub) aggregrate
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002906 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2907 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002908}
2909
2910// This helper takes a nested struct and extracts a part of it (which is again a
2911// struct) into a new value. For example, given the struct:
2912// { a, { b, { c, d }, e } }
2913// and the indices "1, 1" this returns
2914// { c, d }.
2915//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002916// It does this by inserting an insertvalue for each element in the resulting
2917// struct, as opposed to just inserting a single struct. This will only work if
2918// each of the elements of the substruct are known (ie, inserted into From by an
2919// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002920//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002921// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002922static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002923 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002924 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002925 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002926 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002927 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002928 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002929 unsigned IdxSkip = Idxs.size();
2930
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002931 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002932}
2933
Sanjay Patelaee84212014-11-04 16:27:42 +00002934/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002935/// the scalar value indexed is already around as a register, for example if it
2936/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002937///
2938/// If InsertBefore is not null, this function will duplicate (modified)
2939/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002940Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2941 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002942 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002943 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002944 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002945 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002946 // We have indices, so V should have an indexable type.
2947 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2948 "Not looking at a struct or array?");
2949 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2950 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002951
Chris Lattner67058832012-01-25 06:48:06 +00002952 if (Constant *C = dyn_cast<Constant>(V)) {
2953 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002954 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002955 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2956 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002957
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002958 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002959 // Loop the indices for the insertvalue instruction in parallel with the
2960 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002961 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002962 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2963 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002964 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002965 // We can't handle this without inserting insertvalues
2966 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002967 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002968
2969 // The requested index identifies a part of a nested aggregate. Handle
2970 // this specially. For example,
2971 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2972 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2973 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2974 // This can be changed into
2975 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2976 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2977 // which allows the unused 0,0 element from the nested struct to be
2978 // removed.
2979 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2980 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002981 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002982
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002983 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002984 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002985 // looking for, then.
2986 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002987 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002988 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002989 }
2990 // If we end up here, the indices of the insertvalue match with those
2991 // requested (though possibly only partially). Now we recursively look at
2992 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002993 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002994 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002995 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002996 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002997
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002998 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002999 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003000 // something else, we can extract from that something else directly instead.
3001 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00003002
3003 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00003004 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003005 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00003006 SmallVector<unsigned, 5> Idxs;
3007 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003008 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00003009 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00003010
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003011 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00003012 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003013
Craig Topper1bef2c82012-12-22 19:15:35 +00003014 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003015 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00003016
Jay Foad57aa6362011-07-13 10:26:04 +00003017 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003018 }
3019 // Otherwise, we don't know (such as, extracting from a function return value
3020 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00003021 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003022}
Evan Chengda3db112008-06-30 07:31:25 +00003023
Sanjay Patelaee84212014-11-04 16:27:42 +00003024/// Analyze the specified pointer to see if it can be expressed as a base
3025/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00003026Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003027 const DataLayout &DL) {
3028 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00003029 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00003030
3031 // We walk up the defs but use a visited set to handle unreachable code. In
3032 // that case, we stop after accumulating the cycle once (not that it
3033 // matters).
3034 SmallPtrSet<Value *, 16> Visited;
3035 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003036 if (Ptr->getType()->isVectorTy())
3037 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00003038
Nuno Lopes368c4d02012-12-31 20:48:35 +00003039 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00003040 // If one of the values we have visited is an addrspacecast, then
3041 // the pointer type of this GEP may be different from the type
3042 // of the Ptr parameter which was passed to this function. This
3043 // means when we construct GEPOffset, we need to use the size
3044 // of GEP's pointer type rather than the size of the original
3045 // pointer type.
3046 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003047 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3048 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003049
Tom Stellard17eb3412016-10-07 14:23:29 +00003050 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003051
Nuno Lopes368c4d02012-12-31 20:48:35 +00003052 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00003053 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3054 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003055 Ptr = cast<Operator>(Ptr)->getOperand(0);
3056 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003057 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00003058 break;
3059 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00003060 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003061 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00003062 }
3063 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00003064 Offset = ByteOffset.getSExtValue();
3065 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00003066}
3067
Matthias Braun50ec0b52017-05-19 22:37:09 +00003068bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3069 unsigned CharSize) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003070 // Make sure the GEP has exactly three arguments.
3071 if (GEP->getNumOperands() != 3)
3072 return false;
3073
Matthias Braun50ec0b52017-05-19 22:37:09 +00003074 // Make sure the index-ee is a pointer to array of \p CharSize integers.
3075 // CharSize.
David L Kreitzer752c1442016-04-13 14:31:06 +00003076 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Matthias Braun50ec0b52017-05-19 22:37:09 +00003077 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
David L Kreitzer752c1442016-04-13 14:31:06 +00003078 return false;
3079
3080 // Check to make sure that the first operand of the GEP is an integer and
3081 // has value 0 so that we are sure we're indexing into the initializer.
3082 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3083 if (!FirstIdx || !FirstIdx->isZero())
3084 return false;
3085
3086 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003087}
Chris Lattnere28618d2010-11-30 22:25:26 +00003088
Matthias Braun50ec0b52017-05-19 22:37:09 +00003089bool llvm::getConstantDataArrayInfo(const Value *V,
3090 ConstantDataArraySlice &Slice,
3091 unsigned ElementSize, uint64_t Offset) {
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003092 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00003093
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003094 // Look through bitcast instructions and geps.
3095 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00003096
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003097 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003098 // offset.
3099 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003100 // The GEP operator should be based on a pointer to string constant, and is
3101 // indexing into the string constant.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003102 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003103 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003104
Evan Chengda3db112008-06-30 07:31:25 +00003105 // If the second index isn't a ConstantInt, then this is a variable index
3106 // into the array. If this occurs, we can't say anything meaningful about
3107 // the string.
3108 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003109 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003110 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003111 else
3112 return false;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003113 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3114 StartIdx + Offset);
Evan Chengda3db112008-06-30 07:31:25 +00003115 }
Nick Lewycky46209882011-10-20 00:34:35 +00003116
Evan Chengda3db112008-06-30 07:31:25 +00003117 // The GEP instruction, constant or instruction, must reference a global
3118 // variable that is a constant and is initialized. The referenced constant
3119 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003120 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003121 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003122 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003123
Matthias Braun50ec0b52017-05-19 22:37:09 +00003124 const ConstantDataArray *Array;
3125 ArrayType *ArrayTy;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003126 if (GV->getInitializer()->isNullValue()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003127 Type *GVTy = GV->getValueType();
3128 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
Sanjay Patel2ad88f82017-06-12 22:34:37 +00003129 // A zeroinitializer for the array; there is no ConstantDataArray.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003130 Array = nullptr;
3131 } else {
3132 const DataLayout &DL = GV->getParent()->getDataLayout();
3133 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3134 uint64_t Length = SizeInBytes / (ElementSize / 8);
3135 if (Length <= Offset)
3136 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003137
Matthias Braun50ec0b52017-05-19 22:37:09 +00003138 Slice.Array = nullptr;
3139 Slice.Offset = 0;
3140 Slice.Length = Length - Offset;
3141 return true;
3142 }
3143 } else {
3144 // This must be a ConstantDataArray.
3145 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3146 if (!Array)
3147 return false;
3148 ArrayTy = Array->getType();
3149 }
3150 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003151 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003152
Matthias Braun50ec0b52017-05-19 22:37:09 +00003153 uint64_t NumElts = ArrayTy->getArrayNumElements();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003154 if (Offset > NumElts)
3155 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003156
Matthias Braun50ec0b52017-05-19 22:37:09 +00003157 Slice.Array = Array;
3158 Slice.Offset = Offset;
3159 Slice.Length = NumElts - Offset;
3160 return true;
3161}
3162
3163/// This function computes the length of a null-terminated C string pointed to
3164/// by V. If successful, it returns true and returns the string in Str.
3165/// If unsuccessful, it returns false.
3166bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3167 uint64_t Offset, bool TrimAtNul) {
3168 ConstantDataArraySlice Slice;
3169 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3170 return false;
3171
3172 if (Slice.Array == nullptr) {
3173 if (TrimAtNul) {
3174 Str = StringRef();
3175 return true;
3176 }
3177 if (Slice.Length == 1) {
3178 Str = StringRef("", 1);
3179 return true;
3180 }
Sanjay Patelfef83e82017-06-09 14:21:18 +00003181 // We cannot instantiate a StringRef as we do not have an appropriate string
Matthias Braun50ec0b52017-05-19 22:37:09 +00003182 // of 0s at hand.
3183 return false;
3184 }
3185
3186 // Start out with the entire array in the StringRef.
3187 Str = Slice.Array->getAsString();
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003188 // Skip over 'offset' bytes.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003189 Str = Str.substr(Slice.Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003190
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003191 if (TrimAtNul) {
3192 // Trim off the \0 and anything after it. If the array is not nul
3193 // terminated, we just return the whole end of string. The client may know
3194 // some other way that the string is length-bound.
3195 Str = Str.substr(0, Str.find('\0'));
3196 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003197 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003198}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003199
3200// These next two are very similar to the above, but also look through PHI
3201// nodes.
3202// TODO: See if we can integrate these two together.
3203
Sanjay Patelaee84212014-11-04 16:27:42 +00003204/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003205/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003206static uint64_t GetStringLengthH(const Value *V,
Matthias Braun50ec0b52017-05-19 22:37:09 +00003207 SmallPtrSetImpl<const PHINode*> &PHIs,
3208 unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003209 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003210 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003211
3212 // If this is a PHI node, there are two cases: either we have already seen it
3213 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003214 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003215 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003216 return ~0ULL; // already in the set.
3217
3218 // If it was new, see if all the input strings are the same length.
3219 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003220 for (Value *IncValue : PN->incoming_values()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003221 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003222 if (Len == 0) return 0; // Unknown length -> unknown.
3223
3224 if (Len == ~0ULL) continue;
3225
3226 if (Len != LenSoFar && LenSoFar != ~0ULL)
3227 return 0; // Disagree -> unknown.
3228 LenSoFar = Len;
3229 }
3230
3231 // Success, all agree.
3232 return LenSoFar;
3233 }
3234
3235 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003236 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003237 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003238 if (Len1 == 0) return 0;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003239 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003240 if (Len2 == 0) return 0;
3241 if (Len1 == ~0ULL) return Len2;
3242 if (Len2 == ~0ULL) return Len1;
3243 if (Len1 != Len2) return 0;
3244 return Len1;
3245 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003246
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003247 // Otherwise, see if we can read the string.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003248 ConstantDataArraySlice Slice;
3249 if (!getConstantDataArrayInfo(V, Slice, CharSize))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003250 return 0;
3251
Matthias Braun50ec0b52017-05-19 22:37:09 +00003252 if (Slice.Array == nullptr)
3253 return 1;
3254
3255 // Search for nul characters
3256 unsigned NullIndex = 0;
3257 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3258 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3259 break;
3260 }
3261
3262 return NullIndex + 1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003263}
3264
Sanjay Patelaee84212014-11-04 16:27:42 +00003265/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003266/// the specified pointer, return 'len+1'. If we can't, return 0.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003267uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003268 if (!V->getType()->isPointerTy()) return 0;
3269
Pete Cooper35b00d52016-08-13 01:05:32 +00003270 SmallPtrSet<const PHINode*, 32> PHIs;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003271 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003272 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3273 // an empty string as a length.
3274 return Len == ~0ULL ? 1 : Len;
3275}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003276
Adam Nemete2b885c2015-04-23 20:09:20 +00003277/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3278/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003279static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3280 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003281 // Find the loop-defined value.
3282 Loop *L = LI->getLoopFor(PN->getParent());
3283 if (PN->getNumIncomingValues() != 2)
3284 return true;
3285
3286 // Find the value from previous iteration.
3287 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3288 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3289 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3290 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3291 return true;
3292
3293 // If a new pointer is loaded in the loop, the pointer references a different
3294 // object in every iteration. E.g.:
3295 // for (i)
3296 // int *p = a[i];
3297 // ...
3298 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3299 if (!L->isLoopInvariant(Load->getPointerOperand()))
3300 return false;
3301 return true;
3302}
3303
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003304Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3305 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003306 if (!V->getType()->isPointerTy())
3307 return V;
3308 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3309 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3310 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003311 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3312 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003313 V = cast<Operator>(V)->getOperand(0);
3314 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003315 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003316 return V;
3317 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003318 } else if (isa<AllocaInst>(V)) {
3319 // An alloca can't be further simplified.
3320 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003321 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003322 if (auto CS = CallSite(V))
3323 if (Value *RV = CS.getReturnedArgOperand()) {
3324 V = RV;
3325 continue;
3326 }
3327
Dan Gohman05b18f12010-12-15 20:49:55 +00003328 // See if InstructionSimplify knows any relevant tricks.
3329 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003330 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Daniel Berlin4d0fe642017-04-28 19:55:38 +00003331 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003332 V = Simplified;
3333 continue;
3334 }
3335
Dan Gohmana4fcd242010-12-15 20:02:24 +00003336 return V;
3337 }
3338 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3339 }
3340 return V;
3341}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003342
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003343void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003344 const DataLayout &DL, LoopInfo *LI,
3345 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003346 SmallPtrSet<Value *, 4> Visited;
3347 SmallVector<Value *, 4> Worklist;
3348 Worklist.push_back(V);
3349 do {
3350 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003351 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003352
David Blaikie70573dc2014-11-19 07:49:26 +00003353 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003354 continue;
3355
3356 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3357 Worklist.push_back(SI->getTrueValue());
3358 Worklist.push_back(SI->getFalseValue());
3359 continue;
3360 }
3361
3362 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003363 // If this PHI changes the underlying object in every iteration of the
3364 // loop, don't look through it. Consider:
3365 // int **A;
3366 // for (i) {
3367 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3368 // Curr = A[i];
3369 // *Prev, *Curr;
3370 //
3371 // Prev is tracking Curr one iteration behind so they refer to different
3372 // underlying objects.
3373 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3374 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003375 for (Value *IncValue : PN->incoming_values())
3376 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003377 continue;
3378 }
3379
3380 Objects.push_back(P);
3381 } while (!Worklist.empty());
3382}
3383
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003384/// This is the function that does the work of looking through basic
3385/// ptrtoint+arithmetic+inttoptr sequences.
3386static const Value *getUnderlyingObjectFromInt(const Value *V) {
3387 do {
3388 if (const Operator *U = dyn_cast<Operator>(V)) {
3389 // If we find a ptrtoint, we can transfer control back to the
3390 // regular getUnderlyingObjectFromInt.
3391 if (U->getOpcode() == Instruction::PtrToInt)
3392 return U->getOperand(0);
3393 // If we find an add of a constant, a multiplied value, or a phi, it's
3394 // likely that the other operand will lead us to the base
3395 // object. We don't have to worry about the case where the
3396 // object address is somehow being computed by the multiply,
3397 // because our callers only care when the result is an
3398 // identifiable object.
3399 if (U->getOpcode() != Instruction::Add ||
3400 (!isa<ConstantInt>(U->getOperand(1)) &&
3401 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3402 !isa<PHINode>(U->getOperand(1))))
3403 return V;
3404 V = U->getOperand(0);
3405 } else {
3406 return V;
3407 }
3408 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3409 } while (true);
3410}
3411
3412/// This is a wrapper around GetUnderlyingObjects and adds support for basic
3413/// ptrtoint+arithmetic+inttoptr sequences.
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003414/// It returns false if unidentified object is found in GetUnderlyingObjects.
3415bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003416 SmallVectorImpl<Value *> &Objects,
3417 const DataLayout &DL) {
3418 SmallPtrSet<const Value *, 16> Visited;
3419 SmallVector<const Value *, 4> Working(1, V);
3420 do {
3421 V = Working.pop_back_val();
3422
3423 SmallVector<Value *, 4> Objs;
3424 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3425
3426 for (Value *V : Objs) {
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003427 if (!Visited.insert(V).second)
3428 continue;
3429 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3430 const Value *O =
3431 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3432 if (O->getType()->isPointerTy()) {
3433 Working.push_back(O);
3434 continue;
3435 }
3436 }
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003437 // If GetUnderlyingObjects fails to find an identifiable object,
3438 // getUnderlyingObjectsForCodeGen also fails for safety.
3439 if (!isIdentifiedObject(V)) {
3440 Objects.clear();
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003441 return false;
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003442 }
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003443 Objects.push_back(const_cast<Value *>(V));
3444 }
3445 } while (!Working.empty());
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003446 return true;
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003447}
3448
Sanjay Patelaee84212014-11-04 16:27:42 +00003449/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003450bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003451 for (const User *U : V->users()) {
3452 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003453 if (!II) return false;
3454
3455 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3456 II->getIntrinsicID() != Intrinsic::lifetime_end)
3457 return false;
3458 }
3459 return true;
3460}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003461
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003462bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3463 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003464 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003465 const Operator *Inst = dyn_cast<Operator>(V);
3466 if (!Inst)
3467 return false;
3468
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003469 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3470 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3471 if (C->canTrap())
3472 return false;
3473
3474 switch (Inst->getOpcode()) {
3475 default:
3476 return true;
3477 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003478 case Instruction::URem: {
3479 // x / y is undefined if y == 0.
3480 const APInt *V;
3481 if (match(Inst->getOperand(1), m_APInt(V)))
3482 return *V != 0;
3483 return false;
3484 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003485 case Instruction::SDiv:
3486 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003487 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003488 const APInt *Numerator, *Denominator;
3489 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3490 return false;
3491 // We cannot hoist this division if the denominator is 0.
3492 if (*Denominator == 0)
3493 return false;
3494 // It's safe to hoist if the denominator is not 0 or -1.
3495 if (*Denominator != -1)
3496 return true;
3497 // At this point we know that the denominator is -1. It is safe to hoist as
3498 // long we know that the numerator is not INT_MIN.
3499 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3500 return !Numerator->isMinSignedValue();
3501 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003502 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003503 }
3504 case Instruction::Load: {
3505 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003506 if (!LI->isUnordered() ||
3507 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003508 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003509 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003510 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003511 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003512 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003513 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3514 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003515 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003516 case Instruction::Call: {
Matt Arsenaultcf5e7fe2017-04-28 21:13:09 +00003517 auto *CI = cast<const CallInst>(Inst);
3518 const Function *Callee = CI->getCalledFunction();
David Majnemer0a92f862015-08-28 21:13:39 +00003519
Matt Arsenault6a288c12017-05-03 02:26:10 +00003520 // The called function could have undefined behavior or side-effects, even
3521 // if marked readnone nounwind.
3522 return Callee && Callee->isSpeculatable();
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003523 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003524 case Instruction::VAArg:
3525 case Instruction::Alloca:
3526 case Instruction::Invoke:
3527 case Instruction::PHI:
3528 case Instruction::Store:
3529 case Instruction::Ret:
3530 case Instruction::Br:
3531 case Instruction::IndirectBr:
3532 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003533 case Instruction::Unreachable:
3534 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003535 case Instruction::AtomicRMW:
3536 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003537 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003538 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003539 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003540 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003541 case Instruction::CatchRet:
3542 case Instruction::CleanupPad:
3543 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003544 return false; // Misc instructions which have effects
3545 }
3546}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003547
Quentin Colombet6443cce2015-08-06 18:44:34 +00003548bool llvm::mayBeMemoryDependent(const Instruction &I) {
3549 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3550}
3551
Pete Cooper35b00d52016-08-13 01:05:32 +00003552OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3553 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003554 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003555 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003556 const Instruction *CxtI,
3557 const DominatorTree *DT) {
3558 // Multiplying n * m significant bits yields a result of n + m significant
3559 // bits. If the total number of significant bits does not exceed the
3560 // result bit width (minus 1), there is no overflow.
3561 // This means if we have enough leading zero bits in the operands
3562 // we can guarantee that the result does not overflow.
3563 // Ref: "Hacker's Delight" by Henry Warren
3564 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00003565 KnownBits LHSKnown(BitWidth);
3566 KnownBits RHSKnown(BitWidth);
3567 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
3568 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer491331a2015-01-02 07:29:43 +00003569 // Note that underestimating the number of zero bits gives a more
3570 // conservative answer.
Craig Topper8df66c62017-05-12 17:20:30 +00003571 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3572 RHSKnown.countMinLeadingZeros();
David Majnemer491331a2015-01-02 07:29:43 +00003573 // First handle the easy case: if we have enough zero bits there's
3574 // definitely no overflow.
3575 if (ZeroBits >= BitWidth)
3576 return OverflowResult::NeverOverflows;
3577
3578 // Get the largest possible values for each operand.
Craig Topperb45eabc2017-04-26 16:39:58 +00003579 APInt LHSMax = ~LHSKnown.Zero;
3580 APInt RHSMax = ~RHSKnown.Zero;
David Majnemer491331a2015-01-02 07:29:43 +00003581
3582 // We know the multiply operation doesn't overflow if the maximum values for
3583 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003584 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003585 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003586 if (!MaxOverflow)
3587 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003588
David Majnemerc8a576b2015-01-02 07:29:47 +00003589 // We know it always overflows if multiplying the smallest possible values for
3590 // the operands also results in overflow.
3591 bool MinOverflow;
Craig Topperb45eabc2017-04-26 16:39:58 +00003592 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003593 if (MinOverflow)
3594 return OverflowResult::AlwaysOverflows;
3595
3596 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003597}
David Majnemer5310c1e2015-01-07 00:39:50 +00003598
Pete Cooper35b00d52016-08-13 01:05:32 +00003599OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3600 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003601 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003602 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003603 const Instruction *CxtI,
3604 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +00003605 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3606 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3607 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003608
Craig Topper6e11a052017-05-08 16:22:48 +00003609 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003610 // The sign bit is set in both cases: this MUST overflow.
3611 // Create a simple add instruction, and insert it into the struct.
3612 return OverflowResult::AlwaysOverflows;
3613 }
3614
Craig Topper6e11a052017-05-08 16:22:48 +00003615 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003616 // The sign bit is clear in both cases: this CANNOT overflow.
3617 // Create a simple add instruction, and insert it into the struct.
3618 return OverflowResult::NeverOverflows;
3619 }
3620 }
3621
3622 return OverflowResult::MayOverflow;
3623}
James Molloy71b91c22015-05-11 14:42:20 +00003624
Craig Topperbb973722017-05-15 02:44:08 +00003625/// \brief Return true if we can prove that adding the two values of the
3626/// knownbits will not overflow.
3627/// Otherwise return false.
3628static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3629 const KnownBits &RHSKnown) {
3630 // Addition of two 2's complement numbers having opposite signs will never
3631 // overflow.
3632 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3633 (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3634 return true;
3635
3636 // If either of the values is known to be non-negative, adding them can only
3637 // overflow if the second is also non-negative, so we can assume that.
3638 // Two non-negative numbers will only overflow if there is a carry to the
3639 // sign bit, so we can check if even when the values are as big as possible
3640 // there is no overflow to the sign bit.
3641 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3642 APInt MaxLHS = ~LHSKnown.Zero;
3643 MaxLHS.clearSignBit();
3644 APInt MaxRHS = ~RHSKnown.Zero;
3645 MaxRHS.clearSignBit();
3646 APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3647 return Result.isSignBitClear();
3648 }
3649
3650 // If either of the values is known to be negative, adding them can only
3651 // overflow if the second is also negative, so we can assume that.
3652 // Two negative number will only overflow if there is no carry to the sign
3653 // bit, so we can check if even when the values are as small as possible
3654 // there is overflow to the sign bit.
3655 if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
3656 APInt MinLHS = LHSKnown.One;
3657 MinLHS.clearSignBit();
3658 APInt MinRHS = RHSKnown.One;
3659 MinRHS.clearSignBit();
3660 APInt Result = std::move(MinLHS) + std::move(MinRHS);
3661 return Result.isSignBitSet();
3662 }
3663
3664 // If we reached here it means that we know nothing about the sign bits.
3665 // In this case we can't know if there will be an overflow, since by
3666 // changing the sign bits any two values can be made to overflow.
3667 return false;
3668}
3669
Pete Cooper35b00d52016-08-13 01:05:32 +00003670static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3671 const Value *RHS,
3672 const AddOperator *Add,
3673 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003674 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003675 const Instruction *CxtI,
3676 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003677 if (Add && Add->hasNoSignedWrap()) {
3678 return OverflowResult::NeverOverflows;
3679 }
3680
Craig Topperbb973722017-05-15 02:44:08 +00003681 // If LHS and RHS each have at least two sign bits, the addition will look
3682 // like
3683 //
3684 // XX..... +
3685 // YY.....
3686 //
3687 // If the carry into the most significant position is 0, X and Y can't both
3688 // be 1 and therefore the carry out of the addition is also 0.
3689 //
3690 // If the carry into the most significant position is 1, X and Y can't both
3691 // be 0 and therefore the carry out of the addition is also 1.
3692 //
3693 // Since the carry into the most significant position is always equal to
3694 // the carry out of the addition, there is no signed overflow.
3695 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
3696 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
3697 return OverflowResult::NeverOverflows;
3698
Craig Topper6e11a052017-05-08 16:22:48 +00003699 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3700 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003701
Craig Topperbb973722017-05-15 02:44:08 +00003702 if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
Jingyue Wu10fcea52015-08-20 18:27:04 +00003703 return OverflowResult::NeverOverflows;
Jingyue Wu10fcea52015-08-20 18:27:04 +00003704
3705 // The remaining code needs Add to be available. Early returns if not so.
3706 if (!Add)
3707 return OverflowResult::MayOverflow;
3708
3709 // If the sign of Add is the same as at least one of the operands, this add
3710 // CANNOT overflow. This is particularly useful when the sum is
3711 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3712 // operands.
3713 bool LHSOrRHSKnownNonNegative =
Craig Topper6e11a052017-05-08 16:22:48 +00003714 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
Craig Topperbb973722017-05-15 02:44:08 +00003715 bool LHSOrRHSKnownNegative =
3716 (LHSKnown.isNegative() || RHSKnown.isNegative());
Jingyue Wu10fcea52015-08-20 18:27:04 +00003717 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
Craig Topper6e11a052017-05-08 16:22:48 +00003718 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
3719 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
3720 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003721 return OverflowResult::NeverOverflows;
3722 }
3723 }
3724
3725 return OverflowResult::MayOverflow;
3726}
3727
Pete Cooper35b00d52016-08-13 01:05:32 +00003728bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3729 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003730#ifndef NDEBUG
3731 auto IID = II->getIntrinsicID();
3732 assert((IID == Intrinsic::sadd_with_overflow ||
3733 IID == Intrinsic::uadd_with_overflow ||
3734 IID == Intrinsic::ssub_with_overflow ||
3735 IID == Intrinsic::usub_with_overflow ||
3736 IID == Intrinsic::smul_with_overflow ||
3737 IID == Intrinsic::umul_with_overflow) &&
3738 "Not an overflow intrinsic!");
3739#endif
3740
Pete Cooper35b00d52016-08-13 01:05:32 +00003741 SmallVector<const BranchInst *, 2> GuardingBranches;
3742 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003743
Pete Cooper35b00d52016-08-13 01:05:32 +00003744 for (const User *U : II->users()) {
3745 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003746 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3747
3748 if (EVI->getIndices()[0] == 0)
3749 Results.push_back(EVI);
3750 else {
3751 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3752
Pete Cooper35b00d52016-08-13 01:05:32 +00003753 for (const auto *U : EVI->users())
3754 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003755 assert(B->isConditional() && "How else is it using an i1?");
3756 GuardingBranches.push_back(B);
3757 }
3758 }
3759 } else {
3760 // We are using the aggregate directly in a way we don't want to analyze
3761 // here (storing it to a global, say).
3762 return false;
3763 }
3764 }
3765
Pete Cooper35b00d52016-08-13 01:05:32 +00003766 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003767 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3768 if (!NoWrapEdge.isSingleEdge())
3769 return false;
3770
3771 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003772 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003773 // If the extractvalue itself is not executed on overflow, the we don't
3774 // need to check each use separately, since domination is transitive.
3775 if (DT.dominates(NoWrapEdge, Result->getParent()))
3776 continue;
3777
3778 for (auto &RU : Result->uses())
3779 if (!DT.dominates(NoWrapEdge, RU))
3780 return false;
3781 }
3782
3783 return true;
3784 };
3785
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003786 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003787}
3788
3789
Pete Cooper35b00d52016-08-13 01:05:32 +00003790OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003791 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003792 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003793 const Instruction *CxtI,
3794 const DominatorTree *DT) {
3795 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003796 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003797}
3798
Pete Cooper35b00d52016-08-13 01:05:32 +00003799OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3800 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003801 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003802 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003803 const Instruction *CxtI,
3804 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003805 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003806}
3807
Jingyue Wu42f1d672015-07-28 18:22:40 +00003808bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003809 // A memory operation returns normally if it isn't volatile. A volatile
3810 // operation is allowed to trap.
3811 //
3812 // An atomic operation isn't guaranteed to return in a reasonable amount of
3813 // time because it's possible for another thread to interfere with it for an
3814 // arbitrary length of time, but programs aren't allowed to rely on that.
3815 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3816 return !LI->isVolatile();
3817 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3818 return !SI->isVolatile();
3819 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3820 return !CXI->isVolatile();
3821 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3822 return !RMWI->isVolatile();
3823 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3824 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003825
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003826 // If there is no successor, then execution can't transfer to it.
3827 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3828 return !CRI->unwindsToCaller();
3829 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3830 return !CatchSwitch->unwindsToCaller();
3831 if (isa<ResumeInst>(I))
3832 return false;
3833 if (isa<ReturnInst>(I))
3834 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00003835 if (isa<UnreachableInst>(I))
3836 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003837
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003838 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003839 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003840 // Call sites that throw have implicit non-local control flow.
3841 if (!CS.doesNotThrow())
3842 return false;
3843
3844 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3845 // etc. and thus not return. However, LLVM already assumes that
3846 //
3847 // - Thread exiting actions are modeled as writes to memory invisible to
3848 // the program.
3849 //
3850 // - Loops that don't have side effects (side effects are volatile/atomic
3851 // stores and IO) always terminate (see http://llvm.org/PR965).
3852 // Furthermore IO itself is also modeled as writes to memory invisible to
3853 // the program.
3854 //
3855 // We rely on those assumptions here, and use the memory effects of the call
3856 // target as a proxy for checking that it always returns.
3857
3858 // FIXME: This isn't aggressive enough; a call which only writes to a global
3859 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003860 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
Dan Gohman2c74fe92017-11-08 21:59:51 +00003861 match(I, m_Intrinsic<Intrinsic::assume>()) ||
3862 match(I, m_Intrinsic<Intrinsic::sideeffect>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003863 }
3864
3865 // Other instructions return normally.
3866 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003867}
3868
3869bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3870 const Loop *L) {
3871 // The loop header is guaranteed to be executed for every iteration.
3872 //
3873 // FIXME: Relax this constraint to cover all basic blocks that are
3874 // guaranteed to be executed at every iteration.
3875 if (I->getParent() != L->getHeader()) return false;
3876
3877 for (const Instruction &LI : *L->getHeader()) {
3878 if (&LI == I) return true;
3879 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3880 }
3881 llvm_unreachable("Instruction not contained in its own parent basic block.");
3882}
3883
3884bool llvm::propagatesFullPoison(const Instruction *I) {
3885 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003886 case Instruction::Add:
3887 case Instruction::Sub:
3888 case Instruction::Xor:
3889 case Instruction::Trunc:
3890 case Instruction::BitCast:
3891 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00003892 case Instruction::Mul:
3893 case Instruction::Shl:
3894 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003895 // These operations all propagate poison unconditionally. Note that poison
3896 // is not any particular value, so xor or subtraction of poison with
3897 // itself still yields poison, not zero.
3898 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003899
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003900 case Instruction::AShr:
3901 case Instruction::SExt:
3902 // For these operations, one bit of the input is replicated across
3903 // multiple output bits. A replicated poison bit is still poison.
3904 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003905
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003906 case Instruction::ICmp:
3907 // Comparing poison with any value yields poison. This is why, for
3908 // instance, x s< (x +nsw 1) can be folded to true.
3909 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003910
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003911 default:
3912 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003913 }
3914}
3915
3916const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3917 switch (I->getOpcode()) {
3918 case Instruction::Store:
3919 return cast<StoreInst>(I)->getPointerOperand();
3920
3921 case Instruction::Load:
3922 return cast<LoadInst>(I)->getPointerOperand();
3923
3924 case Instruction::AtomicCmpXchg:
3925 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3926
3927 case Instruction::AtomicRMW:
3928 return cast<AtomicRMWInst>(I)->getPointerOperand();
3929
3930 case Instruction::UDiv:
3931 case Instruction::SDiv:
3932 case Instruction::URem:
3933 case Instruction::SRem:
3934 return I->getOperand(1);
3935
3936 default:
3937 return nullptr;
3938 }
3939}
3940
Sanjoy Das08989c72017-04-30 19:41:19 +00003941bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003942 // We currently only look for uses of poison values within the same basic
3943 // block, as that makes it easier to guarantee that the uses will be
3944 // executed given that PoisonI is executed.
3945 //
3946 // FIXME: Expand this to consider uses beyond the same basic block. To do
3947 // this, look out for the distinction between post-dominance and strong
3948 // post-dominance.
3949 const BasicBlock *BB = PoisonI->getParent();
3950
3951 // Set of instructions that we have proved will yield poison if PoisonI
3952 // does.
3953 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003954 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003955 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003956 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003957
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003958 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003959
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003960 unsigned Iter = 0;
3961 while (Iter++ < MaxDepth) {
3962 for (auto &I : make_range(Begin, End)) {
3963 if (&I != PoisonI) {
3964 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3965 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3966 return true;
3967 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3968 return false;
3969 }
3970
3971 // Mark poison that propagates from I through uses of I.
3972 if (YieldsPoison.count(&I)) {
3973 for (const User *User : I.users()) {
3974 const Instruction *UserI = cast<Instruction>(User);
3975 if (propagatesFullPoison(UserI))
3976 YieldsPoison.insert(User);
3977 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003978 }
3979 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003980
3981 if (auto *NextBB = BB->getSingleSuccessor()) {
3982 if (Visited.insert(NextBB).second) {
3983 BB = NextBB;
3984 Begin = BB->getFirstNonPHI()->getIterator();
3985 End = BB->end();
3986 continue;
3987 }
3988 }
3989
3990 break;
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003991 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003992 return false;
3993}
3994
Pete Cooper35b00d52016-08-13 01:05:32 +00003995static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003996 if (FMF.noNaNs())
3997 return true;
3998
3999 if (auto *C = dyn_cast<ConstantFP>(V))
4000 return !C->isNaN();
4001 return false;
4002}
4003
Pete Cooper35b00d52016-08-13 01:05:32 +00004004static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00004005 if (auto *C = dyn_cast<ConstantFP>(V))
4006 return !C->isZero();
4007 return false;
4008}
4009
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004010/// Match clamp pattern for float types without care about NaNs or signed zeros.
4011/// Given non-min/max outer cmp/select from the clamp pattern this
4012/// function recognizes if it can be substitued by a "canonical" min/max
4013/// pattern.
4014static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4015 Value *CmpLHS, Value *CmpRHS,
4016 Value *TrueVal, Value *FalseVal,
4017 Value *&LHS, Value *&RHS) {
4018 // Try to match
4019 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4020 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4021 // and return description of the outer Max/Min.
4022
4023 // First, check if select has inverse order:
4024 if (CmpRHS == FalseVal) {
4025 std::swap(TrueVal, FalseVal);
4026 Pred = CmpInst::getInversePredicate(Pred);
4027 }
4028
4029 // Assume success now. If there's no match, callers should not use these anyway.
4030 LHS = TrueVal;
4031 RHS = FalseVal;
4032
4033 const APFloat *FC1;
4034 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4035 return {SPF_UNKNOWN, SPNB_NA, false};
4036
4037 const APFloat *FC2;
4038 switch (Pred) {
4039 case CmpInst::FCMP_OLT:
4040 case CmpInst::FCMP_OLE:
4041 case CmpInst::FCMP_ULT:
4042 case CmpInst::FCMP_ULE:
4043 if (match(FalseVal,
4044 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4045 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4046 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4047 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4048 break;
4049 case CmpInst::FCMP_OGT:
4050 case CmpInst::FCMP_OGE:
4051 case CmpInst::FCMP_UGT:
4052 case CmpInst::FCMP_UGE:
4053 if (match(FalseVal,
4054 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4055 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4056 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4057 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4058 break;
4059 default:
4060 break;
4061 }
4062
4063 return {SPF_UNKNOWN, SPNB_NA, false};
4064}
4065
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004066/// Recognize variations of:
4067/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4068static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4069 Value *CmpLHS, Value *CmpRHS,
4070 Value *TrueVal, Value *FalseVal) {
4071 // Swap the select operands and predicate to match the patterns below.
4072 if (CmpRHS != TrueVal) {
4073 Pred = ICmpInst::getSwappedPredicate(Pred);
4074 std::swap(TrueVal, FalseVal);
4075 }
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004076 const APInt *C1;
4077 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4078 const APInt *C2;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004079 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4080 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004081 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004082 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004083
4084 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4085 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004086 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004087 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004088
4089 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4090 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004091 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004092 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004093
4094 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4095 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004096 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004097 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004098 }
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004099 return {SPF_UNKNOWN, SPNB_NA, false};
4100}
4101
4102/// Match non-obvious integer minimum and maximum sequences.
4103static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4104 Value *CmpLHS, Value *CmpRHS,
4105 Value *TrueVal, Value *FalseVal,
4106 Value *&LHS, Value *&RHS) {
4107 // Assume success. If there's no match, callers should not use these anyway.
4108 LHS = TrueVal;
4109 RHS = FalseVal;
4110
4111 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4112 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4113 return SPR;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004114
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004115 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
Sanjay Patel819f0962016-11-13 19:30:19 +00004116 return {SPF_UNKNOWN, SPNB_NA, false};
4117
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004118 // Z = X -nsw Y
4119 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4120 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4121 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004122 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004123 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004124
4125 // Z = X -nsw Y
4126 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4127 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4128 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004129 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004130 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004131
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004132 const APInt *C1;
Sanjay Patel819f0962016-11-13 19:30:19 +00004133 if (!match(CmpRHS, m_APInt(C1)))
4134 return {SPF_UNKNOWN, SPNB_NA, false};
4135
4136 // An unsigned min/max can be written with a signed compare.
4137 const APInt *C2;
4138 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4139 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4140 // Is the sign bit set?
4141 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4142 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Craig Topper81d772c2017-11-08 19:38:45 +00004143 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4144 C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004145 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004146
4147 // Is the sign bit clear?
4148 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4149 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004150 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4151 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004152 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004153 }
4154
4155 // Look through 'not' ops to find disguised signed min/max.
4156 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4157 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4158 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004159 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004160 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004161
4162 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4163 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4164 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004165 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004166 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004167
4168 return {SPF_UNKNOWN, SPNB_NA, false};
4169}
4170
James Molloy134bec22015-08-11 09:12:57 +00004171static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4172 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004173 Value *CmpLHS, Value *CmpRHS,
4174 Value *TrueVal, Value *FalseVal,
4175 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004176 LHS = CmpLHS;
4177 RHS = CmpRHS;
4178
James Molloy134bec22015-08-11 09:12:57 +00004179 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
4180 // return inconsistent results between implementations.
4181 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4182 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4183 // Therefore we behave conservatively and only proceed if at least one of the
4184 // operands is known to not be zero, or if we don't care about signed zeroes.
4185 switch (Pred) {
4186 default: break;
4187 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4188 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4189 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4190 !isKnownNonZero(CmpRHS))
4191 return {SPF_UNKNOWN, SPNB_NA, false};
4192 }
4193
4194 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4195 bool Ordered = false;
4196
4197 // When given one NaN and one non-NaN input:
4198 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4199 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4200 // ordered comparison fails), which could be NaN or non-NaN.
4201 // so here we discover exactly what NaN behavior is required/accepted.
4202 if (CmpInst::isFPPredicate(Pred)) {
4203 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4204 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4205
4206 if (LHSSafe && RHSSafe) {
4207 // Both operands are known non-NaN.
4208 NaNBehavior = SPNB_RETURNS_ANY;
4209 } else if (CmpInst::isOrdered(Pred)) {
4210 // An ordered comparison will return false when given a NaN, so it
4211 // returns the RHS.
4212 Ordered = true;
4213 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004214 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004215 NaNBehavior = SPNB_RETURNS_NAN;
4216 else if (RHSSafe)
4217 NaNBehavior = SPNB_RETURNS_OTHER;
4218 else
4219 // Completely unsafe.
4220 return {SPF_UNKNOWN, SPNB_NA, false};
4221 } else {
4222 Ordered = false;
4223 // An unordered comparison will return true when given a NaN, so it
4224 // returns the LHS.
4225 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004226 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004227 NaNBehavior = SPNB_RETURNS_OTHER;
4228 else if (RHSSafe)
4229 NaNBehavior = SPNB_RETURNS_NAN;
4230 else
4231 // Completely unsafe.
4232 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004233 }
4234 }
4235
James Molloy71b91c22015-05-11 14:42:20 +00004236 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004237 std::swap(CmpLHS, CmpRHS);
4238 Pred = CmpInst::getSwappedPredicate(Pred);
4239 if (NaNBehavior == SPNB_RETURNS_NAN)
4240 NaNBehavior = SPNB_RETURNS_OTHER;
4241 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4242 NaNBehavior = SPNB_RETURNS_NAN;
4243 Ordered = !Ordered;
4244 }
4245
4246 // ([if]cmp X, Y) ? X : Y
4247 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004248 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004249 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004250 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004251 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004252 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004253 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004254 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004255 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004256 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004257 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4258 case FCmpInst::FCMP_UGT:
4259 case FCmpInst::FCMP_UGE:
4260 case FCmpInst::FCMP_OGT:
4261 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4262 case FCmpInst::FCMP_ULT:
4263 case FCmpInst::FCMP_ULE:
4264 case FCmpInst::FCMP_OLT:
4265 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004266 }
4267 }
4268
Sanjay Patele372aec2016-10-27 15:26:10 +00004269 const APInt *C1;
4270 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004271 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4272 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4273
4274 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4275 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Craig Topper81d772c2017-11-08 19:38:45 +00004276 if (Pred == ICmpInst::ICMP_SGT &&
4277 (C1->isNullValue() || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004278 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004279 }
4280
4281 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4282 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Craig Topper81d772c2017-11-08 19:38:45 +00004283 if (Pred == ICmpInst::ICMP_SLT &&
4284 (C1->isNullValue() || C1->isOneValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004285 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004286 }
4287 }
James Molloy71b91c22015-05-11 14:42:20 +00004288 }
4289
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004290 if (CmpInst::isIntPredicate(Pred))
4291 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4292
4293 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4294 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4295 // semantics than minNum. Be conservative in such case.
4296 if (NaNBehavior != SPNB_RETURNS_ANY ||
4297 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4298 !isKnownNonZero(CmpRHS)))
4299 return {SPF_UNKNOWN, SPNB_NA, false};
4300
4301 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004302}
James Molloy270ef8c2015-05-15 16:04:50 +00004303
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004304/// Helps to match a select pattern in case of a type mismatch.
4305///
4306/// The function processes the case when type of true and false values of a
4307/// select instruction differs from type of the cmp instruction operands because
4308/// of a cast instructon. The function checks if it is legal to move the cast
4309/// operation after "select". If yes, it returns the new second value of
4310/// "select" (with the assumption that cast is moved):
4311/// 1. As operand of cast instruction when both values of "select" are same cast
4312/// instructions.
4313/// 2. As restored constant (by applying reverse cast operation) when the first
4314/// value of the "select" is a cast operation and the second value is a
4315/// constant.
4316/// NOTE: We return only the new second value because the first value could be
4317/// accessed as operand of cast instruction.
James Molloy569cea62015-09-02 17:25:25 +00004318static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4319 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004320 auto *Cast1 = dyn_cast<CastInst>(V1);
4321 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004322 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004323
Sanjay Patel14a4b812017-01-29 16:34:57 +00004324 *CastOp = Cast1->getOpcode();
4325 Type *SrcTy = Cast1->getSrcTy();
4326 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4327 // If V1 and V2 are both the same cast from the same type, look through V1.
4328 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4329 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004330 return nullptr;
4331 }
4332
Sanjay Patel14a4b812017-01-29 16:34:57 +00004333 auto *C = dyn_cast<Constant>(V2);
4334 if (!C)
4335 return nullptr;
4336
David Majnemerd2a074b2016-04-29 18:40:34 +00004337 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004338 switch (*CastOp) {
4339 case Instruction::ZExt:
4340 if (CmpI->isUnsigned())
4341 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4342 break;
4343 case Instruction::SExt:
4344 if (CmpI->isSigned())
4345 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4346 break;
4347 case Instruction::Trunc:
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004348 Constant *CmpConst;
Nikolai Bozhenov9723f122017-10-18 14:24:50 +00004349 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
4350 CmpConst->getType() == SrcTy) {
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004351 // Here we have the following case:
4352 //
4353 // %cond = cmp iN %x, CmpConst
4354 // %tr = trunc iN %x to iK
4355 // %narrowsel = select i1 %cond, iK %t, iK C
4356 //
4357 // We can always move trunc after select operation:
4358 //
4359 // %cond = cmp iN %x, CmpConst
4360 // %widesel = select i1 %cond, iN %x, iN CmpConst
4361 // %tr = trunc iN %widesel to iK
4362 //
4363 // Note that C could be extended in any way because we don't care about
4364 // upper bits after truncation. It can't be abs pattern, because it would
4365 // look like:
4366 //
4367 // select i1 %cond, x, -x.
4368 //
4369 // So only min/max pattern could be matched. Such match requires widened C
4370 // == CmpConst. That is why set widened C = CmpConst, condition trunc
4371 // CmpConst == C is checked below.
4372 CastedTo = CmpConst;
4373 } else {
4374 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4375 }
Sanjay Patel14a4b812017-01-29 16:34:57 +00004376 break;
4377 case Instruction::FPTrunc:
4378 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4379 break;
4380 case Instruction::FPExt:
4381 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4382 break;
4383 case Instruction::FPToUI:
4384 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4385 break;
4386 case Instruction::FPToSI:
4387 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4388 break;
4389 case Instruction::UIToFP:
4390 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4391 break;
4392 case Instruction::SIToFP:
4393 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4394 break;
4395 default:
4396 break;
4397 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004398
4399 if (!CastedTo)
4400 return nullptr;
4401
David Majnemerd2a074b2016-04-29 18:40:34 +00004402 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004403 Constant *CastedBack =
4404 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004405 if (CastedBack != C)
4406 return nullptr;
4407
4408 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004409}
4410
Sanjay Patele8dc0902016-05-23 17:57:54 +00004411SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004412 Instruction::CastOps *CastOp) {
4413 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004414 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004415
James Molloy134bec22015-08-11 09:12:57 +00004416 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4417 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004418
James Molloy134bec22015-08-11 09:12:57 +00004419 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004420 Value *CmpLHS = CmpI->getOperand(0);
4421 Value *CmpRHS = CmpI->getOperand(1);
4422 Value *TrueVal = SI->getTrueValue();
4423 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004424 FastMathFlags FMF;
4425 if (isa<FPMathOperator>(CmpI))
4426 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004427
4428 // Bail out early.
4429 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004430 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004431
4432 // Deal with type mismatches.
4433 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004434 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004435 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004436 cast<CastInst>(TrueVal)->getOperand(0), C,
4437 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004438 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004439 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004440 C, cast<CastInst>(FalseVal)->getOperand(0),
4441 LHS, RHS);
4442 }
James Molloy134bec22015-08-11 09:12:57 +00004443 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004444 LHS, RHS);
4445}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004446
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004447/// Return true if "icmp Pred LHS RHS" is always true.
Chad Rosiere42b44b2017-07-28 14:39:06 +00004448static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
4449 const Value *RHS, const DataLayout &DL,
4450 unsigned Depth) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004451 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004452 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4453 return true;
4454
4455 switch (Pred) {
4456 default:
4457 return false;
4458
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004459 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004460 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004461
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004462 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004463 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004464 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004465 return false;
4466 }
4467
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004468 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004469 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004470
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004471 // LHS u<= LHS +_{nuw} C for any C
4472 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004473 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004474
4475 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004476 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4477 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004478 const APInt *&CA, const APInt *&CB) {
4479 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4480 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4481 return true;
4482
4483 // If X & C == 0 then (X | C) == X +_{nuw} C
4484 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4485 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
Craig Topperb45eabc2017-04-26 16:39:58 +00004486 KnownBits Known(CA->getBitWidth());
Chad Rosiere42b44b2017-07-28 14:39:06 +00004487 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
4488 /*CxtI*/ nullptr, /*DT*/ nullptr);
Craig Topperb45eabc2017-04-26 16:39:58 +00004489 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
Sanjoy Das92568102015-11-10 23:56:20 +00004490 return true;
4491 }
4492
4493 return false;
4494 };
4495
Pete Cooper35b00d52016-08-13 01:05:32 +00004496 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004497 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004498 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4499 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004500
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004501 return false;
4502 }
4503 }
4504}
4505
4506/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004507/// ALHS ARHS" is true. Otherwise, return None.
4508static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004509isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
Chad Rosiere42b44b2017-07-28 14:39:06 +00004510 const Value *ARHS, const Value *BLHS, const Value *BRHS,
4511 const DataLayout &DL, unsigned Depth) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004512 switch (Pred) {
4513 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004514 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004515
4516 case CmpInst::ICMP_SLT:
4517 case CmpInst::ICMP_SLE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004518 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
4519 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004520 return true;
4521 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004522
4523 case CmpInst::ICMP_ULT:
4524 case CmpInst::ICMP_ULE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004525 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
4526 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004527 return true;
4528 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004529 }
4530}
4531
Chad Rosier226a7342016-05-05 17:41:19 +00004532/// Return true if the operands of the two compares match. IsSwappedOps is true
4533/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004534static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4535 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004536 bool &IsSwappedOps) {
4537
4538 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4539 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4540 return IsMatchingOps || IsSwappedOps;
4541}
4542
Chad Rosier41dd31f2016-04-20 19:15:26 +00004543/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4544/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4545/// BRHS" is false. Otherwise, return None if we can't infer anything.
4546static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004547 const Value *ALHS,
4548 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004549 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004550 const Value *BLHS,
4551 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004552 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004553 // Canonicalize the operands so they're matching.
4554 if (IsSwappedOps) {
4555 std::swap(BLHS, BRHS);
4556 BPred = ICmpInst::getSwappedPredicate(BPred);
4557 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004558 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004559 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004560 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004561 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004562
Chad Rosier41dd31f2016-04-20 19:15:26 +00004563 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004564}
4565
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004566/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4567/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4568/// C2" is false. Otherwise, return None if we can't infer anything.
4569static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004570isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4571 const ConstantInt *C1,
4572 CmpInst::Predicate BPred,
4573 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004574 assert(ALHS == BLHS && "LHS operands must match.");
4575 ConstantRange DomCR =
4576 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4577 ConstantRange CR =
4578 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4579 ConstantRange Intersection = DomCR.intersectWith(CR);
4580 ConstantRange Difference = DomCR.difference(CR);
4581 if (Intersection.isEmptySet())
4582 return false;
4583 if (Difference.isEmptySet())
4584 return true;
4585 return None;
4586}
4587
Chad Rosier2f498032017-07-28 18:47:43 +00004588/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4589/// false. Otherwise, return None if we can't infer anything.
4590static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
4591 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004592 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004593 unsigned Depth) {
4594 Value *ALHS = LHS->getOperand(0);
4595 Value *ARHS = LHS->getOperand(1);
Chad Rosiera72a9ff2017-07-06 20:00:25 +00004596 // The rest of the logic assumes the LHS condition is true. If that's not the
4597 // case, invert the predicate to make it so.
Chad Rosier2f498032017-07-28 18:47:43 +00004598 ICmpInst::Predicate APred =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004599 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
Chad Rosier2f498032017-07-28 18:47:43 +00004600
4601 Value *BLHS = RHS->getOperand(0);
4602 Value *BRHS = RHS->getOperand(1);
4603 ICmpInst::Predicate BPred = RHS->getPredicate();
Chad Rosiere2cbd132016-04-25 17:23:36 +00004604
Chad Rosier226a7342016-05-05 17:41:19 +00004605 // Can we infer anything when the two compares have matching operands?
4606 bool IsSwappedOps;
4607 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4608 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4609 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004610 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004611 // No amount of additional analysis will infer the second condition, so
4612 // early exit.
4613 return None;
4614 }
4615
4616 // Can we infer anything when the LHS operands match and the RHS operands are
4617 // constants (not necessarily matching)?
4618 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4619 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4620 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4621 cast<ConstantInt>(BRHS)))
4622 return Implication;
4623 // No amount of additional analysis will infer the second condition, so
4624 // early exit.
4625 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004626 }
4627
Chad Rosier41dd31f2016-04-20 19:15:26 +00004628 if (APred == BPred)
Chad Rosiere42b44b2017-07-28 14:39:06 +00004629 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
Chad Rosier41dd31f2016-04-20 19:15:26 +00004630 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004631}
Chad Rosier2f498032017-07-28 18:47:43 +00004632
Chad Rosierf73a10d2017-08-01 19:22:36 +00004633/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4634/// false. Otherwise, return None if we can't infer anything. We expect the
4635/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
4636static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
4637 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004638 const DataLayout &DL, bool LHSIsTrue,
Chad Rosierf73a10d2017-08-01 19:22:36 +00004639 unsigned Depth) {
4640 // The LHS must be an 'or' or an 'and' instruction.
4641 assert((LHS->getOpcode() == Instruction::And ||
4642 LHS->getOpcode() == Instruction::Or) &&
4643 "Expected LHS to be 'and' or 'or'.");
4644
Davide Italiano1a943a92017-08-09 16:06:54 +00004645 assert(Depth <= MaxDepth && "Hit recursion limit");
Chad Rosierf73a10d2017-08-01 19:22:36 +00004646
4647 // If the result of an 'or' is false, then we know both legs of the 'or' are
4648 // false. Similarly, if the result of an 'and' is true, then we know both
4649 // legs of the 'and' are true.
4650 Value *ALHS, *ARHS;
Chad Rosierdfd1de62017-08-01 20:18:54 +00004651 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
4652 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
Chad Rosierf73a10d2017-08-01 19:22:36 +00004653 // FIXME: Make this non-recursion.
4654 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004655 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004656 return Implication;
4657 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004658 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004659 return Implication;
4660 return None;
4661 }
4662 return None;
4663}
4664
Chad Rosier2f498032017-07-28 18:47:43 +00004665Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004666 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004667 unsigned Depth) {
Davide Italiano30e51942017-08-09 15:13:50 +00004668 // Bail out when we hit the limit.
4669 if (Depth == MaxDepth)
4670 return None;
4671
Chad Rosierf73a10d2017-08-01 19:22:36 +00004672 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
4673 // example.
Chad Rosier2f498032017-07-28 18:47:43 +00004674 if (LHS->getType() != RHS->getType())
4675 return None;
4676
4677 Type *OpTy = LHS->getType();
Chad Rosierf73a10d2017-08-01 19:22:36 +00004678 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
Chad Rosier2f498032017-07-28 18:47:43 +00004679
4680 // LHS ==> RHS by definition
4681 if (LHS == RHS)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004682 return LHSIsTrue;
Chad Rosier2f498032017-07-28 18:47:43 +00004683
Chad Rosierf73a10d2017-08-01 19:22:36 +00004684 // FIXME: Extending the code below to handle vectors.
Chad Rosier2f498032017-07-28 18:47:43 +00004685 if (OpTy->isVectorTy())
Chad Rosier2f498032017-07-28 18:47:43 +00004686 return None;
Chad Rosierf73a10d2017-08-01 19:22:36 +00004687
Chad Rosier2f498032017-07-28 18:47:43 +00004688 assert(OpTy->isIntegerTy(1) && "implied by above");
4689
Chad Rosier2f498032017-07-28 18:47:43 +00004690 // Both LHS and RHS are icmps.
Chad Rosierf73a10d2017-08-01 19:22:36 +00004691 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
4692 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
4693 if (LHSCmp && RHSCmp)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004694 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004695
Chad Rosierf73a10d2017-08-01 19:22:36 +00004696 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
4697 // an icmp. FIXME: Add support for and/or on the RHS.
4698 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
4699 if (LHSBO && RHSCmp) {
4700 if ((LHSBO->getOpcode() == Instruction::And ||
4701 LHSBO->getOpcode() == Instruction::Or))
Chad Rosierdfd1de62017-08-01 20:18:54 +00004702 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004703 }
Chad Rosierf73a10d2017-08-01 19:22:36 +00004704 return None;
Chad Rosier2f498032017-07-28 18:47:43 +00004705}