blob: 885da869da3a06edd2acc58fd74f13173c4ca226 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
Tim Northover675a0962014-06-13 14:24:23 +0000120 %0 = add i32 %X, %X ; yields i32:%0
121 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000446.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000467.. _tls_model:
468
469Thread Local Storage Models
470---------------------------
471
472A variable may be defined as ``thread_local``, which means that it will
473not be shared by threads (each thread will have a separated copy of the
474variable). Not all targets support thread-local variables. Optionally, a
475TLS model may be specified:
476
477``localdynamic``
478 For variables that are only used within the current shared library.
479``initialexec``
480 For variables in modules that will not be loaded dynamically.
481``localexec``
482 For variables defined in the executable and only used within it.
483
484If no explicit model is given, the "general dynamic" model is used.
485
486The models correspond to the ELF TLS models; see `ELF Handling For
487Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
488more information on under which circumstances the different models may
489be used. The target may choose a different TLS model if the specified
490model is not supported, or if a better choice of model can be made.
491
492A model can also be specified in a alias, but then it only governs how
493the alias is accessed. It will not have any effect in the aliasee.
494
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000495.. _namedtypes:
496
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000497Structure Types
498---------------
Sean Silvab084af42012-12-07 10:36:55 +0000499
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000500LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
501types <t_struct>`. Literal types are uniqued structurally, but identified types
502are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
503to forward declare a type which is not yet available.
504
505An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000506
507.. code-block:: llvm
508
509 %mytype = type { %mytype*, i32 }
510
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000511Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
512literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000513
514.. _globalvars:
515
516Global Variables
517----------------
518
519Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000520instead of run-time.
521
Bob Wilson85b24f22014-06-12 20:40:33 +0000522Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000523
524Global variables in other translation units can also be declared, in which
525case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000526
Bob Wilson85b24f22014-06-12 20:40:33 +0000527Either global variable definitions or declarations may have an explicit section
528to be placed in and may have an optional explicit alignment specified.
529
Michael Gottesman006039c2013-01-31 05:48:48 +0000530A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000531the contents of the variable will **never** be modified (enabling better
532optimization, allowing the global data to be placed in the read-only
533section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000534initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000535variable.
536
537LLVM explicitly allows *declarations* of global variables to be marked
538constant, even if the final definition of the global is not. This
539capability can be used to enable slightly better optimization of the
540program, but requires the language definition to guarantee that
541optimizations based on the 'constantness' are valid for the translation
542units that do not include the definition.
543
544As SSA values, global variables define pointer values that are in scope
545(i.e. they dominate) all basic blocks in the program. Global variables
546always define a pointer to their "content" type because they describe a
547region of memory, and all memory objects in LLVM are accessed through
548pointers.
549
550Global variables can be marked with ``unnamed_addr`` which indicates
551that the address is not significant, only the content. Constants marked
552like this can be merged with other constants if they have the same
553initializer. Note that a constant with significant address *can* be
554merged with a ``unnamed_addr`` constant, the result being a constant
555whose address is significant.
556
557A global variable may be declared to reside in a target-specific
558numbered address space. For targets that support them, address spaces
559may affect how optimizations are performed and/or what target
560instructions are used to access the variable. The default address space
561is zero. The address space qualifier must precede any other attributes.
562
563LLVM allows an explicit section to be specified for globals. If the
564target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000565Additionally, the global can placed in a comdat if the target has the necessary
566support.
Sean Silvab084af42012-12-07 10:36:55 +0000567
Michael Gottesmane743a302013-02-04 03:22:00 +0000568By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000569variables defined within the module are not modified from their
570initial values before the start of the global initializer. This is
571true even for variables potentially accessible from outside the
572module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000573``@llvm.used`` or dllexported variables. This assumption may be suppressed
574by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000575
Sean Silvab084af42012-12-07 10:36:55 +0000576An explicit alignment may be specified for a global, which must be a
577power of 2. If not present, or if the alignment is set to zero, the
578alignment of the global is set by the target to whatever it feels
579convenient. If an explicit alignment is specified, the global is forced
580to have exactly that alignment. Targets and optimizers are not allowed
581to over-align the global if the global has an assigned section. In this
582case, the extra alignment could be observable: for example, code could
583assume that the globals are densely packed in their section and try to
584iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000585iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000586
Nico Rieck7157bb72014-01-14 15:22:47 +0000587Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
588
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000589Variables and aliasaes can have a
590:ref:`Thread Local Storage Model <tls_model>`.
591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Syntax::
593
594 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000595 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000596 <global | constant> <Type> [<InitializerConstant>]
597 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000598
Sean Silvab084af42012-12-07 10:36:55 +0000599For example, the following defines a global in a numbered address space
600with an initializer, section, and alignment:
601
602.. code-block:: llvm
603
604 @G = addrspace(5) constant float 1.0, section "foo", align 4
605
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000606The following example just declares a global variable
607
608.. code-block:: llvm
609
610 @G = external global i32
611
Sean Silvab084af42012-12-07 10:36:55 +0000612The following example defines a thread-local global with the
613``initialexec`` TLS model:
614
615.. code-block:: llvm
616
617 @G = thread_local(initialexec) global i32 0, align 4
618
619.. _functionstructure:
620
621Functions
622---------
623
624LLVM function definitions consist of the "``define``" keyword, an
625optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000626style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
627an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000628an optional ``unnamed_addr`` attribute, a return type, an optional
629:ref:`parameter attribute <paramattrs>` for the return type, a function
630name, a (possibly empty) argument list (each with optional :ref:`parameter
631attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000632an optional section, an optional alignment,
633an optional :ref:`comdat <langref_comdats>`,
634an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000635curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000636
637LLVM function declarations consist of the "``declare``" keyword, an
638optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000639style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
640an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000641an optional ``unnamed_addr`` attribute, a return type, an optional
642:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000643name, a possibly empty list of arguments, an optional alignment, an optional
644:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000645
Bill Wendling6822ecb2013-10-27 05:09:12 +0000646A function definition contains a list of basic blocks, forming the CFG (Control
647Flow Graph) for the function. Each basic block may optionally start with a label
648(giving the basic block a symbol table entry), contains a list of instructions,
649and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
650function return). If an explicit label is not provided, a block is assigned an
651implicit numbered label, using the next value from the same counter as used for
652unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
653entry block does not have an explicit label, it will be assigned label "%0",
654then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000655
656The first basic block in a function is special in two ways: it is
657immediately executed on entrance to the function, and it is not allowed
658to have predecessor basic blocks (i.e. there can not be any branches to
659the entry block of a function). Because the block can have no
660predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
661
662LLVM allows an explicit section to be specified for functions. If the
663target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000664Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000665
666An explicit alignment may be specified for a function. If not present,
667or if the alignment is set to zero, the alignment of the function is set
668by the target to whatever it feels convenient. If an explicit alignment
669is specified, the function is forced to have at least that much
670alignment. All alignments must be a power of 2.
671
672If the ``unnamed_addr`` attribute is given, the address is know to not
673be significant and two identical functions can be merged.
674
675Syntax::
676
Nico Rieck7157bb72014-01-14 15:22:47 +0000677 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000678 [cconv] [ret attrs]
679 <ResultType> @<FunctionName> ([argument list])
David Majnemerdad0a642014-06-27 18:19:56 +0000680 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>]
681 [align N] [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000682
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000683.. _langref_aliases:
684
Sean Silvab084af42012-12-07 10:36:55 +0000685Aliases
686-------
687
Rafael Espindola64c1e182014-06-03 02:41:57 +0000688Aliases, unlike function or variables, don't create any new data. They
689are just a new symbol and metadata for an existing position.
690
691Aliases have a name and an aliasee that is either a global value or a
692constant expression.
693
Nico Rieck7157bb72014-01-14 15:22:47 +0000694Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000695:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
696<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000697
698Syntax::
699
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000700 @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000701
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000702The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000703``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000704might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000705
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000706Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000707the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
708to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000709
Rafael Espindola64c1e182014-06-03 02:41:57 +0000710Since aliases are only a second name, some restrictions apply, of which
711some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000712
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713* The expression defining the aliasee must be computable at assembly
714 time. Since it is just a name, no relocations can be used.
715
716* No alias in the expression can be weak as the possibility of the
717 intermediate alias being overridden cannot be represented in an
718 object file.
719
720* No global value in the expression can be a declaration, since that
721 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000722
David Majnemerdad0a642014-06-27 18:19:56 +0000723.. _langref_comdats:
724
725Comdats
726-------
727
728Comdat IR provides access to COFF and ELF object file COMDAT functionality.
729
730Comdats have a name which represents the COMDAT key. All global objects which
731specify this key will only end up in the final object file if the linker chooses
732that key over some other key. Aliases are placed in the same COMDAT that their
733aliasee computes to, if any.
734
735Comdats have a selection kind to provide input on how the linker should
736choose between keys in two different object files.
737
738Syntax::
739
740 $<Name> = comdat SelectionKind
741
742The selection kind must be one of the following:
743
744``any``
745 The linker may choose any COMDAT key, the choice is arbitrary.
746``exactmatch``
747 The linker may choose any COMDAT key but the sections must contain the
748 same data.
749``largest``
750 The linker will choose the section containing the largest COMDAT key.
751``noduplicates``
752 The linker requires that only section with this COMDAT key exist.
753``samesize``
754 The linker may choose any COMDAT key but the sections must contain the
755 same amount of data.
756
757Note that the Mach-O platform doesn't support COMDATs and ELF only supports
758``any`` as a selection kind.
759
760Here is an example of a COMDAT group where a function will only be selected if
761the COMDAT key's section is the largest:
762
763.. code-block:: llvm
764
765 $foo = comdat largest
766 @foo = global i32 2, comdat $foo
767
768 define void @bar() comdat $foo {
769 ret void
770 }
771
772In a COFF object file, this will create a COMDAT section with selection kind
773``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
774and another COMDAT section with selection kind
775``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
776section and contains the contents of the ``@baz`` symbol.
777
778There are some restrictions on the properties of the global object.
779It, or an alias to it, must have the same name as the COMDAT group when
780targeting COFF.
781The contents and size of this object may be used during link-time to determine
782which COMDAT groups get selected depending on the selection kind.
783Because the name of the object must match the name of the COMDAT group, the
784linkage of the global object must not be local; local symbols can get renamed
785if a collision occurs in the symbol table.
786
787The combined use of COMDATS and section attributes may yield surprising results.
788For example:
789
790.. code-block:: llvm
791
792 $foo = comdat any
793 $bar = comdat any
794 @g1 = global i32 42, section "sec", comdat $foo
795 @g2 = global i32 42, section "sec", comdat $bar
796
797From the object file perspective, this requires the creation of two sections
798with the same name. This is necessary because both globals belong to different
799COMDAT groups and COMDATs, at the object file level, are represented by
800sections.
801
802Note that certain IR constructs like global variables and functions may create
803COMDATs in the object file in addition to any which are specified using COMDAT
804IR. This arises, for example, when a global variable has linkonce_odr linkage.
805
Sean Silvab084af42012-12-07 10:36:55 +0000806.. _namedmetadatastructure:
807
808Named Metadata
809--------------
810
811Named metadata is a collection of metadata. :ref:`Metadata
812nodes <metadata>` (but not metadata strings) are the only valid
813operands for a named metadata.
814
815Syntax::
816
817 ; Some unnamed metadata nodes, which are referenced by the named metadata.
818 !0 = metadata !{metadata !"zero"}
819 !1 = metadata !{metadata !"one"}
820 !2 = metadata !{metadata !"two"}
821 ; A named metadata.
822 !name = !{!0, !1, !2}
823
824.. _paramattrs:
825
826Parameter Attributes
827--------------------
828
829The return type and each parameter of a function type may have a set of
830*parameter attributes* associated with them. Parameter attributes are
831used to communicate additional information about the result or
832parameters of a function. Parameter attributes are considered to be part
833of the function, not of the function type, so functions with different
834parameter attributes can have the same function type.
835
836Parameter attributes are simple keywords that follow the type specified.
837If multiple parameter attributes are needed, they are space separated.
838For example:
839
840.. code-block:: llvm
841
842 declare i32 @printf(i8* noalias nocapture, ...)
843 declare i32 @atoi(i8 zeroext)
844 declare signext i8 @returns_signed_char()
845
846Note that any attributes for the function result (``nounwind``,
847``readonly``) come immediately after the argument list.
848
849Currently, only the following parameter attributes are defined:
850
851``zeroext``
852 This indicates to the code generator that the parameter or return
853 value should be zero-extended to the extent required by the target's
854 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
855 the caller (for a parameter) or the callee (for a return value).
856``signext``
857 This indicates to the code generator that the parameter or return
858 value should be sign-extended to the extent required by the target's
859 ABI (which is usually 32-bits) by the caller (for a parameter) or
860 the callee (for a return value).
861``inreg``
862 This indicates that this parameter or return value should be treated
863 in a special target-dependent fashion during while emitting code for
864 a function call or return (usually, by putting it in a register as
865 opposed to memory, though some targets use it to distinguish between
866 two different kinds of registers). Use of this attribute is
867 target-specific.
868``byval``
869 This indicates that the pointer parameter should really be passed by
870 value to the function. The attribute implies that a hidden copy of
871 the pointee is made between the caller and the callee, so the callee
872 is unable to modify the value in the caller. This attribute is only
873 valid on LLVM pointer arguments. It is generally used to pass
874 structs and arrays by value, but is also valid on pointers to
875 scalars. The copy is considered to belong to the caller not the
876 callee (for example, ``readonly`` functions should not write to
877 ``byval`` parameters). This is not a valid attribute for return
878 values.
879
880 The byval attribute also supports specifying an alignment with the
881 align attribute. It indicates the alignment of the stack slot to
882 form and the known alignment of the pointer specified to the call
883 site. If the alignment is not specified, then the code generator
884 makes a target-specific assumption.
885
Reid Klecknera534a382013-12-19 02:14:12 +0000886.. _attr_inalloca:
887
888``inalloca``
889
Reid Kleckner60d3a832014-01-16 22:59:24 +0000890 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000891 address of outgoing stack arguments. An ``inalloca`` argument must
892 be a pointer to stack memory produced by an ``alloca`` instruction.
893 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000894 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000895 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000896
Reid Kleckner436c42e2014-01-17 23:58:17 +0000897 An argument allocation may be used by a call at most once because
898 the call may deallocate it. The ``inalloca`` attribute cannot be
899 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000900 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
901 ``inalloca`` attribute also disables LLVM's implicit lowering of
902 large aggregate return values, which means that frontend authors
903 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000904
Reid Kleckner60d3a832014-01-16 22:59:24 +0000905 When the call site is reached, the argument allocation must have
906 been the most recent stack allocation that is still live, or the
907 results are undefined. It is possible to allocate additional stack
908 space after an argument allocation and before its call site, but it
909 must be cleared off with :ref:`llvm.stackrestore
910 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000911
912 See :doc:`InAlloca` for more information on how to use this
913 attribute.
914
Sean Silvab084af42012-12-07 10:36:55 +0000915``sret``
916 This indicates that the pointer parameter specifies the address of a
917 structure that is the return value of the function in the source
918 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000919 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000920 not to trap and to be properly aligned. This may only be applied to
921 the first parameter. This is not a valid attribute for return
922 values.
Sean Silva1703e702014-04-08 21:06:22 +0000923
Hal Finkelccc70902014-07-22 16:58:55 +0000924``align <n>``
925 This indicates that the pointer value may be assumed by the optimizer to
926 have the specified alignment.
927
928 Note that this attribute has additional semantics when combined with the
929 ``byval`` attribute.
930
Sean Silva1703e702014-04-08 21:06:22 +0000931.. _noalias:
932
Sean Silvab084af42012-12-07 10:36:55 +0000933``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000934 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000935 the argument or return value do not alias pointer values which are
936 not *based* on it, ignoring certain "irrelevant" dependencies. For a
937 call to the parent function, dependencies between memory references
938 from before or after the call and from those during the call are
939 "irrelevant" to the ``noalias`` keyword for the arguments and return
940 value used in that call. The caller shares the responsibility with
941 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000942 details, please see the discussion of the NoAlias response in :ref:`alias
943 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000944
945 Note that this definition of ``noalias`` is intentionally similar
946 to the definition of ``restrict`` in C99 for function arguments,
947 though it is slightly weaker.
948
949 For function return values, C99's ``restrict`` is not meaningful,
950 while LLVM's ``noalias`` is.
951``nocapture``
952 This indicates that the callee does not make any copies of the
953 pointer that outlive the callee itself. This is not a valid
954 attribute for return values.
955
956.. _nest:
957
958``nest``
959 This indicates that the pointer parameter can be excised using the
960 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000961 attribute for return values and can only be applied to one parameter.
962
963``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000964 This indicates that the function always returns the argument as its return
965 value. This is an optimization hint to the code generator when generating
966 the caller, allowing tail call optimization and omission of register saves
967 and restores in some cases; it is not checked or enforced when generating
968 the callee. The parameter and the function return type must be valid
969 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
970 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000971
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000972``nonnull``
973 This indicates that the parameter or return pointer is not null. This
974 attribute may only be applied to pointer typed parameters. This is not
975 checked or enforced by LLVM, the caller must ensure that the pointer
976 passed in is non-null, or the callee must ensure that the returned pointer
977 is non-null.
978
Hal Finkelb0407ba2014-07-18 15:51:28 +0000979``dereferenceable(<n>)``
980 This indicates that the parameter or return pointer is dereferenceable. This
981 attribute may only be applied to pointer typed parameters. A pointer that
982 is dereferenceable can be loaded from speculatively without a risk of
983 trapping. The number of bytes known to be dereferenceable must be provided
984 in parentheses. It is legal for the number of bytes to be less than the
985 size of the pointee type. The ``nonnull`` attribute does not imply
986 dereferenceability (consider a pointer to one element past the end of an
987 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
988 ``addrspace(0)`` (which is the default address space).
989
Sean Silvab084af42012-12-07 10:36:55 +0000990.. _gc:
991
992Garbage Collector Names
993-----------------------
994
995Each function may specify a garbage collector name, which is simply a
996string:
997
998.. code-block:: llvm
999
1000 define void @f() gc "name" { ... }
1001
1002The compiler declares the supported values of *name*. Specifying a
1003collector which will cause the compiler to alter its output in order to
1004support the named garbage collection algorithm.
1005
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001006.. _prefixdata:
1007
1008Prefix Data
1009-----------
1010
1011Prefix data is data associated with a function which the code generator
1012will emit immediately before the function body. The purpose of this feature
1013is to allow frontends to associate language-specific runtime metadata with
1014specific functions and make it available through the function pointer while
1015still allowing the function pointer to be called. To access the data for a
1016given function, a program may bitcast the function pointer to a pointer to
1017the constant's type. This implies that the IR symbol points to the start
1018of the prefix data.
1019
1020To maintain the semantics of ordinary function calls, the prefix data must
1021have a particular format. Specifically, it must begin with a sequence of
1022bytes which decode to a sequence of machine instructions, valid for the
1023module's target, which transfer control to the point immediately succeeding
1024the prefix data, without performing any other visible action. This allows
1025the inliner and other passes to reason about the semantics of the function
1026definition without needing to reason about the prefix data. Obviously this
1027makes the format of the prefix data highly target dependent.
1028
Peter Collingbourne213358a2013-09-23 20:14:21 +00001029Prefix data is laid out as if it were an initializer for a global variable
1030of the prefix data's type. No padding is automatically placed between the
1031prefix data and the function body. If padding is required, it must be part
1032of the prefix data.
1033
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001034A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
1035which encodes the ``nop`` instruction:
1036
1037.. code-block:: llvm
1038
1039 define void @f() prefix i8 144 { ... }
1040
1041Generally prefix data can be formed by encoding a relative branch instruction
1042which skips the metadata, as in this example of valid prefix data for the
1043x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1044
1045.. code-block:: llvm
1046
1047 %0 = type <{ i8, i8, i8* }>
1048
1049 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
1050
1051A function may have prefix data but no body. This has similar semantics
1052to the ``available_externally`` linkage in that the data may be used by the
1053optimizers but will not be emitted in the object file.
1054
Bill Wendling63b88192013-02-06 06:52:58 +00001055.. _attrgrp:
1056
1057Attribute Groups
1058----------------
1059
1060Attribute groups are groups of attributes that are referenced by objects within
1061the IR. They are important for keeping ``.ll`` files readable, because a lot of
1062functions will use the same set of attributes. In the degenerative case of a
1063``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1064group will capture the important command line flags used to build that file.
1065
1066An attribute group is a module-level object. To use an attribute group, an
1067object references the attribute group's ID (e.g. ``#37``). An object may refer
1068to more than one attribute group. In that situation, the attributes from the
1069different groups are merged.
1070
1071Here is an example of attribute groups for a function that should always be
1072inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1073
1074.. code-block:: llvm
1075
1076 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001077 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001078
1079 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001080 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001081
1082 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1083 define void @f() #0 #1 { ... }
1084
Sean Silvab084af42012-12-07 10:36:55 +00001085.. _fnattrs:
1086
1087Function Attributes
1088-------------------
1089
1090Function attributes are set to communicate additional information about
1091a function. Function attributes are considered to be part of the
1092function, not of the function type, so functions with different function
1093attributes can have the same function type.
1094
1095Function attributes are simple keywords that follow the type specified.
1096If multiple attributes are needed, they are space separated. For
1097example:
1098
1099.. code-block:: llvm
1100
1101 define void @f() noinline { ... }
1102 define void @f() alwaysinline { ... }
1103 define void @f() alwaysinline optsize { ... }
1104 define void @f() optsize { ... }
1105
Sean Silvab084af42012-12-07 10:36:55 +00001106``alignstack(<n>)``
1107 This attribute indicates that, when emitting the prologue and
1108 epilogue, the backend should forcibly align the stack pointer.
1109 Specify the desired alignment, which must be a power of two, in
1110 parentheses.
1111``alwaysinline``
1112 This attribute indicates that the inliner should attempt to inline
1113 this function into callers whenever possible, ignoring any active
1114 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001115``builtin``
1116 This indicates that the callee function at a call site should be
1117 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001118 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +00001119 direct calls to functions which are declared with the ``nobuiltin``
1120 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001121``cold``
1122 This attribute indicates that this function is rarely called. When
1123 computing edge weights, basic blocks post-dominated by a cold
1124 function call are also considered to be cold; and, thus, given low
1125 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001126``inlinehint``
1127 This attribute indicates that the source code contained a hint that
1128 inlining this function is desirable (such as the "inline" keyword in
1129 C/C++). It is just a hint; it imposes no requirements on the
1130 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001131``jumptable``
1132 This attribute indicates that the function should be added to a
1133 jump-instruction table at code-generation time, and that all address-taken
1134 references to this function should be replaced with a reference to the
1135 appropriate jump-instruction-table function pointer. Note that this creates
1136 a new pointer for the original function, which means that code that depends
1137 on function-pointer identity can break. So, any function annotated with
1138 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001139``minsize``
1140 This attribute suggests that optimization passes and code generator
1141 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001142 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001143 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001144``naked``
1145 This attribute disables prologue / epilogue emission for the
1146 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001147``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001148 This indicates that the callee function at a call site is not recognized as
1149 a built-in function. LLVM will retain the original call and not replace it
1150 with equivalent code based on the semantics of the built-in function, unless
1151 the call site uses the ``builtin`` attribute. This is valid at call sites
1152 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001153``noduplicate``
1154 This attribute indicates that calls to the function cannot be
1155 duplicated. A call to a ``noduplicate`` function may be moved
1156 within its parent function, but may not be duplicated within
1157 its parent function.
1158
1159 A function containing a ``noduplicate`` call may still
1160 be an inlining candidate, provided that the call is not
1161 duplicated by inlining. That implies that the function has
1162 internal linkage and only has one call site, so the original
1163 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001164``noimplicitfloat``
1165 This attributes disables implicit floating point instructions.
1166``noinline``
1167 This attribute indicates that the inliner should never inline this
1168 function in any situation. This attribute may not be used together
1169 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001170``nonlazybind``
1171 This attribute suppresses lazy symbol binding for the function. This
1172 may make calls to the function faster, at the cost of extra program
1173 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001174``noredzone``
1175 This attribute indicates that the code generator should not use a
1176 red zone, even if the target-specific ABI normally permits it.
1177``noreturn``
1178 This function attribute indicates that the function never returns
1179 normally. This produces undefined behavior at runtime if the
1180 function ever does dynamically return.
1181``nounwind``
1182 This function attribute indicates that the function never returns
1183 with an unwind or exceptional control flow. If the function does
1184 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001185``optnone``
1186 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001187 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001188 exception of interprocedural optimization passes.
1189 This attribute cannot be used together with the ``alwaysinline``
1190 attribute; this attribute is also incompatible
1191 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001192
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001193 This attribute requires the ``noinline`` attribute to be specified on
1194 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001195 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001196 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001197``optsize``
1198 This attribute suggests that optimization passes and code generator
1199 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001200 and otherwise do optimizations specifically to reduce code size as
1201 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001202``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001203 On a function, this attribute indicates that the function computes its
1204 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001205 without dereferencing any pointer arguments or otherwise accessing
1206 any mutable state (e.g. memory, control registers, etc) visible to
1207 caller functions. It does not write through any pointer arguments
1208 (including ``byval`` arguments) and never changes any state visible
1209 to callers. This means that it cannot unwind exceptions by calling
1210 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001211
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001212 On an argument, this attribute indicates that the function does not
1213 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001214 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001215``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001216 On a function, this attribute indicates that the function does not write
1217 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001218 modify any state (e.g. memory, control registers, etc) visible to
1219 caller functions. It may dereference pointer arguments and read
1220 state that may be set in the caller. A readonly function always
1221 returns the same value (or unwinds an exception identically) when
1222 called with the same set of arguments and global state. It cannot
1223 unwind an exception by calling the ``C++`` exception throwing
1224 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001225
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001226 On an argument, this attribute indicates that the function does not write
1227 through this pointer argument, even though it may write to the memory that
1228 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001229``returns_twice``
1230 This attribute indicates that this function can return twice. The C
1231 ``setjmp`` is an example of such a function. The compiler disables
1232 some optimizations (like tail calls) in the caller of these
1233 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001234``sanitize_address``
1235 This attribute indicates that AddressSanitizer checks
1236 (dynamic address safety analysis) are enabled for this function.
1237``sanitize_memory``
1238 This attribute indicates that MemorySanitizer checks (dynamic detection
1239 of accesses to uninitialized memory) are enabled for this function.
1240``sanitize_thread``
1241 This attribute indicates that ThreadSanitizer checks
1242 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001243``ssp``
1244 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001245 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001246 placed on the stack before the local variables that's checked upon
1247 return from the function to see if it has been overwritten. A
1248 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001249 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001250
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001251 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1252 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1253 - Calls to alloca() with variable sizes or constant sizes greater than
1254 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001255
Josh Magee24c7f062014-02-01 01:36:16 +00001256 Variables that are identified as requiring a protector will be arranged
1257 on the stack such that they are adjacent to the stack protector guard.
1258
Sean Silvab084af42012-12-07 10:36:55 +00001259 If a function that has an ``ssp`` attribute is inlined into a
1260 function that doesn't have an ``ssp`` attribute, then the resulting
1261 function will have an ``ssp`` attribute.
1262``sspreq``
1263 This attribute indicates that the function should *always* emit a
1264 stack smashing protector. This overrides the ``ssp`` function
1265 attribute.
1266
Josh Magee24c7f062014-02-01 01:36:16 +00001267 Variables that are identified as requiring a protector will be arranged
1268 on the stack such that they are adjacent to the stack protector guard.
1269 The specific layout rules are:
1270
1271 #. Large arrays and structures containing large arrays
1272 (``>= ssp-buffer-size``) are closest to the stack protector.
1273 #. Small arrays and structures containing small arrays
1274 (``< ssp-buffer-size``) are 2nd closest to the protector.
1275 #. Variables that have had their address taken are 3rd closest to the
1276 protector.
1277
Sean Silvab084af42012-12-07 10:36:55 +00001278 If a function that has an ``sspreq`` attribute is inlined into a
1279 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001280 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1281 an ``sspreq`` attribute.
1282``sspstrong``
1283 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001284 protector. This attribute causes a strong heuristic to be used when
1285 determining if a function needs stack protectors. The strong heuristic
1286 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001287
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001288 - Arrays of any size and type
1289 - Aggregates containing an array of any size and type.
1290 - Calls to alloca().
1291 - Local variables that have had their address taken.
1292
Josh Magee24c7f062014-02-01 01:36:16 +00001293 Variables that are identified as requiring a protector will be arranged
1294 on the stack such that they are adjacent to the stack protector guard.
1295 The specific layout rules are:
1296
1297 #. Large arrays and structures containing large arrays
1298 (``>= ssp-buffer-size``) are closest to the stack protector.
1299 #. Small arrays and structures containing small arrays
1300 (``< ssp-buffer-size``) are 2nd closest to the protector.
1301 #. Variables that have had their address taken are 3rd closest to the
1302 protector.
1303
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001304 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001305
1306 If a function that has an ``sspstrong`` attribute is inlined into a
1307 function that doesn't have an ``sspstrong`` attribute, then the
1308 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001309``uwtable``
1310 This attribute indicates that the ABI being targeted requires that
1311 an unwind table entry be produce for this function even if we can
1312 show that no exceptions passes by it. This is normally the case for
1313 the ELF x86-64 abi, but it can be disabled for some compilation
1314 units.
Sean Silvab084af42012-12-07 10:36:55 +00001315
1316.. _moduleasm:
1317
1318Module-Level Inline Assembly
1319----------------------------
1320
1321Modules may contain "module-level inline asm" blocks, which corresponds
1322to the GCC "file scope inline asm" blocks. These blocks are internally
1323concatenated by LLVM and treated as a single unit, but may be separated
1324in the ``.ll`` file if desired. The syntax is very simple:
1325
1326.. code-block:: llvm
1327
1328 module asm "inline asm code goes here"
1329 module asm "more can go here"
1330
1331The strings can contain any character by escaping non-printable
1332characters. The escape sequence used is simply "\\xx" where "xx" is the
1333two digit hex code for the number.
1334
1335The inline asm code is simply printed to the machine code .s file when
1336assembly code is generated.
1337
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001338.. _langref_datalayout:
1339
Sean Silvab084af42012-12-07 10:36:55 +00001340Data Layout
1341-----------
1342
1343A module may specify a target specific data layout string that specifies
1344how data is to be laid out in memory. The syntax for the data layout is
1345simply:
1346
1347.. code-block:: llvm
1348
1349 target datalayout = "layout specification"
1350
1351The *layout specification* consists of a list of specifications
1352separated by the minus sign character ('-'). Each specification starts
1353with a letter and may include other information after the letter to
1354define some aspect of the data layout. The specifications accepted are
1355as follows:
1356
1357``E``
1358 Specifies that the target lays out data in big-endian form. That is,
1359 the bits with the most significance have the lowest address
1360 location.
1361``e``
1362 Specifies that the target lays out data in little-endian form. That
1363 is, the bits with the least significance have the lowest address
1364 location.
1365``S<size>``
1366 Specifies the natural alignment of the stack in bits. Alignment
1367 promotion of stack variables is limited to the natural stack
1368 alignment to avoid dynamic stack realignment. The stack alignment
1369 must be a multiple of 8-bits. If omitted, the natural stack
1370 alignment defaults to "unspecified", which does not prevent any
1371 alignment promotions.
1372``p[n]:<size>:<abi>:<pref>``
1373 This specifies the *size* of a pointer and its ``<abi>`` and
1374 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001375 bits. The address space, ``n`` is optional, and if not specified,
1376 denotes the default address space 0. The value of ``n`` must be
1377 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001378``i<size>:<abi>:<pref>``
1379 This specifies the alignment for an integer type of a given bit
1380 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1381``v<size>:<abi>:<pref>``
1382 This specifies the alignment for a vector type of a given bit
1383 ``<size>``.
1384``f<size>:<abi>:<pref>``
1385 This specifies the alignment for a floating point type of a given bit
1386 ``<size>``. Only values of ``<size>`` that are supported by the target
1387 will work. 32 (float) and 64 (double) are supported on all targets; 80
1388 or 128 (different flavors of long double) are also supported on some
1389 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001390``a:<abi>:<pref>``
1391 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001392``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001393 If present, specifies that llvm names are mangled in the output. The
1394 options are
1395
1396 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1397 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1398 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1399 symbols get a ``_`` prefix.
1400 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1401 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001402``n<size1>:<size2>:<size3>...``
1403 This specifies a set of native integer widths for the target CPU in
1404 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1405 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1406 this set are considered to support most general arithmetic operations
1407 efficiently.
1408
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001409On every specification that takes a ``<abi>:<pref>``, specifying the
1410``<pref>`` alignment is optional. If omitted, the preceding ``:``
1411should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1412
Sean Silvab084af42012-12-07 10:36:55 +00001413When constructing the data layout for a given target, LLVM starts with a
1414default set of specifications which are then (possibly) overridden by
1415the specifications in the ``datalayout`` keyword. The default
1416specifications are given in this list:
1417
1418- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001419- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1420- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1421 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001422- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001423- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1424- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1425- ``i16:16:16`` - i16 is 16-bit aligned
1426- ``i32:32:32`` - i32 is 32-bit aligned
1427- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1428 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001429- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001430- ``f32:32:32`` - float is 32-bit aligned
1431- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001432- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001433- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1434- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001435- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001436
1437When LLVM is determining the alignment for a given type, it uses the
1438following rules:
1439
1440#. If the type sought is an exact match for one of the specifications,
1441 that specification is used.
1442#. If no match is found, and the type sought is an integer type, then
1443 the smallest integer type that is larger than the bitwidth of the
1444 sought type is used. If none of the specifications are larger than
1445 the bitwidth then the largest integer type is used. For example,
1446 given the default specifications above, the i7 type will use the
1447 alignment of i8 (next largest) while both i65 and i256 will use the
1448 alignment of i64 (largest specified).
1449#. If no match is found, and the type sought is a vector type, then the
1450 largest vector type that is smaller than the sought vector type will
1451 be used as a fall back. This happens because <128 x double> can be
1452 implemented in terms of 64 <2 x double>, for example.
1453
1454The function of the data layout string may not be what you expect.
1455Notably, this is not a specification from the frontend of what alignment
1456the code generator should use.
1457
1458Instead, if specified, the target data layout is required to match what
1459the ultimate *code generator* expects. This string is used by the
1460mid-level optimizers to improve code, and this only works if it matches
1461what the ultimate code generator uses. If you would like to generate IR
1462that does not embed this target-specific detail into the IR, then you
1463don't have to specify the string. This will disable some optimizations
1464that require precise layout information, but this also prevents those
1465optimizations from introducing target specificity into the IR.
1466
Bill Wendling5cc90842013-10-18 23:41:25 +00001467.. _langref_triple:
1468
1469Target Triple
1470-------------
1471
1472A module may specify a target triple string that describes the target
1473host. The syntax for the target triple is simply:
1474
1475.. code-block:: llvm
1476
1477 target triple = "x86_64-apple-macosx10.7.0"
1478
1479The *target triple* string consists of a series of identifiers delimited
1480by the minus sign character ('-'). The canonical forms are:
1481
1482::
1483
1484 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1485 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1486
1487This information is passed along to the backend so that it generates
1488code for the proper architecture. It's possible to override this on the
1489command line with the ``-mtriple`` command line option.
1490
Sean Silvab084af42012-12-07 10:36:55 +00001491.. _pointeraliasing:
1492
1493Pointer Aliasing Rules
1494----------------------
1495
1496Any memory access must be done through a pointer value associated with
1497an address range of the memory access, otherwise the behavior is
1498undefined. Pointer values are associated with address ranges according
1499to the following rules:
1500
1501- A pointer value is associated with the addresses associated with any
1502 value it is *based* on.
1503- An address of a global variable is associated with the address range
1504 of the variable's storage.
1505- The result value of an allocation instruction is associated with the
1506 address range of the allocated storage.
1507- A null pointer in the default address-space is associated with no
1508 address.
1509- An integer constant other than zero or a pointer value returned from
1510 a function not defined within LLVM may be associated with address
1511 ranges allocated through mechanisms other than those provided by
1512 LLVM. Such ranges shall not overlap with any ranges of addresses
1513 allocated by mechanisms provided by LLVM.
1514
1515A pointer value is *based* on another pointer value according to the
1516following rules:
1517
1518- A pointer value formed from a ``getelementptr`` operation is *based*
1519 on the first operand of the ``getelementptr``.
1520- The result value of a ``bitcast`` is *based* on the operand of the
1521 ``bitcast``.
1522- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1523 values that contribute (directly or indirectly) to the computation of
1524 the pointer's value.
1525- The "*based* on" relationship is transitive.
1526
1527Note that this definition of *"based"* is intentionally similar to the
1528definition of *"based"* in C99, though it is slightly weaker.
1529
1530LLVM IR does not associate types with memory. The result type of a
1531``load`` merely indicates the size and alignment of the memory from
1532which to load, as well as the interpretation of the value. The first
1533operand type of a ``store`` similarly only indicates the size and
1534alignment of the store.
1535
1536Consequently, type-based alias analysis, aka TBAA, aka
1537``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1538:ref:`Metadata <metadata>` may be used to encode additional information
1539which specialized optimization passes may use to implement type-based
1540alias analysis.
1541
1542.. _volatile:
1543
1544Volatile Memory Accesses
1545------------------------
1546
1547Certain memory accesses, such as :ref:`load <i_load>`'s,
1548:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1549marked ``volatile``. The optimizers must not change the number of
1550volatile operations or change their order of execution relative to other
1551volatile operations. The optimizers *may* change the order of volatile
1552operations relative to non-volatile operations. This is not Java's
1553"volatile" and has no cross-thread synchronization behavior.
1554
Andrew Trick89fc5a62013-01-30 21:19:35 +00001555IR-level volatile loads and stores cannot safely be optimized into
1556llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1557flagged volatile. Likewise, the backend should never split or merge
1558target-legal volatile load/store instructions.
1559
Andrew Trick7e6f9282013-01-31 00:49:39 +00001560.. admonition:: Rationale
1561
1562 Platforms may rely on volatile loads and stores of natively supported
1563 data width to be executed as single instruction. For example, in C
1564 this holds for an l-value of volatile primitive type with native
1565 hardware support, but not necessarily for aggregate types. The
1566 frontend upholds these expectations, which are intentionally
1567 unspecified in the IR. The rules above ensure that IR transformation
1568 do not violate the frontend's contract with the language.
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570.. _memmodel:
1571
1572Memory Model for Concurrent Operations
1573--------------------------------------
1574
1575The LLVM IR does not define any way to start parallel threads of
1576execution or to register signal handlers. Nonetheless, there are
1577platform-specific ways to create them, and we define LLVM IR's behavior
1578in their presence. This model is inspired by the C++0x memory model.
1579
1580For a more informal introduction to this model, see the :doc:`Atomics`.
1581
1582We define a *happens-before* partial order as the least partial order
1583that
1584
1585- Is a superset of single-thread program order, and
1586- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1587 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1588 techniques, like pthread locks, thread creation, thread joining,
1589 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1590 Constraints <ordering>`).
1591
1592Note that program order does not introduce *happens-before* edges
1593between a thread and signals executing inside that thread.
1594
1595Every (defined) read operation (load instructions, memcpy, atomic
1596loads/read-modify-writes, etc.) R reads a series of bytes written by
1597(defined) write operations (store instructions, atomic
1598stores/read-modify-writes, memcpy, etc.). For the purposes of this
1599section, initialized globals are considered to have a write of the
1600initializer which is atomic and happens before any other read or write
1601of the memory in question. For each byte of a read R, R\ :sub:`byte`
1602may see any write to the same byte, except:
1603
1604- If write\ :sub:`1` happens before write\ :sub:`2`, and
1605 write\ :sub:`2` happens before R\ :sub:`byte`, then
1606 R\ :sub:`byte` does not see write\ :sub:`1`.
1607- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1608 R\ :sub:`byte` does not see write\ :sub:`3`.
1609
1610Given that definition, R\ :sub:`byte` is defined as follows:
1611
1612- If R is volatile, the result is target-dependent. (Volatile is
1613 supposed to give guarantees which can support ``sig_atomic_t`` in
1614 C/C++, and may be used for accesses to addresses which do not behave
1615 like normal memory. It does not generally provide cross-thread
1616 synchronization.)
1617- Otherwise, if there is no write to the same byte that happens before
1618 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1619- Otherwise, if R\ :sub:`byte` may see exactly one write,
1620 R\ :sub:`byte` returns the value written by that write.
1621- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1622 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1623 Memory Ordering Constraints <ordering>` section for additional
1624 constraints on how the choice is made.
1625- Otherwise R\ :sub:`byte` returns ``undef``.
1626
1627R returns the value composed of the series of bytes it read. This
1628implies that some bytes within the value may be ``undef`` **without**
1629the entire value being ``undef``. Note that this only defines the
1630semantics of the operation; it doesn't mean that targets will emit more
1631than one instruction to read the series of bytes.
1632
1633Note that in cases where none of the atomic intrinsics are used, this
1634model places only one restriction on IR transformations on top of what
1635is required for single-threaded execution: introducing a store to a byte
1636which might not otherwise be stored is not allowed in general.
1637(Specifically, in the case where another thread might write to and read
1638from an address, introducing a store can change a load that may see
1639exactly one write into a load that may see multiple writes.)
1640
1641.. _ordering:
1642
1643Atomic Memory Ordering Constraints
1644----------------------------------
1645
1646Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1647:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1648:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001649ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001650the same address they *synchronize with*. These semantics are borrowed
1651from Java and C++0x, but are somewhat more colloquial. If these
1652descriptions aren't precise enough, check those specs (see spec
1653references in the :doc:`atomics guide <Atomics>`).
1654:ref:`fence <i_fence>` instructions treat these orderings somewhat
1655differently since they don't take an address. See that instruction's
1656documentation for details.
1657
1658For a simpler introduction to the ordering constraints, see the
1659:doc:`Atomics`.
1660
1661``unordered``
1662 The set of values that can be read is governed by the happens-before
1663 partial order. A value cannot be read unless some operation wrote
1664 it. This is intended to provide a guarantee strong enough to model
1665 Java's non-volatile shared variables. This ordering cannot be
1666 specified for read-modify-write operations; it is not strong enough
1667 to make them atomic in any interesting way.
1668``monotonic``
1669 In addition to the guarantees of ``unordered``, there is a single
1670 total order for modifications by ``monotonic`` operations on each
1671 address. All modification orders must be compatible with the
1672 happens-before order. There is no guarantee that the modification
1673 orders can be combined to a global total order for the whole program
1674 (and this often will not be possible). The read in an atomic
1675 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1676 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1677 order immediately before the value it writes. If one atomic read
1678 happens before another atomic read of the same address, the later
1679 read must see the same value or a later value in the address's
1680 modification order. This disallows reordering of ``monotonic`` (or
1681 stronger) operations on the same address. If an address is written
1682 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1683 read that address repeatedly, the other threads must eventually see
1684 the write. This corresponds to the C++0x/C1x
1685 ``memory_order_relaxed``.
1686``acquire``
1687 In addition to the guarantees of ``monotonic``, a
1688 *synchronizes-with* edge may be formed with a ``release`` operation.
1689 This is intended to model C++'s ``memory_order_acquire``.
1690``release``
1691 In addition to the guarantees of ``monotonic``, if this operation
1692 writes a value which is subsequently read by an ``acquire``
1693 operation, it *synchronizes-with* that operation. (This isn't a
1694 complete description; see the C++0x definition of a release
1695 sequence.) This corresponds to the C++0x/C1x
1696 ``memory_order_release``.
1697``acq_rel`` (acquire+release)
1698 Acts as both an ``acquire`` and ``release`` operation on its
1699 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1700``seq_cst`` (sequentially consistent)
1701 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1702 operation which only reads, ``release`` for an operation which only
1703 writes), there is a global total order on all
1704 sequentially-consistent operations on all addresses, which is
1705 consistent with the *happens-before* partial order and with the
1706 modification orders of all the affected addresses. Each
1707 sequentially-consistent read sees the last preceding write to the
1708 same address in this global order. This corresponds to the C++0x/C1x
1709 ``memory_order_seq_cst`` and Java volatile.
1710
1711.. _singlethread:
1712
1713If an atomic operation is marked ``singlethread``, it only *synchronizes
1714with* or participates in modification and seq\_cst total orderings with
1715other operations running in the same thread (for example, in signal
1716handlers).
1717
1718.. _fastmath:
1719
1720Fast-Math Flags
1721---------------
1722
1723LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1724:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1725:ref:`frem <i_frem>`) have the following flags that can set to enable
1726otherwise unsafe floating point operations
1727
1728``nnan``
1729 No NaNs - Allow optimizations to assume the arguments and result are not
1730 NaN. Such optimizations are required to retain defined behavior over
1731 NaNs, but the value of the result is undefined.
1732
1733``ninf``
1734 No Infs - Allow optimizations to assume the arguments and result are not
1735 +/-Inf. Such optimizations are required to retain defined behavior over
1736 +/-Inf, but the value of the result is undefined.
1737
1738``nsz``
1739 No Signed Zeros - Allow optimizations to treat the sign of a zero
1740 argument or result as insignificant.
1741
1742``arcp``
1743 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1744 argument rather than perform division.
1745
1746``fast``
1747 Fast - Allow algebraically equivalent transformations that may
1748 dramatically change results in floating point (e.g. reassociate). This
1749 flag implies all the others.
1750
1751.. _typesystem:
1752
1753Type System
1754===========
1755
1756The LLVM type system is one of the most important features of the
1757intermediate representation. Being typed enables a number of
1758optimizations to be performed on the intermediate representation
1759directly, without having to do extra analyses on the side before the
1760transformation. A strong type system makes it easier to read the
1761generated code and enables novel analyses and transformations that are
1762not feasible to perform on normal three address code representations.
1763
Rafael Espindola08013342013-12-07 19:34:20 +00001764.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001765
Rafael Espindola08013342013-12-07 19:34:20 +00001766Void Type
1767---------
Sean Silvab084af42012-12-07 10:36:55 +00001768
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001769:Overview:
1770
Rafael Espindola08013342013-12-07 19:34:20 +00001771
1772The void type does not represent any value and has no size.
1773
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001774:Syntax:
1775
Rafael Espindola08013342013-12-07 19:34:20 +00001776
1777::
1778
1779 void
Sean Silvab084af42012-12-07 10:36:55 +00001780
1781
Rafael Espindola08013342013-12-07 19:34:20 +00001782.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001783
Rafael Espindola08013342013-12-07 19:34:20 +00001784Function Type
1785-------------
Sean Silvab084af42012-12-07 10:36:55 +00001786
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001787:Overview:
1788
Sean Silvab084af42012-12-07 10:36:55 +00001789
Rafael Espindola08013342013-12-07 19:34:20 +00001790The function type can be thought of as a function signature. It consists of a
1791return type and a list of formal parameter types. The return type of a function
1792type is a void type or first class type --- except for :ref:`label <t_label>`
1793and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001794
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001795:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001796
Rafael Espindola08013342013-12-07 19:34:20 +00001797::
Sean Silvab084af42012-12-07 10:36:55 +00001798
Rafael Espindola08013342013-12-07 19:34:20 +00001799 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001800
Rafael Espindola08013342013-12-07 19:34:20 +00001801...where '``<parameter list>``' is a comma-separated list of type
1802specifiers. Optionally, the parameter list may include a type ``...``, which
1803indicates that the function takes a variable number of arguments. Variable
1804argument functions can access their arguments with the :ref:`variable argument
1805handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1806except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001807
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001808:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001809
Rafael Espindola08013342013-12-07 19:34:20 +00001810+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1811| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1812+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1813| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1814+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1815| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1816+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1817| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1818+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1819
1820.. _t_firstclass:
1821
1822First Class Types
1823-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001824
1825The :ref:`first class <t_firstclass>` types are perhaps the most important.
1826Values of these types are the only ones which can be produced by
1827instructions.
1828
Rafael Espindola08013342013-12-07 19:34:20 +00001829.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001830
Rafael Espindola08013342013-12-07 19:34:20 +00001831Single Value Types
1832^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001833
Rafael Espindola08013342013-12-07 19:34:20 +00001834These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001835
1836.. _t_integer:
1837
1838Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001839""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001840
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001841:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001842
1843The integer type is a very simple type that simply specifies an
1844arbitrary bit width for the integer type desired. Any bit width from 1
1845bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1846
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001847:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001848
1849::
1850
1851 iN
1852
1853The number of bits the integer will occupy is specified by the ``N``
1854value.
1855
1856Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001857*********
Sean Silvab084af42012-12-07 10:36:55 +00001858
1859+----------------+------------------------------------------------+
1860| ``i1`` | a single-bit integer. |
1861+----------------+------------------------------------------------+
1862| ``i32`` | a 32-bit integer. |
1863+----------------+------------------------------------------------+
1864| ``i1942652`` | a really big integer of over 1 million bits. |
1865+----------------+------------------------------------------------+
1866
1867.. _t_floating:
1868
1869Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001870""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001871
1872.. list-table::
1873 :header-rows: 1
1874
1875 * - Type
1876 - Description
1877
1878 * - ``half``
1879 - 16-bit floating point value
1880
1881 * - ``float``
1882 - 32-bit floating point value
1883
1884 * - ``double``
1885 - 64-bit floating point value
1886
1887 * - ``fp128``
1888 - 128-bit floating point value (112-bit mantissa)
1889
1890 * - ``x86_fp80``
1891 - 80-bit floating point value (X87)
1892
1893 * - ``ppc_fp128``
1894 - 128-bit floating point value (two 64-bits)
1895
Reid Kleckner9a16d082014-03-05 02:41:37 +00001896X86_mmx Type
1897""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001898
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001899:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001900
Reid Kleckner9a16d082014-03-05 02:41:37 +00001901The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001902machine. The operations allowed on it are quite limited: parameters and
1903return values, load and store, and bitcast. User-specified MMX
1904instructions are represented as intrinsic or asm calls with arguments
1905and/or results of this type. There are no arrays, vectors or constants
1906of this type.
1907
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001908:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001909
1910::
1911
Reid Kleckner9a16d082014-03-05 02:41:37 +00001912 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001913
Sean Silvab084af42012-12-07 10:36:55 +00001914
Rafael Espindola08013342013-12-07 19:34:20 +00001915.. _t_pointer:
1916
1917Pointer Type
1918""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001919
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001920:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001921
Rafael Espindola08013342013-12-07 19:34:20 +00001922The pointer type is used to specify memory locations. Pointers are
1923commonly used to reference objects in memory.
1924
1925Pointer types may have an optional address space attribute defining the
1926numbered address space where the pointed-to object resides. The default
1927address space is number zero. The semantics of non-zero address spaces
1928are target-specific.
1929
1930Note that LLVM does not permit pointers to void (``void*``) nor does it
1931permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001932
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001933:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001934
1935::
1936
Rafael Espindola08013342013-12-07 19:34:20 +00001937 <type> *
1938
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001939:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001940
1941+-------------------------+--------------------------------------------------------------------------------------------------------------+
1942| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1943+-------------------------+--------------------------------------------------------------------------------------------------------------+
1944| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1945+-------------------------+--------------------------------------------------------------------------------------------------------------+
1946| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1947+-------------------------+--------------------------------------------------------------------------------------------------------------+
1948
1949.. _t_vector:
1950
1951Vector Type
1952"""""""""""
1953
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001954:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001955
1956A vector type is a simple derived type that represents a vector of
1957elements. Vector types are used when multiple primitive data are
1958operated in parallel using a single instruction (SIMD). A vector type
1959requires a size (number of elements) and an underlying primitive data
1960type. Vector types are considered :ref:`first class <t_firstclass>`.
1961
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001962:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001963
1964::
1965
1966 < <# elements> x <elementtype> >
1967
1968The number of elements is a constant integer value larger than 0;
1969elementtype may be any integer or floating point type, or a pointer to
1970these types. Vectors of size zero are not allowed.
1971
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001972:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001973
1974+-------------------+--------------------------------------------------+
1975| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1976+-------------------+--------------------------------------------------+
1977| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1978+-------------------+--------------------------------------------------+
1979| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1980+-------------------+--------------------------------------------------+
1981| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1982+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001983
1984.. _t_label:
1985
1986Label Type
1987^^^^^^^^^^
1988
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001989:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001990
1991The label type represents code labels.
1992
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001993:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001994
1995::
1996
1997 label
1998
1999.. _t_metadata:
2000
2001Metadata Type
2002^^^^^^^^^^^^^
2003
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002004:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002005
2006The metadata type represents embedded metadata. No derived types may be
2007created from metadata except for :ref:`function <t_function>` arguments.
2008
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002009:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002010
2011::
2012
2013 metadata
2014
Sean Silvab084af42012-12-07 10:36:55 +00002015.. _t_aggregate:
2016
2017Aggregate Types
2018^^^^^^^^^^^^^^^
2019
2020Aggregate Types are a subset of derived types that can contain multiple
2021member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2022aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2023aggregate types.
2024
2025.. _t_array:
2026
2027Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002028""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002029
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002030:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002031
2032The array type is a very simple derived type that arranges elements
2033sequentially in memory. The array type requires a size (number of
2034elements) and an underlying data type.
2035
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002036:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002037
2038::
2039
2040 [<# elements> x <elementtype>]
2041
2042The number of elements is a constant integer value; ``elementtype`` may
2043be any type with a size.
2044
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002045:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002046
2047+------------------+--------------------------------------+
2048| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2049+------------------+--------------------------------------+
2050| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2051+------------------+--------------------------------------+
2052| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2053+------------------+--------------------------------------+
2054
2055Here are some examples of multidimensional arrays:
2056
2057+-----------------------------+----------------------------------------------------------+
2058| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2059+-----------------------------+----------------------------------------------------------+
2060| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2061+-----------------------------+----------------------------------------------------------+
2062| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2063+-----------------------------+----------------------------------------------------------+
2064
2065There is no restriction on indexing beyond the end of the array implied
2066by a static type (though there are restrictions on indexing beyond the
2067bounds of an allocated object in some cases). This means that
2068single-dimension 'variable sized array' addressing can be implemented in
2069LLVM with a zero length array type. An implementation of 'pascal style
2070arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2071example.
2072
Sean Silvab084af42012-12-07 10:36:55 +00002073.. _t_struct:
2074
2075Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002076""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002077
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002078:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002079
2080The structure type is used to represent a collection of data members
2081together in memory. The elements of a structure may be any type that has
2082a size.
2083
2084Structures in memory are accessed using '``load``' and '``store``' by
2085getting a pointer to a field with the '``getelementptr``' instruction.
2086Structures in registers are accessed using the '``extractvalue``' and
2087'``insertvalue``' instructions.
2088
2089Structures may optionally be "packed" structures, which indicate that
2090the alignment of the struct is one byte, and that there is no padding
2091between the elements. In non-packed structs, padding between field types
2092is inserted as defined by the DataLayout string in the module, which is
2093required to match what the underlying code generator expects.
2094
2095Structures can either be "literal" or "identified". A literal structure
2096is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2097identified types are always defined at the top level with a name.
2098Literal types are uniqued by their contents and can never be recursive
2099or opaque since there is no way to write one. Identified types can be
2100recursive, can be opaqued, and are never uniqued.
2101
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002102:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002103
2104::
2105
2106 %T1 = type { <type list> } ; Identified normal struct type
2107 %T2 = type <{ <type list> }> ; Identified packed struct type
2108
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002109:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002110
2111+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2112| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2113+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002114| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002115+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2116| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2117+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2118
2119.. _t_opaque:
2120
2121Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002122""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002123
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002124:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002125
2126Opaque structure types are used to represent named structure types that
2127do not have a body specified. This corresponds (for example) to the C
2128notion of a forward declared structure.
2129
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002130:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002131
2132::
2133
2134 %X = type opaque
2135 %52 = type opaque
2136
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002137:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002138
2139+--------------+-------------------+
2140| ``opaque`` | An opaque type. |
2141+--------------+-------------------+
2142
Sean Silva1703e702014-04-08 21:06:22 +00002143.. _constants:
2144
Sean Silvab084af42012-12-07 10:36:55 +00002145Constants
2146=========
2147
2148LLVM has several different basic types of constants. This section
2149describes them all and their syntax.
2150
2151Simple Constants
2152----------------
2153
2154**Boolean constants**
2155 The two strings '``true``' and '``false``' are both valid constants
2156 of the ``i1`` type.
2157**Integer constants**
2158 Standard integers (such as '4') are constants of the
2159 :ref:`integer <t_integer>` type. Negative numbers may be used with
2160 integer types.
2161**Floating point constants**
2162 Floating point constants use standard decimal notation (e.g.
2163 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2164 hexadecimal notation (see below). The assembler requires the exact
2165 decimal value of a floating-point constant. For example, the
2166 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2167 decimal in binary. Floating point constants must have a :ref:`floating
2168 point <t_floating>` type.
2169**Null pointer constants**
2170 The identifier '``null``' is recognized as a null pointer constant
2171 and must be of :ref:`pointer type <t_pointer>`.
2172
2173The one non-intuitive notation for constants is the hexadecimal form of
2174floating point constants. For example, the form
2175'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2176than) '``double 4.5e+15``'. The only time hexadecimal floating point
2177constants are required (and the only time that they are generated by the
2178disassembler) is when a floating point constant must be emitted but it
2179cannot be represented as a decimal floating point number in a reasonable
2180number of digits. For example, NaN's, infinities, and other special
2181values are represented in their IEEE hexadecimal format so that assembly
2182and disassembly do not cause any bits to change in the constants.
2183
2184When using the hexadecimal form, constants of types half, float, and
2185double are represented using the 16-digit form shown above (which
2186matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002187must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002188precision, respectively. Hexadecimal format is always used for long
2189double, and there are three forms of long double. The 80-bit format used
2190by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2191128-bit format used by PowerPC (two adjacent doubles) is represented by
2192``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002193represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2194will only work if they match the long double format on your target.
2195The IEEE 16-bit format (half precision) is represented by ``0xH``
2196followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2197(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002198
Reid Kleckner9a16d082014-03-05 02:41:37 +00002199There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002200
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002201.. _complexconstants:
2202
Sean Silvab084af42012-12-07 10:36:55 +00002203Complex Constants
2204-----------------
2205
2206Complex constants are a (potentially recursive) combination of simple
2207constants and smaller complex constants.
2208
2209**Structure constants**
2210 Structure constants are represented with notation similar to
2211 structure type definitions (a comma separated list of elements,
2212 surrounded by braces (``{}``)). For example:
2213 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2214 "``@G = external global i32``". Structure constants must have
2215 :ref:`structure type <t_struct>`, and the number and types of elements
2216 must match those specified by the type.
2217**Array constants**
2218 Array constants are represented with notation similar to array type
2219 definitions (a comma separated list of elements, surrounded by
2220 square brackets (``[]``)). For example:
2221 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2222 :ref:`array type <t_array>`, and the number and types of elements must
2223 match those specified by the type.
2224**Vector constants**
2225 Vector constants are represented with notation similar to vector
2226 type definitions (a comma separated list of elements, surrounded by
2227 less-than/greater-than's (``<>``)). For example:
2228 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2229 must have :ref:`vector type <t_vector>`, and the number and types of
2230 elements must match those specified by the type.
2231**Zero initialization**
2232 The string '``zeroinitializer``' can be used to zero initialize a
2233 value to zero of *any* type, including scalar and
2234 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2235 having to print large zero initializers (e.g. for large arrays) and
2236 is always exactly equivalent to using explicit zero initializers.
2237**Metadata node**
2238 A metadata node is a structure-like constant with :ref:`metadata
2239 type <t_metadata>`. For example:
2240 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2241 constants that are meant to be interpreted as part of the
2242 instruction stream, metadata is a place to attach additional
2243 information such as debug info.
2244
2245Global Variable and Function Addresses
2246--------------------------------------
2247
2248The addresses of :ref:`global variables <globalvars>` and
2249:ref:`functions <functionstructure>` are always implicitly valid
2250(link-time) constants. These constants are explicitly referenced when
2251the :ref:`identifier for the global <identifiers>` is used and always have
2252:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2253file:
2254
2255.. code-block:: llvm
2256
2257 @X = global i32 17
2258 @Y = global i32 42
2259 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2260
2261.. _undefvalues:
2262
2263Undefined Values
2264----------------
2265
2266The string '``undef``' can be used anywhere a constant is expected, and
2267indicates that the user of the value may receive an unspecified
2268bit-pattern. Undefined values may be of any type (other than '``label``'
2269or '``void``') and be used anywhere a constant is permitted.
2270
2271Undefined values are useful because they indicate to the compiler that
2272the program is well defined no matter what value is used. This gives the
2273compiler more freedom to optimize. Here are some examples of
2274(potentially surprising) transformations that are valid (in pseudo IR):
2275
2276.. code-block:: llvm
2277
2278 %A = add %X, undef
2279 %B = sub %X, undef
2280 %C = xor %X, undef
2281 Safe:
2282 %A = undef
2283 %B = undef
2284 %C = undef
2285
2286This is safe because all of the output bits are affected by the undef
2287bits. Any output bit can have a zero or one depending on the input bits.
2288
2289.. code-block:: llvm
2290
2291 %A = or %X, undef
2292 %B = and %X, undef
2293 Safe:
2294 %A = -1
2295 %B = 0
2296 Unsafe:
2297 %A = undef
2298 %B = undef
2299
2300These logical operations have bits that are not always affected by the
2301input. For example, if ``%X`` has a zero bit, then the output of the
2302'``and``' operation will always be a zero for that bit, no matter what
2303the corresponding bit from the '``undef``' is. As such, it is unsafe to
2304optimize or assume that the result of the '``and``' is '``undef``'.
2305However, it is safe to assume that all bits of the '``undef``' could be
23060, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2307all the bits of the '``undef``' operand to the '``or``' could be set,
2308allowing the '``or``' to be folded to -1.
2309
2310.. code-block:: llvm
2311
2312 %A = select undef, %X, %Y
2313 %B = select undef, 42, %Y
2314 %C = select %X, %Y, undef
2315 Safe:
2316 %A = %X (or %Y)
2317 %B = 42 (or %Y)
2318 %C = %Y
2319 Unsafe:
2320 %A = undef
2321 %B = undef
2322 %C = undef
2323
2324This set of examples shows that undefined '``select``' (and conditional
2325branch) conditions can go *either way*, but they have to come from one
2326of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2327both known to have a clear low bit, then ``%A`` would have to have a
2328cleared low bit. However, in the ``%C`` example, the optimizer is
2329allowed to assume that the '``undef``' operand could be the same as
2330``%Y``, allowing the whole '``select``' to be eliminated.
2331
2332.. code-block:: llvm
2333
2334 %A = xor undef, undef
2335
2336 %B = undef
2337 %C = xor %B, %B
2338
2339 %D = undef
2340 %E = icmp lt %D, 4
2341 %F = icmp gte %D, 4
2342
2343 Safe:
2344 %A = undef
2345 %B = undef
2346 %C = undef
2347 %D = undef
2348 %E = undef
2349 %F = undef
2350
2351This example points out that two '``undef``' operands are not
2352necessarily the same. This can be surprising to people (and also matches
2353C semantics) where they assume that "``X^X``" is always zero, even if
2354``X`` is undefined. This isn't true for a number of reasons, but the
2355short answer is that an '``undef``' "variable" can arbitrarily change
2356its value over its "live range". This is true because the variable
2357doesn't actually *have a live range*. Instead, the value is logically
2358read from arbitrary registers that happen to be around when needed, so
2359the value is not necessarily consistent over time. In fact, ``%A`` and
2360``%C`` need to have the same semantics or the core LLVM "replace all
2361uses with" concept would not hold.
2362
2363.. code-block:: llvm
2364
2365 %A = fdiv undef, %X
2366 %B = fdiv %X, undef
2367 Safe:
2368 %A = undef
2369 b: unreachable
2370
2371These examples show the crucial difference between an *undefined value*
2372and *undefined behavior*. An undefined value (like '``undef``') is
2373allowed to have an arbitrary bit-pattern. This means that the ``%A``
2374operation can be constant folded to '``undef``', because the '``undef``'
2375could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2376However, in the second example, we can make a more aggressive
2377assumption: because the ``undef`` is allowed to be an arbitrary value,
2378we are allowed to assume that it could be zero. Since a divide by zero
2379has *undefined behavior*, we are allowed to assume that the operation
2380does not execute at all. This allows us to delete the divide and all
2381code after it. Because the undefined operation "can't happen", the
2382optimizer can assume that it occurs in dead code.
2383
2384.. code-block:: llvm
2385
2386 a: store undef -> %X
2387 b: store %X -> undef
2388 Safe:
2389 a: <deleted>
2390 b: unreachable
2391
2392These examples reiterate the ``fdiv`` example: a store *of* an undefined
2393value can be assumed to not have any effect; we can assume that the
2394value is overwritten with bits that happen to match what was already
2395there. However, a store *to* an undefined location could clobber
2396arbitrary memory, therefore, it has undefined behavior.
2397
2398.. _poisonvalues:
2399
2400Poison Values
2401-------------
2402
2403Poison values are similar to :ref:`undef values <undefvalues>`, however
2404they also represent the fact that an instruction or constant expression
2405which cannot evoke side effects has nevertheless detected a condition
2406which results in undefined behavior.
2407
2408There is currently no way of representing a poison value in the IR; they
2409only exist when produced by operations such as :ref:`add <i_add>` with
2410the ``nsw`` flag.
2411
2412Poison value behavior is defined in terms of value *dependence*:
2413
2414- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2415- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2416 their dynamic predecessor basic block.
2417- Function arguments depend on the corresponding actual argument values
2418 in the dynamic callers of their functions.
2419- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2420 instructions that dynamically transfer control back to them.
2421- :ref:`Invoke <i_invoke>` instructions depend on the
2422 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2423 call instructions that dynamically transfer control back to them.
2424- Non-volatile loads and stores depend on the most recent stores to all
2425 of the referenced memory addresses, following the order in the IR
2426 (including loads and stores implied by intrinsics such as
2427 :ref:`@llvm.memcpy <int_memcpy>`.)
2428- An instruction with externally visible side effects depends on the
2429 most recent preceding instruction with externally visible side
2430 effects, following the order in the IR. (This includes :ref:`volatile
2431 operations <volatile>`.)
2432- An instruction *control-depends* on a :ref:`terminator
2433 instruction <terminators>` if the terminator instruction has
2434 multiple successors and the instruction is always executed when
2435 control transfers to one of the successors, and may not be executed
2436 when control is transferred to another.
2437- Additionally, an instruction also *control-depends* on a terminator
2438 instruction if the set of instructions it otherwise depends on would
2439 be different if the terminator had transferred control to a different
2440 successor.
2441- Dependence is transitive.
2442
2443Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2444with the additional affect that any instruction which has a *dependence*
2445on a poison value has undefined behavior.
2446
2447Here are some examples:
2448
2449.. code-block:: llvm
2450
2451 entry:
2452 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2453 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2454 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2455 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2456
2457 store i32 %poison, i32* @g ; Poison value stored to memory.
2458 %poison2 = load i32* @g ; Poison value loaded back from memory.
2459
2460 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2461
2462 %narrowaddr = bitcast i32* @g to i16*
2463 %wideaddr = bitcast i32* @g to i64*
2464 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2465 %poison4 = load i64* %wideaddr ; Returns a poison value.
2466
2467 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2468 br i1 %cmp, label %true, label %end ; Branch to either destination.
2469
2470 true:
2471 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2472 ; it has undefined behavior.
2473 br label %end
2474
2475 end:
2476 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2477 ; Both edges into this PHI are
2478 ; control-dependent on %cmp, so this
2479 ; always results in a poison value.
2480
2481 store volatile i32 0, i32* @g ; This would depend on the store in %true
2482 ; if %cmp is true, or the store in %entry
2483 ; otherwise, so this is undefined behavior.
2484
2485 br i1 %cmp, label %second_true, label %second_end
2486 ; The same branch again, but this time the
2487 ; true block doesn't have side effects.
2488
2489 second_true:
2490 ; No side effects!
2491 ret void
2492
2493 second_end:
2494 store volatile i32 0, i32* @g ; This time, the instruction always depends
2495 ; on the store in %end. Also, it is
2496 ; control-equivalent to %end, so this is
2497 ; well-defined (ignoring earlier undefined
2498 ; behavior in this example).
2499
2500.. _blockaddress:
2501
2502Addresses of Basic Blocks
2503-------------------------
2504
2505``blockaddress(@function, %block)``
2506
2507The '``blockaddress``' constant computes the address of the specified
2508basic block in the specified function, and always has an ``i8*`` type.
2509Taking the address of the entry block is illegal.
2510
2511This value only has defined behavior when used as an operand to the
2512':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2513against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002514undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002515no label is equal to the null pointer. This may be passed around as an
2516opaque pointer sized value as long as the bits are not inspected. This
2517allows ``ptrtoint`` and arithmetic to be performed on these values so
2518long as the original value is reconstituted before the ``indirectbr``
2519instruction.
2520
2521Finally, some targets may provide defined semantics when using the value
2522as the operand to an inline assembly, but that is target specific.
2523
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002524.. _constantexprs:
2525
Sean Silvab084af42012-12-07 10:36:55 +00002526Constant Expressions
2527--------------------
2528
2529Constant expressions are used to allow expressions involving other
2530constants to be used as constants. Constant expressions may be of any
2531:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2532that does not have side effects (e.g. load and call are not supported).
2533The following is the syntax for constant expressions:
2534
2535``trunc (CST to TYPE)``
2536 Truncate a constant to another type. The bit size of CST must be
2537 larger than the bit size of TYPE. Both types must be integers.
2538``zext (CST to TYPE)``
2539 Zero extend a constant to another type. The bit size of CST must be
2540 smaller than the bit size of TYPE. Both types must be integers.
2541``sext (CST to TYPE)``
2542 Sign extend a constant to another type. The bit size of CST must be
2543 smaller than the bit size of TYPE. Both types must be integers.
2544``fptrunc (CST to TYPE)``
2545 Truncate a floating point constant to another floating point type.
2546 The size of CST must be larger than the size of TYPE. Both types
2547 must be floating point.
2548``fpext (CST to TYPE)``
2549 Floating point extend a constant to another type. The size of CST
2550 must be smaller or equal to the size of TYPE. Both types must be
2551 floating point.
2552``fptoui (CST to TYPE)``
2553 Convert a floating point constant to the corresponding unsigned
2554 integer constant. TYPE must be a scalar or vector integer type. CST
2555 must be of scalar or vector floating point type. Both CST and TYPE
2556 must be scalars, or vectors of the same number of elements. If the
2557 value won't fit in the integer type, the results are undefined.
2558``fptosi (CST to TYPE)``
2559 Convert a floating point constant to the corresponding signed
2560 integer constant. TYPE must be a scalar or vector integer type. CST
2561 must be of scalar or vector floating point type. Both CST and TYPE
2562 must be scalars, or vectors of the same number of elements. If the
2563 value won't fit in the integer type, the results are undefined.
2564``uitofp (CST to TYPE)``
2565 Convert an unsigned integer constant to the corresponding floating
2566 point constant. TYPE must be a scalar or vector floating point type.
2567 CST must be of scalar or vector integer type. Both CST and TYPE must
2568 be scalars, or vectors of the same number of elements. If the value
2569 won't fit in the floating point type, the results are undefined.
2570``sitofp (CST to TYPE)``
2571 Convert a signed integer constant to the corresponding floating
2572 point constant. TYPE must be a scalar or vector floating point type.
2573 CST must be of scalar or vector integer type. Both CST and TYPE must
2574 be scalars, or vectors of the same number of elements. If the value
2575 won't fit in the floating point type, the results are undefined.
2576``ptrtoint (CST to TYPE)``
2577 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002578 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002579 pointer type. The ``CST`` value is zero extended, truncated, or
2580 unchanged to make it fit in ``TYPE``.
2581``inttoptr (CST to TYPE)``
2582 Convert an integer constant to a pointer constant. TYPE must be a
2583 pointer type. CST must be of integer type. The CST value is zero
2584 extended, truncated, or unchanged to make it fit in a pointer size.
2585 This one is *really* dangerous!
2586``bitcast (CST to TYPE)``
2587 Convert a constant, CST, to another TYPE. The constraints of the
2588 operands are the same as those for the :ref:`bitcast
2589 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002590``addrspacecast (CST to TYPE)``
2591 Convert a constant pointer or constant vector of pointer, CST, to another
2592 TYPE in a different address space. The constraints of the operands are the
2593 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002594``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2595 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2596 constants. As with the :ref:`getelementptr <i_getelementptr>`
2597 instruction, the index list may have zero or more indexes, which are
2598 required to make sense for the type of "CSTPTR".
2599``select (COND, VAL1, VAL2)``
2600 Perform the :ref:`select operation <i_select>` on constants.
2601``icmp COND (VAL1, VAL2)``
2602 Performs the :ref:`icmp operation <i_icmp>` on constants.
2603``fcmp COND (VAL1, VAL2)``
2604 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2605``extractelement (VAL, IDX)``
2606 Perform the :ref:`extractelement operation <i_extractelement>` on
2607 constants.
2608``insertelement (VAL, ELT, IDX)``
2609 Perform the :ref:`insertelement operation <i_insertelement>` on
2610 constants.
2611``shufflevector (VEC1, VEC2, IDXMASK)``
2612 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2613 constants.
2614``extractvalue (VAL, IDX0, IDX1, ...)``
2615 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2616 constants. The index list is interpreted in a similar manner as
2617 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2618 least one index value must be specified.
2619``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2620 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2621 The index list is interpreted in a similar manner as indices in a
2622 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2623 value must be specified.
2624``OPCODE (LHS, RHS)``
2625 Perform the specified operation of the LHS and RHS constants. OPCODE
2626 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2627 binary <bitwiseops>` operations. The constraints on operands are
2628 the same as those for the corresponding instruction (e.g. no bitwise
2629 operations on floating point values are allowed).
2630
2631Other Values
2632============
2633
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002634.. _inlineasmexprs:
2635
Sean Silvab084af42012-12-07 10:36:55 +00002636Inline Assembler Expressions
2637----------------------------
2638
2639LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2640Inline Assembly <moduleasm>`) through the use of a special value. This
2641value represents the inline assembler as a string (containing the
2642instructions to emit), a list of operand constraints (stored as a
2643string), a flag that indicates whether or not the inline asm expression
2644has side effects, and a flag indicating whether the function containing
2645the asm needs to align its stack conservatively. An example inline
2646assembler expression is:
2647
2648.. code-block:: llvm
2649
2650 i32 (i32) asm "bswap $0", "=r,r"
2651
2652Inline assembler expressions may **only** be used as the callee operand
2653of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2654Thus, typically we have:
2655
2656.. code-block:: llvm
2657
2658 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2659
2660Inline asms with side effects not visible in the constraint list must be
2661marked as having side effects. This is done through the use of the
2662'``sideeffect``' keyword, like so:
2663
2664.. code-block:: llvm
2665
2666 call void asm sideeffect "eieio", ""()
2667
2668In some cases inline asms will contain code that will not work unless
2669the stack is aligned in some way, such as calls or SSE instructions on
2670x86, yet will not contain code that does that alignment within the asm.
2671The compiler should make conservative assumptions about what the asm
2672might contain and should generate its usual stack alignment code in the
2673prologue if the '``alignstack``' keyword is present:
2674
2675.. code-block:: llvm
2676
2677 call void asm alignstack "eieio", ""()
2678
2679Inline asms also support using non-standard assembly dialects. The
2680assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2681the inline asm is using the Intel dialect. Currently, ATT and Intel are
2682the only supported dialects. An example is:
2683
2684.. code-block:: llvm
2685
2686 call void asm inteldialect "eieio", ""()
2687
2688If multiple keywords appear the '``sideeffect``' keyword must come
2689first, the '``alignstack``' keyword second and the '``inteldialect``'
2690keyword last.
2691
2692Inline Asm Metadata
2693^^^^^^^^^^^^^^^^^^^
2694
2695The call instructions that wrap inline asm nodes may have a
2696"``!srcloc``" MDNode attached to it that contains a list of constant
2697integers. If present, the code generator will use the integer as the
2698location cookie value when report errors through the ``LLVMContext``
2699error reporting mechanisms. This allows a front-end to correlate backend
2700errors that occur with inline asm back to the source code that produced
2701it. For example:
2702
2703.. code-block:: llvm
2704
2705 call void asm sideeffect "something bad", ""(), !srcloc !42
2706 ...
2707 !42 = !{ i32 1234567 }
2708
2709It is up to the front-end to make sense of the magic numbers it places
2710in the IR. If the MDNode contains multiple constants, the code generator
2711will use the one that corresponds to the line of the asm that the error
2712occurs on.
2713
2714.. _metadata:
2715
2716Metadata Nodes and Metadata Strings
2717-----------------------------------
2718
2719LLVM IR allows metadata to be attached to instructions in the program
2720that can convey extra information about the code to the optimizers and
2721code generator. One example application of metadata is source-level
2722debug information. There are two metadata primitives: strings and nodes.
2723All metadata has the ``metadata`` type and is identified in syntax by a
2724preceding exclamation point ('``!``').
2725
2726A metadata string is a string surrounded by double quotes. It can
2727contain any character by escaping non-printable characters with
2728"``\xx``" where "``xx``" is the two digit hex code. For example:
2729"``!"test\00"``".
2730
2731Metadata nodes are represented with notation similar to structure
2732constants (a comma separated list of elements, surrounded by braces and
2733preceded by an exclamation point). Metadata nodes can have any values as
2734their operand. For example:
2735
2736.. code-block:: llvm
2737
2738 !{ metadata !"test\00", i32 10}
2739
2740A :ref:`named metadata <namedmetadatastructure>` is a collection of
2741metadata nodes, which can be looked up in the module symbol table. For
2742example:
2743
2744.. code-block:: llvm
2745
2746 !foo = metadata !{!4, !3}
2747
2748Metadata can be used as function arguments. Here ``llvm.dbg.value``
2749function is using two metadata arguments:
2750
2751.. code-block:: llvm
2752
2753 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2754
2755Metadata can be attached with an instruction. Here metadata ``!21`` is
2756attached to the ``add`` instruction using the ``!dbg`` identifier:
2757
2758.. code-block:: llvm
2759
2760 %indvar.next = add i64 %indvar, 1, !dbg !21
2761
2762More information about specific metadata nodes recognized by the
2763optimizers and code generator is found below.
2764
2765'``tbaa``' Metadata
2766^^^^^^^^^^^^^^^^^^^
2767
2768In LLVM IR, memory does not have types, so LLVM's own type system is not
2769suitable for doing TBAA. Instead, metadata is added to the IR to
2770describe a type system of a higher level language. This can be used to
2771implement typical C/C++ TBAA, but it can also be used to implement
2772custom alias analysis behavior for other languages.
2773
2774The current metadata format is very simple. TBAA metadata nodes have up
2775to three fields, e.g.:
2776
2777.. code-block:: llvm
2778
2779 !0 = metadata !{ metadata !"an example type tree" }
2780 !1 = metadata !{ metadata !"int", metadata !0 }
2781 !2 = metadata !{ metadata !"float", metadata !0 }
2782 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2783
2784The first field is an identity field. It can be any value, usually a
2785metadata string, which uniquely identifies the type. The most important
2786name in the tree is the name of the root node. Two trees with different
2787root node names are entirely disjoint, even if they have leaves with
2788common names.
2789
2790The second field identifies the type's parent node in the tree, or is
2791null or omitted for a root node. A type is considered to alias all of
2792its descendants and all of its ancestors in the tree. Also, a type is
2793considered to alias all types in other trees, so that bitcode produced
2794from multiple front-ends is handled conservatively.
2795
2796If the third field is present, it's an integer which if equal to 1
2797indicates that the type is "constant" (meaning
2798``pointsToConstantMemory`` should return true; see `other useful
2799AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2800
2801'``tbaa.struct``' Metadata
2802^^^^^^^^^^^^^^^^^^^^^^^^^^
2803
2804The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2805aggregate assignment operations in C and similar languages, however it
2806is defined to copy a contiguous region of memory, which is more than
2807strictly necessary for aggregate types which contain holes due to
2808padding. Also, it doesn't contain any TBAA information about the fields
2809of the aggregate.
2810
2811``!tbaa.struct`` metadata can describe which memory subregions in a
2812memcpy are padding and what the TBAA tags of the struct are.
2813
2814The current metadata format is very simple. ``!tbaa.struct`` metadata
2815nodes are a list of operands which are in conceptual groups of three.
2816For each group of three, the first operand gives the byte offset of a
2817field in bytes, the second gives its size in bytes, and the third gives
2818its tbaa tag. e.g.:
2819
2820.. code-block:: llvm
2821
2822 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2823
2824This describes a struct with two fields. The first is at offset 0 bytes
2825with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2826and has size 4 bytes and has tbaa tag !2.
2827
2828Note that the fields need not be contiguous. In this example, there is a
28294 byte gap between the two fields. This gap represents padding which
2830does not carry useful data and need not be preserved.
2831
2832'``fpmath``' Metadata
2833^^^^^^^^^^^^^^^^^^^^^
2834
2835``fpmath`` metadata may be attached to any instruction of floating point
2836type. It can be used to express the maximum acceptable error in the
2837result of that instruction, in ULPs, thus potentially allowing the
2838compiler to use a more efficient but less accurate method of computing
2839it. ULP is defined as follows:
2840
2841 If ``x`` is a real number that lies between two finite consecutive
2842 floating-point numbers ``a`` and ``b``, without being equal to one
2843 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2844 distance between the two non-equal finite floating-point numbers
2845 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2846
2847The metadata node shall consist of a single positive floating point
2848number representing the maximum relative error, for example:
2849
2850.. code-block:: llvm
2851
2852 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2853
2854'``range``' Metadata
2855^^^^^^^^^^^^^^^^^^^^
2856
Jingyue Wu37fcb592014-06-19 16:50:16 +00002857``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2858integer types. It expresses the possible ranges the loaded value or the value
2859returned by the called function at this call site is in. The ranges are
2860represented with a flattened list of integers. The loaded value or the value
2861returned is known to be in the union of the ranges defined by each consecutive
2862pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00002863
2864- The type must match the type loaded by the instruction.
2865- The pair ``a,b`` represents the range ``[a,b)``.
2866- Both ``a`` and ``b`` are constants.
2867- The range is allowed to wrap.
2868- The range should not represent the full or empty set. That is,
2869 ``a!=b``.
2870
2871In addition, the pairs must be in signed order of the lower bound and
2872they must be non-contiguous.
2873
2874Examples:
2875
2876.. code-block:: llvm
2877
2878 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2879 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00002880 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
2881 %d = invoke i8 @bar() to label %cont
2882 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00002883 ...
2884 !0 = metadata !{ i8 0, i8 2 }
2885 !1 = metadata !{ i8 255, i8 2 }
2886 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2887 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2888
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002889'``llvm.loop``'
2890^^^^^^^^^^^^^^^
2891
2892It is sometimes useful to attach information to loop constructs. Currently,
2893loop metadata is implemented as metadata attached to the branch instruction
2894in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002895guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002896specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002897
2898The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002899itself to avoid merging it with any other identifier metadata, e.g.,
2900during module linkage or function inlining. That is, each loop should refer
2901to their own identification metadata even if they reside in separate functions.
2902The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002903constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002904
2905.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002906
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002907 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002908 !1 = metadata !{ metadata !1 }
2909
Mark Heffernan893752a2014-07-18 19:24:51 +00002910The loop identifier metadata can be used to specify additional
2911per-loop metadata. Any operands after the first operand can be treated
2912as user-defined metadata. For example the ``llvm.loop.unroll.count``
2913suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002914
Paul Redmond5fdf8362013-05-28 20:00:34 +00002915.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002916
Paul Redmond5fdf8362013-05-28 20:00:34 +00002917 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2918 ...
2919 !0 = metadata !{ metadata !0, metadata !1 }
Mark Heffernan9d20e422014-07-21 23:11:03 +00002920 !1 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00002921
Mark Heffernan9d20e422014-07-21 23:11:03 +00002922'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
2923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00002924
Mark Heffernan9d20e422014-07-21 23:11:03 +00002925Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
2926used to control per-loop vectorization and interleaving parameters such as
2927vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00002928conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00002929``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
2930optimization hints and the optimizer will only interleave and vectorize loops if
2931it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
2932which contains information about loop-carried memory dependencies can be helpful
2933in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00002934
Mark Heffernan9d20e422014-07-21 23:11:03 +00002935'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00002936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2937
Mark Heffernan9d20e422014-07-21 23:11:03 +00002938This metadata suggests an interleave count to the loop interleaver.
2939The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00002940second operand is an integer specifying the interleave count. For
2941example:
2942
2943.. code-block:: llvm
2944
Mark Heffernan9d20e422014-07-21 23:11:03 +00002945 !0 = metadata !{ metadata !"llvm.loop.interleave.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00002946
Mark Heffernan9d20e422014-07-21 23:11:03 +00002947Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
2948multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
2949then the interleave count will be determined automatically.
2950
2951'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00002952^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00002953
2954This metadata selectively enables or disables vectorization for the loop. The
2955first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
2956is a bit. If the bit operand value is 1 vectorization is enabled. A value of
29570 disables vectorization:
2958
2959.. code-block:: llvm
2960
2961 !0 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 0 }
2962 !1 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 1 }
Mark Heffernan893752a2014-07-18 19:24:51 +00002963
2964'``llvm.loop.vectorize.width``' Metadata
2965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2966
2967This metadata sets the target width of the vectorizer. The first
2968operand is the string ``llvm.loop.vectorize.width`` and the second
2969operand is an integer specifying the width. For example:
2970
2971.. code-block:: llvm
2972
2973 !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 }
2974
2975Note that setting ``llvm.loop.vectorize.width`` to 1 disables
2976vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
29770 or if the loop does not have this metadata the width will be
2978determined automatically.
2979
2980'``llvm.loop.unroll``'
2981^^^^^^^^^^^^^^^^^^^^^^
2982
2983Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
2984optimization hints such as the unroll factor. ``llvm.loop.unroll``
2985metadata should be used in conjunction with ``llvm.loop`` loop
2986identification metadata. The ``llvm.loop.unroll`` metadata are only
2987optimization hints and the unrolling will only be performed if the
2988optimizer believes it is safe to do so.
2989
Mark Heffernan893752a2014-07-18 19:24:51 +00002990'``llvm.loop.unroll.count``' Metadata
2991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2992
2993This metadata suggests an unroll factor to the loop unroller. The
2994first operand is the string ``llvm.loop.unroll.count`` and the second
2995operand is a positive integer specifying the unroll factor. For
2996example:
2997
2998.. code-block:: llvm
2999
3000 !0 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
3001
3002If the trip count of the loop is less than the unroll count the loop
3003will be partially unrolled.
3004
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003005'``llvm.loop.unroll.disable``' Metadata
3006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3007
3008This metadata either disables loop unrolling. The metadata has a single operand
3009which is the string ``llvm.loop.unroll.disable``. For example:
3010
3011.. code-block:: llvm
3012
3013 !0 = metadata !{ metadata !"llvm.loop.unroll.disable" }
3014
3015'``llvm.loop.unroll.full``' Metadata
3016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3017
3018This metadata either suggests that the loop should be unrolled fully. The
3019metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3020For example:
3021
3022.. code-block:: llvm
3023
3024 !0 = metadata !{ metadata !"llvm.loop.unroll.full" }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003025
3026'``llvm.mem``'
3027^^^^^^^^^^^^^^^
3028
3029Metadata types used to annotate memory accesses with information helpful
3030for optimizations are prefixed with ``llvm.mem``.
3031
3032'``llvm.mem.parallel_loop_access``' Metadata
3033^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3034
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003035The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3036or metadata containing a list of loop identifiers for nested loops.
3037The metadata is attached to memory accessing instructions and denotes that
3038no loop carried memory dependence exist between it and other instructions denoted
3039with the same loop identifier.
3040
3041Precisely, given two instructions ``m1`` and ``m2`` that both have the
3042``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3043set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003044carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003045``L2``.
3046
3047As a special case, if all memory accessing instructions in a loop have
3048``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3049loop has no loop carried memory dependences and is considered to be a parallel
3050loop.
3051
3052Note that if not all memory access instructions have such metadata referring to
3053the loop, then the loop is considered not being trivially parallel. Additional
3054memory dependence analysis is required to make that determination. As a fail
3055safe mechanism, this causes loops that were originally parallel to be considered
3056sequential (if optimization passes that are unaware of the parallel semantics
3057insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003058
3059Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003060both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003061metadata types that refer to the same loop identifier metadata.
3062
3063.. code-block:: llvm
3064
3065 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003066 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003067 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003068 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003069 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003070 ...
3071 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003072
3073 for.end:
3074 ...
3075 !0 = metadata !{ metadata !0 }
3076
3077It is also possible to have nested parallel loops. In that case the
3078memory accesses refer to a list of loop identifier metadata nodes instead of
3079the loop identifier metadata node directly:
3080
3081.. code-block:: llvm
3082
3083 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003084 ...
3085 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3086 ...
3087 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003088
3089 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003090 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003091 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003092 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003093 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003094 ...
3095 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003096
3097 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003098 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003099 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003100 ...
3101 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003102
3103 outer.for.end: ; preds = %for.body
3104 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00003105 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
3106 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
3107 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003108
Sean Silvab084af42012-12-07 10:36:55 +00003109Module Flags Metadata
3110=====================
3111
3112Information about the module as a whole is difficult to convey to LLVM's
3113subsystems. The LLVM IR isn't sufficient to transmit this information.
3114The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003115this. These flags are in the form of key / value pairs --- much like a
3116dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003117look it up.
3118
3119The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3120Each triplet has the following form:
3121
3122- The first element is a *behavior* flag, which specifies the behavior
3123 when two (or more) modules are merged together, and it encounters two
3124 (or more) metadata with the same ID. The supported behaviors are
3125 described below.
3126- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003127 metadata. Each module may only have one flag entry for each unique ID (not
3128 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003129- The third element is the value of the flag.
3130
3131When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003132``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3133each unique metadata ID string, there will be exactly one entry in the merged
3134modules ``llvm.module.flags`` metadata table, and the value for that entry will
3135be determined by the merge behavior flag, as described below. The only exception
3136is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003137
3138The following behaviors are supported:
3139
3140.. list-table::
3141 :header-rows: 1
3142 :widths: 10 90
3143
3144 * - Value
3145 - Behavior
3146
3147 * - 1
3148 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003149 Emits an error if two values disagree, otherwise the resulting value
3150 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003151
3152 * - 2
3153 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003154 Emits a warning if two values disagree. The result value will be the
3155 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003156
3157 * - 3
3158 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003159 Adds a requirement that another module flag be present and have a
3160 specified value after linking is performed. The value must be a
3161 metadata pair, where the first element of the pair is the ID of the
3162 module flag to be restricted, and the second element of the pair is
3163 the value the module flag should be restricted to. This behavior can
3164 be used to restrict the allowable results (via triggering of an
3165 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003166
3167 * - 4
3168 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003169 Uses the specified value, regardless of the behavior or value of the
3170 other module. If both modules specify **Override**, but the values
3171 differ, an error will be emitted.
3172
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003173 * - 5
3174 - **Append**
3175 Appends the two values, which are required to be metadata nodes.
3176
3177 * - 6
3178 - **AppendUnique**
3179 Appends the two values, which are required to be metadata
3180 nodes. However, duplicate entries in the second list are dropped
3181 during the append operation.
3182
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003183It is an error for a particular unique flag ID to have multiple behaviors,
3184except in the case of **Require** (which adds restrictions on another metadata
3185value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003186
3187An example of module flags:
3188
3189.. code-block:: llvm
3190
3191 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3192 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3193 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3194 !3 = metadata !{ i32 3, metadata !"qux",
3195 metadata !{
3196 metadata !"foo", i32 1
3197 }
3198 }
3199 !llvm.module.flags = !{ !0, !1, !2, !3 }
3200
3201- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3202 if two or more ``!"foo"`` flags are seen is to emit an error if their
3203 values are not equal.
3204
3205- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3206 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003207 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003208
3209- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3210 behavior if two or more ``!"qux"`` flags are seen is to emit a
3211 warning if their values are not equal.
3212
3213- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3214
3215 ::
3216
3217 metadata !{ metadata !"foo", i32 1 }
3218
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003219 The behavior is to emit an error if the ``llvm.module.flags`` does not
3220 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3221 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003222
3223Objective-C Garbage Collection Module Flags Metadata
3224----------------------------------------------------
3225
3226On the Mach-O platform, Objective-C stores metadata about garbage
3227collection in a special section called "image info". The metadata
3228consists of a version number and a bitmask specifying what types of
3229garbage collection are supported (if any) by the file. If two or more
3230modules are linked together their garbage collection metadata needs to
3231be merged rather than appended together.
3232
3233The Objective-C garbage collection module flags metadata consists of the
3234following key-value pairs:
3235
3236.. list-table::
3237 :header-rows: 1
3238 :widths: 30 70
3239
3240 * - Key
3241 - Value
3242
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003243 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003244 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003245
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003246 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003247 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003248 always 0.
3249
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003250 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003251 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003252 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3253 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3254 Objective-C ABI version 2.
3255
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003256 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003257 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003258 not. Valid values are 0, for no garbage collection, and 2, for garbage
3259 collection supported.
3260
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003261 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003262 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003263 If present, its value must be 6. This flag requires that the
3264 ``Objective-C Garbage Collection`` flag have the value 2.
3265
3266Some important flag interactions:
3267
3268- If a module with ``Objective-C Garbage Collection`` set to 0 is
3269 merged with a module with ``Objective-C Garbage Collection`` set to
3270 2, then the resulting module has the
3271 ``Objective-C Garbage Collection`` flag set to 0.
3272- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3273 merged with a module with ``Objective-C GC Only`` set to 6.
3274
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003275Automatic Linker Flags Module Flags Metadata
3276--------------------------------------------
3277
3278Some targets support embedding flags to the linker inside individual object
3279files. Typically this is used in conjunction with language extensions which
3280allow source files to explicitly declare the libraries they depend on, and have
3281these automatically be transmitted to the linker via object files.
3282
3283These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003284using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003285to be ``AppendUnique``, and the value for the key is expected to be a metadata
3286node which should be a list of other metadata nodes, each of which should be a
3287list of metadata strings defining linker options.
3288
3289For example, the following metadata section specifies two separate sets of
3290linker options, presumably to link against ``libz`` and the ``Cocoa``
3291framework::
3292
Michael Liaoa7699082013-03-06 18:24:34 +00003293 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003294 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003295 metadata !{ metadata !"-lz" },
3296 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003297 !llvm.module.flags = !{ !0 }
3298
3299The metadata encoding as lists of lists of options, as opposed to a collapsed
3300list of options, is chosen so that the IR encoding can use multiple option
3301strings to specify e.g., a single library, while still having that specifier be
3302preserved as an atomic element that can be recognized by a target specific
3303assembly writer or object file emitter.
3304
3305Each individual option is required to be either a valid option for the target's
3306linker, or an option that is reserved by the target specific assembly writer or
3307object file emitter. No other aspect of these options is defined by the IR.
3308
Oliver Stannard5dc29342014-06-20 10:08:11 +00003309C type width Module Flags Metadata
3310----------------------------------
3311
3312The ARM backend emits a section into each generated object file describing the
3313options that it was compiled with (in a compiler-independent way) to prevent
3314linking incompatible objects, and to allow automatic library selection. Some
3315of these options are not visible at the IR level, namely wchar_t width and enum
3316width.
3317
3318To pass this information to the backend, these options are encoded in module
3319flags metadata, using the following key-value pairs:
3320
3321.. list-table::
3322 :header-rows: 1
3323 :widths: 30 70
3324
3325 * - Key
3326 - Value
3327
3328 * - short_wchar
3329 - * 0 --- sizeof(wchar_t) == 4
3330 * 1 --- sizeof(wchar_t) == 2
3331
3332 * - short_enum
3333 - * 0 --- Enums are at least as large as an ``int``.
3334 * 1 --- Enums are stored in the smallest integer type which can
3335 represent all of its values.
3336
3337For example, the following metadata section specifies that the module was
3338compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3339enum is the smallest type which can represent all of its values::
3340
3341 !llvm.module.flags = !{!0, !1}
3342 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1}
3343 !1 = metadata !{i32 1, metadata !"short_enum", i32 0}
3344
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003345.. _intrinsicglobalvariables:
3346
Sean Silvab084af42012-12-07 10:36:55 +00003347Intrinsic Global Variables
3348==========================
3349
3350LLVM has a number of "magic" global variables that contain data that
3351affect code generation or other IR semantics. These are documented here.
3352All globals of this sort should have a section specified as
3353"``llvm.metadata``". This section and all globals that start with
3354"``llvm.``" are reserved for use by LLVM.
3355
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003356.. _gv_llvmused:
3357
Sean Silvab084af42012-12-07 10:36:55 +00003358The '``llvm.used``' Global Variable
3359-----------------------------------
3360
Rafael Espindola74f2e462013-04-22 14:58:02 +00003361The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003362:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003363pointers to named global variables, functions and aliases which may optionally
3364have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003365use of it is:
3366
3367.. code-block:: llvm
3368
3369 @X = global i8 4
3370 @Y = global i32 123
3371
3372 @llvm.used = appending global [2 x i8*] [
3373 i8* @X,
3374 i8* bitcast (i32* @Y to i8*)
3375 ], section "llvm.metadata"
3376
Rafael Espindola74f2e462013-04-22 14:58:02 +00003377If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3378and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003379symbol that it cannot see (which is why they have to be named). For example, if
3380a variable has internal linkage and no references other than that from the
3381``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3382references from inline asms and other things the compiler cannot "see", and
3383corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003384
3385On some targets, the code generator must emit a directive to the
3386assembler or object file to prevent the assembler and linker from
3387molesting the symbol.
3388
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003389.. _gv_llvmcompilerused:
3390
Sean Silvab084af42012-12-07 10:36:55 +00003391The '``llvm.compiler.used``' Global Variable
3392--------------------------------------------
3393
3394The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3395directive, except that it only prevents the compiler from touching the
3396symbol. On targets that support it, this allows an intelligent linker to
3397optimize references to the symbol without being impeded as it would be
3398by ``@llvm.used``.
3399
3400This is a rare construct that should only be used in rare circumstances,
3401and should not be exposed to source languages.
3402
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003403.. _gv_llvmglobalctors:
3404
Sean Silvab084af42012-12-07 10:36:55 +00003405The '``llvm.global_ctors``' Global Variable
3406-------------------------------------------
3407
3408.. code-block:: llvm
3409
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003410 %0 = type { i32, void ()*, i8* }
3411 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003412
3413The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003414functions, priorities, and an optional associated global or function.
3415The functions referenced by this array will be called in ascending order
3416of priority (i.e. lowest first) when the module is loaded. The order of
3417functions with the same priority is not defined.
3418
3419If the third field is present, non-null, and points to a global variable
3420or function, the initializer function will only run if the associated
3421data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003422
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003423.. _llvmglobaldtors:
3424
Sean Silvab084af42012-12-07 10:36:55 +00003425The '``llvm.global_dtors``' Global Variable
3426-------------------------------------------
3427
3428.. code-block:: llvm
3429
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003430 %0 = type { i32, void ()*, i8* }
3431 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003432
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003433The ``@llvm.global_dtors`` array contains a list of destructor
3434functions, priorities, and an optional associated global or function.
3435The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003436order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003437order of functions with the same priority is not defined.
3438
3439If the third field is present, non-null, and points to a global variable
3440or function, the destructor function will only run if the associated
3441data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003442
3443Instruction Reference
3444=====================
3445
3446The LLVM instruction set consists of several different classifications
3447of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3448instructions <binaryops>`, :ref:`bitwise binary
3449instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3450:ref:`other instructions <otherops>`.
3451
3452.. _terminators:
3453
3454Terminator Instructions
3455-----------------------
3456
3457As mentioned :ref:`previously <functionstructure>`, every basic block in a
3458program ends with a "Terminator" instruction, which indicates which
3459block should be executed after the current block is finished. These
3460terminator instructions typically yield a '``void``' value: they produce
3461control flow, not values (the one exception being the
3462':ref:`invoke <i_invoke>`' instruction).
3463
3464The terminator instructions are: ':ref:`ret <i_ret>`',
3465':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3466':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3467':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3468
3469.. _i_ret:
3470
3471'``ret``' Instruction
3472^^^^^^^^^^^^^^^^^^^^^
3473
3474Syntax:
3475"""""""
3476
3477::
3478
3479 ret <type> <value> ; Return a value from a non-void function
3480 ret void ; Return from void function
3481
3482Overview:
3483"""""""""
3484
3485The '``ret``' instruction is used to return control flow (and optionally
3486a value) from a function back to the caller.
3487
3488There are two forms of the '``ret``' instruction: one that returns a
3489value and then causes control flow, and one that just causes control
3490flow to occur.
3491
3492Arguments:
3493""""""""""
3494
3495The '``ret``' instruction optionally accepts a single argument, the
3496return value. The type of the return value must be a ':ref:`first
3497class <t_firstclass>`' type.
3498
3499A function is not :ref:`well formed <wellformed>` if it it has a non-void
3500return type and contains a '``ret``' instruction with no return value or
3501a return value with a type that does not match its type, or if it has a
3502void return type and contains a '``ret``' instruction with a return
3503value.
3504
3505Semantics:
3506""""""""""
3507
3508When the '``ret``' instruction is executed, control flow returns back to
3509the calling function's context. If the caller is a
3510":ref:`call <i_call>`" instruction, execution continues at the
3511instruction after the call. If the caller was an
3512":ref:`invoke <i_invoke>`" instruction, execution continues at the
3513beginning of the "normal" destination block. If the instruction returns
3514a value, that value shall set the call or invoke instruction's return
3515value.
3516
3517Example:
3518""""""""
3519
3520.. code-block:: llvm
3521
3522 ret i32 5 ; Return an integer value of 5
3523 ret void ; Return from a void function
3524 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3525
3526.. _i_br:
3527
3528'``br``' Instruction
3529^^^^^^^^^^^^^^^^^^^^
3530
3531Syntax:
3532"""""""
3533
3534::
3535
3536 br i1 <cond>, label <iftrue>, label <iffalse>
3537 br label <dest> ; Unconditional branch
3538
3539Overview:
3540"""""""""
3541
3542The '``br``' instruction is used to cause control flow to transfer to a
3543different basic block in the current function. There are two forms of
3544this instruction, corresponding to a conditional branch and an
3545unconditional branch.
3546
3547Arguments:
3548""""""""""
3549
3550The conditional branch form of the '``br``' instruction takes a single
3551'``i1``' value and two '``label``' values. The unconditional form of the
3552'``br``' instruction takes a single '``label``' value as a target.
3553
3554Semantics:
3555""""""""""
3556
3557Upon execution of a conditional '``br``' instruction, the '``i1``'
3558argument is evaluated. If the value is ``true``, control flows to the
3559'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3560to the '``iffalse``' ``label`` argument.
3561
3562Example:
3563""""""""
3564
3565.. code-block:: llvm
3566
3567 Test:
3568 %cond = icmp eq i32 %a, %b
3569 br i1 %cond, label %IfEqual, label %IfUnequal
3570 IfEqual:
3571 ret i32 1
3572 IfUnequal:
3573 ret i32 0
3574
3575.. _i_switch:
3576
3577'``switch``' Instruction
3578^^^^^^^^^^^^^^^^^^^^^^^^
3579
3580Syntax:
3581"""""""
3582
3583::
3584
3585 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3586
3587Overview:
3588"""""""""
3589
3590The '``switch``' instruction is used to transfer control flow to one of
3591several different places. It is a generalization of the '``br``'
3592instruction, allowing a branch to occur to one of many possible
3593destinations.
3594
3595Arguments:
3596""""""""""
3597
3598The '``switch``' instruction uses three parameters: an integer
3599comparison value '``value``', a default '``label``' destination, and an
3600array of pairs of comparison value constants and '``label``'s. The table
3601is not allowed to contain duplicate constant entries.
3602
3603Semantics:
3604""""""""""
3605
3606The ``switch`` instruction specifies a table of values and destinations.
3607When the '``switch``' instruction is executed, this table is searched
3608for the given value. If the value is found, control flow is transferred
3609to the corresponding destination; otherwise, control flow is transferred
3610to the default destination.
3611
3612Implementation:
3613"""""""""""""""
3614
3615Depending on properties of the target machine and the particular
3616``switch`` instruction, this instruction may be code generated in
3617different ways. For example, it could be generated as a series of
3618chained conditional branches or with a lookup table.
3619
3620Example:
3621""""""""
3622
3623.. code-block:: llvm
3624
3625 ; Emulate a conditional br instruction
3626 %Val = zext i1 %value to i32
3627 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3628
3629 ; Emulate an unconditional br instruction
3630 switch i32 0, label %dest [ ]
3631
3632 ; Implement a jump table:
3633 switch i32 %val, label %otherwise [ i32 0, label %onzero
3634 i32 1, label %onone
3635 i32 2, label %ontwo ]
3636
3637.. _i_indirectbr:
3638
3639'``indirectbr``' Instruction
3640^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3641
3642Syntax:
3643"""""""
3644
3645::
3646
3647 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3648
3649Overview:
3650"""""""""
3651
3652The '``indirectbr``' instruction implements an indirect branch to a
3653label within the current function, whose address is specified by
3654"``address``". Address must be derived from a
3655:ref:`blockaddress <blockaddress>` constant.
3656
3657Arguments:
3658""""""""""
3659
3660The '``address``' argument is the address of the label to jump to. The
3661rest of the arguments indicate the full set of possible destinations
3662that the address may point to. Blocks are allowed to occur multiple
3663times in the destination list, though this isn't particularly useful.
3664
3665This destination list is required so that dataflow analysis has an
3666accurate understanding of the CFG.
3667
3668Semantics:
3669""""""""""
3670
3671Control transfers to the block specified in the address argument. All
3672possible destination blocks must be listed in the label list, otherwise
3673this instruction has undefined behavior. This implies that jumps to
3674labels defined in other functions have undefined behavior as well.
3675
3676Implementation:
3677"""""""""""""""
3678
3679This is typically implemented with a jump through a register.
3680
3681Example:
3682""""""""
3683
3684.. code-block:: llvm
3685
3686 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3687
3688.. _i_invoke:
3689
3690'``invoke``' Instruction
3691^^^^^^^^^^^^^^^^^^^^^^^^
3692
3693Syntax:
3694"""""""
3695
3696::
3697
3698 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3699 to label <normal label> unwind label <exception label>
3700
3701Overview:
3702"""""""""
3703
3704The '``invoke``' instruction causes control to transfer to a specified
3705function, with the possibility of control flow transfer to either the
3706'``normal``' label or the '``exception``' label. If the callee function
3707returns with the "``ret``" instruction, control flow will return to the
3708"normal" label. If the callee (or any indirect callees) returns via the
3709":ref:`resume <i_resume>`" instruction or other exception handling
3710mechanism, control is interrupted and continued at the dynamically
3711nearest "exception" label.
3712
3713The '``exception``' label is a `landing
3714pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3715'``exception``' label is required to have the
3716":ref:`landingpad <i_landingpad>`" instruction, which contains the
3717information about the behavior of the program after unwinding happens,
3718as its first non-PHI instruction. The restrictions on the
3719"``landingpad``" instruction's tightly couples it to the "``invoke``"
3720instruction, so that the important information contained within the
3721"``landingpad``" instruction can't be lost through normal code motion.
3722
3723Arguments:
3724""""""""""
3725
3726This instruction requires several arguments:
3727
3728#. The optional "cconv" marker indicates which :ref:`calling
3729 convention <callingconv>` the call should use. If none is
3730 specified, the call defaults to using C calling conventions.
3731#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3732 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3733 are valid here.
3734#. '``ptr to function ty``': shall be the signature of the pointer to
3735 function value being invoked. In most cases, this is a direct
3736 function invocation, but indirect ``invoke``'s are just as possible,
3737 branching off an arbitrary pointer to function value.
3738#. '``function ptr val``': An LLVM value containing a pointer to a
3739 function to be invoked.
3740#. '``function args``': argument list whose types match the function
3741 signature argument types and parameter attributes. All arguments must
3742 be of :ref:`first class <t_firstclass>` type. If the function signature
3743 indicates the function accepts a variable number of arguments, the
3744 extra arguments can be specified.
3745#. '``normal label``': the label reached when the called function
3746 executes a '``ret``' instruction.
3747#. '``exception label``': the label reached when a callee returns via
3748 the :ref:`resume <i_resume>` instruction or other exception handling
3749 mechanism.
3750#. The optional :ref:`function attributes <fnattrs>` list. Only
3751 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3752 attributes are valid here.
3753
3754Semantics:
3755""""""""""
3756
3757This instruction is designed to operate as a standard '``call``'
3758instruction in most regards. The primary difference is that it
3759establishes an association with a label, which is used by the runtime
3760library to unwind the stack.
3761
3762This instruction is used in languages with destructors to ensure that
3763proper cleanup is performed in the case of either a ``longjmp`` or a
3764thrown exception. Additionally, this is important for implementation of
3765'``catch``' clauses in high-level languages that support them.
3766
3767For the purposes of the SSA form, the definition of the value returned
3768by the '``invoke``' instruction is deemed to occur on the edge from the
3769current block to the "normal" label. If the callee unwinds then no
3770return value is available.
3771
3772Example:
3773""""""""
3774
3775.. code-block:: llvm
3776
3777 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003778 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003779 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003780 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003781
3782.. _i_resume:
3783
3784'``resume``' Instruction
3785^^^^^^^^^^^^^^^^^^^^^^^^
3786
3787Syntax:
3788"""""""
3789
3790::
3791
3792 resume <type> <value>
3793
3794Overview:
3795"""""""""
3796
3797The '``resume``' instruction is a terminator instruction that has no
3798successors.
3799
3800Arguments:
3801""""""""""
3802
3803The '``resume``' instruction requires one argument, which must have the
3804same type as the result of any '``landingpad``' instruction in the same
3805function.
3806
3807Semantics:
3808""""""""""
3809
3810The '``resume``' instruction resumes propagation of an existing
3811(in-flight) exception whose unwinding was interrupted with a
3812:ref:`landingpad <i_landingpad>` instruction.
3813
3814Example:
3815""""""""
3816
3817.. code-block:: llvm
3818
3819 resume { i8*, i32 } %exn
3820
3821.. _i_unreachable:
3822
3823'``unreachable``' Instruction
3824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3825
3826Syntax:
3827"""""""
3828
3829::
3830
3831 unreachable
3832
3833Overview:
3834"""""""""
3835
3836The '``unreachable``' instruction has no defined semantics. This
3837instruction is used to inform the optimizer that a particular portion of
3838the code is not reachable. This can be used to indicate that the code
3839after a no-return function cannot be reached, and other facts.
3840
3841Semantics:
3842""""""""""
3843
3844The '``unreachable``' instruction has no defined semantics.
3845
3846.. _binaryops:
3847
3848Binary Operations
3849-----------------
3850
3851Binary operators are used to do most of the computation in a program.
3852They require two operands of the same type, execute an operation on
3853them, and produce a single value. The operands might represent multiple
3854data, as is the case with the :ref:`vector <t_vector>` data type. The
3855result value has the same type as its operands.
3856
3857There are several different binary operators:
3858
3859.. _i_add:
3860
3861'``add``' Instruction
3862^^^^^^^^^^^^^^^^^^^^^
3863
3864Syntax:
3865"""""""
3866
3867::
3868
Tim Northover675a0962014-06-13 14:24:23 +00003869 <result> = add <ty> <op1>, <op2> ; yields ty:result
3870 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
3871 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
3872 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003873
3874Overview:
3875"""""""""
3876
3877The '``add``' instruction returns the sum of its two operands.
3878
3879Arguments:
3880""""""""""
3881
3882The two arguments to the '``add``' instruction must be
3883:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3884arguments must have identical types.
3885
3886Semantics:
3887""""""""""
3888
3889The value produced is the integer sum of the two operands.
3890
3891If the sum has unsigned overflow, the result returned is the
3892mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3893the result.
3894
3895Because LLVM integers use a two's complement representation, this
3896instruction is appropriate for both signed and unsigned integers.
3897
3898``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3899respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3900result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3901unsigned and/or signed overflow, respectively, occurs.
3902
3903Example:
3904""""""""
3905
3906.. code-block:: llvm
3907
Tim Northover675a0962014-06-13 14:24:23 +00003908 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00003909
3910.. _i_fadd:
3911
3912'``fadd``' Instruction
3913^^^^^^^^^^^^^^^^^^^^^^
3914
3915Syntax:
3916"""""""
3917
3918::
3919
Tim Northover675a0962014-06-13 14:24:23 +00003920 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003921
3922Overview:
3923"""""""""
3924
3925The '``fadd``' instruction returns the sum of its two operands.
3926
3927Arguments:
3928""""""""""
3929
3930The two arguments to the '``fadd``' instruction must be :ref:`floating
3931point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3932Both arguments must have identical types.
3933
3934Semantics:
3935""""""""""
3936
3937The value produced is the floating point sum of the two operands. This
3938instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3939which are optimization hints to enable otherwise unsafe floating point
3940optimizations:
3941
3942Example:
3943""""""""
3944
3945.. code-block:: llvm
3946
Tim Northover675a0962014-06-13 14:24:23 +00003947 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00003948
3949'``sub``' Instruction
3950^^^^^^^^^^^^^^^^^^^^^
3951
3952Syntax:
3953"""""""
3954
3955::
3956
Tim Northover675a0962014-06-13 14:24:23 +00003957 <result> = sub <ty> <op1>, <op2> ; yields ty:result
3958 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
3959 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
3960 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003961
3962Overview:
3963"""""""""
3964
3965The '``sub``' instruction returns the difference of its two operands.
3966
3967Note that the '``sub``' instruction is used to represent the '``neg``'
3968instruction present in most other intermediate representations.
3969
3970Arguments:
3971""""""""""
3972
3973The two arguments to the '``sub``' instruction must be
3974:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3975arguments must have identical types.
3976
3977Semantics:
3978""""""""""
3979
3980The value produced is the integer difference of the two operands.
3981
3982If the difference has unsigned overflow, the result returned is the
3983mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3984the result.
3985
3986Because LLVM integers use a two's complement representation, this
3987instruction is appropriate for both signed and unsigned integers.
3988
3989``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3990respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3991result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3992unsigned and/or signed overflow, respectively, occurs.
3993
3994Example:
3995""""""""
3996
3997.. code-block:: llvm
3998
Tim Northover675a0962014-06-13 14:24:23 +00003999 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4000 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004001
4002.. _i_fsub:
4003
4004'``fsub``' Instruction
4005^^^^^^^^^^^^^^^^^^^^^^
4006
4007Syntax:
4008"""""""
4009
4010::
4011
Tim Northover675a0962014-06-13 14:24:23 +00004012 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004013
4014Overview:
4015"""""""""
4016
4017The '``fsub``' instruction returns the difference of its two operands.
4018
4019Note that the '``fsub``' instruction is used to represent the '``fneg``'
4020instruction present in most other intermediate representations.
4021
4022Arguments:
4023""""""""""
4024
4025The two arguments to the '``fsub``' instruction must be :ref:`floating
4026point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4027Both arguments must have identical types.
4028
4029Semantics:
4030""""""""""
4031
4032The value produced is the floating point difference of the two operands.
4033This instruction can also take any number of :ref:`fast-math
4034flags <fastmath>`, which are optimization hints to enable otherwise
4035unsafe floating point optimizations:
4036
4037Example:
4038""""""""
4039
4040.. code-block:: llvm
4041
Tim Northover675a0962014-06-13 14:24:23 +00004042 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4043 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004044
4045'``mul``' Instruction
4046^^^^^^^^^^^^^^^^^^^^^
4047
4048Syntax:
4049"""""""
4050
4051::
4052
Tim Northover675a0962014-06-13 14:24:23 +00004053 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4054 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4055 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4056 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004057
4058Overview:
4059"""""""""
4060
4061The '``mul``' instruction returns the product of its two operands.
4062
4063Arguments:
4064""""""""""
4065
4066The two arguments to the '``mul``' instruction must be
4067:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4068arguments must have identical types.
4069
4070Semantics:
4071""""""""""
4072
4073The value produced is the integer product of the two operands.
4074
4075If the result of the multiplication has unsigned overflow, the result
4076returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4077bit width of the result.
4078
4079Because LLVM integers use a two's complement representation, and the
4080result is the same width as the operands, this instruction returns the
4081correct result for both signed and unsigned integers. If a full product
4082(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4083sign-extended or zero-extended as appropriate to the width of the full
4084product.
4085
4086``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4087respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4088result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4089unsigned and/or signed overflow, respectively, occurs.
4090
4091Example:
4092""""""""
4093
4094.. code-block:: llvm
4095
Tim Northover675a0962014-06-13 14:24:23 +00004096 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004097
4098.. _i_fmul:
4099
4100'``fmul``' Instruction
4101^^^^^^^^^^^^^^^^^^^^^^
4102
4103Syntax:
4104"""""""
4105
4106::
4107
Tim Northover675a0962014-06-13 14:24:23 +00004108 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004109
4110Overview:
4111"""""""""
4112
4113The '``fmul``' instruction returns the product of its two operands.
4114
4115Arguments:
4116""""""""""
4117
4118The two arguments to the '``fmul``' instruction must be :ref:`floating
4119point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4120Both arguments must have identical types.
4121
4122Semantics:
4123""""""""""
4124
4125The value produced is the floating point product of the two operands.
4126This instruction can also take any number of :ref:`fast-math
4127flags <fastmath>`, which are optimization hints to enable otherwise
4128unsafe floating point optimizations:
4129
4130Example:
4131""""""""
4132
4133.. code-block:: llvm
4134
Tim Northover675a0962014-06-13 14:24:23 +00004135 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004136
4137'``udiv``' Instruction
4138^^^^^^^^^^^^^^^^^^^^^^
4139
4140Syntax:
4141"""""""
4142
4143::
4144
Tim Northover675a0962014-06-13 14:24:23 +00004145 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4146 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004147
4148Overview:
4149"""""""""
4150
4151The '``udiv``' instruction returns the quotient of its two operands.
4152
4153Arguments:
4154""""""""""
4155
4156The two arguments to the '``udiv``' instruction must be
4157:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4158arguments must have identical types.
4159
4160Semantics:
4161""""""""""
4162
4163The value produced is the unsigned integer quotient of the two operands.
4164
4165Note that unsigned integer division and signed integer division are
4166distinct operations; for signed integer division, use '``sdiv``'.
4167
4168Division by zero leads to undefined behavior.
4169
4170If the ``exact`` keyword is present, the result value of the ``udiv`` is
4171a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4172such, "((a udiv exact b) mul b) == a").
4173
4174Example:
4175""""""""
4176
4177.. code-block:: llvm
4178
Tim Northover675a0962014-06-13 14:24:23 +00004179 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004180
4181'``sdiv``' Instruction
4182^^^^^^^^^^^^^^^^^^^^^^
4183
4184Syntax:
4185"""""""
4186
4187::
4188
Tim Northover675a0962014-06-13 14:24:23 +00004189 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4190 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004191
4192Overview:
4193"""""""""
4194
4195The '``sdiv``' instruction returns the quotient of its two operands.
4196
4197Arguments:
4198""""""""""
4199
4200The two arguments to the '``sdiv``' instruction must be
4201:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4202arguments must have identical types.
4203
4204Semantics:
4205""""""""""
4206
4207The value produced is the signed integer quotient of the two operands
4208rounded towards zero.
4209
4210Note that signed integer division and unsigned integer division are
4211distinct operations; for unsigned integer division, use '``udiv``'.
4212
4213Division by zero leads to undefined behavior. Overflow also leads to
4214undefined behavior; this is a rare case, but can occur, for example, by
4215doing a 32-bit division of -2147483648 by -1.
4216
4217If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4218a :ref:`poison value <poisonvalues>` if the result would be rounded.
4219
4220Example:
4221""""""""
4222
4223.. code-block:: llvm
4224
Tim Northover675a0962014-06-13 14:24:23 +00004225 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004226
4227.. _i_fdiv:
4228
4229'``fdiv``' Instruction
4230^^^^^^^^^^^^^^^^^^^^^^
4231
4232Syntax:
4233"""""""
4234
4235::
4236
Tim Northover675a0962014-06-13 14:24:23 +00004237 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004238
4239Overview:
4240"""""""""
4241
4242The '``fdiv``' instruction returns the quotient of its two operands.
4243
4244Arguments:
4245""""""""""
4246
4247The two arguments to the '``fdiv``' instruction must be :ref:`floating
4248point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4249Both arguments must have identical types.
4250
4251Semantics:
4252""""""""""
4253
4254The value produced is the floating point quotient of the two operands.
4255This instruction can also take any number of :ref:`fast-math
4256flags <fastmath>`, which are optimization hints to enable otherwise
4257unsafe floating point optimizations:
4258
4259Example:
4260""""""""
4261
4262.. code-block:: llvm
4263
Tim Northover675a0962014-06-13 14:24:23 +00004264 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004265
4266'``urem``' Instruction
4267^^^^^^^^^^^^^^^^^^^^^^
4268
4269Syntax:
4270"""""""
4271
4272::
4273
Tim Northover675a0962014-06-13 14:24:23 +00004274 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004275
4276Overview:
4277"""""""""
4278
4279The '``urem``' instruction returns the remainder from the unsigned
4280division of its two arguments.
4281
4282Arguments:
4283""""""""""
4284
4285The two arguments to the '``urem``' instruction must be
4286:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4287arguments must have identical types.
4288
4289Semantics:
4290""""""""""
4291
4292This instruction returns the unsigned integer *remainder* of a division.
4293This instruction always performs an unsigned division to get the
4294remainder.
4295
4296Note that unsigned integer remainder and signed integer remainder are
4297distinct operations; for signed integer remainder, use '``srem``'.
4298
4299Taking the remainder of a division by zero leads to undefined behavior.
4300
4301Example:
4302""""""""
4303
4304.. code-block:: llvm
4305
Tim Northover675a0962014-06-13 14:24:23 +00004306 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004307
4308'``srem``' Instruction
4309^^^^^^^^^^^^^^^^^^^^^^
4310
4311Syntax:
4312"""""""
4313
4314::
4315
Tim Northover675a0962014-06-13 14:24:23 +00004316 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004317
4318Overview:
4319"""""""""
4320
4321The '``srem``' instruction returns the remainder from the signed
4322division of its two operands. This instruction can also take
4323:ref:`vector <t_vector>` versions of the values in which case the elements
4324must be integers.
4325
4326Arguments:
4327""""""""""
4328
4329The two arguments to the '``srem``' instruction must be
4330:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4331arguments must have identical types.
4332
4333Semantics:
4334""""""""""
4335
4336This instruction returns the *remainder* of a division (where the result
4337is either zero or has the same sign as the dividend, ``op1``), not the
4338*modulo* operator (where the result is either zero or has the same sign
4339as the divisor, ``op2``) of a value. For more information about the
4340difference, see `The Math
4341Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4342table of how this is implemented in various languages, please see
4343`Wikipedia: modulo
4344operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4345
4346Note that signed integer remainder and unsigned integer remainder are
4347distinct operations; for unsigned integer remainder, use '``urem``'.
4348
4349Taking the remainder of a division by zero leads to undefined behavior.
4350Overflow also leads to undefined behavior; this is a rare case, but can
4351occur, for example, by taking the remainder of a 32-bit division of
4352-2147483648 by -1. (The remainder doesn't actually overflow, but this
4353rule lets srem be implemented using instructions that return both the
4354result of the division and the remainder.)
4355
4356Example:
4357""""""""
4358
4359.. code-block:: llvm
4360
Tim Northover675a0962014-06-13 14:24:23 +00004361 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004362
4363.. _i_frem:
4364
4365'``frem``' Instruction
4366^^^^^^^^^^^^^^^^^^^^^^
4367
4368Syntax:
4369"""""""
4370
4371::
4372
Tim Northover675a0962014-06-13 14:24:23 +00004373 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004374
4375Overview:
4376"""""""""
4377
4378The '``frem``' instruction returns the remainder from the division of
4379its two operands.
4380
4381Arguments:
4382""""""""""
4383
4384The two arguments to the '``frem``' instruction must be :ref:`floating
4385point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4386Both arguments must have identical types.
4387
4388Semantics:
4389""""""""""
4390
4391This instruction returns the *remainder* of a division. The remainder
4392has the same sign as the dividend. This instruction can also take any
4393number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4394to enable otherwise unsafe floating point optimizations:
4395
4396Example:
4397""""""""
4398
4399.. code-block:: llvm
4400
Tim Northover675a0962014-06-13 14:24:23 +00004401 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004402
4403.. _bitwiseops:
4404
4405Bitwise Binary Operations
4406-------------------------
4407
4408Bitwise binary operators are used to do various forms of bit-twiddling
4409in a program. They are generally very efficient instructions and can
4410commonly be strength reduced from other instructions. They require two
4411operands of the same type, execute an operation on them, and produce a
4412single value. The resulting value is the same type as its operands.
4413
4414'``shl``' Instruction
4415^^^^^^^^^^^^^^^^^^^^^
4416
4417Syntax:
4418"""""""
4419
4420::
4421
Tim Northover675a0962014-06-13 14:24:23 +00004422 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4423 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4424 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4425 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004426
4427Overview:
4428"""""""""
4429
4430The '``shl``' instruction returns the first operand shifted to the left
4431a specified number of bits.
4432
4433Arguments:
4434""""""""""
4435
4436Both arguments to the '``shl``' instruction must be the same
4437:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4438'``op2``' is treated as an unsigned value.
4439
4440Semantics:
4441""""""""""
4442
4443The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4444where ``n`` is the width of the result. If ``op2`` is (statically or
4445dynamically) negative or equal to or larger than the number of bits in
4446``op1``, the result is undefined. If the arguments are vectors, each
4447vector element of ``op1`` is shifted by the corresponding shift amount
4448in ``op2``.
4449
4450If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4451value <poisonvalues>` if it shifts out any non-zero bits. If the
4452``nsw`` keyword is present, then the shift produces a :ref:`poison
4453value <poisonvalues>` if it shifts out any bits that disagree with the
4454resultant sign bit. As such, NUW/NSW have the same semantics as they
4455would if the shift were expressed as a mul instruction with the same
4456nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4457
4458Example:
4459""""""""
4460
4461.. code-block:: llvm
4462
Tim Northover675a0962014-06-13 14:24:23 +00004463 <result> = shl i32 4, %var ; yields i32: 4 << %var
4464 <result> = shl i32 4, 2 ; yields i32: 16
4465 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004466 <result> = shl i32 1, 32 ; undefined
4467 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4468
4469'``lshr``' Instruction
4470^^^^^^^^^^^^^^^^^^^^^^
4471
4472Syntax:
4473"""""""
4474
4475::
4476
Tim Northover675a0962014-06-13 14:24:23 +00004477 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4478 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004479
4480Overview:
4481"""""""""
4482
4483The '``lshr``' instruction (logical shift right) returns the first
4484operand shifted to the right a specified number of bits with zero fill.
4485
4486Arguments:
4487""""""""""
4488
4489Both arguments to the '``lshr``' instruction must be the same
4490:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4491'``op2``' is treated as an unsigned value.
4492
4493Semantics:
4494""""""""""
4495
4496This instruction always performs a logical shift right operation. The
4497most significant bits of the result will be filled with zero bits after
4498the shift. If ``op2`` is (statically or dynamically) equal to or larger
4499than the number of bits in ``op1``, the result is undefined. If the
4500arguments are vectors, each vector element of ``op1`` is shifted by the
4501corresponding shift amount in ``op2``.
4502
4503If the ``exact`` keyword is present, the result value of the ``lshr`` is
4504a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4505non-zero.
4506
4507Example:
4508""""""""
4509
4510.. code-block:: llvm
4511
Tim Northover675a0962014-06-13 14:24:23 +00004512 <result> = lshr i32 4, 1 ; yields i32:result = 2
4513 <result> = lshr i32 4, 2 ; yields i32:result = 1
4514 <result> = lshr i8 4, 3 ; yields i8:result = 0
4515 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004516 <result> = lshr i32 1, 32 ; undefined
4517 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4518
4519'``ashr``' Instruction
4520^^^^^^^^^^^^^^^^^^^^^^
4521
4522Syntax:
4523"""""""
4524
4525::
4526
Tim Northover675a0962014-06-13 14:24:23 +00004527 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4528 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004529
4530Overview:
4531"""""""""
4532
4533The '``ashr``' instruction (arithmetic shift right) returns the first
4534operand shifted to the right a specified number of bits with sign
4535extension.
4536
4537Arguments:
4538""""""""""
4539
4540Both arguments to the '``ashr``' instruction must be the same
4541:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4542'``op2``' is treated as an unsigned value.
4543
4544Semantics:
4545""""""""""
4546
4547This instruction always performs an arithmetic shift right operation,
4548The most significant bits of the result will be filled with the sign bit
4549of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4550than the number of bits in ``op1``, the result is undefined. If the
4551arguments are vectors, each vector element of ``op1`` is shifted by the
4552corresponding shift amount in ``op2``.
4553
4554If the ``exact`` keyword is present, the result value of the ``ashr`` is
4555a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4556non-zero.
4557
4558Example:
4559""""""""
4560
4561.. code-block:: llvm
4562
Tim Northover675a0962014-06-13 14:24:23 +00004563 <result> = ashr i32 4, 1 ; yields i32:result = 2
4564 <result> = ashr i32 4, 2 ; yields i32:result = 1
4565 <result> = ashr i8 4, 3 ; yields i8:result = 0
4566 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004567 <result> = ashr i32 1, 32 ; undefined
4568 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4569
4570'``and``' Instruction
4571^^^^^^^^^^^^^^^^^^^^^
4572
4573Syntax:
4574"""""""
4575
4576::
4577
Tim Northover675a0962014-06-13 14:24:23 +00004578 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004579
4580Overview:
4581"""""""""
4582
4583The '``and``' instruction returns the bitwise logical and of its two
4584operands.
4585
4586Arguments:
4587""""""""""
4588
4589The two arguments to the '``and``' instruction must be
4590:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4591arguments must have identical types.
4592
4593Semantics:
4594""""""""""
4595
4596The truth table used for the '``and``' instruction is:
4597
4598+-----+-----+-----+
4599| In0 | In1 | Out |
4600+-----+-----+-----+
4601| 0 | 0 | 0 |
4602+-----+-----+-----+
4603| 0 | 1 | 0 |
4604+-----+-----+-----+
4605| 1 | 0 | 0 |
4606+-----+-----+-----+
4607| 1 | 1 | 1 |
4608+-----+-----+-----+
4609
4610Example:
4611""""""""
4612
4613.. code-block:: llvm
4614
Tim Northover675a0962014-06-13 14:24:23 +00004615 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4616 <result> = and i32 15, 40 ; yields i32:result = 8
4617 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004618
4619'``or``' Instruction
4620^^^^^^^^^^^^^^^^^^^^
4621
4622Syntax:
4623"""""""
4624
4625::
4626
Tim Northover675a0962014-06-13 14:24:23 +00004627 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004628
4629Overview:
4630"""""""""
4631
4632The '``or``' instruction returns the bitwise logical inclusive or of its
4633two operands.
4634
4635Arguments:
4636""""""""""
4637
4638The two arguments to the '``or``' instruction must be
4639:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4640arguments must have identical types.
4641
4642Semantics:
4643""""""""""
4644
4645The truth table used for the '``or``' instruction is:
4646
4647+-----+-----+-----+
4648| In0 | In1 | Out |
4649+-----+-----+-----+
4650| 0 | 0 | 0 |
4651+-----+-----+-----+
4652| 0 | 1 | 1 |
4653+-----+-----+-----+
4654| 1 | 0 | 1 |
4655+-----+-----+-----+
4656| 1 | 1 | 1 |
4657+-----+-----+-----+
4658
4659Example:
4660""""""""
4661
4662::
4663
Tim Northover675a0962014-06-13 14:24:23 +00004664 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4665 <result> = or i32 15, 40 ; yields i32:result = 47
4666 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004667
4668'``xor``' Instruction
4669^^^^^^^^^^^^^^^^^^^^^
4670
4671Syntax:
4672"""""""
4673
4674::
4675
Tim Northover675a0962014-06-13 14:24:23 +00004676 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004677
4678Overview:
4679"""""""""
4680
4681The '``xor``' instruction returns the bitwise logical exclusive or of
4682its two operands. The ``xor`` is used to implement the "one's
4683complement" operation, which is the "~" operator in C.
4684
4685Arguments:
4686""""""""""
4687
4688The two arguments to the '``xor``' instruction must be
4689:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4690arguments must have identical types.
4691
4692Semantics:
4693""""""""""
4694
4695The truth table used for the '``xor``' instruction is:
4696
4697+-----+-----+-----+
4698| In0 | In1 | Out |
4699+-----+-----+-----+
4700| 0 | 0 | 0 |
4701+-----+-----+-----+
4702| 0 | 1 | 1 |
4703+-----+-----+-----+
4704| 1 | 0 | 1 |
4705+-----+-----+-----+
4706| 1 | 1 | 0 |
4707+-----+-----+-----+
4708
4709Example:
4710""""""""
4711
4712.. code-block:: llvm
4713
Tim Northover675a0962014-06-13 14:24:23 +00004714 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4715 <result> = xor i32 15, 40 ; yields i32:result = 39
4716 <result> = xor i32 4, 8 ; yields i32:result = 12
4717 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004718
4719Vector Operations
4720-----------------
4721
4722LLVM supports several instructions to represent vector operations in a
4723target-independent manner. These instructions cover the element-access
4724and vector-specific operations needed to process vectors effectively.
4725While LLVM does directly support these vector operations, many
4726sophisticated algorithms will want to use target-specific intrinsics to
4727take full advantage of a specific target.
4728
4729.. _i_extractelement:
4730
4731'``extractelement``' Instruction
4732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4733
4734Syntax:
4735"""""""
4736
4737::
4738
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004739 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004740
4741Overview:
4742"""""""""
4743
4744The '``extractelement``' instruction extracts a single scalar element
4745from a vector at a specified index.
4746
4747Arguments:
4748""""""""""
4749
4750The first operand of an '``extractelement``' instruction is a value of
4751:ref:`vector <t_vector>` type. The second operand is an index indicating
4752the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004753variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004754
4755Semantics:
4756""""""""""
4757
4758The result is a scalar of the same type as the element type of ``val``.
4759Its value is the value at position ``idx`` of ``val``. If ``idx``
4760exceeds the length of ``val``, the results are undefined.
4761
4762Example:
4763""""""""
4764
4765.. code-block:: llvm
4766
4767 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4768
4769.. _i_insertelement:
4770
4771'``insertelement``' Instruction
4772^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4773
4774Syntax:
4775"""""""
4776
4777::
4778
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004779 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004780
4781Overview:
4782"""""""""
4783
4784The '``insertelement``' instruction inserts a scalar element into a
4785vector at a specified index.
4786
4787Arguments:
4788""""""""""
4789
4790The first operand of an '``insertelement``' instruction is a value of
4791:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4792type must equal the element type of the first operand. The third operand
4793is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004794index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004795
4796Semantics:
4797""""""""""
4798
4799The result is a vector of the same type as ``val``. Its element values
4800are those of ``val`` except at position ``idx``, where it gets the value
4801``elt``. If ``idx`` exceeds the length of ``val``, the results are
4802undefined.
4803
4804Example:
4805""""""""
4806
4807.. code-block:: llvm
4808
4809 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4810
4811.. _i_shufflevector:
4812
4813'``shufflevector``' Instruction
4814^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4815
4816Syntax:
4817"""""""
4818
4819::
4820
4821 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4822
4823Overview:
4824"""""""""
4825
4826The '``shufflevector``' instruction constructs a permutation of elements
4827from two input vectors, returning a vector with the same element type as
4828the input and length that is the same as the shuffle mask.
4829
4830Arguments:
4831""""""""""
4832
4833The first two operands of a '``shufflevector``' instruction are vectors
4834with the same type. The third argument is a shuffle mask whose element
4835type is always 'i32'. The result of the instruction is a vector whose
4836length is the same as the shuffle mask and whose element type is the
4837same as the element type of the first two operands.
4838
4839The shuffle mask operand is required to be a constant vector with either
4840constant integer or undef values.
4841
4842Semantics:
4843""""""""""
4844
4845The elements of the two input vectors are numbered from left to right
4846across both of the vectors. The shuffle mask operand specifies, for each
4847element of the result vector, which element of the two input vectors the
4848result element gets. The element selector may be undef (meaning "don't
4849care") and the second operand may be undef if performing a shuffle from
4850only one vector.
4851
4852Example:
4853""""""""
4854
4855.. code-block:: llvm
4856
4857 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4858 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4859 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4860 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4861 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4862 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4863 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4864 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4865
4866Aggregate Operations
4867--------------------
4868
4869LLVM supports several instructions for working with
4870:ref:`aggregate <t_aggregate>` values.
4871
4872.. _i_extractvalue:
4873
4874'``extractvalue``' Instruction
4875^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4876
4877Syntax:
4878"""""""
4879
4880::
4881
4882 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4883
4884Overview:
4885"""""""""
4886
4887The '``extractvalue``' instruction extracts the value of a member field
4888from an :ref:`aggregate <t_aggregate>` value.
4889
4890Arguments:
4891""""""""""
4892
4893The first operand of an '``extractvalue``' instruction is a value of
4894:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4895constant indices to specify which value to extract in a similar manner
4896as indices in a '``getelementptr``' instruction.
4897
4898The major differences to ``getelementptr`` indexing are:
4899
4900- Since the value being indexed is not a pointer, the first index is
4901 omitted and assumed to be zero.
4902- At least one index must be specified.
4903- Not only struct indices but also array indices must be in bounds.
4904
4905Semantics:
4906""""""""""
4907
4908The result is the value at the position in the aggregate specified by
4909the index operands.
4910
4911Example:
4912""""""""
4913
4914.. code-block:: llvm
4915
4916 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4917
4918.. _i_insertvalue:
4919
4920'``insertvalue``' Instruction
4921^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4922
4923Syntax:
4924"""""""
4925
4926::
4927
4928 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4929
4930Overview:
4931"""""""""
4932
4933The '``insertvalue``' instruction inserts a value into a member field in
4934an :ref:`aggregate <t_aggregate>` value.
4935
4936Arguments:
4937""""""""""
4938
4939The first operand of an '``insertvalue``' instruction is a value of
4940:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4941a first-class value to insert. The following operands are constant
4942indices indicating the position at which to insert the value in a
4943similar manner as indices in a '``extractvalue``' instruction. The value
4944to insert must have the same type as the value identified by the
4945indices.
4946
4947Semantics:
4948""""""""""
4949
4950The result is an aggregate of the same type as ``val``. Its value is
4951that of ``val`` except that the value at the position specified by the
4952indices is that of ``elt``.
4953
4954Example:
4955""""""""
4956
4957.. code-block:: llvm
4958
4959 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4960 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4961 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4962
4963.. _memoryops:
4964
4965Memory Access and Addressing Operations
4966---------------------------------------
4967
4968A key design point of an SSA-based representation is how it represents
4969memory. In LLVM, no memory locations are in SSA form, which makes things
4970very simple. This section describes how to read, write, and allocate
4971memory in LLVM.
4972
4973.. _i_alloca:
4974
4975'``alloca``' Instruction
4976^^^^^^^^^^^^^^^^^^^^^^^^
4977
4978Syntax:
4979"""""""
4980
4981::
4982
Tim Northover675a0962014-06-13 14:24:23 +00004983 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00004984
4985Overview:
4986"""""""""
4987
4988The '``alloca``' instruction allocates memory on the stack frame of the
4989currently executing function, to be automatically released when this
4990function returns to its caller. The object is always allocated in the
4991generic address space (address space zero).
4992
4993Arguments:
4994""""""""""
4995
4996The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4997bytes of memory on the runtime stack, returning a pointer of the
4998appropriate type to the program. If "NumElements" is specified, it is
4999the number of elements allocated, otherwise "NumElements" is defaulted
5000to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005001allocation is guaranteed to be aligned to at least that boundary. The
5002alignment may not be greater than ``1 << 29``. If not specified, or if
5003zero, the target can choose to align the allocation on any convenient
5004boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005005
5006'``type``' may be any sized type.
5007
5008Semantics:
5009""""""""""
5010
5011Memory is allocated; a pointer is returned. The operation is undefined
5012if there is insufficient stack space for the allocation. '``alloca``'d
5013memory is automatically released when the function returns. The
5014'``alloca``' instruction is commonly used to represent automatic
5015variables that must have an address available. When the function returns
5016(either with the ``ret`` or ``resume`` instructions), the memory is
5017reclaimed. Allocating zero bytes is legal, but the result is undefined.
5018The order in which memory is allocated (ie., which way the stack grows)
5019is not specified.
5020
5021Example:
5022""""""""
5023
5024.. code-block:: llvm
5025
Tim Northover675a0962014-06-13 14:24:23 +00005026 %ptr = alloca i32 ; yields i32*:ptr
5027 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5028 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5029 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005030
5031.. _i_load:
5032
5033'``load``' Instruction
5034^^^^^^^^^^^^^^^^^^^^^^
5035
5036Syntax:
5037"""""""
5038
5039::
5040
5041 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
5042 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5043 !<index> = !{ i32 1 }
5044
5045Overview:
5046"""""""""
5047
5048The '``load``' instruction is used to read from memory.
5049
5050Arguments:
5051""""""""""
5052
Eli Bendersky239a78b2013-04-17 20:17:08 +00005053The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005054from which to load. The pointer must point to a :ref:`first
5055class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5056then the optimizer is not allowed to modify the number or order of
5057execution of this ``load`` with other :ref:`volatile
5058operations <volatile>`.
5059
5060If the ``load`` is marked as ``atomic``, it takes an extra
5061:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5062``release`` and ``acq_rel`` orderings are not valid on ``load``
5063instructions. Atomic loads produce :ref:`defined <memmodel>` results
5064when they may see multiple atomic stores. The type of the pointee must
5065be an integer type whose bit width is a power of two greater than or
5066equal to eight and less than or equal to a target-specific size limit.
5067``align`` must be explicitly specified on atomic loads, and the load has
5068undefined behavior if the alignment is not set to a value which is at
5069least the size in bytes of the pointee. ``!nontemporal`` does not have
5070any defined semantics for atomic loads.
5071
5072The optional constant ``align`` argument specifies the alignment of the
5073operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005074or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005075alignment for the target. It is the responsibility of the code emitter
5076to ensure that the alignment information is correct. Overestimating the
5077alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005078may produce less efficient code. An alignment of 1 is always safe. The
5079maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005080
5081The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005082metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005083``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005084metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005085that this load is not expected to be reused in the cache. The code
5086generator may select special instructions to save cache bandwidth, such
5087as the ``MOVNT`` instruction on x86.
5088
5089The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005090metadata name ``<index>`` corresponding to a metadata node with no
5091entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00005092instruction tells the optimizer and code generator that this load
5093address points to memory which does not change value during program
5094execution. The optimizer may then move this load around, for example, by
5095hoisting it out of loops using loop invariant code motion.
5096
5097Semantics:
5098""""""""""
5099
5100The location of memory pointed to is loaded. If the value being loaded
5101is of scalar type then the number of bytes read does not exceed the
5102minimum number of bytes needed to hold all bits of the type. For
5103example, loading an ``i24`` reads at most three bytes. When loading a
5104value of a type like ``i20`` with a size that is not an integral number
5105of bytes, the result is undefined if the value was not originally
5106written using a store of the same type.
5107
5108Examples:
5109"""""""""
5110
5111.. code-block:: llvm
5112
Tim Northover675a0962014-06-13 14:24:23 +00005113 %ptr = alloca i32 ; yields i32*:ptr
5114 store i32 3, i32* %ptr ; yields void
5115 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005116
5117.. _i_store:
5118
5119'``store``' Instruction
5120^^^^^^^^^^^^^^^^^^^^^^^
5121
5122Syntax:
5123"""""""
5124
5125::
5126
Tim Northover675a0962014-06-13 14:24:23 +00005127 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5128 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005129
5130Overview:
5131"""""""""
5132
5133The '``store``' instruction is used to write to memory.
5134
5135Arguments:
5136""""""""""
5137
Eli Benderskyca380842013-04-17 17:17:20 +00005138There are two arguments to the ``store`` instruction: a value to store
5139and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005140operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005141the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005142then the optimizer is not allowed to modify the number or order of
5143execution of this ``store`` with other :ref:`volatile
5144operations <volatile>`.
5145
5146If the ``store`` is marked as ``atomic``, it takes an extra
5147:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5148``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5149instructions. Atomic loads produce :ref:`defined <memmodel>` results
5150when they may see multiple atomic stores. The type of the pointee must
5151be an integer type whose bit width is a power of two greater than or
5152equal to eight and less than or equal to a target-specific size limit.
5153``align`` must be explicitly specified on atomic stores, and the store
5154has undefined behavior if the alignment is not set to a value which is
5155at least the size in bytes of the pointee. ``!nontemporal`` does not
5156have any defined semantics for atomic stores.
5157
Eli Benderskyca380842013-04-17 17:17:20 +00005158The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005159operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005160or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005161alignment for the target. It is the responsibility of the code emitter
5162to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005163alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005164alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005165safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005166
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005167The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005168name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005169value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005170tells the optimizer and code generator that this load is not expected to
5171be reused in the cache. The code generator may select special
5172instructions to save cache bandwidth, such as the MOVNT instruction on
5173x86.
5174
5175Semantics:
5176""""""""""
5177
Eli Benderskyca380842013-04-17 17:17:20 +00005178The contents of memory are updated to contain ``<value>`` at the
5179location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005180of scalar type then the number of bytes written does not exceed the
5181minimum number of bytes needed to hold all bits of the type. For
5182example, storing an ``i24`` writes at most three bytes. When writing a
5183value of a type like ``i20`` with a size that is not an integral number
5184of bytes, it is unspecified what happens to the extra bits that do not
5185belong to the type, but they will typically be overwritten.
5186
5187Example:
5188""""""""
5189
5190.. code-block:: llvm
5191
Tim Northover675a0962014-06-13 14:24:23 +00005192 %ptr = alloca i32 ; yields i32*:ptr
5193 store i32 3, i32* %ptr ; yields void
5194 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005195
5196.. _i_fence:
5197
5198'``fence``' Instruction
5199^^^^^^^^^^^^^^^^^^^^^^^
5200
5201Syntax:
5202"""""""
5203
5204::
5205
Tim Northover675a0962014-06-13 14:24:23 +00005206 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005207
5208Overview:
5209"""""""""
5210
5211The '``fence``' instruction is used to introduce happens-before edges
5212between operations.
5213
5214Arguments:
5215""""""""""
5216
5217'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5218defines what *synchronizes-with* edges they add. They can only be given
5219``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5220
5221Semantics:
5222""""""""""
5223
5224A fence A which has (at least) ``release`` ordering semantics
5225*synchronizes with* a fence B with (at least) ``acquire`` ordering
5226semantics if and only if there exist atomic operations X and Y, both
5227operating on some atomic object M, such that A is sequenced before X, X
5228modifies M (either directly or through some side effect of a sequence
5229headed by X), Y is sequenced before B, and Y observes M. This provides a
5230*happens-before* dependency between A and B. Rather than an explicit
5231``fence``, one (but not both) of the atomic operations X or Y might
5232provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5233still *synchronize-with* the explicit ``fence`` and establish the
5234*happens-before* edge.
5235
5236A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5237``acquire`` and ``release`` semantics specified above, participates in
5238the global program order of other ``seq_cst`` operations and/or fences.
5239
5240The optional ":ref:`singlethread <singlethread>`" argument specifies
5241that the fence only synchronizes with other fences in the same thread.
5242(This is useful for interacting with signal handlers.)
5243
5244Example:
5245""""""""
5246
5247.. code-block:: llvm
5248
Tim Northover675a0962014-06-13 14:24:23 +00005249 fence acquire ; yields void
5250 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005251
5252.. _i_cmpxchg:
5253
5254'``cmpxchg``' Instruction
5255^^^^^^^^^^^^^^^^^^^^^^^^^
5256
5257Syntax:
5258"""""""
5259
5260::
5261
Tim Northover675a0962014-06-13 14:24:23 +00005262 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005263
5264Overview:
5265"""""""""
5266
5267The '``cmpxchg``' instruction is used to atomically modify memory. It
5268loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005269equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005270
5271Arguments:
5272""""""""""
5273
5274There are three arguments to the '``cmpxchg``' instruction: an address
5275to operate on, a value to compare to the value currently be at that
5276address, and a new value to place at that address if the compared values
5277are equal. The type of '<cmp>' must be an integer type whose bit width
5278is a power of two greater than or equal to eight and less than or equal
5279to a target-specific size limit. '<cmp>' and '<new>' must have the same
5280type, and the type of '<pointer>' must be a pointer to that type. If the
5281``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5282to modify the number or order of execution of this ``cmpxchg`` with
5283other :ref:`volatile operations <volatile>`.
5284
Tim Northovere94a5182014-03-11 10:48:52 +00005285The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005286``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5287must be at least ``monotonic``, the ordering constraint on failure must be no
5288stronger than that on success, and the failure ordering cannot be either
5289``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005290
5291The optional "``singlethread``" argument declares that the ``cmpxchg``
5292is only atomic with respect to code (usually signal handlers) running in
5293the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5294respect to all other code in the system.
5295
5296The pointer passed into cmpxchg must have alignment greater than or
5297equal to the size in memory of the operand.
5298
5299Semantics:
5300""""""""""
5301
Tim Northover420a2162014-06-13 14:24:07 +00005302The contents of memory at the location specified by the '``<pointer>``' operand
5303is read and compared to '``<cmp>``'; if the read value is the equal, the
5304'``<new>``' is written. The original value at the location is returned, together
5305with a flag indicating success (true) or failure (false).
5306
5307If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5308permitted: the operation may not write ``<new>`` even if the comparison
5309matched.
5310
5311If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5312if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005313
Tim Northovere94a5182014-03-11 10:48:52 +00005314A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5315identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5316load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005317
5318Example:
5319""""""""
5320
5321.. code-block:: llvm
5322
5323 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005324 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005325 br label %loop
5326
5327 loop:
5328 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5329 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005330 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005331 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5332 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005333 br i1 %success, label %done, label %loop
5334
5335 done:
5336 ...
5337
5338.. _i_atomicrmw:
5339
5340'``atomicrmw``' Instruction
5341^^^^^^^^^^^^^^^^^^^^^^^^^^^
5342
5343Syntax:
5344"""""""
5345
5346::
5347
Tim Northover675a0962014-06-13 14:24:23 +00005348 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005349
5350Overview:
5351"""""""""
5352
5353The '``atomicrmw``' instruction is used to atomically modify memory.
5354
5355Arguments:
5356""""""""""
5357
5358There are three arguments to the '``atomicrmw``' instruction: an
5359operation to apply, an address whose value to modify, an argument to the
5360operation. The operation must be one of the following keywords:
5361
5362- xchg
5363- add
5364- sub
5365- and
5366- nand
5367- or
5368- xor
5369- max
5370- min
5371- umax
5372- umin
5373
5374The type of '<value>' must be an integer type whose bit width is a power
5375of two greater than or equal to eight and less than or equal to a
5376target-specific size limit. The type of the '``<pointer>``' operand must
5377be a pointer to that type. If the ``atomicrmw`` is marked as
5378``volatile``, then the optimizer is not allowed to modify the number or
5379order of execution of this ``atomicrmw`` with other :ref:`volatile
5380operations <volatile>`.
5381
5382Semantics:
5383""""""""""
5384
5385The contents of memory at the location specified by the '``<pointer>``'
5386operand are atomically read, modified, and written back. The original
5387value at the location is returned. The modification is specified by the
5388operation argument:
5389
5390- xchg: ``*ptr = val``
5391- add: ``*ptr = *ptr + val``
5392- sub: ``*ptr = *ptr - val``
5393- and: ``*ptr = *ptr & val``
5394- nand: ``*ptr = ~(*ptr & val)``
5395- or: ``*ptr = *ptr | val``
5396- xor: ``*ptr = *ptr ^ val``
5397- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5398- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5399- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5400 comparison)
5401- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5402 comparison)
5403
5404Example:
5405""""""""
5406
5407.. code-block:: llvm
5408
Tim Northover675a0962014-06-13 14:24:23 +00005409 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005410
5411.. _i_getelementptr:
5412
5413'``getelementptr``' Instruction
5414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5415
5416Syntax:
5417"""""""
5418
5419::
5420
5421 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5422 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5423 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5424
5425Overview:
5426"""""""""
5427
5428The '``getelementptr``' instruction is used to get the address of a
5429subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5430address calculation only and does not access memory.
5431
5432Arguments:
5433""""""""""
5434
5435The first argument is always a pointer or a vector of pointers, and
5436forms the basis of the calculation. The remaining arguments are indices
5437that indicate which of the elements of the aggregate object are indexed.
5438The interpretation of each index is dependent on the type being indexed
5439into. The first index always indexes the pointer value given as the
5440first argument, the second index indexes a value of the type pointed to
5441(not necessarily the value directly pointed to, since the first index
5442can be non-zero), etc. The first type indexed into must be a pointer
5443value, subsequent types can be arrays, vectors, and structs. Note that
5444subsequent types being indexed into can never be pointers, since that
5445would require loading the pointer before continuing calculation.
5446
5447The type of each index argument depends on the type it is indexing into.
5448When indexing into a (optionally packed) structure, only ``i32`` integer
5449**constants** are allowed (when using a vector of indices they must all
5450be the **same** ``i32`` integer constant). When indexing into an array,
5451pointer or vector, integers of any width are allowed, and they are not
5452required to be constant. These integers are treated as signed values
5453where relevant.
5454
5455For example, let's consider a C code fragment and how it gets compiled
5456to LLVM:
5457
5458.. code-block:: c
5459
5460 struct RT {
5461 char A;
5462 int B[10][20];
5463 char C;
5464 };
5465 struct ST {
5466 int X;
5467 double Y;
5468 struct RT Z;
5469 };
5470
5471 int *foo(struct ST *s) {
5472 return &s[1].Z.B[5][13];
5473 }
5474
5475The LLVM code generated by Clang is:
5476
5477.. code-block:: llvm
5478
5479 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5480 %struct.ST = type { i32, double, %struct.RT }
5481
5482 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5483 entry:
5484 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5485 ret i32* %arrayidx
5486 }
5487
5488Semantics:
5489""""""""""
5490
5491In the example above, the first index is indexing into the
5492'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5493= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5494indexes into the third element of the structure, yielding a
5495'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5496structure. The third index indexes into the second element of the
5497structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5498dimensions of the array are subscripted into, yielding an '``i32``'
5499type. The '``getelementptr``' instruction returns a pointer to this
5500element, thus computing a value of '``i32*``' type.
5501
5502Note that it is perfectly legal to index partially through a structure,
5503returning a pointer to an inner element. Because of this, the LLVM code
5504for the given testcase is equivalent to:
5505
5506.. code-block:: llvm
5507
5508 define i32* @foo(%struct.ST* %s) {
5509 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5510 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5511 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5512 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5513 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5514 ret i32* %t5
5515 }
5516
5517If the ``inbounds`` keyword is present, the result value of the
5518``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5519pointer is not an *in bounds* address of an allocated object, or if any
5520of the addresses that would be formed by successive addition of the
5521offsets implied by the indices to the base address with infinitely
5522precise signed arithmetic are not an *in bounds* address of that
5523allocated object. The *in bounds* addresses for an allocated object are
5524all the addresses that point into the object, plus the address one byte
5525past the end. In cases where the base is a vector of pointers the
5526``inbounds`` keyword applies to each of the computations element-wise.
5527
5528If the ``inbounds`` keyword is not present, the offsets are added to the
5529base address with silently-wrapping two's complement arithmetic. If the
5530offsets have a different width from the pointer, they are sign-extended
5531or truncated to the width of the pointer. The result value of the
5532``getelementptr`` may be outside the object pointed to by the base
5533pointer. The result value may not necessarily be used to access memory
5534though, even if it happens to point into allocated storage. See the
5535:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5536information.
5537
5538The getelementptr instruction is often confusing. For some more insight
5539into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5540
5541Example:
5542""""""""
5543
5544.. code-block:: llvm
5545
5546 ; yields [12 x i8]*:aptr
5547 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5548 ; yields i8*:vptr
5549 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5550 ; yields i8*:eptr
5551 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5552 ; yields i32*:iptr
5553 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5554
5555In cases where the pointer argument is a vector of pointers, each index
5556must be a vector with the same number of elements. For example:
5557
5558.. code-block:: llvm
5559
5560 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5561
5562Conversion Operations
5563---------------------
5564
5565The instructions in this category are the conversion instructions
5566(casting) which all take a single operand and a type. They perform
5567various bit conversions on the operand.
5568
5569'``trunc .. to``' Instruction
5570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5571
5572Syntax:
5573"""""""
5574
5575::
5576
5577 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5578
5579Overview:
5580"""""""""
5581
5582The '``trunc``' instruction truncates its operand to the type ``ty2``.
5583
5584Arguments:
5585""""""""""
5586
5587The '``trunc``' instruction takes a value to trunc, and a type to trunc
5588it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5589of the same number of integers. The bit size of the ``value`` must be
5590larger than the bit size of the destination type, ``ty2``. Equal sized
5591types are not allowed.
5592
5593Semantics:
5594""""""""""
5595
5596The '``trunc``' instruction truncates the high order bits in ``value``
5597and converts the remaining bits to ``ty2``. Since the source size must
5598be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5599It will always truncate bits.
5600
5601Example:
5602""""""""
5603
5604.. code-block:: llvm
5605
5606 %X = trunc i32 257 to i8 ; yields i8:1
5607 %Y = trunc i32 123 to i1 ; yields i1:true
5608 %Z = trunc i32 122 to i1 ; yields i1:false
5609 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5610
5611'``zext .. to``' Instruction
5612^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5613
5614Syntax:
5615"""""""
5616
5617::
5618
5619 <result> = zext <ty> <value> to <ty2> ; yields ty2
5620
5621Overview:
5622"""""""""
5623
5624The '``zext``' instruction zero extends its operand to type ``ty2``.
5625
5626Arguments:
5627""""""""""
5628
5629The '``zext``' instruction takes a value to cast, and a type to cast it
5630to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5631the same number of integers. The bit size of the ``value`` must be
5632smaller than the bit size of the destination type, ``ty2``.
5633
5634Semantics:
5635""""""""""
5636
5637The ``zext`` fills the high order bits of the ``value`` with zero bits
5638until it reaches the size of the destination type, ``ty2``.
5639
5640When zero extending from i1, the result will always be either 0 or 1.
5641
5642Example:
5643""""""""
5644
5645.. code-block:: llvm
5646
5647 %X = zext i32 257 to i64 ; yields i64:257
5648 %Y = zext i1 true to i32 ; yields i32:1
5649 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5650
5651'``sext .. to``' Instruction
5652^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5653
5654Syntax:
5655"""""""
5656
5657::
5658
5659 <result> = sext <ty> <value> to <ty2> ; yields ty2
5660
5661Overview:
5662"""""""""
5663
5664The '``sext``' sign extends ``value`` to the type ``ty2``.
5665
5666Arguments:
5667""""""""""
5668
5669The '``sext``' instruction takes a value to cast, and a type to cast it
5670to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5671the same number of integers. The bit size of the ``value`` must be
5672smaller than the bit size of the destination type, ``ty2``.
5673
5674Semantics:
5675""""""""""
5676
5677The '``sext``' instruction performs a sign extension by copying the sign
5678bit (highest order bit) of the ``value`` until it reaches the bit size
5679of the type ``ty2``.
5680
5681When sign extending from i1, the extension always results in -1 or 0.
5682
5683Example:
5684""""""""
5685
5686.. code-block:: llvm
5687
5688 %X = sext i8 -1 to i16 ; yields i16 :65535
5689 %Y = sext i1 true to i32 ; yields i32:-1
5690 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5691
5692'``fptrunc .. to``' Instruction
5693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5694
5695Syntax:
5696"""""""
5697
5698::
5699
5700 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5701
5702Overview:
5703"""""""""
5704
5705The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5706
5707Arguments:
5708""""""""""
5709
5710The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5711value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5712The size of ``value`` must be larger than the size of ``ty2``. This
5713implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5714
5715Semantics:
5716""""""""""
5717
5718The '``fptrunc``' instruction truncates a ``value`` from a larger
5719:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5720point <t_floating>` type. If the value cannot fit within the
5721destination type, ``ty2``, then the results are undefined.
5722
5723Example:
5724""""""""
5725
5726.. code-block:: llvm
5727
5728 %X = fptrunc double 123.0 to float ; yields float:123.0
5729 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5730
5731'``fpext .. to``' Instruction
5732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5733
5734Syntax:
5735"""""""
5736
5737::
5738
5739 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5740
5741Overview:
5742"""""""""
5743
5744The '``fpext``' extends a floating point ``value`` to a larger floating
5745point value.
5746
5747Arguments:
5748""""""""""
5749
5750The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5751``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5752to. The source type must be smaller than the destination type.
5753
5754Semantics:
5755""""""""""
5756
5757The '``fpext``' instruction extends the ``value`` from a smaller
5758:ref:`floating point <t_floating>` type to a larger :ref:`floating
5759point <t_floating>` type. The ``fpext`` cannot be used to make a
5760*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5761*no-op cast* for a floating point cast.
5762
5763Example:
5764""""""""
5765
5766.. code-block:: llvm
5767
5768 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5769 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5770
5771'``fptoui .. to``' Instruction
5772^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5773
5774Syntax:
5775"""""""
5776
5777::
5778
5779 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5780
5781Overview:
5782"""""""""
5783
5784The '``fptoui``' converts a floating point ``value`` to its unsigned
5785integer equivalent of type ``ty2``.
5786
5787Arguments:
5788""""""""""
5789
5790The '``fptoui``' instruction takes a value to cast, which must be a
5791scalar or vector :ref:`floating point <t_floating>` value, and a type to
5792cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5793``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5794type with the same number of elements as ``ty``
5795
5796Semantics:
5797""""""""""
5798
5799The '``fptoui``' instruction converts its :ref:`floating
5800point <t_floating>` operand into the nearest (rounding towards zero)
5801unsigned integer value. If the value cannot fit in ``ty2``, the results
5802are undefined.
5803
5804Example:
5805""""""""
5806
5807.. code-block:: llvm
5808
5809 %X = fptoui double 123.0 to i32 ; yields i32:123
5810 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5811 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5812
5813'``fptosi .. to``' Instruction
5814^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5815
5816Syntax:
5817"""""""
5818
5819::
5820
5821 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5822
5823Overview:
5824"""""""""
5825
5826The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5827``value`` to type ``ty2``.
5828
5829Arguments:
5830""""""""""
5831
5832The '``fptosi``' instruction takes a value to cast, which must be a
5833scalar or vector :ref:`floating point <t_floating>` value, and a type to
5834cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5835``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5836type with the same number of elements as ``ty``
5837
5838Semantics:
5839""""""""""
5840
5841The '``fptosi``' instruction converts its :ref:`floating
5842point <t_floating>` operand into the nearest (rounding towards zero)
5843signed integer value. If the value cannot fit in ``ty2``, the results
5844are undefined.
5845
5846Example:
5847""""""""
5848
5849.. code-block:: llvm
5850
5851 %X = fptosi double -123.0 to i32 ; yields i32:-123
5852 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5853 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5854
5855'``uitofp .. to``' Instruction
5856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5857
5858Syntax:
5859"""""""
5860
5861::
5862
5863 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5864
5865Overview:
5866"""""""""
5867
5868The '``uitofp``' instruction regards ``value`` as an unsigned integer
5869and converts that value to the ``ty2`` type.
5870
5871Arguments:
5872""""""""""
5873
5874The '``uitofp``' instruction takes a value to cast, which must be a
5875scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5876``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5877``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5878type with the same number of elements as ``ty``
5879
5880Semantics:
5881""""""""""
5882
5883The '``uitofp``' instruction interprets its operand as an unsigned
5884integer quantity and converts it to the corresponding floating point
5885value. If the value cannot fit in the floating point value, the results
5886are undefined.
5887
5888Example:
5889""""""""
5890
5891.. code-block:: llvm
5892
5893 %X = uitofp i32 257 to float ; yields float:257.0
5894 %Y = uitofp i8 -1 to double ; yields double:255.0
5895
5896'``sitofp .. to``' Instruction
5897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5898
5899Syntax:
5900"""""""
5901
5902::
5903
5904 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5905
5906Overview:
5907"""""""""
5908
5909The '``sitofp``' instruction regards ``value`` as a signed integer and
5910converts that value to the ``ty2`` type.
5911
5912Arguments:
5913""""""""""
5914
5915The '``sitofp``' instruction takes a value to cast, which must be a
5916scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5917``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5918``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5919type with the same number of elements as ``ty``
5920
5921Semantics:
5922""""""""""
5923
5924The '``sitofp``' instruction interprets its operand as a signed integer
5925quantity and converts it to the corresponding floating point value. If
5926the value cannot fit in the floating point value, the results are
5927undefined.
5928
5929Example:
5930""""""""
5931
5932.. code-block:: llvm
5933
5934 %X = sitofp i32 257 to float ; yields float:257.0
5935 %Y = sitofp i8 -1 to double ; yields double:-1.0
5936
5937.. _i_ptrtoint:
5938
5939'``ptrtoint .. to``' Instruction
5940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5941
5942Syntax:
5943"""""""
5944
5945::
5946
5947 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5948
5949Overview:
5950"""""""""
5951
5952The '``ptrtoint``' instruction converts the pointer or a vector of
5953pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5954
5955Arguments:
5956""""""""""
5957
5958The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5959a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5960type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5961a vector of integers type.
5962
5963Semantics:
5964""""""""""
5965
5966The '``ptrtoint``' instruction converts ``value`` to integer type
5967``ty2`` by interpreting the pointer value as an integer and either
5968truncating or zero extending that value to the size of the integer type.
5969If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5970``value`` is larger than ``ty2`` then a truncation is done. If they are
5971the same size, then nothing is done (*no-op cast*) other than a type
5972change.
5973
5974Example:
5975""""""""
5976
5977.. code-block:: llvm
5978
5979 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5980 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5981 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5982
5983.. _i_inttoptr:
5984
5985'``inttoptr .. to``' Instruction
5986^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5987
5988Syntax:
5989"""""""
5990
5991::
5992
5993 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5994
5995Overview:
5996"""""""""
5997
5998The '``inttoptr``' instruction converts an integer ``value`` to a
5999pointer type, ``ty2``.
6000
6001Arguments:
6002""""""""""
6003
6004The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6005cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6006type.
6007
6008Semantics:
6009""""""""""
6010
6011The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6012applying either a zero extension or a truncation depending on the size
6013of the integer ``value``. If ``value`` is larger than the size of a
6014pointer then a truncation is done. If ``value`` is smaller than the size
6015of a pointer then a zero extension is done. If they are the same size,
6016nothing is done (*no-op cast*).
6017
6018Example:
6019""""""""
6020
6021.. code-block:: llvm
6022
6023 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6024 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6025 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6026 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6027
6028.. _i_bitcast:
6029
6030'``bitcast .. to``' Instruction
6031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6032
6033Syntax:
6034"""""""
6035
6036::
6037
6038 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6039
6040Overview:
6041"""""""""
6042
6043The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6044changing any bits.
6045
6046Arguments:
6047""""""""""
6048
6049The '``bitcast``' instruction takes a value to cast, which must be a
6050non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006051also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6052bit sizes of ``value`` and the destination type, ``ty2``, must be
6053identical. If the source type is a pointer, the destination type must
6054also be a pointer of the same size. This instruction supports bitwise
6055conversion of vectors to integers and to vectors of other types (as
6056long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006057
6058Semantics:
6059""""""""""
6060
Matt Arsenault24b49c42013-07-31 17:49:08 +00006061The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6062is always a *no-op cast* because no bits change with this
6063conversion. The conversion is done as if the ``value`` had been stored
6064to memory and read back as type ``ty2``. Pointer (or vector of
6065pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006066pointers) types with the same address space through this instruction.
6067To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6068or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006069
6070Example:
6071""""""""
6072
6073.. code-block:: llvm
6074
6075 %X = bitcast i8 255 to i8 ; yields i8 :-1
6076 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6077 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6078 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6079
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006080.. _i_addrspacecast:
6081
6082'``addrspacecast .. to``' Instruction
6083^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6084
6085Syntax:
6086"""""""
6087
6088::
6089
6090 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6091
6092Overview:
6093"""""""""
6094
6095The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6096address space ``n`` to type ``pty2`` in address space ``m``.
6097
6098Arguments:
6099""""""""""
6100
6101The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6102to cast and a pointer type to cast it to, which must have a different
6103address space.
6104
6105Semantics:
6106""""""""""
6107
6108The '``addrspacecast``' instruction converts the pointer value
6109``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006110value modification, depending on the target and the address space
6111pair. Pointer conversions within the same address space must be
6112performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006113conversion is legal then both result and operand refer to the same memory
6114location.
6115
6116Example:
6117""""""""
6118
6119.. code-block:: llvm
6120
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006121 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6122 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6123 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006124
Sean Silvab084af42012-12-07 10:36:55 +00006125.. _otherops:
6126
6127Other Operations
6128----------------
6129
6130The instructions in this category are the "miscellaneous" instructions,
6131which defy better classification.
6132
6133.. _i_icmp:
6134
6135'``icmp``' Instruction
6136^^^^^^^^^^^^^^^^^^^^^^
6137
6138Syntax:
6139"""""""
6140
6141::
6142
Tim Northover675a0962014-06-13 14:24:23 +00006143 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006144
6145Overview:
6146"""""""""
6147
6148The '``icmp``' instruction returns a boolean value or a vector of
6149boolean values based on comparison of its two integer, integer vector,
6150pointer, or pointer vector operands.
6151
6152Arguments:
6153""""""""""
6154
6155The '``icmp``' instruction takes three operands. The first operand is
6156the condition code indicating the kind of comparison to perform. It is
6157not a value, just a keyword. The possible condition code are:
6158
6159#. ``eq``: equal
6160#. ``ne``: not equal
6161#. ``ugt``: unsigned greater than
6162#. ``uge``: unsigned greater or equal
6163#. ``ult``: unsigned less than
6164#. ``ule``: unsigned less or equal
6165#. ``sgt``: signed greater than
6166#. ``sge``: signed greater or equal
6167#. ``slt``: signed less than
6168#. ``sle``: signed less or equal
6169
6170The remaining two arguments must be :ref:`integer <t_integer>` or
6171:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6172must also be identical types.
6173
6174Semantics:
6175""""""""""
6176
6177The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6178code given as ``cond``. The comparison performed always yields either an
6179:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6180
6181#. ``eq``: yields ``true`` if the operands are equal, ``false``
6182 otherwise. No sign interpretation is necessary or performed.
6183#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6184 otherwise. No sign interpretation is necessary or performed.
6185#. ``ugt``: interprets the operands as unsigned values and yields
6186 ``true`` if ``op1`` is greater than ``op2``.
6187#. ``uge``: interprets the operands as unsigned values and yields
6188 ``true`` if ``op1`` is greater than or equal to ``op2``.
6189#. ``ult``: interprets the operands as unsigned values and yields
6190 ``true`` if ``op1`` is less than ``op2``.
6191#. ``ule``: interprets the operands as unsigned values and yields
6192 ``true`` if ``op1`` is less than or equal to ``op2``.
6193#. ``sgt``: interprets the operands as signed values and yields ``true``
6194 if ``op1`` is greater than ``op2``.
6195#. ``sge``: interprets the operands as signed values and yields ``true``
6196 if ``op1`` is greater than or equal to ``op2``.
6197#. ``slt``: interprets the operands as signed values and yields ``true``
6198 if ``op1`` is less than ``op2``.
6199#. ``sle``: interprets the operands as signed values and yields ``true``
6200 if ``op1`` is less than or equal to ``op2``.
6201
6202If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6203are compared as if they were integers.
6204
6205If the operands are integer vectors, then they are compared element by
6206element. The result is an ``i1`` vector with the same number of elements
6207as the values being compared. Otherwise, the result is an ``i1``.
6208
6209Example:
6210""""""""
6211
6212.. code-block:: llvm
6213
6214 <result> = icmp eq i32 4, 5 ; yields: result=false
6215 <result> = icmp ne float* %X, %X ; yields: result=false
6216 <result> = icmp ult i16 4, 5 ; yields: result=true
6217 <result> = icmp sgt i16 4, 5 ; yields: result=false
6218 <result> = icmp ule i16 -4, 5 ; yields: result=false
6219 <result> = icmp sge i16 4, 5 ; yields: result=false
6220
6221Note that the code generator does not yet support vector types with the
6222``icmp`` instruction.
6223
6224.. _i_fcmp:
6225
6226'``fcmp``' Instruction
6227^^^^^^^^^^^^^^^^^^^^^^
6228
6229Syntax:
6230"""""""
6231
6232::
6233
Tim Northover675a0962014-06-13 14:24:23 +00006234 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006235
6236Overview:
6237"""""""""
6238
6239The '``fcmp``' instruction returns a boolean value or vector of boolean
6240values based on comparison of its operands.
6241
6242If the operands are floating point scalars, then the result type is a
6243boolean (:ref:`i1 <t_integer>`).
6244
6245If the operands are floating point vectors, then the result type is a
6246vector of boolean with the same number of elements as the operands being
6247compared.
6248
6249Arguments:
6250""""""""""
6251
6252The '``fcmp``' instruction takes three operands. The first operand is
6253the condition code indicating the kind of comparison to perform. It is
6254not a value, just a keyword. The possible condition code are:
6255
6256#. ``false``: no comparison, always returns false
6257#. ``oeq``: ordered and equal
6258#. ``ogt``: ordered and greater than
6259#. ``oge``: ordered and greater than or equal
6260#. ``olt``: ordered and less than
6261#. ``ole``: ordered and less than or equal
6262#. ``one``: ordered and not equal
6263#. ``ord``: ordered (no nans)
6264#. ``ueq``: unordered or equal
6265#. ``ugt``: unordered or greater than
6266#. ``uge``: unordered or greater than or equal
6267#. ``ult``: unordered or less than
6268#. ``ule``: unordered or less than or equal
6269#. ``une``: unordered or not equal
6270#. ``uno``: unordered (either nans)
6271#. ``true``: no comparison, always returns true
6272
6273*Ordered* means that neither operand is a QNAN while *unordered* means
6274that either operand may be a QNAN.
6275
6276Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6277point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6278type. They must have identical types.
6279
6280Semantics:
6281""""""""""
6282
6283The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6284condition code given as ``cond``. If the operands are vectors, then the
6285vectors are compared element by element. Each comparison performed
6286always yields an :ref:`i1 <t_integer>` result, as follows:
6287
6288#. ``false``: always yields ``false``, regardless of operands.
6289#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6290 is equal to ``op2``.
6291#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6292 is greater than ``op2``.
6293#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6294 is greater than or equal to ``op2``.
6295#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6296 is less than ``op2``.
6297#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6298 is less than or equal to ``op2``.
6299#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6300 is not equal to ``op2``.
6301#. ``ord``: yields ``true`` if both operands are not a QNAN.
6302#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6303 equal to ``op2``.
6304#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6305 greater than ``op2``.
6306#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6307 greater than or equal to ``op2``.
6308#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6309 less than ``op2``.
6310#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6311 less than or equal to ``op2``.
6312#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6313 not equal to ``op2``.
6314#. ``uno``: yields ``true`` if either operand is a QNAN.
6315#. ``true``: always yields ``true``, regardless of operands.
6316
6317Example:
6318""""""""
6319
6320.. code-block:: llvm
6321
6322 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6323 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6324 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6325 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6326
6327Note that the code generator does not yet support vector types with the
6328``fcmp`` instruction.
6329
6330.. _i_phi:
6331
6332'``phi``' Instruction
6333^^^^^^^^^^^^^^^^^^^^^
6334
6335Syntax:
6336"""""""
6337
6338::
6339
6340 <result> = phi <ty> [ <val0>, <label0>], ...
6341
6342Overview:
6343"""""""""
6344
6345The '``phi``' instruction is used to implement the φ node in the SSA
6346graph representing the function.
6347
6348Arguments:
6349""""""""""
6350
6351The type of the incoming values is specified with the first type field.
6352After this, the '``phi``' instruction takes a list of pairs as
6353arguments, with one pair for each predecessor basic block of the current
6354block. Only values of :ref:`first class <t_firstclass>` type may be used as
6355the value arguments to the PHI node. Only labels may be used as the
6356label arguments.
6357
6358There must be no non-phi instructions between the start of a basic block
6359and the PHI instructions: i.e. PHI instructions must be first in a basic
6360block.
6361
6362For the purposes of the SSA form, the use of each incoming value is
6363deemed to occur on the edge from the corresponding predecessor block to
6364the current block (but after any definition of an '``invoke``'
6365instruction's return value on the same edge).
6366
6367Semantics:
6368""""""""""
6369
6370At runtime, the '``phi``' instruction logically takes on the value
6371specified by the pair corresponding to the predecessor basic block that
6372executed just prior to the current block.
6373
6374Example:
6375""""""""
6376
6377.. code-block:: llvm
6378
6379 Loop: ; Infinite loop that counts from 0 on up...
6380 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6381 %nextindvar = add i32 %indvar, 1
6382 br label %Loop
6383
6384.. _i_select:
6385
6386'``select``' Instruction
6387^^^^^^^^^^^^^^^^^^^^^^^^
6388
6389Syntax:
6390"""""""
6391
6392::
6393
6394 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6395
6396 selty is either i1 or {<N x i1>}
6397
6398Overview:
6399"""""""""
6400
6401The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006402condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006403
6404Arguments:
6405""""""""""
6406
6407The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6408values indicating the condition, and two values of the same :ref:`first
6409class <t_firstclass>` type. If the val1/val2 are vectors and the
6410condition is a scalar, then entire vectors are selected, not individual
6411elements.
6412
6413Semantics:
6414""""""""""
6415
6416If the condition is an i1 and it evaluates to 1, the instruction returns
6417the first value argument; otherwise, it returns the second value
6418argument.
6419
6420If the condition is a vector of i1, then the value arguments must be
6421vectors of the same size, and the selection is done element by element.
6422
6423Example:
6424""""""""
6425
6426.. code-block:: llvm
6427
6428 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6429
6430.. _i_call:
6431
6432'``call``' Instruction
6433^^^^^^^^^^^^^^^^^^^^^^
6434
6435Syntax:
6436"""""""
6437
6438::
6439
Reid Kleckner5772b772014-04-24 20:14:34 +00006440 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006441
6442Overview:
6443"""""""""
6444
6445The '``call``' instruction represents a simple function call.
6446
6447Arguments:
6448""""""""""
6449
6450This instruction requires several arguments:
6451
Reid Kleckner5772b772014-04-24 20:14:34 +00006452#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6453 should perform tail call optimization. The ``tail`` marker is a hint that
6454 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6455 means that the call must be tail call optimized in order for the program to
6456 be correct. The ``musttail`` marker provides these guarantees:
6457
6458 #. The call will not cause unbounded stack growth if it is part of a
6459 recursive cycle in the call graph.
6460 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6461 forwarded in place.
6462
6463 Both markers imply that the callee does not access allocas or varargs from
6464 the caller. Calls marked ``musttail`` must obey the following additional
6465 rules:
6466
6467 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6468 or a pointer bitcast followed by a ret instruction.
6469 - The ret instruction must return the (possibly bitcasted) value
6470 produced by the call or void.
6471 - The caller and callee prototypes must match. Pointer types of
6472 parameters or return types may differ in pointee type, but not
6473 in address space.
6474 - The calling conventions of the caller and callee must match.
6475 - All ABI-impacting function attributes, such as sret, byval, inreg,
6476 returned, and inalloca, must match.
6477
6478 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6479 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006480
6481 - Caller and callee both have the calling convention ``fastcc``.
6482 - The call is in tail position (ret immediately follows call and ret
6483 uses value of call or is void).
6484 - Option ``-tailcallopt`` is enabled, or
6485 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006486 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006487 met. <CodeGenerator.html#tailcallopt>`_
6488
6489#. The optional "cconv" marker indicates which :ref:`calling
6490 convention <callingconv>` the call should use. If none is
6491 specified, the call defaults to using C calling conventions. The
6492 calling convention of the call must match the calling convention of
6493 the target function, or else the behavior is undefined.
6494#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6495 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6496 are valid here.
6497#. '``ty``': the type of the call instruction itself which is also the
6498 type of the return value. Functions that return no value are marked
6499 ``void``.
6500#. '``fnty``': shall be the signature of the pointer to function value
6501 being invoked. The argument types must match the types implied by
6502 this signature. This type can be omitted if the function is not
6503 varargs and if the function type does not return a pointer to a
6504 function.
6505#. '``fnptrval``': An LLVM value containing a pointer to a function to
6506 be invoked. In most cases, this is a direct function invocation, but
6507 indirect ``call``'s are just as possible, calling an arbitrary pointer
6508 to function value.
6509#. '``function args``': argument list whose types match the function
6510 signature argument types and parameter attributes. All arguments must
6511 be of :ref:`first class <t_firstclass>` type. If the function signature
6512 indicates the function accepts a variable number of arguments, the
6513 extra arguments can be specified.
6514#. The optional :ref:`function attributes <fnattrs>` list. Only
6515 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6516 attributes are valid here.
6517
6518Semantics:
6519""""""""""
6520
6521The '``call``' instruction is used to cause control flow to transfer to
6522a specified function, with its incoming arguments bound to the specified
6523values. Upon a '``ret``' instruction in the called function, control
6524flow continues with the instruction after the function call, and the
6525return value of the function is bound to the result argument.
6526
6527Example:
6528""""""""
6529
6530.. code-block:: llvm
6531
6532 %retval = call i32 @test(i32 %argc)
6533 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6534 %X = tail call i32 @foo() ; yields i32
6535 %Y = tail call fastcc i32 @foo() ; yields i32
6536 call void %foo(i8 97 signext)
6537
6538 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006539 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006540 %gr = extractvalue %struct.A %r, 0 ; yields i32
6541 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6542 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6543 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6544
6545llvm treats calls to some functions with names and arguments that match
6546the standard C99 library as being the C99 library functions, and may
6547perform optimizations or generate code for them under that assumption.
6548This is something we'd like to change in the future to provide better
6549support for freestanding environments and non-C-based languages.
6550
6551.. _i_va_arg:
6552
6553'``va_arg``' Instruction
6554^^^^^^^^^^^^^^^^^^^^^^^^
6555
6556Syntax:
6557"""""""
6558
6559::
6560
6561 <resultval> = va_arg <va_list*> <arglist>, <argty>
6562
6563Overview:
6564"""""""""
6565
6566The '``va_arg``' instruction is used to access arguments passed through
6567the "variable argument" area of a function call. It is used to implement
6568the ``va_arg`` macro in C.
6569
6570Arguments:
6571""""""""""
6572
6573This instruction takes a ``va_list*`` value and the type of the
6574argument. It returns a value of the specified argument type and
6575increments the ``va_list`` to point to the next argument. The actual
6576type of ``va_list`` is target specific.
6577
6578Semantics:
6579""""""""""
6580
6581The '``va_arg``' instruction loads an argument of the specified type
6582from the specified ``va_list`` and causes the ``va_list`` to point to
6583the next argument. For more information, see the variable argument
6584handling :ref:`Intrinsic Functions <int_varargs>`.
6585
6586It is legal for this instruction to be called in a function which does
6587not take a variable number of arguments, for example, the ``vfprintf``
6588function.
6589
6590``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6591function <intrinsics>` because it takes a type as an argument.
6592
6593Example:
6594""""""""
6595
6596See the :ref:`variable argument processing <int_varargs>` section.
6597
6598Note that the code generator does not yet fully support va\_arg on many
6599targets. Also, it does not currently support va\_arg with aggregate
6600types on any target.
6601
6602.. _i_landingpad:
6603
6604'``landingpad``' Instruction
6605^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6606
6607Syntax:
6608"""""""
6609
6610::
6611
6612 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6613 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6614
6615 <clause> := catch <type> <value>
6616 <clause> := filter <array constant type> <array constant>
6617
6618Overview:
6619"""""""""
6620
6621The '``landingpad``' instruction is used by `LLVM's exception handling
6622system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006623is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006624code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6625defines values supplied by the personality function (``pers_fn``) upon
6626re-entry to the function. The ``resultval`` has the type ``resultty``.
6627
6628Arguments:
6629""""""""""
6630
6631This instruction takes a ``pers_fn`` value. This is the personality
6632function associated with the unwinding mechanism. The optional
6633``cleanup`` flag indicates that the landing pad block is a cleanup.
6634
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006635A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006636contains the global variable representing the "type" that may be caught
6637or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6638clause takes an array constant as its argument. Use
6639"``[0 x i8**] undef``" for a filter which cannot throw. The
6640'``landingpad``' instruction must contain *at least* one ``clause`` or
6641the ``cleanup`` flag.
6642
6643Semantics:
6644""""""""""
6645
6646The '``landingpad``' instruction defines the values which are set by the
6647personality function (``pers_fn``) upon re-entry to the function, and
6648therefore the "result type" of the ``landingpad`` instruction. As with
6649calling conventions, how the personality function results are
6650represented in LLVM IR is target specific.
6651
6652The clauses are applied in order from top to bottom. If two
6653``landingpad`` instructions are merged together through inlining, the
6654clauses from the calling function are appended to the list of clauses.
6655When the call stack is being unwound due to an exception being thrown,
6656the exception is compared against each ``clause`` in turn. If it doesn't
6657match any of the clauses, and the ``cleanup`` flag is not set, then
6658unwinding continues further up the call stack.
6659
6660The ``landingpad`` instruction has several restrictions:
6661
6662- A landing pad block is a basic block which is the unwind destination
6663 of an '``invoke``' instruction.
6664- A landing pad block must have a '``landingpad``' instruction as its
6665 first non-PHI instruction.
6666- There can be only one '``landingpad``' instruction within the landing
6667 pad block.
6668- A basic block that is not a landing pad block may not include a
6669 '``landingpad``' instruction.
6670- All '``landingpad``' instructions in a function must have the same
6671 personality function.
6672
6673Example:
6674""""""""
6675
6676.. code-block:: llvm
6677
6678 ;; A landing pad which can catch an integer.
6679 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6680 catch i8** @_ZTIi
6681 ;; A landing pad that is a cleanup.
6682 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6683 cleanup
6684 ;; A landing pad which can catch an integer and can only throw a double.
6685 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6686 catch i8** @_ZTIi
6687 filter [1 x i8**] [@_ZTId]
6688
6689.. _intrinsics:
6690
6691Intrinsic Functions
6692===================
6693
6694LLVM supports the notion of an "intrinsic function". These functions
6695have well known names and semantics and are required to follow certain
6696restrictions. Overall, these intrinsics represent an extension mechanism
6697for the LLVM language that does not require changing all of the
6698transformations in LLVM when adding to the language (or the bitcode
6699reader/writer, the parser, etc...).
6700
6701Intrinsic function names must all start with an "``llvm.``" prefix. This
6702prefix is reserved in LLVM for intrinsic names; thus, function names may
6703not begin with this prefix. Intrinsic functions must always be external
6704functions: you cannot define the body of intrinsic functions. Intrinsic
6705functions may only be used in call or invoke instructions: it is illegal
6706to take the address of an intrinsic function. Additionally, because
6707intrinsic functions are part of the LLVM language, it is required if any
6708are added that they be documented here.
6709
6710Some intrinsic functions can be overloaded, i.e., the intrinsic
6711represents a family of functions that perform the same operation but on
6712different data types. Because LLVM can represent over 8 million
6713different integer types, overloading is used commonly to allow an
6714intrinsic function to operate on any integer type. One or more of the
6715argument types or the result type can be overloaded to accept any
6716integer type. Argument types may also be defined as exactly matching a
6717previous argument's type or the result type. This allows an intrinsic
6718function which accepts multiple arguments, but needs all of them to be
6719of the same type, to only be overloaded with respect to a single
6720argument or the result.
6721
6722Overloaded intrinsics will have the names of its overloaded argument
6723types encoded into its function name, each preceded by a period. Only
6724those types which are overloaded result in a name suffix. Arguments
6725whose type is matched against another type do not. For example, the
6726``llvm.ctpop`` function can take an integer of any width and returns an
6727integer of exactly the same integer width. This leads to a family of
6728functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6729``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6730overloaded, and only one type suffix is required. Because the argument's
6731type is matched against the return type, it does not require its own
6732name suffix.
6733
6734To learn how to add an intrinsic function, please see the `Extending
6735LLVM Guide <ExtendingLLVM.html>`_.
6736
6737.. _int_varargs:
6738
6739Variable Argument Handling Intrinsics
6740-------------------------------------
6741
6742Variable argument support is defined in LLVM with the
6743:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6744functions. These functions are related to the similarly named macros
6745defined in the ``<stdarg.h>`` header file.
6746
6747All of these functions operate on arguments that use a target-specific
6748value type "``va_list``". The LLVM assembly language reference manual
6749does not define what this type is, so all transformations should be
6750prepared to handle these functions regardless of the type used.
6751
6752This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6753variable argument handling intrinsic functions are used.
6754
6755.. code-block:: llvm
6756
6757 define i32 @test(i32 %X, ...) {
6758 ; Initialize variable argument processing
6759 %ap = alloca i8*
6760 %ap2 = bitcast i8** %ap to i8*
6761 call void @llvm.va_start(i8* %ap2)
6762
6763 ; Read a single integer argument
6764 %tmp = va_arg i8** %ap, i32
6765
6766 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6767 %aq = alloca i8*
6768 %aq2 = bitcast i8** %aq to i8*
6769 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6770 call void @llvm.va_end(i8* %aq2)
6771
6772 ; Stop processing of arguments.
6773 call void @llvm.va_end(i8* %ap2)
6774 ret i32 %tmp
6775 }
6776
6777 declare void @llvm.va_start(i8*)
6778 declare void @llvm.va_copy(i8*, i8*)
6779 declare void @llvm.va_end(i8*)
6780
6781.. _int_va_start:
6782
6783'``llvm.va_start``' Intrinsic
6784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6785
6786Syntax:
6787"""""""
6788
6789::
6790
Nick Lewycky04f6de02013-09-11 22:04:52 +00006791 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006792
6793Overview:
6794"""""""""
6795
6796The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6797subsequent use by ``va_arg``.
6798
6799Arguments:
6800""""""""""
6801
6802The argument is a pointer to a ``va_list`` element to initialize.
6803
6804Semantics:
6805""""""""""
6806
6807The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6808available in C. In a target-dependent way, it initializes the
6809``va_list`` element to which the argument points, so that the next call
6810to ``va_arg`` will produce the first variable argument passed to the
6811function. Unlike the C ``va_start`` macro, this intrinsic does not need
6812to know the last argument of the function as the compiler can figure
6813that out.
6814
6815'``llvm.va_end``' Intrinsic
6816^^^^^^^^^^^^^^^^^^^^^^^^^^^
6817
6818Syntax:
6819"""""""
6820
6821::
6822
6823 declare void @llvm.va_end(i8* <arglist>)
6824
6825Overview:
6826"""""""""
6827
6828The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6829initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6830
6831Arguments:
6832""""""""""
6833
6834The argument is a pointer to a ``va_list`` to destroy.
6835
6836Semantics:
6837""""""""""
6838
6839The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6840available in C. In a target-dependent way, it destroys the ``va_list``
6841element to which the argument points. Calls to
6842:ref:`llvm.va_start <int_va_start>` and
6843:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6844``llvm.va_end``.
6845
6846.. _int_va_copy:
6847
6848'``llvm.va_copy``' Intrinsic
6849^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6850
6851Syntax:
6852"""""""
6853
6854::
6855
6856 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6857
6858Overview:
6859"""""""""
6860
6861The '``llvm.va_copy``' intrinsic copies the current argument position
6862from the source argument list to the destination argument list.
6863
6864Arguments:
6865""""""""""
6866
6867The first argument is a pointer to a ``va_list`` element to initialize.
6868The second argument is a pointer to a ``va_list`` element to copy from.
6869
6870Semantics:
6871""""""""""
6872
6873The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6874available in C. In a target-dependent way, it copies the source
6875``va_list`` element into the destination ``va_list`` element. This
6876intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6877arbitrarily complex and require, for example, memory allocation.
6878
6879Accurate Garbage Collection Intrinsics
6880--------------------------------------
6881
6882LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6883(GC) requires the implementation and generation of these intrinsics.
6884These intrinsics allow identification of :ref:`GC roots on the
6885stack <int_gcroot>`, as well as garbage collector implementations that
6886require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6887Front-ends for type-safe garbage collected languages should generate
6888these intrinsics to make use of the LLVM garbage collectors. For more
6889details, see `Accurate Garbage Collection with
6890LLVM <GarbageCollection.html>`_.
6891
6892The garbage collection intrinsics only operate on objects in the generic
6893address space (address space zero).
6894
6895.. _int_gcroot:
6896
6897'``llvm.gcroot``' Intrinsic
6898^^^^^^^^^^^^^^^^^^^^^^^^^^^
6899
6900Syntax:
6901"""""""
6902
6903::
6904
6905 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6906
6907Overview:
6908"""""""""
6909
6910The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6911the code generator, and allows some metadata to be associated with it.
6912
6913Arguments:
6914""""""""""
6915
6916The first argument specifies the address of a stack object that contains
6917the root pointer. The second pointer (which must be either a constant or
6918a global value address) contains the meta-data to be associated with the
6919root.
6920
6921Semantics:
6922""""""""""
6923
6924At runtime, a call to this intrinsic stores a null pointer into the
6925"ptrloc" location. At compile-time, the code generator generates
6926information to allow the runtime to find the pointer at GC safe points.
6927The '``llvm.gcroot``' intrinsic may only be used in a function which
6928:ref:`specifies a GC algorithm <gc>`.
6929
6930.. _int_gcread:
6931
6932'``llvm.gcread``' Intrinsic
6933^^^^^^^^^^^^^^^^^^^^^^^^^^^
6934
6935Syntax:
6936"""""""
6937
6938::
6939
6940 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6941
6942Overview:
6943"""""""""
6944
6945The '``llvm.gcread``' intrinsic identifies reads of references from heap
6946locations, allowing garbage collector implementations that require read
6947barriers.
6948
6949Arguments:
6950""""""""""
6951
6952The second argument is the address to read from, which should be an
6953address allocated from the garbage collector. The first object is a
6954pointer to the start of the referenced object, if needed by the language
6955runtime (otherwise null).
6956
6957Semantics:
6958""""""""""
6959
6960The '``llvm.gcread``' intrinsic has the same semantics as a load
6961instruction, but may be replaced with substantially more complex code by
6962the garbage collector runtime, as needed. The '``llvm.gcread``'
6963intrinsic may only be used in a function which :ref:`specifies a GC
6964algorithm <gc>`.
6965
6966.. _int_gcwrite:
6967
6968'``llvm.gcwrite``' Intrinsic
6969^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6970
6971Syntax:
6972"""""""
6973
6974::
6975
6976 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6977
6978Overview:
6979"""""""""
6980
6981The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6982locations, allowing garbage collector implementations that require write
6983barriers (such as generational or reference counting collectors).
6984
6985Arguments:
6986""""""""""
6987
6988The first argument is the reference to store, the second is the start of
6989the object to store it to, and the third is the address of the field of
6990Obj to store to. If the runtime does not require a pointer to the
6991object, Obj may be null.
6992
6993Semantics:
6994""""""""""
6995
6996The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6997instruction, but may be replaced with substantially more complex code by
6998the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6999intrinsic may only be used in a function which :ref:`specifies a GC
7000algorithm <gc>`.
7001
7002Code Generator Intrinsics
7003-------------------------
7004
7005These intrinsics are provided by LLVM to expose special features that
7006may only be implemented with code generator support.
7007
7008'``llvm.returnaddress``' Intrinsic
7009^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7010
7011Syntax:
7012"""""""
7013
7014::
7015
7016 declare i8 *@llvm.returnaddress(i32 <level>)
7017
7018Overview:
7019"""""""""
7020
7021The '``llvm.returnaddress``' intrinsic attempts to compute a
7022target-specific value indicating the return address of the current
7023function or one of its callers.
7024
7025Arguments:
7026""""""""""
7027
7028The argument to this intrinsic indicates which function to return the
7029address for. Zero indicates the calling function, one indicates its
7030caller, etc. The argument is **required** to be a constant integer
7031value.
7032
7033Semantics:
7034""""""""""
7035
7036The '``llvm.returnaddress``' intrinsic either returns a pointer
7037indicating the return address of the specified call frame, or zero if it
7038cannot be identified. The value returned by this intrinsic is likely to
7039be incorrect or 0 for arguments other than zero, so it should only be
7040used for debugging purposes.
7041
7042Note that calling this intrinsic does not prevent function inlining or
7043other aggressive transformations, so the value returned may not be that
7044of the obvious source-language caller.
7045
7046'``llvm.frameaddress``' Intrinsic
7047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7048
7049Syntax:
7050"""""""
7051
7052::
7053
7054 declare i8* @llvm.frameaddress(i32 <level>)
7055
7056Overview:
7057"""""""""
7058
7059The '``llvm.frameaddress``' intrinsic attempts to return the
7060target-specific frame pointer value for the specified stack frame.
7061
7062Arguments:
7063""""""""""
7064
7065The argument to this intrinsic indicates which function to return the
7066frame pointer for. Zero indicates the calling function, one indicates
7067its caller, etc. The argument is **required** to be a constant integer
7068value.
7069
7070Semantics:
7071""""""""""
7072
7073The '``llvm.frameaddress``' intrinsic either returns a pointer
7074indicating the frame address of the specified call frame, or zero if it
7075cannot be identified. The value returned by this intrinsic is likely to
7076be incorrect or 0 for arguments other than zero, so it should only be
7077used for debugging purposes.
7078
7079Note that calling this intrinsic does not prevent function inlining or
7080other aggressive transformations, so the value returned may not be that
7081of the obvious source-language caller.
7082
Renato Golinc7aea402014-05-06 16:51:25 +00007083.. _int_read_register:
7084.. _int_write_register:
7085
7086'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7087^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7088
7089Syntax:
7090"""""""
7091
7092::
7093
7094 declare i32 @llvm.read_register.i32(metadata)
7095 declare i64 @llvm.read_register.i64(metadata)
7096 declare void @llvm.write_register.i32(metadata, i32 @value)
7097 declare void @llvm.write_register.i64(metadata, i64 @value)
7098 !0 = metadata !{metadata !"sp\00"}
7099
7100Overview:
7101"""""""""
7102
7103The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7104provides access to the named register. The register must be valid on
7105the architecture being compiled to. The type needs to be compatible
7106with the register being read.
7107
7108Semantics:
7109""""""""""
7110
7111The '``llvm.read_register``' intrinsic returns the current value of the
7112register, where possible. The '``llvm.write_register``' intrinsic sets
7113the current value of the register, where possible.
7114
7115This is useful to implement named register global variables that need
7116to always be mapped to a specific register, as is common practice on
7117bare-metal programs including OS kernels.
7118
7119The compiler doesn't check for register availability or use of the used
7120register in surrounding code, including inline assembly. Because of that,
7121allocatable registers are not supported.
7122
7123Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007124architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007125work is needed to support other registers and even more so, allocatable
7126registers.
7127
Sean Silvab084af42012-12-07 10:36:55 +00007128.. _int_stacksave:
7129
7130'``llvm.stacksave``' Intrinsic
7131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7132
7133Syntax:
7134"""""""
7135
7136::
7137
7138 declare i8* @llvm.stacksave()
7139
7140Overview:
7141"""""""""
7142
7143The '``llvm.stacksave``' intrinsic is used to remember the current state
7144of the function stack, for use with
7145:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7146implementing language features like scoped automatic variable sized
7147arrays in C99.
7148
7149Semantics:
7150""""""""""
7151
7152This intrinsic returns a opaque pointer value that can be passed to
7153:ref:`llvm.stackrestore <int_stackrestore>`. When an
7154``llvm.stackrestore`` intrinsic is executed with a value saved from
7155``llvm.stacksave``, it effectively restores the state of the stack to
7156the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7157practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7158were allocated after the ``llvm.stacksave`` was executed.
7159
7160.. _int_stackrestore:
7161
7162'``llvm.stackrestore``' Intrinsic
7163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7164
7165Syntax:
7166"""""""
7167
7168::
7169
7170 declare void @llvm.stackrestore(i8* %ptr)
7171
7172Overview:
7173"""""""""
7174
7175The '``llvm.stackrestore``' intrinsic is used to restore the state of
7176the function stack to the state it was in when the corresponding
7177:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7178useful for implementing language features like scoped automatic variable
7179sized arrays in C99.
7180
7181Semantics:
7182""""""""""
7183
7184See the description for :ref:`llvm.stacksave <int_stacksave>`.
7185
7186'``llvm.prefetch``' Intrinsic
7187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7188
7189Syntax:
7190"""""""
7191
7192::
7193
7194 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7195
7196Overview:
7197"""""""""
7198
7199The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7200insert a prefetch instruction if supported; otherwise, it is a noop.
7201Prefetches have no effect on the behavior of the program but can change
7202its performance characteristics.
7203
7204Arguments:
7205""""""""""
7206
7207``address`` is the address to be prefetched, ``rw`` is the specifier
7208determining if the fetch should be for a read (0) or write (1), and
7209``locality`` is a temporal locality specifier ranging from (0) - no
7210locality, to (3) - extremely local keep in cache. The ``cache type``
7211specifies whether the prefetch is performed on the data (1) or
7212instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7213arguments must be constant integers.
7214
7215Semantics:
7216""""""""""
7217
7218This intrinsic does not modify the behavior of the program. In
7219particular, prefetches cannot trap and do not produce a value. On
7220targets that support this intrinsic, the prefetch can provide hints to
7221the processor cache for better performance.
7222
7223'``llvm.pcmarker``' Intrinsic
7224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7225
7226Syntax:
7227"""""""
7228
7229::
7230
7231 declare void @llvm.pcmarker(i32 <id>)
7232
7233Overview:
7234"""""""""
7235
7236The '``llvm.pcmarker``' intrinsic is a method to export a Program
7237Counter (PC) in a region of code to simulators and other tools. The
7238method is target specific, but it is expected that the marker will use
7239exported symbols to transmit the PC of the marker. The marker makes no
7240guarantees that it will remain with any specific instruction after
7241optimizations. It is possible that the presence of a marker will inhibit
7242optimizations. The intended use is to be inserted after optimizations to
7243allow correlations of simulation runs.
7244
7245Arguments:
7246""""""""""
7247
7248``id`` is a numerical id identifying the marker.
7249
7250Semantics:
7251""""""""""
7252
7253This intrinsic does not modify the behavior of the program. Backends
7254that do not support this intrinsic may ignore it.
7255
7256'``llvm.readcyclecounter``' Intrinsic
7257^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7258
7259Syntax:
7260"""""""
7261
7262::
7263
7264 declare i64 @llvm.readcyclecounter()
7265
7266Overview:
7267"""""""""
7268
7269The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7270counter register (or similar low latency, high accuracy clocks) on those
7271targets that support it. On X86, it should map to RDTSC. On Alpha, it
7272should map to RPCC. As the backing counters overflow quickly (on the
7273order of 9 seconds on alpha), this should only be used for small
7274timings.
7275
7276Semantics:
7277""""""""""
7278
7279When directly supported, reading the cycle counter should not modify any
7280memory. Implementations are allowed to either return a application
7281specific value or a system wide value. On backends without support, this
7282is lowered to a constant 0.
7283
Tim Northoverbc933082013-05-23 19:11:20 +00007284Note that runtime support may be conditional on the privilege-level code is
7285running at and the host platform.
7286
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007287'``llvm.clear_cache``' Intrinsic
7288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7289
7290Syntax:
7291"""""""
7292
7293::
7294
7295 declare void @llvm.clear_cache(i8*, i8*)
7296
7297Overview:
7298"""""""""
7299
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007300The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7301in the specified range to the execution unit of the processor. On
7302targets with non-unified instruction and data cache, the implementation
7303flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007304
7305Semantics:
7306""""""""""
7307
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007308On platforms with coherent instruction and data caches (e.g. x86), this
7309intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007310cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007311instructions or a system call, if cache flushing requires special
7312privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007313
Sean Silvad02bf3e2014-04-07 22:29:53 +00007314The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007315time library.
Renato Golin93010e62014-03-26 14:01:32 +00007316
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007317This instrinsic does *not* empty the instruction pipeline. Modifications
7318of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007319
Sean Silvab084af42012-12-07 10:36:55 +00007320Standard C Library Intrinsics
7321-----------------------------
7322
7323LLVM provides intrinsics for a few important standard C library
7324functions. These intrinsics allow source-language front-ends to pass
7325information about the alignment of the pointer arguments to the code
7326generator, providing opportunity for more efficient code generation.
7327
7328.. _int_memcpy:
7329
7330'``llvm.memcpy``' Intrinsic
7331^^^^^^^^^^^^^^^^^^^^^^^^^^^
7332
7333Syntax:
7334"""""""
7335
7336This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7337integer bit width and for different address spaces. Not all targets
7338support all bit widths however.
7339
7340::
7341
7342 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7343 i32 <len>, i32 <align>, i1 <isvolatile>)
7344 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7345 i64 <len>, i32 <align>, i1 <isvolatile>)
7346
7347Overview:
7348"""""""""
7349
7350The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7351source location to the destination location.
7352
7353Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7354intrinsics do not return a value, takes extra alignment/isvolatile
7355arguments and the pointers can be in specified address spaces.
7356
7357Arguments:
7358""""""""""
7359
7360The first argument is a pointer to the destination, the second is a
7361pointer to the source. The third argument is an integer argument
7362specifying the number of bytes to copy, the fourth argument is the
7363alignment of the source and destination locations, and the fifth is a
7364boolean indicating a volatile access.
7365
7366If the call to this intrinsic has an alignment value that is not 0 or 1,
7367then the caller guarantees that both the source and destination pointers
7368are aligned to that boundary.
7369
7370If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7371a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7372very cleanly specified and it is unwise to depend on it.
7373
7374Semantics:
7375""""""""""
7376
7377The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7378source location to the destination location, which are not allowed to
7379overlap. It copies "len" bytes of memory over. If the argument is known
7380to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007381argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007382
7383'``llvm.memmove``' Intrinsic
7384^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7385
7386Syntax:
7387"""""""
7388
7389This is an overloaded intrinsic. You can use llvm.memmove on any integer
7390bit width and for different address space. Not all targets support all
7391bit widths however.
7392
7393::
7394
7395 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7396 i32 <len>, i32 <align>, i1 <isvolatile>)
7397 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7398 i64 <len>, i32 <align>, i1 <isvolatile>)
7399
7400Overview:
7401"""""""""
7402
7403The '``llvm.memmove.*``' intrinsics move a block of memory from the
7404source location to the destination location. It is similar to the
7405'``llvm.memcpy``' intrinsic but allows the two memory locations to
7406overlap.
7407
7408Note that, unlike the standard libc function, the ``llvm.memmove.*``
7409intrinsics do not return a value, takes extra alignment/isvolatile
7410arguments and the pointers can be in specified address spaces.
7411
7412Arguments:
7413""""""""""
7414
7415The first argument is a pointer to the destination, the second is a
7416pointer to the source. The third argument is an integer argument
7417specifying the number of bytes to copy, the fourth argument is the
7418alignment of the source and destination locations, and the fifth is a
7419boolean indicating a volatile access.
7420
7421If the call to this intrinsic has an alignment value that is not 0 or 1,
7422then the caller guarantees that the source and destination pointers are
7423aligned to that boundary.
7424
7425If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7426is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7427not very cleanly specified and it is unwise to depend on it.
7428
7429Semantics:
7430""""""""""
7431
7432The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7433source location to the destination location, which may overlap. It
7434copies "len" bytes of memory over. If the argument is known to be
7435aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007436otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007437
7438'``llvm.memset.*``' Intrinsics
7439^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7440
7441Syntax:
7442"""""""
7443
7444This is an overloaded intrinsic. You can use llvm.memset on any integer
7445bit width and for different address spaces. However, not all targets
7446support all bit widths.
7447
7448::
7449
7450 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7451 i32 <len>, i32 <align>, i1 <isvolatile>)
7452 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7453 i64 <len>, i32 <align>, i1 <isvolatile>)
7454
7455Overview:
7456"""""""""
7457
7458The '``llvm.memset.*``' intrinsics fill a block of memory with a
7459particular byte value.
7460
7461Note that, unlike the standard libc function, the ``llvm.memset``
7462intrinsic does not return a value and takes extra alignment/volatile
7463arguments. Also, the destination can be in an arbitrary address space.
7464
7465Arguments:
7466""""""""""
7467
7468The first argument is a pointer to the destination to fill, the second
7469is the byte value with which to fill it, the third argument is an
7470integer argument specifying the number of bytes to fill, and the fourth
7471argument is the known alignment of the destination location.
7472
7473If the call to this intrinsic has an alignment value that is not 0 or 1,
7474then the caller guarantees that the destination pointer is aligned to
7475that boundary.
7476
7477If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7478a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7479very cleanly specified and it is unwise to depend on it.
7480
7481Semantics:
7482""""""""""
7483
7484The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7485at the destination location. If the argument is known to be aligned to
7486some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007487it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007488
7489'``llvm.sqrt.*``' Intrinsic
7490^^^^^^^^^^^^^^^^^^^^^^^^^^^
7491
7492Syntax:
7493"""""""
7494
7495This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7496floating point or vector of floating point type. Not all targets support
7497all types however.
7498
7499::
7500
7501 declare float @llvm.sqrt.f32(float %Val)
7502 declare double @llvm.sqrt.f64(double %Val)
7503 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7504 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7505 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7506
7507Overview:
7508"""""""""
7509
7510The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7511returning the same value as the libm '``sqrt``' functions would. Unlike
7512``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7513negative numbers other than -0.0 (which allows for better optimization,
7514because there is no need to worry about errno being set).
7515``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7516
7517Arguments:
7518""""""""""
7519
7520The argument and return value are floating point numbers of the same
7521type.
7522
7523Semantics:
7524""""""""""
7525
7526This function returns the sqrt of the specified operand if it is a
7527nonnegative floating point number.
7528
7529'``llvm.powi.*``' Intrinsic
7530^^^^^^^^^^^^^^^^^^^^^^^^^^^
7531
7532Syntax:
7533"""""""
7534
7535This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7536floating point or vector of floating point type. Not all targets support
7537all types however.
7538
7539::
7540
7541 declare float @llvm.powi.f32(float %Val, i32 %power)
7542 declare double @llvm.powi.f64(double %Val, i32 %power)
7543 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7544 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7545 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7546
7547Overview:
7548"""""""""
7549
7550The '``llvm.powi.*``' intrinsics return the first operand raised to the
7551specified (positive or negative) power. The order of evaluation of
7552multiplications is not defined. When a vector of floating point type is
7553used, the second argument remains a scalar integer value.
7554
7555Arguments:
7556""""""""""
7557
7558The second argument is an integer power, and the first is a value to
7559raise to that power.
7560
7561Semantics:
7562""""""""""
7563
7564This function returns the first value raised to the second power with an
7565unspecified sequence of rounding operations.
7566
7567'``llvm.sin.*``' Intrinsic
7568^^^^^^^^^^^^^^^^^^^^^^^^^^
7569
7570Syntax:
7571"""""""
7572
7573This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7574floating point or vector of floating point type. Not all targets support
7575all types however.
7576
7577::
7578
7579 declare float @llvm.sin.f32(float %Val)
7580 declare double @llvm.sin.f64(double %Val)
7581 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7582 declare fp128 @llvm.sin.f128(fp128 %Val)
7583 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7584
7585Overview:
7586"""""""""
7587
7588The '``llvm.sin.*``' intrinsics return the sine of the operand.
7589
7590Arguments:
7591""""""""""
7592
7593The argument and return value are floating point numbers of the same
7594type.
7595
7596Semantics:
7597""""""""""
7598
7599This function returns the sine of the specified operand, returning the
7600same values as the libm ``sin`` functions would, and handles error
7601conditions in the same way.
7602
7603'``llvm.cos.*``' Intrinsic
7604^^^^^^^^^^^^^^^^^^^^^^^^^^
7605
7606Syntax:
7607"""""""
7608
7609This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7610floating point or vector of floating point type. Not all targets support
7611all types however.
7612
7613::
7614
7615 declare float @llvm.cos.f32(float %Val)
7616 declare double @llvm.cos.f64(double %Val)
7617 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7618 declare fp128 @llvm.cos.f128(fp128 %Val)
7619 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7620
7621Overview:
7622"""""""""
7623
7624The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7625
7626Arguments:
7627""""""""""
7628
7629The argument and return value are floating point numbers of the same
7630type.
7631
7632Semantics:
7633""""""""""
7634
7635This function returns the cosine of the specified operand, returning the
7636same values as the libm ``cos`` functions would, and handles error
7637conditions in the same way.
7638
7639'``llvm.pow.*``' Intrinsic
7640^^^^^^^^^^^^^^^^^^^^^^^^^^
7641
7642Syntax:
7643"""""""
7644
7645This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7646floating point or vector of floating point type. Not all targets support
7647all types however.
7648
7649::
7650
7651 declare float @llvm.pow.f32(float %Val, float %Power)
7652 declare double @llvm.pow.f64(double %Val, double %Power)
7653 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7654 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7655 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7656
7657Overview:
7658"""""""""
7659
7660The '``llvm.pow.*``' intrinsics return the first operand raised to the
7661specified (positive or negative) power.
7662
7663Arguments:
7664""""""""""
7665
7666The second argument is a floating point power, and the first is a value
7667to raise to that power.
7668
7669Semantics:
7670""""""""""
7671
7672This function returns the first value raised to the second power,
7673returning the same values as the libm ``pow`` functions would, and
7674handles error conditions in the same way.
7675
7676'``llvm.exp.*``' Intrinsic
7677^^^^^^^^^^^^^^^^^^^^^^^^^^
7678
7679Syntax:
7680"""""""
7681
7682This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7683floating point or vector of floating point type. Not all targets support
7684all types however.
7685
7686::
7687
7688 declare float @llvm.exp.f32(float %Val)
7689 declare double @llvm.exp.f64(double %Val)
7690 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7691 declare fp128 @llvm.exp.f128(fp128 %Val)
7692 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7693
7694Overview:
7695"""""""""
7696
7697The '``llvm.exp.*``' intrinsics perform the exp function.
7698
7699Arguments:
7700""""""""""
7701
7702The argument and return value are floating point numbers of the same
7703type.
7704
7705Semantics:
7706""""""""""
7707
7708This function returns the same values as the libm ``exp`` functions
7709would, and handles error conditions in the same way.
7710
7711'``llvm.exp2.*``' Intrinsic
7712^^^^^^^^^^^^^^^^^^^^^^^^^^^
7713
7714Syntax:
7715"""""""
7716
7717This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7718floating point or vector of floating point type. Not all targets support
7719all types however.
7720
7721::
7722
7723 declare float @llvm.exp2.f32(float %Val)
7724 declare double @llvm.exp2.f64(double %Val)
7725 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7726 declare fp128 @llvm.exp2.f128(fp128 %Val)
7727 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7728
7729Overview:
7730"""""""""
7731
7732The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7733
7734Arguments:
7735""""""""""
7736
7737The argument and return value are floating point numbers of the same
7738type.
7739
7740Semantics:
7741""""""""""
7742
7743This function returns the same values as the libm ``exp2`` functions
7744would, and handles error conditions in the same way.
7745
7746'``llvm.log.*``' Intrinsic
7747^^^^^^^^^^^^^^^^^^^^^^^^^^
7748
7749Syntax:
7750"""""""
7751
7752This is an overloaded intrinsic. You can use ``llvm.log`` on any
7753floating point or vector of floating point type. Not all targets support
7754all types however.
7755
7756::
7757
7758 declare float @llvm.log.f32(float %Val)
7759 declare double @llvm.log.f64(double %Val)
7760 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7761 declare fp128 @llvm.log.f128(fp128 %Val)
7762 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7763
7764Overview:
7765"""""""""
7766
7767The '``llvm.log.*``' intrinsics perform the log function.
7768
7769Arguments:
7770""""""""""
7771
7772The argument and return value are floating point numbers of the same
7773type.
7774
7775Semantics:
7776""""""""""
7777
7778This function returns the same values as the libm ``log`` functions
7779would, and handles error conditions in the same way.
7780
7781'``llvm.log10.*``' Intrinsic
7782^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7783
7784Syntax:
7785"""""""
7786
7787This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7788floating point or vector of floating point type. Not all targets support
7789all types however.
7790
7791::
7792
7793 declare float @llvm.log10.f32(float %Val)
7794 declare double @llvm.log10.f64(double %Val)
7795 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7796 declare fp128 @llvm.log10.f128(fp128 %Val)
7797 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7798
7799Overview:
7800"""""""""
7801
7802The '``llvm.log10.*``' intrinsics perform the log10 function.
7803
7804Arguments:
7805""""""""""
7806
7807The argument and return value are floating point numbers of the same
7808type.
7809
7810Semantics:
7811""""""""""
7812
7813This function returns the same values as the libm ``log10`` functions
7814would, and handles error conditions in the same way.
7815
7816'``llvm.log2.*``' Intrinsic
7817^^^^^^^^^^^^^^^^^^^^^^^^^^^
7818
7819Syntax:
7820"""""""
7821
7822This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7823floating point or vector of floating point type. Not all targets support
7824all types however.
7825
7826::
7827
7828 declare float @llvm.log2.f32(float %Val)
7829 declare double @llvm.log2.f64(double %Val)
7830 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7831 declare fp128 @llvm.log2.f128(fp128 %Val)
7832 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7833
7834Overview:
7835"""""""""
7836
7837The '``llvm.log2.*``' intrinsics perform the log2 function.
7838
7839Arguments:
7840""""""""""
7841
7842The argument and return value are floating point numbers of the same
7843type.
7844
7845Semantics:
7846""""""""""
7847
7848This function returns the same values as the libm ``log2`` functions
7849would, and handles error conditions in the same way.
7850
7851'``llvm.fma.*``' Intrinsic
7852^^^^^^^^^^^^^^^^^^^^^^^^^^
7853
7854Syntax:
7855"""""""
7856
7857This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7858floating point or vector of floating point type. Not all targets support
7859all types however.
7860
7861::
7862
7863 declare float @llvm.fma.f32(float %a, float %b, float %c)
7864 declare double @llvm.fma.f64(double %a, double %b, double %c)
7865 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7866 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7867 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7868
7869Overview:
7870"""""""""
7871
7872The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7873operation.
7874
7875Arguments:
7876""""""""""
7877
7878The argument and return value are floating point numbers of the same
7879type.
7880
7881Semantics:
7882""""""""""
7883
7884This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007885would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007886
7887'``llvm.fabs.*``' Intrinsic
7888^^^^^^^^^^^^^^^^^^^^^^^^^^^
7889
7890Syntax:
7891"""""""
7892
7893This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7894floating point or vector of floating point type. Not all targets support
7895all types however.
7896
7897::
7898
7899 declare float @llvm.fabs.f32(float %Val)
7900 declare double @llvm.fabs.f64(double %Val)
7901 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7902 declare fp128 @llvm.fabs.f128(fp128 %Val)
7903 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7904
7905Overview:
7906"""""""""
7907
7908The '``llvm.fabs.*``' intrinsics return the absolute value of the
7909operand.
7910
7911Arguments:
7912""""""""""
7913
7914The argument and return value are floating point numbers of the same
7915type.
7916
7917Semantics:
7918""""""""""
7919
7920This function returns the same values as the libm ``fabs`` functions
7921would, and handles error conditions in the same way.
7922
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007923'``llvm.copysign.*``' Intrinsic
7924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7925
7926Syntax:
7927"""""""
7928
7929This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7930floating point or vector of floating point type. Not all targets support
7931all types however.
7932
7933::
7934
7935 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7936 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7937 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7938 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7939 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7940
7941Overview:
7942"""""""""
7943
7944The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7945first operand and the sign of the second operand.
7946
7947Arguments:
7948""""""""""
7949
7950The arguments and return value are floating point numbers of the same
7951type.
7952
7953Semantics:
7954""""""""""
7955
7956This function returns the same values as the libm ``copysign``
7957functions would, and handles error conditions in the same way.
7958
Sean Silvab084af42012-12-07 10:36:55 +00007959'``llvm.floor.*``' Intrinsic
7960^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7961
7962Syntax:
7963"""""""
7964
7965This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7966floating point or vector of floating point type. Not all targets support
7967all types however.
7968
7969::
7970
7971 declare float @llvm.floor.f32(float %Val)
7972 declare double @llvm.floor.f64(double %Val)
7973 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7974 declare fp128 @llvm.floor.f128(fp128 %Val)
7975 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7976
7977Overview:
7978"""""""""
7979
7980The '``llvm.floor.*``' intrinsics return the floor of the operand.
7981
7982Arguments:
7983""""""""""
7984
7985The argument and return value are floating point numbers of the same
7986type.
7987
7988Semantics:
7989""""""""""
7990
7991This function returns the same values as the libm ``floor`` functions
7992would, and handles error conditions in the same way.
7993
7994'``llvm.ceil.*``' Intrinsic
7995^^^^^^^^^^^^^^^^^^^^^^^^^^^
7996
7997Syntax:
7998"""""""
7999
8000This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8001floating point or vector of floating point type. Not all targets support
8002all types however.
8003
8004::
8005
8006 declare float @llvm.ceil.f32(float %Val)
8007 declare double @llvm.ceil.f64(double %Val)
8008 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8009 declare fp128 @llvm.ceil.f128(fp128 %Val)
8010 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8011
8012Overview:
8013"""""""""
8014
8015The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8016
8017Arguments:
8018""""""""""
8019
8020The argument and return value are floating point numbers of the same
8021type.
8022
8023Semantics:
8024""""""""""
8025
8026This function returns the same values as the libm ``ceil`` functions
8027would, and handles error conditions in the same way.
8028
8029'``llvm.trunc.*``' Intrinsic
8030^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8031
8032Syntax:
8033"""""""
8034
8035This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8036floating point or vector of floating point type. Not all targets support
8037all types however.
8038
8039::
8040
8041 declare float @llvm.trunc.f32(float %Val)
8042 declare double @llvm.trunc.f64(double %Val)
8043 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8044 declare fp128 @llvm.trunc.f128(fp128 %Val)
8045 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8046
8047Overview:
8048"""""""""
8049
8050The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8051nearest integer not larger in magnitude than the operand.
8052
8053Arguments:
8054""""""""""
8055
8056The argument and return value are floating point numbers of the same
8057type.
8058
8059Semantics:
8060""""""""""
8061
8062This function returns the same values as the libm ``trunc`` functions
8063would, and handles error conditions in the same way.
8064
8065'``llvm.rint.*``' Intrinsic
8066^^^^^^^^^^^^^^^^^^^^^^^^^^^
8067
8068Syntax:
8069"""""""
8070
8071This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8072floating point or vector of floating point type. Not all targets support
8073all types however.
8074
8075::
8076
8077 declare float @llvm.rint.f32(float %Val)
8078 declare double @llvm.rint.f64(double %Val)
8079 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8080 declare fp128 @llvm.rint.f128(fp128 %Val)
8081 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8082
8083Overview:
8084"""""""""
8085
8086The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8087nearest integer. It may raise an inexact floating-point exception if the
8088operand isn't an integer.
8089
8090Arguments:
8091""""""""""
8092
8093The argument and return value are floating point numbers of the same
8094type.
8095
8096Semantics:
8097""""""""""
8098
8099This function returns the same values as the libm ``rint`` functions
8100would, and handles error conditions in the same way.
8101
8102'``llvm.nearbyint.*``' Intrinsic
8103^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8104
8105Syntax:
8106"""""""
8107
8108This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8109floating point or vector of floating point type. Not all targets support
8110all types however.
8111
8112::
8113
8114 declare float @llvm.nearbyint.f32(float %Val)
8115 declare double @llvm.nearbyint.f64(double %Val)
8116 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8117 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8118 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8119
8120Overview:
8121"""""""""
8122
8123The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8124nearest integer.
8125
8126Arguments:
8127""""""""""
8128
8129The argument and return value are floating point numbers of the same
8130type.
8131
8132Semantics:
8133""""""""""
8134
8135This function returns the same values as the libm ``nearbyint``
8136functions would, and handles error conditions in the same way.
8137
Hal Finkel171817e2013-08-07 22:49:12 +00008138'``llvm.round.*``' Intrinsic
8139^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8140
8141Syntax:
8142"""""""
8143
8144This is an overloaded intrinsic. You can use ``llvm.round`` on any
8145floating point or vector of floating point type. Not all targets support
8146all types however.
8147
8148::
8149
8150 declare float @llvm.round.f32(float %Val)
8151 declare double @llvm.round.f64(double %Val)
8152 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8153 declare fp128 @llvm.round.f128(fp128 %Val)
8154 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8155
8156Overview:
8157"""""""""
8158
8159The '``llvm.round.*``' intrinsics returns the operand rounded to the
8160nearest integer.
8161
8162Arguments:
8163""""""""""
8164
8165The argument and return value are floating point numbers of the same
8166type.
8167
8168Semantics:
8169""""""""""
8170
8171This function returns the same values as the libm ``round``
8172functions would, and handles error conditions in the same way.
8173
Sean Silvab084af42012-12-07 10:36:55 +00008174Bit Manipulation Intrinsics
8175---------------------------
8176
8177LLVM provides intrinsics for a few important bit manipulation
8178operations. These allow efficient code generation for some algorithms.
8179
8180'``llvm.bswap.*``' Intrinsics
8181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8182
8183Syntax:
8184"""""""
8185
8186This is an overloaded intrinsic function. You can use bswap on any
8187integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8188
8189::
8190
8191 declare i16 @llvm.bswap.i16(i16 <id>)
8192 declare i32 @llvm.bswap.i32(i32 <id>)
8193 declare i64 @llvm.bswap.i64(i64 <id>)
8194
8195Overview:
8196"""""""""
8197
8198The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8199values with an even number of bytes (positive multiple of 16 bits).
8200These are useful for performing operations on data that is not in the
8201target's native byte order.
8202
8203Semantics:
8204""""""""""
8205
8206The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8207and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8208intrinsic returns an i32 value that has the four bytes of the input i32
8209swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8210returned i32 will have its bytes in 3, 2, 1, 0 order. The
8211``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8212concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8213respectively).
8214
8215'``llvm.ctpop.*``' Intrinsic
8216^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8217
8218Syntax:
8219"""""""
8220
8221This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8222bit width, or on any vector with integer elements. Not all targets
8223support all bit widths or vector types, however.
8224
8225::
8226
8227 declare i8 @llvm.ctpop.i8(i8 <src>)
8228 declare i16 @llvm.ctpop.i16(i16 <src>)
8229 declare i32 @llvm.ctpop.i32(i32 <src>)
8230 declare i64 @llvm.ctpop.i64(i64 <src>)
8231 declare i256 @llvm.ctpop.i256(i256 <src>)
8232 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8233
8234Overview:
8235"""""""""
8236
8237The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8238in a value.
8239
8240Arguments:
8241""""""""""
8242
8243The only argument is the value to be counted. The argument may be of any
8244integer type, or a vector with integer elements. The return type must
8245match the argument type.
8246
8247Semantics:
8248""""""""""
8249
8250The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8251each element of a vector.
8252
8253'``llvm.ctlz.*``' Intrinsic
8254^^^^^^^^^^^^^^^^^^^^^^^^^^^
8255
8256Syntax:
8257"""""""
8258
8259This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8260integer bit width, or any vector whose elements are integers. Not all
8261targets support all bit widths or vector types, however.
8262
8263::
8264
8265 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8266 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8267 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8268 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8269 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8270 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8271
8272Overview:
8273"""""""""
8274
8275The '``llvm.ctlz``' family of intrinsic functions counts the number of
8276leading zeros in a variable.
8277
8278Arguments:
8279""""""""""
8280
8281The first argument is the value to be counted. This argument may be of
8282any integer type, or a vectory with integer element type. The return
8283type must match the first argument type.
8284
8285The second argument must be a constant and is a flag to indicate whether
8286the intrinsic should ensure that a zero as the first argument produces a
8287defined result. Historically some architectures did not provide a
8288defined result for zero values as efficiently, and many algorithms are
8289now predicated on avoiding zero-value inputs.
8290
8291Semantics:
8292""""""""""
8293
8294The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8295zeros in a variable, or within each element of the vector. If
8296``src == 0`` then the result is the size in bits of the type of ``src``
8297if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8298``llvm.ctlz(i32 2) = 30``.
8299
8300'``llvm.cttz.*``' Intrinsic
8301^^^^^^^^^^^^^^^^^^^^^^^^^^^
8302
8303Syntax:
8304"""""""
8305
8306This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8307integer bit width, or any vector of integer elements. Not all targets
8308support all bit widths or vector types, however.
8309
8310::
8311
8312 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8313 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8314 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8315 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8316 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8317 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8318
8319Overview:
8320"""""""""
8321
8322The '``llvm.cttz``' family of intrinsic functions counts the number of
8323trailing zeros.
8324
8325Arguments:
8326""""""""""
8327
8328The first argument is the value to be counted. This argument may be of
8329any integer type, or a vectory with integer element type. The return
8330type must match the first argument type.
8331
8332The second argument must be a constant and is a flag to indicate whether
8333the intrinsic should ensure that a zero as the first argument produces a
8334defined result. Historically some architectures did not provide a
8335defined result for zero values as efficiently, and many algorithms are
8336now predicated on avoiding zero-value inputs.
8337
8338Semantics:
8339""""""""""
8340
8341The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8342zeros in a variable, or within each element of a vector. If ``src == 0``
8343then the result is the size in bits of the type of ``src`` if
8344``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8345``llvm.cttz(2) = 1``.
8346
8347Arithmetic with Overflow Intrinsics
8348-----------------------------------
8349
8350LLVM provides intrinsics for some arithmetic with overflow operations.
8351
8352'``llvm.sadd.with.overflow.*``' Intrinsics
8353^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8354
8355Syntax:
8356"""""""
8357
8358This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8359on any integer bit width.
8360
8361::
8362
8363 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8364 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8365 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8366
8367Overview:
8368"""""""""
8369
8370The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8371a signed addition of the two arguments, and indicate whether an overflow
8372occurred during the signed summation.
8373
8374Arguments:
8375""""""""""
8376
8377The arguments (%a and %b) and the first element of the result structure
8378may be of integer types of any bit width, but they must have the same
8379bit width. The second element of the result structure must be of type
8380``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8381addition.
8382
8383Semantics:
8384""""""""""
8385
8386The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008387a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008388first element of which is the signed summation, and the second element
8389of which is a bit specifying if the signed summation resulted in an
8390overflow.
8391
8392Examples:
8393"""""""""
8394
8395.. code-block:: llvm
8396
8397 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8398 %sum = extractvalue {i32, i1} %res, 0
8399 %obit = extractvalue {i32, i1} %res, 1
8400 br i1 %obit, label %overflow, label %normal
8401
8402'``llvm.uadd.with.overflow.*``' Intrinsics
8403^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8404
8405Syntax:
8406"""""""
8407
8408This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8409on any integer bit width.
8410
8411::
8412
8413 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8414 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8415 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8416
8417Overview:
8418"""""""""
8419
8420The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8421an unsigned addition of the two arguments, and indicate whether a carry
8422occurred during the unsigned summation.
8423
8424Arguments:
8425""""""""""
8426
8427The arguments (%a and %b) and the first element of the result structure
8428may be of integer types of any bit width, but they must have the same
8429bit width. The second element of the result structure must be of type
8430``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8431addition.
8432
8433Semantics:
8434""""""""""
8435
8436The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008437an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008438first element of which is the sum, and the second element of which is a
8439bit specifying if the unsigned summation resulted in a carry.
8440
8441Examples:
8442"""""""""
8443
8444.. code-block:: llvm
8445
8446 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8447 %sum = extractvalue {i32, i1} %res, 0
8448 %obit = extractvalue {i32, i1} %res, 1
8449 br i1 %obit, label %carry, label %normal
8450
8451'``llvm.ssub.with.overflow.*``' Intrinsics
8452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8453
8454Syntax:
8455"""""""
8456
8457This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8458on any integer bit width.
8459
8460::
8461
8462 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8463 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8464 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8465
8466Overview:
8467"""""""""
8468
8469The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8470a signed subtraction of the two arguments, and indicate whether an
8471overflow occurred during the signed subtraction.
8472
8473Arguments:
8474""""""""""
8475
8476The arguments (%a and %b) and the first element of the result structure
8477may be of integer types of any bit width, but they must have the same
8478bit width. The second element of the result structure must be of type
8479``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8480subtraction.
8481
8482Semantics:
8483""""""""""
8484
8485The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008486a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008487first element of which is the subtraction, and the second element of
8488which is a bit specifying if the signed subtraction resulted in an
8489overflow.
8490
8491Examples:
8492"""""""""
8493
8494.. code-block:: llvm
8495
8496 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8497 %sum = extractvalue {i32, i1} %res, 0
8498 %obit = extractvalue {i32, i1} %res, 1
8499 br i1 %obit, label %overflow, label %normal
8500
8501'``llvm.usub.with.overflow.*``' Intrinsics
8502^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8503
8504Syntax:
8505"""""""
8506
8507This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8508on any integer bit width.
8509
8510::
8511
8512 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8513 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8514 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8515
8516Overview:
8517"""""""""
8518
8519The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8520an unsigned subtraction of the two arguments, and indicate whether an
8521overflow occurred during the unsigned subtraction.
8522
8523Arguments:
8524""""""""""
8525
8526The arguments (%a and %b) and the first element of the result structure
8527may be of integer types of any bit width, but they must have the same
8528bit width. The second element of the result structure must be of type
8529``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8530subtraction.
8531
8532Semantics:
8533""""""""""
8534
8535The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008536an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008537the first element of which is the subtraction, and the second element of
8538which is a bit specifying if the unsigned subtraction resulted in an
8539overflow.
8540
8541Examples:
8542"""""""""
8543
8544.. code-block:: llvm
8545
8546 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8547 %sum = extractvalue {i32, i1} %res, 0
8548 %obit = extractvalue {i32, i1} %res, 1
8549 br i1 %obit, label %overflow, label %normal
8550
8551'``llvm.smul.with.overflow.*``' Intrinsics
8552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8553
8554Syntax:
8555"""""""
8556
8557This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8558on any integer bit width.
8559
8560::
8561
8562 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8563 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8564 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8565
8566Overview:
8567"""""""""
8568
8569The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8570a signed multiplication of the two arguments, and indicate whether an
8571overflow occurred during the signed multiplication.
8572
8573Arguments:
8574""""""""""
8575
8576The arguments (%a and %b) and the first element of the result structure
8577may be of integer types of any bit width, but they must have the same
8578bit width. The second element of the result structure must be of type
8579``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8580multiplication.
8581
8582Semantics:
8583""""""""""
8584
8585The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008586a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008587the first element of which is the multiplication, and the second element
8588of which is a bit specifying if the signed multiplication resulted in an
8589overflow.
8590
8591Examples:
8592"""""""""
8593
8594.. code-block:: llvm
8595
8596 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8597 %sum = extractvalue {i32, i1} %res, 0
8598 %obit = extractvalue {i32, i1} %res, 1
8599 br i1 %obit, label %overflow, label %normal
8600
8601'``llvm.umul.with.overflow.*``' Intrinsics
8602^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8603
8604Syntax:
8605"""""""
8606
8607This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8608on any integer bit width.
8609
8610::
8611
8612 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8613 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8614 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8615
8616Overview:
8617"""""""""
8618
8619The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8620a unsigned multiplication of the two arguments, and indicate whether an
8621overflow occurred during the unsigned multiplication.
8622
8623Arguments:
8624""""""""""
8625
8626The arguments (%a and %b) and the first element of the result structure
8627may be of integer types of any bit width, but they must have the same
8628bit width. The second element of the result structure must be of type
8629``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8630multiplication.
8631
8632Semantics:
8633""""""""""
8634
8635The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008636an unsigned multiplication of the two arguments. They return a structure ---
8637the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008638element of which is a bit specifying if the unsigned multiplication
8639resulted in an overflow.
8640
8641Examples:
8642"""""""""
8643
8644.. code-block:: llvm
8645
8646 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8647 %sum = extractvalue {i32, i1} %res, 0
8648 %obit = extractvalue {i32, i1} %res, 1
8649 br i1 %obit, label %overflow, label %normal
8650
8651Specialised Arithmetic Intrinsics
8652---------------------------------
8653
8654'``llvm.fmuladd.*``' Intrinsic
8655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8656
8657Syntax:
8658"""""""
8659
8660::
8661
8662 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8663 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8664
8665Overview:
8666"""""""""
8667
8668The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008669expressions that can be fused if the code generator determines that (a) the
8670target instruction set has support for a fused operation, and (b) that the
8671fused operation is more efficient than the equivalent, separate pair of mul
8672and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008673
8674Arguments:
8675""""""""""
8676
8677The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8678multiplicands, a and b, and an addend c.
8679
8680Semantics:
8681""""""""""
8682
8683The expression:
8684
8685::
8686
8687 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8688
8689is equivalent to the expression a \* b + c, except that rounding will
8690not be performed between the multiplication and addition steps if the
8691code generator fuses the operations. Fusion is not guaranteed, even if
8692the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008693corresponding llvm.fma.\* intrinsic function should be used
8694instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008695
8696Examples:
8697"""""""""
8698
8699.. code-block:: llvm
8700
Tim Northover675a0962014-06-13 14:24:23 +00008701 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00008702
8703Half Precision Floating Point Intrinsics
8704----------------------------------------
8705
8706For most target platforms, half precision floating point is a
8707storage-only format. This means that it is a dense encoding (in memory)
8708but does not support computation in the format.
8709
8710This means that code must first load the half-precision floating point
8711value as an i16, then convert it to float with
8712:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8713then be performed on the float value (including extending to double
8714etc). To store the value back to memory, it is first converted to float
8715if needed, then converted to i16 with
8716:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8717i16 value.
8718
8719.. _int_convert_to_fp16:
8720
8721'``llvm.convert.to.fp16``' Intrinsic
8722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8723
8724Syntax:
8725"""""""
8726
8727::
8728
Tim Northoverfd7e4242014-07-17 10:51:23 +00008729 declare i16 @llvm.convert.to.fp16.f32(float %a)
8730 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00008731
8732Overview:
8733"""""""""
8734
Tim Northoverfd7e4242014-07-17 10:51:23 +00008735The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8736conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00008737
8738Arguments:
8739""""""""""
8740
8741The intrinsic function contains single argument - the value to be
8742converted.
8743
8744Semantics:
8745""""""""""
8746
Tim Northoverfd7e4242014-07-17 10:51:23 +00008747The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8748conventional floating point format to half precision floating point format. The
8749return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00008750
8751Examples:
8752"""""""""
8753
8754.. code-block:: llvm
8755
Tim Northoverfd7e4242014-07-17 10:51:23 +00008756 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00008757 store i16 %res, i16* @x, align 2
8758
8759.. _int_convert_from_fp16:
8760
8761'``llvm.convert.from.fp16``' Intrinsic
8762^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8763
8764Syntax:
8765"""""""
8766
8767::
8768
Tim Northoverfd7e4242014-07-17 10:51:23 +00008769 declare float @llvm.convert.from.fp16.f32(i16 %a)
8770 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008771
8772Overview:
8773"""""""""
8774
8775The '``llvm.convert.from.fp16``' intrinsic function performs a
8776conversion from half precision floating point format to single precision
8777floating point format.
8778
8779Arguments:
8780""""""""""
8781
8782The intrinsic function contains single argument - the value to be
8783converted.
8784
8785Semantics:
8786""""""""""
8787
8788The '``llvm.convert.from.fp16``' intrinsic function performs a
8789conversion from half single precision floating point format to single
8790precision floating point format. The input half-float value is
8791represented by an ``i16`` value.
8792
8793Examples:
8794"""""""""
8795
8796.. code-block:: llvm
8797
8798 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00008799 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008800
8801Debugger Intrinsics
8802-------------------
8803
8804The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8805prefix), are described in the `LLVM Source Level
8806Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8807document.
8808
8809Exception Handling Intrinsics
8810-----------------------------
8811
8812The LLVM exception handling intrinsics (which all start with
8813``llvm.eh.`` prefix), are described in the `LLVM Exception
8814Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8815
8816.. _int_trampoline:
8817
8818Trampoline Intrinsics
8819---------------------
8820
8821These intrinsics make it possible to excise one parameter, marked with
8822the :ref:`nest <nest>` attribute, from a function. The result is a
8823callable function pointer lacking the nest parameter - the caller does
8824not need to provide a value for it. Instead, the value to use is stored
8825in advance in a "trampoline", a block of memory usually allocated on the
8826stack, which also contains code to splice the nest value into the
8827argument list. This is used to implement the GCC nested function address
8828extension.
8829
8830For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8831then the resulting function pointer has signature ``i32 (i32, i32)*``.
8832It can be created as follows:
8833
8834.. code-block:: llvm
8835
8836 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8837 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8838 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8839 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8840 %fp = bitcast i8* %p to i32 (i32, i32)*
8841
8842The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8843``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8844
8845.. _int_it:
8846
8847'``llvm.init.trampoline``' Intrinsic
8848^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8849
8850Syntax:
8851"""""""
8852
8853::
8854
8855 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8856
8857Overview:
8858"""""""""
8859
8860This fills the memory pointed to by ``tramp`` with executable code,
8861turning it into a trampoline.
8862
8863Arguments:
8864""""""""""
8865
8866The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8867pointers. The ``tramp`` argument must point to a sufficiently large and
8868sufficiently aligned block of memory; this memory is written to by the
8869intrinsic. Note that the size and the alignment are target-specific -
8870LLVM currently provides no portable way of determining them, so a
8871front-end that generates this intrinsic needs to have some
8872target-specific knowledge. The ``func`` argument must hold a function
8873bitcast to an ``i8*``.
8874
8875Semantics:
8876""""""""""
8877
8878The block of memory pointed to by ``tramp`` is filled with target
8879dependent code, turning it into a function. Then ``tramp`` needs to be
8880passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8881be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8882function's signature is the same as that of ``func`` with any arguments
8883marked with the ``nest`` attribute removed. At most one such ``nest``
8884argument is allowed, and it must be of pointer type. Calling the new
8885function is equivalent to calling ``func`` with the same argument list,
8886but with ``nval`` used for the missing ``nest`` argument. If, after
8887calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8888modified, then the effect of any later call to the returned function
8889pointer is undefined.
8890
8891.. _int_at:
8892
8893'``llvm.adjust.trampoline``' Intrinsic
8894^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8895
8896Syntax:
8897"""""""
8898
8899::
8900
8901 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8902
8903Overview:
8904"""""""""
8905
8906This performs any required machine-specific adjustment to the address of
8907a trampoline (passed as ``tramp``).
8908
8909Arguments:
8910""""""""""
8911
8912``tramp`` must point to a block of memory which already has trampoline
8913code filled in by a previous call to
8914:ref:`llvm.init.trampoline <int_it>`.
8915
8916Semantics:
8917""""""""""
8918
8919On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00008920different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00008921intrinsic returns the executable address corresponding to ``tramp``
8922after performing the required machine specific adjustments. The pointer
8923returned can then be :ref:`bitcast and executed <int_trampoline>`.
8924
8925Memory Use Markers
8926------------------
8927
Sanjay Patel69bf48e2014-07-04 19:40:43 +00008928This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00008929memory objects and ranges where variables are immutable.
8930
Reid Klecknera534a382013-12-19 02:14:12 +00008931.. _int_lifestart:
8932
Sean Silvab084af42012-12-07 10:36:55 +00008933'``llvm.lifetime.start``' Intrinsic
8934^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8935
8936Syntax:
8937"""""""
8938
8939::
8940
8941 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8942
8943Overview:
8944"""""""""
8945
8946The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8947object's lifetime.
8948
8949Arguments:
8950""""""""""
8951
8952The first argument is a constant integer representing the size of the
8953object, or -1 if it is variable sized. The second argument is a pointer
8954to the object.
8955
8956Semantics:
8957""""""""""
8958
8959This intrinsic indicates that before this point in the code, the value
8960of the memory pointed to by ``ptr`` is dead. This means that it is known
8961to never be used and has an undefined value. A load from the pointer
8962that precedes this intrinsic can be replaced with ``'undef'``.
8963
Reid Klecknera534a382013-12-19 02:14:12 +00008964.. _int_lifeend:
8965
Sean Silvab084af42012-12-07 10:36:55 +00008966'``llvm.lifetime.end``' Intrinsic
8967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8968
8969Syntax:
8970"""""""
8971
8972::
8973
8974 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8975
8976Overview:
8977"""""""""
8978
8979The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8980object's lifetime.
8981
8982Arguments:
8983""""""""""
8984
8985The first argument is a constant integer representing the size of the
8986object, or -1 if it is variable sized. The second argument is a pointer
8987to the object.
8988
8989Semantics:
8990""""""""""
8991
8992This intrinsic indicates that after this point in the code, the value of
8993the memory pointed to by ``ptr`` is dead. This means that it is known to
8994never be used and has an undefined value. Any stores into the memory
8995object following this intrinsic may be removed as dead.
8996
8997'``llvm.invariant.start``' Intrinsic
8998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8999
9000Syntax:
9001"""""""
9002
9003::
9004
9005 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9006
9007Overview:
9008"""""""""
9009
9010The '``llvm.invariant.start``' intrinsic specifies that the contents of
9011a memory object will not change.
9012
9013Arguments:
9014""""""""""
9015
9016The first argument is a constant integer representing the size of the
9017object, or -1 if it is variable sized. The second argument is a pointer
9018to the object.
9019
9020Semantics:
9021""""""""""
9022
9023This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9024the return value, the referenced memory location is constant and
9025unchanging.
9026
9027'``llvm.invariant.end``' Intrinsic
9028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9029
9030Syntax:
9031"""""""
9032
9033::
9034
9035 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9036
9037Overview:
9038"""""""""
9039
9040The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9041memory object are mutable.
9042
9043Arguments:
9044""""""""""
9045
9046The first argument is the matching ``llvm.invariant.start`` intrinsic.
9047The second argument is a constant integer representing the size of the
9048object, or -1 if it is variable sized and the third argument is a
9049pointer to the object.
9050
9051Semantics:
9052""""""""""
9053
9054This intrinsic indicates that the memory is mutable again.
9055
9056General Intrinsics
9057------------------
9058
9059This class of intrinsics is designed to be generic and has no specific
9060purpose.
9061
9062'``llvm.var.annotation``' Intrinsic
9063^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9064
9065Syntax:
9066"""""""
9067
9068::
9069
9070 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9071
9072Overview:
9073"""""""""
9074
9075The '``llvm.var.annotation``' intrinsic.
9076
9077Arguments:
9078""""""""""
9079
9080The first argument is a pointer to a value, the second is a pointer to a
9081global string, the third is a pointer to a global string which is the
9082source file name, and the last argument is the line number.
9083
9084Semantics:
9085""""""""""
9086
9087This intrinsic allows annotation of local variables with arbitrary
9088strings. This can be useful for special purpose optimizations that want
9089to look for these annotations. These have no other defined use; they are
9090ignored by code generation and optimization.
9091
Michael Gottesman88d18832013-03-26 00:34:27 +00009092'``llvm.ptr.annotation.*``' Intrinsic
9093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9094
9095Syntax:
9096"""""""
9097
9098This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9099pointer to an integer of any width. *NOTE* you must specify an address space for
9100the pointer. The identifier for the default address space is the integer
9101'``0``'.
9102
9103::
9104
9105 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9106 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9107 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9108 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9109 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9110
9111Overview:
9112"""""""""
9113
9114The '``llvm.ptr.annotation``' intrinsic.
9115
9116Arguments:
9117""""""""""
9118
9119The first argument is a pointer to an integer value of arbitrary bitwidth
9120(result of some expression), the second is a pointer to a global string, the
9121third is a pointer to a global string which is the source file name, and the
9122last argument is the line number. It returns the value of the first argument.
9123
9124Semantics:
9125""""""""""
9126
9127This intrinsic allows annotation of a pointer to an integer with arbitrary
9128strings. This can be useful for special purpose optimizations that want to look
9129for these annotations. These have no other defined use; they are ignored by code
9130generation and optimization.
9131
Sean Silvab084af42012-12-07 10:36:55 +00009132'``llvm.annotation.*``' Intrinsic
9133^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9134
9135Syntax:
9136"""""""
9137
9138This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9139any integer bit width.
9140
9141::
9142
9143 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9144 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9145 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9146 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9147 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9148
9149Overview:
9150"""""""""
9151
9152The '``llvm.annotation``' intrinsic.
9153
9154Arguments:
9155""""""""""
9156
9157The first argument is an integer value (result of some expression), the
9158second is a pointer to a global string, the third is a pointer to a
9159global string which is the source file name, and the last argument is
9160the line number. It returns the value of the first argument.
9161
9162Semantics:
9163""""""""""
9164
9165This intrinsic allows annotations to be put on arbitrary expressions
9166with arbitrary strings. This can be useful for special purpose
9167optimizations that want to look for these annotations. These have no
9168other defined use; they are ignored by code generation and optimization.
9169
9170'``llvm.trap``' Intrinsic
9171^^^^^^^^^^^^^^^^^^^^^^^^^
9172
9173Syntax:
9174"""""""
9175
9176::
9177
9178 declare void @llvm.trap() noreturn nounwind
9179
9180Overview:
9181"""""""""
9182
9183The '``llvm.trap``' intrinsic.
9184
9185Arguments:
9186""""""""""
9187
9188None.
9189
9190Semantics:
9191""""""""""
9192
9193This intrinsic is lowered to the target dependent trap instruction. If
9194the target does not have a trap instruction, this intrinsic will be
9195lowered to a call of the ``abort()`` function.
9196
9197'``llvm.debugtrap``' Intrinsic
9198^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9199
9200Syntax:
9201"""""""
9202
9203::
9204
9205 declare void @llvm.debugtrap() nounwind
9206
9207Overview:
9208"""""""""
9209
9210The '``llvm.debugtrap``' intrinsic.
9211
9212Arguments:
9213""""""""""
9214
9215None.
9216
9217Semantics:
9218""""""""""
9219
9220This intrinsic is lowered to code which is intended to cause an
9221execution trap with the intention of requesting the attention of a
9222debugger.
9223
9224'``llvm.stackprotector``' Intrinsic
9225^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9226
9227Syntax:
9228"""""""
9229
9230::
9231
9232 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9233
9234Overview:
9235"""""""""
9236
9237The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9238onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9239is placed on the stack before local variables.
9240
9241Arguments:
9242""""""""""
9243
9244The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9245The first argument is the value loaded from the stack guard
9246``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9247enough space to hold the value of the guard.
9248
9249Semantics:
9250""""""""""
9251
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009252This intrinsic causes the prologue/epilogue inserter to force the position of
9253the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9254to ensure that if a local variable on the stack is overwritten, it will destroy
9255the value of the guard. When the function exits, the guard on the stack is
9256checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9257different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9258calling the ``__stack_chk_fail()`` function.
9259
9260'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009261^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009262
9263Syntax:
9264"""""""
9265
9266::
9267
9268 declare void @llvm.stackprotectorcheck(i8** <guard>)
9269
9270Overview:
9271"""""""""
9272
9273The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009274created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009275``__stack_chk_fail()`` function.
9276
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009277Arguments:
9278""""""""""
9279
9280The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9281the variable ``@__stack_chk_guard``.
9282
9283Semantics:
9284""""""""""
9285
9286This intrinsic is provided to perform the stack protector check by comparing
9287``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9288values do not match call the ``__stack_chk_fail()`` function.
9289
9290The reason to provide this as an IR level intrinsic instead of implementing it
9291via other IR operations is that in order to perform this operation at the IR
9292level without an intrinsic, one would need to create additional basic blocks to
9293handle the success/failure cases. This makes it difficult to stop the stack
9294protector check from disrupting sibling tail calls in Codegen. With this
9295intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009296codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009297
Sean Silvab084af42012-12-07 10:36:55 +00009298'``llvm.objectsize``' Intrinsic
9299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9300
9301Syntax:
9302"""""""
9303
9304::
9305
9306 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9307 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9308
9309Overview:
9310"""""""""
9311
9312The ``llvm.objectsize`` intrinsic is designed to provide information to
9313the optimizers to determine at compile time whether a) an operation
9314(like memcpy) will overflow a buffer that corresponds to an object, or
9315b) that a runtime check for overflow isn't necessary. An object in this
9316context means an allocation of a specific class, structure, array, or
9317other object.
9318
9319Arguments:
9320""""""""""
9321
9322The ``llvm.objectsize`` intrinsic takes two arguments. The first
9323argument is a pointer to or into the ``object``. The second argument is
9324a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9325or -1 (if false) when the object size is unknown. The second argument
9326only accepts constants.
9327
9328Semantics:
9329""""""""""
9330
9331The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9332the size of the object concerned. If the size cannot be determined at
9333compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9334on the ``min`` argument).
9335
9336'``llvm.expect``' Intrinsic
9337^^^^^^^^^^^^^^^^^^^^^^^^^^^
9338
9339Syntax:
9340"""""""
9341
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009342This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9343integer bit width.
9344
Sean Silvab084af42012-12-07 10:36:55 +00009345::
9346
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009347 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009348 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9349 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9350
9351Overview:
9352"""""""""
9353
9354The ``llvm.expect`` intrinsic provides information about expected (the
9355most probable) value of ``val``, which can be used by optimizers.
9356
9357Arguments:
9358""""""""""
9359
9360The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9361a value. The second argument is an expected value, this needs to be a
9362constant value, variables are not allowed.
9363
9364Semantics:
9365""""""""""
9366
9367This intrinsic is lowered to the ``val``.
9368
9369'``llvm.donothing``' Intrinsic
9370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9371
9372Syntax:
9373"""""""
9374
9375::
9376
9377 declare void @llvm.donothing() nounwind readnone
9378
9379Overview:
9380"""""""""
9381
9382The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9383only intrinsic that can be called with an invoke instruction.
9384
9385Arguments:
9386""""""""""
9387
9388None.
9389
9390Semantics:
9391""""""""""
9392
9393This intrinsic does nothing, and it's removed by optimizers and ignored
9394by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009395
9396Stack Map Intrinsics
9397--------------------
9398
9399LLVM provides experimental intrinsics to support runtime patching
9400mechanisms commonly desired in dynamic language JITs. These intrinsics
9401are described in :doc:`StackMaps`.