blob: dc6d7f2dae10335ee9b16b44a61c36b299e8527d [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner00950542001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000040 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000044 </ol>
45 </li>
Chris Lattner00950542001-06-06 20:29:01 +000046 <li><a href="#t_derived">Derived Types</a>
47 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000048 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000049 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000050 <li><a href="#t_function">Function Type</a></li>
51 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000052 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000053 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000054 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000055 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000056 </ol>
57 </li>
Chris Lattner242d61d2009-02-02 07:32:36 +000058 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000059 </ol>
60 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000061 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000062 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000063 <li><a href="#simpleconstants">Simple Constants</a></li>
64 <li><a href="#aggregateconstants">Aggregate Constants</a></li>
65 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
66 <li><a href="#undefvalues">Undefined Values</a></li>
67 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000068 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000069 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000070 <li><a href="#othervalues">Other Values</a>
71 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000072 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000073 </ol>
74 </li>
Chris Lattner00950542001-06-06 20:29:01 +000075 <li><a href="#instref">Instruction Reference</a>
76 <ol>
77 <li><a href="#terminators">Terminator Instructions</a>
78 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000079 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
80 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000081 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
82 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000083 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000084 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000085 </ol>
86 </li>
Chris Lattner00950542001-06-06 20:29:01 +000087 <li><a href="#binaryops">Binary Operations</a>
88 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000089 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
90 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
91 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000092 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
93 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
94 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000095 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
96 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
97 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000098 </ol>
99 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000100 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
101 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000102 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
103 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
104 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000105 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000106 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000107 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000108 </ol>
109 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000110 <li><a href="#vectorops">Vector Operations</a>
111 <ol>
112 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
113 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
114 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000115 </ol>
116 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000117 <li><a href="#aggregateops">Aggregate Operations</a>
118 <ol>
119 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
120 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
121 </ol>
122 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000123 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000124 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000125 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
126 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
127 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000128 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
129 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
130 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000131 </ol>
132 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000133 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000134 <ol>
135 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
136 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
137 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000140 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
141 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
142 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
143 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000144 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
145 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000146 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000147 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000148 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000149 <li><a href="#otherops">Other Operations</a>
150 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000151 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
152 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000153 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
154 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000155 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000156 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000157 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000158 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000159 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000161 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000162 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000163 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000164 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000165 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
166 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000167 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
168 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
169 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000170 </ol>
171 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000172 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
173 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000174 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
175 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
176 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000177 </ol>
178 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000179 <li><a href="#int_codegen">Code Generator Intrinsics</a>
180 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000181 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
182 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
183 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
184 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
185 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
186 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
187 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000188 </ol>
189 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000190 <li><a href="#int_libc">Standard C Library Intrinsics</a>
191 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000192 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000197 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000200 </ol>
201 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000202 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000203 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000204 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000205 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000208 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
209 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000210 </ol>
211 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000212 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
213 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000214 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
215 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
216 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
217 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
218 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000219 </ol>
220 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000221 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000222 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000223 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000224 <ol>
225 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000226 </ol>
227 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000228 <li><a href="#int_atomics">Atomic intrinsics</a>
229 <ol>
230 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
231 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
232 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
233 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
234 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
235 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
236 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
237 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
238 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
239 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
240 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
241 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
242 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
243 </ol>
244 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000245 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000246 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000247 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000248 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000249 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000250 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000251 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000252 '<tt>llvm.trap</tt>' Intrinsic</a></li>
253 <li><a href="#int_stackprotector">
254 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000255 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000256 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000257 </ol>
258 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000259</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000260
261<div class="doc_author">
262 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
263 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000264</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000265
Chris Lattner00950542001-06-06 20:29:01 +0000266<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000267<div class="doc_section"> <a name="abstract">Abstract </a></div>
268<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000269
Misha Brukman9d0919f2003-11-08 01:05:38 +0000270<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000271<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000272LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000273type safety, low-level operations, flexibility, and the capability of
274representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000275representation used throughout all phases of the LLVM compilation
276strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000277</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000278
Chris Lattner00950542001-06-06 20:29:01 +0000279<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000280<div class="doc_section"> <a name="introduction">Introduction</a> </div>
281<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000282
Misha Brukman9d0919f2003-11-08 01:05:38 +0000283<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000284
Chris Lattner261efe92003-11-25 01:02:51 +0000285<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000286different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000287representation (suitable for fast loading by a Just-In-Time compiler),
288and as a human readable assembly language representation. This allows
289LLVM to provide a powerful intermediate representation for efficient
290compiler transformations and analysis, while providing a natural means
291to debug and visualize the transformations. The three different forms
292of LLVM are all equivalent. This document describes the human readable
293representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000294
John Criswellc1f786c2005-05-13 22:25:59 +0000295<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000296while being expressive, typed, and extensible at the same time. It
297aims to be a "universal IR" of sorts, by being at a low enough level
298that high-level ideas may be cleanly mapped to it (similar to how
299microprocessors are "universal IR's", allowing many source languages to
300be mapped to them). By providing type information, LLVM can be used as
301the target of optimizations: for example, through pointer analysis, it
302can be proven that a C automatic variable is never accessed outside of
303the current function... allowing it to be promoted to a simple SSA
304value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000305
Misha Brukman9d0919f2003-11-08 01:05:38 +0000306</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000307
Chris Lattner00950542001-06-06 20:29:01 +0000308<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000309<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000310
Misha Brukman9d0919f2003-11-08 01:05:38 +0000311<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000312
Chris Lattner261efe92003-11-25 01:02:51 +0000313<p>It is important to note that this document describes 'well formed'
314LLVM assembly language. There is a difference between what the parser
315accepts and what is considered 'well formed'. For example, the
316following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000317
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000318<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000319<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000320%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000321</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000322</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000323
Chris Lattner261efe92003-11-25 01:02:51 +0000324<p>...because the definition of <tt>%x</tt> does not dominate all of
325its uses. The LLVM infrastructure provides a verification pass that may
326be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000327automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000328the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000329by the verifier pass indicate bugs in transformation passes or input to
330the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000331</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000332
Chris Lattnercc689392007-10-03 17:34:29 +0000333<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000334
Chris Lattner00950542001-06-06 20:29:01 +0000335<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000336<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000337<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000338
Misha Brukman9d0919f2003-11-08 01:05:38 +0000339<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000340
Reid Spencer2c452282007-08-07 14:34:28 +0000341 <p>LLVM identifiers come in two basic types: global and local. Global
342 identifiers (functions, global variables) begin with the @ character. Local
343 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000344 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000345
Chris Lattner00950542001-06-06 20:29:01 +0000346<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000347 <li>Named values are represented as a string of characters with their prefix.
348 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
349 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000350 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000351 with quotes. Special characters may be escaped using "\xx" where xx is the
352 ASCII code for the character in hexadecimal. In this way, any character can
353 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000354
Reid Spencer2c452282007-08-07 14:34:28 +0000355 <li>Unnamed values are represented as an unsigned numeric value with their
356 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000357
Reid Spencercc16dc32004-12-09 18:02:53 +0000358 <li>Constants, which are described in a <a href="#constants">section about
359 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000360</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000361
Reid Spencer2c452282007-08-07 14:34:28 +0000362<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000363don't need to worry about name clashes with reserved words, and the set of
364reserved words may be expanded in the future without penalty. Additionally,
365unnamed identifiers allow a compiler to quickly come up with a temporary
366variable without having to avoid symbol table conflicts.</p>
367
Chris Lattner261efe92003-11-25 01:02:51 +0000368<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000369languages. There are keywords for different opcodes
370('<tt><a href="#i_add">add</a></tt>',
371 '<tt><a href="#i_bitcast">bitcast</a></tt>',
372 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000373href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000374and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000375none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000376
377<p>Here is an example of LLVM code to multiply the integer variable
378'<tt>%X</tt>' by 8:</p>
379
Misha Brukman9d0919f2003-11-08 01:05:38 +0000380<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000381
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000382<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000383<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000384%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000385</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000386</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000387
Misha Brukman9d0919f2003-11-08 01:05:38 +0000388<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000389
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000390<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000391<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000392%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000393</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000394</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000395
Misha Brukman9d0919f2003-11-08 01:05:38 +0000396<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000397
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000398<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000399<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000400<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
401<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
402%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000403</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000404</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000405
Chris Lattner261efe92003-11-25 01:02:51 +0000406<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
407important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000408
Chris Lattner00950542001-06-06 20:29:01 +0000409<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000410
411 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
412 line.</li>
413
414 <li>Unnamed temporaries are created when the result of a computation is not
415 assigned to a named value.</li>
416
Misha Brukman9d0919f2003-11-08 01:05:38 +0000417 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000418
Misha Brukman9d0919f2003-11-08 01:05:38 +0000419</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000420
John Criswelle4c57cc2005-05-12 16:52:32 +0000421<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000422demonstrating instructions, we will follow an instruction with a comment that
423defines the type and name of value produced. Comments are shown in italic
424text.</p>
425
Misha Brukman9d0919f2003-11-08 01:05:38 +0000426</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000427
428<!-- *********************************************************************** -->
429<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
430<!-- *********************************************************************** -->
431
432<!-- ======================================================================= -->
433<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
434</div>
435
436<div class="doc_text">
437
438<p>LLVM programs are composed of "Module"s, each of which is a
439translation unit of the input programs. Each module consists of
440functions, global variables, and symbol table entries. Modules may be
441combined together with the LLVM linker, which merges function (and
442global variable) definitions, resolves forward declarations, and merges
443symbol table entries. Here is an example of the "hello world" module:</p>
444
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000445<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000446<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000447<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
448 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000449
450<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000451<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000452
453<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000454define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000455 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000456 %cast210 = <a
Dan Gohman2a08c532009-01-04 23:44:43 +0000457 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000458
459 <i>; Call puts function to write out the string to stdout...</i>
460 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000461 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000462 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000463 href="#i_ret">ret</a> i32 0<br>}<br>
464</pre>
465</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000466
467<p>This example is made up of a <a href="#globalvars">global variable</a>
468named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
469function, and a <a href="#functionstructure">function definition</a>
470for "<tt>main</tt>".</p>
471
Chris Lattnere5d947b2004-12-09 16:36:40 +0000472<p>In general, a module is made up of a list of global values,
473where both functions and global variables are global values. Global values are
474represented by a pointer to a memory location (in this case, a pointer to an
475array of char, and a pointer to a function), and have one of the following <a
476href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000477
Chris Lattnere5d947b2004-12-09 16:36:40 +0000478</div>
479
480<!-- ======================================================================= -->
481<div class="doc_subsection">
482 <a name="linkage">Linkage Types</a>
483</div>
484
485<div class="doc_text">
486
487<p>
488All Global Variables and Functions have one of the following types of linkage:
489</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000490
491<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000492
Rafael Espindolabb46f522009-01-15 20:18:42 +0000493 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
494
495 <dd>Global values with private linkage are only directly accessible by
496 objects in the current module. In particular, linking code into a module with
497 an private global value may cause the private to be renamed as necessary to
498 avoid collisions. Because the symbol is private to the module, all
499 references can be updated. This doesn't show up in any symbol table in the
500 object file.
501 </dd>
502
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000503 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000504
Duncan Sands81d05c22009-01-16 09:29:46 +0000505 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindolabb46f522009-01-15 20:18:42 +0000506 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000507 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000508 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000509
Chris Lattnerfa730212004-12-09 16:11:40 +0000510 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000511
Chris Lattner4887bd82007-01-14 06:51:48 +0000512 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
513 the same name when linkage occurs. This is typically used to implement
514 inline functions, templates, or other code which must be generated in each
515 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
516 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000517 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000518
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000519 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
520
521 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
522 linkage, except that unreferenced <tt>common</tt> globals may not be
523 discarded. This is used for globals that may be emitted in multiple
524 translation units, but that are not guaranteed to be emitted into every
525 translation unit that uses them. One example of this is tentative
526 definitions in C, such as "<tt>int X;</tt>" at global scope.
527 </dd>
528
Chris Lattnerfa730212004-12-09 16:11:40 +0000529 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000530
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000531 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
532 that some targets may choose to emit different assembly sequences for them
533 for target-dependent reasons. This is used for globals that are declared
534 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000535 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000536
Chris Lattnerfa730212004-12-09 16:11:40 +0000537 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000538
539 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
540 pointer to array type. When two global variables with appending linkage are
541 linked together, the two global arrays are appended together. This is the
542 LLVM, typesafe, equivalent of having the system linker append together
543 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000544 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000545
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000546 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000547 <dd>The semantics of this linkage follow the ELF object file model: the
548 symbol is weak until linked, if not linked, the symbol becomes null instead
549 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000550 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000551
Chris Lattnerfa730212004-12-09 16:11:40 +0000552 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000553
554 <dd>If none of the above identifiers are used, the global is externally
555 visible, meaning that it participates in linkage and can be used to resolve
556 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000557 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000558</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000559
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000560 <p>
561 The next two types of linkage are targeted for Microsoft Windows platform
562 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000563 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000564 </p>
565
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000566 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000567 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
568
569 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
570 or variable via a global pointer to a pointer that is set up by the DLL
571 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman79564122009-01-12 21:35:55 +0000572 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000573 </dd>
574
575 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
576
577 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
578 pointer to a pointer in a DLL, so that it can be referenced with the
579 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman79564122009-01-12 21:35:55 +0000580 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000581 name.
582 </dd>
583
Chris Lattnerfa730212004-12-09 16:11:40 +0000584</dl>
585
Dan Gohmanf0032762008-11-24 17:18:39 +0000586<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000587variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
588variable and was linked with this one, one of the two would be renamed,
589preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
590external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000591outside of the current module.</p>
592<p>It is illegal for a function <i>declaration</i>
593to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000594or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000595<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000596linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000597</div>
598
599<!-- ======================================================================= -->
600<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000601 <a name="callingconv">Calling Conventions</a>
602</div>
603
604<div class="doc_text">
605
606<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
607and <a href="#i_invoke">invokes</a> can all have an optional calling convention
608specified for the call. The calling convention of any pair of dynamic
609caller/callee must match, or the behavior of the program is undefined. The
610following calling conventions are supported by LLVM, and more may be added in
611the future:</p>
612
613<dl>
614 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
615
616 <dd>This calling convention (the default if no other calling convention is
617 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000618 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000619 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000620 </dd>
621
622 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
623
624 <dd>This calling convention attempts to make calls as fast as possible
625 (e.g. by passing things in registers). This calling convention allows the
626 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000627 without having to conform to an externally specified ABI (Application Binary
628 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000629 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
630 supported. This calling convention does not support varargs and requires the
631 prototype of all callees to exactly match the prototype of the function
632 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000633 </dd>
634
635 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
636
637 <dd>This calling convention attempts to make code in the caller as efficient
638 as possible under the assumption that the call is not commonly executed. As
639 such, these calls often preserve all registers so that the call does not break
640 any live ranges in the caller side. This calling convention does not support
641 varargs and requires the prototype of all callees to exactly match the
642 prototype of the function definition.
643 </dd>
644
Chris Lattnercfe6b372005-05-07 01:46:40 +0000645 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000646
647 <dd>Any calling convention may be specified by number, allowing
648 target-specific calling conventions to be used. Target specific calling
649 conventions start at 64.
650 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000651</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000652
653<p>More calling conventions can be added/defined on an as-needed basis, to
654support pascal conventions or any other well-known target-independent
655convention.</p>
656
657</div>
658
659<!-- ======================================================================= -->
660<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000661 <a name="visibility">Visibility Styles</a>
662</div>
663
664<div class="doc_text">
665
666<p>
667All Global Variables and Functions have one of the following visibility styles:
668</p>
669
670<dl>
671 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
672
Chris Lattnerd3eda892008-08-05 18:29:16 +0000673 <dd>On targets that use the ELF object file format, default visibility means
674 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000675 modules and, in shared libraries, means that the declared entity may be
676 overridden. On Darwin, default visibility means that the declaration is
677 visible to other modules. Default visibility corresponds to "external
678 linkage" in the language.
679 </dd>
680
681 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
682
683 <dd>Two declarations of an object with hidden visibility refer to the same
684 object if they are in the same shared object. Usually, hidden visibility
685 indicates that the symbol will not be placed into the dynamic symbol table,
686 so no other module (executable or shared library) can reference it
687 directly.
688 </dd>
689
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000690 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
691
692 <dd>On ELF, protected visibility indicates that the symbol will be placed in
693 the dynamic symbol table, but that references within the defining module will
694 bind to the local symbol. That is, the symbol cannot be overridden by another
695 module.
696 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000697</dl>
698
699</div>
700
701<!-- ======================================================================= -->
702<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000703 <a name="namedtypes">Named Types</a>
704</div>
705
706<div class="doc_text">
707
708<p>LLVM IR allows you to specify name aliases for certain types. This can make
709it easier to read the IR and make the IR more condensed (particularly when
710recursive types are involved). An example of a name specification is:
711</p>
712
713<div class="doc_code">
714<pre>
715%mytype = type { %mytype*, i32 }
716</pre>
717</div>
718
719<p>You may give a name to any <a href="#typesystem">type</a> except "<a
720href="t_void">void</a>". Type name aliases may be used anywhere a type is
721expected with the syntax "%mytype".</p>
722
723<p>Note that type names are aliases for the structural type that they indicate,
724and that you can therefore specify multiple names for the same type. This often
725leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
726structural typing, the name is not part of the type. When printing out LLVM IR,
727the printer will pick <em>one name</em> to render all types of a particular
728shape. This means that if you have code where two different source types end up
729having the same LLVM type, that the dumper will sometimes print the "wrong" or
730unexpected type. This is an important design point and isn't going to
731change.</p>
732
733</div>
734
Chris Lattnere7886e42009-01-11 20:53:49 +0000735<!-- ======================================================================= -->
736<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000737 <a name="globalvars">Global Variables</a>
738</div>
739
740<div class="doc_text">
741
Chris Lattner3689a342005-02-12 19:30:21 +0000742<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000743instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000744an explicit section to be placed in, and may have an optional explicit alignment
745specified. A variable may be defined as "thread_local", which means that it
746will not be shared by threads (each thread will have a separated copy of the
747variable). A variable may be defined as a global "constant," which indicates
748that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000749optimization, allowing the global data to be placed in the read-only section of
750an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000751cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000752
753<p>
754LLVM explicitly allows <em>declarations</em> of global variables to be marked
755constant, even if the final definition of the global is not. This capability
756can be used to enable slightly better optimization of the program, but requires
757the language definition to guarantee that optimizations based on the
758'constantness' are valid for the translation units that do not include the
759definition.
760</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000761
762<p>As SSA values, global variables define pointer values that are in
763scope (i.e. they dominate) all basic blocks in the program. Global
764variables always define a pointer to their "content" type because they
765describe a region of memory, and all memory objects in LLVM are
766accessed through pointers.</p>
767
Christopher Lamb284d9922007-12-11 09:31:00 +0000768<p>A global variable may be declared to reside in a target-specifc numbered
769address space. For targets that support them, address spaces may affect how
770optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000771the variable. The default address space is zero. The address space qualifier
772must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000773
Chris Lattner88f6c462005-11-12 00:45:07 +0000774<p>LLVM allows an explicit section to be specified for globals. If the target
775supports it, it will emit globals to the section specified.</p>
776
Chris Lattner2cbdc452005-11-06 08:02:57 +0000777<p>An explicit alignment may be specified for a global. If not present, or if
778the alignment is set to zero, the alignment of the global is set by the target
779to whatever it feels convenient. If an explicit alignment is specified, the
780global is forced to have at least that much alignment. All alignments must be
781a power of 2.</p>
782
Christopher Lamb284d9922007-12-11 09:31:00 +0000783<p>For example, the following defines a global in a numbered address space with
784an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000785
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000786<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000787<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000788@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000789</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000790</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000791
Chris Lattnerfa730212004-12-09 16:11:40 +0000792</div>
793
794
795<!-- ======================================================================= -->
796<div class="doc_subsection">
797 <a name="functionstructure">Functions</a>
798</div>
799
800<div class="doc_text">
801
Reid Spencerca86e162006-12-31 07:07:53 +0000802<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
803an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000804<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000805<a href="#callingconv">calling convention</a>, a return type, an optional
806<a href="#paramattrs">parameter attribute</a> for the return type, a function
807name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000808<a href="#paramattrs">parameter attributes</a>), optional
809<a href="#fnattrs">function attributes</a>, an optional section,
810an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000811an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000812
813LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
814optional <a href="#linkage">linkage type</a>, an optional
815<a href="#visibility">visibility style</a>, an optional
816<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000817<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000818name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000819<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000820
Chris Lattnerd3eda892008-08-05 18:29:16 +0000821<p>A function definition contains a list of basic blocks, forming the CFG
822(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000823the function. Each basic block may optionally start with a label (giving the
824basic block a symbol table entry), contains a list of instructions, and ends
825with a <a href="#terminators">terminator</a> instruction (such as a branch or
826function return).</p>
827
Chris Lattner4a3c9012007-06-08 16:52:14 +0000828<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000829executed on entrance to the function, and it is not allowed to have predecessor
830basic blocks (i.e. there can not be any branches to the entry block of a
831function). Because the block can have no predecessors, it also cannot have any
832<a href="#i_phi">PHI nodes</a>.</p>
833
Chris Lattner88f6c462005-11-12 00:45:07 +0000834<p>LLVM allows an explicit section to be specified for functions. If the target
835supports it, it will emit functions to the section specified.</p>
836
Chris Lattner2cbdc452005-11-06 08:02:57 +0000837<p>An explicit alignment may be specified for a function. If not present, or if
838the alignment is set to zero, the alignment of the function is set by the target
839to whatever it feels convenient. If an explicit alignment is specified, the
840function is forced to have at least that much alignment. All alignments must be
841a power of 2.</p>
842
Devang Patel307e8ab2008-10-07 17:48:33 +0000843 <h5>Syntax:</h5>
844
845<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000846<tt>
847define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
848 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
849 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
850 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
851 [<a href="#gc">gc</a>] { ... }
852</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000853</div>
854
Chris Lattnerfa730212004-12-09 16:11:40 +0000855</div>
856
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000857
858<!-- ======================================================================= -->
859<div class="doc_subsection">
860 <a name="aliasstructure">Aliases</a>
861</div>
862<div class="doc_text">
863 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000864 function, global variable, another alias or bitcast of global value). Aliases
865 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000866 optional <a href="#visibility">visibility style</a>.</p>
867
868 <h5>Syntax:</h5>
869
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000870<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000871<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000872@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000873</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000874</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000875
876</div>
877
878
879
Chris Lattner4e9aba72006-01-23 23:23:47 +0000880<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000881<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
882<div class="doc_text">
883 <p>The return type and each parameter of a function type may have a set of
884 <i>parameter attributes</i> associated with them. Parameter attributes are
885 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000886 a function. Parameter attributes are considered to be part of the function,
887 not of the function type, so functions with different parameter attributes
888 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000889
Reid Spencer950e9f82007-01-15 18:27:39 +0000890 <p>Parameter attributes are simple keywords that follow the type specified. If
891 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000892 example:</p>
893
894<div class="doc_code">
895<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000896declare i32 @printf(i8* noalias , ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000897declare i32 @atoi(i8 zeroext)
898declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000899</pre>
900</div>
901
Duncan Sandsdc024672007-11-27 13:23:08 +0000902 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
903 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000904
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000905 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000906 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000907 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000908 <dd>This indicates to the code generator that the parameter or return value
909 should be zero-extended to a 32-bit value by the caller (for a parameter)
910 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000911
Reid Spencer9445e9a2007-07-19 23:13:04 +0000912 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000913 <dd>This indicates to the code generator that the parameter or return value
914 should be sign-extended to a 32-bit value by the caller (for a parameter)
915 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000916
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000917 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000918 <dd>This indicates that this parameter or return value should be treated
919 in a special target-dependent fashion during while emitting code for a
920 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000921 to memory, though some targets use it to distinguish between two different
922 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000923
Duncan Sandsedb05df2008-10-06 08:14:18 +0000924 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000925 <dd>This indicates that the pointer parameter should really be passed by
926 value to the function. The attribute implies that a hidden copy of the
927 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000928 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000929 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000930 value, but is also valid on pointers to scalars. The copy is considered to
931 belong to the caller not the callee (for example,
932 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000933 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerce459b12009-02-05 05:42:28 +0000934 values. The byval attribute also supports specifying an alignment with the
935 align attribute. This has a target-specific effect on the code generator
936 that usually indicates a desired alignment for the synthesized stack
937 slot.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000938
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000939 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000940 <dd>This indicates that the pointer parameter specifies the address of a
941 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000942 This pointer must be guaranteed by the caller to be valid: loads and stores
943 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000944 be applied to the first parameter. This is not a valid attribute for
945 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000946
Zhou Shengfebca342007-06-05 05:28:26 +0000947 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000948 <dd>This indicates that the pointer does not alias any global or any other
949 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000950 case. On a function return value, <tt>noalias</tt> additionally indicates
951 that the pointer does not alias any other pointers visible to the
Nick Lewyckyf23d0d32008-12-19 06:39:12 +0000952 caller. For further details, please see the discussion of the NoAlias
953 response in
954 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
955 analysis</a>.</dd>
956
957 <dt><tt>nocapture</tt></dt>
958 <dd>This indicates that the callee does not make any copies of the pointer
959 that outlive the callee itself. This is not a valid attribute for return
960 values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000961
Duncan Sands50f19f52007-07-27 19:57:41 +0000962 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000963 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000964 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
965 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000966 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000967
Reid Spencerca86e162006-12-31 07:07:53 +0000968</div>
969
970<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000971<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000972 <a name="gc">Garbage Collector Names</a>
973</div>
974
975<div class="doc_text">
976<p>Each function may specify a garbage collector name, which is simply a
977string.</p>
978
979<div class="doc_code"><pre
980>define void @f() gc "name" { ...</pre></div>
981
982<p>The compiler declares the supported values of <i>name</i>. Specifying a
983collector which will cause the compiler to alter its output in order to support
984the named garbage collection algorithm.</p>
985</div>
986
987<!-- ======================================================================= -->
988<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000989 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +0000990</div>
991
992<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000993
994<p>Function attributes are set to communicate additional information about
995 a function. Function attributes are considered to be part of the function,
996 not of the function type, so functions with different parameter attributes
997 can have the same function type.</p>
998
999 <p>Function attributes are simple keywords that follow the type specified. If
1000 multiple attributes are needed, they are space separated. For
1001 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001002
1003<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001004<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001005define void @f() noinline { ... }
1006define void @f() alwaysinline { ... }
1007define void @f() alwaysinline optsize { ... }
1008define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001009</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001010</div>
1011
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001012<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001013<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001014<dd>This attribute indicates that the inliner should attempt to inline this
1015function into callers whenever possible, ignoring any active inlining size
1016threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001017
Devang Patel2c9c3e72008-09-26 23:51:19 +00001018<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001019<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +00001020in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +00001021<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001022
Devang Patel2c9c3e72008-09-26 23:51:19 +00001023<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +00001024<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +00001025make choices that keep the code size of this function low, and otherwise do
1026optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001027
Devang Patel2c9c3e72008-09-26 23:51:19 +00001028<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001029<dd>This function attribute indicates that the function never returns normally.
1030This produces undefined behavior at runtime if the function ever does
1031dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001032
1033<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001034<dd>This function attribute indicates that the function never returns with an
1035unwind or exceptional control flow. If the function does unwind, its runtime
1036behavior is undefined.</dd>
1037
1038<dt><tt>readnone</tt></dt>
Duncan Sandsedb05df2008-10-06 08:14:18 +00001039<dd>This attribute indicates that the function computes its result (or the
1040exception it throws) based strictly on its arguments, without dereferencing any
1041pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1042registers, etc) visible to caller functions. It does not write through any
1043pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
1044never changes any state visible to callers.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001045
Duncan Sandsedb05df2008-10-06 08:14:18 +00001046<dt><tt><a name="readonly">readonly</a></tt></dt>
1047<dd>This attribute indicates that the function does not write through any
1048pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1049or otherwise modify any state (e.g. memory, control registers, etc) visible to
1050caller functions. It may dereference pointer arguments and read state that may
1051be set in the caller. A readonly function always returns the same value (or
1052throws the same exception) when called with the same set of arguments and global
1053state.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001054
1055<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001056<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +00001057protector. It is in the form of a "canary"&mdash;a random value placed on the
1058stack before the local variables that's checked upon return from the function to
1059see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001060needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001061
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001062<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
1063that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
1064have an <tt>ssp</tt> attribute.</p></dd>
1065
1066<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001067<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001068stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001069function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001070
1071<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
1072function that doesn't have an <tt>sspreq</tt> attribute or which has
1073an <tt>ssp</tt> attribute, then the resulting function will have
1074an <tt>sspreq</tt> attribute.</p></dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001075</dl>
1076
Devang Patelf8b94812008-09-04 23:05:13 +00001077</div>
1078
1079<!-- ======================================================================= -->
1080<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001081 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001082</div>
1083
1084<div class="doc_text">
1085<p>
1086Modules may contain "module-level inline asm" blocks, which corresponds to the
1087GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1088LLVM and treated as a single unit, but may be separated in the .ll file if
1089desired. The syntax is very simple:
1090</p>
1091
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001092<div class="doc_code">
1093<pre>
1094module asm "inline asm code goes here"
1095module asm "more can go here"
1096</pre>
1097</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001098
1099<p>The strings can contain any character by escaping non-printable characters.
1100 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1101 for the number.
1102</p>
1103
1104<p>
1105 The inline asm code is simply printed to the machine code .s file when
1106 assembly code is generated.
1107</p>
1108</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001109
Reid Spencerde151942007-02-19 23:54:10 +00001110<!-- ======================================================================= -->
1111<div class="doc_subsection">
1112 <a name="datalayout">Data Layout</a>
1113</div>
1114
1115<div class="doc_text">
1116<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001117data is to be laid out in memory. The syntax for the data layout is simply:</p>
1118<pre> target datalayout = "<i>layout specification</i>"</pre>
1119<p>The <i>layout specification</i> consists of a list of specifications
1120separated by the minus sign character ('-'). Each specification starts with a
1121letter and may include other information after the letter to define some
1122aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001123<dl>
1124 <dt><tt>E</tt></dt>
1125 <dd>Specifies that the target lays out data in big-endian form. That is, the
1126 bits with the most significance have the lowest address location.</dd>
1127 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001128 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001129 the bits with the least significance have the lowest address location.</dd>
1130 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1131 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1132 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1133 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1134 too.</dd>
1135 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1136 <dd>This specifies the alignment for an integer type of a given bit
1137 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1138 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1139 <dd>This specifies the alignment for a vector type of a given bit
1140 <i>size</i>.</dd>
1141 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1142 <dd>This specifies the alignment for a floating point type of a given bit
1143 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1144 (double).</dd>
1145 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1146 <dd>This specifies the alignment for an aggregate type of a given bit
1147 <i>size</i>.</dd>
1148</dl>
1149<p>When constructing the data layout for a given target, LLVM starts with a
1150default set of specifications which are then (possibly) overriden by the
1151specifications in the <tt>datalayout</tt> keyword. The default specifications
1152are given in this list:</p>
1153<ul>
1154 <li><tt>E</tt> - big endian</li>
1155 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1156 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1157 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1158 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1159 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001160 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001161 alignment of 64-bits</li>
1162 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1163 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1164 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1165 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1166 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1167</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001168<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001169following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001170<ol>
1171 <li>If the type sought is an exact match for one of the specifications, that
1172 specification is used.</li>
1173 <li>If no match is found, and the type sought is an integer type, then the
1174 smallest integer type that is larger than the bitwidth of the sought type is
1175 used. If none of the specifications are larger than the bitwidth then the the
1176 largest integer type is used. For example, given the default specifications
1177 above, the i7 type will use the alignment of i8 (next largest) while both
1178 i65 and i256 will use the alignment of i64 (largest specified).</li>
1179 <li>If no match is found, and the type sought is a vector type, then the
1180 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001181 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1182 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001183</ol>
1184</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001185
Chris Lattner00950542001-06-06 20:29:01 +00001186<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001187<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1188<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001189
Misha Brukman9d0919f2003-11-08 01:05:38 +00001190<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001191
Misha Brukman9d0919f2003-11-08 01:05:38 +00001192<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001193intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001194optimizations to be performed on the intermediate representation directly,
1195without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001196extra analyses on the side before the transformation. A strong type
1197system makes it easier to read the generated code and enables novel
1198analyses and transformations that are not feasible to perform on normal
1199three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001200
1201</div>
1202
Chris Lattner00950542001-06-06 20:29:01 +00001203<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001204<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001205Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001206<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001207<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001208classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001209
1210<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001211 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001212 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001213 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001214 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001215 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001216 </tr>
1217 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001218 <td><a href="#t_floating">floating point</a></td>
1219 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001220 </tr>
1221 <tr>
1222 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001223 <td><a href="#t_integer">integer</a>,
1224 <a href="#t_floating">floating point</a>,
1225 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001226 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001227 <a href="#t_struct">structure</a>,
1228 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001229 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001230 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001231 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001232 <tr>
1233 <td><a href="#t_primitive">primitive</a></td>
1234 <td><a href="#t_label">label</a>,
1235 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001236 <a href="#t_floating">floating point</a>.</td>
1237 </tr>
1238 <tr>
1239 <td><a href="#t_derived">derived</a></td>
1240 <td><a href="#t_integer">integer</a>,
1241 <a href="#t_array">array</a>,
1242 <a href="#t_function">function</a>,
1243 <a href="#t_pointer">pointer</a>,
1244 <a href="#t_struct">structure</a>,
1245 <a href="#t_pstruct">packed structure</a>,
1246 <a href="#t_vector">vector</a>,
1247 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001248 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001249 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001250 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001251</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001252
Chris Lattner261efe92003-11-25 01:02:51 +00001253<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1254most important. Values of these types are the only ones which can be
1255produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001256instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001257</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001258
Chris Lattner00950542001-06-06 20:29:01 +00001259<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001260<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001261
Chris Lattner4f69f462008-01-04 04:32:38 +00001262<div class="doc_text">
1263<p>The primitive types are the fundamental building blocks of the LLVM
1264system.</p>
1265
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001266</div>
1267
Chris Lattner4f69f462008-01-04 04:32:38 +00001268<!-- _______________________________________________________________________ -->
1269<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1270
1271<div class="doc_text">
1272 <table>
1273 <tbody>
1274 <tr><th>Type</th><th>Description</th></tr>
1275 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1276 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1277 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1278 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1279 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1280 </tbody>
1281 </table>
1282</div>
1283
1284<!-- _______________________________________________________________________ -->
1285<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1286
1287<div class="doc_text">
1288<h5>Overview:</h5>
1289<p>The void type does not represent any value and has no size.</p>
1290
1291<h5>Syntax:</h5>
1292
1293<pre>
1294 void
1295</pre>
1296</div>
1297
1298<!-- _______________________________________________________________________ -->
1299<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1300
1301<div class="doc_text">
1302<h5>Overview:</h5>
1303<p>The label type represents code labels.</p>
1304
1305<h5>Syntax:</h5>
1306
1307<pre>
1308 label
1309</pre>
1310</div>
1311
1312
1313<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001314<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001315
Misha Brukman9d0919f2003-11-08 01:05:38 +00001316<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001317
Chris Lattner261efe92003-11-25 01:02:51 +00001318<p>The real power in LLVM comes from the derived types in the system.
1319This is what allows a programmer to represent arrays, functions,
1320pointers, and other useful types. Note that these derived types may be
1321recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001322
Misha Brukman9d0919f2003-11-08 01:05:38 +00001323</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001324
Chris Lattner00950542001-06-06 20:29:01 +00001325<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001326<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1327
1328<div class="doc_text">
1329
1330<h5>Overview:</h5>
1331<p>The integer type is a very simple derived type that simply specifies an
1332arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13332^23-1 (about 8 million) can be specified.</p>
1334
1335<h5>Syntax:</h5>
1336
1337<pre>
1338 iN
1339</pre>
1340
1341<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1342value.</p>
1343
1344<h5>Examples:</h5>
1345<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001346 <tbody>
1347 <tr>
1348 <td><tt>i1</tt></td>
1349 <td>a single-bit integer.</td>
1350 </tr><tr>
1351 <td><tt>i32</tt></td>
1352 <td>a 32-bit integer.</td>
1353 </tr><tr>
1354 <td><tt>i1942652</tt></td>
1355 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001356 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001357 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001358</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001359
1360<p>Note that the code generator does not yet support large integer types
1361to be used as function return types. The specific limit on how large a
1362return type the code generator can currently handle is target-dependent;
1363currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1364targets.</p>
1365
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001366</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001367
1368<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001369<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001370
Misha Brukman9d0919f2003-11-08 01:05:38 +00001371<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001372
Chris Lattner00950542001-06-06 20:29:01 +00001373<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001374
Misha Brukman9d0919f2003-11-08 01:05:38 +00001375<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001376sequentially in memory. The array type requires a size (number of
1377elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001378
Chris Lattner7faa8832002-04-14 06:13:44 +00001379<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001380
1381<pre>
1382 [&lt;# elements&gt; x &lt;elementtype&gt;]
1383</pre>
1384
John Criswelle4c57cc2005-05-12 16:52:32 +00001385<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001386be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001387
Chris Lattner7faa8832002-04-14 06:13:44 +00001388<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001389<table class="layout">
1390 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001391 <td class="left"><tt>[40 x i32]</tt></td>
1392 <td class="left">Array of 40 32-bit integer values.</td>
1393 </tr>
1394 <tr class="layout">
1395 <td class="left"><tt>[41 x i32]</tt></td>
1396 <td class="left">Array of 41 32-bit integer values.</td>
1397 </tr>
1398 <tr class="layout">
1399 <td class="left"><tt>[4 x i8]</tt></td>
1400 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001401 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001402</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001403<p>Here are some examples of multidimensional arrays:</p>
1404<table class="layout">
1405 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001406 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1407 <td class="left">3x4 array of 32-bit integer values.</td>
1408 </tr>
1409 <tr class="layout">
1410 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1411 <td class="left">12x10 array of single precision floating point values.</td>
1412 </tr>
1413 <tr class="layout">
1414 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1415 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001416 </tr>
1417</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001418
John Criswell0ec250c2005-10-24 16:17:18 +00001419<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1420length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001421LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1422As a special case, however, zero length arrays are recognized to be variable
1423length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001424type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001425
Dan Gohmand8791e52009-01-24 15:58:40 +00001426<p>Note that the code generator does not yet support large aggregate types
1427to be used as function return types. The specific limit on how large an
1428aggregate return type the code generator can currently handle is
1429target-dependent, and also dependent on the aggregate element types.</p>
1430
Misha Brukman9d0919f2003-11-08 01:05:38 +00001431</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001432
Chris Lattner00950542001-06-06 20:29:01 +00001433<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001434<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001435<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001436
Chris Lattner00950542001-06-06 20:29:01 +00001437<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001438
Chris Lattner261efe92003-11-25 01:02:51 +00001439<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001440consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001441return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001442If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001443class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001444
Chris Lattner00950542001-06-06 20:29:01 +00001445<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001446
1447<pre>
1448 &lt;returntype list&gt; (&lt;parameter list&gt;)
1449</pre>
1450
John Criswell0ec250c2005-10-24 16:17:18 +00001451<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001452specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001453which indicates that the function takes a variable number of arguments.
1454Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001455 href="#int_varargs">variable argument handling intrinsic</a> functions.
1456'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1457<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001458
Chris Lattner00950542001-06-06 20:29:01 +00001459<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001460<table class="layout">
1461 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001462 <td class="left"><tt>i32 (i32)</tt></td>
1463 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001464 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001465 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001466 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001467 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001468 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1469 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001470 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001471 <tt>float</tt>.
1472 </td>
1473 </tr><tr class="layout">
1474 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1475 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001476 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001477 which returns an integer. This is the signature for <tt>printf</tt> in
1478 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001479 </td>
Devang Patela582f402008-03-24 05:35:41 +00001480 </tr><tr class="layout">
1481 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001482 <td class="left">A function taking an <tt>i32</tt>, returning two
1483 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001484 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001485 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001486</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001487
Misha Brukman9d0919f2003-11-08 01:05:38 +00001488</div>
Chris Lattner00950542001-06-06 20:29:01 +00001489<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001490<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001491<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001492<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001493<p>The structure type is used to represent a collection of data members
1494together in memory. The packing of the field types is defined to match
1495the ABI of the underlying processor. The elements of a structure may
1496be any type that has a size.</p>
1497<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1498and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1499field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1500instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001501<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001502<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001503<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001504<table class="layout">
1505 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001506 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1507 <td class="left">A triple of three <tt>i32</tt> values</td>
1508 </tr><tr class="layout">
1509 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1510 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1511 second element is a <a href="#t_pointer">pointer</a> to a
1512 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1513 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001514 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001515</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001516
1517<p>Note that the code generator does not yet support large aggregate types
1518to be used as function return types. The specific limit on how large an
1519aggregate return type the code generator can currently handle is
1520target-dependent, and also dependent on the aggregate element types.</p>
1521
Misha Brukman9d0919f2003-11-08 01:05:38 +00001522</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001523
Chris Lattner00950542001-06-06 20:29:01 +00001524<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001525<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1526</div>
1527<div class="doc_text">
1528<h5>Overview:</h5>
1529<p>The packed structure type is used to represent a collection of data members
1530together in memory. There is no padding between fields. Further, the alignment
1531of a packed structure is 1 byte. The elements of a packed structure may
1532be any type that has a size.</p>
1533<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1534and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1535field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1536instruction.</p>
1537<h5>Syntax:</h5>
1538<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1539<h5>Examples:</h5>
1540<table class="layout">
1541 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001542 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1543 <td class="left">A triple of three <tt>i32</tt> values</td>
1544 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001545 <td class="left">
1546<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001547 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1548 second element is a <a href="#t_pointer">pointer</a> to a
1549 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1550 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001551 </tr>
1552</table>
1553</div>
1554
1555<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001556<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001557<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001558<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001559<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001560reference to another object, which must live in memory. Pointer types may have
1561an optional address space attribute defining the target-specific numbered
1562address space where the pointed-to object resides. The default address space is
1563zero.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001564
1565<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
1566it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</aa> intead.</p>
1567
Chris Lattner7faa8832002-04-14 06:13:44 +00001568<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001569<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001570<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001571<table class="layout">
1572 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001573 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001574 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1575 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1576 </tr>
1577 <tr class="layout">
1578 <td class="left"><tt>i32 (i32 *) *</tt></td>
1579 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001580 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001581 <tt>i32</tt>.</td>
1582 </tr>
1583 <tr class="layout">
1584 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1585 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1586 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001587 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001588</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001589</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001590
Chris Lattnera58561b2004-08-12 19:12:28 +00001591<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001592<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001593<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001594
Chris Lattnera58561b2004-08-12 19:12:28 +00001595<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001596
Reid Spencer485bad12007-02-15 03:07:05 +00001597<p>A vector type is a simple derived type that represents a vector
1598of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001599are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001600A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001601elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001602of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001603considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001604
Chris Lattnera58561b2004-08-12 19:12:28 +00001605<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001606
1607<pre>
1608 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1609</pre>
1610
John Criswellc1f786c2005-05-13 22:25:59 +00001611<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001612be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001613
Chris Lattnera58561b2004-08-12 19:12:28 +00001614<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001615
Reid Spencerd3f876c2004-11-01 08:19:36 +00001616<table class="layout">
1617 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001618 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1619 <td class="left">Vector of 4 32-bit integer values.</td>
1620 </tr>
1621 <tr class="layout">
1622 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1623 <td class="left">Vector of 8 32-bit floating-point values.</td>
1624 </tr>
1625 <tr class="layout">
1626 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1627 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001628 </tr>
1629</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001630
1631<p>Note that the code generator does not yet support large vector types
1632to be used as function return types. The specific limit on how large a
1633vector return type codegen can currently handle is target-dependent;
1634currently it's often a few times longer than a hardware vector register.</p>
1635
Misha Brukman9d0919f2003-11-08 01:05:38 +00001636</div>
1637
Chris Lattner69c11bb2005-04-25 17:34:15 +00001638<!-- _______________________________________________________________________ -->
1639<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1640<div class="doc_text">
1641
1642<h5>Overview:</h5>
1643
1644<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001645corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001646In LLVM, opaque types can eventually be resolved to any type (not just a
1647structure type).</p>
1648
1649<h5>Syntax:</h5>
1650
1651<pre>
1652 opaque
1653</pre>
1654
1655<h5>Examples:</h5>
1656
1657<table class="layout">
1658 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001659 <td class="left"><tt>opaque</tt></td>
1660 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001661 </tr>
1662</table>
1663</div>
1664
Chris Lattner242d61d2009-02-02 07:32:36 +00001665<!-- ======================================================================= -->
1666<div class="doc_subsection">
1667 <a name="t_uprefs">Type Up-references</a>
1668</div>
1669
1670<div class="doc_text">
1671<h5>Overview:</h5>
1672<p>
1673An "up reference" allows you to refer to a lexically enclosing type without
1674requiring it to have a name. For instance, a structure declaration may contain a
1675pointer to any of the types it is lexically a member of. Example of up
1676references (with their equivalent as named type declarations) include:</p>
1677
1678<pre>
1679 { \2 * } %x = type { %t* }
1680 { \2 }* %y = type { %y }*
1681 \1* %z = type %z*
1682</pre>
1683
1684<p>
1685An up reference is needed by the asmprinter for printing out cyclic types when
1686there is no declared name for a type in the cycle. Because the asmprinter does
1687not want to print out an infinite type string, it needs a syntax to handle
1688recursive types that have no names (all names are optional in llvm IR).
1689</p>
1690
1691<h5>Syntax:</h5>
1692<pre>
1693 \&lt;level&gt;
1694</pre>
1695
1696<p>
1697The level is the count of the lexical type that is being referred to.
1698</p>
1699
1700<h5>Examples:</h5>
1701
1702<table class="layout">
1703 <tr class="layout">
1704 <td class="left"><tt>\1*</tt></td>
1705 <td class="left">Self-referential pointer.</td>
1706 </tr>
1707 <tr class="layout">
1708 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1709 <td class="left">Recursive structure where the upref refers to the out-most
1710 structure.</td>
1711 </tr>
1712</table>
1713</div>
1714
Chris Lattner69c11bb2005-04-25 17:34:15 +00001715
Chris Lattnerc3f59762004-12-09 17:30:23 +00001716<!-- *********************************************************************** -->
1717<div class="doc_section"> <a name="constants">Constants</a> </div>
1718<!-- *********************************************************************** -->
1719
1720<div class="doc_text">
1721
1722<p>LLVM has several different basic types of constants. This section describes
1723them all and their syntax.</p>
1724
1725</div>
1726
1727<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001728<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001729
1730<div class="doc_text">
1731
1732<dl>
1733 <dt><b>Boolean constants</b></dt>
1734
1735 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001736 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001737 </dd>
1738
1739 <dt><b>Integer constants</b></dt>
1740
Reid Spencercc16dc32004-12-09 18:02:53 +00001741 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001742 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001743 integer types.
1744 </dd>
1745
1746 <dt><b>Floating point constants</b></dt>
1747
1748 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1749 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001750 notation (see below). The assembler requires the exact decimal value of
1751 a floating-point constant. For example, the assembler accepts 1.25 but
1752 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1753 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001754
1755 <dt><b>Null pointer constants</b></dt>
1756
John Criswell9e2485c2004-12-10 15:51:16 +00001757 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001758 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1759
1760</dl>
1761
John Criswell9e2485c2004-12-10 15:51:16 +00001762<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001763of floating point constants. For example, the form '<tt>double
17640x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
17654.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001766(and the only time that they are generated by the disassembler) is when a
1767floating point constant must be emitted but it cannot be represented as a
1768decimal floating point number. For example, NaN's, infinities, and other
1769special values are represented in their IEEE hexadecimal format so that
1770assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001771
1772</div>
1773
1774<!-- ======================================================================= -->
1775<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1776</div>
1777
1778<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001779<p>Aggregate constants arise from aggregation of simple constants
1780and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001781
1782<dl>
1783 <dt><b>Structure constants</b></dt>
1784
1785 <dd>Structure constants are represented with notation similar to structure
1786 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001787 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1788 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001789 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001790 types of elements must match those specified by the type.
1791 </dd>
1792
1793 <dt><b>Array constants</b></dt>
1794
1795 <dd>Array constants are represented with notation similar to array type
1796 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001797 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001798 constants must have <a href="#t_array">array type</a>, and the number and
1799 types of elements must match those specified by the type.
1800 </dd>
1801
Reid Spencer485bad12007-02-15 03:07:05 +00001802 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001803
Reid Spencer485bad12007-02-15 03:07:05 +00001804 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001805 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001806 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001807 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001808 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001809 match those specified by the type.
1810 </dd>
1811
1812 <dt><b>Zero initialization</b></dt>
1813
1814 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1815 value to zero of <em>any</em> type, including scalar and aggregate types.
1816 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001817 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001818 initializers.
1819 </dd>
1820</dl>
1821
1822</div>
1823
1824<!-- ======================================================================= -->
1825<div class="doc_subsection">
1826 <a name="globalconstants">Global Variable and Function Addresses</a>
1827</div>
1828
1829<div class="doc_text">
1830
1831<p>The addresses of <a href="#globalvars">global variables</a> and <a
1832href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001833constants. These constants are explicitly referenced when the <a
1834href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001835href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1836file:</p>
1837
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001838<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001839<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001840@X = global i32 17
1841@Y = global i32 42
1842@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001843</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001844</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001845
1846</div>
1847
1848<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001849<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001850<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001851 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001852 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001853 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001854
Reid Spencer2dc45b82004-12-09 18:13:12 +00001855 <p>Undefined values indicate to the compiler that the program is well defined
1856 no matter what value is used, giving the compiler more freedom to optimize.
1857 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001858</div>
1859
1860<!-- ======================================================================= -->
1861<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1862</div>
1863
1864<div class="doc_text">
1865
1866<p>Constant expressions are used to allow expressions involving other constants
1867to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001868href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001869that does not have side effects (e.g. load and call are not supported). The
1870following is the syntax for constant expressions:</p>
1871
1872<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001873 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1874 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001875 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001876
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001877 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1878 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001879 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001880
1881 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1882 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001883 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001884
1885 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1886 <dd>Truncate a floating point constant to another floating point type. The
1887 size of CST must be larger than the size of TYPE. Both types must be
1888 floating point.</dd>
1889
1890 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1891 <dd>Floating point extend a constant to another type. The size of CST must be
1892 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1893
Reid Spencer1539a1c2007-07-31 14:40:14 +00001894 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001895 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001896 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1897 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1898 of the same number of elements. If the value won't fit in the integer type,
1899 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001900
Reid Spencerd4448792006-11-09 23:03:26 +00001901 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001902 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001903 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1904 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1905 of the same number of elements. If the value won't fit in the integer type,
1906 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001907
Reid Spencerd4448792006-11-09 23:03:26 +00001908 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001909 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001910 constant. TYPE must be a scalar or vector floating point type. CST must be of
1911 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1912 of the same number of elements. If the value won't fit in the floating point
1913 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001914
Reid Spencerd4448792006-11-09 23:03:26 +00001915 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001916 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001917 constant. TYPE must be a scalar or vector floating point type. CST must be of
1918 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1919 of the same number of elements. If the value won't fit in the floating point
1920 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001921
Reid Spencer5c0ef472006-11-11 23:08:07 +00001922 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1923 <dd>Convert a pointer typed constant to the corresponding integer constant
1924 TYPE must be an integer type. CST must be of pointer type. The CST value is
1925 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1926
1927 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1928 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1929 pointer type. CST must be of integer type. The CST value is zero extended,
1930 truncated, or unchanged to make it fit in a pointer size. This one is
1931 <i>really</i> dangerous!</dd>
1932
1933 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001934 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1935 identical (same number of bits). The conversion is done as if the CST value
1936 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001937 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001938 vector types to any other type, as long as they have the same bit width. For
Dan Gohman500233a2008-09-08 16:45:59 +00001939 pointers it is only valid to cast to another pointer type. It is not valid
1940 to bitcast to or from an aggregate type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001941 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001942
1943 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1944
1945 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1946 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1947 instruction, the index list may have zero or more indexes, which are required
1948 to make sense for the type of "CSTPTR".</dd>
1949
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001950 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1951
1952 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001953 constants.</dd>
1954
1955 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1956 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1957
1958 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1959 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001960
Nate Begemanac80ade2008-05-12 19:01:56 +00001961 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1962 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1963
1964 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1965 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1966
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001967 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1968
1969 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00001970 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001971
Robert Bocchino05ccd702006-01-15 20:48:27 +00001972 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1973
1974 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001975 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001976
Chris Lattnerc1989542006-04-08 00:13:41 +00001977
1978 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1979
1980 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001981 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001982
Chris Lattnerc3f59762004-12-09 17:30:23 +00001983 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1984
Reid Spencer2dc45b82004-12-09 18:13:12 +00001985 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1986 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001987 binary</a> operations. The constraints on operands are the same as those for
1988 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001989 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001990</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001991</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001992
Chris Lattner00950542001-06-06 20:29:01 +00001993<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001994<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1995<!-- *********************************************************************** -->
1996
1997<!-- ======================================================================= -->
1998<div class="doc_subsection">
1999<a name="inlineasm">Inline Assembler Expressions</a>
2000</div>
2001
2002<div class="doc_text">
2003
2004<p>
2005LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2006Module-Level Inline Assembly</a>) through the use of a special value. This
2007value represents the inline assembler as a string (containing the instructions
2008to emit), a list of operand constraints (stored as a string), and a flag that
2009indicates whether or not the inline asm expression has side effects. An example
2010inline assembler expression is:
2011</p>
2012
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002013<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002014<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002015i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002016</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002017</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002018
2019<p>
2020Inline assembler expressions may <b>only</b> be used as the callee operand of
2021a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2022</p>
2023
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002024<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002025<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002026%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002027</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002028</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002029
2030<p>
2031Inline asms with side effects not visible in the constraint list must be marked
2032as having side effects. This is done through the use of the
2033'<tt>sideeffect</tt>' keyword, like so:
2034</p>
2035
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002036<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002037<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002038call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002039</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002040</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002041
2042<p>TODO: The format of the asm and constraints string still need to be
2043documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00002044need to be documented). This is probably best done by reference to another
2045document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00002046</p>
2047
2048</div>
2049
2050<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00002051<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2052<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002053
Misha Brukman9d0919f2003-11-08 01:05:38 +00002054<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002055
Chris Lattner261efe92003-11-25 01:02:51 +00002056<p>The LLVM instruction set consists of several different
2057classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00002058instructions</a>, <a href="#binaryops">binary instructions</a>,
2059<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00002060 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2061instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002062
Misha Brukman9d0919f2003-11-08 01:05:38 +00002063</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002064
Chris Lattner00950542001-06-06 20:29:01 +00002065<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002066<div class="doc_subsection"> <a name="terminators">Terminator
2067Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002068
Misha Brukman9d0919f2003-11-08 01:05:38 +00002069<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002070
Chris Lattner261efe92003-11-25 01:02:51 +00002071<p>As mentioned <a href="#functionstructure">previously</a>, every
2072basic block in a program ends with a "Terminator" instruction, which
2073indicates which block should be executed after the current block is
2074finished. These terminator instructions typically yield a '<tt>void</tt>'
2075value: they produce control flow, not values (the one exception being
2076the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00002077<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00002078 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2079instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00002080the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2081 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2082 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002083
Misha Brukman9d0919f2003-11-08 01:05:38 +00002084</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002085
Chris Lattner00950542001-06-06 20:29:01 +00002086<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002087<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2088Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002089<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002090<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002091<pre>
2092 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002093 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002094</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002095
Chris Lattner00950542001-06-06 20:29:01 +00002096<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002097
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002098<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2099optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00002100<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002101returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00002102control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002103
Chris Lattner00950542001-06-06 20:29:01 +00002104<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002105
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002106<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2107the return value. The type of the return value must be a
2108'<a href="#t_firstclass">first class</a>' type.</p>
2109
2110<p>A function is not <a href="#wellformed">well formed</a> if
2111it it has a non-void return type and contains a '<tt>ret</tt>'
2112instruction with no return value or a return value with a type that
2113does not match its type, or if it has a void return type and contains
2114a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002115
Chris Lattner00950542001-06-06 20:29:01 +00002116<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002117
Chris Lattner261efe92003-11-25 01:02:51 +00002118<p>When the '<tt>ret</tt>' instruction is executed, control flow
2119returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00002120 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00002121the instruction after the call. If the caller was an "<a
2122 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00002123at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00002124returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00002125return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002126
Chris Lattner00950542001-06-06 20:29:01 +00002127<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002128
2129<pre>
2130 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002131 ret void <i>; Return from a void function</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002132 ret { i32, i8 } { i32 4, i8 2 } <i>; Return an aggregate of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002133</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002134
Dan Gohmand8791e52009-01-24 15:58:40 +00002135<p>Note that the code generator does not yet fully support large
2136 return values. The specific sizes that are currently supported are
2137 dependent on the target. For integers, on 32-bit targets the limit
2138 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2139 For aggregate types, the current limits are dependent on the element
2140 types; for example targets are often limited to 2 total integer
2141 elements and 2 total floating-point elements.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002142
Misha Brukman9d0919f2003-11-08 01:05:38 +00002143</div>
Chris Lattner00950542001-06-06 20:29:01 +00002144<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002145<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002146<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002147<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002148<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002149</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002150<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002151<p>The '<tt>br</tt>' instruction is used to cause control flow to
2152transfer to a different basic block in the current function. There are
2153two forms of this instruction, corresponding to a conditional branch
2154and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002155<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002156<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002157single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002158unconditional form of the '<tt>br</tt>' instruction takes a single
2159'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002160<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002161<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002162argument is evaluated. If the value is <tt>true</tt>, control flows
2163to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2164control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002165<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002166<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002167 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002168</div>
Chris Lattner00950542001-06-06 20:29:01 +00002169<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002170<div class="doc_subsubsection">
2171 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2172</div>
2173
Misha Brukman9d0919f2003-11-08 01:05:38 +00002174<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002175<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002176
2177<pre>
2178 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2179</pre>
2180
Chris Lattner00950542001-06-06 20:29:01 +00002181<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002182
2183<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2184several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002185instruction, allowing a branch to occur to one of many possible
2186destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002187
2188
Chris Lattner00950542001-06-06 20:29:01 +00002189<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002190
2191<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2192comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2193an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2194table is not allowed to contain duplicate constant entries.</p>
2195
Chris Lattner00950542001-06-06 20:29:01 +00002196<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002197
Chris Lattner261efe92003-11-25 01:02:51 +00002198<p>The <tt>switch</tt> instruction specifies a table of values and
2199destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002200table is searched for the given value. If the value is found, control flow is
2201transfered to the corresponding destination; otherwise, control flow is
2202transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002203
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002204<h5>Implementation:</h5>
2205
2206<p>Depending on properties of the target machine and the particular
2207<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002208ways. For example, it could be generated as a series of chained conditional
2209branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002210
2211<h5>Example:</h5>
2212
2213<pre>
2214 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002215 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002216 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002217
2218 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002219 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002220
2221 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002222 switch i32 %val, label %otherwise [ i32 0, label %onzero
2223 i32 1, label %onone
2224 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002225</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002226</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002227
Chris Lattner00950542001-06-06 20:29:01 +00002228<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002229<div class="doc_subsubsection">
2230 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2231</div>
2232
Misha Brukman9d0919f2003-11-08 01:05:38 +00002233<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002234
Chris Lattner00950542001-06-06 20:29:01 +00002235<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002236
2237<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002238 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002239 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002240</pre>
2241
Chris Lattner6536cfe2002-05-06 22:08:29 +00002242<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002243
2244<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2245function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002246'<tt>normal</tt>' label or the
2247'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002248"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2249"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002250href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002251continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002252
Chris Lattner00950542001-06-06 20:29:01 +00002253<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002254
Misha Brukman9d0919f2003-11-08 01:05:38 +00002255<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002256
Chris Lattner00950542001-06-06 20:29:01 +00002257<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002258 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002259 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002260 convention</a> the call should use. If none is specified, the call defaults
2261 to using C calling conventions.
2262 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002263
2264 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2265 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2266 and '<tt>inreg</tt>' attributes are valid here.</li>
2267
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002268 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2269 function value being invoked. In most cases, this is a direct function
2270 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2271 an arbitrary pointer to function value.
2272 </li>
2273
2274 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2275 function to be invoked. </li>
2276
2277 <li>'<tt>function args</tt>': argument list whose types match the function
2278 signature argument types. If the function signature indicates the function
2279 accepts a variable number of arguments, the extra arguments can be
2280 specified. </li>
2281
2282 <li>'<tt>normal label</tt>': the label reached when the called function
2283 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2284
2285 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2286 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2287
Devang Patel307e8ab2008-10-07 17:48:33 +00002288 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002289 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2290 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002291</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002292
Chris Lattner00950542001-06-06 20:29:01 +00002293<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002294
Misha Brukman9d0919f2003-11-08 01:05:38 +00002295<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002296href="#i_call">call</a></tt>' instruction in most regards. The primary
2297difference is that it establishes an association with a label, which is used by
2298the runtime library to unwind the stack.</p>
2299
2300<p>This instruction is used in languages with destructors to ensure that proper
2301cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2302exception. Additionally, this is important for implementation of
2303'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2304
Chris Lattner00950542001-06-06 20:29:01 +00002305<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002306<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002307 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002308 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002309 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002310 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002311</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002312</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002313
2314
Chris Lattner27f71f22003-09-03 00:41:47 +00002315<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002316
Chris Lattner261efe92003-11-25 01:02:51 +00002317<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2318Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002319
Misha Brukman9d0919f2003-11-08 01:05:38 +00002320<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002321
Chris Lattner27f71f22003-09-03 00:41:47 +00002322<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002323<pre>
2324 unwind
2325</pre>
2326
Chris Lattner27f71f22003-09-03 00:41:47 +00002327<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002328
2329<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2330at the first callee in the dynamic call stack which used an <a
2331href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2332primarily used to implement exception handling.</p>
2333
Chris Lattner27f71f22003-09-03 00:41:47 +00002334<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002335
Chris Lattner72ed2002008-04-19 21:01:16 +00002336<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002337immediately halt. The dynamic call stack is then searched for the first <a
2338href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2339execution continues at the "exceptional" destination block specified by the
2340<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2341dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002342</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002343
2344<!-- _______________________________________________________________________ -->
2345
2346<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2347Instruction</a> </div>
2348
2349<div class="doc_text">
2350
2351<h5>Syntax:</h5>
2352<pre>
2353 unreachable
2354</pre>
2355
2356<h5>Overview:</h5>
2357
2358<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2359instruction is used to inform the optimizer that a particular portion of the
2360code is not reachable. This can be used to indicate that the code after a
2361no-return function cannot be reached, and other facts.</p>
2362
2363<h5>Semantics:</h5>
2364
2365<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2366</div>
2367
2368
2369
Chris Lattner00950542001-06-06 20:29:01 +00002370<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002371<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002372<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002373<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002374program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002375produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002376multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002377The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002378<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002379</div>
Chris Lattner00950542001-06-06 20:29:01 +00002380<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002381<div class="doc_subsubsection">
2382 <a name="i_add">'<tt>add</tt>' Instruction</a>
2383</div>
2384
Misha Brukman9d0919f2003-11-08 01:05:38 +00002385<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002386
Chris Lattner00950542001-06-06 20:29:01 +00002387<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002388
2389<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002390 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002391</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002392
Chris Lattner00950542001-06-06 20:29:01 +00002393<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002394
Misha Brukman9d0919f2003-11-08 01:05:38 +00002395<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002396
Chris Lattner00950542001-06-06 20:29:01 +00002397<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002398
2399<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2400 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2401 <a href="#t_vector">vector</a> values. Both arguments must have identical
2402 types.</p>
2403
Chris Lattner00950542001-06-06 20:29:01 +00002404<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002405
Misha Brukman9d0919f2003-11-08 01:05:38 +00002406<p>The value produced is the integer or floating point sum of the two
2407operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002408
Chris Lattner5ec89832008-01-28 00:36:27 +00002409<p>If an integer sum has unsigned overflow, the result returned is the
2410mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2411the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002412
Chris Lattner5ec89832008-01-28 00:36:27 +00002413<p>Because LLVM integers use a two's complement representation, this
2414instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002415
Chris Lattner00950542001-06-06 20:29:01 +00002416<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002417
2418<pre>
2419 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002420</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002421</div>
Chris Lattner00950542001-06-06 20:29:01 +00002422<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002423<div class="doc_subsubsection">
2424 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2425</div>
2426
Misha Brukman9d0919f2003-11-08 01:05:38 +00002427<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002428
Chris Lattner00950542001-06-06 20:29:01 +00002429<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002430
2431<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002432 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002433</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002434
Chris Lattner00950542001-06-06 20:29:01 +00002435<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002436
Misha Brukman9d0919f2003-11-08 01:05:38 +00002437<p>The '<tt>sub</tt>' instruction returns the difference of its two
2438operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002439
2440<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2441'<tt>neg</tt>' instruction present in most other intermediate
2442representations.</p>
2443
Chris Lattner00950542001-06-06 20:29:01 +00002444<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002445
2446<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2447 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2448 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2449 types.</p>
2450
Chris Lattner00950542001-06-06 20:29:01 +00002451<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002452
Chris Lattner261efe92003-11-25 01:02:51 +00002453<p>The value produced is the integer or floating point difference of
2454the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002455
Chris Lattner5ec89832008-01-28 00:36:27 +00002456<p>If an integer difference has unsigned overflow, the result returned is the
2457mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2458the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002459
Chris Lattner5ec89832008-01-28 00:36:27 +00002460<p>Because LLVM integers use a two's complement representation, this
2461instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002462
Chris Lattner00950542001-06-06 20:29:01 +00002463<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002464<pre>
2465 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002466 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002467</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002468</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002469
Chris Lattner00950542001-06-06 20:29:01 +00002470<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002471<div class="doc_subsubsection">
2472 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2473</div>
2474
Misha Brukman9d0919f2003-11-08 01:05:38 +00002475<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002476
Chris Lattner00950542001-06-06 20:29:01 +00002477<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002478<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002479</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002480<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002481<p>The '<tt>mul</tt>' instruction returns the product of its two
2482operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002483
Chris Lattner00950542001-06-06 20:29:01 +00002484<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002485
2486<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2487href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2488or <a href="#t_vector">vector</a> values. Both arguments must have identical
2489types.</p>
2490
Chris Lattner00950542001-06-06 20:29:01 +00002491<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002492
Chris Lattner261efe92003-11-25 01:02:51 +00002493<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002494two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002495
Chris Lattner5ec89832008-01-28 00:36:27 +00002496<p>If the result of an integer multiplication has unsigned overflow,
2497the result returned is the mathematical result modulo
24982<sup>n</sup>, where n is the bit width of the result.</p>
2499<p>Because LLVM integers use a two's complement representation, and the
2500result is the same width as the operands, this instruction returns the
2501correct result for both signed and unsigned integers. If a full product
2502(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2503should be sign-extended or zero-extended as appropriate to the
2504width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002505<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002506<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002507</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002508</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002509
Chris Lattner00950542001-06-06 20:29:01 +00002510<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002511<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2512</a></div>
2513<div class="doc_text">
2514<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002515<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002516</pre>
2517<h5>Overview:</h5>
2518<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2519operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002520
Reid Spencer1628cec2006-10-26 06:15:43 +00002521<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002522
Reid Spencer1628cec2006-10-26 06:15:43 +00002523<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002524<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2525values. Both arguments must have identical types.</p>
2526
Reid Spencer1628cec2006-10-26 06:15:43 +00002527<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002528
Chris Lattner5ec89832008-01-28 00:36:27 +00002529<p>The value produced is the unsigned integer quotient of the two operands.</p>
2530<p>Note that unsigned integer division and signed integer division are distinct
2531operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2532<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002533<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002534<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002535</pre>
2536</div>
2537<!-- _______________________________________________________________________ -->
2538<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2539</a> </div>
2540<div class="doc_text">
2541<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002542<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002543 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002544</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002545
Reid Spencer1628cec2006-10-26 06:15:43 +00002546<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002547
Reid Spencer1628cec2006-10-26 06:15:43 +00002548<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2549operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002550
Reid Spencer1628cec2006-10-26 06:15:43 +00002551<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002552
2553<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2554<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2555values. Both arguments must have identical types.</p>
2556
Reid Spencer1628cec2006-10-26 06:15:43 +00002557<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002558<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002559<p>Note that signed integer division and unsigned integer division are distinct
2560operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2561<p>Division by zero leads to undefined behavior. Overflow also leads to
2562undefined behavior; this is a rare case, but can occur, for example,
2563by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002564<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002565<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002566</pre>
2567</div>
2568<!-- _______________________________________________________________________ -->
2569<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002570Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002571<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002572<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002573<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002574 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002575</pre>
2576<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002577
Reid Spencer1628cec2006-10-26 06:15:43 +00002578<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002579operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002580
Chris Lattner261efe92003-11-25 01:02:51 +00002581<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002582
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002583<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002584<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2585of floating point values. Both arguments must have identical types.</p>
2586
Chris Lattner261efe92003-11-25 01:02:51 +00002587<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002588
Reid Spencer1628cec2006-10-26 06:15:43 +00002589<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002590
Chris Lattner261efe92003-11-25 01:02:51 +00002591<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002592
2593<pre>
2594 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002595</pre>
2596</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002597
Chris Lattner261efe92003-11-25 01:02:51 +00002598<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002599<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2600</div>
2601<div class="doc_text">
2602<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002603<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002604</pre>
2605<h5>Overview:</h5>
2606<p>The '<tt>urem</tt>' instruction returns the remainder from the
2607unsigned division of its two arguments.</p>
2608<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002609<p>The two arguments to the '<tt>urem</tt>' instruction must be
2610<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2611values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002612<h5>Semantics:</h5>
2613<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002614This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002615<p>Note that unsigned integer remainder and signed integer remainder are
2616distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2617<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002618<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002619<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002620</pre>
2621
2622</div>
2623<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002624<div class="doc_subsubsection">
2625 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2626</div>
2627
Chris Lattner261efe92003-11-25 01:02:51 +00002628<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002629
Chris Lattner261efe92003-11-25 01:02:51 +00002630<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002631
2632<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002633 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002634</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002635
Chris Lattner261efe92003-11-25 01:02:51 +00002636<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002637
Reid Spencer0a783f72006-11-02 01:53:59 +00002638<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002639signed division of its two operands. This instruction can also take
2640<a href="#t_vector">vector</a> versions of the values in which case
2641the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002642
Chris Lattner261efe92003-11-25 01:02:51 +00002643<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002644
Reid Spencer0a783f72006-11-02 01:53:59 +00002645<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002646<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2647values. Both arguments must have identical types.</p>
2648
Chris Lattner261efe92003-11-25 01:02:51 +00002649<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002650
Reid Spencer0a783f72006-11-02 01:53:59 +00002651<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002652has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2653operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002654a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002655 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002656Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002657please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002658Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002659<p>Note that signed integer remainder and unsigned integer remainder are
2660distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2661<p>Taking the remainder of a division by zero leads to undefined behavior.
2662Overflow also leads to undefined behavior; this is a rare case, but can occur,
2663for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2664(The remainder doesn't actually overflow, but this rule lets srem be
2665implemented using instructions that return both the result of the division
2666and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002667<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002668<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002669</pre>
2670
2671</div>
2672<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002673<div class="doc_subsubsection">
2674 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2675
Reid Spencer0a783f72006-11-02 01:53:59 +00002676<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002677
Reid Spencer0a783f72006-11-02 01:53:59 +00002678<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002679<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002680</pre>
2681<h5>Overview:</h5>
2682<p>The '<tt>frem</tt>' instruction returns the remainder from the
2683division of its two operands.</p>
2684<h5>Arguments:</h5>
2685<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002686<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2687of floating point values. Both arguments must have identical types.</p>
2688
Reid Spencer0a783f72006-11-02 01:53:59 +00002689<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002690
Chris Lattnera73afe02008-04-01 18:45:27 +00002691<p>This instruction returns the <i>remainder</i> of a division.
2692The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002693
Reid Spencer0a783f72006-11-02 01:53:59 +00002694<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002695
2696<pre>
2697 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002698</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002699</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002700
Reid Spencer8e11bf82007-02-02 13:57:07 +00002701<!-- ======================================================================= -->
2702<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2703Operations</a> </div>
2704<div class="doc_text">
2705<p>Bitwise binary operators are used to do various forms of
2706bit-twiddling in a program. They are generally very efficient
2707instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002708instructions. They require two operands of the same type, execute an operation on them,
2709and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002710</div>
2711
Reid Spencer569f2fa2007-01-31 21:39:12 +00002712<!-- _______________________________________________________________________ -->
2713<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2714Instruction</a> </div>
2715<div class="doc_text">
2716<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002717<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002718</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002719
Reid Spencer569f2fa2007-01-31 21:39:12 +00002720<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002721
Reid Spencer569f2fa2007-01-31 21:39:12 +00002722<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2723the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002724
Reid Spencer569f2fa2007-01-31 21:39:12 +00002725<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002726
Reid Spencer569f2fa2007-01-31 21:39:12 +00002727<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002728 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002729type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002730
Reid Spencer569f2fa2007-01-31 21:39:12 +00002731<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002732
Gabor Greiffb224a22008-08-07 21:46:00 +00002733<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2734where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang01f8d092008-12-10 08:55:09 +00002735equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2736If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2737corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002738
Reid Spencer569f2fa2007-01-31 21:39:12 +00002739<h5>Example:</h5><pre>
2740 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2741 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2742 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002743 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002744 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002745</pre>
2746</div>
2747<!-- _______________________________________________________________________ -->
2748<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2749Instruction</a> </div>
2750<div class="doc_text">
2751<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002752<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002753</pre>
2754
2755<h5>Overview:</h5>
2756<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002757operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002758
2759<h5>Arguments:</h5>
2760<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002761<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002762type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002763
2764<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002765
Reid Spencer569f2fa2007-01-31 21:39:12 +00002766<p>This instruction always performs a logical shift right operation. The most
2767significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002768shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang01f8d092008-12-10 08:55:09 +00002769the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2770vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2771amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002772
2773<h5>Example:</h5>
2774<pre>
2775 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2776 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2777 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2778 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002779 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002780 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002781</pre>
2782</div>
2783
Reid Spencer8e11bf82007-02-02 13:57:07 +00002784<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002785<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2786Instruction</a> </div>
2787<div class="doc_text">
2788
2789<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002790<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002791</pre>
2792
2793<h5>Overview:</h5>
2794<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002795operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002796
2797<h5>Arguments:</h5>
2798<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002799<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002800type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002801
2802<h5>Semantics:</h5>
2803<p>This instruction always performs an arithmetic shift right operation,
2804The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002805of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang01f8d092008-12-10 08:55:09 +00002806larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
2807arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2808corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002809
2810<h5>Example:</h5>
2811<pre>
2812 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2813 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2814 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2815 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002816 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002817 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002818</pre>
2819</div>
2820
Chris Lattner00950542001-06-06 20:29:01 +00002821<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002822<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2823Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002824
Misha Brukman9d0919f2003-11-08 01:05:38 +00002825<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002826
Chris Lattner00950542001-06-06 20:29:01 +00002827<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002828
2829<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002830 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002831</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002832
Chris Lattner00950542001-06-06 20:29:01 +00002833<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002834
Chris Lattner261efe92003-11-25 01:02:51 +00002835<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2836its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002837
Chris Lattner00950542001-06-06 20:29:01 +00002838<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002839
2840<p>The two arguments to the '<tt>and</tt>' instruction must be
2841<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2842values. Both arguments must have identical types.</p>
2843
Chris Lattner00950542001-06-06 20:29:01 +00002844<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002845<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002846<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002847<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002848<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002849 <tbody>
2850 <tr>
2851 <td>In0</td>
2852 <td>In1</td>
2853 <td>Out</td>
2854 </tr>
2855 <tr>
2856 <td>0</td>
2857 <td>0</td>
2858 <td>0</td>
2859 </tr>
2860 <tr>
2861 <td>0</td>
2862 <td>1</td>
2863 <td>0</td>
2864 </tr>
2865 <tr>
2866 <td>1</td>
2867 <td>0</td>
2868 <td>0</td>
2869 </tr>
2870 <tr>
2871 <td>1</td>
2872 <td>1</td>
2873 <td>1</td>
2874 </tr>
2875 </tbody>
2876</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002877</div>
Chris Lattner00950542001-06-06 20:29:01 +00002878<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002879<pre>
2880 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002881 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2882 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002883</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002884</div>
Chris Lattner00950542001-06-06 20:29:01 +00002885<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002886<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002887<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002888<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002889<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002890</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002891<h5>Overview:</h5>
2892<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2893or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002894<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002895
2896<p>The two arguments to the '<tt>or</tt>' instruction must be
2897<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2898values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002899<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002900<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002901<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002902<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002903<table border="1" cellspacing="0" cellpadding="4">
2904 <tbody>
2905 <tr>
2906 <td>In0</td>
2907 <td>In1</td>
2908 <td>Out</td>
2909 </tr>
2910 <tr>
2911 <td>0</td>
2912 <td>0</td>
2913 <td>0</td>
2914 </tr>
2915 <tr>
2916 <td>0</td>
2917 <td>1</td>
2918 <td>1</td>
2919 </tr>
2920 <tr>
2921 <td>1</td>
2922 <td>0</td>
2923 <td>1</td>
2924 </tr>
2925 <tr>
2926 <td>1</td>
2927 <td>1</td>
2928 <td>1</td>
2929 </tr>
2930 </tbody>
2931</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002932</div>
Chris Lattner00950542001-06-06 20:29:01 +00002933<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002934<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2935 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2936 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002937</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002938</div>
Chris Lattner00950542001-06-06 20:29:01 +00002939<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002940<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2941Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002942<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002943<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002944<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002945</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002946<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002947<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2948or of its two operands. The <tt>xor</tt> is used to implement the
2949"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002950<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002951<p>The two arguments to the '<tt>xor</tt>' instruction must be
2952<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2953values. Both arguments must have identical types.</p>
2954
Chris Lattner00950542001-06-06 20:29:01 +00002955<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002956
Misha Brukman9d0919f2003-11-08 01:05:38 +00002957<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002958<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002959<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002960<table border="1" cellspacing="0" cellpadding="4">
2961 <tbody>
2962 <tr>
2963 <td>In0</td>
2964 <td>In1</td>
2965 <td>Out</td>
2966 </tr>
2967 <tr>
2968 <td>0</td>
2969 <td>0</td>
2970 <td>0</td>
2971 </tr>
2972 <tr>
2973 <td>0</td>
2974 <td>1</td>
2975 <td>1</td>
2976 </tr>
2977 <tr>
2978 <td>1</td>
2979 <td>0</td>
2980 <td>1</td>
2981 </tr>
2982 <tr>
2983 <td>1</td>
2984 <td>1</td>
2985 <td>0</td>
2986 </tr>
2987 </tbody>
2988</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002989</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002990<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002991<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002992<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2993 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2994 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2995 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002996</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002997</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002998
Chris Lattner00950542001-06-06 20:29:01 +00002999<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003000<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00003001 <a name="vectorops">Vector Operations</a>
3002</div>
3003
3004<div class="doc_text">
3005
3006<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003007target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00003008vector-specific operations needed to process vectors effectively. While LLVM
3009does directly support these vector operations, many sophisticated algorithms
3010will want to use target-specific intrinsics to take full advantage of a specific
3011target.</p>
3012
3013</div>
3014
3015<!-- _______________________________________________________________________ -->
3016<div class="doc_subsubsection">
3017 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3018</div>
3019
3020<div class="doc_text">
3021
3022<h5>Syntax:</h5>
3023
3024<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003025 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003026</pre>
3027
3028<h5>Overview:</h5>
3029
3030<p>
3031The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003032element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003033</p>
3034
3035
3036<h5>Arguments:</h5>
3037
3038<p>
3039The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003040value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00003041an index indicating the position from which to extract the element.
3042The index may be a variable.</p>
3043
3044<h5>Semantics:</h5>
3045
3046<p>
3047The result is a scalar of the same type as the element type of
3048<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3049<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3050results are undefined.
3051</p>
3052
3053<h5>Example:</h5>
3054
3055<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003056 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003057</pre>
3058</div>
3059
3060
3061<!-- _______________________________________________________________________ -->
3062<div class="doc_subsubsection">
3063 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3064</div>
3065
3066<div class="doc_text">
3067
3068<h5>Syntax:</h5>
3069
3070<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00003071 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003072</pre>
3073
3074<h5>Overview:</h5>
3075
3076<p>
3077The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003078element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003079</p>
3080
3081
3082<h5>Arguments:</h5>
3083
3084<p>
3085The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003086value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00003087scalar value whose type must equal the element type of the first
3088operand. The third operand is an index indicating the position at
3089which to insert the value. The index may be a variable.</p>
3090
3091<h5>Semantics:</h5>
3092
3093<p>
Reid Spencer485bad12007-02-15 03:07:05 +00003094The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00003095element values are those of <tt>val</tt> except at position
3096<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3097exceeds the length of <tt>val</tt>, the results are undefined.
3098</p>
3099
3100<h5>Example:</h5>
3101
3102<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003103 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003104</pre>
3105</div>
3106
3107<!-- _______________________________________________________________________ -->
3108<div class="doc_subsubsection">
3109 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3110</div>
3111
3112<div class="doc_text">
3113
3114<h5>Syntax:</h5>
3115
3116<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003117 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003118</pre>
3119
3120<h5>Overview:</h5>
3121
3122<p>
3123The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00003124from two input vectors, returning a vector with the same element type as
3125the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00003126</p>
3127
3128<h5>Arguments:</h5>
3129
3130<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003131The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3132with types that match each other. The third argument is a shuffle mask whose
3133element type is always 'i32'. The result of the instruction is a vector whose
3134length is the same as the shuffle mask and whose element type is the same as
3135the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00003136</p>
3137
3138<p>
3139The shuffle mask operand is required to be a constant vector with either
3140constant integer or undef values.
3141</p>
3142
3143<h5>Semantics:</h5>
3144
3145<p>
3146The elements of the two input vectors are numbered from left to right across
3147both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00003148the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00003149gets. The element selector may be undef (meaning "don't care") and the second
3150operand may be undef if performing a shuffle from only one vector.
3151</p>
3152
3153<h5>Example:</h5>
3154
3155<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003156 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003157 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003158 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3159 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003160 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3161 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3162 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3163 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003164</pre>
3165</div>
3166
Tanya Lattner09474292006-04-14 19:24:33 +00003167
Chris Lattner3df241e2006-04-08 23:07:04 +00003168<!-- ======================================================================= -->
3169<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003170 <a name="aggregateops">Aggregate Operations</a>
3171</div>
3172
3173<div class="doc_text">
3174
3175<p>LLVM supports several instructions for working with aggregate values.
3176</p>
3177
3178</div>
3179
3180<!-- _______________________________________________________________________ -->
3181<div class="doc_subsubsection">
3182 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3183</div>
3184
3185<div class="doc_text">
3186
3187<h5>Syntax:</h5>
3188
3189<pre>
3190 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3191</pre>
3192
3193<h5>Overview:</h5>
3194
3195<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003196The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3197or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003198</p>
3199
3200
3201<h5>Arguments:</h5>
3202
3203<p>
3204The first operand of an '<tt>extractvalue</tt>' instruction is a
3205value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003206type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003207in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003208'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3209</p>
3210
3211<h5>Semantics:</h5>
3212
3213<p>
3214The result is the value at the position in the aggregate specified by
3215the index operands.
3216</p>
3217
3218<h5>Example:</h5>
3219
3220<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003221 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003222</pre>
3223</div>
3224
3225
3226<!-- _______________________________________________________________________ -->
3227<div class="doc_subsubsection">
3228 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3229</div>
3230
3231<div class="doc_text">
3232
3233<h5>Syntax:</h5>
3234
3235<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003236 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003237</pre>
3238
3239<h5>Overview:</h5>
3240
3241<p>
3242The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003243into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003244</p>
3245
3246
3247<h5>Arguments:</h5>
3248
3249<p>
3250The first operand of an '<tt>insertvalue</tt>' instruction is a
3251value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3252The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003253The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003254indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003255indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003256'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3257The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003258by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003259</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003260
3261<h5>Semantics:</h5>
3262
3263<p>
3264The result is an aggregate of the same type as <tt>val</tt>. Its
3265value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003266specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003267</p>
3268
3269<h5>Example:</h5>
3270
3271<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003272 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003273</pre>
3274</div>
3275
3276
3277<!-- ======================================================================= -->
3278<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003279 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003280</div>
3281
Misha Brukman9d0919f2003-11-08 01:05:38 +00003282<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003283
Chris Lattner261efe92003-11-25 01:02:51 +00003284<p>A key design point of an SSA-based representation is how it
3285represents memory. In LLVM, no memory locations are in SSA form, which
3286makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003287allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003288
Misha Brukman9d0919f2003-11-08 01:05:38 +00003289</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003290
Chris Lattner00950542001-06-06 20:29:01 +00003291<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003292<div class="doc_subsubsection">
3293 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3294</div>
3295
Misha Brukman9d0919f2003-11-08 01:05:38 +00003296<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003297
Chris Lattner00950542001-06-06 20:29:01 +00003298<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003299
3300<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003301 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003302</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003303
Chris Lattner00950542001-06-06 20:29:01 +00003304<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003305
Chris Lattner261efe92003-11-25 01:02:51 +00003306<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003307heap and returns a pointer to it. The object is always allocated in the generic
3308address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003309
Chris Lattner00950542001-06-06 20:29:01 +00003310<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003311
3312<p>The '<tt>malloc</tt>' instruction allocates
3313<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003314bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003315appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003316number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003317If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003318be aligned to at least that boundary. If not specified, or if zero, the target can
3319choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003320
Misha Brukman9d0919f2003-11-08 01:05:38 +00003321<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003322
Chris Lattner00950542001-06-06 20:29:01 +00003323<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003324
Chris Lattner261efe92003-11-25 01:02:51 +00003325<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003326a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003327result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003328
Chris Lattner2cbdc452005-11-06 08:02:57 +00003329<h5>Example:</h5>
3330
3331<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003332 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003333
Bill Wendlingaac388b2007-05-29 09:42:13 +00003334 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3335 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3336 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3337 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3338 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003339</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003340
3341<p>Note that the code generator does not yet respect the
3342 alignment value.</p>
3343
Misha Brukman9d0919f2003-11-08 01:05:38 +00003344</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003345
Chris Lattner00950542001-06-06 20:29:01 +00003346<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003347<div class="doc_subsubsection">
3348 <a name="i_free">'<tt>free</tt>' Instruction</a>
3349</div>
3350
Misha Brukman9d0919f2003-11-08 01:05:38 +00003351<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003352
Chris Lattner00950542001-06-06 20:29:01 +00003353<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003354
3355<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003356 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003357</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003358
Chris Lattner00950542001-06-06 20:29:01 +00003359<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003360
Chris Lattner261efe92003-11-25 01:02:51 +00003361<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003362memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003363
Chris Lattner00950542001-06-06 20:29:01 +00003364<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003365
Chris Lattner261efe92003-11-25 01:02:51 +00003366<p>'<tt>value</tt>' shall be a pointer value that points to a value
3367that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3368instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003369
Chris Lattner00950542001-06-06 20:29:01 +00003370<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003371
John Criswell9e2485c2004-12-10 15:51:16 +00003372<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003373after this instruction executes. If the pointer is null, the operation
3374is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003375
Chris Lattner00950542001-06-06 20:29:01 +00003376<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003377
3378<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003379 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003380 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003381</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003382</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003383
Chris Lattner00950542001-06-06 20:29:01 +00003384<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003385<div class="doc_subsubsection">
3386 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3387</div>
3388
Misha Brukman9d0919f2003-11-08 01:05:38 +00003389<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003390
Chris Lattner00950542001-06-06 20:29:01 +00003391<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003392
3393<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003394 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003395</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003396
Chris Lattner00950542001-06-06 20:29:01 +00003397<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003398
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003399<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3400currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003401returns to its caller. The object is always allocated in the generic address
3402space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003403
Chris Lattner00950542001-06-06 20:29:01 +00003404<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003405
John Criswell9e2485c2004-12-10 15:51:16 +00003406<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003407bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003408appropriate type to the program. If "NumElements" is specified, it is the
3409number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003410If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003411to be aligned to at least that boundary. If not specified, or if zero, the target
3412can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003413
Misha Brukman9d0919f2003-11-08 01:05:38 +00003414<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003415
Chris Lattner00950542001-06-06 20:29:01 +00003416<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003417
Chris Lattner72ed2002008-04-19 21:01:16 +00003418<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3419there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003420memory is automatically released when the function returns. The '<tt>alloca</tt>'
3421instruction is commonly used to represent automatic variables that must
3422have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003423 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003424instructions), the memory is reclaimed. Allocating zero bytes
3425is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003426
Chris Lattner00950542001-06-06 20:29:01 +00003427<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003428
3429<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003430 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3431 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3432 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3433 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003434</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003435</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003436
Chris Lattner00950542001-06-06 20:29:01 +00003437<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003438<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3439Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003440<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003441<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003442<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003443<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003444<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003445<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003446<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003447address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003448 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003449marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003450the number or order of execution of this <tt>load</tt> with other
3451volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3452instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003453<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003454The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003455(that is, the alignment of the memory address). A value of 0 or an
3456omitted "align" argument means that the operation has the preferential
3457alignment for the target. It is the responsibility of the code emitter
3458to ensure that the alignment information is correct. Overestimating
3459the alignment results in an undefined behavior. Underestimating the
3460alignment may produce less efficient code. An alignment of 1 is always
3461safe.
3462</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003463<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003464<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003465<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003466<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003467 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003468 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3469 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003470</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003471</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003472<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003473<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3474Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003475<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003476<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003477<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3478 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003479</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003480<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003481<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003482<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003483<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003484to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003485operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3486of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003487operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003488optimizer is not allowed to modify the number or order of execution of
3489this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3490 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003491<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003492The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003493(that is, the alignment of the memory address). A value of 0 or an
3494omitted "align" argument means that the operation has the preferential
3495alignment for the target. It is the responsibility of the code emitter
3496to ensure that the alignment information is correct. Overestimating
3497the alignment results in an undefined behavior. Underestimating the
3498alignment may produce less efficient code. An alignment of 1 is always
3499safe.
3500</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003501<h5>Semantics:</h5>
3502<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3503at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003504<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003505<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003506 store i32 3, i32* %ptr <i>; yields {void}</i>
3507 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003508</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003509</div>
3510
Chris Lattner2b7d3202002-05-06 03:03:22 +00003511<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003512<div class="doc_subsubsection">
3513 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3514</div>
3515
Misha Brukman9d0919f2003-11-08 01:05:38 +00003516<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003517<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003518<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003519 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003520</pre>
3521
Chris Lattner7faa8832002-04-14 06:13:44 +00003522<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003523
3524<p>
3525The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003526subelement of an aggregate data structure. It performs address calculation only
3527and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003528
Chris Lattner7faa8832002-04-14 06:13:44 +00003529<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003530
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003531<p>The first argument is always a pointer, and forms the basis of the
3532calculation. The remaining arguments are indices, that indicate which of the
3533elements of the aggregate object are indexed. The interpretation of each index
3534is dependent on the type being indexed into. The first index always indexes the
3535pointer value given as the first argument, the second index indexes a value of
3536the type pointed to (not necessarily the value directly pointed to, since the
3537first index can be non-zero), etc. The first type indexed into must be a pointer
3538value, subsequent types can be arrays, vectors and structs. Note that subsequent
3539types being indexed into can never be pointers, since that would require loading
3540the pointer before continuing calculation.</p>
3541
3542<p>The type of each index argument depends on the type it is indexing into.
3543When indexing into a (packed) structure, only <tt>i32</tt> integer
3544<b>constants</b> are allowed. When indexing into an array, pointer or vector,
3545only integers of 32 or 64 bits are allowed (also non-constants). 32-bit values
3546will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003547
Chris Lattner261efe92003-11-25 01:02:51 +00003548<p>For example, let's consider a C code fragment and how it gets
3549compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003550
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003551<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003552<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003553struct RT {
3554 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003555 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003556 char C;
3557};
3558struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003559 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003560 double Y;
3561 struct RT Z;
3562};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003563
Chris Lattnercabc8462007-05-29 15:43:56 +00003564int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003565 return &amp;s[1].Z.B[5][13];
3566}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003567</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003568</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003569
Misha Brukman9d0919f2003-11-08 01:05:38 +00003570<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003571
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003572<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003573<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00003574%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3575%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003576
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003577define i32* %foo(%ST* %s) {
3578entry:
3579 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3580 ret i32* %reg
3581}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003582</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003583</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003584
Chris Lattner7faa8832002-04-14 06:13:44 +00003585<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003586
Misha Brukman9d0919f2003-11-08 01:05:38 +00003587<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003588type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003589}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003590the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3591i8 }</tt>' type, another structure. The third index indexes into the second
3592element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003593array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003594'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3595to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003596
Chris Lattner261efe92003-11-25 01:02:51 +00003597<p>Note that it is perfectly legal to index partially through a
3598structure, returning a pointer to an inner element. Because of this,
3599the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003600
3601<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003602 define i32* %foo(%ST* %s) {
3603 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003604 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3605 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003606 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3607 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3608 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003609 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003610</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003611
3612<p>Note that it is undefined to access an array out of bounds: array and
3613pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003614The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003615defined to be accessible as variable length arrays, which requires access
3616beyond the zero'th element.</p>
3617
Chris Lattner884a9702006-08-15 00:45:58 +00003618<p>The getelementptr instruction is often confusing. For some more insight
3619into how it works, see <a href="GetElementPtr.html">the getelementptr
3620FAQ</a>.</p>
3621
Chris Lattner7faa8832002-04-14 06:13:44 +00003622<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003623
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003624<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003625 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003626 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3627 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003628 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003629 <i>; yields i8*:eptr</i>
3630 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003631</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003632</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003633
Chris Lattner00950542001-06-06 20:29:01 +00003634<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003635<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003636</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003637<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003638<p>The instructions in this category are the conversion instructions (casting)
3639which all take a single operand and a type. They perform various bit conversions
3640on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003641</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003642
Chris Lattner6536cfe2002-05-06 22:08:29 +00003643<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003644<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003645 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3646</div>
3647<div class="doc_text">
3648
3649<h5>Syntax:</h5>
3650<pre>
3651 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3652</pre>
3653
3654<h5>Overview:</h5>
3655<p>
3656The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3657</p>
3658
3659<h5>Arguments:</h5>
3660<p>
3661The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3662be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003663and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003664type. The bit size of <tt>value</tt> must be larger than the bit size of
3665<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003666
3667<h5>Semantics:</h5>
3668<p>
3669The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003670and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3671larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3672It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003673
3674<h5>Example:</h5>
3675<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003676 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003677 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3678 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003679</pre>
3680</div>
3681
3682<!-- _______________________________________________________________________ -->
3683<div class="doc_subsubsection">
3684 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3685</div>
3686<div class="doc_text">
3687
3688<h5>Syntax:</h5>
3689<pre>
3690 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3691</pre>
3692
3693<h5>Overview:</h5>
3694<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3695<tt>ty2</tt>.</p>
3696
3697
3698<h5>Arguments:</h5>
3699<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003700<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3701also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003702<tt>value</tt> must be smaller than the bit size of the destination type,
3703<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003704
3705<h5>Semantics:</h5>
3706<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003707bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003708
Reid Spencerb5929522007-01-12 15:46:11 +00003709<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003710
3711<h5>Example:</h5>
3712<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003713 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003714 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003715</pre>
3716</div>
3717
3718<!-- _______________________________________________________________________ -->
3719<div class="doc_subsubsection">
3720 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3721</div>
3722<div class="doc_text">
3723
3724<h5>Syntax:</h5>
3725<pre>
3726 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3727</pre>
3728
3729<h5>Overview:</h5>
3730<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3731
3732<h5>Arguments:</h5>
3733<p>
3734The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003735<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3736also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003737<tt>value</tt> must be smaller than the bit size of the destination type,
3738<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003739
3740<h5>Semantics:</h5>
3741<p>
3742The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3743bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003744the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003745
Reid Spencerc78f3372007-01-12 03:35:51 +00003746<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003747
3748<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003749<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003750 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003751 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003752</pre>
3753</div>
3754
3755<!-- _______________________________________________________________________ -->
3756<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003757 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3758</div>
3759
3760<div class="doc_text">
3761
3762<h5>Syntax:</h5>
3763
3764<pre>
3765 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3766</pre>
3767
3768<h5>Overview:</h5>
3769<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3770<tt>ty2</tt>.</p>
3771
3772
3773<h5>Arguments:</h5>
3774<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3775 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3776cast it to. The size of <tt>value</tt> must be larger than the size of
3777<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3778<i>no-op cast</i>.</p>
3779
3780<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003781<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3782<a href="#t_floating">floating point</a> type to a smaller
3783<a href="#t_floating">floating point</a> type. If the value cannot fit within
3784the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003785
3786<h5>Example:</h5>
3787<pre>
3788 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3789 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3790</pre>
3791</div>
3792
3793<!-- _______________________________________________________________________ -->
3794<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003795 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3796</div>
3797<div class="doc_text">
3798
3799<h5>Syntax:</h5>
3800<pre>
3801 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3802</pre>
3803
3804<h5>Overview:</h5>
3805<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3806floating point value.</p>
3807
3808<h5>Arguments:</h5>
3809<p>The '<tt>fpext</tt>' instruction takes a
3810<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003811and a <a href="#t_floating">floating point</a> type to cast it to. The source
3812type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003813
3814<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003815<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003816<a href="#t_floating">floating point</a> type to a larger
3817<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003818used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003819<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003820
3821<h5>Example:</h5>
3822<pre>
3823 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3824 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3825</pre>
3826</div>
3827
3828<!-- _______________________________________________________________________ -->
3829<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003830 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003831</div>
3832<div class="doc_text">
3833
3834<h5>Syntax:</h5>
3835<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003836 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003837</pre>
3838
3839<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003840<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003841unsigned integer equivalent of type <tt>ty2</tt>.
3842</p>
3843
3844<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003845<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003846scalar or vector <a href="#t_floating">floating point</a> value, and a type
3847to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3848type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3849vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003850
3851<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003852<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003853<a href="#t_floating">floating point</a> operand into the nearest (rounding
3854towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3855the results are undefined.</p>
3856
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003857<h5>Example:</h5>
3858<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003859 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003860 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003861 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003862</pre>
3863</div>
3864
3865<!-- _______________________________________________________________________ -->
3866<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003867 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003868</div>
3869<div class="doc_text">
3870
3871<h5>Syntax:</h5>
3872<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003873 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003874</pre>
3875
3876<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003877<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003878<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003879</p>
3880
Chris Lattner6536cfe2002-05-06 22:08:29 +00003881<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003882<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003883scalar or vector <a href="#t_floating">floating point</a> value, and a type
3884to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3885type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3886vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003887
Chris Lattner6536cfe2002-05-06 22:08:29 +00003888<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003889<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003890<a href="#t_floating">floating point</a> operand into the nearest (rounding
3891towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3892the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003893
Chris Lattner33ba0d92001-07-09 00:26:23 +00003894<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003895<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003896 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003897 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003898 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003899</pre>
3900</div>
3901
3902<!-- _______________________________________________________________________ -->
3903<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003904 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003905</div>
3906<div class="doc_text">
3907
3908<h5>Syntax:</h5>
3909<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003910 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003911</pre>
3912
3913<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003914<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003915integer and converts that value to the <tt>ty2</tt> type.</p>
3916
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003917<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003918<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3919scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3920to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3921type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3922floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003923
3924<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003925<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003926integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003927the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003928
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003929<h5>Example:</h5>
3930<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003931 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003932 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003933</pre>
3934</div>
3935
3936<!-- _______________________________________________________________________ -->
3937<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003938 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003939</div>
3940<div class="doc_text">
3941
3942<h5>Syntax:</h5>
3943<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003944 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003945</pre>
3946
3947<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003948<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003949integer and converts that value to the <tt>ty2</tt> type.</p>
3950
3951<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003952<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3953scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3954to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3955type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3956floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003957
3958<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003959<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003960integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003961the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003962
3963<h5>Example:</h5>
3964<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003965 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003966 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003967</pre>
3968</div>
3969
3970<!-- _______________________________________________________________________ -->
3971<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003972 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3973</div>
3974<div class="doc_text">
3975
3976<h5>Syntax:</h5>
3977<pre>
3978 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3979</pre>
3980
3981<h5>Overview:</h5>
3982<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3983the integer type <tt>ty2</tt>.</p>
3984
3985<h5>Arguments:</h5>
3986<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003987must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00003988<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003989
3990<h5>Semantics:</h5>
3991<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3992<tt>ty2</tt> by interpreting the pointer value as an integer and either
3993truncating or zero extending that value to the size of the integer type. If
3994<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3995<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003996are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3997change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003998
3999<h5>Example:</h5>
4000<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004001 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4002 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004003</pre>
4004</div>
4005
4006<!-- _______________________________________________________________________ -->
4007<div class="doc_subsubsection">
4008 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4009</div>
4010<div class="doc_text">
4011
4012<h5>Syntax:</h5>
4013<pre>
4014 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4015</pre>
4016
4017<h5>Overview:</h5>
4018<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4019a pointer type, <tt>ty2</tt>.</p>
4020
4021<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00004022<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00004023value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004024<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004025
4026<h5>Semantics:</h5>
4027<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4028<tt>ty2</tt> by applying either a zero extension or a truncation depending on
4029the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4030size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4031the size of a pointer then a zero extension is done. If they are the same size,
4032nothing is done (<i>no-op cast</i>).</p>
4033
4034<h5>Example:</h5>
4035<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004036 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4037 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4038 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004039</pre>
4040</div>
4041
4042<!-- _______________________________________________________________________ -->
4043<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00004044 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004045</div>
4046<div class="doc_text">
4047
4048<h5>Syntax:</h5>
4049<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004050 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004051</pre>
4052
4053<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004054
Reid Spencer5c0ef472006-11-11 23:08:07 +00004055<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004056<tt>ty2</tt> without changing any bits.</p>
4057
4058<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004059
Reid Spencer5c0ef472006-11-11 23:08:07 +00004060<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00004061a non-aggregate first class value, and a type to cast it to, which must also be
4062a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4063<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00004064and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00004065type is a pointer, the destination type must also be a pointer. This
4066instruction supports bitwise conversion of vectors to integers and to vectors
4067of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004068
4069<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004070<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00004071<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4072this conversion. The conversion is done as if the <tt>value</tt> had been
4073stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4074converted to other pointer types with this instruction. To convert pointers to
4075other types, use the <a href="#i_inttoptr">inttoptr</a> or
4076<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004077
4078<h5>Example:</h5>
4079<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004080 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004081 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004082 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00004083</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004084</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004085
Reid Spencer2fd21e62006-11-08 01:18:52 +00004086<!-- ======================================================================= -->
4087<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4088<div class="doc_text">
4089<p>The instructions in this category are the "miscellaneous"
4090instructions, which defy better classification.</p>
4091</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004092
4093<!-- _______________________________________________________________________ -->
4094<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4095</div>
4096<div class="doc_text">
4097<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004098<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004099</pre>
4100<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004101<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4102a vector of boolean values based on comparison
4103of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004104<h5>Arguments:</h5>
4105<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004106the condition code indicating the kind of comparison to perform. It is not
4107a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004108</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004109<ol>
4110 <li><tt>eq</tt>: equal</li>
4111 <li><tt>ne</tt>: not equal </li>
4112 <li><tt>ugt</tt>: unsigned greater than</li>
4113 <li><tt>uge</tt>: unsigned greater or equal</li>
4114 <li><tt>ult</tt>: unsigned less than</li>
4115 <li><tt>ule</tt>: unsigned less or equal</li>
4116 <li><tt>sgt</tt>: signed greater than</li>
4117 <li><tt>sge</tt>: signed greater or equal</li>
4118 <li><tt>slt</tt>: signed less than</li>
4119 <li><tt>sle</tt>: signed less or equal</li>
4120</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00004121<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00004122<a href="#t_pointer">pointer</a>
4123or integer <a href="#t_vector">vector</a> typed.
4124They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004125<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004126<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00004127the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00004128yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004129</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004130<ol>
4131 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4132 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4133 </li>
4134 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00004135 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004136 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004137 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004138 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004139 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004140 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004141 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004142 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004143 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004144 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004145 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004146 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004147 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004148 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004149 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004150 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004151 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004152</ol>
4153<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00004154values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004155<p>If the operands are integer vectors, then they are compared
4156element by element. The result is an <tt>i1</tt> vector with
4157the same number of elements as the values being compared.
4158Otherwise, the result is an <tt>i1</tt>.
4159</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004160
4161<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004162<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4163 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4164 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4165 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4166 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4167 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004168</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004169
4170<p>Note that the code generator does not yet support vector types with
4171 the <tt>icmp</tt> instruction.</p>
4172
Reid Spencerf3a70a62006-11-18 21:50:54 +00004173</div>
4174
4175<!-- _______________________________________________________________________ -->
4176<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4177</div>
4178<div class="doc_text">
4179<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004180<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004181</pre>
4182<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004183<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4184or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004185of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004186<p>
4187If the operands are floating point scalars, then the result
4188type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4189</p>
4190<p>If the operands are floating point vectors, then the result type
4191is a vector of boolean with the same number of elements as the
4192operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004193<h5>Arguments:</h5>
4194<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004195the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004196a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004197<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004198 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004199 <li><tt>oeq</tt>: ordered and equal</li>
4200 <li><tt>ogt</tt>: ordered and greater than </li>
4201 <li><tt>oge</tt>: ordered and greater than or equal</li>
4202 <li><tt>olt</tt>: ordered and less than </li>
4203 <li><tt>ole</tt>: ordered and less than or equal</li>
4204 <li><tt>one</tt>: ordered and not equal</li>
4205 <li><tt>ord</tt>: ordered (no nans)</li>
4206 <li><tt>ueq</tt>: unordered or equal</li>
4207 <li><tt>ugt</tt>: unordered or greater than </li>
4208 <li><tt>uge</tt>: unordered or greater than or equal</li>
4209 <li><tt>ult</tt>: unordered or less than </li>
4210 <li><tt>ule</tt>: unordered or less than or equal</li>
4211 <li><tt>une</tt>: unordered or not equal</li>
4212 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004213 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004214</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004215<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004216<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004217<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4218either a <a href="#t_floating">floating point</a> type
4219or a <a href="#t_vector">vector</a> of floating point type.
4220They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004221<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004222<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004223according to the condition code given as <tt>cond</tt>.
4224If the operands are vectors, then the vectors are compared
4225element by element.
4226Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004227always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004228<ol>
4229 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004230 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004231 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004232 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004233 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004234 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004235 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004236 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004237 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004238 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004239 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004240 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004241 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004242 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4243 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004244 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004245 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004246 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004247 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004248 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004249 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004250 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004251 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004252 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004253 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004254 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004255 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004256 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4257</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004258
4259<h5>Example:</h5>
4260<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004261 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4262 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4263 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004264</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004265
4266<p>Note that the code generator does not yet support vector types with
4267 the <tt>fcmp</tt> instruction.</p>
4268
Reid Spencerf3a70a62006-11-18 21:50:54 +00004269</div>
4270
Reid Spencer2fd21e62006-11-08 01:18:52 +00004271<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004272<div class="doc_subsubsection">
4273 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4274</div>
4275<div class="doc_text">
4276<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004277<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004278</pre>
4279<h5>Overview:</h5>
4280<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4281element-wise comparison of its two integer vector operands.</p>
4282<h5>Arguments:</h5>
4283<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4284the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004285a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004286<ol>
4287 <li><tt>eq</tt>: equal</li>
4288 <li><tt>ne</tt>: not equal </li>
4289 <li><tt>ugt</tt>: unsigned greater than</li>
4290 <li><tt>uge</tt>: unsigned greater or equal</li>
4291 <li><tt>ult</tt>: unsigned less than</li>
4292 <li><tt>ule</tt>: unsigned less or equal</li>
4293 <li><tt>sgt</tt>: signed greater than</li>
4294 <li><tt>sge</tt>: signed greater or equal</li>
4295 <li><tt>slt</tt>: signed less than</li>
4296 <li><tt>sle</tt>: signed less or equal</li>
4297</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004298<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004299<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4300<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004301<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004302according to the condition code given as <tt>cond</tt>. The comparison yields a
4303<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4304identical type as the values being compared. The most significant bit in each
4305element is 1 if the element-wise comparison evaluates to true, and is 0
4306otherwise. All other bits of the result are undefined. The condition codes
4307are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman0e451ce2008-10-14 16:51:45 +00004308instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004309
4310<h5>Example:</h5>
4311<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004312 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4313 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004314</pre>
4315</div>
4316
4317<!-- _______________________________________________________________________ -->
4318<div class="doc_subsubsection">
4319 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4320</div>
4321<div class="doc_text">
4322<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004323<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004324<h5>Overview:</h5>
4325<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4326element-wise comparison of its two floating point vector operands. The output
4327elements have the same width as the input elements.</p>
4328<h5>Arguments:</h5>
4329<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4330the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004331a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004332<ol>
4333 <li><tt>false</tt>: no comparison, always returns false</li>
4334 <li><tt>oeq</tt>: ordered and equal</li>
4335 <li><tt>ogt</tt>: ordered and greater than </li>
4336 <li><tt>oge</tt>: ordered and greater than or equal</li>
4337 <li><tt>olt</tt>: ordered and less than </li>
4338 <li><tt>ole</tt>: ordered and less than or equal</li>
4339 <li><tt>one</tt>: ordered and not equal</li>
4340 <li><tt>ord</tt>: ordered (no nans)</li>
4341 <li><tt>ueq</tt>: unordered or equal</li>
4342 <li><tt>ugt</tt>: unordered or greater than </li>
4343 <li><tt>uge</tt>: unordered or greater than or equal</li>
4344 <li><tt>ult</tt>: unordered or less than </li>
4345 <li><tt>ule</tt>: unordered or less than or equal</li>
4346 <li><tt>une</tt>: unordered or not equal</li>
4347 <li><tt>uno</tt>: unordered (either nans)</li>
4348 <li><tt>true</tt>: no comparison, always returns true</li>
4349</ol>
4350<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4351<a href="#t_floating">floating point</a> typed. They must also be identical
4352types.</p>
4353<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004354<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004355according to the condition code given as <tt>cond</tt>. The comparison yields a
4356<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4357an identical number of elements as the values being compared, and each element
4358having identical with to the width of the floating point elements. The most
4359significant bit in each element is 1 if the element-wise comparison evaluates to
4360true, and is 0 otherwise. All other bits of the result are undefined. The
4361condition codes are evaluated identically to the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004362<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004363
4364<h5>Example:</h5>
4365<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +00004366 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4367 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4368
4369 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4370 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemanac80ade2008-05-12 19:01:56 +00004371</pre>
4372</div>
4373
4374<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004375<div class="doc_subsubsection">
4376 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4377</div>
4378
Reid Spencer2fd21e62006-11-08 01:18:52 +00004379<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004380
Reid Spencer2fd21e62006-11-08 01:18:52 +00004381<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004382
Reid Spencer2fd21e62006-11-08 01:18:52 +00004383<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4384<h5>Overview:</h5>
4385<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4386the SSA graph representing the function.</p>
4387<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004388
Jeff Cohenb627eab2007-04-29 01:07:00 +00004389<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004390field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4391as arguments, with one pair for each predecessor basic block of the
4392current block. Only values of <a href="#t_firstclass">first class</a>
4393type may be used as the value arguments to the PHI node. Only labels
4394may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004395
Reid Spencer2fd21e62006-11-08 01:18:52 +00004396<p>There must be no non-phi instructions between the start of a basic
4397block and the PHI instructions: i.e. PHI instructions must be first in
4398a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004399
Reid Spencer2fd21e62006-11-08 01:18:52 +00004400<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004401
Jeff Cohenb627eab2007-04-29 01:07:00 +00004402<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4403specified by the pair corresponding to the predecessor basic block that executed
4404just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004405
Reid Spencer2fd21e62006-11-08 01:18:52 +00004406<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004407<pre>
4408Loop: ; Infinite loop that counts from 0 on up...
4409 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4410 %nextindvar = add i32 %indvar, 1
4411 br label %Loop
4412</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004413</div>
4414
Chris Lattnercc37aae2004-03-12 05:50:16 +00004415<!-- _______________________________________________________________________ -->
4416<div class="doc_subsubsection">
4417 <a name="i_select">'<tt>select</tt>' Instruction</a>
4418</div>
4419
4420<div class="doc_text">
4421
4422<h5>Syntax:</h5>
4423
4424<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004425 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4426
Dan Gohman0e451ce2008-10-14 16:51:45 +00004427 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004428</pre>
4429
4430<h5>Overview:</h5>
4431
4432<p>
4433The '<tt>select</tt>' instruction is used to choose one value based on a
4434condition, without branching.
4435</p>
4436
4437
4438<h5>Arguments:</h5>
4439
4440<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004441The '<tt>select</tt>' instruction requires an 'i1' value or
4442a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004443condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004444type. If the val1/val2 are vectors and
4445the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004446individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004447</p>
4448
4449<h5>Semantics:</h5>
4450
4451<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004452If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004453value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004454</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004455<p>
4456If the condition is a vector of i1, then the value arguments must
4457be vectors of the same size, and the selection is done element
4458by element.
4459</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004460
4461<h5>Example:</h5>
4462
4463<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004464 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004465</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004466
4467<p>Note that the code generator does not yet support conditions
4468 with vector type.</p>
4469
Chris Lattnercc37aae2004-03-12 05:50:16 +00004470</div>
4471
Robert Bocchino05ccd702006-01-15 20:48:27 +00004472
4473<!-- _______________________________________________________________________ -->
4474<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004475 <a name="i_call">'<tt>call</tt>' Instruction</a>
4476</div>
4477
Misha Brukman9d0919f2003-11-08 01:05:38 +00004478<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004479
Chris Lattner00950542001-06-06 20:29:01 +00004480<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004481<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004482 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004483</pre>
4484
Chris Lattner00950542001-06-06 20:29:01 +00004485<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004486
Misha Brukman9d0919f2003-11-08 01:05:38 +00004487<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004488
Chris Lattner00950542001-06-06 20:29:01 +00004489<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004490
Misha Brukman9d0919f2003-11-08 01:05:38 +00004491<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004492
Chris Lattner6536cfe2002-05-06 22:08:29 +00004493<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004494 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004495 <p>The optional "tail" marker indicates whether the callee function accesses
4496 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004497 function call is eligible for tail call optimization. Note that calls may
4498 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004499 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004500 </li>
4501 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004502 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004503 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004504 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004505 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004506
4507 <li>
4508 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4509 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4510 and '<tt>inreg</tt>' attributes are valid here.</p>
4511 </li>
4512
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004513 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004514 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4515 the type of the return value. Functions that return no value are marked
4516 <tt><a href="#t_void">void</a></tt>.</p>
4517 </li>
4518 <li>
4519 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4520 value being invoked. The argument types must match the types implied by
4521 this signature. This type can be omitted if the function is not varargs
4522 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004523 </li>
4524 <li>
4525 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4526 be invoked. In most cases, this is a direct function invocation, but
4527 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004528 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004529 </li>
4530 <li>
4531 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004532 function signature argument types. All arguments must be of
4533 <a href="#t_firstclass">first class</a> type. If the function signature
4534 indicates the function accepts a variable number of arguments, the extra
4535 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004536 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004537 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004538 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004539 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4540 '<tt>readnone</tt>' attributes are valid here.</p>
4541 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004542</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004543
Chris Lattner00950542001-06-06 20:29:01 +00004544<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004545
Chris Lattner261efe92003-11-25 01:02:51 +00004546<p>The '<tt>call</tt>' instruction is used to cause control flow to
4547transfer to a specified function, with its incoming arguments bound to
4548the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4549instruction in the called function, control flow continues with the
4550instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004551function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004552
Chris Lattner00950542001-06-06 20:29:01 +00004553<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004554
4555<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004556 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004557 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4558 %X = tail call i32 @foo() <i>; yields i32</i>
4559 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4560 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004561
4562 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004563 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004564 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4565 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004566 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004567 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004568</pre>
4569
Misha Brukman9d0919f2003-11-08 01:05:38 +00004570</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004571
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004572<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004573<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004574 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004575</div>
4576
Misha Brukman9d0919f2003-11-08 01:05:38 +00004577<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004578
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004579<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004580
4581<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004582 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004583</pre>
4584
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004585<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004586
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004587<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004588the "variable argument" area of a function call. It is used to implement the
4589<tt>va_arg</tt> macro in C.</p>
4590
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004591<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004592
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004593<p>This instruction takes a <tt>va_list*</tt> value and the type of
4594the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004595increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004596actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004597
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004598<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004599
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004600<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4601type from the specified <tt>va_list</tt> and causes the
4602<tt>va_list</tt> to point to the next argument. For more information,
4603see the variable argument handling <a href="#int_varargs">Intrinsic
4604Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004605
4606<p>It is legal for this instruction to be called in a function which does not
4607take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004608function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004609
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004610<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004611href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004612argument.</p>
4613
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004614<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004615
4616<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4617
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00004618<p>Note that the code generator does not yet fully support va_arg
4619 on many targets. Also, it does not currently support va_arg with
4620 aggregate types on any target.</p>
4621
Misha Brukman9d0919f2003-11-08 01:05:38 +00004622</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004623
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004624<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004625<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4626<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004627
Misha Brukman9d0919f2003-11-08 01:05:38 +00004628<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004629
4630<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004631well known names and semantics and are required to follow certain restrictions.
4632Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004633language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004634adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004635
John Criswellfc6b8952005-05-16 16:17:45 +00004636<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004637prefix is reserved in LLVM for intrinsic names; thus, function names may not
4638begin with this prefix. Intrinsic functions must always be external functions:
4639you cannot define the body of intrinsic functions. Intrinsic functions may
4640only be used in call or invoke instructions: it is illegal to take the address
4641of an intrinsic function. Additionally, because intrinsic functions are part
4642of the LLVM language, it is required if any are added that they be documented
4643here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004644
Chandler Carruth69940402007-08-04 01:51:18 +00004645<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4646a family of functions that perform the same operation but on different data
4647types. Because LLVM can represent over 8 million different integer types,
4648overloading is used commonly to allow an intrinsic function to operate on any
4649integer type. One or more of the argument types or the result type can be
4650overloaded to accept any integer type. Argument types may also be defined as
4651exactly matching a previous argument's type or the result type. This allows an
4652intrinsic function which accepts multiple arguments, but needs all of them to
4653be of the same type, to only be overloaded with respect to a single argument or
4654the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004655
Chandler Carruth69940402007-08-04 01:51:18 +00004656<p>Overloaded intrinsics will have the names of its overloaded argument types
4657encoded into its function name, each preceded by a period. Only those types
4658which are overloaded result in a name suffix. Arguments whose type is matched
4659against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4660take an integer of any width and returns an integer of exactly the same integer
4661width. This leads to a family of functions such as
4662<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4663Only one type, the return type, is overloaded, and only one type suffix is
4664required. Because the argument's type is matched against the return type, it
4665does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004666
4667<p>To learn how to add an intrinsic function, please see the
4668<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004669</p>
4670
Misha Brukman9d0919f2003-11-08 01:05:38 +00004671</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004672
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004673<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004674<div class="doc_subsection">
4675 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4676</div>
4677
Misha Brukman9d0919f2003-11-08 01:05:38 +00004678<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004679
Misha Brukman9d0919f2003-11-08 01:05:38 +00004680<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004681 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004682intrinsic functions. These functions are related to the similarly
4683named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004684
Chris Lattner261efe92003-11-25 01:02:51 +00004685<p>All of these functions operate on arguments that use a
4686target-specific value type "<tt>va_list</tt>". The LLVM assembly
4687language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004688transformations should be prepared to handle these functions regardless of
4689the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004690
Chris Lattner374ab302006-05-15 17:26:46 +00004691<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004692instruction and the variable argument handling intrinsic functions are
4693used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004694
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004695<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004696<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004697define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004698 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004699 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004700 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004701 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004702
4703 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004704 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004705
4706 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004707 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004708 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004709 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004710 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004711
4712 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004713 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004714 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004715}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004716
4717declare void @llvm.va_start(i8*)
4718declare void @llvm.va_copy(i8*, i8*)
4719declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004720</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004721</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004722
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004723</div>
4724
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004725<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004726<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004727 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004728</div>
4729
4730
Misha Brukman9d0919f2003-11-08 01:05:38 +00004731<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004732<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004733<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004734<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004735<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004736<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4737href="#i_va_arg">va_arg</a></tt>.</p>
4738
4739<h5>Arguments:</h5>
4740
Dan Gohman0e451ce2008-10-14 16:51:45 +00004741<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004742
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004743<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004744
Dan Gohman0e451ce2008-10-14 16:51:45 +00004745<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004746macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004747<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004748<tt>va_arg</tt> will produce the first variable argument passed to the function.
4749Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004750last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004751
Misha Brukman9d0919f2003-11-08 01:05:38 +00004752</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004753
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004754<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004755<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004756 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004757</div>
4758
Misha Brukman9d0919f2003-11-08 01:05:38 +00004759<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004760<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004761<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004762<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004763
Jeff Cohenb627eab2007-04-29 01:07:00 +00004764<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004765which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004766or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004767
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004768<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004769
Jeff Cohenb627eab2007-04-29 01:07:00 +00004770<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004771
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004772<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004773
Misha Brukman9d0919f2003-11-08 01:05:38 +00004774<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004775macro available in C. In a target-dependent way, it destroys the
4776<tt>va_list</tt> element to which the argument points. Calls to <a
4777href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4778<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4779<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004780
Misha Brukman9d0919f2003-11-08 01:05:38 +00004781</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004782
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004783<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004784<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004785 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004786</div>
4787
Misha Brukman9d0919f2003-11-08 01:05:38 +00004788<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004789
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004790<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004791
4792<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004793 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004794</pre>
4795
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004796<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004797
Jeff Cohenb627eab2007-04-29 01:07:00 +00004798<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4799from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004800
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004801<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004802
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004803<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004804The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004805
Chris Lattnerd7923912004-05-23 21:06:01 +00004806
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004807<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004808
Jeff Cohenb627eab2007-04-29 01:07:00 +00004809<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4810macro available in C. In a target-dependent way, it copies the source
4811<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4812intrinsic is necessary because the <tt><a href="#int_va_start">
4813llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4814example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004815
Misha Brukman9d0919f2003-11-08 01:05:38 +00004816</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004817
Chris Lattner33aec9e2004-02-12 17:01:32 +00004818<!-- ======================================================================= -->
4819<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004820 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4821</div>
4822
4823<div class="doc_text">
4824
4825<p>
4826LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004827Collection</a> (GC) requires the implementation and generation of these
4828intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004829These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004830stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004831href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004832Front-ends for type-safe garbage collected languages should generate these
4833intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4834href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4835</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004836
4837<p>The garbage collection intrinsics only operate on objects in the generic
4838 address space (address space zero).</p>
4839
Chris Lattnerd7923912004-05-23 21:06:01 +00004840</div>
4841
4842<!-- _______________________________________________________________________ -->
4843<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004844 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004845</div>
4846
4847<div class="doc_text">
4848
4849<h5>Syntax:</h5>
4850
4851<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004852 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004853</pre>
4854
4855<h5>Overview:</h5>
4856
John Criswell9e2485c2004-12-10 15:51:16 +00004857<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004858the code generator, and allows some metadata to be associated with it.</p>
4859
4860<h5>Arguments:</h5>
4861
4862<p>The first argument specifies the address of a stack object that contains the
4863root pointer. The second pointer (which must be either a constant or a global
4864value address) contains the meta-data to be associated with the root.</p>
4865
4866<h5>Semantics:</h5>
4867
Chris Lattner05d67092008-04-24 05:59:56 +00004868<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004869location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004870the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4871intrinsic may only be used in a function which <a href="#gc">specifies a GC
4872algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004873
4874</div>
4875
4876
4877<!-- _______________________________________________________________________ -->
4878<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004879 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004880</div>
4881
4882<div class="doc_text">
4883
4884<h5>Syntax:</h5>
4885
4886<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004887 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004888</pre>
4889
4890<h5>Overview:</h5>
4891
4892<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4893locations, allowing garbage collector implementations that require read
4894barriers.</p>
4895
4896<h5>Arguments:</h5>
4897
Chris Lattner80626e92006-03-14 20:02:51 +00004898<p>The second argument is the address to read from, which should be an address
4899allocated from the garbage collector. The first object is a pointer to the
4900start of the referenced object, if needed by the language runtime (otherwise
4901null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004902
4903<h5>Semantics:</h5>
4904
4905<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4906instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004907garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4908may only be used in a function which <a href="#gc">specifies a GC
4909algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004910
4911</div>
4912
4913
4914<!-- _______________________________________________________________________ -->
4915<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004916 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004917</div>
4918
4919<div class="doc_text">
4920
4921<h5>Syntax:</h5>
4922
4923<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004924 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004925</pre>
4926
4927<h5>Overview:</h5>
4928
4929<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4930locations, allowing garbage collector implementations that require write
4931barriers (such as generational or reference counting collectors).</p>
4932
4933<h5>Arguments:</h5>
4934
Chris Lattner80626e92006-03-14 20:02:51 +00004935<p>The first argument is the reference to store, the second is the start of the
4936object to store it to, and the third is the address of the field of Obj to
4937store to. If the runtime does not require a pointer to the object, Obj may be
4938null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004939
4940<h5>Semantics:</h5>
4941
4942<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4943instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004944garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4945may only be used in a function which <a href="#gc">specifies a GC
4946algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004947
4948</div>
4949
4950
4951
4952<!-- ======================================================================= -->
4953<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004954 <a name="int_codegen">Code Generator Intrinsics</a>
4955</div>
4956
4957<div class="doc_text">
4958<p>
4959These intrinsics are provided by LLVM to expose special features that may only
4960be implemented with code generator support.
4961</p>
4962
4963</div>
4964
4965<!-- _______________________________________________________________________ -->
4966<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004967 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004968</div>
4969
4970<div class="doc_text">
4971
4972<h5>Syntax:</h5>
4973<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004974 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004975</pre>
4976
4977<h5>Overview:</h5>
4978
4979<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004980The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4981target-specific value indicating the return address of the current function
4982or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004983</p>
4984
4985<h5>Arguments:</h5>
4986
4987<p>
4988The argument to this intrinsic indicates which function to return the address
4989for. Zero indicates the calling function, one indicates its caller, etc. The
4990argument is <b>required</b> to be a constant integer value.
4991</p>
4992
4993<h5>Semantics:</h5>
4994
4995<p>
4996The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4997the return address of the specified call frame, or zero if it cannot be
4998identified. The value returned by this intrinsic is likely to be incorrect or 0
4999for arguments other than zero, so it should only be used for debugging purposes.
5000</p>
5001
5002<p>
5003Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005004aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005005source-language caller.
5006</p>
5007</div>
5008
5009
5010<!-- _______________________________________________________________________ -->
5011<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005012 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005013</div>
5014
5015<div class="doc_text">
5016
5017<h5>Syntax:</h5>
5018<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005019 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005020</pre>
5021
5022<h5>Overview:</h5>
5023
5024<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005025The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5026target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00005027</p>
5028
5029<h5>Arguments:</h5>
5030
5031<p>
5032The argument to this intrinsic indicates which function to return the frame
5033pointer for. Zero indicates the calling function, one indicates its caller,
5034etc. The argument is <b>required</b> to be a constant integer value.
5035</p>
5036
5037<h5>Semantics:</h5>
5038
5039<p>
5040The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5041the frame address of the specified call frame, or zero if it cannot be
5042identified. The value returned by this intrinsic is likely to be incorrect or 0
5043for arguments other than zero, so it should only be used for debugging purposes.
5044</p>
5045
5046<p>
5047Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005048aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005049source-language caller.
5050</p>
5051</div>
5052
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005053<!-- _______________________________________________________________________ -->
5054<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005055 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005056</div>
5057
5058<div class="doc_text">
5059
5060<h5>Syntax:</h5>
5061<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005062 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00005063</pre>
5064
5065<h5>Overview:</h5>
5066
5067<p>
5068The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00005069the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00005070<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5071features like scoped automatic variable sized arrays in C99.
5072</p>
5073
5074<h5>Semantics:</h5>
5075
5076<p>
5077This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005078href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00005079<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5080<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5081state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5082practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5083that were allocated after the <tt>llvm.stacksave</tt> was executed.
5084</p>
5085
5086</div>
5087
5088<!-- _______________________________________________________________________ -->
5089<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005090 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005091</div>
5092
5093<div class="doc_text">
5094
5095<h5>Syntax:</h5>
5096<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005097 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005098</pre>
5099
5100<h5>Overview:</h5>
5101
5102<p>
5103The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5104the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005105href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00005106useful for implementing language features like scoped automatic variable sized
5107arrays in C99.
5108</p>
5109
5110<h5>Semantics:</h5>
5111
5112<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00005113See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00005114</p>
5115
5116</div>
5117
5118
5119<!-- _______________________________________________________________________ -->
5120<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005121 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005122</div>
5123
5124<div class="doc_text">
5125
5126<h5>Syntax:</h5>
5127<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005128 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005129</pre>
5130
5131<h5>Overview:</h5>
5132
5133
5134<p>
5135The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00005136a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5137no
5138effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00005139characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005140</p>
5141
5142<h5>Arguments:</h5>
5143
5144<p>
5145<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5146determining if the fetch should be for a read (0) or write (1), and
5147<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00005148locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005149<tt>locality</tt> arguments must be constant integers.
5150</p>
5151
5152<h5>Semantics:</h5>
5153
5154<p>
5155This intrinsic does not modify the behavior of the program. In particular,
5156prefetches cannot trap and do not produce a value. On targets that support this
5157intrinsic, the prefetch can provide hints to the processor cache for better
5158performance.
5159</p>
5160
5161</div>
5162
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005163<!-- _______________________________________________________________________ -->
5164<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005165 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005166</div>
5167
5168<div class="doc_text">
5169
5170<h5>Syntax:</h5>
5171<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005172 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005173</pre>
5174
5175<h5>Overview:</h5>
5176
5177
5178<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005179The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005180(PC) in a region of
5181code to simulators and other tools. The method is target specific, but it is
5182expected that the marker will use exported symbols to transmit the PC of the
5183marker.
5184The marker makes no guarantees that it will remain with any specific instruction
5185after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005186optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005187correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005188</p>
5189
5190<h5>Arguments:</h5>
5191
5192<p>
5193<tt>id</tt> is a numerical id identifying the marker.
5194</p>
5195
5196<h5>Semantics:</h5>
5197
5198<p>
5199This intrinsic does not modify the behavior of the program. Backends that do not
5200support this intrinisic may ignore it.
5201</p>
5202
5203</div>
5204
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005205<!-- _______________________________________________________________________ -->
5206<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005207 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005208</div>
5209
5210<div class="doc_text">
5211
5212<h5>Syntax:</h5>
5213<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005214 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005215</pre>
5216
5217<h5>Overview:</h5>
5218
5219
5220<p>
5221The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5222counter register (or similar low latency, high accuracy clocks) on those targets
5223that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5224As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5225should only be used for small timings.
5226</p>
5227
5228<h5>Semantics:</h5>
5229
5230<p>
5231When directly supported, reading the cycle counter should not modify any memory.
5232Implementations are allowed to either return a application specific value or a
5233system wide value. On backends without support, this is lowered to a constant 0.
5234</p>
5235
5236</div>
5237
Chris Lattner10610642004-02-14 04:08:35 +00005238<!-- ======================================================================= -->
5239<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005240 <a name="int_libc">Standard C Library Intrinsics</a>
5241</div>
5242
5243<div class="doc_text">
5244<p>
Chris Lattner10610642004-02-14 04:08:35 +00005245LLVM provides intrinsics for a few important standard C library functions.
5246These intrinsics allow source-language front-ends to pass information about the
5247alignment of the pointer arguments to the code generator, providing opportunity
5248for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005249</p>
5250
5251</div>
5252
5253<!-- _______________________________________________________________________ -->
5254<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005255 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005256</div>
5257
5258<div class="doc_text">
5259
5260<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005261<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5262width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005263<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005264 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5265 i8 &lt;len&gt;, i32 &lt;align&gt;)
5266 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5267 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005268 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005269 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005270 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005271 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005272</pre>
5273
5274<h5>Overview:</h5>
5275
5276<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005277The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005278location to the destination location.
5279</p>
5280
5281<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005282Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5283intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005284</p>
5285
5286<h5>Arguments:</h5>
5287
5288<p>
5289The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005290the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005291specifying the number of bytes to copy, and the fourth argument is the alignment
5292of the source and destination locations.
5293</p>
5294
Chris Lattner3301ced2004-02-12 21:18:15 +00005295<p>
5296If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005297the caller guarantees that both the source and destination pointers are aligned
5298to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005299</p>
5300
Chris Lattner33aec9e2004-02-12 17:01:32 +00005301<h5>Semantics:</h5>
5302
5303<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005304The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005305location to the destination location, which are not allowed to overlap. It
5306copies "len" bytes of memory over. If the argument is known to be aligned to
5307some boundary, this can be specified as the fourth argument, otherwise it should
5308be set to 0 or 1.
5309</p>
5310</div>
5311
5312
Chris Lattner0eb51b42004-02-12 18:10:10 +00005313<!-- _______________________________________________________________________ -->
5314<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005315 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005316</div>
5317
5318<div class="doc_text">
5319
5320<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005321<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5322width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005323<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005324 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5325 i8 &lt;len&gt;, i32 &lt;align&gt;)
5326 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5327 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005328 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005329 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005330 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005331 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005332</pre>
5333
5334<h5>Overview:</h5>
5335
5336<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005337The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5338location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005339'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005340</p>
5341
5342<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005343Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5344intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005345</p>
5346
5347<h5>Arguments:</h5>
5348
5349<p>
5350The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005351the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005352specifying the number of bytes to copy, and the fourth argument is the alignment
5353of the source and destination locations.
5354</p>
5355
Chris Lattner3301ced2004-02-12 21:18:15 +00005356<p>
5357If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005358the caller guarantees that the source and destination pointers are aligned to
5359that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005360</p>
5361
Chris Lattner0eb51b42004-02-12 18:10:10 +00005362<h5>Semantics:</h5>
5363
5364<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005365The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005366location to the destination location, which may overlap. It
5367copies "len" bytes of memory over. If the argument is known to be aligned to
5368some boundary, this can be specified as the fourth argument, otherwise it should
5369be set to 0 or 1.
5370</p>
5371</div>
5372
Chris Lattner8ff75902004-01-06 05:31:32 +00005373
Chris Lattner10610642004-02-14 04:08:35 +00005374<!-- _______________________________________________________________________ -->
5375<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005376 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005377</div>
5378
5379<div class="doc_text">
5380
5381<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005382<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5383width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005384<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005385 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5386 i8 &lt;len&gt;, i32 &lt;align&gt;)
5387 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5388 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005389 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005390 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005391 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005392 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005393</pre>
5394
5395<h5>Overview:</h5>
5396
5397<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005398The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005399byte value.
5400</p>
5401
5402<p>
5403Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5404does not return a value, and takes an extra alignment argument.
5405</p>
5406
5407<h5>Arguments:</h5>
5408
5409<p>
5410The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005411byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005412argument specifying the number of bytes to fill, and the fourth argument is the
5413known alignment of destination location.
5414</p>
5415
5416<p>
5417If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005418the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005419</p>
5420
5421<h5>Semantics:</h5>
5422
5423<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005424The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5425the
Chris Lattner10610642004-02-14 04:08:35 +00005426destination location. If the argument is known to be aligned to some boundary,
5427this can be specified as the fourth argument, otherwise it should be set to 0 or
54281.
5429</p>
5430</div>
5431
5432
Chris Lattner32006282004-06-11 02:28:03 +00005433<!-- _______________________________________________________________________ -->
5434<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005435 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005436</div>
5437
5438<div class="doc_text">
5439
5440<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005441<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005442floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005443types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005444<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005445 declare float @llvm.sqrt.f32(float %Val)
5446 declare double @llvm.sqrt.f64(double %Val)
5447 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5448 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5449 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005450</pre>
5451
5452<h5>Overview:</h5>
5453
5454<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005455The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005456returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005457<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005458negative numbers other than -0.0 (which allows for better optimization, because
5459there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5460defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005461</p>
5462
5463<h5>Arguments:</h5>
5464
5465<p>
5466The argument and return value are floating point numbers of the same type.
5467</p>
5468
5469<h5>Semantics:</h5>
5470
5471<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005472This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005473floating point number.
5474</p>
5475</div>
5476
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005477<!-- _______________________________________________________________________ -->
5478<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005479 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005480</div>
5481
5482<div class="doc_text">
5483
5484<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005485<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005486floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005487types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005488<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005489 declare float @llvm.powi.f32(float %Val, i32 %power)
5490 declare double @llvm.powi.f64(double %Val, i32 %power)
5491 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5492 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5493 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005494</pre>
5495
5496<h5>Overview:</h5>
5497
5498<p>
5499The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5500specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005501multiplications is not defined. When a vector of floating point type is
5502used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005503</p>
5504
5505<h5>Arguments:</h5>
5506
5507<p>
5508The second argument is an integer power, and the first is a value to raise to
5509that power.
5510</p>
5511
5512<h5>Semantics:</h5>
5513
5514<p>
5515This function returns the first value raised to the second power with an
5516unspecified sequence of rounding operations.</p>
5517</div>
5518
Dan Gohman91c284c2007-10-15 20:30:11 +00005519<!-- _______________________________________________________________________ -->
5520<div class="doc_subsubsection">
5521 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5522</div>
5523
5524<div class="doc_text">
5525
5526<h5>Syntax:</h5>
5527<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5528floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005529types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005530<pre>
5531 declare float @llvm.sin.f32(float %Val)
5532 declare double @llvm.sin.f64(double %Val)
5533 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5534 declare fp128 @llvm.sin.f128(fp128 %Val)
5535 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5536</pre>
5537
5538<h5>Overview:</h5>
5539
5540<p>
5541The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5542</p>
5543
5544<h5>Arguments:</h5>
5545
5546<p>
5547The argument and return value are floating point numbers of the same type.
5548</p>
5549
5550<h5>Semantics:</h5>
5551
5552<p>
5553This function returns the sine of the specified operand, returning the
5554same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005555conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005556</div>
5557
5558<!-- _______________________________________________________________________ -->
5559<div class="doc_subsubsection">
5560 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5561</div>
5562
5563<div class="doc_text">
5564
5565<h5>Syntax:</h5>
5566<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5567floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005568types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005569<pre>
5570 declare float @llvm.cos.f32(float %Val)
5571 declare double @llvm.cos.f64(double %Val)
5572 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5573 declare fp128 @llvm.cos.f128(fp128 %Val)
5574 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5575</pre>
5576
5577<h5>Overview:</h5>
5578
5579<p>
5580The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5581</p>
5582
5583<h5>Arguments:</h5>
5584
5585<p>
5586The argument and return value are floating point numbers of the same type.
5587</p>
5588
5589<h5>Semantics:</h5>
5590
5591<p>
5592This function returns the cosine of the specified operand, returning the
5593same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005594conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005595</div>
5596
5597<!-- _______________________________________________________________________ -->
5598<div class="doc_subsubsection">
5599 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5600</div>
5601
5602<div class="doc_text">
5603
5604<h5>Syntax:</h5>
5605<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5606floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005607types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005608<pre>
5609 declare float @llvm.pow.f32(float %Val, float %Power)
5610 declare double @llvm.pow.f64(double %Val, double %Power)
5611 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5612 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5613 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5614</pre>
5615
5616<h5>Overview:</h5>
5617
5618<p>
5619The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5620specified (positive or negative) power.
5621</p>
5622
5623<h5>Arguments:</h5>
5624
5625<p>
5626The second argument is a floating point power, and the first is a value to
5627raise to that power.
5628</p>
5629
5630<h5>Semantics:</h5>
5631
5632<p>
5633This function returns the first value raised to the second power,
5634returning the
5635same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005636conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005637</div>
5638
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005639
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005640<!-- ======================================================================= -->
5641<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005642 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005643</div>
5644
5645<div class="doc_text">
5646<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005647LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005648These allow efficient code generation for some algorithms.
5649</p>
5650
5651</div>
5652
5653<!-- _______________________________________________________________________ -->
5654<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005655 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005656</div>
5657
5658<div class="doc_text">
5659
5660<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005661<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005662type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005663<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005664 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5665 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5666 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005667</pre>
5668
5669<h5>Overview:</h5>
5670
5671<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005672The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005673values with an even number of bytes (positive multiple of 16 bits). These are
5674useful for performing operations on data that is not in the target's native
5675byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005676</p>
5677
5678<h5>Semantics:</h5>
5679
5680<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005681The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005682and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5683intrinsic returns an i32 value that has the four bytes of the input i32
5684swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005685i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5686<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005687additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005688</p>
5689
5690</div>
5691
5692<!-- _______________________________________________________________________ -->
5693<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005694 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005695</div>
5696
5697<div class="doc_text">
5698
5699<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005700<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005701width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005702<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005703 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005704 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005705 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005706 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5707 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005708</pre>
5709
5710<h5>Overview:</h5>
5711
5712<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005713The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5714value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005715</p>
5716
5717<h5>Arguments:</h5>
5718
5719<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005720The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005721integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005722</p>
5723
5724<h5>Semantics:</h5>
5725
5726<p>
5727The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5728</p>
5729</div>
5730
5731<!-- _______________________________________________________________________ -->
5732<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005733 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005734</div>
5735
5736<div class="doc_text">
5737
5738<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005739<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005740integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005741<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005742 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5743 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005744 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005745 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5746 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005747</pre>
5748
5749<h5>Overview:</h5>
5750
5751<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005752The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5753leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005754</p>
5755
5756<h5>Arguments:</h5>
5757
5758<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005759The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005760integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005761</p>
5762
5763<h5>Semantics:</h5>
5764
5765<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005766The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5767in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005768of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005769</p>
5770</div>
Chris Lattner32006282004-06-11 02:28:03 +00005771
5772
Chris Lattnereff29ab2005-05-15 19:39:26 +00005773
5774<!-- _______________________________________________________________________ -->
5775<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005776 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005777</div>
5778
5779<div class="doc_text">
5780
5781<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005782<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005783integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005784<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005785 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5786 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005787 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005788 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5789 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005790</pre>
5791
5792<h5>Overview:</h5>
5793
5794<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005795The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5796trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005797</p>
5798
5799<h5>Arguments:</h5>
5800
5801<p>
5802The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005803integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005804</p>
5805
5806<h5>Semantics:</h5>
5807
5808<p>
5809The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5810in a variable. If the src == 0 then the result is the size in bits of the type
5811of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5812</p>
5813</div>
5814
Reid Spencer497d93e2007-04-01 08:27:01 +00005815<!-- _______________________________________________________________________ -->
5816<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005817 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005818</div>
5819
5820<div class="doc_text">
5821
5822<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005823<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005824on any integer bit width.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005825<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005826 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5827 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005828</pre>
5829
5830<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005831<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005832range of bits from an integer value and returns them in the same bit width as
5833the original value.</p>
5834
5835<h5>Arguments:</h5>
5836<p>The first argument, <tt>%val</tt> and the result may be integer types of
5837any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005838arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005839
5840<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005841<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005842of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5843<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5844operates in forward mode.</p>
5845<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5846right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005847only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5848<ol>
5849 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5850 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5851 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5852 to determine the number of bits to retain.</li>
5853 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005854 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005855</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005856<p>In reverse mode, a similar computation is made except that the bits are
5857returned in the reverse order. So, for example, if <tt>X</tt> has the value
5858<tt>i16 0x0ACF (101011001111)</tt> and we apply
5859<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5860<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005861</div>
5862
Reid Spencerf86037f2007-04-11 23:23:49 +00005863<div class="doc_subsubsection">
5864 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5865</div>
5866
5867<div class="doc_text">
5868
5869<h5>Syntax:</h5>
5870<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005871on any integer bit width.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005872<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005873 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5874 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005875</pre>
5876
5877<h5>Overview:</h5>
5878<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5879of bits in an integer value with another integer value. It returns the integer
5880with the replaced bits.</p>
5881
5882<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005883<p>The first argument, <tt>%val</tt>, and the result may be integer types of
5884any bit width, but they must have the same bit width. <tt>%val</tt> is the value
Reid Spencerf86037f2007-04-11 23:23:49 +00005885whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5886integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5887type since they specify only a bit index.</p>
5888
5889<h5>Semantics:</h5>
5890<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5891of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5892<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5893operates in forward mode.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005894
Reid Spencerf86037f2007-04-11 23:23:49 +00005895<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5896truncating it down to the size of the replacement area or zero extending it
5897up to that size.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005898
Reid Spencerf86037f2007-04-11 23:23:49 +00005899<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5900are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5901in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman0e451ce2008-10-14 16:51:45 +00005902to the <tt>%hi</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005903
Reid Spencerc6749c42007-05-14 16:50:20 +00005904<p>In reverse mode, a similar computation is made except that the bits are
5905reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman0e451ce2008-10-14 16:51:45 +00005906<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005907
Reid Spencerf86037f2007-04-11 23:23:49 +00005908<h5>Examples:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005909
Reid Spencerf86037f2007-04-11 23:23:49 +00005910<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005911 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005912 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5913 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5914 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005915 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005916</pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005917
5918</div>
5919
Bill Wendlingda01af72009-02-08 04:04:40 +00005920<!-- ======================================================================= -->
5921<div class="doc_subsection">
5922 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
5923</div>
5924
5925<div class="doc_text">
5926<p>
5927LLVM provides intrinsics for some arithmetic with overflow operations.
5928</p>
5929
5930</div>
5931
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005932<!-- _______________________________________________________________________ -->
5933<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00005934 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005935</div>
5936
5937<div class="doc_text">
5938
5939<h5>Syntax:</h5>
5940
5941<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00005942on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005943
5944<pre>
5945 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
5946 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
5947 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
5948</pre>
5949
5950<h5>Overview:</h5>
5951
5952<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5953a signed addition of the two arguments, and indicate whether an overflow
5954occurred during the signed summation.</p>
5955
5956<h5>Arguments:</h5>
5957
5958<p>The arguments (%a and %b) and the first element of the result structure may
5959be of integer types of any bit width, but they must have the same bit width. The
5960second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
5961and <tt>%b</tt> are the two values that will undergo signed addition.</p>
5962
5963<h5>Semantics:</h5>
5964
5965<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5966a signed addition of the two variables. They return a structure &mdash; the
5967first element of which is the signed summation, and the second element of which
5968is a bit specifying if the signed summation resulted in an overflow.</p>
5969
5970<h5>Examples:</h5>
5971<pre>
5972 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
5973 %sum = extractvalue {i32, i1} %res, 0
5974 %obit = extractvalue {i32, i1} %res, 1
5975 br i1 %obit, label %overflow, label %normal
5976</pre>
5977
5978</div>
5979
5980<!-- _______________________________________________________________________ -->
5981<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00005982 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005983</div>
5984
5985<div class="doc_text">
5986
5987<h5>Syntax:</h5>
5988
5989<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00005990on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005991
5992<pre>
5993 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
5994 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
5995 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
5996</pre>
5997
5998<h5>Overview:</h5>
5999
6000<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6001an unsigned addition of the two arguments, and indicate whether a carry occurred
6002during the unsigned summation.</p>
6003
6004<h5>Arguments:</h5>
6005
6006<p>The arguments (%a and %b) and the first element of the result structure may
6007be of integer types of any bit width, but they must have the same bit width. The
6008second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6009and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6010
6011<h5>Semantics:</h5>
6012
6013<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6014an unsigned addition of the two arguments. They return a structure &mdash; the
6015first element of which is the sum, and the second element of which is a bit
6016specifying if the unsigned summation resulted in a carry.</p>
6017
6018<h5>Examples:</h5>
6019<pre>
6020 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6021 %sum = extractvalue {i32, i1} %res, 0
6022 %obit = extractvalue {i32, i1} %res, 1
6023 br i1 %obit, label %carry, label %normal
6024</pre>
6025
6026</div>
6027
6028<!-- _______________________________________________________________________ -->
6029<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006030 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006031</div>
6032
6033<div class="doc_text">
6034
6035<h5>Syntax:</h5>
6036
6037<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006038on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006039
6040<pre>
6041 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6042 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6043 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6044</pre>
6045
6046<h5>Overview:</h5>
6047
6048<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6049a signed subtraction of the two arguments, and indicate whether an overflow
6050occurred during the signed subtraction.</p>
6051
6052<h5>Arguments:</h5>
6053
6054<p>The arguments (%a and %b) and the first element of the result structure may
6055be of integer types of any bit width, but they must have the same bit width. The
6056second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6057and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6058
6059<h5>Semantics:</h5>
6060
6061<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6062a signed subtraction of the two arguments. They return a structure &mdash; the
6063first element of which is the subtraction, and the second element of which is a bit
6064specifying if the signed subtraction resulted in an overflow.</p>
6065
6066<h5>Examples:</h5>
6067<pre>
6068 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6069 %sum = extractvalue {i32, i1} %res, 0
6070 %obit = extractvalue {i32, i1} %res, 1
6071 br i1 %obit, label %overflow, label %normal
6072</pre>
6073
6074</div>
6075
6076<!-- _______________________________________________________________________ -->
6077<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006078 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006079</div>
6080
6081<div class="doc_text">
6082
6083<h5>Syntax:</h5>
6084
6085<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006086on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006087
6088<pre>
6089 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6090 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6091 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6092</pre>
6093
6094<h5>Overview:</h5>
6095
6096<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6097an unsigned subtraction of the two arguments, and indicate whether an overflow
6098occurred during the unsigned subtraction.</p>
6099
6100<h5>Arguments:</h5>
6101
6102<p>The arguments (%a and %b) and the first element of the result structure may
6103be of integer types of any bit width, but they must have the same bit width. The
6104second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6105and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6106
6107<h5>Semantics:</h5>
6108
6109<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6110an unsigned subtraction of the two arguments. They return a structure &mdash; the
6111first element of which is the subtraction, and the second element of which is a bit
6112specifying if the unsigned subtraction resulted in an overflow.</p>
6113
6114<h5>Examples:</h5>
6115<pre>
6116 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6117 %sum = extractvalue {i32, i1} %res, 0
6118 %obit = extractvalue {i32, i1} %res, 1
6119 br i1 %obit, label %overflow, label %normal
6120</pre>
6121
6122</div>
6123
6124<!-- _______________________________________________________________________ -->
6125<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006126 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006127</div>
6128
6129<div class="doc_text">
6130
6131<h5>Syntax:</h5>
6132
6133<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006134on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006135
6136<pre>
6137 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6138 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6139 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6140</pre>
6141
6142<h5>Overview:</h5>
6143
6144<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6145a signed multiplication of the two arguments, and indicate whether an overflow
6146occurred during the signed multiplication.</p>
6147
6148<h5>Arguments:</h5>
6149
6150<p>The arguments (%a and %b) and the first element of the result structure may
6151be of integer types of any bit width, but they must have the same bit width. The
6152second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6153and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6154
6155<h5>Semantics:</h5>
6156
6157<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6158a signed multiplication of the two arguments. They return a structure &mdash;
6159the first element of which is the multiplication, and the second element of
6160which is a bit specifying if the signed multiplication resulted in an
6161overflow.</p>
6162
6163<h5>Examples:</h5>
6164<pre>
6165 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6166 %sum = extractvalue {i32, i1} %res, 0
6167 %obit = extractvalue {i32, i1} %res, 1
6168 br i1 %obit, label %overflow, label %normal
6169</pre>
6170
Reid Spencerf86037f2007-04-11 23:23:49 +00006171</div>
6172
Chris Lattner8ff75902004-01-06 05:31:32 +00006173<!-- ======================================================================= -->
6174<div class="doc_subsection">
6175 <a name="int_debugger">Debugger Intrinsics</a>
6176</div>
6177
6178<div class="doc_text">
6179<p>
6180The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6181are described in the <a
6182href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6183Debugging</a> document.
6184</p>
6185</div>
6186
6187
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006188<!-- ======================================================================= -->
6189<div class="doc_subsection">
6190 <a name="int_eh">Exception Handling Intrinsics</a>
6191</div>
6192
6193<div class="doc_text">
6194<p> The LLVM exception handling intrinsics (which all start with
6195<tt>llvm.eh.</tt> prefix), are described in the <a
6196href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6197Handling</a> document. </p>
6198</div>
6199
Tanya Lattner6d806e92007-06-15 20:50:54 +00006200<!-- ======================================================================= -->
6201<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00006202 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00006203</div>
6204
6205<div class="doc_text">
6206<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006207 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00006208 the <tt>nest</tt> attribute, from a function. The result is a callable
6209 function pointer lacking the nest parameter - the caller does not need
6210 to provide a value for it. Instead, the value to use is stored in
6211 advance in a "trampoline", a block of memory usually allocated
6212 on the stack, which also contains code to splice the nest value into the
6213 argument list. This is used to implement the GCC nested function address
6214 extension.
6215</p>
6216<p>
6217 For example, if the function is
6218 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00006219 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006220<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006221 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6222 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6223 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6224 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00006225</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00006226 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6227 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006228</div>
6229
6230<!-- _______________________________________________________________________ -->
6231<div class="doc_subsubsection">
6232 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6233</div>
6234<div class="doc_text">
6235<h5>Syntax:</h5>
6236<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006237declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00006238</pre>
6239<h5>Overview:</h5>
6240<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006241 This fills the memory pointed to by <tt>tramp</tt> with code
6242 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00006243</p>
6244<h5>Arguments:</h5>
6245<p>
6246 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6247 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6248 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00006249 intrinsic. Note that the size and the alignment are target-specific - LLVM
6250 currently provides no portable way of determining them, so a front-end that
6251 generates this intrinsic needs to have some target-specific knowledge.
6252 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00006253</p>
6254<h5>Semantics:</h5>
6255<p>
6256 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00006257 dependent code, turning it into a function. A pointer to this function is
6258 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00006259 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006260 before being called. The new function's signature is the same as that of
6261 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6262 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6263 of pointer type. Calling the new function is equivalent to calling
6264 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6265 missing <tt>nest</tt> argument. If, after calling
6266 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6267 modified, then the effect of any later call to the returned function pointer is
6268 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00006269</p>
6270</div>
6271
6272<!-- ======================================================================= -->
6273<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006274 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6275</div>
6276
6277<div class="doc_text">
6278<p>
6279 These intrinsic functions expand the "universal IR" of LLVM to represent
6280 hardware constructs for atomic operations and memory synchronization. This
6281 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00006282 is aimed at a low enough level to allow any programming models or APIs
6283 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006284 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6285 hardware behavior. Just as hardware provides a "universal IR" for source
6286 languages, it also provides a starting point for developing a "universal"
6287 atomic operation and synchronization IR.
6288</p>
6289<p>
6290 These do <em>not</em> form an API such as high-level threading libraries,
6291 software transaction memory systems, atomic primitives, and intrinsic
6292 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6293 application libraries. The hardware interface provided by LLVM should allow
6294 a clean implementation of all of these APIs and parallel programming models.
6295 No one model or paradigm should be selected above others unless the hardware
6296 itself ubiquitously does so.
6297
6298</p>
6299</div>
6300
6301<!-- _______________________________________________________________________ -->
6302<div class="doc_subsubsection">
6303 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6304</div>
6305<div class="doc_text">
6306<h5>Syntax:</h5>
6307<pre>
6308declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
6309i1 &lt;device&gt; )
6310
6311</pre>
6312<h5>Overview:</h5>
6313<p>
6314 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6315 specific pairs of memory access types.
6316</p>
6317<h5>Arguments:</h5>
6318<p>
6319 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6320 The first four arguments enables a specific barrier as listed below. The fith
6321 argument specifies that the barrier applies to io or device or uncached memory.
6322
6323</p>
6324 <ul>
6325 <li><tt>ll</tt>: load-load barrier</li>
6326 <li><tt>ls</tt>: load-store barrier</li>
6327 <li><tt>sl</tt>: store-load barrier</li>
6328 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006329 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006330 </ul>
6331<h5>Semantics:</h5>
6332<p>
6333 This intrinsic causes the system to enforce some ordering constraints upon
6334 the loads and stores of the program. This barrier does not indicate
6335 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6336 which they occur. For any of the specified pairs of load and store operations
6337 (f.ex. load-load, or store-load), all of the first operations preceding the
6338 barrier will complete before any of the second operations succeeding the
6339 barrier begin. Specifically the semantics for each pairing is as follows:
6340</p>
6341 <ul>
6342 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6343 after the barrier begins.</li>
6344
6345 <li><tt>ls</tt>: All loads before the barrier must complete before any
6346 store after the barrier begins.</li>
6347 <li><tt>ss</tt>: All stores before the barrier must complete before any
6348 store after the barrier begins.</li>
6349 <li><tt>sl</tt>: All stores before the barrier must complete before any
6350 load after the barrier begins.</li>
6351 </ul>
6352<p>
6353 These semantics are applied with a logical "and" behavior when more than one
6354 is enabled in a single memory barrier intrinsic.
6355</p>
6356<p>
6357 Backends may implement stronger barriers than those requested when they do not
6358 support as fine grained a barrier as requested. Some architectures do not
6359 need all types of barriers and on such architectures, these become noops.
6360</p>
6361<h5>Example:</h5>
6362<pre>
6363%ptr = malloc i32
6364 store i32 4, %ptr
6365
6366%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6367 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6368 <i>; guarantee the above finishes</i>
6369 store i32 8, %ptr <i>; before this begins</i>
6370</pre>
6371</div>
6372
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006373<!-- _______________________________________________________________________ -->
6374<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006375 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006376</div>
6377<div class="doc_text">
6378<h5>Syntax:</h5>
6379<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00006380 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6381 any integer bit width and for different address spaces. Not all targets
6382 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006383
6384<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006385declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6386declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6387declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6388declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006389
6390</pre>
6391<h5>Overview:</h5>
6392<p>
6393 This loads a value in memory and compares it to a given value. If they are
6394 equal, it stores a new value into the memory.
6395</p>
6396<h5>Arguments:</h5>
6397<p>
Mon P Wang28873102008-06-25 08:15:39 +00006398 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006399 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6400 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6401 this integer type. While any bit width integer may be used, targets may only
6402 lower representations they support in hardware.
6403
6404</p>
6405<h5>Semantics:</h5>
6406<p>
6407 This entire intrinsic must be executed atomically. It first loads the value
6408 in memory pointed to by <tt>ptr</tt> and compares it with the value
6409 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6410 loaded value is yielded in all cases. This provides the equivalent of an
6411 atomic compare-and-swap operation within the SSA framework.
6412</p>
6413<h5>Examples:</h5>
6414
6415<pre>
6416%ptr = malloc i32
6417 store i32 4, %ptr
6418
6419%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006420%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006421 <i>; yields {i32}:result1 = 4</i>
6422%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6423%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6424
6425%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006426%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006427 <i>; yields {i32}:result2 = 8</i>
6428%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6429
6430%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6431</pre>
6432</div>
6433
6434<!-- _______________________________________________________________________ -->
6435<div class="doc_subsubsection">
6436 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6437</div>
6438<div class="doc_text">
6439<h5>Syntax:</h5>
6440
6441<p>
6442 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6443 integer bit width. Not all targets support all bit widths however.</p>
6444<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006445declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6446declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6447declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6448declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006449
6450</pre>
6451<h5>Overview:</h5>
6452<p>
6453 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6454 the value from memory. It then stores the value in <tt>val</tt> in the memory
6455 at <tt>ptr</tt>.
6456</p>
6457<h5>Arguments:</h5>
6458
6459<p>
Mon P Wang28873102008-06-25 08:15:39 +00006460 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006461 <tt>val</tt> argument and the result must be integers of the same bit width.
6462 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6463 integer type. The targets may only lower integer representations they
6464 support.
6465</p>
6466<h5>Semantics:</h5>
6467<p>
6468 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6469 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6470 equivalent of an atomic swap operation within the SSA framework.
6471
6472</p>
6473<h5>Examples:</h5>
6474<pre>
6475%ptr = malloc i32
6476 store i32 4, %ptr
6477
6478%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006479%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006480 <i>; yields {i32}:result1 = 4</i>
6481%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6482%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6483
6484%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006485%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006486 <i>; yields {i32}:result2 = 8</i>
6487
6488%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6489%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6490</pre>
6491</div>
6492
6493<!-- _______________________________________________________________________ -->
6494<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006495 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006496
6497</div>
6498<div class="doc_text">
6499<h5>Syntax:</h5>
6500<p>
Mon P Wang28873102008-06-25 08:15:39 +00006501 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006502 integer bit width. Not all targets support all bit widths however.</p>
6503<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006504declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6505declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6506declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6507declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006508
6509</pre>
6510<h5>Overview:</h5>
6511<p>
6512 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6513 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6514</p>
6515<h5>Arguments:</h5>
6516<p>
6517
6518 The intrinsic takes two arguments, the first a pointer to an integer value
6519 and the second an integer value. The result is also an integer value. These
6520 integer types can have any bit width, but they must all have the same bit
6521 width. The targets may only lower integer representations they support.
6522</p>
6523<h5>Semantics:</h5>
6524<p>
6525 This intrinsic does a series of operations atomically. It first loads the
6526 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6527 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6528</p>
6529
6530<h5>Examples:</h5>
6531<pre>
6532%ptr = malloc i32
6533 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006534%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006535 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006536%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006537 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006538%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006539 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006540%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006541</pre>
6542</div>
6543
Mon P Wang28873102008-06-25 08:15:39 +00006544<!-- _______________________________________________________________________ -->
6545<div class="doc_subsubsection">
6546 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6547
6548</div>
6549<div class="doc_text">
6550<h5>Syntax:</h5>
6551<p>
6552 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006553 any integer bit width and for different address spaces. Not all targets
6554 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006555<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006556declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6557declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6558declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6559declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006560
6561</pre>
6562<h5>Overview:</h5>
6563<p>
6564 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6565 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6566</p>
6567<h5>Arguments:</h5>
6568<p>
6569
6570 The intrinsic takes two arguments, the first a pointer to an integer value
6571 and the second an integer value. The result is also an integer value. These
6572 integer types can have any bit width, but they must all have the same bit
6573 width. The targets may only lower integer representations they support.
6574</p>
6575<h5>Semantics:</h5>
6576<p>
6577 This intrinsic does a series of operations atomically. It first loads the
6578 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6579 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6580</p>
6581
6582<h5>Examples:</h5>
6583<pre>
6584%ptr = malloc i32
6585 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006586%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006587 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006588%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006589 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006590%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006591 <i>; yields {i32}:result3 = 2</i>
6592%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6593</pre>
6594</div>
6595
6596<!-- _______________________________________________________________________ -->
6597<div class="doc_subsubsection">
6598 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6599 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6600 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6601 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6602
6603</div>
6604<div class="doc_text">
6605<h5>Syntax:</h5>
6606<p>
6607 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6608 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006609 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6610 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006611<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006612declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6613declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6614declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6615declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006616
6617</pre>
6618
6619<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006620declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6621declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6622declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6623declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006624
6625</pre>
6626
6627<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006628declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6629declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6630declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6631declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006632
6633</pre>
6634
6635<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006636declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6637declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6638declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6639declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006640
6641</pre>
6642<h5>Overview:</h5>
6643<p>
6644 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6645 the value stored in memory at <tt>ptr</tt>. It yields the original value
6646 at <tt>ptr</tt>.
6647</p>
6648<h5>Arguments:</h5>
6649<p>
6650
6651 These intrinsics take two arguments, the first a pointer to an integer value
6652 and the second an integer value. The result is also an integer value. These
6653 integer types can have any bit width, but they must all have the same bit
6654 width. The targets may only lower integer representations they support.
6655</p>
6656<h5>Semantics:</h5>
6657<p>
6658 These intrinsics does a series of operations atomically. They first load the
6659 value stored at <tt>ptr</tt>. They then do the bitwise operation
6660 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6661 value stored at <tt>ptr</tt>.
6662</p>
6663
6664<h5>Examples:</h5>
6665<pre>
6666%ptr = malloc i32
6667 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006668%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006669 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006670%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006671 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006672%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006673 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006674%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006675 <i>; yields {i32}:result3 = FF</i>
6676%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6677</pre>
6678</div>
6679
6680
6681<!-- _______________________________________________________________________ -->
6682<div class="doc_subsubsection">
6683 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6684 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6685 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6686 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6687
6688</div>
6689<div class="doc_text">
6690<h5>Syntax:</h5>
6691<p>
6692 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6693 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006694 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6695 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006696 support all bit widths however.</p>
6697<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006698declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6699declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6700declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6701declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006702
6703</pre>
6704
6705<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006706declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6707declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6708declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6709declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006710
6711</pre>
6712
6713<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006714declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6715declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6716declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6717declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006718
6719</pre>
6720
6721<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006722declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6723declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6724declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6725declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006726
6727</pre>
6728<h5>Overview:</h5>
6729<p>
6730 These intrinsics takes the signed or unsigned minimum or maximum of
6731 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6732 original value at <tt>ptr</tt>.
6733</p>
6734<h5>Arguments:</h5>
6735<p>
6736
6737 These intrinsics take two arguments, the first a pointer to an integer value
6738 and the second an integer value. The result is also an integer value. These
6739 integer types can have any bit width, but they must all have the same bit
6740 width. The targets may only lower integer representations they support.
6741</p>
6742<h5>Semantics:</h5>
6743<p>
6744 These intrinsics does a series of operations atomically. They first load the
6745 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6746 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6747 the original value stored at <tt>ptr</tt>.
6748</p>
6749
6750<h5>Examples:</h5>
6751<pre>
6752%ptr = malloc i32
6753 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006754%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006755 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006756%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006757 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006758%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006759 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006760%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006761 <i>; yields {i32}:result3 = 8</i>
6762%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6763</pre>
6764</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006765
6766<!-- ======================================================================= -->
6767<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006768 <a name="int_general">General Intrinsics</a>
6769</div>
6770
6771<div class="doc_text">
6772<p> This class of intrinsics is designed to be generic and has
6773no specific purpose. </p>
6774</div>
6775
6776<!-- _______________________________________________________________________ -->
6777<div class="doc_subsubsection">
6778 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6779</div>
6780
6781<div class="doc_text">
6782
6783<h5>Syntax:</h5>
6784<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006785 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006786</pre>
6787
6788<h5>Overview:</h5>
6789
6790<p>
6791The '<tt>llvm.var.annotation</tt>' intrinsic
6792</p>
6793
6794<h5>Arguments:</h5>
6795
6796<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006797The first argument is a pointer to a value, the second is a pointer to a
6798global string, the third is a pointer to a global string which is the source
6799file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006800</p>
6801
6802<h5>Semantics:</h5>
6803
6804<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006805This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006806This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006807annotations. These have no other defined use, they are ignored by code
6808generation and optimization.
6809</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006810</div>
6811
Tanya Lattnerb6367882007-09-21 22:59:12 +00006812<!-- _______________________________________________________________________ -->
6813<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006814 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006815</div>
6816
6817<div class="doc_text">
6818
6819<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006820<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6821any integer bit width.
6822</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006823<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006824 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6825 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6826 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6827 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6828 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006829</pre>
6830
6831<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006832
6833<p>
6834The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006835</p>
6836
6837<h5>Arguments:</h5>
6838
6839<p>
6840The first argument is an integer value (result of some expression),
6841the second is a pointer to a global string, the third is a pointer to a global
6842string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006843It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006844</p>
6845
6846<h5>Semantics:</h5>
6847
6848<p>
6849This intrinsic allows annotations to be put on arbitrary expressions
6850with arbitrary strings. This can be useful for special purpose optimizations
6851that want to look for these annotations. These have no other defined use, they
6852are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00006853</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006854</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006855
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006856<!-- _______________________________________________________________________ -->
6857<div class="doc_subsubsection">
6858 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6859</div>
6860
6861<div class="doc_text">
6862
6863<h5>Syntax:</h5>
6864<pre>
6865 declare void @llvm.trap()
6866</pre>
6867
6868<h5>Overview:</h5>
6869
6870<p>
6871The '<tt>llvm.trap</tt>' intrinsic
6872</p>
6873
6874<h5>Arguments:</h5>
6875
6876<p>
6877None
6878</p>
6879
6880<h5>Semantics:</h5>
6881
6882<p>
6883This intrinsics is lowered to the target dependent trap instruction. If the
6884target does not have a trap instruction, this intrinsic will be lowered to the
6885call of the abort() function.
6886</p>
6887</div>
6888
Bill Wendling69e4adb2008-11-19 05:56:17 +00006889<!-- _______________________________________________________________________ -->
6890<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00006891 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00006892</div>
6893<div class="doc_text">
6894<h5>Syntax:</h5>
6895<pre>
6896declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
6897
6898</pre>
6899<h5>Overview:</h5>
6900<p>
6901 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
6902 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
6903 it is placed on the stack before local variables.
6904</p>
6905<h5>Arguments:</h5>
6906<p>
6907 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
6908 first argument is the value loaded from the stack guard
6909 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
6910 has enough space to hold the value of the guard.
6911</p>
6912<h5>Semantics:</h5>
6913<p>
6914 This intrinsic causes the prologue/epilogue inserter to force the position of
6915 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6916 stack. This is to ensure that if a local variable on the stack is overwritten,
6917 it will destroy the value of the guard. When the function exits, the guard on
6918 the stack is checked against the original guard. If they're different, then
6919 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
6920</p>
6921</div>
6922
Chris Lattner00950542001-06-06 20:29:01 +00006923<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006924<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006925<address>
6926 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00006927 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006928 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00006929 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006930
6931 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006932 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006933 Last modified: $Date$
6934</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006935
Misha Brukman9d0919f2003-11-08 01:05:38 +00006936</body>
6937</html>