blob: c37a0282978867ad5d7ca8a3b1afee2fdaf4b258 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
Chris Lattner2ac19022010-11-15 05:19:05 +000014#define DEBUG_TYPE "mccodeemitter"
Chris Lattner45762472010-02-03 21:24:49 +000015#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
Evan Cheng59ee62d2011-07-11 03:57:24 +000021#include "llvm/MC/MCSubtargetInfo.h"
Rafael Espindola64e67192010-10-20 16:46:08 +000022#include "llvm/MC/MCSymbol.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000023#include "llvm/Support/raw_ostream.h"
Evan Cheng59ee62d2011-07-11 03:57:24 +000024
25#define GET_SUBTARGETINFO_ENUM
26#include "X86GenSubtargetInfo.inc"
27
Chris Lattner45762472010-02-03 21:24:49 +000028using namespace llvm;
29
30namespace {
31class X86MCCodeEmitter : public MCCodeEmitter {
Argyrios Kyrtzidis8c8b9ee2010-08-15 10:27:23 +000032 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
33 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Evan Cheng59ee62d2011-07-11 03:57:24 +000034 const MCInstrInfo &MCII;
35 const MCSubtargetInfo &STI;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000036 MCContext &Ctx;
Chris Lattner45762472010-02-03 21:24:49 +000037public:
Evan Cheng59ee62d2011-07-11 03:57:24 +000038 X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
39 MCContext &ctx)
40 : MCII(mcii), STI(sti), Ctx(ctx) {
Chris Lattner45762472010-02-03 21:24:49 +000041 }
42
43 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000044
Evan Cheng59ee62d2011-07-11 03:57:24 +000045 bool is64BitMode() const {
46 // FIXME: Can tablegen auto-generate this?
47 return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
48 }
49
Chris Lattner28249d92010-02-05 01:53:19 +000050 static unsigned GetX86RegNum(const MCOperand &MO) {
51 return X86RegisterInfo::getX86RegNum(MO.getReg());
52 }
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000053
54 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
55 // 0-7 and the difference between the 2 groups is given by the REX prefix.
56 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
57 // in 1's complement form, example:
58 //
59 // ModRM field => XMM9 => 1
60 // VEX.VVVV => XMM9 => ~9
61 //
62 // See table 4-35 of Intel AVX Programming Reference for details.
63 static unsigned char getVEXRegisterEncoding(const MCInst &MI,
64 unsigned OpNum) {
65 unsigned SrcReg = MI.getOperand(OpNum).getReg();
66 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +000067 if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) ||
68 (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15))
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000069 SrcRegNum += 8;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000070
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000071 // The registers represented through VEX_VVVV should
72 // be encoded in 1's complement form.
73 return (~SrcRegNum) & 0xf;
74 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000075
Chris Lattner37ce80e2010-02-10 06:41:02 +000076 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000077 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000078 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000079 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000080
Chris Lattner37ce80e2010-02-10 06:41:02 +000081 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
82 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000083 // Output the constant in little endian byte order.
84 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000085 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000086 Val >>= 8;
87 }
88 }
Chris Lattner0e73c392010-02-05 06:16:07 +000089
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000090 void EmitImmediate(const MCOperand &Disp,
Chris Lattnercf653392010-02-12 22:36:47 +000091 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +000092 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +000093 SmallVectorImpl<MCFixup> &Fixups,
94 int ImmOffset = 0) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000095
Chris Lattner28249d92010-02-05 01:53:19 +000096 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
97 unsigned RM) {
98 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
99 return RM | (RegOpcode << 3) | (Mod << 6);
100 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000101
Chris Lattner28249d92010-02-05 01:53:19 +0000102 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000103 unsigned &CurByte, raw_ostream &OS) const {
104 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000105 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000106
Chris Lattner0e73c392010-02-05 06:16:07 +0000107 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000108 unsigned &CurByte, raw_ostream &OS) const {
109 // SIB byte is in the same format as the ModRMByte.
110 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000111 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000112
113
Chris Lattner1ac23b12010-02-05 02:18:40 +0000114 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000115 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000116 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000117 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000118
Daniel Dunbar73c55742010-02-09 22:59:55 +0000119 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
120 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000121
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000122 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Evan Chenge837dea2011-06-28 19:10:37 +0000123 const MCInst &MI, const MCInstrDesc &Desc,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000124 raw_ostream &OS) const;
125
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000126 void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
127 int MemOperand, const MCInst &MI,
128 raw_ostream &OS) const;
129
Chris Lattner834df192010-07-08 22:28:12 +0000130 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Evan Chenge837dea2011-06-28 19:10:37 +0000131 const MCInst &MI, const MCInstrDesc &Desc,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000132 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000133};
134
135} // end anonymous namespace
136
137
Evan Cheng59ee62d2011-07-11 03:57:24 +0000138MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
139 const MCSubtargetInfo &STI,
140 MCContext &Ctx) {
141 return new X86MCCodeEmitter(MCII, STI, Ctx);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000142}
143
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000144/// isDisp8 - Return true if this signed displacement fits in a 8-bit
145/// sign-extended field.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000146static bool isDisp8(int Value) {
147 return Value == (signed char)Value;
148}
149
Chris Lattnercf653392010-02-12 22:36:47 +0000150/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
151/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000152static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000153 unsigned Size = X86II::getSizeOfImm(TSFlags);
154 bool isPCRel = X86II::isImmPCRel(TSFlags);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000155
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000156 return MCFixup::getKindForSize(Size, isPCRel);
Chris Lattnercf653392010-02-12 22:36:47 +0000157}
158
Chris Lattner8a507292010-09-29 03:33:25 +0000159/// Is32BitMemOperand - Return true if the specified instruction with a memory
160/// operand should emit the 0x67 prefix byte in 64-bit mode due to a 32-bit
161/// memory operand. Op specifies the operand # of the memoperand.
162static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
163 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
164 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
165
Nick Lewycky8892b032010-09-29 18:56:57 +0000166 if ((BaseReg.getReg() != 0 && X86::GR32RegClass.contains(BaseReg.getReg())) ||
167 (IndexReg.getReg() != 0 && X86::GR32RegClass.contains(IndexReg.getReg())))
Chris Lattner8a507292010-09-29 03:33:25 +0000168 return true;
169 return false;
170}
Chris Lattnercf653392010-02-12 22:36:47 +0000171
Rafael Espindola64e67192010-10-20 16:46:08 +0000172/// StartsWithGlobalOffsetTable - Return true for the simple cases where this
173/// expression starts with _GLOBAL_OFFSET_TABLE_. This is a needed to support
174/// PIC on ELF i386 as that symbol is magic. We check only simple case that
175/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
176/// of a binary expression.
177static bool StartsWithGlobalOffsetTable(const MCExpr *Expr) {
178 if (Expr->getKind() == MCExpr::Binary) {
179 const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
180 Expr = BE->getLHS();
181 }
182
183 if (Expr->getKind() != MCExpr::SymbolRef)
184 return false;
185
186 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
187 const MCSymbol &S = Ref->getSymbol();
188 return S.getName() == "_GLOBAL_OFFSET_TABLE_";
189}
190
Chris Lattner0e73c392010-02-05 06:16:07 +0000191void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000192EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000193 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000194 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Rafael Espindolad93ceeb2010-11-23 07:20:12 +0000195 const MCExpr *Expr = NULL;
Chris Lattner8496a262010-02-10 06:30:00 +0000196 if (DispOp.isImm()) {
Rafael Espindolad93ceeb2010-11-23 07:20:12 +0000197 // If this is a simple integer displacement that doesn't require a relocation,
198 // emit it now.
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000199 if (FixupKind != FK_PCRel_1 &&
200 FixupKind != FK_PCRel_2 &&
201 FixupKind != FK_PCRel_4) {
Rafael Espindolad93ceeb2010-11-23 07:20:12 +0000202 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
203 return;
204 }
205 Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
206 } else {
207 Expr = DispOp.getExpr();
Chris Lattner0e73c392010-02-05 06:16:07 +0000208 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000209
Chris Lattner835acab2010-02-12 23:00:36 +0000210 // If we have an immoffset, add it to the expression.
Rafael Espindola24ba4f72010-10-24 17:35:42 +0000211 if (FixupKind == FK_Data_4 && StartsWithGlobalOffsetTable(Expr)) {
Rafael Espindola64e67192010-10-20 16:46:08 +0000212 assert(ImmOffset == 0);
Rafael Espindola24ba4f72010-10-24 17:35:42 +0000213
214 FixupKind = MCFixupKind(X86::reloc_global_offset_table);
Rafael Espindola64e67192010-10-20 16:46:08 +0000215 ImmOffset = CurByte;
216 }
217
Chris Lattnera08b5872010-02-16 05:03:17 +0000218 // If the fixup is pc-relative, we need to bias the value to be relative to
219 // the start of the field, not the end of the field.
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000220 if (FixupKind == FK_PCRel_4 ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000221 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
222 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000223 ImmOffset -= 4;
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000224 if (FixupKind == FK_PCRel_2)
Chris Lattnerda3051a2010-07-07 22:35:13 +0000225 ImmOffset -= 2;
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000226 if (FixupKind == FK_PCRel_1)
Chris Lattnera08b5872010-02-16 05:03:17 +0000227 ImmOffset -= 1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000228
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000229 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000230 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000231 Ctx);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000232
Chris Lattner5dccfad2010-02-10 06:52:12 +0000233 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000234 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000235 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000236}
237
Chris Lattner1ac23b12010-02-05 02:18:40 +0000238void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
239 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000240 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000241 raw_ostream &OS,
242 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8a507292010-09-29 03:33:25 +0000243 const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
244 const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg);
245 const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
246 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000247 unsigned BaseReg = Base.getReg();
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000248
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000249 // Handle %rip relative addressing.
250 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Evan Cheng59ee62d2011-07-11 03:57:24 +0000251 assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
Eric Christopher497f1eb2010-06-08 22:57:33 +0000252 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000253 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000254
Chris Lattner0f53cf22010-03-18 18:10:56 +0000255 unsigned FixupKind = X86::reloc_riprel_4byte;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000256
Chris Lattner0f53cf22010-03-18 18:10:56 +0000257 // movq loads are handled with a special relocation form which allows the
258 // linker to eliminate some loads for GOT references which end up in the
259 // same linkage unit.
Jakob Stoklund Olesend0eeeeb2010-10-12 17:15:00 +0000260 if (MI.getOpcode() == X86::MOV64rm)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000261 FixupKind = X86::reloc_riprel_4byte_movq_load;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000262
Chris Lattner835acab2010-02-12 23:00:36 +0000263 // rip-relative addressing is actually relative to the *next* instruction.
264 // Since an immediate can follow the mod/rm byte for an instruction, this
265 // means that we need to bias the immediate field of the instruction with
266 // the size of the immediate field. If we have this case, add it into the
267 // expression to emit.
268 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000269
Chris Lattner0f53cf22010-03-18 18:10:56 +0000270 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000271 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000272 return;
273 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000274
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000275 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000276
Chris Lattnera8168ec2010-02-09 21:57:34 +0000277 // Determine whether a SIB byte is needed.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000278 // If no BaseReg, issue a RIP relative instruction only if the MCE can
Chris Lattner1ac23b12010-02-05 02:18:40 +0000279 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
280 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000281
Chris Lattnera8168ec2010-02-09 21:57:34 +0000282 if (// The SIB byte must be used if there is an index register.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000283 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000284 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
285 // encode to an R/M value of 4, which indicates that a SIB byte is
286 // present.
287 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000288 // If there is no base register and we're in 64-bit mode, we need a SIB
289 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
Evan Cheng59ee62d2011-07-11 03:57:24 +0000290 (!is64BitMode() || BaseReg != 0)) {
Chris Lattnera8168ec2010-02-09 21:57:34 +0000291
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000292 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000293 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000294 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000295 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000296 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000297
Chris Lattnera8168ec2010-02-09 21:57:34 +0000298 // If the base is not EBP/ESP and there is no displacement, use simple
299 // indirect register encoding, this handles addresses like [EAX]. The
300 // encoding for [EBP] with no displacement means [disp32] so we handle it
301 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000302 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000303 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000304 return;
305 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000306
Chris Lattnera8168ec2010-02-09 21:57:34 +0000307 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000308 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000309 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000310 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000311 return;
312 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000313
Chris Lattnera8168ec2010-02-09 21:57:34 +0000314 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000315 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000316 EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
317 Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000318 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000319 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000320
Chris Lattner0e73c392010-02-05 06:16:07 +0000321 // We need a SIB byte, so start by outputting the ModR/M byte first
322 assert(IndexReg.getReg() != X86::ESP &&
323 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000324
Chris Lattner0e73c392010-02-05 06:16:07 +0000325 bool ForceDisp32 = false;
326 bool ForceDisp8 = false;
327 if (BaseReg == 0) {
328 // If there is no base register, we emit the special case SIB byte with
329 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000330 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000331 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000332 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000333 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000334 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000335 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000336 } else if (Disp.getImm() == 0 &&
337 // Base reg can't be anything that ends up with '5' as the base
338 // reg, it is the magic [*] nomenclature that indicates no base.
339 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000340 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000341 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000342 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000343 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000344 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000345 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
346 } else {
347 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000348 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000349 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000350
Chris Lattner0e73c392010-02-05 06:16:07 +0000351 // Calculate what the SS field value should be...
352 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
353 unsigned SS = SSTable[Scale.getImm()];
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000354
Chris Lattner0e73c392010-02-05 06:16:07 +0000355 if (BaseReg == 0) {
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000356 // Handle the SIB byte for the case where there is no base, see Intel
Chris Lattner0e73c392010-02-05 06:16:07 +0000357 // Manual 2A, table 2-7. The displacement has already been output.
358 unsigned IndexRegNo;
359 if (IndexReg.getReg())
360 IndexRegNo = GetX86RegNum(IndexReg);
361 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
362 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000363 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000364 } else {
365 unsigned IndexRegNo;
366 if (IndexReg.getReg())
367 IndexRegNo = GetX86RegNum(IndexReg);
368 else
369 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000370 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000371 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000372
Chris Lattner0e73c392010-02-05 06:16:07 +0000373 // Do we need to output a displacement?
374 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000375 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000376 else if (ForceDisp32 || Disp.getImm() != 0)
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000377 EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
378 Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000379}
380
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000381/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
382/// called VEX.
383void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000384 int MemOperand, const MCInst &MI,
Evan Chenge837dea2011-06-28 19:10:37 +0000385 const MCInstrDesc &Desc,
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000386 raw_ostream &OS) const {
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000387 bool HasVEX_4V = false;
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000388 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000389 HasVEX_4V = true;
390
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000391 // VEX_R: opcode externsion equivalent to REX.R in
392 // 1's complement (inverted) form
393 //
394 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
395 // 0: Same as REX_R=1 (64 bit mode only)
396 //
397 unsigned char VEX_R = 0x1;
398
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000399 // VEX_X: equivalent to REX.X, only used when a
400 // register is used for index in SIB Byte.
401 //
402 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
403 // 0: Same as REX.X=1 (64-bit mode only)
404 unsigned char VEX_X = 0x1;
405
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000406 // VEX_B:
407 //
408 // 1: Same as REX_B=0 (ignored in 32-bit mode)
409 // 0: Same as REX_B=1 (64 bit mode only)
410 //
411 unsigned char VEX_B = 0x1;
412
413 // VEX_W: opcode specific (use like REX.W, or used for
414 // opcode extension, or ignored, depending on the opcode byte)
415 unsigned char VEX_W = 0;
416
417 // VEX_5M (VEX m-mmmmm field):
418 //
419 // 0b00000: Reserved for future use
420 // 0b00001: implied 0F leading opcode
421 // 0b00010: implied 0F 38 leading opcode bytes
422 // 0b00011: implied 0F 3A leading opcode bytes
423 // 0b00100-0b11111: Reserved for future use
424 //
425 unsigned char VEX_5M = 0x1;
426
427 // VEX_4V (VEX vvvv field): a register specifier
428 // (in 1's complement form) or 1111 if unused.
429 unsigned char VEX_4V = 0xf;
430
431 // VEX_L (Vector Length):
432 //
433 // 0: scalar or 128-bit vector
434 // 1: 256-bit vector
435 //
436 unsigned char VEX_L = 0;
437
438 // VEX_PP: opcode extension providing equivalent
439 // functionality of a SIMD prefix
440 //
441 // 0b00: None
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000442 // 0b01: 66
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000443 // 0b10: F3
444 // 0b11: F2
445 //
446 unsigned char VEX_PP = 0;
447
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000448 // Encode the operand size opcode prefix as needed.
449 if (TSFlags & X86II::OpSize)
450 VEX_PP = 0x01;
451
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000452 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000453 VEX_W = 1;
454
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000455 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
Bruno Cardoso Lopes87a85c72010-07-13 21:07:28 +0000456 VEX_L = 1;
457
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000458 switch (TSFlags & X86II::Op0Mask) {
459 default: assert(0 && "Invalid prefix!");
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000460 case X86II::T8: // 0F 38
461 VEX_5M = 0x2;
462 break;
463 case X86II::TA: // 0F 3A
464 VEX_5M = 0x3;
465 break;
466 case X86II::TF: // F2 0F 38
467 VEX_PP = 0x3;
468 VEX_5M = 0x2;
469 break;
470 case X86II::XS: // F3 0F
471 VEX_PP = 0x2;
472 break;
473 case X86II::XD: // F2 0F
474 VEX_PP = 0x3;
475 break;
Joerg Sonnenberger4a8ac8d2011-04-04 16:58:13 +0000476 case X86II::A6: // Bypass: Not used by VEX
477 case X86II::A7: // Bypass: Not used by VEX
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000478 case X86II::TB: // Bypass: Not used by VEX
479 case 0:
480 break; // No prefix!
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000481 }
482
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +0000483 // Set the vector length to 256-bit if YMM0-YMM15 is used
484 for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
485 if (!MI.getOperand(i).isReg())
486 continue;
487 unsigned SrcReg = MI.getOperand(i).getReg();
488 if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
489 VEX_L = 1;
490 }
491
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000492 unsigned NumOps = MI.getNumOperands();
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000493 unsigned CurOp = 0;
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000494 bool IsDestMem = false;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000495
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000496 switch (TSFlags & X86II::FormMask) {
497 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000498 case X86II::MRMDestMem:
499 IsDestMem = true;
500 // The important info for the VEX prefix is never beyond the address
501 // registers. Don't check beyond that.
502 NumOps = CurOp = X86::AddrNumOperands;
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000503 case X86II::MRM0m: case X86II::MRM1m:
504 case X86II::MRM2m: case X86II::MRM3m:
505 case X86II::MRM4m: case X86II::MRM5m:
506 case X86II::MRM6m: case X86II::MRM7m:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000507 case X86II::MRMSrcMem:
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000508 case X86II::MRMSrcReg:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000509 if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000510 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000511 VEX_R = 0x0;
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000512 CurOp++;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000513
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000514 if (HasVEX_4V) {
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000515 VEX_4V = getVEXRegisterEncoding(MI, IsDestMem ? CurOp-1 : CurOp);
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000516 CurOp++;
517 }
518
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000519 // To only check operands before the memory address ones, start
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000520 // the search from the beginning
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000521 if (IsDestMem)
522 CurOp = 0;
523
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000524 // If the last register should be encoded in the immediate field
Bruno Cardoso Lopes01066802010-07-06 22:38:32 +0000525 // do not use any bit from VEX prefix to this register, ignore it
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000526 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM)
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000527 NumOps--;
528
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000529 for (; CurOp != NumOps; ++CurOp) {
530 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000531 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
532 VEX_B = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000533 if (!VEX_B && MO.isReg() &&
534 ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000535 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
536 VEX_X = 0x0;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000537 }
538 break;
Bruno Cardoso Lopescf6ca032010-07-21 08:56:24 +0000539 default: // MRMDestReg, MRM0r-MRM7r, RawFrm
540 if (!MI.getNumOperands())
541 break;
542
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000543 if (MI.getOperand(CurOp).isReg() &&
544 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
545 VEX_B = 0;
546
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000547 if (HasVEX_4V)
548 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
549
550 CurOp++;
551 for (; CurOp != NumOps; ++CurOp) {
552 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000553 if (MO.isReg() && !HasVEX_4V &&
554 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
555 VEX_R = 0x0;
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000556 }
557 break;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000558 }
559
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000560 // Emit segment override opcode prefix as needed.
561 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
562
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000563 // VEX opcode prefix can have 2 or 3 bytes
564 //
565 // 3 bytes:
566 // +-----+ +--------------+ +-------------------+
567 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
568 // +-----+ +--------------+ +-------------------+
569 // 2 bytes:
570 // +-----+ +-------------------+
571 // | C5h | | R | vvvv | L | pp |
572 // +-----+ +-------------------+
573 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000574 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
575
Bruno Cardoso Lopesf5cd8c52010-07-02 22:06:54 +0000576 if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000577 EmitByte(0xC5, CurByte, OS);
578 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
579 return;
580 }
581
582 // 3 byte VEX prefix
583 EmitByte(0xC4, CurByte, OS);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000584 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000585 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
586}
587
Chris Lattner39a612e2010-02-05 22:10:22 +0000588/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
589/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
590/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000591static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Evan Chenge837dea2011-06-28 19:10:37 +0000592 const MCInstrDesc &Desc) {
Chris Lattner7e851802010-02-11 22:39:10 +0000593 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000594 if (TSFlags & X86II::REX_W)
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000595 REX |= 1 << 3; // set REX.W
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000596
Chris Lattner39a612e2010-02-05 22:10:22 +0000597 if (MI.getNumOperands() == 0) return REX;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000598
Chris Lattner39a612e2010-02-05 22:10:22 +0000599 unsigned NumOps = MI.getNumOperands();
600 // FIXME: MCInst should explicitize the two-addrness.
601 bool isTwoAddr = NumOps > 1 &&
Evan Chenge837dea2011-06-28 19:10:37 +0000602 Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000603
Chris Lattner39a612e2010-02-05 22:10:22 +0000604 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
605 unsigned i = isTwoAddr ? 1 : 0;
606 for (; i != NumOps; ++i) {
607 const MCOperand &MO = MI.getOperand(i);
608 if (!MO.isReg()) continue;
609 unsigned Reg = MO.getReg();
610 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000611 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
612 // that returns non-zero.
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000613 REX |= 0x40; // REX fixed encoding prefix
Chris Lattner39a612e2010-02-05 22:10:22 +0000614 break;
615 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000616
Chris Lattner39a612e2010-02-05 22:10:22 +0000617 switch (TSFlags & X86II::FormMask) {
618 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
619 case X86II::MRMSrcReg:
620 if (MI.getOperand(0).isReg() &&
621 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000622 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000623 i = isTwoAddr ? 2 : 1;
624 for (; i != NumOps; ++i) {
625 const MCOperand &MO = MI.getOperand(i);
626 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000627 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000628 }
629 break;
630 case X86II::MRMSrcMem: {
631 if (MI.getOperand(0).isReg() &&
632 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000633 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000634 unsigned Bit = 0;
635 i = isTwoAddr ? 2 : 1;
636 for (; i != NumOps; ++i) {
637 const MCOperand &MO = MI.getOperand(i);
638 if (MO.isReg()) {
639 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000640 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000641 Bit++;
642 }
643 }
644 break;
645 }
646 case X86II::MRM0m: case X86II::MRM1m:
647 case X86II::MRM2m: case X86II::MRM3m:
648 case X86II::MRM4m: case X86II::MRM5m:
649 case X86II::MRM6m: case X86II::MRM7m:
650 case X86II::MRMDestMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000651 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
Chris Lattner39a612e2010-02-05 22:10:22 +0000652 i = isTwoAddr ? 1 : 0;
653 if (NumOps > e && MI.getOperand(e).isReg() &&
654 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000655 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000656 unsigned Bit = 0;
657 for (; i != e; ++i) {
658 const MCOperand &MO = MI.getOperand(i);
659 if (MO.isReg()) {
660 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000661 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000662 Bit++;
663 }
664 }
665 break;
666 }
667 default:
668 if (MI.getOperand(0).isReg() &&
669 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000670 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000671 i = isTwoAddr ? 2 : 1;
672 for (unsigned e = NumOps; i != e; ++i) {
673 const MCOperand &MO = MI.getOperand(i);
674 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000675 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000676 }
677 break;
678 }
679 return REX;
680}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000681
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000682/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
683void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
684 unsigned &CurByte, int MemOperand,
685 const MCInst &MI,
Chris Lattner9d199892010-07-04 22:56:10 +0000686 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000687 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000688 default: assert(0 && "Invalid segment!");
Chris Lattner834df192010-07-08 22:28:12 +0000689 case 0:
690 // No segment override, check for explicit one on memory operand.
Chris Lattner599b5312010-07-08 23:46:44 +0000691 if (MemOperand != -1) { // If the instruction has a memory operand.
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000692 switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
Chris Lattner834df192010-07-08 22:28:12 +0000693 default: assert(0 && "Unknown segment register!");
694 case 0: break;
695 case X86::CS: EmitByte(0x2E, CurByte, OS); break;
696 case X86::SS: EmitByte(0x36, CurByte, OS); break;
697 case X86::DS: EmitByte(0x3E, CurByte, OS); break;
698 case X86::ES: EmitByte(0x26, CurByte, OS); break;
699 case X86::FS: EmitByte(0x64, CurByte, OS); break;
700 case X86::GS: EmitByte(0x65, CurByte, OS); break;
701 }
702 }
703 break;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000704 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000705 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000706 break;
707 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000708 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000709 break;
710 }
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000711}
712
713/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
714///
715/// MemOperand is the operand # of the start of a memory operand if present. If
716/// Not present, it is -1.
717void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
718 int MemOperand, const MCInst &MI,
Evan Chenge837dea2011-06-28 19:10:37 +0000719 const MCInstrDesc &Desc,
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000720 raw_ostream &OS) const {
721
722 // Emit the lock opcode prefix as needed.
723 if (TSFlags & X86II::LOCK)
724 EmitByte(0xF0, CurByte, OS);
725
726 // Emit segment override opcode prefix as needed.
727 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000728
Chris Lattner1e80f402010-02-03 21:57:59 +0000729 // Emit the repeat opcode prefix as needed.
730 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000731 EmitByte(0xF3, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000732
Chris Lattner1e80f402010-02-03 21:57:59 +0000733 // Emit the address size opcode prefix as needed.
Chris Lattner8a507292010-09-29 03:33:25 +0000734 if ((TSFlags & X86II::AdSize) ||
Evan Cheng59ee62d2011-07-11 03:57:24 +0000735 (MemOperand != -1 && is64BitMode() && Is32BitMemOperand(MI, MemOperand)))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000736 EmitByte(0x67, CurByte, OS);
Chris Lattner78a19462010-09-29 03:43:43 +0000737
738 // Emit the operand size opcode prefix as needed.
739 if (TSFlags & X86II::OpSize)
740 EmitByte(0x66, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000741
Chris Lattner1e80f402010-02-03 21:57:59 +0000742 bool Need0FPrefix = false;
743 switch (TSFlags & X86II::Op0Mask) {
744 default: assert(0 && "Invalid prefix!");
745 case 0: break; // No prefix!
746 case X86II::REP: break; // already handled.
747 case X86II::TB: // Two-byte opcode prefix
748 case X86II::T8: // 0F 38
749 case X86II::TA: // 0F 3A
Joerg Sonnenberger4a8ac8d2011-04-04 16:58:13 +0000750 case X86II::A6: // 0F A6
751 case X86II::A7: // 0F A7
Chris Lattner1e80f402010-02-03 21:57:59 +0000752 Need0FPrefix = true;
753 break;
754 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000755 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000756 Need0FPrefix = true;
757 break;
758 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000759 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000760 Need0FPrefix = true;
761 break;
762 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000763 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000764 Need0FPrefix = true;
765 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000766 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
767 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
768 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
769 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
770 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
771 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
772 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
773 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000774 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000775
Chris Lattner1e80f402010-02-03 21:57:59 +0000776 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000777 // FIXME: Can this come before F2 etc to simplify emission?
Evan Cheng59ee62d2011-07-11 03:57:24 +0000778 if (is64BitMode()) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000779 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000780 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000781 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000782
Chris Lattner1e80f402010-02-03 21:57:59 +0000783 // 0x0F escape code must be emitted just before the opcode.
784 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000785 EmitByte(0x0F, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000786
Chris Lattner1e80f402010-02-03 21:57:59 +0000787 // FIXME: Pull this up into previous switch if REX can be moved earlier.
788 switch (TSFlags & X86II::Op0Mask) {
789 case X86II::TF: // F2 0F 38
790 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000791 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000792 break;
793 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000794 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000795 break;
Joerg Sonnenberger4a8ac8d2011-04-04 16:58:13 +0000796 case X86II::A6: // 0F A6
797 EmitByte(0xA6, CurByte, OS);
798 break;
799 case X86II::A7: // 0F A7
800 EmitByte(0xA7, CurByte, OS);
801 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000802 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000803}
804
805void X86MCCodeEmitter::
806EncodeInstruction(const MCInst &MI, raw_ostream &OS,
807 SmallVectorImpl<MCFixup> &Fixups) const {
808 unsigned Opcode = MI.getOpcode();
Evan Cheng59ee62d2011-07-11 03:57:24 +0000809 const MCInstrDesc &Desc = MCII.get(Opcode);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000810 uint64_t TSFlags = Desc.TSFlags;
811
Chris Lattner757e8d62010-07-09 00:17:50 +0000812 // Pseudo instructions don't get encoded.
813 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
814 return;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000815
Chris Lattner834df192010-07-08 22:28:12 +0000816 // If this is a two-address instruction, skip one of the register operands.
817 // FIXME: This should be handled during MCInst lowering.
818 unsigned NumOps = Desc.getNumOperands();
819 unsigned CurOp = 0;
Evan Chenge837dea2011-06-28 19:10:37 +0000820 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1)
Chris Lattner834df192010-07-08 22:28:12 +0000821 ++CurOp;
Evan Chenge837dea2011-06-28 19:10:37 +0000822 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, MCOI::TIED_TO)== 0)
Chris Lattner834df192010-07-08 22:28:12 +0000823 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
824 --NumOps;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000825
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000826 // Keep track of the current byte being emitted.
827 unsigned CurByte = 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000828
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000829 // Is this instruction encoded using the AVX VEX prefix?
830 bool HasVEXPrefix = false;
831
832 // It uses the VEX.VVVV field?
833 bool HasVEX_4V = false;
834
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000835 if ((TSFlags >> X86II::VEXShift) & X86II::VEX)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000836 HasVEXPrefix = true;
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000837 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000838 HasVEX_4V = true;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000839
Chris Lattner548abfc2010-10-03 18:08:05 +0000840
Chris Lattner834df192010-07-08 22:28:12 +0000841 // Determine where the memory operand starts, if present.
842 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
843 if (MemoryOperand != -1) MemoryOperand += CurOp;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000844
Chris Lattner834df192010-07-08 22:28:12 +0000845 if (!HasVEXPrefix)
846 EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
847 else
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000848 EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000849
Chris Lattner548abfc2010-10-03 18:08:05 +0000850
Chris Lattner74a21512010-02-05 19:24:13 +0000851 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner548abfc2010-10-03 18:08:05 +0000852
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000853 if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
Chris Lattner548abfc2010-10-03 18:08:05 +0000854 BaseOpcode = 0x0F; // Weird 3DNow! encoding.
855
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000856 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000857 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000858 case X86II::MRMInitReg:
859 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000860 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000861 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner757e8d62010-07-09 00:17:50 +0000862 case X86II::Pseudo:
863 assert(0 && "Pseudo instruction shouldn't be emitted");
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000864 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000865 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000866 break;
Chris Lattner59f8a6a2010-08-19 01:18:43 +0000867
Chris Lattner40cc3f82010-09-17 18:02:29 +0000868 case X86II::RawFrmImm8:
869 EmitByte(BaseOpcode, CurByte, OS);
870 EmitImmediate(MI.getOperand(CurOp++),
871 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
872 CurByte, OS, Fixups);
873 EmitImmediate(MI.getOperand(CurOp++), 1, FK_Data_1, CurByte, OS, Fixups);
874 break;
Chris Lattner59f8a6a2010-08-19 01:18:43 +0000875 case X86II::RawFrmImm16:
876 EmitByte(BaseOpcode, CurByte, OS);
877 EmitImmediate(MI.getOperand(CurOp++),
878 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
879 CurByte, OS, Fixups);
880 EmitImmediate(MI.getOperand(CurOp++), 2, FK_Data_2, CurByte, OS, Fixups);
881 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000882
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000883 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000884 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000885 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000886
Chris Lattner28249d92010-02-05 01:53:19 +0000887 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000888 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000889 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000890 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000891 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000892 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000893
Chris Lattner1ac23b12010-02-05 02:18:40 +0000894 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000895 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000896 SrcRegNum = CurOp + X86::AddrNumOperands;
897
898 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
899 SrcRegNum++;
900
Chris Lattner1ac23b12010-02-05 02:18:40 +0000901 EmitMemModRMByte(MI, CurOp,
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000902 GetX86RegNum(MI.getOperand(SrcRegNum)),
Chris Lattner835acab2010-02-12 23:00:36 +0000903 TSFlags, CurByte, OS, Fixups);
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000904 CurOp = SrcRegNum + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000905 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000906
Chris Lattnerdaa45552010-02-05 19:04:37 +0000907 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000908 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000909 SrcRegNum = CurOp + 1;
910
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000911 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000912 SrcRegNum++;
913
914 EmitRegModRMByte(MI.getOperand(SrcRegNum),
915 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
916 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000917 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000918
Chris Lattnerdaa45552010-02-05 19:04:37 +0000919 case X86II::MRMSrcMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000920 int AddrOperands = X86::AddrNumOperands;
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000921 unsigned FirstMemOp = CurOp+1;
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000922 if (HasVEX_4V) {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000923 ++AddrOperands;
924 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
925 }
Chris Lattnerdaa45552010-02-05 19:04:37 +0000926
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000927 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000928
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000929 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000930 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000931 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000932 break;
933 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000934
935 case X86II::MRM0r: case X86II::MRM1r:
936 case X86II::MRM2r: case X86II::MRM3r:
937 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000938 case X86II::MRM6r: case X86II::MRM7r:
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000939 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
940 CurOp++;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000941 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000942 EmitRegModRMByte(MI.getOperand(CurOp++),
943 (TSFlags & X86II::FormMask)-X86II::MRM0r,
944 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000945 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000946 case X86II::MRM0m: case X86II::MRM1m:
947 case X86II::MRM2m: case X86II::MRM3m:
948 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000949 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000950 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000951 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000952 TSFlags, CurByte, OS, Fixups);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000953 CurOp += X86::AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000954 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000955 case X86II::MRM_C1:
956 EmitByte(BaseOpcode, CurByte, OS);
957 EmitByte(0xC1, CurByte, OS);
958 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000959 case X86II::MRM_C2:
960 EmitByte(BaseOpcode, CurByte, OS);
961 EmitByte(0xC2, CurByte, OS);
962 break;
963 case X86II::MRM_C3:
964 EmitByte(BaseOpcode, CurByte, OS);
965 EmitByte(0xC3, CurByte, OS);
966 break;
967 case X86II::MRM_C4:
968 EmitByte(BaseOpcode, CurByte, OS);
969 EmitByte(0xC4, CurByte, OS);
970 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000971 case X86II::MRM_C8:
972 EmitByte(BaseOpcode, CurByte, OS);
973 EmitByte(0xC8, CurByte, OS);
974 break;
975 case X86II::MRM_C9:
976 EmitByte(BaseOpcode, CurByte, OS);
977 EmitByte(0xC9, CurByte, OS);
978 break;
979 case X86II::MRM_E8:
980 EmitByte(BaseOpcode, CurByte, OS);
981 EmitByte(0xE8, CurByte, OS);
982 break;
983 case X86II::MRM_F0:
984 EmitByte(BaseOpcode, CurByte, OS);
985 EmitByte(0xF0, CurByte, OS);
986 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000987 case X86II::MRM_F8:
988 EmitByte(BaseOpcode, CurByte, OS);
989 EmitByte(0xF8, CurByte, OS);
990 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000991 case X86II::MRM_F9:
992 EmitByte(BaseOpcode, CurByte, OS);
993 EmitByte(0xF9, CurByte, OS);
994 break;
Rafael Espindola87ca0e02011-02-22 00:35:18 +0000995 case X86II::MRM_D0:
996 EmitByte(BaseOpcode, CurByte, OS);
997 EmitByte(0xD0, CurByte, OS);
998 break;
999 case X86II::MRM_D1:
1000 EmitByte(BaseOpcode, CurByte, OS);
1001 EmitByte(0xD1, CurByte, OS);
1002 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +00001003 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +00001004
Chris Lattner8b0f7a72010-02-11 07:06:31 +00001005 // If there is a remaining operand, it must be a trailing immediate. Emit it
1006 // according to the right size for the instruction.
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001007 if (CurOp != NumOps) {
1008 // The last source register of a 4 operand instruction in AVX is encoded
1009 // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
Joerg Sonnenberger229e4522011-04-04 15:58:30 +00001010 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001011 const MCOperand &MO = MI.getOperand(CurOp++);
1012 bool IsExtReg =
1013 X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
1014 unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
1015 RegNum |= GetX86RegNum(MO) << 4;
1016 EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
1017 Fixups);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001018 } else {
1019 unsigned FixupKind;
Rafael Espindola3ee33aa2010-12-16 22:50:01 +00001020 // FIXME: Is there a better way to know that we need a signed relocation?
Rafael Espindolaa3bff992011-05-19 20:32:34 +00001021 if (MI.getOpcode() == X86::ADD64ri32 ||
1022 MI.getOpcode() == X86::MOV64ri32 ||
Rafael Espindola3ee33aa2010-12-16 22:50:01 +00001023 MI.getOpcode() == X86::MOV64mi32 ||
1024 MI.getOpcode() == X86::PUSH64i32)
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001025 FixupKind = X86::reloc_signed_4byte;
1026 else
1027 FixupKind = getImmFixupKind(TSFlags);
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001028 EmitImmediate(MI.getOperand(CurOp++),
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001029 X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001030 CurByte, OS, Fixups);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001031 }
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001032 }
1033
Joerg Sonnenberger229e4522011-04-04 15:58:30 +00001034 if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
Chris Lattner548abfc2010-10-03 18:08:05 +00001035 EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1036
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001037
Chris Lattner28249d92010-02-05 01:53:19 +00001038#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +00001039 // FIXME: Verify.
1040 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +00001041 errs() << "Cannot encode all operands of: ";
1042 MI.dump();
1043 errs() << '\n';
1044 abort();
1045 }
1046#endif
Chris Lattner45762472010-02-03 21:24:49 +00001047}