blob: cc801f713132858ce6eb4ae711aec8ca6742e3cb [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
Tim Northover675a0962014-06-13 14:24:23 +0000120 %0 = add i32 %X, %X ; yields i32:%0
121 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000446.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000467.. _tls_model:
468
469Thread Local Storage Models
470---------------------------
471
472A variable may be defined as ``thread_local``, which means that it will
473not be shared by threads (each thread will have a separated copy of the
474variable). Not all targets support thread-local variables. Optionally, a
475TLS model may be specified:
476
477``localdynamic``
478 For variables that are only used within the current shared library.
479``initialexec``
480 For variables in modules that will not be loaded dynamically.
481``localexec``
482 For variables defined in the executable and only used within it.
483
484If no explicit model is given, the "general dynamic" model is used.
485
486The models correspond to the ELF TLS models; see `ELF Handling For
487Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
488more information on under which circumstances the different models may
489be used. The target may choose a different TLS model if the specified
490model is not supported, or if a better choice of model can be made.
491
492A model can also be specified in a alias, but then it only governs how
493the alias is accessed. It will not have any effect in the aliasee.
494
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000495.. _namedtypes:
496
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000497Structure Types
498---------------
Sean Silvab084af42012-12-07 10:36:55 +0000499
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000500LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
501types <t_struct>`. Literal types are uniqued structurally, but identified types
502are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
503to forward declare a type which is not yet available.
504
505An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000506
507.. code-block:: llvm
508
509 %mytype = type { %mytype*, i32 }
510
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000511Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
512literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000513
514.. _globalvars:
515
516Global Variables
517----------------
518
519Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000520instead of run-time.
521
Bob Wilson85b24f22014-06-12 20:40:33 +0000522Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000523
524Global variables in other translation units can also be declared, in which
525case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000526
Bob Wilson85b24f22014-06-12 20:40:33 +0000527Either global variable definitions or declarations may have an explicit section
528to be placed in and may have an optional explicit alignment specified.
529
Michael Gottesman006039c2013-01-31 05:48:48 +0000530A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000531the contents of the variable will **never** be modified (enabling better
532optimization, allowing the global data to be placed in the read-only
533section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000534initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000535variable.
536
537LLVM explicitly allows *declarations* of global variables to be marked
538constant, even if the final definition of the global is not. This
539capability can be used to enable slightly better optimization of the
540program, but requires the language definition to guarantee that
541optimizations based on the 'constantness' are valid for the translation
542units that do not include the definition.
543
544As SSA values, global variables define pointer values that are in scope
545(i.e. they dominate) all basic blocks in the program. Global variables
546always define a pointer to their "content" type because they describe a
547region of memory, and all memory objects in LLVM are accessed through
548pointers.
549
550Global variables can be marked with ``unnamed_addr`` which indicates
551that the address is not significant, only the content. Constants marked
552like this can be merged with other constants if they have the same
553initializer. Note that a constant with significant address *can* be
554merged with a ``unnamed_addr`` constant, the result being a constant
555whose address is significant.
556
557A global variable may be declared to reside in a target-specific
558numbered address space. For targets that support them, address spaces
559may affect how optimizations are performed and/or what target
560instructions are used to access the variable. The default address space
561is zero. The address space qualifier must precede any other attributes.
562
563LLVM allows an explicit section to be specified for globals. If the
564target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000565Additionally, the global can placed in a comdat if the target has the necessary
566support.
Sean Silvab084af42012-12-07 10:36:55 +0000567
Michael Gottesmane743a302013-02-04 03:22:00 +0000568By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000569variables defined within the module are not modified from their
570initial values before the start of the global initializer. This is
571true even for variables potentially accessible from outside the
572module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000573``@llvm.used`` or dllexported variables. This assumption may be suppressed
574by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000575
Sean Silvab084af42012-12-07 10:36:55 +0000576An explicit alignment may be specified for a global, which must be a
577power of 2. If not present, or if the alignment is set to zero, the
578alignment of the global is set by the target to whatever it feels
579convenient. If an explicit alignment is specified, the global is forced
580to have exactly that alignment. Targets and optimizers are not allowed
581to over-align the global if the global has an assigned section. In this
582case, the extra alignment could be observable: for example, code could
583assume that the globals are densely packed in their section and try to
584iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000585iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000586
Nico Rieck7157bb72014-01-14 15:22:47 +0000587Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
588
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000589Variables and aliasaes can have a
590:ref:`Thread Local Storage Model <tls_model>`.
591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Syntax::
593
594 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000595 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000596 <global | constant> <Type> [<InitializerConstant>]
597 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000598
Sean Silvab084af42012-12-07 10:36:55 +0000599For example, the following defines a global in a numbered address space
600with an initializer, section, and alignment:
601
602.. code-block:: llvm
603
604 @G = addrspace(5) constant float 1.0, section "foo", align 4
605
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000606The following example just declares a global variable
607
608.. code-block:: llvm
609
610 @G = external global i32
611
Sean Silvab084af42012-12-07 10:36:55 +0000612The following example defines a thread-local global with the
613``initialexec`` TLS model:
614
615.. code-block:: llvm
616
617 @G = thread_local(initialexec) global i32 0, align 4
618
619.. _functionstructure:
620
621Functions
622---------
623
624LLVM function definitions consist of the "``define``" keyword, an
625optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000626style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
627an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000628an optional ``unnamed_addr`` attribute, a return type, an optional
629:ref:`parameter attribute <paramattrs>` for the return type, a function
630name, a (possibly empty) argument list (each with optional :ref:`parameter
631attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000632an optional section, an optional alignment,
633an optional :ref:`comdat <langref_comdats>`,
634an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000635curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000636
637LLVM function declarations consist of the "``declare``" keyword, an
638optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000639style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
640an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000641an optional ``unnamed_addr`` attribute, a return type, an optional
642:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000643name, a possibly empty list of arguments, an optional alignment, an optional
644:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000645
Bill Wendling6822ecb2013-10-27 05:09:12 +0000646A function definition contains a list of basic blocks, forming the CFG (Control
647Flow Graph) for the function. Each basic block may optionally start with a label
648(giving the basic block a symbol table entry), contains a list of instructions,
649and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
650function return). If an explicit label is not provided, a block is assigned an
651implicit numbered label, using the next value from the same counter as used for
652unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
653entry block does not have an explicit label, it will be assigned label "%0",
654then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000655
656The first basic block in a function is special in two ways: it is
657immediately executed on entrance to the function, and it is not allowed
658to have predecessor basic blocks (i.e. there can not be any branches to
659the entry block of a function). Because the block can have no
660predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
661
662LLVM allows an explicit section to be specified for functions. If the
663target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000664Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000665
666An explicit alignment may be specified for a function. If not present,
667or if the alignment is set to zero, the alignment of the function is set
668by the target to whatever it feels convenient. If an explicit alignment
669is specified, the function is forced to have at least that much
670alignment. All alignments must be a power of 2.
671
672If the ``unnamed_addr`` attribute is given, the address is know to not
673be significant and two identical functions can be merged.
674
675Syntax::
676
Nico Rieck7157bb72014-01-14 15:22:47 +0000677 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000678 [cconv] [ret attrs]
679 <ResultType> @<FunctionName> ([argument list])
David Majnemerdad0a642014-06-27 18:19:56 +0000680 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>]
681 [align N] [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000682
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000683.. _langref_aliases:
684
Sean Silvab084af42012-12-07 10:36:55 +0000685Aliases
686-------
687
Rafael Espindola64c1e182014-06-03 02:41:57 +0000688Aliases, unlike function or variables, don't create any new data. They
689are just a new symbol and metadata for an existing position.
690
691Aliases have a name and an aliasee that is either a global value or a
692constant expression.
693
Nico Rieck7157bb72014-01-14 15:22:47 +0000694Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000695:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
696<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000697
698Syntax::
699
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000700 @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000701
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000702The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000703``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000704might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000705
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000706Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000707the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
708to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000709
Rafael Espindola64c1e182014-06-03 02:41:57 +0000710Since aliases are only a second name, some restrictions apply, of which
711some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000712
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713* The expression defining the aliasee must be computable at assembly
714 time. Since it is just a name, no relocations can be used.
715
716* No alias in the expression can be weak as the possibility of the
717 intermediate alias being overridden cannot be represented in an
718 object file.
719
720* No global value in the expression can be a declaration, since that
721 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000722
David Majnemerdad0a642014-06-27 18:19:56 +0000723.. _langref_comdats:
724
725Comdats
726-------
727
728Comdat IR provides access to COFF and ELF object file COMDAT functionality.
729
730Comdats have a name which represents the COMDAT key. All global objects which
731specify this key will only end up in the final object file if the linker chooses
732that key over some other key. Aliases are placed in the same COMDAT that their
733aliasee computes to, if any.
734
735Comdats have a selection kind to provide input on how the linker should
736choose between keys in two different object files.
737
738Syntax::
739
740 $<Name> = comdat SelectionKind
741
742The selection kind must be one of the following:
743
744``any``
745 The linker may choose any COMDAT key, the choice is arbitrary.
746``exactmatch``
747 The linker may choose any COMDAT key but the sections must contain the
748 same data.
749``largest``
750 The linker will choose the section containing the largest COMDAT key.
751``noduplicates``
752 The linker requires that only section with this COMDAT key exist.
753``samesize``
754 The linker may choose any COMDAT key but the sections must contain the
755 same amount of data.
756
757Note that the Mach-O platform doesn't support COMDATs and ELF only supports
758``any`` as a selection kind.
759
760Here is an example of a COMDAT group where a function will only be selected if
761the COMDAT key's section is the largest:
762
763.. code-block:: llvm
764
765 $foo = comdat largest
766 @foo = global i32 2, comdat $foo
767
768 define void @bar() comdat $foo {
769 ret void
770 }
771
772In a COFF object file, this will create a COMDAT section with selection kind
773``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
774and another COMDAT section with selection kind
775``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
776section and contains the contents of the ``@baz`` symbol.
777
778There are some restrictions on the properties of the global object.
779It, or an alias to it, must have the same name as the COMDAT group when
780targeting COFF.
781The contents and size of this object may be used during link-time to determine
782which COMDAT groups get selected depending on the selection kind.
783Because the name of the object must match the name of the COMDAT group, the
784linkage of the global object must not be local; local symbols can get renamed
785if a collision occurs in the symbol table.
786
787The combined use of COMDATS and section attributes may yield surprising results.
788For example:
789
790.. code-block:: llvm
791
792 $foo = comdat any
793 $bar = comdat any
794 @g1 = global i32 42, section "sec", comdat $foo
795 @g2 = global i32 42, section "sec", comdat $bar
796
797From the object file perspective, this requires the creation of two sections
798with the same name. This is necessary because both globals belong to different
799COMDAT groups and COMDATs, at the object file level, are represented by
800sections.
801
802Note that certain IR constructs like global variables and functions may create
803COMDATs in the object file in addition to any which are specified using COMDAT
804IR. This arises, for example, when a global variable has linkonce_odr linkage.
805
Sean Silvab084af42012-12-07 10:36:55 +0000806.. _namedmetadatastructure:
807
808Named Metadata
809--------------
810
811Named metadata is a collection of metadata. :ref:`Metadata
812nodes <metadata>` (but not metadata strings) are the only valid
813operands for a named metadata.
814
815Syntax::
816
817 ; Some unnamed metadata nodes, which are referenced by the named metadata.
818 !0 = metadata !{metadata !"zero"}
819 !1 = metadata !{metadata !"one"}
820 !2 = metadata !{metadata !"two"}
821 ; A named metadata.
822 !name = !{!0, !1, !2}
823
824.. _paramattrs:
825
826Parameter Attributes
827--------------------
828
829The return type and each parameter of a function type may have a set of
830*parameter attributes* associated with them. Parameter attributes are
831used to communicate additional information about the result or
832parameters of a function. Parameter attributes are considered to be part
833of the function, not of the function type, so functions with different
834parameter attributes can have the same function type.
835
836Parameter attributes are simple keywords that follow the type specified.
837If multiple parameter attributes are needed, they are space separated.
838For example:
839
840.. code-block:: llvm
841
842 declare i32 @printf(i8* noalias nocapture, ...)
843 declare i32 @atoi(i8 zeroext)
844 declare signext i8 @returns_signed_char()
845
846Note that any attributes for the function result (``nounwind``,
847``readonly``) come immediately after the argument list.
848
849Currently, only the following parameter attributes are defined:
850
851``zeroext``
852 This indicates to the code generator that the parameter or return
853 value should be zero-extended to the extent required by the target's
854 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
855 the caller (for a parameter) or the callee (for a return value).
856``signext``
857 This indicates to the code generator that the parameter or return
858 value should be sign-extended to the extent required by the target's
859 ABI (which is usually 32-bits) by the caller (for a parameter) or
860 the callee (for a return value).
861``inreg``
862 This indicates that this parameter or return value should be treated
863 in a special target-dependent fashion during while emitting code for
864 a function call or return (usually, by putting it in a register as
865 opposed to memory, though some targets use it to distinguish between
866 two different kinds of registers). Use of this attribute is
867 target-specific.
868``byval``
869 This indicates that the pointer parameter should really be passed by
870 value to the function. The attribute implies that a hidden copy of
871 the pointee is made between the caller and the callee, so the callee
872 is unable to modify the value in the caller. This attribute is only
873 valid on LLVM pointer arguments. It is generally used to pass
874 structs and arrays by value, but is also valid on pointers to
875 scalars. The copy is considered to belong to the caller not the
876 callee (for example, ``readonly`` functions should not write to
877 ``byval`` parameters). This is not a valid attribute for return
878 values.
879
880 The byval attribute also supports specifying an alignment with the
881 align attribute. It indicates the alignment of the stack slot to
882 form and the known alignment of the pointer specified to the call
883 site. If the alignment is not specified, then the code generator
884 makes a target-specific assumption.
885
Reid Klecknera534a382013-12-19 02:14:12 +0000886.. _attr_inalloca:
887
888``inalloca``
889
Reid Kleckner60d3a832014-01-16 22:59:24 +0000890 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000891 address of outgoing stack arguments. An ``inalloca`` argument must
892 be a pointer to stack memory produced by an ``alloca`` instruction.
893 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000894 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000895 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000896
Reid Kleckner436c42e2014-01-17 23:58:17 +0000897 An argument allocation may be used by a call at most once because
898 the call may deallocate it. The ``inalloca`` attribute cannot be
899 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000900 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
901 ``inalloca`` attribute also disables LLVM's implicit lowering of
902 large aggregate return values, which means that frontend authors
903 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000904
Reid Kleckner60d3a832014-01-16 22:59:24 +0000905 When the call site is reached, the argument allocation must have
906 been the most recent stack allocation that is still live, or the
907 results are undefined. It is possible to allocate additional stack
908 space after an argument allocation and before its call site, but it
909 must be cleared off with :ref:`llvm.stackrestore
910 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000911
912 See :doc:`InAlloca` for more information on how to use this
913 attribute.
914
Sean Silvab084af42012-12-07 10:36:55 +0000915``sret``
916 This indicates that the pointer parameter specifies the address of a
917 structure that is the return value of the function in the source
918 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000919 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000920 not to trap and to be properly aligned. This may only be applied to
921 the first parameter. This is not a valid attribute for return
922 values.
Sean Silva1703e702014-04-08 21:06:22 +0000923
Hal Finkelccc70902014-07-22 16:58:55 +0000924``align <n>``
925 This indicates that the pointer value may be assumed by the optimizer to
926 have the specified alignment.
927
928 Note that this attribute has additional semantics when combined with the
929 ``byval`` attribute.
930
Sean Silva1703e702014-04-08 21:06:22 +0000931.. _noalias:
932
Sean Silvab084af42012-12-07 10:36:55 +0000933``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000934 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000935 the argument or return value do not alias pointer values which are
936 not *based* on it, ignoring certain "irrelevant" dependencies. For a
937 call to the parent function, dependencies between memory references
938 from before or after the call and from those during the call are
939 "irrelevant" to the ``noalias`` keyword for the arguments and return
940 value used in that call. The caller shares the responsibility with
941 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000942 details, please see the discussion of the NoAlias response in :ref:`alias
943 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000944
945 Note that this definition of ``noalias`` is intentionally similar
946 to the definition of ``restrict`` in C99 for function arguments,
947 though it is slightly weaker.
948
949 For function return values, C99's ``restrict`` is not meaningful,
950 while LLVM's ``noalias`` is.
951``nocapture``
952 This indicates that the callee does not make any copies of the
953 pointer that outlive the callee itself. This is not a valid
954 attribute for return values.
955
956.. _nest:
957
958``nest``
959 This indicates that the pointer parameter can be excised using the
960 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000961 attribute for return values and can only be applied to one parameter.
962
963``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000964 This indicates that the function always returns the argument as its return
965 value. This is an optimization hint to the code generator when generating
966 the caller, allowing tail call optimization and omission of register saves
967 and restores in some cases; it is not checked or enforced when generating
968 the callee. The parameter and the function return type must be valid
969 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
970 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000971
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000972``nonnull``
973 This indicates that the parameter or return pointer is not null. This
974 attribute may only be applied to pointer typed parameters. This is not
975 checked or enforced by LLVM, the caller must ensure that the pointer
976 passed in is non-null, or the callee must ensure that the returned pointer
977 is non-null.
978
Hal Finkelb0407ba2014-07-18 15:51:28 +0000979``dereferenceable(<n>)``
980 This indicates that the parameter or return pointer is dereferenceable. This
981 attribute may only be applied to pointer typed parameters. A pointer that
982 is dereferenceable can be loaded from speculatively without a risk of
983 trapping. The number of bytes known to be dereferenceable must be provided
984 in parentheses. It is legal for the number of bytes to be less than the
985 size of the pointee type. The ``nonnull`` attribute does not imply
986 dereferenceability (consider a pointer to one element past the end of an
987 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
988 ``addrspace(0)`` (which is the default address space).
989
Sean Silvab084af42012-12-07 10:36:55 +0000990.. _gc:
991
992Garbage Collector Names
993-----------------------
994
995Each function may specify a garbage collector name, which is simply a
996string:
997
998.. code-block:: llvm
999
1000 define void @f() gc "name" { ... }
1001
1002The compiler declares the supported values of *name*. Specifying a
1003collector which will cause the compiler to alter its output in order to
1004support the named garbage collection algorithm.
1005
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001006.. _prefixdata:
1007
1008Prefix Data
1009-----------
1010
1011Prefix data is data associated with a function which the code generator
1012will emit immediately before the function body. The purpose of this feature
1013is to allow frontends to associate language-specific runtime metadata with
1014specific functions and make it available through the function pointer while
1015still allowing the function pointer to be called. To access the data for a
1016given function, a program may bitcast the function pointer to a pointer to
1017the constant's type. This implies that the IR symbol points to the start
1018of the prefix data.
1019
1020To maintain the semantics of ordinary function calls, the prefix data must
1021have a particular format. Specifically, it must begin with a sequence of
1022bytes which decode to a sequence of machine instructions, valid for the
1023module's target, which transfer control to the point immediately succeeding
1024the prefix data, without performing any other visible action. This allows
1025the inliner and other passes to reason about the semantics of the function
1026definition without needing to reason about the prefix data. Obviously this
1027makes the format of the prefix data highly target dependent.
1028
Peter Collingbourne213358a2013-09-23 20:14:21 +00001029Prefix data is laid out as if it were an initializer for a global variable
1030of the prefix data's type. No padding is automatically placed between the
1031prefix data and the function body. If padding is required, it must be part
1032of the prefix data.
1033
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001034A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
1035which encodes the ``nop`` instruction:
1036
1037.. code-block:: llvm
1038
1039 define void @f() prefix i8 144 { ... }
1040
1041Generally prefix data can be formed by encoding a relative branch instruction
1042which skips the metadata, as in this example of valid prefix data for the
1043x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1044
1045.. code-block:: llvm
1046
1047 %0 = type <{ i8, i8, i8* }>
1048
1049 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
1050
1051A function may have prefix data but no body. This has similar semantics
1052to the ``available_externally`` linkage in that the data may be used by the
1053optimizers but will not be emitted in the object file.
1054
Bill Wendling63b88192013-02-06 06:52:58 +00001055.. _attrgrp:
1056
1057Attribute Groups
1058----------------
1059
1060Attribute groups are groups of attributes that are referenced by objects within
1061the IR. They are important for keeping ``.ll`` files readable, because a lot of
1062functions will use the same set of attributes. In the degenerative case of a
1063``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1064group will capture the important command line flags used to build that file.
1065
1066An attribute group is a module-level object. To use an attribute group, an
1067object references the attribute group's ID (e.g. ``#37``). An object may refer
1068to more than one attribute group. In that situation, the attributes from the
1069different groups are merged.
1070
1071Here is an example of attribute groups for a function that should always be
1072inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1073
1074.. code-block:: llvm
1075
1076 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001077 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001078
1079 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001080 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001081
1082 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1083 define void @f() #0 #1 { ... }
1084
Sean Silvab084af42012-12-07 10:36:55 +00001085.. _fnattrs:
1086
1087Function Attributes
1088-------------------
1089
1090Function attributes are set to communicate additional information about
1091a function. Function attributes are considered to be part of the
1092function, not of the function type, so functions with different function
1093attributes can have the same function type.
1094
1095Function attributes are simple keywords that follow the type specified.
1096If multiple attributes are needed, they are space separated. For
1097example:
1098
1099.. code-block:: llvm
1100
1101 define void @f() noinline { ... }
1102 define void @f() alwaysinline { ... }
1103 define void @f() alwaysinline optsize { ... }
1104 define void @f() optsize { ... }
1105
Sean Silvab084af42012-12-07 10:36:55 +00001106``alignstack(<n>)``
1107 This attribute indicates that, when emitting the prologue and
1108 epilogue, the backend should forcibly align the stack pointer.
1109 Specify the desired alignment, which must be a power of two, in
1110 parentheses.
1111``alwaysinline``
1112 This attribute indicates that the inliner should attempt to inline
1113 this function into callers whenever possible, ignoring any active
1114 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001115``builtin``
1116 This indicates that the callee function at a call site should be
1117 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001118 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +00001119 direct calls to functions which are declared with the ``nobuiltin``
1120 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001121``cold``
1122 This attribute indicates that this function is rarely called. When
1123 computing edge weights, basic blocks post-dominated by a cold
1124 function call are also considered to be cold; and, thus, given low
1125 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001126``inlinehint``
1127 This attribute indicates that the source code contained a hint that
1128 inlining this function is desirable (such as the "inline" keyword in
1129 C/C++). It is just a hint; it imposes no requirements on the
1130 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001131``jumptable``
1132 This attribute indicates that the function should be added to a
1133 jump-instruction table at code-generation time, and that all address-taken
1134 references to this function should be replaced with a reference to the
1135 appropriate jump-instruction-table function pointer. Note that this creates
1136 a new pointer for the original function, which means that code that depends
1137 on function-pointer identity can break. So, any function annotated with
1138 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001139``minsize``
1140 This attribute suggests that optimization passes and code generator
1141 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001142 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001143 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001144``naked``
1145 This attribute disables prologue / epilogue emission for the
1146 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001147``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001148 This indicates that the callee function at a call site is not recognized as
1149 a built-in function. LLVM will retain the original call and not replace it
1150 with equivalent code based on the semantics of the built-in function, unless
1151 the call site uses the ``builtin`` attribute. This is valid at call sites
1152 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001153``noduplicate``
1154 This attribute indicates that calls to the function cannot be
1155 duplicated. A call to a ``noduplicate`` function may be moved
1156 within its parent function, but may not be duplicated within
1157 its parent function.
1158
1159 A function containing a ``noduplicate`` call may still
1160 be an inlining candidate, provided that the call is not
1161 duplicated by inlining. That implies that the function has
1162 internal linkage and only has one call site, so the original
1163 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001164``noimplicitfloat``
1165 This attributes disables implicit floating point instructions.
1166``noinline``
1167 This attribute indicates that the inliner should never inline this
1168 function in any situation. This attribute may not be used together
1169 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001170``nonlazybind``
1171 This attribute suppresses lazy symbol binding for the function. This
1172 may make calls to the function faster, at the cost of extra program
1173 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001174``noredzone``
1175 This attribute indicates that the code generator should not use a
1176 red zone, even if the target-specific ABI normally permits it.
1177``noreturn``
1178 This function attribute indicates that the function never returns
1179 normally. This produces undefined behavior at runtime if the
1180 function ever does dynamically return.
1181``nounwind``
1182 This function attribute indicates that the function never returns
1183 with an unwind or exceptional control flow. If the function does
1184 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001185``optnone``
1186 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001187 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001188 exception of interprocedural optimization passes.
1189 This attribute cannot be used together with the ``alwaysinline``
1190 attribute; this attribute is also incompatible
1191 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001192
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001193 This attribute requires the ``noinline`` attribute to be specified on
1194 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001195 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001196 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001197``optsize``
1198 This attribute suggests that optimization passes and code generator
1199 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001200 and otherwise do optimizations specifically to reduce code size as
1201 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001202``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001203 On a function, this attribute indicates that the function computes its
1204 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001205 without dereferencing any pointer arguments or otherwise accessing
1206 any mutable state (e.g. memory, control registers, etc) visible to
1207 caller functions. It does not write through any pointer arguments
1208 (including ``byval`` arguments) and never changes any state visible
1209 to callers. This means that it cannot unwind exceptions by calling
1210 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001211
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001212 On an argument, this attribute indicates that the function does not
1213 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001214 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001215``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001216 On a function, this attribute indicates that the function does not write
1217 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001218 modify any state (e.g. memory, control registers, etc) visible to
1219 caller functions. It may dereference pointer arguments and read
1220 state that may be set in the caller. A readonly function always
1221 returns the same value (or unwinds an exception identically) when
1222 called with the same set of arguments and global state. It cannot
1223 unwind an exception by calling the ``C++`` exception throwing
1224 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001225
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001226 On an argument, this attribute indicates that the function does not write
1227 through this pointer argument, even though it may write to the memory that
1228 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001229``returns_twice``
1230 This attribute indicates that this function can return twice. The C
1231 ``setjmp`` is an example of such a function. The compiler disables
1232 some optimizations (like tail calls) in the caller of these
1233 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001234``sanitize_address``
1235 This attribute indicates that AddressSanitizer checks
1236 (dynamic address safety analysis) are enabled for this function.
1237``sanitize_memory``
1238 This attribute indicates that MemorySanitizer checks (dynamic detection
1239 of accesses to uninitialized memory) are enabled for this function.
1240``sanitize_thread``
1241 This attribute indicates that ThreadSanitizer checks
1242 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001243``ssp``
1244 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001245 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001246 placed on the stack before the local variables that's checked upon
1247 return from the function to see if it has been overwritten. A
1248 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001249 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001250
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001251 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1252 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1253 - Calls to alloca() with variable sizes or constant sizes greater than
1254 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001255
Josh Magee24c7f062014-02-01 01:36:16 +00001256 Variables that are identified as requiring a protector will be arranged
1257 on the stack such that they are adjacent to the stack protector guard.
1258
Sean Silvab084af42012-12-07 10:36:55 +00001259 If a function that has an ``ssp`` attribute is inlined into a
1260 function that doesn't have an ``ssp`` attribute, then the resulting
1261 function will have an ``ssp`` attribute.
1262``sspreq``
1263 This attribute indicates that the function should *always* emit a
1264 stack smashing protector. This overrides the ``ssp`` function
1265 attribute.
1266
Josh Magee24c7f062014-02-01 01:36:16 +00001267 Variables that are identified as requiring a protector will be arranged
1268 on the stack such that they are adjacent to the stack protector guard.
1269 The specific layout rules are:
1270
1271 #. Large arrays and structures containing large arrays
1272 (``>= ssp-buffer-size``) are closest to the stack protector.
1273 #. Small arrays and structures containing small arrays
1274 (``< ssp-buffer-size``) are 2nd closest to the protector.
1275 #. Variables that have had their address taken are 3rd closest to the
1276 protector.
1277
Sean Silvab084af42012-12-07 10:36:55 +00001278 If a function that has an ``sspreq`` attribute is inlined into a
1279 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001280 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1281 an ``sspreq`` attribute.
1282``sspstrong``
1283 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001284 protector. This attribute causes a strong heuristic to be used when
1285 determining if a function needs stack protectors. The strong heuristic
1286 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001287
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001288 - Arrays of any size and type
1289 - Aggregates containing an array of any size and type.
1290 - Calls to alloca().
1291 - Local variables that have had their address taken.
1292
Josh Magee24c7f062014-02-01 01:36:16 +00001293 Variables that are identified as requiring a protector will be arranged
1294 on the stack such that they are adjacent to the stack protector guard.
1295 The specific layout rules are:
1296
1297 #. Large arrays and structures containing large arrays
1298 (``>= ssp-buffer-size``) are closest to the stack protector.
1299 #. Small arrays and structures containing small arrays
1300 (``< ssp-buffer-size``) are 2nd closest to the protector.
1301 #. Variables that have had their address taken are 3rd closest to the
1302 protector.
1303
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001304 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001305
1306 If a function that has an ``sspstrong`` attribute is inlined into a
1307 function that doesn't have an ``sspstrong`` attribute, then the
1308 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001309``uwtable``
1310 This attribute indicates that the ABI being targeted requires that
1311 an unwind table entry be produce for this function even if we can
1312 show that no exceptions passes by it. This is normally the case for
1313 the ELF x86-64 abi, but it can be disabled for some compilation
1314 units.
Sean Silvab084af42012-12-07 10:36:55 +00001315
1316.. _moduleasm:
1317
1318Module-Level Inline Assembly
1319----------------------------
1320
1321Modules may contain "module-level inline asm" blocks, which corresponds
1322to the GCC "file scope inline asm" blocks. These blocks are internally
1323concatenated by LLVM and treated as a single unit, but may be separated
1324in the ``.ll`` file if desired. The syntax is very simple:
1325
1326.. code-block:: llvm
1327
1328 module asm "inline asm code goes here"
1329 module asm "more can go here"
1330
1331The strings can contain any character by escaping non-printable
1332characters. The escape sequence used is simply "\\xx" where "xx" is the
1333two digit hex code for the number.
1334
1335The inline asm code is simply printed to the machine code .s file when
1336assembly code is generated.
1337
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001338.. _langref_datalayout:
1339
Sean Silvab084af42012-12-07 10:36:55 +00001340Data Layout
1341-----------
1342
1343A module may specify a target specific data layout string that specifies
1344how data is to be laid out in memory. The syntax for the data layout is
1345simply:
1346
1347.. code-block:: llvm
1348
1349 target datalayout = "layout specification"
1350
1351The *layout specification* consists of a list of specifications
1352separated by the minus sign character ('-'). Each specification starts
1353with a letter and may include other information after the letter to
1354define some aspect of the data layout. The specifications accepted are
1355as follows:
1356
1357``E``
1358 Specifies that the target lays out data in big-endian form. That is,
1359 the bits with the most significance have the lowest address
1360 location.
1361``e``
1362 Specifies that the target lays out data in little-endian form. That
1363 is, the bits with the least significance have the lowest address
1364 location.
1365``S<size>``
1366 Specifies the natural alignment of the stack in bits. Alignment
1367 promotion of stack variables is limited to the natural stack
1368 alignment to avoid dynamic stack realignment. The stack alignment
1369 must be a multiple of 8-bits. If omitted, the natural stack
1370 alignment defaults to "unspecified", which does not prevent any
1371 alignment promotions.
1372``p[n]:<size>:<abi>:<pref>``
1373 This specifies the *size* of a pointer and its ``<abi>`` and
1374 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001375 bits. The address space, ``n`` is optional, and if not specified,
1376 denotes the default address space 0. The value of ``n`` must be
1377 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001378``i<size>:<abi>:<pref>``
1379 This specifies the alignment for an integer type of a given bit
1380 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1381``v<size>:<abi>:<pref>``
1382 This specifies the alignment for a vector type of a given bit
1383 ``<size>``.
1384``f<size>:<abi>:<pref>``
1385 This specifies the alignment for a floating point type of a given bit
1386 ``<size>``. Only values of ``<size>`` that are supported by the target
1387 will work. 32 (float) and 64 (double) are supported on all targets; 80
1388 or 128 (different flavors of long double) are also supported on some
1389 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001390``a:<abi>:<pref>``
1391 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001392``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001393 If present, specifies that llvm names are mangled in the output. The
1394 options are
1395
1396 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1397 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1398 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1399 symbols get a ``_`` prefix.
1400 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1401 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001402``n<size1>:<size2>:<size3>...``
1403 This specifies a set of native integer widths for the target CPU in
1404 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1405 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1406 this set are considered to support most general arithmetic operations
1407 efficiently.
1408
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001409On every specification that takes a ``<abi>:<pref>``, specifying the
1410``<pref>`` alignment is optional. If omitted, the preceding ``:``
1411should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1412
Sean Silvab084af42012-12-07 10:36:55 +00001413When constructing the data layout for a given target, LLVM starts with a
1414default set of specifications which are then (possibly) overridden by
1415the specifications in the ``datalayout`` keyword. The default
1416specifications are given in this list:
1417
1418- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001419- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1420- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1421 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001422- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001423- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1424- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1425- ``i16:16:16`` - i16 is 16-bit aligned
1426- ``i32:32:32`` - i32 is 32-bit aligned
1427- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1428 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001429- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001430- ``f32:32:32`` - float is 32-bit aligned
1431- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001432- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001433- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1434- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001435- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001436
1437When LLVM is determining the alignment for a given type, it uses the
1438following rules:
1439
1440#. If the type sought is an exact match for one of the specifications,
1441 that specification is used.
1442#. If no match is found, and the type sought is an integer type, then
1443 the smallest integer type that is larger than the bitwidth of the
1444 sought type is used. If none of the specifications are larger than
1445 the bitwidth then the largest integer type is used. For example,
1446 given the default specifications above, the i7 type will use the
1447 alignment of i8 (next largest) while both i65 and i256 will use the
1448 alignment of i64 (largest specified).
1449#. If no match is found, and the type sought is a vector type, then the
1450 largest vector type that is smaller than the sought vector type will
1451 be used as a fall back. This happens because <128 x double> can be
1452 implemented in terms of 64 <2 x double>, for example.
1453
1454The function of the data layout string may not be what you expect.
1455Notably, this is not a specification from the frontend of what alignment
1456the code generator should use.
1457
1458Instead, if specified, the target data layout is required to match what
1459the ultimate *code generator* expects. This string is used by the
1460mid-level optimizers to improve code, and this only works if it matches
1461what the ultimate code generator uses. If you would like to generate IR
1462that does not embed this target-specific detail into the IR, then you
1463don't have to specify the string. This will disable some optimizations
1464that require precise layout information, but this also prevents those
1465optimizations from introducing target specificity into the IR.
1466
Bill Wendling5cc90842013-10-18 23:41:25 +00001467.. _langref_triple:
1468
1469Target Triple
1470-------------
1471
1472A module may specify a target triple string that describes the target
1473host. The syntax for the target triple is simply:
1474
1475.. code-block:: llvm
1476
1477 target triple = "x86_64-apple-macosx10.7.0"
1478
1479The *target triple* string consists of a series of identifiers delimited
1480by the minus sign character ('-'). The canonical forms are:
1481
1482::
1483
1484 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1485 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1486
1487This information is passed along to the backend so that it generates
1488code for the proper architecture. It's possible to override this on the
1489command line with the ``-mtriple`` command line option.
1490
Sean Silvab084af42012-12-07 10:36:55 +00001491.. _pointeraliasing:
1492
1493Pointer Aliasing Rules
1494----------------------
1495
1496Any memory access must be done through a pointer value associated with
1497an address range of the memory access, otherwise the behavior is
1498undefined. Pointer values are associated with address ranges according
1499to the following rules:
1500
1501- A pointer value is associated with the addresses associated with any
1502 value it is *based* on.
1503- An address of a global variable is associated with the address range
1504 of the variable's storage.
1505- The result value of an allocation instruction is associated with the
1506 address range of the allocated storage.
1507- A null pointer in the default address-space is associated with no
1508 address.
1509- An integer constant other than zero or a pointer value returned from
1510 a function not defined within LLVM may be associated with address
1511 ranges allocated through mechanisms other than those provided by
1512 LLVM. Such ranges shall not overlap with any ranges of addresses
1513 allocated by mechanisms provided by LLVM.
1514
1515A pointer value is *based* on another pointer value according to the
1516following rules:
1517
1518- A pointer value formed from a ``getelementptr`` operation is *based*
1519 on the first operand of the ``getelementptr``.
1520- The result value of a ``bitcast`` is *based* on the operand of the
1521 ``bitcast``.
1522- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1523 values that contribute (directly or indirectly) to the computation of
1524 the pointer's value.
1525- The "*based* on" relationship is transitive.
1526
1527Note that this definition of *"based"* is intentionally similar to the
1528definition of *"based"* in C99, though it is slightly weaker.
1529
1530LLVM IR does not associate types with memory. The result type of a
1531``load`` merely indicates the size and alignment of the memory from
1532which to load, as well as the interpretation of the value. The first
1533operand type of a ``store`` similarly only indicates the size and
1534alignment of the store.
1535
1536Consequently, type-based alias analysis, aka TBAA, aka
1537``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1538:ref:`Metadata <metadata>` may be used to encode additional information
1539which specialized optimization passes may use to implement type-based
1540alias analysis.
1541
1542.. _volatile:
1543
1544Volatile Memory Accesses
1545------------------------
1546
1547Certain memory accesses, such as :ref:`load <i_load>`'s,
1548:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1549marked ``volatile``. The optimizers must not change the number of
1550volatile operations or change their order of execution relative to other
1551volatile operations. The optimizers *may* change the order of volatile
1552operations relative to non-volatile operations. This is not Java's
1553"volatile" and has no cross-thread synchronization behavior.
1554
Andrew Trick89fc5a62013-01-30 21:19:35 +00001555IR-level volatile loads and stores cannot safely be optimized into
1556llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1557flagged volatile. Likewise, the backend should never split or merge
1558target-legal volatile load/store instructions.
1559
Andrew Trick7e6f9282013-01-31 00:49:39 +00001560.. admonition:: Rationale
1561
1562 Platforms may rely on volatile loads and stores of natively supported
1563 data width to be executed as single instruction. For example, in C
1564 this holds for an l-value of volatile primitive type with native
1565 hardware support, but not necessarily for aggregate types. The
1566 frontend upholds these expectations, which are intentionally
1567 unspecified in the IR. The rules above ensure that IR transformation
1568 do not violate the frontend's contract with the language.
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570.. _memmodel:
1571
1572Memory Model for Concurrent Operations
1573--------------------------------------
1574
1575The LLVM IR does not define any way to start parallel threads of
1576execution or to register signal handlers. Nonetheless, there are
1577platform-specific ways to create them, and we define LLVM IR's behavior
1578in their presence. This model is inspired by the C++0x memory model.
1579
1580For a more informal introduction to this model, see the :doc:`Atomics`.
1581
1582We define a *happens-before* partial order as the least partial order
1583that
1584
1585- Is a superset of single-thread program order, and
1586- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1587 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1588 techniques, like pthread locks, thread creation, thread joining,
1589 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1590 Constraints <ordering>`).
1591
1592Note that program order does not introduce *happens-before* edges
1593between a thread and signals executing inside that thread.
1594
1595Every (defined) read operation (load instructions, memcpy, atomic
1596loads/read-modify-writes, etc.) R reads a series of bytes written by
1597(defined) write operations (store instructions, atomic
1598stores/read-modify-writes, memcpy, etc.). For the purposes of this
1599section, initialized globals are considered to have a write of the
1600initializer which is atomic and happens before any other read or write
1601of the memory in question. For each byte of a read R, R\ :sub:`byte`
1602may see any write to the same byte, except:
1603
1604- If write\ :sub:`1` happens before write\ :sub:`2`, and
1605 write\ :sub:`2` happens before R\ :sub:`byte`, then
1606 R\ :sub:`byte` does not see write\ :sub:`1`.
1607- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1608 R\ :sub:`byte` does not see write\ :sub:`3`.
1609
1610Given that definition, R\ :sub:`byte` is defined as follows:
1611
1612- If R is volatile, the result is target-dependent. (Volatile is
1613 supposed to give guarantees which can support ``sig_atomic_t`` in
1614 C/C++, and may be used for accesses to addresses which do not behave
1615 like normal memory. It does not generally provide cross-thread
1616 synchronization.)
1617- Otherwise, if there is no write to the same byte that happens before
1618 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1619- Otherwise, if R\ :sub:`byte` may see exactly one write,
1620 R\ :sub:`byte` returns the value written by that write.
1621- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1622 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1623 Memory Ordering Constraints <ordering>` section for additional
1624 constraints on how the choice is made.
1625- Otherwise R\ :sub:`byte` returns ``undef``.
1626
1627R returns the value composed of the series of bytes it read. This
1628implies that some bytes within the value may be ``undef`` **without**
1629the entire value being ``undef``. Note that this only defines the
1630semantics of the operation; it doesn't mean that targets will emit more
1631than one instruction to read the series of bytes.
1632
1633Note that in cases where none of the atomic intrinsics are used, this
1634model places only one restriction on IR transformations on top of what
1635is required for single-threaded execution: introducing a store to a byte
1636which might not otherwise be stored is not allowed in general.
1637(Specifically, in the case where another thread might write to and read
1638from an address, introducing a store can change a load that may see
1639exactly one write into a load that may see multiple writes.)
1640
1641.. _ordering:
1642
1643Atomic Memory Ordering Constraints
1644----------------------------------
1645
1646Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1647:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1648:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001649ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001650the same address they *synchronize with*. These semantics are borrowed
1651from Java and C++0x, but are somewhat more colloquial. If these
1652descriptions aren't precise enough, check those specs (see spec
1653references in the :doc:`atomics guide <Atomics>`).
1654:ref:`fence <i_fence>` instructions treat these orderings somewhat
1655differently since they don't take an address. See that instruction's
1656documentation for details.
1657
1658For a simpler introduction to the ordering constraints, see the
1659:doc:`Atomics`.
1660
1661``unordered``
1662 The set of values that can be read is governed by the happens-before
1663 partial order. A value cannot be read unless some operation wrote
1664 it. This is intended to provide a guarantee strong enough to model
1665 Java's non-volatile shared variables. This ordering cannot be
1666 specified for read-modify-write operations; it is not strong enough
1667 to make them atomic in any interesting way.
1668``monotonic``
1669 In addition to the guarantees of ``unordered``, there is a single
1670 total order for modifications by ``monotonic`` operations on each
1671 address. All modification orders must be compatible with the
1672 happens-before order. There is no guarantee that the modification
1673 orders can be combined to a global total order for the whole program
1674 (and this often will not be possible). The read in an atomic
1675 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1676 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1677 order immediately before the value it writes. If one atomic read
1678 happens before another atomic read of the same address, the later
1679 read must see the same value or a later value in the address's
1680 modification order. This disallows reordering of ``monotonic`` (or
1681 stronger) operations on the same address. If an address is written
1682 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1683 read that address repeatedly, the other threads must eventually see
1684 the write. This corresponds to the C++0x/C1x
1685 ``memory_order_relaxed``.
1686``acquire``
1687 In addition to the guarantees of ``monotonic``, a
1688 *synchronizes-with* edge may be formed with a ``release`` operation.
1689 This is intended to model C++'s ``memory_order_acquire``.
1690``release``
1691 In addition to the guarantees of ``monotonic``, if this operation
1692 writes a value which is subsequently read by an ``acquire``
1693 operation, it *synchronizes-with* that operation. (This isn't a
1694 complete description; see the C++0x definition of a release
1695 sequence.) This corresponds to the C++0x/C1x
1696 ``memory_order_release``.
1697``acq_rel`` (acquire+release)
1698 Acts as both an ``acquire`` and ``release`` operation on its
1699 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1700``seq_cst`` (sequentially consistent)
1701 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1702 operation which only reads, ``release`` for an operation which only
1703 writes), there is a global total order on all
1704 sequentially-consistent operations on all addresses, which is
1705 consistent with the *happens-before* partial order and with the
1706 modification orders of all the affected addresses. Each
1707 sequentially-consistent read sees the last preceding write to the
1708 same address in this global order. This corresponds to the C++0x/C1x
1709 ``memory_order_seq_cst`` and Java volatile.
1710
1711.. _singlethread:
1712
1713If an atomic operation is marked ``singlethread``, it only *synchronizes
1714with* or participates in modification and seq\_cst total orderings with
1715other operations running in the same thread (for example, in signal
1716handlers).
1717
1718.. _fastmath:
1719
1720Fast-Math Flags
1721---------------
1722
1723LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1724:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1725:ref:`frem <i_frem>`) have the following flags that can set to enable
1726otherwise unsafe floating point operations
1727
1728``nnan``
1729 No NaNs - Allow optimizations to assume the arguments and result are not
1730 NaN. Such optimizations are required to retain defined behavior over
1731 NaNs, but the value of the result is undefined.
1732
1733``ninf``
1734 No Infs - Allow optimizations to assume the arguments and result are not
1735 +/-Inf. Such optimizations are required to retain defined behavior over
1736 +/-Inf, but the value of the result is undefined.
1737
1738``nsz``
1739 No Signed Zeros - Allow optimizations to treat the sign of a zero
1740 argument or result as insignificant.
1741
1742``arcp``
1743 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1744 argument rather than perform division.
1745
1746``fast``
1747 Fast - Allow algebraically equivalent transformations that may
1748 dramatically change results in floating point (e.g. reassociate). This
1749 flag implies all the others.
1750
1751.. _typesystem:
1752
1753Type System
1754===========
1755
1756The LLVM type system is one of the most important features of the
1757intermediate representation. Being typed enables a number of
1758optimizations to be performed on the intermediate representation
1759directly, without having to do extra analyses on the side before the
1760transformation. A strong type system makes it easier to read the
1761generated code and enables novel analyses and transformations that are
1762not feasible to perform on normal three address code representations.
1763
Rafael Espindola08013342013-12-07 19:34:20 +00001764.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001765
Rafael Espindola08013342013-12-07 19:34:20 +00001766Void Type
1767---------
Sean Silvab084af42012-12-07 10:36:55 +00001768
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001769:Overview:
1770
Rafael Espindola08013342013-12-07 19:34:20 +00001771
1772The void type does not represent any value and has no size.
1773
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001774:Syntax:
1775
Rafael Espindola08013342013-12-07 19:34:20 +00001776
1777::
1778
1779 void
Sean Silvab084af42012-12-07 10:36:55 +00001780
1781
Rafael Espindola08013342013-12-07 19:34:20 +00001782.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001783
Rafael Espindola08013342013-12-07 19:34:20 +00001784Function Type
1785-------------
Sean Silvab084af42012-12-07 10:36:55 +00001786
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001787:Overview:
1788
Sean Silvab084af42012-12-07 10:36:55 +00001789
Rafael Espindola08013342013-12-07 19:34:20 +00001790The function type can be thought of as a function signature. It consists of a
1791return type and a list of formal parameter types. The return type of a function
1792type is a void type or first class type --- except for :ref:`label <t_label>`
1793and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001794
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001795:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001796
Rafael Espindola08013342013-12-07 19:34:20 +00001797::
Sean Silvab084af42012-12-07 10:36:55 +00001798
Rafael Espindola08013342013-12-07 19:34:20 +00001799 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001800
Rafael Espindola08013342013-12-07 19:34:20 +00001801...where '``<parameter list>``' is a comma-separated list of type
1802specifiers. Optionally, the parameter list may include a type ``...``, which
1803indicates that the function takes a variable number of arguments. Variable
1804argument functions can access their arguments with the :ref:`variable argument
1805handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1806except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001807
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001808:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001809
Rafael Espindola08013342013-12-07 19:34:20 +00001810+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1811| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1812+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1813| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1814+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1815| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1816+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1817| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1818+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1819
1820.. _t_firstclass:
1821
1822First Class Types
1823-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001824
1825The :ref:`first class <t_firstclass>` types are perhaps the most important.
1826Values of these types are the only ones which can be produced by
1827instructions.
1828
Rafael Espindola08013342013-12-07 19:34:20 +00001829.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001830
Rafael Espindola08013342013-12-07 19:34:20 +00001831Single Value Types
1832^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001833
Rafael Espindola08013342013-12-07 19:34:20 +00001834These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001835
1836.. _t_integer:
1837
1838Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001839""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001840
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001841:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001842
1843The integer type is a very simple type that simply specifies an
1844arbitrary bit width for the integer type desired. Any bit width from 1
1845bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1846
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001847:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001848
1849::
1850
1851 iN
1852
1853The number of bits the integer will occupy is specified by the ``N``
1854value.
1855
1856Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001857*********
Sean Silvab084af42012-12-07 10:36:55 +00001858
1859+----------------+------------------------------------------------+
1860| ``i1`` | a single-bit integer. |
1861+----------------+------------------------------------------------+
1862| ``i32`` | a 32-bit integer. |
1863+----------------+------------------------------------------------+
1864| ``i1942652`` | a really big integer of over 1 million bits. |
1865+----------------+------------------------------------------------+
1866
1867.. _t_floating:
1868
1869Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001870""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001871
1872.. list-table::
1873 :header-rows: 1
1874
1875 * - Type
1876 - Description
1877
1878 * - ``half``
1879 - 16-bit floating point value
1880
1881 * - ``float``
1882 - 32-bit floating point value
1883
1884 * - ``double``
1885 - 64-bit floating point value
1886
1887 * - ``fp128``
1888 - 128-bit floating point value (112-bit mantissa)
1889
1890 * - ``x86_fp80``
1891 - 80-bit floating point value (X87)
1892
1893 * - ``ppc_fp128``
1894 - 128-bit floating point value (two 64-bits)
1895
Reid Kleckner9a16d082014-03-05 02:41:37 +00001896X86_mmx Type
1897""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001898
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001899:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001900
Reid Kleckner9a16d082014-03-05 02:41:37 +00001901The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001902machine. The operations allowed on it are quite limited: parameters and
1903return values, load and store, and bitcast. User-specified MMX
1904instructions are represented as intrinsic or asm calls with arguments
1905and/or results of this type. There are no arrays, vectors or constants
1906of this type.
1907
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001908:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001909
1910::
1911
Reid Kleckner9a16d082014-03-05 02:41:37 +00001912 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001913
Sean Silvab084af42012-12-07 10:36:55 +00001914
Rafael Espindola08013342013-12-07 19:34:20 +00001915.. _t_pointer:
1916
1917Pointer Type
1918""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001919
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001920:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001921
Rafael Espindola08013342013-12-07 19:34:20 +00001922The pointer type is used to specify memory locations. Pointers are
1923commonly used to reference objects in memory.
1924
1925Pointer types may have an optional address space attribute defining the
1926numbered address space where the pointed-to object resides. The default
1927address space is number zero. The semantics of non-zero address spaces
1928are target-specific.
1929
1930Note that LLVM does not permit pointers to void (``void*``) nor does it
1931permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001932
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001933:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001934
1935::
1936
Rafael Espindola08013342013-12-07 19:34:20 +00001937 <type> *
1938
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001939:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001940
1941+-------------------------+--------------------------------------------------------------------------------------------------------------+
1942| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1943+-------------------------+--------------------------------------------------------------------------------------------------------------+
1944| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1945+-------------------------+--------------------------------------------------------------------------------------------------------------+
1946| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1947+-------------------------+--------------------------------------------------------------------------------------------------------------+
1948
1949.. _t_vector:
1950
1951Vector Type
1952"""""""""""
1953
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001954:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001955
1956A vector type is a simple derived type that represents a vector of
1957elements. Vector types are used when multiple primitive data are
1958operated in parallel using a single instruction (SIMD). A vector type
1959requires a size (number of elements) and an underlying primitive data
1960type. Vector types are considered :ref:`first class <t_firstclass>`.
1961
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001962:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001963
1964::
1965
1966 < <# elements> x <elementtype> >
1967
1968The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00001969elementtype may be any integer, floating point or pointer type. Vectors
1970of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00001971
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001972:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001973
1974+-------------------+--------------------------------------------------+
1975| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1976+-------------------+--------------------------------------------------+
1977| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1978+-------------------+--------------------------------------------------+
1979| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1980+-------------------+--------------------------------------------------+
1981| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1982+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001983
1984.. _t_label:
1985
1986Label Type
1987^^^^^^^^^^
1988
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001989:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001990
1991The label type represents code labels.
1992
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001993:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001994
1995::
1996
1997 label
1998
1999.. _t_metadata:
2000
2001Metadata Type
2002^^^^^^^^^^^^^
2003
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002004:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002005
2006The metadata type represents embedded metadata. No derived types may be
2007created from metadata except for :ref:`function <t_function>` arguments.
2008
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002009:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002010
2011::
2012
2013 metadata
2014
Sean Silvab084af42012-12-07 10:36:55 +00002015.. _t_aggregate:
2016
2017Aggregate Types
2018^^^^^^^^^^^^^^^
2019
2020Aggregate Types are a subset of derived types that can contain multiple
2021member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2022aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2023aggregate types.
2024
2025.. _t_array:
2026
2027Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002028""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002029
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002030:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002031
2032The array type is a very simple derived type that arranges elements
2033sequentially in memory. The array type requires a size (number of
2034elements) and an underlying data type.
2035
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002036:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002037
2038::
2039
2040 [<# elements> x <elementtype>]
2041
2042The number of elements is a constant integer value; ``elementtype`` may
2043be any type with a size.
2044
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002045:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002046
2047+------------------+--------------------------------------+
2048| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2049+------------------+--------------------------------------+
2050| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2051+------------------+--------------------------------------+
2052| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2053+------------------+--------------------------------------+
2054
2055Here are some examples of multidimensional arrays:
2056
2057+-----------------------------+----------------------------------------------------------+
2058| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2059+-----------------------------+----------------------------------------------------------+
2060| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2061+-----------------------------+----------------------------------------------------------+
2062| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2063+-----------------------------+----------------------------------------------------------+
2064
2065There is no restriction on indexing beyond the end of the array implied
2066by a static type (though there are restrictions on indexing beyond the
2067bounds of an allocated object in some cases). This means that
2068single-dimension 'variable sized array' addressing can be implemented in
2069LLVM with a zero length array type. An implementation of 'pascal style
2070arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2071example.
2072
Sean Silvab084af42012-12-07 10:36:55 +00002073.. _t_struct:
2074
2075Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002076""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002077
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002078:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002079
2080The structure type is used to represent a collection of data members
2081together in memory. The elements of a structure may be any type that has
2082a size.
2083
2084Structures in memory are accessed using '``load``' and '``store``' by
2085getting a pointer to a field with the '``getelementptr``' instruction.
2086Structures in registers are accessed using the '``extractvalue``' and
2087'``insertvalue``' instructions.
2088
2089Structures may optionally be "packed" structures, which indicate that
2090the alignment of the struct is one byte, and that there is no padding
2091between the elements. In non-packed structs, padding between field types
2092is inserted as defined by the DataLayout string in the module, which is
2093required to match what the underlying code generator expects.
2094
2095Structures can either be "literal" or "identified". A literal structure
2096is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2097identified types are always defined at the top level with a name.
2098Literal types are uniqued by their contents and can never be recursive
2099or opaque since there is no way to write one. Identified types can be
2100recursive, can be opaqued, and are never uniqued.
2101
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002102:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002103
2104::
2105
2106 %T1 = type { <type list> } ; Identified normal struct type
2107 %T2 = type <{ <type list> }> ; Identified packed struct type
2108
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002109:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002110
2111+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2112| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2113+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002114| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002115+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2116| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2117+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2118
2119.. _t_opaque:
2120
2121Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002122""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002123
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002124:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002125
2126Opaque structure types are used to represent named structure types that
2127do not have a body specified. This corresponds (for example) to the C
2128notion of a forward declared structure.
2129
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002130:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002131
2132::
2133
2134 %X = type opaque
2135 %52 = type opaque
2136
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002137:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002138
2139+--------------+-------------------+
2140| ``opaque`` | An opaque type. |
2141+--------------+-------------------+
2142
Sean Silva1703e702014-04-08 21:06:22 +00002143.. _constants:
2144
Sean Silvab084af42012-12-07 10:36:55 +00002145Constants
2146=========
2147
2148LLVM has several different basic types of constants. This section
2149describes them all and their syntax.
2150
2151Simple Constants
2152----------------
2153
2154**Boolean constants**
2155 The two strings '``true``' and '``false``' are both valid constants
2156 of the ``i1`` type.
2157**Integer constants**
2158 Standard integers (such as '4') are constants of the
2159 :ref:`integer <t_integer>` type. Negative numbers may be used with
2160 integer types.
2161**Floating point constants**
2162 Floating point constants use standard decimal notation (e.g.
2163 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2164 hexadecimal notation (see below). The assembler requires the exact
2165 decimal value of a floating-point constant. For example, the
2166 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2167 decimal in binary. Floating point constants must have a :ref:`floating
2168 point <t_floating>` type.
2169**Null pointer constants**
2170 The identifier '``null``' is recognized as a null pointer constant
2171 and must be of :ref:`pointer type <t_pointer>`.
2172
2173The one non-intuitive notation for constants is the hexadecimal form of
2174floating point constants. For example, the form
2175'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2176than) '``double 4.5e+15``'. The only time hexadecimal floating point
2177constants are required (and the only time that they are generated by the
2178disassembler) is when a floating point constant must be emitted but it
2179cannot be represented as a decimal floating point number in a reasonable
2180number of digits. For example, NaN's, infinities, and other special
2181values are represented in their IEEE hexadecimal format so that assembly
2182and disassembly do not cause any bits to change in the constants.
2183
2184When using the hexadecimal form, constants of types half, float, and
2185double are represented using the 16-digit form shown above (which
2186matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002187must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002188precision, respectively. Hexadecimal format is always used for long
2189double, and there are three forms of long double. The 80-bit format used
2190by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2191128-bit format used by PowerPC (two adjacent doubles) is represented by
2192``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002193represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2194will only work if they match the long double format on your target.
2195The IEEE 16-bit format (half precision) is represented by ``0xH``
2196followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2197(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002198
Reid Kleckner9a16d082014-03-05 02:41:37 +00002199There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002200
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002201.. _complexconstants:
2202
Sean Silvab084af42012-12-07 10:36:55 +00002203Complex Constants
2204-----------------
2205
2206Complex constants are a (potentially recursive) combination of simple
2207constants and smaller complex constants.
2208
2209**Structure constants**
2210 Structure constants are represented with notation similar to
2211 structure type definitions (a comma separated list of elements,
2212 surrounded by braces (``{}``)). For example:
2213 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2214 "``@G = external global i32``". Structure constants must have
2215 :ref:`structure type <t_struct>`, and the number and types of elements
2216 must match those specified by the type.
2217**Array constants**
2218 Array constants are represented with notation similar to array type
2219 definitions (a comma separated list of elements, surrounded by
2220 square brackets (``[]``)). For example:
2221 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2222 :ref:`array type <t_array>`, and the number and types of elements must
2223 match those specified by the type.
2224**Vector constants**
2225 Vector constants are represented with notation similar to vector
2226 type definitions (a comma separated list of elements, surrounded by
2227 less-than/greater-than's (``<>``)). For example:
2228 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2229 must have :ref:`vector type <t_vector>`, and the number and types of
2230 elements must match those specified by the type.
2231**Zero initialization**
2232 The string '``zeroinitializer``' can be used to zero initialize a
2233 value to zero of *any* type, including scalar and
2234 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2235 having to print large zero initializers (e.g. for large arrays) and
2236 is always exactly equivalent to using explicit zero initializers.
2237**Metadata node**
2238 A metadata node is a structure-like constant with :ref:`metadata
2239 type <t_metadata>`. For example:
2240 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2241 constants that are meant to be interpreted as part of the
2242 instruction stream, metadata is a place to attach additional
2243 information such as debug info.
2244
2245Global Variable and Function Addresses
2246--------------------------------------
2247
2248The addresses of :ref:`global variables <globalvars>` and
2249:ref:`functions <functionstructure>` are always implicitly valid
2250(link-time) constants. These constants are explicitly referenced when
2251the :ref:`identifier for the global <identifiers>` is used and always have
2252:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2253file:
2254
2255.. code-block:: llvm
2256
2257 @X = global i32 17
2258 @Y = global i32 42
2259 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2260
2261.. _undefvalues:
2262
2263Undefined Values
2264----------------
2265
2266The string '``undef``' can be used anywhere a constant is expected, and
2267indicates that the user of the value may receive an unspecified
2268bit-pattern. Undefined values may be of any type (other than '``label``'
2269or '``void``') and be used anywhere a constant is permitted.
2270
2271Undefined values are useful because they indicate to the compiler that
2272the program is well defined no matter what value is used. This gives the
2273compiler more freedom to optimize. Here are some examples of
2274(potentially surprising) transformations that are valid (in pseudo IR):
2275
2276.. code-block:: llvm
2277
2278 %A = add %X, undef
2279 %B = sub %X, undef
2280 %C = xor %X, undef
2281 Safe:
2282 %A = undef
2283 %B = undef
2284 %C = undef
2285
2286This is safe because all of the output bits are affected by the undef
2287bits. Any output bit can have a zero or one depending on the input bits.
2288
2289.. code-block:: llvm
2290
2291 %A = or %X, undef
2292 %B = and %X, undef
2293 Safe:
2294 %A = -1
2295 %B = 0
2296 Unsafe:
2297 %A = undef
2298 %B = undef
2299
2300These logical operations have bits that are not always affected by the
2301input. For example, if ``%X`` has a zero bit, then the output of the
2302'``and``' operation will always be a zero for that bit, no matter what
2303the corresponding bit from the '``undef``' is. As such, it is unsafe to
2304optimize or assume that the result of the '``and``' is '``undef``'.
2305However, it is safe to assume that all bits of the '``undef``' could be
23060, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2307all the bits of the '``undef``' operand to the '``or``' could be set,
2308allowing the '``or``' to be folded to -1.
2309
2310.. code-block:: llvm
2311
2312 %A = select undef, %X, %Y
2313 %B = select undef, 42, %Y
2314 %C = select %X, %Y, undef
2315 Safe:
2316 %A = %X (or %Y)
2317 %B = 42 (or %Y)
2318 %C = %Y
2319 Unsafe:
2320 %A = undef
2321 %B = undef
2322 %C = undef
2323
2324This set of examples shows that undefined '``select``' (and conditional
2325branch) conditions can go *either way*, but they have to come from one
2326of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2327both known to have a clear low bit, then ``%A`` would have to have a
2328cleared low bit. However, in the ``%C`` example, the optimizer is
2329allowed to assume that the '``undef``' operand could be the same as
2330``%Y``, allowing the whole '``select``' to be eliminated.
2331
2332.. code-block:: llvm
2333
2334 %A = xor undef, undef
2335
2336 %B = undef
2337 %C = xor %B, %B
2338
2339 %D = undef
2340 %E = icmp lt %D, 4
2341 %F = icmp gte %D, 4
2342
2343 Safe:
2344 %A = undef
2345 %B = undef
2346 %C = undef
2347 %D = undef
2348 %E = undef
2349 %F = undef
2350
2351This example points out that two '``undef``' operands are not
2352necessarily the same. This can be surprising to people (and also matches
2353C semantics) where they assume that "``X^X``" is always zero, even if
2354``X`` is undefined. This isn't true for a number of reasons, but the
2355short answer is that an '``undef``' "variable" can arbitrarily change
2356its value over its "live range". This is true because the variable
2357doesn't actually *have a live range*. Instead, the value is logically
2358read from arbitrary registers that happen to be around when needed, so
2359the value is not necessarily consistent over time. In fact, ``%A`` and
2360``%C`` need to have the same semantics or the core LLVM "replace all
2361uses with" concept would not hold.
2362
2363.. code-block:: llvm
2364
2365 %A = fdiv undef, %X
2366 %B = fdiv %X, undef
2367 Safe:
2368 %A = undef
2369 b: unreachable
2370
2371These examples show the crucial difference between an *undefined value*
2372and *undefined behavior*. An undefined value (like '``undef``') is
2373allowed to have an arbitrary bit-pattern. This means that the ``%A``
2374operation can be constant folded to '``undef``', because the '``undef``'
2375could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2376However, in the second example, we can make a more aggressive
2377assumption: because the ``undef`` is allowed to be an arbitrary value,
2378we are allowed to assume that it could be zero. Since a divide by zero
2379has *undefined behavior*, we are allowed to assume that the operation
2380does not execute at all. This allows us to delete the divide and all
2381code after it. Because the undefined operation "can't happen", the
2382optimizer can assume that it occurs in dead code.
2383
2384.. code-block:: llvm
2385
2386 a: store undef -> %X
2387 b: store %X -> undef
2388 Safe:
2389 a: <deleted>
2390 b: unreachable
2391
2392These examples reiterate the ``fdiv`` example: a store *of* an undefined
2393value can be assumed to not have any effect; we can assume that the
2394value is overwritten with bits that happen to match what was already
2395there. However, a store *to* an undefined location could clobber
2396arbitrary memory, therefore, it has undefined behavior.
2397
2398.. _poisonvalues:
2399
2400Poison Values
2401-------------
2402
2403Poison values are similar to :ref:`undef values <undefvalues>`, however
2404they also represent the fact that an instruction or constant expression
2405which cannot evoke side effects has nevertheless detected a condition
2406which results in undefined behavior.
2407
2408There is currently no way of representing a poison value in the IR; they
2409only exist when produced by operations such as :ref:`add <i_add>` with
2410the ``nsw`` flag.
2411
2412Poison value behavior is defined in terms of value *dependence*:
2413
2414- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2415- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2416 their dynamic predecessor basic block.
2417- Function arguments depend on the corresponding actual argument values
2418 in the dynamic callers of their functions.
2419- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2420 instructions that dynamically transfer control back to them.
2421- :ref:`Invoke <i_invoke>` instructions depend on the
2422 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2423 call instructions that dynamically transfer control back to them.
2424- Non-volatile loads and stores depend on the most recent stores to all
2425 of the referenced memory addresses, following the order in the IR
2426 (including loads and stores implied by intrinsics such as
2427 :ref:`@llvm.memcpy <int_memcpy>`.)
2428- An instruction with externally visible side effects depends on the
2429 most recent preceding instruction with externally visible side
2430 effects, following the order in the IR. (This includes :ref:`volatile
2431 operations <volatile>`.)
2432- An instruction *control-depends* on a :ref:`terminator
2433 instruction <terminators>` if the terminator instruction has
2434 multiple successors and the instruction is always executed when
2435 control transfers to one of the successors, and may not be executed
2436 when control is transferred to another.
2437- Additionally, an instruction also *control-depends* on a terminator
2438 instruction if the set of instructions it otherwise depends on would
2439 be different if the terminator had transferred control to a different
2440 successor.
2441- Dependence is transitive.
2442
2443Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2444with the additional affect that any instruction which has a *dependence*
2445on a poison value has undefined behavior.
2446
2447Here are some examples:
2448
2449.. code-block:: llvm
2450
2451 entry:
2452 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2453 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2454 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2455 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2456
2457 store i32 %poison, i32* @g ; Poison value stored to memory.
2458 %poison2 = load i32* @g ; Poison value loaded back from memory.
2459
2460 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2461
2462 %narrowaddr = bitcast i32* @g to i16*
2463 %wideaddr = bitcast i32* @g to i64*
2464 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2465 %poison4 = load i64* %wideaddr ; Returns a poison value.
2466
2467 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2468 br i1 %cmp, label %true, label %end ; Branch to either destination.
2469
2470 true:
2471 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2472 ; it has undefined behavior.
2473 br label %end
2474
2475 end:
2476 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2477 ; Both edges into this PHI are
2478 ; control-dependent on %cmp, so this
2479 ; always results in a poison value.
2480
2481 store volatile i32 0, i32* @g ; This would depend on the store in %true
2482 ; if %cmp is true, or the store in %entry
2483 ; otherwise, so this is undefined behavior.
2484
2485 br i1 %cmp, label %second_true, label %second_end
2486 ; The same branch again, but this time the
2487 ; true block doesn't have side effects.
2488
2489 second_true:
2490 ; No side effects!
2491 ret void
2492
2493 second_end:
2494 store volatile i32 0, i32* @g ; This time, the instruction always depends
2495 ; on the store in %end. Also, it is
2496 ; control-equivalent to %end, so this is
2497 ; well-defined (ignoring earlier undefined
2498 ; behavior in this example).
2499
2500.. _blockaddress:
2501
2502Addresses of Basic Blocks
2503-------------------------
2504
2505``blockaddress(@function, %block)``
2506
2507The '``blockaddress``' constant computes the address of the specified
2508basic block in the specified function, and always has an ``i8*`` type.
2509Taking the address of the entry block is illegal.
2510
2511This value only has defined behavior when used as an operand to the
2512':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2513against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002514undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002515no label is equal to the null pointer. This may be passed around as an
2516opaque pointer sized value as long as the bits are not inspected. This
2517allows ``ptrtoint`` and arithmetic to be performed on these values so
2518long as the original value is reconstituted before the ``indirectbr``
2519instruction.
2520
2521Finally, some targets may provide defined semantics when using the value
2522as the operand to an inline assembly, but that is target specific.
2523
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002524.. _constantexprs:
2525
Sean Silvab084af42012-12-07 10:36:55 +00002526Constant Expressions
2527--------------------
2528
2529Constant expressions are used to allow expressions involving other
2530constants to be used as constants. Constant expressions may be of any
2531:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2532that does not have side effects (e.g. load and call are not supported).
2533The following is the syntax for constant expressions:
2534
2535``trunc (CST to TYPE)``
2536 Truncate a constant to another type. The bit size of CST must be
2537 larger than the bit size of TYPE. Both types must be integers.
2538``zext (CST to TYPE)``
2539 Zero extend a constant to another type. The bit size of CST must be
2540 smaller than the bit size of TYPE. Both types must be integers.
2541``sext (CST to TYPE)``
2542 Sign extend a constant to another type. The bit size of CST must be
2543 smaller than the bit size of TYPE. Both types must be integers.
2544``fptrunc (CST to TYPE)``
2545 Truncate a floating point constant to another floating point type.
2546 The size of CST must be larger than the size of TYPE. Both types
2547 must be floating point.
2548``fpext (CST to TYPE)``
2549 Floating point extend a constant to another type. The size of CST
2550 must be smaller or equal to the size of TYPE. Both types must be
2551 floating point.
2552``fptoui (CST to TYPE)``
2553 Convert a floating point constant to the corresponding unsigned
2554 integer constant. TYPE must be a scalar or vector integer type. CST
2555 must be of scalar or vector floating point type. Both CST and TYPE
2556 must be scalars, or vectors of the same number of elements. If the
2557 value won't fit in the integer type, the results are undefined.
2558``fptosi (CST to TYPE)``
2559 Convert a floating point constant to the corresponding signed
2560 integer constant. TYPE must be a scalar or vector integer type. CST
2561 must be of scalar or vector floating point type. Both CST and TYPE
2562 must be scalars, or vectors of the same number of elements. If the
2563 value won't fit in the integer type, the results are undefined.
2564``uitofp (CST to TYPE)``
2565 Convert an unsigned integer constant to the corresponding floating
2566 point constant. TYPE must be a scalar or vector floating point type.
2567 CST must be of scalar or vector integer type. Both CST and TYPE must
2568 be scalars, or vectors of the same number of elements. If the value
2569 won't fit in the floating point type, the results are undefined.
2570``sitofp (CST to TYPE)``
2571 Convert a signed integer constant to the corresponding floating
2572 point constant. TYPE must be a scalar or vector floating point type.
2573 CST must be of scalar or vector integer type. Both CST and TYPE must
2574 be scalars, or vectors of the same number of elements. If the value
2575 won't fit in the floating point type, the results are undefined.
2576``ptrtoint (CST to TYPE)``
2577 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002578 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002579 pointer type. The ``CST`` value is zero extended, truncated, or
2580 unchanged to make it fit in ``TYPE``.
2581``inttoptr (CST to TYPE)``
2582 Convert an integer constant to a pointer constant. TYPE must be a
2583 pointer type. CST must be of integer type. The CST value is zero
2584 extended, truncated, or unchanged to make it fit in a pointer size.
2585 This one is *really* dangerous!
2586``bitcast (CST to TYPE)``
2587 Convert a constant, CST, to another TYPE. The constraints of the
2588 operands are the same as those for the :ref:`bitcast
2589 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002590``addrspacecast (CST to TYPE)``
2591 Convert a constant pointer or constant vector of pointer, CST, to another
2592 TYPE in a different address space. The constraints of the operands are the
2593 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002594``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2595 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2596 constants. As with the :ref:`getelementptr <i_getelementptr>`
2597 instruction, the index list may have zero or more indexes, which are
2598 required to make sense for the type of "CSTPTR".
2599``select (COND, VAL1, VAL2)``
2600 Perform the :ref:`select operation <i_select>` on constants.
2601``icmp COND (VAL1, VAL2)``
2602 Performs the :ref:`icmp operation <i_icmp>` on constants.
2603``fcmp COND (VAL1, VAL2)``
2604 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2605``extractelement (VAL, IDX)``
2606 Perform the :ref:`extractelement operation <i_extractelement>` on
2607 constants.
2608``insertelement (VAL, ELT, IDX)``
2609 Perform the :ref:`insertelement operation <i_insertelement>` on
2610 constants.
2611``shufflevector (VEC1, VEC2, IDXMASK)``
2612 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2613 constants.
2614``extractvalue (VAL, IDX0, IDX1, ...)``
2615 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2616 constants. The index list is interpreted in a similar manner as
2617 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2618 least one index value must be specified.
2619``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2620 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2621 The index list is interpreted in a similar manner as indices in a
2622 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2623 value must be specified.
2624``OPCODE (LHS, RHS)``
2625 Perform the specified operation of the LHS and RHS constants. OPCODE
2626 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2627 binary <bitwiseops>` operations. The constraints on operands are
2628 the same as those for the corresponding instruction (e.g. no bitwise
2629 operations on floating point values are allowed).
2630
2631Other Values
2632============
2633
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002634.. _inlineasmexprs:
2635
Sean Silvab084af42012-12-07 10:36:55 +00002636Inline Assembler Expressions
2637----------------------------
2638
2639LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2640Inline Assembly <moduleasm>`) through the use of a special value. This
2641value represents the inline assembler as a string (containing the
2642instructions to emit), a list of operand constraints (stored as a
2643string), a flag that indicates whether or not the inline asm expression
2644has side effects, and a flag indicating whether the function containing
2645the asm needs to align its stack conservatively. An example inline
2646assembler expression is:
2647
2648.. code-block:: llvm
2649
2650 i32 (i32) asm "bswap $0", "=r,r"
2651
2652Inline assembler expressions may **only** be used as the callee operand
2653of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2654Thus, typically we have:
2655
2656.. code-block:: llvm
2657
2658 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2659
2660Inline asms with side effects not visible in the constraint list must be
2661marked as having side effects. This is done through the use of the
2662'``sideeffect``' keyword, like so:
2663
2664.. code-block:: llvm
2665
2666 call void asm sideeffect "eieio", ""()
2667
2668In some cases inline asms will contain code that will not work unless
2669the stack is aligned in some way, such as calls or SSE instructions on
2670x86, yet will not contain code that does that alignment within the asm.
2671The compiler should make conservative assumptions about what the asm
2672might contain and should generate its usual stack alignment code in the
2673prologue if the '``alignstack``' keyword is present:
2674
2675.. code-block:: llvm
2676
2677 call void asm alignstack "eieio", ""()
2678
2679Inline asms also support using non-standard assembly dialects. The
2680assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2681the inline asm is using the Intel dialect. Currently, ATT and Intel are
2682the only supported dialects. An example is:
2683
2684.. code-block:: llvm
2685
2686 call void asm inteldialect "eieio", ""()
2687
2688If multiple keywords appear the '``sideeffect``' keyword must come
2689first, the '``alignstack``' keyword second and the '``inteldialect``'
2690keyword last.
2691
2692Inline Asm Metadata
2693^^^^^^^^^^^^^^^^^^^
2694
2695The call instructions that wrap inline asm nodes may have a
2696"``!srcloc``" MDNode attached to it that contains a list of constant
2697integers. If present, the code generator will use the integer as the
2698location cookie value when report errors through the ``LLVMContext``
2699error reporting mechanisms. This allows a front-end to correlate backend
2700errors that occur with inline asm back to the source code that produced
2701it. For example:
2702
2703.. code-block:: llvm
2704
2705 call void asm sideeffect "something bad", ""(), !srcloc !42
2706 ...
2707 !42 = !{ i32 1234567 }
2708
2709It is up to the front-end to make sense of the magic numbers it places
2710in the IR. If the MDNode contains multiple constants, the code generator
2711will use the one that corresponds to the line of the asm that the error
2712occurs on.
2713
2714.. _metadata:
2715
2716Metadata Nodes and Metadata Strings
2717-----------------------------------
2718
2719LLVM IR allows metadata to be attached to instructions in the program
2720that can convey extra information about the code to the optimizers and
2721code generator. One example application of metadata is source-level
2722debug information. There are two metadata primitives: strings and nodes.
2723All metadata has the ``metadata`` type and is identified in syntax by a
2724preceding exclamation point ('``!``').
2725
2726A metadata string is a string surrounded by double quotes. It can
2727contain any character by escaping non-printable characters with
2728"``\xx``" where "``xx``" is the two digit hex code. For example:
2729"``!"test\00"``".
2730
2731Metadata nodes are represented with notation similar to structure
2732constants (a comma separated list of elements, surrounded by braces and
2733preceded by an exclamation point). Metadata nodes can have any values as
2734their operand. For example:
2735
2736.. code-block:: llvm
2737
2738 !{ metadata !"test\00", i32 10}
2739
2740A :ref:`named metadata <namedmetadatastructure>` is a collection of
2741metadata nodes, which can be looked up in the module symbol table. For
2742example:
2743
2744.. code-block:: llvm
2745
2746 !foo = metadata !{!4, !3}
2747
2748Metadata can be used as function arguments. Here ``llvm.dbg.value``
2749function is using two metadata arguments:
2750
2751.. code-block:: llvm
2752
2753 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2754
2755Metadata can be attached with an instruction. Here metadata ``!21`` is
2756attached to the ``add`` instruction using the ``!dbg`` identifier:
2757
2758.. code-block:: llvm
2759
2760 %indvar.next = add i64 %indvar, 1, !dbg !21
2761
2762More information about specific metadata nodes recognized by the
2763optimizers and code generator is found below.
2764
2765'``tbaa``' Metadata
2766^^^^^^^^^^^^^^^^^^^
2767
2768In LLVM IR, memory does not have types, so LLVM's own type system is not
2769suitable for doing TBAA. Instead, metadata is added to the IR to
2770describe a type system of a higher level language. This can be used to
2771implement typical C/C++ TBAA, but it can also be used to implement
2772custom alias analysis behavior for other languages.
2773
2774The current metadata format is very simple. TBAA metadata nodes have up
2775to three fields, e.g.:
2776
2777.. code-block:: llvm
2778
2779 !0 = metadata !{ metadata !"an example type tree" }
2780 !1 = metadata !{ metadata !"int", metadata !0 }
2781 !2 = metadata !{ metadata !"float", metadata !0 }
2782 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2783
2784The first field is an identity field. It can be any value, usually a
2785metadata string, which uniquely identifies the type. The most important
2786name in the tree is the name of the root node. Two trees with different
2787root node names are entirely disjoint, even if they have leaves with
2788common names.
2789
2790The second field identifies the type's parent node in the tree, or is
2791null or omitted for a root node. A type is considered to alias all of
2792its descendants and all of its ancestors in the tree. Also, a type is
2793considered to alias all types in other trees, so that bitcode produced
2794from multiple front-ends is handled conservatively.
2795
2796If the third field is present, it's an integer which if equal to 1
2797indicates that the type is "constant" (meaning
2798``pointsToConstantMemory`` should return true; see `other useful
2799AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2800
2801'``tbaa.struct``' Metadata
2802^^^^^^^^^^^^^^^^^^^^^^^^^^
2803
2804The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2805aggregate assignment operations in C and similar languages, however it
2806is defined to copy a contiguous region of memory, which is more than
2807strictly necessary for aggregate types which contain holes due to
2808padding. Also, it doesn't contain any TBAA information about the fields
2809of the aggregate.
2810
2811``!tbaa.struct`` metadata can describe which memory subregions in a
2812memcpy are padding and what the TBAA tags of the struct are.
2813
2814The current metadata format is very simple. ``!tbaa.struct`` metadata
2815nodes are a list of operands which are in conceptual groups of three.
2816For each group of three, the first operand gives the byte offset of a
2817field in bytes, the second gives its size in bytes, and the third gives
2818its tbaa tag. e.g.:
2819
2820.. code-block:: llvm
2821
2822 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2823
2824This describes a struct with two fields. The first is at offset 0 bytes
2825with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2826and has size 4 bytes and has tbaa tag !2.
2827
2828Note that the fields need not be contiguous. In this example, there is a
28294 byte gap between the two fields. This gap represents padding which
2830does not carry useful data and need not be preserved.
2831
Hal Finkel94146652014-07-24 14:25:39 +00002832'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00002833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00002834
2835``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2836noalias memory-access sets. This means that some collection of memory access
2837instructions (loads, stores, memory-accessing calls, etc.) that carry
2838``noalias`` metadata can specifically be specified not to alias with some other
2839collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00002840Each type of metadata specifies a list of scopes where each scope has an id and
2841a domain. When evaluating an aliasing query, if for some some domain, the set
2842of scopes with that domain in one instruction's ``alias.scope`` list is a
2843subset of (or qual to) the set of scopes for that domain in another
2844instruction's ``noalias`` list, then the two memory accesses are assumed not to
2845alias.
Hal Finkel94146652014-07-24 14:25:39 +00002846
Hal Finkel029cde62014-07-25 15:50:02 +00002847The metadata identifying each domain is itself a list containing one or two
2848entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00002849string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00002850self-reference can be used to create globally unique domain names. A
2851descriptive string may optionally be provided as a second list entry.
2852
2853The metadata identifying each scope is also itself a list containing two or
2854three entries. The first entry is the name of the scope. Note that if the name
2855is a string then it can be combined accross functions and translation units. A
2856self-reference can be used to create globally unique scope names. A metadata
2857reference to the scope's domain is the second entry. A descriptive string may
2858optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00002859
2860For example,
2861
2862.. code-block:: llvm
2863
Hal Finkel029cde62014-07-25 15:50:02 +00002864 ; Two scope domains:
Hal Finkel94146652014-07-24 14:25:39 +00002865 !0 = metadata !{metadata !0}
Hal Finkel029cde62014-07-25 15:50:02 +00002866 !1 = metadata !{metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002867
Hal Finkel029cde62014-07-25 15:50:02 +00002868 ; Some scopes in these domains:
2869 !2 = metadata !{metadata !2, metadata !0}
2870 !3 = metadata !{metadata !3, metadata !0}
2871 !4 = metadata !{metadata !4, metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002872
Hal Finkel029cde62014-07-25 15:50:02 +00002873 ; Some scope lists:
2874 !5 = metadata !{metadata !4} ; A list containing only scope !4
2875 !6 = metadata !{metadata !4, metadata !3, metadata !2}
2876 !7 = metadata !{metadata !3}
Hal Finkel94146652014-07-24 14:25:39 +00002877
2878 ; These two instructions don't alias:
Hal Finkel029cde62014-07-25 15:50:02 +00002879 %0 = load float* %c, align 4, !alias.scope !5
2880 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00002881
Hal Finkel029cde62014-07-25 15:50:02 +00002882 ; These two instructions also don't alias (for domain !1, the set of scopes
2883 ; in the !alias.scope equals that in the !noalias list):
2884 %2 = load float* %c, align 4, !alias.scope !5
2885 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00002886
Hal Finkel029cde62014-07-25 15:50:02 +00002887 ; These two instructions don't alias (for domain !0, the set of scopes in
2888 ; the !noalias list is not a superset of, or equal to, the scopes in the
2889 ; !alias.scope list):
2890 %2 = load float* %c, align 4, !alias.scope !6
2891 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00002892
Sean Silvab084af42012-12-07 10:36:55 +00002893'``fpmath``' Metadata
2894^^^^^^^^^^^^^^^^^^^^^
2895
2896``fpmath`` metadata may be attached to any instruction of floating point
2897type. It can be used to express the maximum acceptable error in the
2898result of that instruction, in ULPs, thus potentially allowing the
2899compiler to use a more efficient but less accurate method of computing
2900it. ULP is defined as follows:
2901
2902 If ``x`` is a real number that lies between two finite consecutive
2903 floating-point numbers ``a`` and ``b``, without being equal to one
2904 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2905 distance between the two non-equal finite floating-point numbers
2906 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2907
2908The metadata node shall consist of a single positive floating point
2909number representing the maximum relative error, for example:
2910
2911.. code-block:: llvm
2912
2913 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2914
2915'``range``' Metadata
2916^^^^^^^^^^^^^^^^^^^^
2917
Jingyue Wu37fcb592014-06-19 16:50:16 +00002918``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2919integer types. It expresses the possible ranges the loaded value or the value
2920returned by the called function at this call site is in. The ranges are
2921represented with a flattened list of integers. The loaded value or the value
2922returned is known to be in the union of the ranges defined by each consecutive
2923pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00002924
2925- The type must match the type loaded by the instruction.
2926- The pair ``a,b`` represents the range ``[a,b)``.
2927- Both ``a`` and ``b`` are constants.
2928- The range is allowed to wrap.
2929- The range should not represent the full or empty set. That is,
2930 ``a!=b``.
2931
2932In addition, the pairs must be in signed order of the lower bound and
2933they must be non-contiguous.
2934
2935Examples:
2936
2937.. code-block:: llvm
2938
2939 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2940 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00002941 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
2942 %d = invoke i8 @bar() to label %cont
2943 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00002944 ...
2945 !0 = metadata !{ i8 0, i8 2 }
2946 !1 = metadata !{ i8 255, i8 2 }
2947 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2948 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2949
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002950'``llvm.loop``'
2951^^^^^^^^^^^^^^^
2952
2953It is sometimes useful to attach information to loop constructs. Currently,
2954loop metadata is implemented as metadata attached to the branch instruction
2955in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002956guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002957specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002958
2959The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002960itself to avoid merging it with any other identifier metadata, e.g.,
2961during module linkage or function inlining. That is, each loop should refer
2962to their own identification metadata even if they reside in separate functions.
2963The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002964constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002965
2966.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002967
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002968 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002969 !1 = metadata !{ metadata !1 }
2970
Mark Heffernan893752a2014-07-18 19:24:51 +00002971The loop identifier metadata can be used to specify additional
2972per-loop metadata. Any operands after the first operand can be treated
2973as user-defined metadata. For example the ``llvm.loop.unroll.count``
2974suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002975
Paul Redmond5fdf8362013-05-28 20:00:34 +00002976.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002977
Paul Redmond5fdf8362013-05-28 20:00:34 +00002978 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2979 ...
2980 !0 = metadata !{ metadata !0, metadata !1 }
Mark Heffernan9d20e422014-07-21 23:11:03 +00002981 !1 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00002982
Mark Heffernan9d20e422014-07-21 23:11:03 +00002983'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
2984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00002985
Mark Heffernan9d20e422014-07-21 23:11:03 +00002986Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
2987used to control per-loop vectorization and interleaving parameters such as
2988vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00002989conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00002990``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
2991optimization hints and the optimizer will only interleave and vectorize loops if
2992it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
2993which contains information about loop-carried memory dependencies can be helpful
2994in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00002995
Mark Heffernan9d20e422014-07-21 23:11:03 +00002996'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00002997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2998
Mark Heffernan9d20e422014-07-21 23:11:03 +00002999This metadata suggests an interleave count to the loop interleaver.
3000The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003001second operand is an integer specifying the interleave count. For
3002example:
3003
3004.. code-block:: llvm
3005
Mark Heffernan9d20e422014-07-21 23:11:03 +00003006 !0 = metadata !{ metadata !"llvm.loop.interleave.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003007
Mark Heffernan9d20e422014-07-21 23:11:03 +00003008Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3009multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3010then the interleave count will be determined automatically.
3011
3012'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003013^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003014
3015This metadata selectively enables or disables vectorization for the loop. The
3016first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3017is a bit. If the bit operand value is 1 vectorization is enabled. A value of
30180 disables vectorization:
3019
3020.. code-block:: llvm
3021
3022 !0 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 0 }
3023 !1 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 1 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003024
3025'``llvm.loop.vectorize.width``' Metadata
3026^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3027
3028This metadata sets the target width of the vectorizer. The first
3029operand is the string ``llvm.loop.vectorize.width`` and the second
3030operand is an integer specifying the width. For example:
3031
3032.. code-block:: llvm
3033
3034 !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 }
3035
3036Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3037vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
30380 or if the loop does not have this metadata the width will be
3039determined automatically.
3040
3041'``llvm.loop.unroll``'
3042^^^^^^^^^^^^^^^^^^^^^^
3043
3044Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3045optimization hints such as the unroll factor. ``llvm.loop.unroll``
3046metadata should be used in conjunction with ``llvm.loop`` loop
3047identification metadata. The ``llvm.loop.unroll`` metadata are only
3048optimization hints and the unrolling will only be performed if the
3049optimizer believes it is safe to do so.
3050
Mark Heffernan893752a2014-07-18 19:24:51 +00003051'``llvm.loop.unroll.count``' Metadata
3052^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3053
3054This metadata suggests an unroll factor to the loop unroller. The
3055first operand is the string ``llvm.loop.unroll.count`` and the second
3056operand is a positive integer specifying the unroll factor. For
3057example:
3058
3059.. code-block:: llvm
3060
3061 !0 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
3062
3063If the trip count of the loop is less than the unroll count the loop
3064will be partially unrolled.
3065
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003066'``llvm.loop.unroll.disable``' Metadata
3067^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3068
3069This metadata either disables loop unrolling. The metadata has a single operand
3070which is the string ``llvm.loop.unroll.disable``. For example:
3071
3072.. code-block:: llvm
3073
3074 !0 = metadata !{ metadata !"llvm.loop.unroll.disable" }
3075
3076'``llvm.loop.unroll.full``' Metadata
3077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3078
3079This metadata either suggests that the loop should be unrolled fully. The
3080metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3081For example:
3082
3083.. code-block:: llvm
3084
3085 !0 = metadata !{ metadata !"llvm.loop.unroll.full" }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003086
3087'``llvm.mem``'
3088^^^^^^^^^^^^^^^
3089
3090Metadata types used to annotate memory accesses with information helpful
3091for optimizations are prefixed with ``llvm.mem``.
3092
3093'``llvm.mem.parallel_loop_access``' Metadata
3094^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3095
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003096The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3097or metadata containing a list of loop identifiers for nested loops.
3098The metadata is attached to memory accessing instructions and denotes that
3099no loop carried memory dependence exist between it and other instructions denoted
3100with the same loop identifier.
3101
3102Precisely, given two instructions ``m1`` and ``m2`` that both have the
3103``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3104set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003105carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003106``L2``.
3107
3108As a special case, if all memory accessing instructions in a loop have
3109``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3110loop has no loop carried memory dependences and is considered to be a parallel
3111loop.
3112
3113Note that if not all memory access instructions have such metadata referring to
3114the loop, then the loop is considered not being trivially parallel. Additional
3115memory dependence analysis is required to make that determination. As a fail
3116safe mechanism, this causes loops that were originally parallel to be considered
3117sequential (if optimization passes that are unaware of the parallel semantics
3118insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003119
3120Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003121both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003122metadata types that refer to the same loop identifier metadata.
3123
3124.. code-block:: llvm
3125
3126 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003127 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003128 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003129 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003130 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003131 ...
3132 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003133
3134 for.end:
3135 ...
3136 !0 = metadata !{ metadata !0 }
3137
3138It is also possible to have nested parallel loops. In that case the
3139memory accesses refer to a list of loop identifier metadata nodes instead of
3140the loop identifier metadata node directly:
3141
3142.. code-block:: llvm
3143
3144 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003145 ...
3146 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3147 ...
3148 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003149
3150 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003151 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003152 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003153 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003154 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003155 ...
3156 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003157
3158 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003159 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003160 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003161 ...
3162 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003163
3164 outer.for.end: ; preds = %for.body
3165 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00003166 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
3167 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
3168 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003169
Sean Silvab084af42012-12-07 10:36:55 +00003170Module Flags Metadata
3171=====================
3172
3173Information about the module as a whole is difficult to convey to LLVM's
3174subsystems. The LLVM IR isn't sufficient to transmit this information.
3175The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003176this. These flags are in the form of key / value pairs --- much like a
3177dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003178look it up.
3179
3180The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3181Each triplet has the following form:
3182
3183- The first element is a *behavior* flag, which specifies the behavior
3184 when two (or more) modules are merged together, and it encounters two
3185 (or more) metadata with the same ID. The supported behaviors are
3186 described below.
3187- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003188 metadata. Each module may only have one flag entry for each unique ID (not
3189 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003190- The third element is the value of the flag.
3191
3192When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003193``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3194each unique metadata ID string, there will be exactly one entry in the merged
3195modules ``llvm.module.flags`` metadata table, and the value for that entry will
3196be determined by the merge behavior flag, as described below. The only exception
3197is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003198
3199The following behaviors are supported:
3200
3201.. list-table::
3202 :header-rows: 1
3203 :widths: 10 90
3204
3205 * - Value
3206 - Behavior
3207
3208 * - 1
3209 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003210 Emits an error if two values disagree, otherwise the resulting value
3211 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003212
3213 * - 2
3214 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003215 Emits a warning if two values disagree. The result value will be the
3216 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003217
3218 * - 3
3219 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003220 Adds a requirement that another module flag be present and have a
3221 specified value after linking is performed. The value must be a
3222 metadata pair, where the first element of the pair is the ID of the
3223 module flag to be restricted, and the second element of the pair is
3224 the value the module flag should be restricted to. This behavior can
3225 be used to restrict the allowable results (via triggering of an
3226 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003227
3228 * - 4
3229 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003230 Uses the specified value, regardless of the behavior or value of the
3231 other module. If both modules specify **Override**, but the values
3232 differ, an error will be emitted.
3233
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003234 * - 5
3235 - **Append**
3236 Appends the two values, which are required to be metadata nodes.
3237
3238 * - 6
3239 - **AppendUnique**
3240 Appends the two values, which are required to be metadata
3241 nodes. However, duplicate entries in the second list are dropped
3242 during the append operation.
3243
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003244It is an error for a particular unique flag ID to have multiple behaviors,
3245except in the case of **Require** (which adds restrictions on another metadata
3246value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003247
3248An example of module flags:
3249
3250.. code-block:: llvm
3251
3252 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3253 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3254 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3255 !3 = metadata !{ i32 3, metadata !"qux",
3256 metadata !{
3257 metadata !"foo", i32 1
3258 }
3259 }
3260 !llvm.module.flags = !{ !0, !1, !2, !3 }
3261
3262- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3263 if two or more ``!"foo"`` flags are seen is to emit an error if their
3264 values are not equal.
3265
3266- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3267 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003268 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003269
3270- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3271 behavior if two or more ``!"qux"`` flags are seen is to emit a
3272 warning if their values are not equal.
3273
3274- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3275
3276 ::
3277
3278 metadata !{ metadata !"foo", i32 1 }
3279
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003280 The behavior is to emit an error if the ``llvm.module.flags`` does not
3281 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3282 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003283
3284Objective-C Garbage Collection Module Flags Metadata
3285----------------------------------------------------
3286
3287On the Mach-O platform, Objective-C stores metadata about garbage
3288collection in a special section called "image info". The metadata
3289consists of a version number and a bitmask specifying what types of
3290garbage collection are supported (if any) by the file. If two or more
3291modules are linked together their garbage collection metadata needs to
3292be merged rather than appended together.
3293
3294The Objective-C garbage collection module flags metadata consists of the
3295following key-value pairs:
3296
3297.. list-table::
3298 :header-rows: 1
3299 :widths: 30 70
3300
3301 * - Key
3302 - Value
3303
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003304 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003305 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003306
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003307 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003308 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003309 always 0.
3310
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003311 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003312 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003313 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3314 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3315 Objective-C ABI version 2.
3316
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003317 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003318 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003319 not. Valid values are 0, for no garbage collection, and 2, for garbage
3320 collection supported.
3321
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003322 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003323 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003324 If present, its value must be 6. This flag requires that the
3325 ``Objective-C Garbage Collection`` flag have the value 2.
3326
3327Some important flag interactions:
3328
3329- If a module with ``Objective-C Garbage Collection`` set to 0 is
3330 merged with a module with ``Objective-C Garbage Collection`` set to
3331 2, then the resulting module has the
3332 ``Objective-C Garbage Collection`` flag set to 0.
3333- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3334 merged with a module with ``Objective-C GC Only`` set to 6.
3335
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003336Automatic Linker Flags Module Flags Metadata
3337--------------------------------------------
3338
3339Some targets support embedding flags to the linker inside individual object
3340files. Typically this is used in conjunction with language extensions which
3341allow source files to explicitly declare the libraries they depend on, and have
3342these automatically be transmitted to the linker via object files.
3343
3344These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003345using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003346to be ``AppendUnique``, and the value for the key is expected to be a metadata
3347node which should be a list of other metadata nodes, each of which should be a
3348list of metadata strings defining linker options.
3349
3350For example, the following metadata section specifies two separate sets of
3351linker options, presumably to link against ``libz`` and the ``Cocoa``
3352framework::
3353
Michael Liaoa7699082013-03-06 18:24:34 +00003354 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003355 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003356 metadata !{ metadata !"-lz" },
3357 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003358 !llvm.module.flags = !{ !0 }
3359
3360The metadata encoding as lists of lists of options, as opposed to a collapsed
3361list of options, is chosen so that the IR encoding can use multiple option
3362strings to specify e.g., a single library, while still having that specifier be
3363preserved as an atomic element that can be recognized by a target specific
3364assembly writer or object file emitter.
3365
3366Each individual option is required to be either a valid option for the target's
3367linker, or an option that is reserved by the target specific assembly writer or
3368object file emitter. No other aspect of these options is defined by the IR.
3369
Oliver Stannard5dc29342014-06-20 10:08:11 +00003370C type width Module Flags Metadata
3371----------------------------------
3372
3373The ARM backend emits a section into each generated object file describing the
3374options that it was compiled with (in a compiler-independent way) to prevent
3375linking incompatible objects, and to allow automatic library selection. Some
3376of these options are not visible at the IR level, namely wchar_t width and enum
3377width.
3378
3379To pass this information to the backend, these options are encoded in module
3380flags metadata, using the following key-value pairs:
3381
3382.. list-table::
3383 :header-rows: 1
3384 :widths: 30 70
3385
3386 * - Key
3387 - Value
3388
3389 * - short_wchar
3390 - * 0 --- sizeof(wchar_t) == 4
3391 * 1 --- sizeof(wchar_t) == 2
3392
3393 * - short_enum
3394 - * 0 --- Enums are at least as large as an ``int``.
3395 * 1 --- Enums are stored in the smallest integer type which can
3396 represent all of its values.
3397
3398For example, the following metadata section specifies that the module was
3399compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3400enum is the smallest type which can represent all of its values::
3401
3402 !llvm.module.flags = !{!0, !1}
3403 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1}
3404 !1 = metadata !{i32 1, metadata !"short_enum", i32 0}
3405
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003406.. _intrinsicglobalvariables:
3407
Sean Silvab084af42012-12-07 10:36:55 +00003408Intrinsic Global Variables
3409==========================
3410
3411LLVM has a number of "magic" global variables that contain data that
3412affect code generation or other IR semantics. These are documented here.
3413All globals of this sort should have a section specified as
3414"``llvm.metadata``". This section and all globals that start with
3415"``llvm.``" are reserved for use by LLVM.
3416
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003417.. _gv_llvmused:
3418
Sean Silvab084af42012-12-07 10:36:55 +00003419The '``llvm.used``' Global Variable
3420-----------------------------------
3421
Rafael Espindola74f2e462013-04-22 14:58:02 +00003422The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003423:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003424pointers to named global variables, functions and aliases which may optionally
3425have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003426use of it is:
3427
3428.. code-block:: llvm
3429
3430 @X = global i8 4
3431 @Y = global i32 123
3432
3433 @llvm.used = appending global [2 x i8*] [
3434 i8* @X,
3435 i8* bitcast (i32* @Y to i8*)
3436 ], section "llvm.metadata"
3437
Rafael Espindola74f2e462013-04-22 14:58:02 +00003438If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3439and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003440symbol that it cannot see (which is why they have to be named). For example, if
3441a variable has internal linkage and no references other than that from the
3442``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3443references from inline asms and other things the compiler cannot "see", and
3444corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003445
3446On some targets, the code generator must emit a directive to the
3447assembler or object file to prevent the assembler and linker from
3448molesting the symbol.
3449
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003450.. _gv_llvmcompilerused:
3451
Sean Silvab084af42012-12-07 10:36:55 +00003452The '``llvm.compiler.used``' Global Variable
3453--------------------------------------------
3454
3455The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3456directive, except that it only prevents the compiler from touching the
3457symbol. On targets that support it, this allows an intelligent linker to
3458optimize references to the symbol without being impeded as it would be
3459by ``@llvm.used``.
3460
3461This is a rare construct that should only be used in rare circumstances,
3462and should not be exposed to source languages.
3463
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003464.. _gv_llvmglobalctors:
3465
Sean Silvab084af42012-12-07 10:36:55 +00003466The '``llvm.global_ctors``' Global Variable
3467-------------------------------------------
3468
3469.. code-block:: llvm
3470
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003471 %0 = type { i32, void ()*, i8* }
3472 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003473
3474The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003475functions, priorities, and an optional associated global or function.
3476The functions referenced by this array will be called in ascending order
3477of priority (i.e. lowest first) when the module is loaded. The order of
3478functions with the same priority is not defined.
3479
3480If the third field is present, non-null, and points to a global variable
3481or function, the initializer function will only run if the associated
3482data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003483
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003484.. _llvmglobaldtors:
3485
Sean Silvab084af42012-12-07 10:36:55 +00003486The '``llvm.global_dtors``' Global Variable
3487-------------------------------------------
3488
3489.. code-block:: llvm
3490
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003491 %0 = type { i32, void ()*, i8* }
3492 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003493
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003494The ``@llvm.global_dtors`` array contains a list of destructor
3495functions, priorities, and an optional associated global or function.
3496The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003497order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003498order of functions with the same priority is not defined.
3499
3500If the third field is present, non-null, and points to a global variable
3501or function, the destructor function will only run if the associated
3502data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003503
3504Instruction Reference
3505=====================
3506
3507The LLVM instruction set consists of several different classifications
3508of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3509instructions <binaryops>`, :ref:`bitwise binary
3510instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3511:ref:`other instructions <otherops>`.
3512
3513.. _terminators:
3514
3515Terminator Instructions
3516-----------------------
3517
3518As mentioned :ref:`previously <functionstructure>`, every basic block in a
3519program ends with a "Terminator" instruction, which indicates which
3520block should be executed after the current block is finished. These
3521terminator instructions typically yield a '``void``' value: they produce
3522control flow, not values (the one exception being the
3523':ref:`invoke <i_invoke>`' instruction).
3524
3525The terminator instructions are: ':ref:`ret <i_ret>`',
3526':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3527':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3528':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3529
3530.. _i_ret:
3531
3532'``ret``' Instruction
3533^^^^^^^^^^^^^^^^^^^^^
3534
3535Syntax:
3536"""""""
3537
3538::
3539
3540 ret <type> <value> ; Return a value from a non-void function
3541 ret void ; Return from void function
3542
3543Overview:
3544"""""""""
3545
3546The '``ret``' instruction is used to return control flow (and optionally
3547a value) from a function back to the caller.
3548
3549There are two forms of the '``ret``' instruction: one that returns a
3550value and then causes control flow, and one that just causes control
3551flow to occur.
3552
3553Arguments:
3554""""""""""
3555
3556The '``ret``' instruction optionally accepts a single argument, the
3557return value. The type of the return value must be a ':ref:`first
3558class <t_firstclass>`' type.
3559
3560A function is not :ref:`well formed <wellformed>` if it it has a non-void
3561return type and contains a '``ret``' instruction with no return value or
3562a return value with a type that does not match its type, or if it has a
3563void return type and contains a '``ret``' instruction with a return
3564value.
3565
3566Semantics:
3567""""""""""
3568
3569When the '``ret``' instruction is executed, control flow returns back to
3570the calling function's context. If the caller is a
3571":ref:`call <i_call>`" instruction, execution continues at the
3572instruction after the call. If the caller was an
3573":ref:`invoke <i_invoke>`" instruction, execution continues at the
3574beginning of the "normal" destination block. If the instruction returns
3575a value, that value shall set the call or invoke instruction's return
3576value.
3577
3578Example:
3579""""""""
3580
3581.. code-block:: llvm
3582
3583 ret i32 5 ; Return an integer value of 5
3584 ret void ; Return from a void function
3585 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3586
3587.. _i_br:
3588
3589'``br``' Instruction
3590^^^^^^^^^^^^^^^^^^^^
3591
3592Syntax:
3593"""""""
3594
3595::
3596
3597 br i1 <cond>, label <iftrue>, label <iffalse>
3598 br label <dest> ; Unconditional branch
3599
3600Overview:
3601"""""""""
3602
3603The '``br``' instruction is used to cause control flow to transfer to a
3604different basic block in the current function. There are two forms of
3605this instruction, corresponding to a conditional branch and an
3606unconditional branch.
3607
3608Arguments:
3609""""""""""
3610
3611The conditional branch form of the '``br``' instruction takes a single
3612'``i1``' value and two '``label``' values. The unconditional form of the
3613'``br``' instruction takes a single '``label``' value as a target.
3614
3615Semantics:
3616""""""""""
3617
3618Upon execution of a conditional '``br``' instruction, the '``i1``'
3619argument is evaluated. If the value is ``true``, control flows to the
3620'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3621to the '``iffalse``' ``label`` argument.
3622
3623Example:
3624""""""""
3625
3626.. code-block:: llvm
3627
3628 Test:
3629 %cond = icmp eq i32 %a, %b
3630 br i1 %cond, label %IfEqual, label %IfUnequal
3631 IfEqual:
3632 ret i32 1
3633 IfUnequal:
3634 ret i32 0
3635
3636.. _i_switch:
3637
3638'``switch``' Instruction
3639^^^^^^^^^^^^^^^^^^^^^^^^
3640
3641Syntax:
3642"""""""
3643
3644::
3645
3646 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3647
3648Overview:
3649"""""""""
3650
3651The '``switch``' instruction is used to transfer control flow to one of
3652several different places. It is a generalization of the '``br``'
3653instruction, allowing a branch to occur to one of many possible
3654destinations.
3655
3656Arguments:
3657""""""""""
3658
3659The '``switch``' instruction uses three parameters: an integer
3660comparison value '``value``', a default '``label``' destination, and an
3661array of pairs of comparison value constants and '``label``'s. The table
3662is not allowed to contain duplicate constant entries.
3663
3664Semantics:
3665""""""""""
3666
3667The ``switch`` instruction specifies a table of values and destinations.
3668When the '``switch``' instruction is executed, this table is searched
3669for the given value. If the value is found, control flow is transferred
3670to the corresponding destination; otherwise, control flow is transferred
3671to the default destination.
3672
3673Implementation:
3674"""""""""""""""
3675
3676Depending on properties of the target machine and the particular
3677``switch`` instruction, this instruction may be code generated in
3678different ways. For example, it could be generated as a series of
3679chained conditional branches or with a lookup table.
3680
3681Example:
3682""""""""
3683
3684.. code-block:: llvm
3685
3686 ; Emulate a conditional br instruction
3687 %Val = zext i1 %value to i32
3688 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3689
3690 ; Emulate an unconditional br instruction
3691 switch i32 0, label %dest [ ]
3692
3693 ; Implement a jump table:
3694 switch i32 %val, label %otherwise [ i32 0, label %onzero
3695 i32 1, label %onone
3696 i32 2, label %ontwo ]
3697
3698.. _i_indirectbr:
3699
3700'``indirectbr``' Instruction
3701^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3702
3703Syntax:
3704"""""""
3705
3706::
3707
3708 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3709
3710Overview:
3711"""""""""
3712
3713The '``indirectbr``' instruction implements an indirect branch to a
3714label within the current function, whose address is specified by
3715"``address``". Address must be derived from a
3716:ref:`blockaddress <blockaddress>` constant.
3717
3718Arguments:
3719""""""""""
3720
3721The '``address``' argument is the address of the label to jump to. The
3722rest of the arguments indicate the full set of possible destinations
3723that the address may point to. Blocks are allowed to occur multiple
3724times in the destination list, though this isn't particularly useful.
3725
3726This destination list is required so that dataflow analysis has an
3727accurate understanding of the CFG.
3728
3729Semantics:
3730""""""""""
3731
3732Control transfers to the block specified in the address argument. All
3733possible destination blocks must be listed in the label list, otherwise
3734this instruction has undefined behavior. This implies that jumps to
3735labels defined in other functions have undefined behavior as well.
3736
3737Implementation:
3738"""""""""""""""
3739
3740This is typically implemented with a jump through a register.
3741
3742Example:
3743""""""""
3744
3745.. code-block:: llvm
3746
3747 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3748
3749.. _i_invoke:
3750
3751'``invoke``' Instruction
3752^^^^^^^^^^^^^^^^^^^^^^^^
3753
3754Syntax:
3755"""""""
3756
3757::
3758
3759 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3760 to label <normal label> unwind label <exception label>
3761
3762Overview:
3763"""""""""
3764
3765The '``invoke``' instruction causes control to transfer to a specified
3766function, with the possibility of control flow transfer to either the
3767'``normal``' label or the '``exception``' label. If the callee function
3768returns with the "``ret``" instruction, control flow will return to the
3769"normal" label. If the callee (or any indirect callees) returns via the
3770":ref:`resume <i_resume>`" instruction or other exception handling
3771mechanism, control is interrupted and continued at the dynamically
3772nearest "exception" label.
3773
3774The '``exception``' label is a `landing
3775pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3776'``exception``' label is required to have the
3777":ref:`landingpad <i_landingpad>`" instruction, which contains the
3778information about the behavior of the program after unwinding happens,
3779as its first non-PHI instruction. The restrictions on the
3780"``landingpad``" instruction's tightly couples it to the "``invoke``"
3781instruction, so that the important information contained within the
3782"``landingpad``" instruction can't be lost through normal code motion.
3783
3784Arguments:
3785""""""""""
3786
3787This instruction requires several arguments:
3788
3789#. The optional "cconv" marker indicates which :ref:`calling
3790 convention <callingconv>` the call should use. If none is
3791 specified, the call defaults to using C calling conventions.
3792#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3793 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3794 are valid here.
3795#. '``ptr to function ty``': shall be the signature of the pointer to
3796 function value being invoked. In most cases, this is a direct
3797 function invocation, but indirect ``invoke``'s are just as possible,
3798 branching off an arbitrary pointer to function value.
3799#. '``function ptr val``': An LLVM value containing a pointer to a
3800 function to be invoked.
3801#. '``function args``': argument list whose types match the function
3802 signature argument types and parameter attributes. All arguments must
3803 be of :ref:`first class <t_firstclass>` type. If the function signature
3804 indicates the function accepts a variable number of arguments, the
3805 extra arguments can be specified.
3806#. '``normal label``': the label reached when the called function
3807 executes a '``ret``' instruction.
3808#. '``exception label``': the label reached when a callee returns via
3809 the :ref:`resume <i_resume>` instruction or other exception handling
3810 mechanism.
3811#. The optional :ref:`function attributes <fnattrs>` list. Only
3812 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3813 attributes are valid here.
3814
3815Semantics:
3816""""""""""
3817
3818This instruction is designed to operate as a standard '``call``'
3819instruction in most regards. The primary difference is that it
3820establishes an association with a label, which is used by the runtime
3821library to unwind the stack.
3822
3823This instruction is used in languages with destructors to ensure that
3824proper cleanup is performed in the case of either a ``longjmp`` or a
3825thrown exception. Additionally, this is important for implementation of
3826'``catch``' clauses in high-level languages that support them.
3827
3828For the purposes of the SSA form, the definition of the value returned
3829by the '``invoke``' instruction is deemed to occur on the edge from the
3830current block to the "normal" label. If the callee unwinds then no
3831return value is available.
3832
3833Example:
3834""""""""
3835
3836.. code-block:: llvm
3837
3838 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003839 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003840 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003841 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003842
3843.. _i_resume:
3844
3845'``resume``' Instruction
3846^^^^^^^^^^^^^^^^^^^^^^^^
3847
3848Syntax:
3849"""""""
3850
3851::
3852
3853 resume <type> <value>
3854
3855Overview:
3856"""""""""
3857
3858The '``resume``' instruction is a terminator instruction that has no
3859successors.
3860
3861Arguments:
3862""""""""""
3863
3864The '``resume``' instruction requires one argument, which must have the
3865same type as the result of any '``landingpad``' instruction in the same
3866function.
3867
3868Semantics:
3869""""""""""
3870
3871The '``resume``' instruction resumes propagation of an existing
3872(in-flight) exception whose unwinding was interrupted with a
3873:ref:`landingpad <i_landingpad>` instruction.
3874
3875Example:
3876""""""""
3877
3878.. code-block:: llvm
3879
3880 resume { i8*, i32 } %exn
3881
3882.. _i_unreachable:
3883
3884'``unreachable``' Instruction
3885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3886
3887Syntax:
3888"""""""
3889
3890::
3891
3892 unreachable
3893
3894Overview:
3895"""""""""
3896
3897The '``unreachable``' instruction has no defined semantics. This
3898instruction is used to inform the optimizer that a particular portion of
3899the code is not reachable. This can be used to indicate that the code
3900after a no-return function cannot be reached, and other facts.
3901
3902Semantics:
3903""""""""""
3904
3905The '``unreachable``' instruction has no defined semantics.
3906
3907.. _binaryops:
3908
3909Binary Operations
3910-----------------
3911
3912Binary operators are used to do most of the computation in a program.
3913They require two operands of the same type, execute an operation on
3914them, and produce a single value. The operands might represent multiple
3915data, as is the case with the :ref:`vector <t_vector>` data type. The
3916result value has the same type as its operands.
3917
3918There are several different binary operators:
3919
3920.. _i_add:
3921
3922'``add``' Instruction
3923^^^^^^^^^^^^^^^^^^^^^
3924
3925Syntax:
3926"""""""
3927
3928::
3929
Tim Northover675a0962014-06-13 14:24:23 +00003930 <result> = add <ty> <op1>, <op2> ; yields ty:result
3931 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
3932 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
3933 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003934
3935Overview:
3936"""""""""
3937
3938The '``add``' instruction returns the sum of its two operands.
3939
3940Arguments:
3941""""""""""
3942
3943The two arguments to the '``add``' instruction must be
3944:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3945arguments must have identical types.
3946
3947Semantics:
3948""""""""""
3949
3950The value produced is the integer sum of the two operands.
3951
3952If the sum has unsigned overflow, the result returned is the
3953mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3954the result.
3955
3956Because LLVM integers use a two's complement representation, this
3957instruction is appropriate for both signed and unsigned integers.
3958
3959``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3960respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3961result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3962unsigned and/or signed overflow, respectively, occurs.
3963
3964Example:
3965""""""""
3966
3967.. code-block:: llvm
3968
Tim Northover675a0962014-06-13 14:24:23 +00003969 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00003970
3971.. _i_fadd:
3972
3973'``fadd``' Instruction
3974^^^^^^^^^^^^^^^^^^^^^^
3975
3976Syntax:
3977"""""""
3978
3979::
3980
Tim Northover675a0962014-06-13 14:24:23 +00003981 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003982
3983Overview:
3984"""""""""
3985
3986The '``fadd``' instruction returns the sum of its two operands.
3987
3988Arguments:
3989""""""""""
3990
3991The two arguments to the '``fadd``' instruction must be :ref:`floating
3992point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3993Both arguments must have identical types.
3994
3995Semantics:
3996""""""""""
3997
3998The value produced is the floating point sum of the two operands. This
3999instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4000which are optimization hints to enable otherwise unsafe floating point
4001optimizations:
4002
4003Example:
4004""""""""
4005
4006.. code-block:: llvm
4007
Tim Northover675a0962014-06-13 14:24:23 +00004008 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004009
4010'``sub``' Instruction
4011^^^^^^^^^^^^^^^^^^^^^
4012
4013Syntax:
4014"""""""
4015
4016::
4017
Tim Northover675a0962014-06-13 14:24:23 +00004018 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4019 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4020 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4021 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004022
4023Overview:
4024"""""""""
4025
4026The '``sub``' instruction returns the difference of its two operands.
4027
4028Note that the '``sub``' instruction is used to represent the '``neg``'
4029instruction present in most other intermediate representations.
4030
4031Arguments:
4032""""""""""
4033
4034The two arguments to the '``sub``' instruction must be
4035:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4036arguments must have identical types.
4037
4038Semantics:
4039""""""""""
4040
4041The value produced is the integer difference of the two operands.
4042
4043If the difference has unsigned overflow, the result returned is the
4044mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4045the result.
4046
4047Because LLVM integers use a two's complement representation, this
4048instruction is appropriate for both signed and unsigned integers.
4049
4050``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4051respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4052result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4053unsigned and/or signed overflow, respectively, occurs.
4054
4055Example:
4056""""""""
4057
4058.. code-block:: llvm
4059
Tim Northover675a0962014-06-13 14:24:23 +00004060 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4061 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004062
4063.. _i_fsub:
4064
4065'``fsub``' Instruction
4066^^^^^^^^^^^^^^^^^^^^^^
4067
4068Syntax:
4069"""""""
4070
4071::
4072
Tim Northover675a0962014-06-13 14:24:23 +00004073 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004074
4075Overview:
4076"""""""""
4077
4078The '``fsub``' instruction returns the difference of its two operands.
4079
4080Note that the '``fsub``' instruction is used to represent the '``fneg``'
4081instruction present in most other intermediate representations.
4082
4083Arguments:
4084""""""""""
4085
4086The two arguments to the '``fsub``' instruction must be :ref:`floating
4087point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4088Both arguments must have identical types.
4089
4090Semantics:
4091""""""""""
4092
4093The value produced is the floating point difference of the two operands.
4094This instruction can also take any number of :ref:`fast-math
4095flags <fastmath>`, which are optimization hints to enable otherwise
4096unsafe floating point optimizations:
4097
4098Example:
4099""""""""
4100
4101.. code-block:: llvm
4102
Tim Northover675a0962014-06-13 14:24:23 +00004103 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4104 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004105
4106'``mul``' Instruction
4107^^^^^^^^^^^^^^^^^^^^^
4108
4109Syntax:
4110"""""""
4111
4112::
4113
Tim Northover675a0962014-06-13 14:24:23 +00004114 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4115 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4116 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4117 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004118
4119Overview:
4120"""""""""
4121
4122The '``mul``' instruction returns the product of its two operands.
4123
4124Arguments:
4125""""""""""
4126
4127The two arguments to the '``mul``' instruction must be
4128:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4129arguments must have identical types.
4130
4131Semantics:
4132""""""""""
4133
4134The value produced is the integer product of the two operands.
4135
4136If the result of the multiplication has unsigned overflow, the result
4137returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4138bit width of the result.
4139
4140Because LLVM integers use a two's complement representation, and the
4141result is the same width as the operands, this instruction returns the
4142correct result for both signed and unsigned integers. If a full product
4143(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4144sign-extended or zero-extended as appropriate to the width of the full
4145product.
4146
4147``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4148respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4149result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4150unsigned and/or signed overflow, respectively, occurs.
4151
4152Example:
4153""""""""
4154
4155.. code-block:: llvm
4156
Tim Northover675a0962014-06-13 14:24:23 +00004157 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004158
4159.. _i_fmul:
4160
4161'``fmul``' Instruction
4162^^^^^^^^^^^^^^^^^^^^^^
4163
4164Syntax:
4165"""""""
4166
4167::
4168
Tim Northover675a0962014-06-13 14:24:23 +00004169 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004170
4171Overview:
4172"""""""""
4173
4174The '``fmul``' instruction returns the product of its two operands.
4175
4176Arguments:
4177""""""""""
4178
4179The two arguments to the '``fmul``' instruction must be :ref:`floating
4180point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4181Both arguments must have identical types.
4182
4183Semantics:
4184""""""""""
4185
4186The value produced is the floating point product of the two operands.
4187This instruction can also take any number of :ref:`fast-math
4188flags <fastmath>`, which are optimization hints to enable otherwise
4189unsafe floating point optimizations:
4190
4191Example:
4192""""""""
4193
4194.. code-block:: llvm
4195
Tim Northover675a0962014-06-13 14:24:23 +00004196 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004197
4198'``udiv``' Instruction
4199^^^^^^^^^^^^^^^^^^^^^^
4200
4201Syntax:
4202"""""""
4203
4204::
4205
Tim Northover675a0962014-06-13 14:24:23 +00004206 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4207 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004208
4209Overview:
4210"""""""""
4211
4212The '``udiv``' instruction returns the quotient of its two operands.
4213
4214Arguments:
4215""""""""""
4216
4217The two arguments to the '``udiv``' instruction must be
4218:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4219arguments must have identical types.
4220
4221Semantics:
4222""""""""""
4223
4224The value produced is the unsigned integer quotient of the two operands.
4225
4226Note that unsigned integer division and signed integer division are
4227distinct operations; for signed integer division, use '``sdiv``'.
4228
4229Division by zero leads to undefined behavior.
4230
4231If the ``exact`` keyword is present, the result value of the ``udiv`` is
4232a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4233such, "((a udiv exact b) mul b) == a").
4234
4235Example:
4236""""""""
4237
4238.. code-block:: llvm
4239
Tim Northover675a0962014-06-13 14:24:23 +00004240 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004241
4242'``sdiv``' Instruction
4243^^^^^^^^^^^^^^^^^^^^^^
4244
4245Syntax:
4246"""""""
4247
4248::
4249
Tim Northover675a0962014-06-13 14:24:23 +00004250 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4251 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004252
4253Overview:
4254"""""""""
4255
4256The '``sdiv``' instruction returns the quotient of its two operands.
4257
4258Arguments:
4259""""""""""
4260
4261The two arguments to the '``sdiv``' instruction must be
4262:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4263arguments must have identical types.
4264
4265Semantics:
4266""""""""""
4267
4268The value produced is the signed integer quotient of the two operands
4269rounded towards zero.
4270
4271Note that signed integer division and unsigned integer division are
4272distinct operations; for unsigned integer division, use '``udiv``'.
4273
4274Division by zero leads to undefined behavior. Overflow also leads to
4275undefined behavior; this is a rare case, but can occur, for example, by
4276doing a 32-bit division of -2147483648 by -1.
4277
4278If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4279a :ref:`poison value <poisonvalues>` if the result would be rounded.
4280
4281Example:
4282""""""""
4283
4284.. code-block:: llvm
4285
Tim Northover675a0962014-06-13 14:24:23 +00004286 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004287
4288.. _i_fdiv:
4289
4290'``fdiv``' Instruction
4291^^^^^^^^^^^^^^^^^^^^^^
4292
4293Syntax:
4294"""""""
4295
4296::
4297
Tim Northover675a0962014-06-13 14:24:23 +00004298 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004299
4300Overview:
4301"""""""""
4302
4303The '``fdiv``' instruction returns the quotient of its two operands.
4304
4305Arguments:
4306""""""""""
4307
4308The two arguments to the '``fdiv``' instruction must be :ref:`floating
4309point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4310Both arguments must have identical types.
4311
4312Semantics:
4313""""""""""
4314
4315The value produced is the floating point quotient of the two operands.
4316This instruction can also take any number of :ref:`fast-math
4317flags <fastmath>`, which are optimization hints to enable otherwise
4318unsafe floating point optimizations:
4319
4320Example:
4321""""""""
4322
4323.. code-block:: llvm
4324
Tim Northover675a0962014-06-13 14:24:23 +00004325 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004326
4327'``urem``' Instruction
4328^^^^^^^^^^^^^^^^^^^^^^
4329
4330Syntax:
4331"""""""
4332
4333::
4334
Tim Northover675a0962014-06-13 14:24:23 +00004335 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004336
4337Overview:
4338"""""""""
4339
4340The '``urem``' instruction returns the remainder from the unsigned
4341division of its two arguments.
4342
4343Arguments:
4344""""""""""
4345
4346The two arguments to the '``urem``' instruction must be
4347:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4348arguments must have identical types.
4349
4350Semantics:
4351""""""""""
4352
4353This instruction returns the unsigned integer *remainder* of a division.
4354This instruction always performs an unsigned division to get the
4355remainder.
4356
4357Note that unsigned integer remainder and signed integer remainder are
4358distinct operations; for signed integer remainder, use '``srem``'.
4359
4360Taking the remainder of a division by zero leads to undefined behavior.
4361
4362Example:
4363""""""""
4364
4365.. code-block:: llvm
4366
Tim Northover675a0962014-06-13 14:24:23 +00004367 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004368
4369'``srem``' Instruction
4370^^^^^^^^^^^^^^^^^^^^^^
4371
4372Syntax:
4373"""""""
4374
4375::
4376
Tim Northover675a0962014-06-13 14:24:23 +00004377 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004378
4379Overview:
4380"""""""""
4381
4382The '``srem``' instruction returns the remainder from the signed
4383division of its two operands. This instruction can also take
4384:ref:`vector <t_vector>` versions of the values in which case the elements
4385must be integers.
4386
4387Arguments:
4388""""""""""
4389
4390The two arguments to the '``srem``' instruction must be
4391:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4392arguments must have identical types.
4393
4394Semantics:
4395""""""""""
4396
4397This instruction returns the *remainder* of a division (where the result
4398is either zero or has the same sign as the dividend, ``op1``), not the
4399*modulo* operator (where the result is either zero or has the same sign
4400as the divisor, ``op2``) of a value. For more information about the
4401difference, see `The Math
4402Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4403table of how this is implemented in various languages, please see
4404`Wikipedia: modulo
4405operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4406
4407Note that signed integer remainder and unsigned integer remainder are
4408distinct operations; for unsigned integer remainder, use '``urem``'.
4409
4410Taking the remainder of a division by zero leads to undefined behavior.
4411Overflow also leads to undefined behavior; this is a rare case, but can
4412occur, for example, by taking the remainder of a 32-bit division of
4413-2147483648 by -1. (The remainder doesn't actually overflow, but this
4414rule lets srem be implemented using instructions that return both the
4415result of the division and the remainder.)
4416
4417Example:
4418""""""""
4419
4420.. code-block:: llvm
4421
Tim Northover675a0962014-06-13 14:24:23 +00004422 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004423
4424.. _i_frem:
4425
4426'``frem``' Instruction
4427^^^^^^^^^^^^^^^^^^^^^^
4428
4429Syntax:
4430"""""""
4431
4432::
4433
Tim Northover675a0962014-06-13 14:24:23 +00004434 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004435
4436Overview:
4437"""""""""
4438
4439The '``frem``' instruction returns the remainder from the division of
4440its two operands.
4441
4442Arguments:
4443""""""""""
4444
4445The two arguments to the '``frem``' instruction must be :ref:`floating
4446point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4447Both arguments must have identical types.
4448
4449Semantics:
4450""""""""""
4451
4452This instruction returns the *remainder* of a division. The remainder
4453has the same sign as the dividend. This instruction can also take any
4454number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4455to enable otherwise unsafe floating point optimizations:
4456
4457Example:
4458""""""""
4459
4460.. code-block:: llvm
4461
Tim Northover675a0962014-06-13 14:24:23 +00004462 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004463
4464.. _bitwiseops:
4465
4466Bitwise Binary Operations
4467-------------------------
4468
4469Bitwise binary operators are used to do various forms of bit-twiddling
4470in a program. They are generally very efficient instructions and can
4471commonly be strength reduced from other instructions. They require two
4472operands of the same type, execute an operation on them, and produce a
4473single value. The resulting value is the same type as its operands.
4474
4475'``shl``' Instruction
4476^^^^^^^^^^^^^^^^^^^^^
4477
4478Syntax:
4479"""""""
4480
4481::
4482
Tim Northover675a0962014-06-13 14:24:23 +00004483 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4484 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4485 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4486 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004487
4488Overview:
4489"""""""""
4490
4491The '``shl``' instruction returns the first operand shifted to the left
4492a specified number of bits.
4493
4494Arguments:
4495""""""""""
4496
4497Both arguments to the '``shl``' instruction must be the same
4498:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4499'``op2``' is treated as an unsigned value.
4500
4501Semantics:
4502""""""""""
4503
4504The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4505where ``n`` is the width of the result. If ``op2`` is (statically or
4506dynamically) negative or equal to or larger than the number of bits in
4507``op1``, the result is undefined. If the arguments are vectors, each
4508vector element of ``op1`` is shifted by the corresponding shift amount
4509in ``op2``.
4510
4511If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4512value <poisonvalues>` if it shifts out any non-zero bits. If the
4513``nsw`` keyword is present, then the shift produces a :ref:`poison
4514value <poisonvalues>` if it shifts out any bits that disagree with the
4515resultant sign bit. As such, NUW/NSW have the same semantics as they
4516would if the shift were expressed as a mul instruction with the same
4517nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4518
4519Example:
4520""""""""
4521
4522.. code-block:: llvm
4523
Tim Northover675a0962014-06-13 14:24:23 +00004524 <result> = shl i32 4, %var ; yields i32: 4 << %var
4525 <result> = shl i32 4, 2 ; yields i32: 16
4526 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004527 <result> = shl i32 1, 32 ; undefined
4528 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4529
4530'``lshr``' Instruction
4531^^^^^^^^^^^^^^^^^^^^^^
4532
4533Syntax:
4534"""""""
4535
4536::
4537
Tim Northover675a0962014-06-13 14:24:23 +00004538 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4539 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004540
4541Overview:
4542"""""""""
4543
4544The '``lshr``' instruction (logical shift right) returns the first
4545operand shifted to the right a specified number of bits with zero fill.
4546
4547Arguments:
4548""""""""""
4549
4550Both arguments to the '``lshr``' instruction must be the same
4551:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4552'``op2``' is treated as an unsigned value.
4553
4554Semantics:
4555""""""""""
4556
4557This instruction always performs a logical shift right operation. The
4558most significant bits of the result will be filled with zero bits after
4559the shift. If ``op2`` is (statically or dynamically) equal to or larger
4560than the number of bits in ``op1``, the result is undefined. If the
4561arguments are vectors, each vector element of ``op1`` is shifted by the
4562corresponding shift amount in ``op2``.
4563
4564If the ``exact`` keyword is present, the result value of the ``lshr`` is
4565a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4566non-zero.
4567
4568Example:
4569""""""""
4570
4571.. code-block:: llvm
4572
Tim Northover675a0962014-06-13 14:24:23 +00004573 <result> = lshr i32 4, 1 ; yields i32:result = 2
4574 <result> = lshr i32 4, 2 ; yields i32:result = 1
4575 <result> = lshr i8 4, 3 ; yields i8:result = 0
4576 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004577 <result> = lshr i32 1, 32 ; undefined
4578 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4579
4580'``ashr``' Instruction
4581^^^^^^^^^^^^^^^^^^^^^^
4582
4583Syntax:
4584"""""""
4585
4586::
4587
Tim Northover675a0962014-06-13 14:24:23 +00004588 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4589 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004590
4591Overview:
4592"""""""""
4593
4594The '``ashr``' instruction (arithmetic shift right) returns the first
4595operand shifted to the right a specified number of bits with sign
4596extension.
4597
4598Arguments:
4599""""""""""
4600
4601Both arguments to the '``ashr``' instruction must be the same
4602:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4603'``op2``' is treated as an unsigned value.
4604
4605Semantics:
4606""""""""""
4607
4608This instruction always performs an arithmetic shift right operation,
4609The most significant bits of the result will be filled with the sign bit
4610of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4611than the number of bits in ``op1``, the result is undefined. If the
4612arguments are vectors, each vector element of ``op1`` is shifted by the
4613corresponding shift amount in ``op2``.
4614
4615If the ``exact`` keyword is present, the result value of the ``ashr`` is
4616a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4617non-zero.
4618
4619Example:
4620""""""""
4621
4622.. code-block:: llvm
4623
Tim Northover675a0962014-06-13 14:24:23 +00004624 <result> = ashr i32 4, 1 ; yields i32:result = 2
4625 <result> = ashr i32 4, 2 ; yields i32:result = 1
4626 <result> = ashr i8 4, 3 ; yields i8:result = 0
4627 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004628 <result> = ashr i32 1, 32 ; undefined
4629 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4630
4631'``and``' Instruction
4632^^^^^^^^^^^^^^^^^^^^^
4633
4634Syntax:
4635"""""""
4636
4637::
4638
Tim Northover675a0962014-06-13 14:24:23 +00004639 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004640
4641Overview:
4642"""""""""
4643
4644The '``and``' instruction returns the bitwise logical and of its two
4645operands.
4646
4647Arguments:
4648""""""""""
4649
4650The two arguments to the '``and``' instruction must be
4651:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4652arguments must have identical types.
4653
4654Semantics:
4655""""""""""
4656
4657The truth table used for the '``and``' instruction is:
4658
4659+-----+-----+-----+
4660| In0 | In1 | Out |
4661+-----+-----+-----+
4662| 0 | 0 | 0 |
4663+-----+-----+-----+
4664| 0 | 1 | 0 |
4665+-----+-----+-----+
4666| 1 | 0 | 0 |
4667+-----+-----+-----+
4668| 1 | 1 | 1 |
4669+-----+-----+-----+
4670
4671Example:
4672""""""""
4673
4674.. code-block:: llvm
4675
Tim Northover675a0962014-06-13 14:24:23 +00004676 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4677 <result> = and i32 15, 40 ; yields i32:result = 8
4678 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004679
4680'``or``' Instruction
4681^^^^^^^^^^^^^^^^^^^^
4682
4683Syntax:
4684"""""""
4685
4686::
4687
Tim Northover675a0962014-06-13 14:24:23 +00004688 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004689
4690Overview:
4691"""""""""
4692
4693The '``or``' instruction returns the bitwise logical inclusive or of its
4694two operands.
4695
4696Arguments:
4697""""""""""
4698
4699The two arguments to the '``or``' instruction must be
4700:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4701arguments must have identical types.
4702
4703Semantics:
4704""""""""""
4705
4706The truth table used for the '``or``' instruction is:
4707
4708+-----+-----+-----+
4709| In0 | In1 | Out |
4710+-----+-----+-----+
4711| 0 | 0 | 0 |
4712+-----+-----+-----+
4713| 0 | 1 | 1 |
4714+-----+-----+-----+
4715| 1 | 0 | 1 |
4716+-----+-----+-----+
4717| 1 | 1 | 1 |
4718+-----+-----+-----+
4719
4720Example:
4721""""""""
4722
4723::
4724
Tim Northover675a0962014-06-13 14:24:23 +00004725 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4726 <result> = or i32 15, 40 ; yields i32:result = 47
4727 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004728
4729'``xor``' Instruction
4730^^^^^^^^^^^^^^^^^^^^^
4731
4732Syntax:
4733"""""""
4734
4735::
4736
Tim Northover675a0962014-06-13 14:24:23 +00004737 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004738
4739Overview:
4740"""""""""
4741
4742The '``xor``' instruction returns the bitwise logical exclusive or of
4743its two operands. The ``xor`` is used to implement the "one's
4744complement" operation, which is the "~" operator in C.
4745
4746Arguments:
4747""""""""""
4748
4749The two arguments to the '``xor``' instruction must be
4750:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4751arguments must have identical types.
4752
4753Semantics:
4754""""""""""
4755
4756The truth table used for the '``xor``' instruction is:
4757
4758+-----+-----+-----+
4759| In0 | In1 | Out |
4760+-----+-----+-----+
4761| 0 | 0 | 0 |
4762+-----+-----+-----+
4763| 0 | 1 | 1 |
4764+-----+-----+-----+
4765| 1 | 0 | 1 |
4766+-----+-----+-----+
4767| 1 | 1 | 0 |
4768+-----+-----+-----+
4769
4770Example:
4771""""""""
4772
4773.. code-block:: llvm
4774
Tim Northover675a0962014-06-13 14:24:23 +00004775 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4776 <result> = xor i32 15, 40 ; yields i32:result = 39
4777 <result> = xor i32 4, 8 ; yields i32:result = 12
4778 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004779
4780Vector Operations
4781-----------------
4782
4783LLVM supports several instructions to represent vector operations in a
4784target-independent manner. These instructions cover the element-access
4785and vector-specific operations needed to process vectors effectively.
4786While LLVM does directly support these vector operations, many
4787sophisticated algorithms will want to use target-specific intrinsics to
4788take full advantage of a specific target.
4789
4790.. _i_extractelement:
4791
4792'``extractelement``' Instruction
4793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4794
4795Syntax:
4796"""""""
4797
4798::
4799
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004800 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004801
4802Overview:
4803"""""""""
4804
4805The '``extractelement``' instruction extracts a single scalar element
4806from a vector at a specified index.
4807
4808Arguments:
4809""""""""""
4810
4811The first operand of an '``extractelement``' instruction is a value of
4812:ref:`vector <t_vector>` type. The second operand is an index indicating
4813the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004814variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004815
4816Semantics:
4817""""""""""
4818
4819The result is a scalar of the same type as the element type of ``val``.
4820Its value is the value at position ``idx`` of ``val``. If ``idx``
4821exceeds the length of ``val``, the results are undefined.
4822
4823Example:
4824""""""""
4825
4826.. code-block:: llvm
4827
4828 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4829
4830.. _i_insertelement:
4831
4832'``insertelement``' Instruction
4833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4834
4835Syntax:
4836"""""""
4837
4838::
4839
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004840 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004841
4842Overview:
4843"""""""""
4844
4845The '``insertelement``' instruction inserts a scalar element into a
4846vector at a specified index.
4847
4848Arguments:
4849""""""""""
4850
4851The first operand of an '``insertelement``' instruction is a value of
4852:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4853type must equal the element type of the first operand. The third operand
4854is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004855index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004856
4857Semantics:
4858""""""""""
4859
4860The result is a vector of the same type as ``val``. Its element values
4861are those of ``val`` except at position ``idx``, where it gets the value
4862``elt``. If ``idx`` exceeds the length of ``val``, the results are
4863undefined.
4864
4865Example:
4866""""""""
4867
4868.. code-block:: llvm
4869
4870 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4871
4872.. _i_shufflevector:
4873
4874'``shufflevector``' Instruction
4875^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4876
4877Syntax:
4878"""""""
4879
4880::
4881
4882 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4883
4884Overview:
4885"""""""""
4886
4887The '``shufflevector``' instruction constructs a permutation of elements
4888from two input vectors, returning a vector with the same element type as
4889the input and length that is the same as the shuffle mask.
4890
4891Arguments:
4892""""""""""
4893
4894The first two operands of a '``shufflevector``' instruction are vectors
4895with the same type. The third argument is a shuffle mask whose element
4896type is always 'i32'. The result of the instruction is a vector whose
4897length is the same as the shuffle mask and whose element type is the
4898same as the element type of the first two operands.
4899
4900The shuffle mask operand is required to be a constant vector with either
4901constant integer or undef values.
4902
4903Semantics:
4904""""""""""
4905
4906The elements of the two input vectors are numbered from left to right
4907across both of the vectors. The shuffle mask operand specifies, for each
4908element of the result vector, which element of the two input vectors the
4909result element gets. The element selector may be undef (meaning "don't
4910care") and the second operand may be undef if performing a shuffle from
4911only one vector.
4912
4913Example:
4914""""""""
4915
4916.. code-block:: llvm
4917
4918 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4919 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4920 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4921 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4922 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4923 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4924 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4925 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4926
4927Aggregate Operations
4928--------------------
4929
4930LLVM supports several instructions for working with
4931:ref:`aggregate <t_aggregate>` values.
4932
4933.. _i_extractvalue:
4934
4935'``extractvalue``' Instruction
4936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4937
4938Syntax:
4939"""""""
4940
4941::
4942
4943 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4944
4945Overview:
4946"""""""""
4947
4948The '``extractvalue``' instruction extracts the value of a member field
4949from an :ref:`aggregate <t_aggregate>` value.
4950
4951Arguments:
4952""""""""""
4953
4954The first operand of an '``extractvalue``' instruction is a value of
4955:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4956constant indices to specify which value to extract in a similar manner
4957as indices in a '``getelementptr``' instruction.
4958
4959The major differences to ``getelementptr`` indexing are:
4960
4961- Since the value being indexed is not a pointer, the first index is
4962 omitted and assumed to be zero.
4963- At least one index must be specified.
4964- Not only struct indices but also array indices must be in bounds.
4965
4966Semantics:
4967""""""""""
4968
4969The result is the value at the position in the aggregate specified by
4970the index operands.
4971
4972Example:
4973""""""""
4974
4975.. code-block:: llvm
4976
4977 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4978
4979.. _i_insertvalue:
4980
4981'``insertvalue``' Instruction
4982^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4983
4984Syntax:
4985"""""""
4986
4987::
4988
4989 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4990
4991Overview:
4992"""""""""
4993
4994The '``insertvalue``' instruction inserts a value into a member field in
4995an :ref:`aggregate <t_aggregate>` value.
4996
4997Arguments:
4998""""""""""
4999
5000The first operand of an '``insertvalue``' instruction is a value of
5001:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5002a first-class value to insert. The following operands are constant
5003indices indicating the position at which to insert the value in a
5004similar manner as indices in a '``extractvalue``' instruction. The value
5005to insert must have the same type as the value identified by the
5006indices.
5007
5008Semantics:
5009""""""""""
5010
5011The result is an aggregate of the same type as ``val``. Its value is
5012that of ``val`` except that the value at the position specified by the
5013indices is that of ``elt``.
5014
5015Example:
5016""""""""
5017
5018.. code-block:: llvm
5019
5020 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5021 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
5022 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
5023
5024.. _memoryops:
5025
5026Memory Access and Addressing Operations
5027---------------------------------------
5028
5029A key design point of an SSA-based representation is how it represents
5030memory. In LLVM, no memory locations are in SSA form, which makes things
5031very simple. This section describes how to read, write, and allocate
5032memory in LLVM.
5033
5034.. _i_alloca:
5035
5036'``alloca``' Instruction
5037^^^^^^^^^^^^^^^^^^^^^^^^
5038
5039Syntax:
5040"""""""
5041
5042::
5043
Tim Northover675a0962014-06-13 14:24:23 +00005044 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005045
5046Overview:
5047"""""""""
5048
5049The '``alloca``' instruction allocates memory on the stack frame of the
5050currently executing function, to be automatically released when this
5051function returns to its caller. The object is always allocated in the
5052generic address space (address space zero).
5053
5054Arguments:
5055""""""""""
5056
5057The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5058bytes of memory on the runtime stack, returning a pointer of the
5059appropriate type to the program. If "NumElements" is specified, it is
5060the number of elements allocated, otherwise "NumElements" is defaulted
5061to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005062allocation is guaranteed to be aligned to at least that boundary. The
5063alignment may not be greater than ``1 << 29``. If not specified, or if
5064zero, the target can choose to align the allocation on any convenient
5065boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005066
5067'``type``' may be any sized type.
5068
5069Semantics:
5070""""""""""
5071
5072Memory is allocated; a pointer is returned. The operation is undefined
5073if there is insufficient stack space for the allocation. '``alloca``'d
5074memory is automatically released when the function returns. The
5075'``alloca``' instruction is commonly used to represent automatic
5076variables that must have an address available. When the function returns
5077(either with the ``ret`` or ``resume`` instructions), the memory is
5078reclaimed. Allocating zero bytes is legal, but the result is undefined.
5079The order in which memory is allocated (ie., which way the stack grows)
5080is not specified.
5081
5082Example:
5083""""""""
5084
5085.. code-block:: llvm
5086
Tim Northover675a0962014-06-13 14:24:23 +00005087 %ptr = alloca i32 ; yields i32*:ptr
5088 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5089 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5090 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005091
5092.. _i_load:
5093
5094'``load``' Instruction
5095^^^^^^^^^^^^^^^^^^^^^^
5096
5097Syntax:
5098"""""""
5099
5100::
5101
5102 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
5103 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5104 !<index> = !{ i32 1 }
5105
5106Overview:
5107"""""""""
5108
5109The '``load``' instruction is used to read from memory.
5110
5111Arguments:
5112""""""""""
5113
Eli Bendersky239a78b2013-04-17 20:17:08 +00005114The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005115from which to load. The pointer must point to a :ref:`first
5116class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5117then the optimizer is not allowed to modify the number or order of
5118execution of this ``load`` with other :ref:`volatile
5119operations <volatile>`.
5120
5121If the ``load`` is marked as ``atomic``, it takes an extra
5122:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5123``release`` and ``acq_rel`` orderings are not valid on ``load``
5124instructions. Atomic loads produce :ref:`defined <memmodel>` results
5125when they may see multiple atomic stores. The type of the pointee must
5126be an integer type whose bit width is a power of two greater than or
5127equal to eight and less than or equal to a target-specific size limit.
5128``align`` must be explicitly specified on atomic loads, and the load has
5129undefined behavior if the alignment is not set to a value which is at
5130least the size in bytes of the pointee. ``!nontemporal`` does not have
5131any defined semantics for atomic loads.
5132
5133The optional constant ``align`` argument specifies the alignment of the
5134operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005135or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005136alignment for the target. It is the responsibility of the code emitter
5137to ensure that the alignment information is correct. Overestimating the
5138alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005139may produce less efficient code. An alignment of 1 is always safe. The
5140maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005141
5142The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005143metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005144``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005145metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005146that this load is not expected to be reused in the cache. The code
5147generator may select special instructions to save cache bandwidth, such
5148as the ``MOVNT`` instruction on x86.
5149
5150The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005151metadata name ``<index>`` corresponding to a metadata node with no
5152entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00005153instruction tells the optimizer and code generator that this load
5154address points to memory which does not change value during program
5155execution. The optimizer may then move this load around, for example, by
5156hoisting it out of loops using loop invariant code motion.
5157
5158Semantics:
5159""""""""""
5160
5161The location of memory pointed to is loaded. If the value being loaded
5162is of scalar type then the number of bytes read does not exceed the
5163minimum number of bytes needed to hold all bits of the type. For
5164example, loading an ``i24`` reads at most three bytes. When loading a
5165value of a type like ``i20`` with a size that is not an integral number
5166of bytes, the result is undefined if the value was not originally
5167written using a store of the same type.
5168
5169Examples:
5170"""""""""
5171
5172.. code-block:: llvm
5173
Tim Northover675a0962014-06-13 14:24:23 +00005174 %ptr = alloca i32 ; yields i32*:ptr
5175 store i32 3, i32* %ptr ; yields void
5176 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005177
5178.. _i_store:
5179
5180'``store``' Instruction
5181^^^^^^^^^^^^^^^^^^^^^^^
5182
5183Syntax:
5184"""""""
5185
5186::
5187
Tim Northover675a0962014-06-13 14:24:23 +00005188 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5189 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005190
5191Overview:
5192"""""""""
5193
5194The '``store``' instruction is used to write to memory.
5195
5196Arguments:
5197""""""""""
5198
Eli Benderskyca380842013-04-17 17:17:20 +00005199There are two arguments to the ``store`` instruction: a value to store
5200and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005201operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005202the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005203then the optimizer is not allowed to modify the number or order of
5204execution of this ``store`` with other :ref:`volatile
5205operations <volatile>`.
5206
5207If the ``store`` is marked as ``atomic``, it takes an extra
5208:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5209``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5210instructions. Atomic loads produce :ref:`defined <memmodel>` results
5211when they may see multiple atomic stores. The type of the pointee must
5212be an integer type whose bit width is a power of two greater than or
5213equal to eight and less than or equal to a target-specific size limit.
5214``align`` must be explicitly specified on atomic stores, and the store
5215has undefined behavior if the alignment is not set to a value which is
5216at least the size in bytes of the pointee. ``!nontemporal`` does not
5217have any defined semantics for atomic stores.
5218
Eli Benderskyca380842013-04-17 17:17:20 +00005219The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005220operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005221or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005222alignment for the target. It is the responsibility of the code emitter
5223to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005224alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005225alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005226safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005227
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005228The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005229name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005230value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005231tells the optimizer and code generator that this load is not expected to
5232be reused in the cache. The code generator may select special
5233instructions to save cache bandwidth, such as the MOVNT instruction on
5234x86.
5235
5236Semantics:
5237""""""""""
5238
Eli Benderskyca380842013-04-17 17:17:20 +00005239The contents of memory are updated to contain ``<value>`` at the
5240location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005241of scalar type then the number of bytes written does not exceed the
5242minimum number of bytes needed to hold all bits of the type. For
5243example, storing an ``i24`` writes at most three bytes. When writing a
5244value of a type like ``i20`` with a size that is not an integral number
5245of bytes, it is unspecified what happens to the extra bits that do not
5246belong to the type, but they will typically be overwritten.
5247
5248Example:
5249""""""""
5250
5251.. code-block:: llvm
5252
Tim Northover675a0962014-06-13 14:24:23 +00005253 %ptr = alloca i32 ; yields i32*:ptr
5254 store i32 3, i32* %ptr ; yields void
5255 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005256
5257.. _i_fence:
5258
5259'``fence``' Instruction
5260^^^^^^^^^^^^^^^^^^^^^^^
5261
5262Syntax:
5263"""""""
5264
5265::
5266
Tim Northover675a0962014-06-13 14:24:23 +00005267 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005268
5269Overview:
5270"""""""""
5271
5272The '``fence``' instruction is used to introduce happens-before edges
5273between operations.
5274
5275Arguments:
5276""""""""""
5277
5278'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5279defines what *synchronizes-with* edges they add. They can only be given
5280``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5281
5282Semantics:
5283""""""""""
5284
5285A fence A which has (at least) ``release`` ordering semantics
5286*synchronizes with* a fence B with (at least) ``acquire`` ordering
5287semantics if and only if there exist atomic operations X and Y, both
5288operating on some atomic object M, such that A is sequenced before X, X
5289modifies M (either directly or through some side effect of a sequence
5290headed by X), Y is sequenced before B, and Y observes M. This provides a
5291*happens-before* dependency between A and B. Rather than an explicit
5292``fence``, one (but not both) of the atomic operations X or Y might
5293provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5294still *synchronize-with* the explicit ``fence`` and establish the
5295*happens-before* edge.
5296
5297A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5298``acquire`` and ``release`` semantics specified above, participates in
5299the global program order of other ``seq_cst`` operations and/or fences.
5300
5301The optional ":ref:`singlethread <singlethread>`" argument specifies
5302that the fence only synchronizes with other fences in the same thread.
5303(This is useful for interacting with signal handlers.)
5304
5305Example:
5306""""""""
5307
5308.. code-block:: llvm
5309
Tim Northover675a0962014-06-13 14:24:23 +00005310 fence acquire ; yields void
5311 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005312
5313.. _i_cmpxchg:
5314
5315'``cmpxchg``' Instruction
5316^^^^^^^^^^^^^^^^^^^^^^^^^
5317
5318Syntax:
5319"""""""
5320
5321::
5322
Tim Northover675a0962014-06-13 14:24:23 +00005323 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005324
5325Overview:
5326"""""""""
5327
5328The '``cmpxchg``' instruction is used to atomically modify memory. It
5329loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005330equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005331
5332Arguments:
5333""""""""""
5334
5335There are three arguments to the '``cmpxchg``' instruction: an address
5336to operate on, a value to compare to the value currently be at that
5337address, and a new value to place at that address if the compared values
5338are equal. The type of '<cmp>' must be an integer type whose bit width
5339is a power of two greater than or equal to eight and less than or equal
5340to a target-specific size limit. '<cmp>' and '<new>' must have the same
5341type, and the type of '<pointer>' must be a pointer to that type. If the
5342``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5343to modify the number or order of execution of this ``cmpxchg`` with
5344other :ref:`volatile operations <volatile>`.
5345
Tim Northovere94a5182014-03-11 10:48:52 +00005346The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005347``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5348must be at least ``monotonic``, the ordering constraint on failure must be no
5349stronger than that on success, and the failure ordering cannot be either
5350``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005351
5352The optional "``singlethread``" argument declares that the ``cmpxchg``
5353is only atomic with respect to code (usually signal handlers) running in
5354the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5355respect to all other code in the system.
5356
5357The pointer passed into cmpxchg must have alignment greater than or
5358equal to the size in memory of the operand.
5359
5360Semantics:
5361""""""""""
5362
Tim Northover420a2162014-06-13 14:24:07 +00005363The contents of memory at the location specified by the '``<pointer>``' operand
5364is read and compared to '``<cmp>``'; if the read value is the equal, the
5365'``<new>``' is written. The original value at the location is returned, together
5366with a flag indicating success (true) or failure (false).
5367
5368If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5369permitted: the operation may not write ``<new>`` even if the comparison
5370matched.
5371
5372If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5373if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005374
Tim Northovere94a5182014-03-11 10:48:52 +00005375A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5376identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5377load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005378
5379Example:
5380""""""""
5381
5382.. code-block:: llvm
5383
5384 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005385 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005386 br label %loop
5387
5388 loop:
5389 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5390 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005391 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005392 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5393 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005394 br i1 %success, label %done, label %loop
5395
5396 done:
5397 ...
5398
5399.. _i_atomicrmw:
5400
5401'``atomicrmw``' Instruction
5402^^^^^^^^^^^^^^^^^^^^^^^^^^^
5403
5404Syntax:
5405"""""""
5406
5407::
5408
Tim Northover675a0962014-06-13 14:24:23 +00005409 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005410
5411Overview:
5412"""""""""
5413
5414The '``atomicrmw``' instruction is used to atomically modify memory.
5415
5416Arguments:
5417""""""""""
5418
5419There are three arguments to the '``atomicrmw``' instruction: an
5420operation to apply, an address whose value to modify, an argument to the
5421operation. The operation must be one of the following keywords:
5422
5423- xchg
5424- add
5425- sub
5426- and
5427- nand
5428- or
5429- xor
5430- max
5431- min
5432- umax
5433- umin
5434
5435The type of '<value>' must be an integer type whose bit width is a power
5436of two greater than or equal to eight and less than or equal to a
5437target-specific size limit. The type of the '``<pointer>``' operand must
5438be a pointer to that type. If the ``atomicrmw`` is marked as
5439``volatile``, then the optimizer is not allowed to modify the number or
5440order of execution of this ``atomicrmw`` with other :ref:`volatile
5441operations <volatile>`.
5442
5443Semantics:
5444""""""""""
5445
5446The contents of memory at the location specified by the '``<pointer>``'
5447operand are atomically read, modified, and written back. The original
5448value at the location is returned. The modification is specified by the
5449operation argument:
5450
5451- xchg: ``*ptr = val``
5452- add: ``*ptr = *ptr + val``
5453- sub: ``*ptr = *ptr - val``
5454- and: ``*ptr = *ptr & val``
5455- nand: ``*ptr = ~(*ptr & val)``
5456- or: ``*ptr = *ptr | val``
5457- xor: ``*ptr = *ptr ^ val``
5458- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5459- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5460- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5461 comparison)
5462- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5463 comparison)
5464
5465Example:
5466""""""""
5467
5468.. code-block:: llvm
5469
Tim Northover675a0962014-06-13 14:24:23 +00005470 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005471
5472.. _i_getelementptr:
5473
5474'``getelementptr``' Instruction
5475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5476
5477Syntax:
5478"""""""
5479
5480::
5481
5482 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5483 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5484 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5485
5486Overview:
5487"""""""""
5488
5489The '``getelementptr``' instruction is used to get the address of a
5490subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5491address calculation only and does not access memory.
5492
5493Arguments:
5494""""""""""
5495
5496The first argument is always a pointer or a vector of pointers, and
5497forms the basis of the calculation. The remaining arguments are indices
5498that indicate which of the elements of the aggregate object are indexed.
5499The interpretation of each index is dependent on the type being indexed
5500into. The first index always indexes the pointer value given as the
5501first argument, the second index indexes a value of the type pointed to
5502(not necessarily the value directly pointed to, since the first index
5503can be non-zero), etc. The first type indexed into must be a pointer
5504value, subsequent types can be arrays, vectors, and structs. Note that
5505subsequent types being indexed into can never be pointers, since that
5506would require loading the pointer before continuing calculation.
5507
5508The type of each index argument depends on the type it is indexing into.
5509When indexing into a (optionally packed) structure, only ``i32`` integer
5510**constants** are allowed (when using a vector of indices they must all
5511be the **same** ``i32`` integer constant). When indexing into an array,
5512pointer or vector, integers of any width are allowed, and they are not
5513required to be constant. These integers are treated as signed values
5514where relevant.
5515
5516For example, let's consider a C code fragment and how it gets compiled
5517to LLVM:
5518
5519.. code-block:: c
5520
5521 struct RT {
5522 char A;
5523 int B[10][20];
5524 char C;
5525 };
5526 struct ST {
5527 int X;
5528 double Y;
5529 struct RT Z;
5530 };
5531
5532 int *foo(struct ST *s) {
5533 return &s[1].Z.B[5][13];
5534 }
5535
5536The LLVM code generated by Clang is:
5537
5538.. code-block:: llvm
5539
5540 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5541 %struct.ST = type { i32, double, %struct.RT }
5542
5543 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5544 entry:
5545 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5546 ret i32* %arrayidx
5547 }
5548
5549Semantics:
5550""""""""""
5551
5552In the example above, the first index is indexing into the
5553'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5554= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5555indexes into the third element of the structure, yielding a
5556'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5557structure. The third index indexes into the second element of the
5558structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5559dimensions of the array are subscripted into, yielding an '``i32``'
5560type. The '``getelementptr``' instruction returns a pointer to this
5561element, thus computing a value of '``i32*``' type.
5562
5563Note that it is perfectly legal to index partially through a structure,
5564returning a pointer to an inner element. Because of this, the LLVM code
5565for the given testcase is equivalent to:
5566
5567.. code-block:: llvm
5568
5569 define i32* @foo(%struct.ST* %s) {
5570 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5571 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5572 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5573 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5574 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5575 ret i32* %t5
5576 }
5577
5578If the ``inbounds`` keyword is present, the result value of the
5579``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5580pointer is not an *in bounds* address of an allocated object, or if any
5581of the addresses that would be formed by successive addition of the
5582offsets implied by the indices to the base address with infinitely
5583precise signed arithmetic are not an *in bounds* address of that
5584allocated object. The *in bounds* addresses for an allocated object are
5585all the addresses that point into the object, plus the address one byte
5586past the end. In cases where the base is a vector of pointers the
5587``inbounds`` keyword applies to each of the computations element-wise.
5588
5589If the ``inbounds`` keyword is not present, the offsets are added to the
5590base address with silently-wrapping two's complement arithmetic. If the
5591offsets have a different width from the pointer, they are sign-extended
5592or truncated to the width of the pointer. The result value of the
5593``getelementptr`` may be outside the object pointed to by the base
5594pointer. The result value may not necessarily be used to access memory
5595though, even if it happens to point into allocated storage. See the
5596:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5597information.
5598
5599The getelementptr instruction is often confusing. For some more insight
5600into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5601
5602Example:
5603""""""""
5604
5605.. code-block:: llvm
5606
5607 ; yields [12 x i8]*:aptr
5608 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5609 ; yields i8*:vptr
5610 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5611 ; yields i8*:eptr
5612 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5613 ; yields i32*:iptr
5614 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5615
5616In cases where the pointer argument is a vector of pointers, each index
5617must be a vector with the same number of elements. For example:
5618
5619.. code-block:: llvm
5620
5621 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5622
5623Conversion Operations
5624---------------------
5625
5626The instructions in this category are the conversion instructions
5627(casting) which all take a single operand and a type. They perform
5628various bit conversions on the operand.
5629
5630'``trunc .. to``' Instruction
5631^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5632
5633Syntax:
5634"""""""
5635
5636::
5637
5638 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5639
5640Overview:
5641"""""""""
5642
5643The '``trunc``' instruction truncates its operand to the type ``ty2``.
5644
5645Arguments:
5646""""""""""
5647
5648The '``trunc``' instruction takes a value to trunc, and a type to trunc
5649it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5650of the same number of integers. The bit size of the ``value`` must be
5651larger than the bit size of the destination type, ``ty2``. Equal sized
5652types are not allowed.
5653
5654Semantics:
5655""""""""""
5656
5657The '``trunc``' instruction truncates the high order bits in ``value``
5658and converts the remaining bits to ``ty2``. Since the source size must
5659be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5660It will always truncate bits.
5661
5662Example:
5663""""""""
5664
5665.. code-block:: llvm
5666
5667 %X = trunc i32 257 to i8 ; yields i8:1
5668 %Y = trunc i32 123 to i1 ; yields i1:true
5669 %Z = trunc i32 122 to i1 ; yields i1:false
5670 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5671
5672'``zext .. to``' Instruction
5673^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5674
5675Syntax:
5676"""""""
5677
5678::
5679
5680 <result> = zext <ty> <value> to <ty2> ; yields ty2
5681
5682Overview:
5683"""""""""
5684
5685The '``zext``' instruction zero extends its operand to type ``ty2``.
5686
5687Arguments:
5688""""""""""
5689
5690The '``zext``' instruction takes a value to cast, and a type to cast it
5691to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5692the same number of integers. The bit size of the ``value`` must be
5693smaller than the bit size of the destination type, ``ty2``.
5694
5695Semantics:
5696""""""""""
5697
5698The ``zext`` fills the high order bits of the ``value`` with zero bits
5699until it reaches the size of the destination type, ``ty2``.
5700
5701When zero extending from i1, the result will always be either 0 or 1.
5702
5703Example:
5704""""""""
5705
5706.. code-block:: llvm
5707
5708 %X = zext i32 257 to i64 ; yields i64:257
5709 %Y = zext i1 true to i32 ; yields i32:1
5710 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5711
5712'``sext .. to``' Instruction
5713^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5714
5715Syntax:
5716"""""""
5717
5718::
5719
5720 <result> = sext <ty> <value> to <ty2> ; yields ty2
5721
5722Overview:
5723"""""""""
5724
5725The '``sext``' sign extends ``value`` to the type ``ty2``.
5726
5727Arguments:
5728""""""""""
5729
5730The '``sext``' instruction takes a value to cast, and a type to cast it
5731to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5732the same number of integers. The bit size of the ``value`` must be
5733smaller than the bit size of the destination type, ``ty2``.
5734
5735Semantics:
5736""""""""""
5737
5738The '``sext``' instruction performs a sign extension by copying the sign
5739bit (highest order bit) of the ``value`` until it reaches the bit size
5740of the type ``ty2``.
5741
5742When sign extending from i1, the extension always results in -1 or 0.
5743
5744Example:
5745""""""""
5746
5747.. code-block:: llvm
5748
5749 %X = sext i8 -1 to i16 ; yields i16 :65535
5750 %Y = sext i1 true to i32 ; yields i32:-1
5751 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5752
5753'``fptrunc .. to``' Instruction
5754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5755
5756Syntax:
5757"""""""
5758
5759::
5760
5761 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5762
5763Overview:
5764"""""""""
5765
5766The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5767
5768Arguments:
5769""""""""""
5770
5771The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5772value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5773The size of ``value`` must be larger than the size of ``ty2``. This
5774implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5775
5776Semantics:
5777""""""""""
5778
5779The '``fptrunc``' instruction truncates a ``value`` from a larger
5780:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5781point <t_floating>` type. If the value cannot fit within the
5782destination type, ``ty2``, then the results are undefined.
5783
5784Example:
5785""""""""
5786
5787.. code-block:: llvm
5788
5789 %X = fptrunc double 123.0 to float ; yields float:123.0
5790 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5791
5792'``fpext .. to``' Instruction
5793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5794
5795Syntax:
5796"""""""
5797
5798::
5799
5800 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5801
5802Overview:
5803"""""""""
5804
5805The '``fpext``' extends a floating point ``value`` to a larger floating
5806point value.
5807
5808Arguments:
5809""""""""""
5810
5811The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5812``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5813to. The source type must be smaller than the destination type.
5814
5815Semantics:
5816""""""""""
5817
5818The '``fpext``' instruction extends the ``value`` from a smaller
5819:ref:`floating point <t_floating>` type to a larger :ref:`floating
5820point <t_floating>` type. The ``fpext`` cannot be used to make a
5821*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5822*no-op cast* for a floating point cast.
5823
5824Example:
5825""""""""
5826
5827.. code-block:: llvm
5828
5829 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5830 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5831
5832'``fptoui .. to``' Instruction
5833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5834
5835Syntax:
5836"""""""
5837
5838::
5839
5840 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5841
5842Overview:
5843"""""""""
5844
5845The '``fptoui``' converts a floating point ``value`` to its unsigned
5846integer equivalent of type ``ty2``.
5847
5848Arguments:
5849""""""""""
5850
5851The '``fptoui``' instruction takes a value to cast, which must be a
5852scalar or vector :ref:`floating point <t_floating>` value, and a type to
5853cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5854``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5855type with the same number of elements as ``ty``
5856
5857Semantics:
5858""""""""""
5859
5860The '``fptoui``' instruction converts its :ref:`floating
5861point <t_floating>` operand into the nearest (rounding towards zero)
5862unsigned integer value. If the value cannot fit in ``ty2``, the results
5863are undefined.
5864
5865Example:
5866""""""""
5867
5868.. code-block:: llvm
5869
5870 %X = fptoui double 123.0 to i32 ; yields i32:123
5871 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5872 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5873
5874'``fptosi .. to``' Instruction
5875^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5876
5877Syntax:
5878"""""""
5879
5880::
5881
5882 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5883
5884Overview:
5885"""""""""
5886
5887The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5888``value`` to type ``ty2``.
5889
5890Arguments:
5891""""""""""
5892
5893The '``fptosi``' instruction takes a value to cast, which must be a
5894scalar or vector :ref:`floating point <t_floating>` value, and a type to
5895cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5896``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5897type with the same number of elements as ``ty``
5898
5899Semantics:
5900""""""""""
5901
5902The '``fptosi``' instruction converts its :ref:`floating
5903point <t_floating>` operand into the nearest (rounding towards zero)
5904signed integer value. If the value cannot fit in ``ty2``, the results
5905are undefined.
5906
5907Example:
5908""""""""
5909
5910.. code-block:: llvm
5911
5912 %X = fptosi double -123.0 to i32 ; yields i32:-123
5913 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5914 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5915
5916'``uitofp .. to``' Instruction
5917^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5918
5919Syntax:
5920"""""""
5921
5922::
5923
5924 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5925
5926Overview:
5927"""""""""
5928
5929The '``uitofp``' instruction regards ``value`` as an unsigned integer
5930and converts that value to the ``ty2`` type.
5931
5932Arguments:
5933""""""""""
5934
5935The '``uitofp``' instruction takes a value to cast, which must be a
5936scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5937``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5938``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5939type with the same number of elements as ``ty``
5940
5941Semantics:
5942""""""""""
5943
5944The '``uitofp``' instruction interprets its operand as an unsigned
5945integer quantity and converts it to the corresponding floating point
5946value. If the value cannot fit in the floating point value, the results
5947are undefined.
5948
5949Example:
5950""""""""
5951
5952.. code-block:: llvm
5953
5954 %X = uitofp i32 257 to float ; yields float:257.0
5955 %Y = uitofp i8 -1 to double ; yields double:255.0
5956
5957'``sitofp .. to``' Instruction
5958^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5959
5960Syntax:
5961"""""""
5962
5963::
5964
5965 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5966
5967Overview:
5968"""""""""
5969
5970The '``sitofp``' instruction regards ``value`` as a signed integer and
5971converts that value to the ``ty2`` type.
5972
5973Arguments:
5974""""""""""
5975
5976The '``sitofp``' instruction takes a value to cast, which must be a
5977scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5978``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5979``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5980type with the same number of elements as ``ty``
5981
5982Semantics:
5983""""""""""
5984
5985The '``sitofp``' instruction interprets its operand as a signed integer
5986quantity and converts it to the corresponding floating point value. If
5987the value cannot fit in the floating point value, the results are
5988undefined.
5989
5990Example:
5991""""""""
5992
5993.. code-block:: llvm
5994
5995 %X = sitofp i32 257 to float ; yields float:257.0
5996 %Y = sitofp i8 -1 to double ; yields double:-1.0
5997
5998.. _i_ptrtoint:
5999
6000'``ptrtoint .. to``' Instruction
6001^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6002
6003Syntax:
6004"""""""
6005
6006::
6007
6008 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6009
6010Overview:
6011"""""""""
6012
6013The '``ptrtoint``' instruction converts the pointer or a vector of
6014pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6015
6016Arguments:
6017""""""""""
6018
6019The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6020a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6021type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6022a vector of integers type.
6023
6024Semantics:
6025""""""""""
6026
6027The '``ptrtoint``' instruction converts ``value`` to integer type
6028``ty2`` by interpreting the pointer value as an integer and either
6029truncating or zero extending that value to the size of the integer type.
6030If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6031``value`` is larger than ``ty2`` then a truncation is done. If they are
6032the same size, then nothing is done (*no-op cast*) other than a type
6033change.
6034
6035Example:
6036""""""""
6037
6038.. code-block:: llvm
6039
6040 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6041 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6042 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6043
6044.. _i_inttoptr:
6045
6046'``inttoptr .. to``' Instruction
6047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6048
6049Syntax:
6050"""""""
6051
6052::
6053
6054 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6055
6056Overview:
6057"""""""""
6058
6059The '``inttoptr``' instruction converts an integer ``value`` to a
6060pointer type, ``ty2``.
6061
6062Arguments:
6063""""""""""
6064
6065The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6066cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6067type.
6068
6069Semantics:
6070""""""""""
6071
6072The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6073applying either a zero extension or a truncation depending on the size
6074of the integer ``value``. If ``value`` is larger than the size of a
6075pointer then a truncation is done. If ``value`` is smaller than the size
6076of a pointer then a zero extension is done. If they are the same size,
6077nothing is done (*no-op cast*).
6078
6079Example:
6080""""""""
6081
6082.. code-block:: llvm
6083
6084 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6085 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6086 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6087 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6088
6089.. _i_bitcast:
6090
6091'``bitcast .. to``' Instruction
6092^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6093
6094Syntax:
6095"""""""
6096
6097::
6098
6099 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6100
6101Overview:
6102"""""""""
6103
6104The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6105changing any bits.
6106
6107Arguments:
6108""""""""""
6109
6110The '``bitcast``' instruction takes a value to cast, which must be a
6111non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006112also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6113bit sizes of ``value`` and the destination type, ``ty2``, must be
6114identical. If the source type is a pointer, the destination type must
6115also be a pointer of the same size. This instruction supports bitwise
6116conversion of vectors to integers and to vectors of other types (as
6117long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006118
6119Semantics:
6120""""""""""
6121
Matt Arsenault24b49c42013-07-31 17:49:08 +00006122The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6123is always a *no-op cast* because no bits change with this
6124conversion. The conversion is done as if the ``value`` had been stored
6125to memory and read back as type ``ty2``. Pointer (or vector of
6126pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006127pointers) types with the same address space through this instruction.
6128To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6129or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006130
6131Example:
6132""""""""
6133
6134.. code-block:: llvm
6135
6136 %X = bitcast i8 255 to i8 ; yields i8 :-1
6137 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6138 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6139 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6140
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006141.. _i_addrspacecast:
6142
6143'``addrspacecast .. to``' Instruction
6144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6145
6146Syntax:
6147"""""""
6148
6149::
6150
6151 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6152
6153Overview:
6154"""""""""
6155
6156The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6157address space ``n`` to type ``pty2`` in address space ``m``.
6158
6159Arguments:
6160""""""""""
6161
6162The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6163to cast and a pointer type to cast it to, which must have a different
6164address space.
6165
6166Semantics:
6167""""""""""
6168
6169The '``addrspacecast``' instruction converts the pointer value
6170``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006171value modification, depending on the target and the address space
6172pair. Pointer conversions within the same address space must be
6173performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006174conversion is legal then both result and operand refer to the same memory
6175location.
6176
6177Example:
6178""""""""
6179
6180.. code-block:: llvm
6181
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006182 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6183 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6184 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006185
Sean Silvab084af42012-12-07 10:36:55 +00006186.. _otherops:
6187
6188Other Operations
6189----------------
6190
6191The instructions in this category are the "miscellaneous" instructions,
6192which defy better classification.
6193
6194.. _i_icmp:
6195
6196'``icmp``' Instruction
6197^^^^^^^^^^^^^^^^^^^^^^
6198
6199Syntax:
6200"""""""
6201
6202::
6203
Tim Northover675a0962014-06-13 14:24:23 +00006204 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006205
6206Overview:
6207"""""""""
6208
6209The '``icmp``' instruction returns a boolean value or a vector of
6210boolean values based on comparison of its two integer, integer vector,
6211pointer, or pointer vector operands.
6212
6213Arguments:
6214""""""""""
6215
6216The '``icmp``' instruction takes three operands. The first operand is
6217the condition code indicating the kind of comparison to perform. It is
6218not a value, just a keyword. The possible condition code are:
6219
6220#. ``eq``: equal
6221#. ``ne``: not equal
6222#. ``ugt``: unsigned greater than
6223#. ``uge``: unsigned greater or equal
6224#. ``ult``: unsigned less than
6225#. ``ule``: unsigned less or equal
6226#. ``sgt``: signed greater than
6227#. ``sge``: signed greater or equal
6228#. ``slt``: signed less than
6229#. ``sle``: signed less or equal
6230
6231The remaining two arguments must be :ref:`integer <t_integer>` or
6232:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6233must also be identical types.
6234
6235Semantics:
6236""""""""""
6237
6238The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6239code given as ``cond``. The comparison performed always yields either an
6240:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6241
6242#. ``eq``: yields ``true`` if the operands are equal, ``false``
6243 otherwise. No sign interpretation is necessary or performed.
6244#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6245 otherwise. No sign interpretation is necessary or performed.
6246#. ``ugt``: interprets the operands as unsigned values and yields
6247 ``true`` if ``op1`` is greater than ``op2``.
6248#. ``uge``: interprets the operands as unsigned values and yields
6249 ``true`` if ``op1`` is greater than or equal to ``op2``.
6250#. ``ult``: interprets the operands as unsigned values and yields
6251 ``true`` if ``op1`` is less than ``op2``.
6252#. ``ule``: interprets the operands as unsigned values and yields
6253 ``true`` if ``op1`` is less than or equal to ``op2``.
6254#. ``sgt``: interprets the operands as signed values and yields ``true``
6255 if ``op1`` is greater than ``op2``.
6256#. ``sge``: interprets the operands as signed values and yields ``true``
6257 if ``op1`` is greater than or equal to ``op2``.
6258#. ``slt``: interprets the operands as signed values and yields ``true``
6259 if ``op1`` is less than ``op2``.
6260#. ``sle``: interprets the operands as signed values and yields ``true``
6261 if ``op1`` is less than or equal to ``op2``.
6262
6263If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6264are compared as if they were integers.
6265
6266If the operands are integer vectors, then they are compared element by
6267element. The result is an ``i1`` vector with the same number of elements
6268as the values being compared. Otherwise, the result is an ``i1``.
6269
6270Example:
6271""""""""
6272
6273.. code-block:: llvm
6274
6275 <result> = icmp eq i32 4, 5 ; yields: result=false
6276 <result> = icmp ne float* %X, %X ; yields: result=false
6277 <result> = icmp ult i16 4, 5 ; yields: result=true
6278 <result> = icmp sgt i16 4, 5 ; yields: result=false
6279 <result> = icmp ule i16 -4, 5 ; yields: result=false
6280 <result> = icmp sge i16 4, 5 ; yields: result=false
6281
6282Note that the code generator does not yet support vector types with the
6283``icmp`` instruction.
6284
6285.. _i_fcmp:
6286
6287'``fcmp``' Instruction
6288^^^^^^^^^^^^^^^^^^^^^^
6289
6290Syntax:
6291"""""""
6292
6293::
6294
Tim Northover675a0962014-06-13 14:24:23 +00006295 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006296
6297Overview:
6298"""""""""
6299
6300The '``fcmp``' instruction returns a boolean value or vector of boolean
6301values based on comparison of its operands.
6302
6303If the operands are floating point scalars, then the result type is a
6304boolean (:ref:`i1 <t_integer>`).
6305
6306If the operands are floating point vectors, then the result type is a
6307vector of boolean with the same number of elements as the operands being
6308compared.
6309
6310Arguments:
6311""""""""""
6312
6313The '``fcmp``' instruction takes three operands. The first operand is
6314the condition code indicating the kind of comparison to perform. It is
6315not a value, just a keyword. The possible condition code are:
6316
6317#. ``false``: no comparison, always returns false
6318#. ``oeq``: ordered and equal
6319#. ``ogt``: ordered and greater than
6320#. ``oge``: ordered and greater than or equal
6321#. ``olt``: ordered and less than
6322#. ``ole``: ordered and less than or equal
6323#. ``one``: ordered and not equal
6324#. ``ord``: ordered (no nans)
6325#. ``ueq``: unordered or equal
6326#. ``ugt``: unordered or greater than
6327#. ``uge``: unordered or greater than or equal
6328#. ``ult``: unordered or less than
6329#. ``ule``: unordered or less than or equal
6330#. ``une``: unordered or not equal
6331#. ``uno``: unordered (either nans)
6332#. ``true``: no comparison, always returns true
6333
6334*Ordered* means that neither operand is a QNAN while *unordered* means
6335that either operand may be a QNAN.
6336
6337Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6338point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6339type. They must have identical types.
6340
6341Semantics:
6342""""""""""
6343
6344The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6345condition code given as ``cond``. If the operands are vectors, then the
6346vectors are compared element by element. Each comparison performed
6347always yields an :ref:`i1 <t_integer>` result, as follows:
6348
6349#. ``false``: always yields ``false``, regardless of operands.
6350#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6351 is equal to ``op2``.
6352#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6353 is greater than ``op2``.
6354#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6355 is greater than or equal to ``op2``.
6356#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6357 is less than ``op2``.
6358#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6359 is less than or equal to ``op2``.
6360#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6361 is not equal to ``op2``.
6362#. ``ord``: yields ``true`` if both operands are not a QNAN.
6363#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6364 equal to ``op2``.
6365#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6366 greater than ``op2``.
6367#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6368 greater than or equal to ``op2``.
6369#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6370 less than ``op2``.
6371#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6372 less than or equal to ``op2``.
6373#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6374 not equal to ``op2``.
6375#. ``uno``: yields ``true`` if either operand is a QNAN.
6376#. ``true``: always yields ``true``, regardless of operands.
6377
6378Example:
6379""""""""
6380
6381.. code-block:: llvm
6382
6383 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6384 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6385 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6386 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6387
6388Note that the code generator does not yet support vector types with the
6389``fcmp`` instruction.
6390
6391.. _i_phi:
6392
6393'``phi``' Instruction
6394^^^^^^^^^^^^^^^^^^^^^
6395
6396Syntax:
6397"""""""
6398
6399::
6400
6401 <result> = phi <ty> [ <val0>, <label0>], ...
6402
6403Overview:
6404"""""""""
6405
6406The '``phi``' instruction is used to implement the φ node in the SSA
6407graph representing the function.
6408
6409Arguments:
6410""""""""""
6411
6412The type of the incoming values is specified with the first type field.
6413After this, the '``phi``' instruction takes a list of pairs as
6414arguments, with one pair for each predecessor basic block of the current
6415block. Only values of :ref:`first class <t_firstclass>` type may be used as
6416the value arguments to the PHI node. Only labels may be used as the
6417label arguments.
6418
6419There must be no non-phi instructions between the start of a basic block
6420and the PHI instructions: i.e. PHI instructions must be first in a basic
6421block.
6422
6423For the purposes of the SSA form, the use of each incoming value is
6424deemed to occur on the edge from the corresponding predecessor block to
6425the current block (but after any definition of an '``invoke``'
6426instruction's return value on the same edge).
6427
6428Semantics:
6429""""""""""
6430
6431At runtime, the '``phi``' instruction logically takes on the value
6432specified by the pair corresponding to the predecessor basic block that
6433executed just prior to the current block.
6434
6435Example:
6436""""""""
6437
6438.. code-block:: llvm
6439
6440 Loop: ; Infinite loop that counts from 0 on up...
6441 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6442 %nextindvar = add i32 %indvar, 1
6443 br label %Loop
6444
6445.. _i_select:
6446
6447'``select``' Instruction
6448^^^^^^^^^^^^^^^^^^^^^^^^
6449
6450Syntax:
6451"""""""
6452
6453::
6454
6455 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6456
6457 selty is either i1 or {<N x i1>}
6458
6459Overview:
6460"""""""""
6461
6462The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006463condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006464
6465Arguments:
6466""""""""""
6467
6468The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6469values indicating the condition, and two values of the same :ref:`first
6470class <t_firstclass>` type. If the val1/val2 are vectors and the
6471condition is a scalar, then entire vectors are selected, not individual
6472elements.
6473
6474Semantics:
6475""""""""""
6476
6477If the condition is an i1 and it evaluates to 1, the instruction returns
6478the first value argument; otherwise, it returns the second value
6479argument.
6480
6481If the condition is a vector of i1, then the value arguments must be
6482vectors of the same size, and the selection is done element by element.
6483
6484Example:
6485""""""""
6486
6487.. code-block:: llvm
6488
6489 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6490
6491.. _i_call:
6492
6493'``call``' Instruction
6494^^^^^^^^^^^^^^^^^^^^^^
6495
6496Syntax:
6497"""""""
6498
6499::
6500
Reid Kleckner5772b772014-04-24 20:14:34 +00006501 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006502
6503Overview:
6504"""""""""
6505
6506The '``call``' instruction represents a simple function call.
6507
6508Arguments:
6509""""""""""
6510
6511This instruction requires several arguments:
6512
Reid Kleckner5772b772014-04-24 20:14:34 +00006513#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6514 should perform tail call optimization. The ``tail`` marker is a hint that
6515 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6516 means that the call must be tail call optimized in order for the program to
6517 be correct. The ``musttail`` marker provides these guarantees:
6518
6519 #. The call will not cause unbounded stack growth if it is part of a
6520 recursive cycle in the call graph.
6521 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6522 forwarded in place.
6523
6524 Both markers imply that the callee does not access allocas or varargs from
6525 the caller. Calls marked ``musttail`` must obey the following additional
6526 rules:
6527
6528 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6529 or a pointer bitcast followed by a ret instruction.
6530 - The ret instruction must return the (possibly bitcasted) value
6531 produced by the call or void.
6532 - The caller and callee prototypes must match. Pointer types of
6533 parameters or return types may differ in pointee type, but not
6534 in address space.
6535 - The calling conventions of the caller and callee must match.
6536 - All ABI-impacting function attributes, such as sret, byval, inreg,
6537 returned, and inalloca, must match.
6538
6539 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6540 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006541
6542 - Caller and callee both have the calling convention ``fastcc``.
6543 - The call is in tail position (ret immediately follows call and ret
6544 uses value of call or is void).
6545 - Option ``-tailcallopt`` is enabled, or
6546 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006547 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006548 met. <CodeGenerator.html#tailcallopt>`_
6549
6550#. The optional "cconv" marker indicates which :ref:`calling
6551 convention <callingconv>` the call should use. If none is
6552 specified, the call defaults to using C calling conventions. The
6553 calling convention of the call must match the calling convention of
6554 the target function, or else the behavior is undefined.
6555#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6556 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6557 are valid here.
6558#. '``ty``': the type of the call instruction itself which is also the
6559 type of the return value. Functions that return no value are marked
6560 ``void``.
6561#. '``fnty``': shall be the signature of the pointer to function value
6562 being invoked. The argument types must match the types implied by
6563 this signature. This type can be omitted if the function is not
6564 varargs and if the function type does not return a pointer to a
6565 function.
6566#. '``fnptrval``': An LLVM value containing a pointer to a function to
6567 be invoked. In most cases, this is a direct function invocation, but
6568 indirect ``call``'s are just as possible, calling an arbitrary pointer
6569 to function value.
6570#. '``function args``': argument list whose types match the function
6571 signature argument types and parameter attributes. All arguments must
6572 be of :ref:`first class <t_firstclass>` type. If the function signature
6573 indicates the function accepts a variable number of arguments, the
6574 extra arguments can be specified.
6575#. The optional :ref:`function attributes <fnattrs>` list. Only
6576 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6577 attributes are valid here.
6578
6579Semantics:
6580""""""""""
6581
6582The '``call``' instruction is used to cause control flow to transfer to
6583a specified function, with its incoming arguments bound to the specified
6584values. Upon a '``ret``' instruction in the called function, control
6585flow continues with the instruction after the function call, and the
6586return value of the function is bound to the result argument.
6587
6588Example:
6589""""""""
6590
6591.. code-block:: llvm
6592
6593 %retval = call i32 @test(i32 %argc)
6594 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6595 %X = tail call i32 @foo() ; yields i32
6596 %Y = tail call fastcc i32 @foo() ; yields i32
6597 call void %foo(i8 97 signext)
6598
6599 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006600 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006601 %gr = extractvalue %struct.A %r, 0 ; yields i32
6602 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6603 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6604 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6605
6606llvm treats calls to some functions with names and arguments that match
6607the standard C99 library as being the C99 library functions, and may
6608perform optimizations or generate code for them under that assumption.
6609This is something we'd like to change in the future to provide better
6610support for freestanding environments and non-C-based languages.
6611
6612.. _i_va_arg:
6613
6614'``va_arg``' Instruction
6615^^^^^^^^^^^^^^^^^^^^^^^^
6616
6617Syntax:
6618"""""""
6619
6620::
6621
6622 <resultval> = va_arg <va_list*> <arglist>, <argty>
6623
6624Overview:
6625"""""""""
6626
6627The '``va_arg``' instruction is used to access arguments passed through
6628the "variable argument" area of a function call. It is used to implement
6629the ``va_arg`` macro in C.
6630
6631Arguments:
6632""""""""""
6633
6634This instruction takes a ``va_list*`` value and the type of the
6635argument. It returns a value of the specified argument type and
6636increments the ``va_list`` to point to the next argument. The actual
6637type of ``va_list`` is target specific.
6638
6639Semantics:
6640""""""""""
6641
6642The '``va_arg``' instruction loads an argument of the specified type
6643from the specified ``va_list`` and causes the ``va_list`` to point to
6644the next argument. For more information, see the variable argument
6645handling :ref:`Intrinsic Functions <int_varargs>`.
6646
6647It is legal for this instruction to be called in a function which does
6648not take a variable number of arguments, for example, the ``vfprintf``
6649function.
6650
6651``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6652function <intrinsics>` because it takes a type as an argument.
6653
6654Example:
6655""""""""
6656
6657See the :ref:`variable argument processing <int_varargs>` section.
6658
6659Note that the code generator does not yet fully support va\_arg on many
6660targets. Also, it does not currently support va\_arg with aggregate
6661types on any target.
6662
6663.. _i_landingpad:
6664
6665'``landingpad``' Instruction
6666^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6667
6668Syntax:
6669"""""""
6670
6671::
6672
6673 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6674 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6675
6676 <clause> := catch <type> <value>
6677 <clause> := filter <array constant type> <array constant>
6678
6679Overview:
6680"""""""""
6681
6682The '``landingpad``' instruction is used by `LLVM's exception handling
6683system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006684is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006685code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6686defines values supplied by the personality function (``pers_fn``) upon
6687re-entry to the function. The ``resultval`` has the type ``resultty``.
6688
6689Arguments:
6690""""""""""
6691
6692This instruction takes a ``pers_fn`` value. This is the personality
6693function associated with the unwinding mechanism. The optional
6694``cleanup`` flag indicates that the landing pad block is a cleanup.
6695
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006696A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006697contains the global variable representing the "type" that may be caught
6698or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6699clause takes an array constant as its argument. Use
6700"``[0 x i8**] undef``" for a filter which cannot throw. The
6701'``landingpad``' instruction must contain *at least* one ``clause`` or
6702the ``cleanup`` flag.
6703
6704Semantics:
6705""""""""""
6706
6707The '``landingpad``' instruction defines the values which are set by the
6708personality function (``pers_fn``) upon re-entry to the function, and
6709therefore the "result type" of the ``landingpad`` instruction. As with
6710calling conventions, how the personality function results are
6711represented in LLVM IR is target specific.
6712
6713The clauses are applied in order from top to bottom. If two
6714``landingpad`` instructions are merged together through inlining, the
6715clauses from the calling function are appended to the list of clauses.
6716When the call stack is being unwound due to an exception being thrown,
6717the exception is compared against each ``clause`` in turn. If it doesn't
6718match any of the clauses, and the ``cleanup`` flag is not set, then
6719unwinding continues further up the call stack.
6720
6721The ``landingpad`` instruction has several restrictions:
6722
6723- A landing pad block is a basic block which is the unwind destination
6724 of an '``invoke``' instruction.
6725- A landing pad block must have a '``landingpad``' instruction as its
6726 first non-PHI instruction.
6727- There can be only one '``landingpad``' instruction within the landing
6728 pad block.
6729- A basic block that is not a landing pad block may not include a
6730 '``landingpad``' instruction.
6731- All '``landingpad``' instructions in a function must have the same
6732 personality function.
6733
6734Example:
6735""""""""
6736
6737.. code-block:: llvm
6738
6739 ;; A landing pad which can catch an integer.
6740 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6741 catch i8** @_ZTIi
6742 ;; A landing pad that is a cleanup.
6743 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6744 cleanup
6745 ;; A landing pad which can catch an integer and can only throw a double.
6746 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6747 catch i8** @_ZTIi
6748 filter [1 x i8**] [@_ZTId]
6749
6750.. _intrinsics:
6751
6752Intrinsic Functions
6753===================
6754
6755LLVM supports the notion of an "intrinsic function". These functions
6756have well known names and semantics and are required to follow certain
6757restrictions. Overall, these intrinsics represent an extension mechanism
6758for the LLVM language that does not require changing all of the
6759transformations in LLVM when adding to the language (or the bitcode
6760reader/writer, the parser, etc...).
6761
6762Intrinsic function names must all start with an "``llvm.``" prefix. This
6763prefix is reserved in LLVM for intrinsic names; thus, function names may
6764not begin with this prefix. Intrinsic functions must always be external
6765functions: you cannot define the body of intrinsic functions. Intrinsic
6766functions may only be used in call or invoke instructions: it is illegal
6767to take the address of an intrinsic function. Additionally, because
6768intrinsic functions are part of the LLVM language, it is required if any
6769are added that they be documented here.
6770
6771Some intrinsic functions can be overloaded, i.e., the intrinsic
6772represents a family of functions that perform the same operation but on
6773different data types. Because LLVM can represent over 8 million
6774different integer types, overloading is used commonly to allow an
6775intrinsic function to operate on any integer type. One or more of the
6776argument types or the result type can be overloaded to accept any
6777integer type. Argument types may also be defined as exactly matching a
6778previous argument's type or the result type. This allows an intrinsic
6779function which accepts multiple arguments, but needs all of them to be
6780of the same type, to only be overloaded with respect to a single
6781argument or the result.
6782
6783Overloaded intrinsics will have the names of its overloaded argument
6784types encoded into its function name, each preceded by a period. Only
6785those types which are overloaded result in a name suffix. Arguments
6786whose type is matched against another type do not. For example, the
6787``llvm.ctpop`` function can take an integer of any width and returns an
6788integer of exactly the same integer width. This leads to a family of
6789functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6790``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6791overloaded, and only one type suffix is required. Because the argument's
6792type is matched against the return type, it does not require its own
6793name suffix.
6794
6795To learn how to add an intrinsic function, please see the `Extending
6796LLVM Guide <ExtendingLLVM.html>`_.
6797
6798.. _int_varargs:
6799
6800Variable Argument Handling Intrinsics
6801-------------------------------------
6802
6803Variable argument support is defined in LLVM with the
6804:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6805functions. These functions are related to the similarly named macros
6806defined in the ``<stdarg.h>`` header file.
6807
6808All of these functions operate on arguments that use a target-specific
6809value type "``va_list``". The LLVM assembly language reference manual
6810does not define what this type is, so all transformations should be
6811prepared to handle these functions regardless of the type used.
6812
6813This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6814variable argument handling intrinsic functions are used.
6815
6816.. code-block:: llvm
6817
6818 define i32 @test(i32 %X, ...) {
6819 ; Initialize variable argument processing
6820 %ap = alloca i8*
6821 %ap2 = bitcast i8** %ap to i8*
6822 call void @llvm.va_start(i8* %ap2)
6823
6824 ; Read a single integer argument
6825 %tmp = va_arg i8** %ap, i32
6826
6827 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6828 %aq = alloca i8*
6829 %aq2 = bitcast i8** %aq to i8*
6830 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6831 call void @llvm.va_end(i8* %aq2)
6832
6833 ; Stop processing of arguments.
6834 call void @llvm.va_end(i8* %ap2)
6835 ret i32 %tmp
6836 }
6837
6838 declare void @llvm.va_start(i8*)
6839 declare void @llvm.va_copy(i8*, i8*)
6840 declare void @llvm.va_end(i8*)
6841
6842.. _int_va_start:
6843
6844'``llvm.va_start``' Intrinsic
6845^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6846
6847Syntax:
6848"""""""
6849
6850::
6851
Nick Lewycky04f6de02013-09-11 22:04:52 +00006852 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006853
6854Overview:
6855"""""""""
6856
6857The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6858subsequent use by ``va_arg``.
6859
6860Arguments:
6861""""""""""
6862
6863The argument is a pointer to a ``va_list`` element to initialize.
6864
6865Semantics:
6866""""""""""
6867
6868The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6869available in C. In a target-dependent way, it initializes the
6870``va_list`` element to which the argument points, so that the next call
6871to ``va_arg`` will produce the first variable argument passed to the
6872function. Unlike the C ``va_start`` macro, this intrinsic does not need
6873to know the last argument of the function as the compiler can figure
6874that out.
6875
6876'``llvm.va_end``' Intrinsic
6877^^^^^^^^^^^^^^^^^^^^^^^^^^^
6878
6879Syntax:
6880"""""""
6881
6882::
6883
6884 declare void @llvm.va_end(i8* <arglist>)
6885
6886Overview:
6887"""""""""
6888
6889The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6890initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6891
6892Arguments:
6893""""""""""
6894
6895The argument is a pointer to a ``va_list`` to destroy.
6896
6897Semantics:
6898""""""""""
6899
6900The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6901available in C. In a target-dependent way, it destroys the ``va_list``
6902element to which the argument points. Calls to
6903:ref:`llvm.va_start <int_va_start>` and
6904:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6905``llvm.va_end``.
6906
6907.. _int_va_copy:
6908
6909'``llvm.va_copy``' Intrinsic
6910^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6911
6912Syntax:
6913"""""""
6914
6915::
6916
6917 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6918
6919Overview:
6920"""""""""
6921
6922The '``llvm.va_copy``' intrinsic copies the current argument position
6923from the source argument list to the destination argument list.
6924
6925Arguments:
6926""""""""""
6927
6928The first argument is a pointer to a ``va_list`` element to initialize.
6929The second argument is a pointer to a ``va_list`` element to copy from.
6930
6931Semantics:
6932""""""""""
6933
6934The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6935available in C. In a target-dependent way, it copies the source
6936``va_list`` element into the destination ``va_list`` element. This
6937intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6938arbitrarily complex and require, for example, memory allocation.
6939
6940Accurate Garbage Collection Intrinsics
6941--------------------------------------
6942
6943LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6944(GC) requires the implementation and generation of these intrinsics.
6945These intrinsics allow identification of :ref:`GC roots on the
6946stack <int_gcroot>`, as well as garbage collector implementations that
6947require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6948Front-ends for type-safe garbage collected languages should generate
6949these intrinsics to make use of the LLVM garbage collectors. For more
6950details, see `Accurate Garbage Collection with
6951LLVM <GarbageCollection.html>`_.
6952
6953The garbage collection intrinsics only operate on objects in the generic
6954address space (address space zero).
6955
6956.. _int_gcroot:
6957
6958'``llvm.gcroot``' Intrinsic
6959^^^^^^^^^^^^^^^^^^^^^^^^^^^
6960
6961Syntax:
6962"""""""
6963
6964::
6965
6966 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6967
6968Overview:
6969"""""""""
6970
6971The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6972the code generator, and allows some metadata to be associated with it.
6973
6974Arguments:
6975""""""""""
6976
6977The first argument specifies the address of a stack object that contains
6978the root pointer. The second pointer (which must be either a constant or
6979a global value address) contains the meta-data to be associated with the
6980root.
6981
6982Semantics:
6983""""""""""
6984
6985At runtime, a call to this intrinsic stores a null pointer into the
6986"ptrloc" location. At compile-time, the code generator generates
6987information to allow the runtime to find the pointer at GC safe points.
6988The '``llvm.gcroot``' intrinsic may only be used in a function which
6989:ref:`specifies a GC algorithm <gc>`.
6990
6991.. _int_gcread:
6992
6993'``llvm.gcread``' Intrinsic
6994^^^^^^^^^^^^^^^^^^^^^^^^^^^
6995
6996Syntax:
6997"""""""
6998
6999::
7000
7001 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7002
7003Overview:
7004"""""""""
7005
7006The '``llvm.gcread``' intrinsic identifies reads of references from heap
7007locations, allowing garbage collector implementations that require read
7008barriers.
7009
7010Arguments:
7011""""""""""
7012
7013The second argument is the address to read from, which should be an
7014address allocated from the garbage collector. The first object is a
7015pointer to the start of the referenced object, if needed by the language
7016runtime (otherwise null).
7017
7018Semantics:
7019""""""""""
7020
7021The '``llvm.gcread``' intrinsic has the same semantics as a load
7022instruction, but may be replaced with substantially more complex code by
7023the garbage collector runtime, as needed. The '``llvm.gcread``'
7024intrinsic may only be used in a function which :ref:`specifies a GC
7025algorithm <gc>`.
7026
7027.. _int_gcwrite:
7028
7029'``llvm.gcwrite``' Intrinsic
7030^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7031
7032Syntax:
7033"""""""
7034
7035::
7036
7037 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7038
7039Overview:
7040"""""""""
7041
7042The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7043locations, allowing garbage collector implementations that require write
7044barriers (such as generational or reference counting collectors).
7045
7046Arguments:
7047""""""""""
7048
7049The first argument is the reference to store, the second is the start of
7050the object to store it to, and the third is the address of the field of
7051Obj to store to. If the runtime does not require a pointer to the
7052object, Obj may be null.
7053
7054Semantics:
7055""""""""""
7056
7057The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7058instruction, but may be replaced with substantially more complex code by
7059the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7060intrinsic may only be used in a function which :ref:`specifies a GC
7061algorithm <gc>`.
7062
7063Code Generator Intrinsics
7064-------------------------
7065
7066These intrinsics are provided by LLVM to expose special features that
7067may only be implemented with code generator support.
7068
7069'``llvm.returnaddress``' Intrinsic
7070^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7071
7072Syntax:
7073"""""""
7074
7075::
7076
7077 declare i8 *@llvm.returnaddress(i32 <level>)
7078
7079Overview:
7080"""""""""
7081
7082The '``llvm.returnaddress``' intrinsic attempts to compute a
7083target-specific value indicating the return address of the current
7084function or one of its callers.
7085
7086Arguments:
7087""""""""""
7088
7089The argument to this intrinsic indicates which function to return the
7090address for. Zero indicates the calling function, one indicates its
7091caller, etc. The argument is **required** to be a constant integer
7092value.
7093
7094Semantics:
7095""""""""""
7096
7097The '``llvm.returnaddress``' intrinsic either returns a pointer
7098indicating the return address of the specified call frame, or zero if it
7099cannot be identified. The value returned by this intrinsic is likely to
7100be incorrect or 0 for arguments other than zero, so it should only be
7101used for debugging purposes.
7102
7103Note that calling this intrinsic does not prevent function inlining or
7104other aggressive transformations, so the value returned may not be that
7105of the obvious source-language caller.
7106
7107'``llvm.frameaddress``' Intrinsic
7108^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7109
7110Syntax:
7111"""""""
7112
7113::
7114
7115 declare i8* @llvm.frameaddress(i32 <level>)
7116
7117Overview:
7118"""""""""
7119
7120The '``llvm.frameaddress``' intrinsic attempts to return the
7121target-specific frame pointer value for the specified stack frame.
7122
7123Arguments:
7124""""""""""
7125
7126The argument to this intrinsic indicates which function to return the
7127frame pointer for. Zero indicates the calling function, one indicates
7128its caller, etc. The argument is **required** to be a constant integer
7129value.
7130
7131Semantics:
7132""""""""""
7133
7134The '``llvm.frameaddress``' intrinsic either returns a pointer
7135indicating the frame address of the specified call frame, or zero if it
7136cannot be identified. The value returned by this intrinsic is likely to
7137be incorrect or 0 for arguments other than zero, so it should only be
7138used for debugging purposes.
7139
7140Note that calling this intrinsic does not prevent function inlining or
7141other aggressive transformations, so the value returned may not be that
7142of the obvious source-language caller.
7143
Renato Golinc7aea402014-05-06 16:51:25 +00007144.. _int_read_register:
7145.. _int_write_register:
7146
7147'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7148^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7149
7150Syntax:
7151"""""""
7152
7153::
7154
7155 declare i32 @llvm.read_register.i32(metadata)
7156 declare i64 @llvm.read_register.i64(metadata)
7157 declare void @llvm.write_register.i32(metadata, i32 @value)
7158 declare void @llvm.write_register.i64(metadata, i64 @value)
7159 !0 = metadata !{metadata !"sp\00"}
7160
7161Overview:
7162"""""""""
7163
7164The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7165provides access to the named register. The register must be valid on
7166the architecture being compiled to. The type needs to be compatible
7167with the register being read.
7168
7169Semantics:
7170""""""""""
7171
7172The '``llvm.read_register``' intrinsic returns the current value of the
7173register, where possible. The '``llvm.write_register``' intrinsic sets
7174the current value of the register, where possible.
7175
7176This is useful to implement named register global variables that need
7177to always be mapped to a specific register, as is common practice on
7178bare-metal programs including OS kernels.
7179
7180The compiler doesn't check for register availability or use of the used
7181register in surrounding code, including inline assembly. Because of that,
7182allocatable registers are not supported.
7183
7184Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007185architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007186work is needed to support other registers and even more so, allocatable
7187registers.
7188
Sean Silvab084af42012-12-07 10:36:55 +00007189.. _int_stacksave:
7190
7191'``llvm.stacksave``' Intrinsic
7192^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7193
7194Syntax:
7195"""""""
7196
7197::
7198
7199 declare i8* @llvm.stacksave()
7200
7201Overview:
7202"""""""""
7203
7204The '``llvm.stacksave``' intrinsic is used to remember the current state
7205of the function stack, for use with
7206:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7207implementing language features like scoped automatic variable sized
7208arrays in C99.
7209
7210Semantics:
7211""""""""""
7212
7213This intrinsic returns a opaque pointer value that can be passed to
7214:ref:`llvm.stackrestore <int_stackrestore>`. When an
7215``llvm.stackrestore`` intrinsic is executed with a value saved from
7216``llvm.stacksave``, it effectively restores the state of the stack to
7217the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7218practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7219were allocated after the ``llvm.stacksave`` was executed.
7220
7221.. _int_stackrestore:
7222
7223'``llvm.stackrestore``' Intrinsic
7224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7225
7226Syntax:
7227"""""""
7228
7229::
7230
7231 declare void @llvm.stackrestore(i8* %ptr)
7232
7233Overview:
7234"""""""""
7235
7236The '``llvm.stackrestore``' intrinsic is used to restore the state of
7237the function stack to the state it was in when the corresponding
7238:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7239useful for implementing language features like scoped automatic variable
7240sized arrays in C99.
7241
7242Semantics:
7243""""""""""
7244
7245See the description for :ref:`llvm.stacksave <int_stacksave>`.
7246
7247'``llvm.prefetch``' Intrinsic
7248^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7249
7250Syntax:
7251"""""""
7252
7253::
7254
7255 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7256
7257Overview:
7258"""""""""
7259
7260The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7261insert a prefetch instruction if supported; otherwise, it is a noop.
7262Prefetches have no effect on the behavior of the program but can change
7263its performance characteristics.
7264
7265Arguments:
7266""""""""""
7267
7268``address`` is the address to be prefetched, ``rw`` is the specifier
7269determining if the fetch should be for a read (0) or write (1), and
7270``locality`` is a temporal locality specifier ranging from (0) - no
7271locality, to (3) - extremely local keep in cache. The ``cache type``
7272specifies whether the prefetch is performed on the data (1) or
7273instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7274arguments must be constant integers.
7275
7276Semantics:
7277""""""""""
7278
7279This intrinsic does not modify the behavior of the program. In
7280particular, prefetches cannot trap and do not produce a value. On
7281targets that support this intrinsic, the prefetch can provide hints to
7282the processor cache for better performance.
7283
7284'``llvm.pcmarker``' Intrinsic
7285^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7286
7287Syntax:
7288"""""""
7289
7290::
7291
7292 declare void @llvm.pcmarker(i32 <id>)
7293
7294Overview:
7295"""""""""
7296
7297The '``llvm.pcmarker``' intrinsic is a method to export a Program
7298Counter (PC) in a region of code to simulators and other tools. The
7299method is target specific, but it is expected that the marker will use
7300exported symbols to transmit the PC of the marker. The marker makes no
7301guarantees that it will remain with any specific instruction after
7302optimizations. It is possible that the presence of a marker will inhibit
7303optimizations. The intended use is to be inserted after optimizations to
7304allow correlations of simulation runs.
7305
7306Arguments:
7307""""""""""
7308
7309``id`` is a numerical id identifying the marker.
7310
7311Semantics:
7312""""""""""
7313
7314This intrinsic does not modify the behavior of the program. Backends
7315that do not support this intrinsic may ignore it.
7316
7317'``llvm.readcyclecounter``' Intrinsic
7318^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7319
7320Syntax:
7321"""""""
7322
7323::
7324
7325 declare i64 @llvm.readcyclecounter()
7326
7327Overview:
7328"""""""""
7329
7330The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7331counter register (or similar low latency, high accuracy clocks) on those
7332targets that support it. On X86, it should map to RDTSC. On Alpha, it
7333should map to RPCC. As the backing counters overflow quickly (on the
7334order of 9 seconds on alpha), this should only be used for small
7335timings.
7336
7337Semantics:
7338""""""""""
7339
7340When directly supported, reading the cycle counter should not modify any
7341memory. Implementations are allowed to either return a application
7342specific value or a system wide value. On backends without support, this
7343is lowered to a constant 0.
7344
Tim Northoverbc933082013-05-23 19:11:20 +00007345Note that runtime support may be conditional on the privilege-level code is
7346running at and the host platform.
7347
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007348'``llvm.clear_cache``' Intrinsic
7349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7350
7351Syntax:
7352"""""""
7353
7354::
7355
7356 declare void @llvm.clear_cache(i8*, i8*)
7357
7358Overview:
7359"""""""""
7360
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007361The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7362in the specified range to the execution unit of the processor. On
7363targets with non-unified instruction and data cache, the implementation
7364flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007365
7366Semantics:
7367""""""""""
7368
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007369On platforms with coherent instruction and data caches (e.g. x86), this
7370intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007371cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007372instructions or a system call, if cache flushing requires special
7373privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007374
Sean Silvad02bf3e2014-04-07 22:29:53 +00007375The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007376time library.
Renato Golin93010e62014-03-26 14:01:32 +00007377
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007378This instrinsic does *not* empty the instruction pipeline. Modifications
7379of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007380
Sean Silvab084af42012-12-07 10:36:55 +00007381Standard C Library Intrinsics
7382-----------------------------
7383
7384LLVM provides intrinsics for a few important standard C library
7385functions. These intrinsics allow source-language front-ends to pass
7386information about the alignment of the pointer arguments to the code
7387generator, providing opportunity for more efficient code generation.
7388
7389.. _int_memcpy:
7390
7391'``llvm.memcpy``' Intrinsic
7392^^^^^^^^^^^^^^^^^^^^^^^^^^^
7393
7394Syntax:
7395"""""""
7396
7397This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7398integer bit width and for different address spaces. Not all targets
7399support all bit widths however.
7400
7401::
7402
7403 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7404 i32 <len>, i32 <align>, i1 <isvolatile>)
7405 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7406 i64 <len>, i32 <align>, i1 <isvolatile>)
7407
7408Overview:
7409"""""""""
7410
7411The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7412source location to the destination location.
7413
7414Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7415intrinsics do not return a value, takes extra alignment/isvolatile
7416arguments and the pointers can be in specified address spaces.
7417
7418Arguments:
7419""""""""""
7420
7421The first argument is a pointer to the destination, the second is a
7422pointer to the source. The third argument is an integer argument
7423specifying the number of bytes to copy, the fourth argument is the
7424alignment of the source and destination locations, and the fifth is a
7425boolean indicating a volatile access.
7426
7427If the call to this intrinsic has an alignment value that is not 0 or 1,
7428then the caller guarantees that both the source and destination pointers
7429are aligned to that boundary.
7430
7431If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7432a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7433very cleanly specified and it is unwise to depend on it.
7434
7435Semantics:
7436""""""""""
7437
7438The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7439source location to the destination location, which are not allowed to
7440overlap. It copies "len" bytes of memory over. If the argument is known
7441to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007442argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007443
7444'``llvm.memmove``' Intrinsic
7445^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7446
7447Syntax:
7448"""""""
7449
7450This is an overloaded intrinsic. You can use llvm.memmove on any integer
7451bit width and for different address space. Not all targets support all
7452bit widths however.
7453
7454::
7455
7456 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7457 i32 <len>, i32 <align>, i1 <isvolatile>)
7458 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7459 i64 <len>, i32 <align>, i1 <isvolatile>)
7460
7461Overview:
7462"""""""""
7463
7464The '``llvm.memmove.*``' intrinsics move a block of memory from the
7465source location to the destination location. It is similar to the
7466'``llvm.memcpy``' intrinsic but allows the two memory locations to
7467overlap.
7468
7469Note that, unlike the standard libc function, the ``llvm.memmove.*``
7470intrinsics do not return a value, takes extra alignment/isvolatile
7471arguments and the pointers can be in specified address spaces.
7472
7473Arguments:
7474""""""""""
7475
7476The first argument is a pointer to the destination, the second is a
7477pointer to the source. The third argument is an integer argument
7478specifying the number of bytes to copy, the fourth argument is the
7479alignment of the source and destination locations, and the fifth is a
7480boolean indicating a volatile access.
7481
7482If the call to this intrinsic has an alignment value that is not 0 or 1,
7483then the caller guarantees that the source and destination pointers are
7484aligned to that boundary.
7485
7486If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7487is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7488not very cleanly specified and it is unwise to depend on it.
7489
7490Semantics:
7491""""""""""
7492
7493The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7494source location to the destination location, which may overlap. It
7495copies "len" bytes of memory over. If the argument is known to be
7496aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007497otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007498
7499'``llvm.memset.*``' Intrinsics
7500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7501
7502Syntax:
7503"""""""
7504
7505This is an overloaded intrinsic. You can use llvm.memset on any integer
7506bit width and for different address spaces. However, not all targets
7507support all bit widths.
7508
7509::
7510
7511 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7512 i32 <len>, i32 <align>, i1 <isvolatile>)
7513 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7514 i64 <len>, i32 <align>, i1 <isvolatile>)
7515
7516Overview:
7517"""""""""
7518
7519The '``llvm.memset.*``' intrinsics fill a block of memory with a
7520particular byte value.
7521
7522Note that, unlike the standard libc function, the ``llvm.memset``
7523intrinsic does not return a value and takes extra alignment/volatile
7524arguments. Also, the destination can be in an arbitrary address space.
7525
7526Arguments:
7527""""""""""
7528
7529The first argument is a pointer to the destination to fill, the second
7530is the byte value with which to fill it, the third argument is an
7531integer argument specifying the number of bytes to fill, and the fourth
7532argument is the known alignment of the destination location.
7533
7534If the call to this intrinsic has an alignment value that is not 0 or 1,
7535then the caller guarantees that the destination pointer is aligned to
7536that boundary.
7537
7538If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7539a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7540very cleanly specified and it is unwise to depend on it.
7541
7542Semantics:
7543""""""""""
7544
7545The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7546at the destination location. If the argument is known to be aligned to
7547some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007548it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007549
7550'``llvm.sqrt.*``' Intrinsic
7551^^^^^^^^^^^^^^^^^^^^^^^^^^^
7552
7553Syntax:
7554"""""""
7555
7556This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7557floating point or vector of floating point type. Not all targets support
7558all types however.
7559
7560::
7561
7562 declare float @llvm.sqrt.f32(float %Val)
7563 declare double @llvm.sqrt.f64(double %Val)
7564 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7565 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7566 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7567
7568Overview:
7569"""""""""
7570
7571The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7572returning the same value as the libm '``sqrt``' functions would. Unlike
7573``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7574negative numbers other than -0.0 (which allows for better optimization,
7575because there is no need to worry about errno being set).
7576``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7577
7578Arguments:
7579""""""""""
7580
7581The argument and return value are floating point numbers of the same
7582type.
7583
7584Semantics:
7585""""""""""
7586
7587This function returns the sqrt of the specified operand if it is a
7588nonnegative floating point number.
7589
7590'``llvm.powi.*``' Intrinsic
7591^^^^^^^^^^^^^^^^^^^^^^^^^^^
7592
7593Syntax:
7594"""""""
7595
7596This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7597floating point or vector of floating point type. Not all targets support
7598all types however.
7599
7600::
7601
7602 declare float @llvm.powi.f32(float %Val, i32 %power)
7603 declare double @llvm.powi.f64(double %Val, i32 %power)
7604 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7605 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7606 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7607
7608Overview:
7609"""""""""
7610
7611The '``llvm.powi.*``' intrinsics return the first operand raised to the
7612specified (positive or negative) power. The order of evaluation of
7613multiplications is not defined. When a vector of floating point type is
7614used, the second argument remains a scalar integer value.
7615
7616Arguments:
7617""""""""""
7618
7619The second argument is an integer power, and the first is a value to
7620raise to that power.
7621
7622Semantics:
7623""""""""""
7624
7625This function returns the first value raised to the second power with an
7626unspecified sequence of rounding operations.
7627
7628'``llvm.sin.*``' Intrinsic
7629^^^^^^^^^^^^^^^^^^^^^^^^^^
7630
7631Syntax:
7632"""""""
7633
7634This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7635floating point or vector of floating point type. Not all targets support
7636all types however.
7637
7638::
7639
7640 declare float @llvm.sin.f32(float %Val)
7641 declare double @llvm.sin.f64(double %Val)
7642 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7643 declare fp128 @llvm.sin.f128(fp128 %Val)
7644 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7645
7646Overview:
7647"""""""""
7648
7649The '``llvm.sin.*``' intrinsics return the sine of the operand.
7650
7651Arguments:
7652""""""""""
7653
7654The argument and return value are floating point numbers of the same
7655type.
7656
7657Semantics:
7658""""""""""
7659
7660This function returns the sine of the specified operand, returning the
7661same values as the libm ``sin`` functions would, and handles error
7662conditions in the same way.
7663
7664'``llvm.cos.*``' Intrinsic
7665^^^^^^^^^^^^^^^^^^^^^^^^^^
7666
7667Syntax:
7668"""""""
7669
7670This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7671floating point or vector of floating point type. Not all targets support
7672all types however.
7673
7674::
7675
7676 declare float @llvm.cos.f32(float %Val)
7677 declare double @llvm.cos.f64(double %Val)
7678 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7679 declare fp128 @llvm.cos.f128(fp128 %Val)
7680 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7681
7682Overview:
7683"""""""""
7684
7685The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7686
7687Arguments:
7688""""""""""
7689
7690The argument and return value are floating point numbers of the same
7691type.
7692
7693Semantics:
7694""""""""""
7695
7696This function returns the cosine of the specified operand, returning the
7697same values as the libm ``cos`` functions would, and handles error
7698conditions in the same way.
7699
7700'``llvm.pow.*``' Intrinsic
7701^^^^^^^^^^^^^^^^^^^^^^^^^^
7702
7703Syntax:
7704"""""""
7705
7706This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7707floating point or vector of floating point type. Not all targets support
7708all types however.
7709
7710::
7711
7712 declare float @llvm.pow.f32(float %Val, float %Power)
7713 declare double @llvm.pow.f64(double %Val, double %Power)
7714 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7715 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7716 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7717
7718Overview:
7719"""""""""
7720
7721The '``llvm.pow.*``' intrinsics return the first operand raised to the
7722specified (positive or negative) power.
7723
7724Arguments:
7725""""""""""
7726
7727The second argument is a floating point power, and the first is a value
7728to raise to that power.
7729
7730Semantics:
7731""""""""""
7732
7733This function returns the first value raised to the second power,
7734returning the same values as the libm ``pow`` functions would, and
7735handles error conditions in the same way.
7736
7737'``llvm.exp.*``' Intrinsic
7738^^^^^^^^^^^^^^^^^^^^^^^^^^
7739
7740Syntax:
7741"""""""
7742
7743This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7744floating point or vector of floating point type. Not all targets support
7745all types however.
7746
7747::
7748
7749 declare float @llvm.exp.f32(float %Val)
7750 declare double @llvm.exp.f64(double %Val)
7751 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7752 declare fp128 @llvm.exp.f128(fp128 %Val)
7753 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7754
7755Overview:
7756"""""""""
7757
7758The '``llvm.exp.*``' intrinsics perform the exp function.
7759
7760Arguments:
7761""""""""""
7762
7763The argument and return value are floating point numbers of the same
7764type.
7765
7766Semantics:
7767""""""""""
7768
7769This function returns the same values as the libm ``exp`` functions
7770would, and handles error conditions in the same way.
7771
7772'``llvm.exp2.*``' Intrinsic
7773^^^^^^^^^^^^^^^^^^^^^^^^^^^
7774
7775Syntax:
7776"""""""
7777
7778This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7779floating point or vector of floating point type. Not all targets support
7780all types however.
7781
7782::
7783
7784 declare float @llvm.exp2.f32(float %Val)
7785 declare double @llvm.exp2.f64(double %Val)
7786 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7787 declare fp128 @llvm.exp2.f128(fp128 %Val)
7788 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7789
7790Overview:
7791"""""""""
7792
7793The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7794
7795Arguments:
7796""""""""""
7797
7798The argument and return value are floating point numbers of the same
7799type.
7800
7801Semantics:
7802""""""""""
7803
7804This function returns the same values as the libm ``exp2`` functions
7805would, and handles error conditions in the same way.
7806
7807'``llvm.log.*``' Intrinsic
7808^^^^^^^^^^^^^^^^^^^^^^^^^^
7809
7810Syntax:
7811"""""""
7812
7813This is an overloaded intrinsic. You can use ``llvm.log`` on any
7814floating point or vector of floating point type. Not all targets support
7815all types however.
7816
7817::
7818
7819 declare float @llvm.log.f32(float %Val)
7820 declare double @llvm.log.f64(double %Val)
7821 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7822 declare fp128 @llvm.log.f128(fp128 %Val)
7823 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7824
7825Overview:
7826"""""""""
7827
7828The '``llvm.log.*``' intrinsics perform the log function.
7829
7830Arguments:
7831""""""""""
7832
7833The argument and return value are floating point numbers of the same
7834type.
7835
7836Semantics:
7837""""""""""
7838
7839This function returns the same values as the libm ``log`` functions
7840would, and handles error conditions in the same way.
7841
7842'``llvm.log10.*``' Intrinsic
7843^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7844
7845Syntax:
7846"""""""
7847
7848This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7849floating point or vector of floating point type. Not all targets support
7850all types however.
7851
7852::
7853
7854 declare float @llvm.log10.f32(float %Val)
7855 declare double @llvm.log10.f64(double %Val)
7856 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7857 declare fp128 @llvm.log10.f128(fp128 %Val)
7858 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7859
7860Overview:
7861"""""""""
7862
7863The '``llvm.log10.*``' intrinsics perform the log10 function.
7864
7865Arguments:
7866""""""""""
7867
7868The argument and return value are floating point numbers of the same
7869type.
7870
7871Semantics:
7872""""""""""
7873
7874This function returns the same values as the libm ``log10`` functions
7875would, and handles error conditions in the same way.
7876
7877'``llvm.log2.*``' Intrinsic
7878^^^^^^^^^^^^^^^^^^^^^^^^^^^
7879
7880Syntax:
7881"""""""
7882
7883This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7884floating point or vector of floating point type. Not all targets support
7885all types however.
7886
7887::
7888
7889 declare float @llvm.log2.f32(float %Val)
7890 declare double @llvm.log2.f64(double %Val)
7891 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7892 declare fp128 @llvm.log2.f128(fp128 %Val)
7893 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7894
7895Overview:
7896"""""""""
7897
7898The '``llvm.log2.*``' intrinsics perform the log2 function.
7899
7900Arguments:
7901""""""""""
7902
7903The argument and return value are floating point numbers of the same
7904type.
7905
7906Semantics:
7907""""""""""
7908
7909This function returns the same values as the libm ``log2`` functions
7910would, and handles error conditions in the same way.
7911
7912'``llvm.fma.*``' Intrinsic
7913^^^^^^^^^^^^^^^^^^^^^^^^^^
7914
7915Syntax:
7916"""""""
7917
7918This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7919floating point or vector of floating point type. Not all targets support
7920all types however.
7921
7922::
7923
7924 declare float @llvm.fma.f32(float %a, float %b, float %c)
7925 declare double @llvm.fma.f64(double %a, double %b, double %c)
7926 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7927 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7928 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7929
7930Overview:
7931"""""""""
7932
7933The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7934operation.
7935
7936Arguments:
7937""""""""""
7938
7939The argument and return value are floating point numbers of the same
7940type.
7941
7942Semantics:
7943""""""""""
7944
7945This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007946would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007947
7948'``llvm.fabs.*``' Intrinsic
7949^^^^^^^^^^^^^^^^^^^^^^^^^^^
7950
7951Syntax:
7952"""""""
7953
7954This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7955floating point or vector of floating point type. Not all targets support
7956all types however.
7957
7958::
7959
7960 declare float @llvm.fabs.f32(float %Val)
7961 declare double @llvm.fabs.f64(double %Val)
7962 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7963 declare fp128 @llvm.fabs.f128(fp128 %Val)
7964 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7965
7966Overview:
7967"""""""""
7968
7969The '``llvm.fabs.*``' intrinsics return the absolute value of the
7970operand.
7971
7972Arguments:
7973""""""""""
7974
7975The argument and return value are floating point numbers of the same
7976type.
7977
7978Semantics:
7979""""""""""
7980
7981This function returns the same values as the libm ``fabs`` functions
7982would, and handles error conditions in the same way.
7983
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007984'``llvm.copysign.*``' Intrinsic
7985^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7986
7987Syntax:
7988"""""""
7989
7990This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7991floating point or vector of floating point type. Not all targets support
7992all types however.
7993
7994::
7995
7996 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7997 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7998 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7999 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8000 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8001
8002Overview:
8003"""""""""
8004
8005The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8006first operand and the sign of the second operand.
8007
8008Arguments:
8009""""""""""
8010
8011The arguments and return value are floating point numbers of the same
8012type.
8013
8014Semantics:
8015""""""""""
8016
8017This function returns the same values as the libm ``copysign``
8018functions would, and handles error conditions in the same way.
8019
Sean Silvab084af42012-12-07 10:36:55 +00008020'``llvm.floor.*``' Intrinsic
8021^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8022
8023Syntax:
8024"""""""
8025
8026This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8027floating point or vector of floating point type. Not all targets support
8028all types however.
8029
8030::
8031
8032 declare float @llvm.floor.f32(float %Val)
8033 declare double @llvm.floor.f64(double %Val)
8034 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8035 declare fp128 @llvm.floor.f128(fp128 %Val)
8036 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8037
8038Overview:
8039"""""""""
8040
8041The '``llvm.floor.*``' intrinsics return the floor of the operand.
8042
8043Arguments:
8044""""""""""
8045
8046The argument and return value are floating point numbers of the same
8047type.
8048
8049Semantics:
8050""""""""""
8051
8052This function returns the same values as the libm ``floor`` functions
8053would, and handles error conditions in the same way.
8054
8055'``llvm.ceil.*``' Intrinsic
8056^^^^^^^^^^^^^^^^^^^^^^^^^^^
8057
8058Syntax:
8059"""""""
8060
8061This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8062floating point or vector of floating point type. Not all targets support
8063all types however.
8064
8065::
8066
8067 declare float @llvm.ceil.f32(float %Val)
8068 declare double @llvm.ceil.f64(double %Val)
8069 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8070 declare fp128 @llvm.ceil.f128(fp128 %Val)
8071 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8072
8073Overview:
8074"""""""""
8075
8076The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8077
8078Arguments:
8079""""""""""
8080
8081The argument and return value are floating point numbers of the same
8082type.
8083
8084Semantics:
8085""""""""""
8086
8087This function returns the same values as the libm ``ceil`` functions
8088would, and handles error conditions in the same way.
8089
8090'``llvm.trunc.*``' Intrinsic
8091^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8092
8093Syntax:
8094"""""""
8095
8096This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8097floating point or vector of floating point type. Not all targets support
8098all types however.
8099
8100::
8101
8102 declare float @llvm.trunc.f32(float %Val)
8103 declare double @llvm.trunc.f64(double %Val)
8104 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8105 declare fp128 @llvm.trunc.f128(fp128 %Val)
8106 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8107
8108Overview:
8109"""""""""
8110
8111The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8112nearest integer not larger in magnitude than the operand.
8113
8114Arguments:
8115""""""""""
8116
8117The argument and return value are floating point numbers of the same
8118type.
8119
8120Semantics:
8121""""""""""
8122
8123This function returns the same values as the libm ``trunc`` functions
8124would, and handles error conditions in the same way.
8125
8126'``llvm.rint.*``' Intrinsic
8127^^^^^^^^^^^^^^^^^^^^^^^^^^^
8128
8129Syntax:
8130"""""""
8131
8132This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8133floating point or vector of floating point type. Not all targets support
8134all types however.
8135
8136::
8137
8138 declare float @llvm.rint.f32(float %Val)
8139 declare double @llvm.rint.f64(double %Val)
8140 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8141 declare fp128 @llvm.rint.f128(fp128 %Val)
8142 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8143
8144Overview:
8145"""""""""
8146
8147The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8148nearest integer. It may raise an inexact floating-point exception if the
8149operand isn't an integer.
8150
8151Arguments:
8152""""""""""
8153
8154The argument and return value are floating point numbers of the same
8155type.
8156
8157Semantics:
8158""""""""""
8159
8160This function returns the same values as the libm ``rint`` functions
8161would, and handles error conditions in the same way.
8162
8163'``llvm.nearbyint.*``' Intrinsic
8164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8165
8166Syntax:
8167"""""""
8168
8169This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8170floating point or vector of floating point type. Not all targets support
8171all types however.
8172
8173::
8174
8175 declare float @llvm.nearbyint.f32(float %Val)
8176 declare double @llvm.nearbyint.f64(double %Val)
8177 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8178 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8179 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8180
8181Overview:
8182"""""""""
8183
8184The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8185nearest integer.
8186
8187Arguments:
8188""""""""""
8189
8190The argument and return value are floating point numbers of the same
8191type.
8192
8193Semantics:
8194""""""""""
8195
8196This function returns the same values as the libm ``nearbyint``
8197functions would, and handles error conditions in the same way.
8198
Hal Finkel171817e2013-08-07 22:49:12 +00008199'``llvm.round.*``' Intrinsic
8200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8201
8202Syntax:
8203"""""""
8204
8205This is an overloaded intrinsic. You can use ``llvm.round`` on any
8206floating point or vector of floating point type. Not all targets support
8207all types however.
8208
8209::
8210
8211 declare float @llvm.round.f32(float %Val)
8212 declare double @llvm.round.f64(double %Val)
8213 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8214 declare fp128 @llvm.round.f128(fp128 %Val)
8215 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8216
8217Overview:
8218"""""""""
8219
8220The '``llvm.round.*``' intrinsics returns the operand rounded to the
8221nearest integer.
8222
8223Arguments:
8224""""""""""
8225
8226The argument and return value are floating point numbers of the same
8227type.
8228
8229Semantics:
8230""""""""""
8231
8232This function returns the same values as the libm ``round``
8233functions would, and handles error conditions in the same way.
8234
Sean Silvab084af42012-12-07 10:36:55 +00008235Bit Manipulation Intrinsics
8236---------------------------
8237
8238LLVM provides intrinsics for a few important bit manipulation
8239operations. These allow efficient code generation for some algorithms.
8240
8241'``llvm.bswap.*``' Intrinsics
8242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8243
8244Syntax:
8245"""""""
8246
8247This is an overloaded intrinsic function. You can use bswap on any
8248integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8249
8250::
8251
8252 declare i16 @llvm.bswap.i16(i16 <id>)
8253 declare i32 @llvm.bswap.i32(i32 <id>)
8254 declare i64 @llvm.bswap.i64(i64 <id>)
8255
8256Overview:
8257"""""""""
8258
8259The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8260values with an even number of bytes (positive multiple of 16 bits).
8261These are useful for performing operations on data that is not in the
8262target's native byte order.
8263
8264Semantics:
8265""""""""""
8266
8267The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8268and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8269intrinsic returns an i32 value that has the four bytes of the input i32
8270swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8271returned i32 will have its bytes in 3, 2, 1, 0 order. The
8272``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8273concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8274respectively).
8275
8276'``llvm.ctpop.*``' Intrinsic
8277^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8278
8279Syntax:
8280"""""""
8281
8282This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8283bit width, or on any vector with integer elements. Not all targets
8284support all bit widths or vector types, however.
8285
8286::
8287
8288 declare i8 @llvm.ctpop.i8(i8 <src>)
8289 declare i16 @llvm.ctpop.i16(i16 <src>)
8290 declare i32 @llvm.ctpop.i32(i32 <src>)
8291 declare i64 @llvm.ctpop.i64(i64 <src>)
8292 declare i256 @llvm.ctpop.i256(i256 <src>)
8293 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8294
8295Overview:
8296"""""""""
8297
8298The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8299in a value.
8300
8301Arguments:
8302""""""""""
8303
8304The only argument is the value to be counted. The argument may be of any
8305integer type, or a vector with integer elements. The return type must
8306match the argument type.
8307
8308Semantics:
8309""""""""""
8310
8311The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8312each element of a vector.
8313
8314'``llvm.ctlz.*``' Intrinsic
8315^^^^^^^^^^^^^^^^^^^^^^^^^^^
8316
8317Syntax:
8318"""""""
8319
8320This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8321integer bit width, or any vector whose elements are integers. Not all
8322targets support all bit widths or vector types, however.
8323
8324::
8325
8326 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8327 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8328 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8329 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8330 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8331 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8332
8333Overview:
8334"""""""""
8335
8336The '``llvm.ctlz``' family of intrinsic functions counts the number of
8337leading zeros in a variable.
8338
8339Arguments:
8340""""""""""
8341
8342The first argument is the value to be counted. This argument may be of
8343any integer type, or a vectory with integer element type. The return
8344type must match the first argument type.
8345
8346The second argument must be a constant and is a flag to indicate whether
8347the intrinsic should ensure that a zero as the first argument produces a
8348defined result. Historically some architectures did not provide a
8349defined result for zero values as efficiently, and many algorithms are
8350now predicated on avoiding zero-value inputs.
8351
8352Semantics:
8353""""""""""
8354
8355The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8356zeros in a variable, or within each element of the vector. If
8357``src == 0`` then the result is the size in bits of the type of ``src``
8358if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8359``llvm.ctlz(i32 2) = 30``.
8360
8361'``llvm.cttz.*``' Intrinsic
8362^^^^^^^^^^^^^^^^^^^^^^^^^^^
8363
8364Syntax:
8365"""""""
8366
8367This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8368integer bit width, or any vector of integer elements. Not all targets
8369support all bit widths or vector types, however.
8370
8371::
8372
8373 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8374 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8375 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8376 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8377 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8378 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8379
8380Overview:
8381"""""""""
8382
8383The '``llvm.cttz``' family of intrinsic functions counts the number of
8384trailing zeros.
8385
8386Arguments:
8387""""""""""
8388
8389The first argument is the value to be counted. This argument may be of
8390any integer type, or a vectory with integer element type. The return
8391type must match the first argument type.
8392
8393The second argument must be a constant and is a flag to indicate whether
8394the intrinsic should ensure that a zero as the first argument produces a
8395defined result. Historically some architectures did not provide a
8396defined result for zero values as efficiently, and many algorithms are
8397now predicated on avoiding zero-value inputs.
8398
8399Semantics:
8400""""""""""
8401
8402The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8403zeros in a variable, or within each element of a vector. If ``src == 0``
8404then the result is the size in bits of the type of ``src`` if
8405``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8406``llvm.cttz(2) = 1``.
8407
8408Arithmetic with Overflow Intrinsics
8409-----------------------------------
8410
8411LLVM provides intrinsics for some arithmetic with overflow operations.
8412
8413'``llvm.sadd.with.overflow.*``' Intrinsics
8414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8415
8416Syntax:
8417"""""""
8418
8419This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8420on any integer bit width.
8421
8422::
8423
8424 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8425 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8426 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8427
8428Overview:
8429"""""""""
8430
8431The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8432a signed addition of the two arguments, and indicate whether an overflow
8433occurred during the signed summation.
8434
8435Arguments:
8436""""""""""
8437
8438The arguments (%a and %b) and the first element of the result structure
8439may be of integer types of any bit width, but they must have the same
8440bit width. The second element of the result structure must be of type
8441``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8442addition.
8443
8444Semantics:
8445""""""""""
8446
8447The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008448a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008449first element of which is the signed summation, and the second element
8450of which is a bit specifying if the signed summation resulted in an
8451overflow.
8452
8453Examples:
8454"""""""""
8455
8456.. code-block:: llvm
8457
8458 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8459 %sum = extractvalue {i32, i1} %res, 0
8460 %obit = extractvalue {i32, i1} %res, 1
8461 br i1 %obit, label %overflow, label %normal
8462
8463'``llvm.uadd.with.overflow.*``' Intrinsics
8464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8465
8466Syntax:
8467"""""""
8468
8469This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8470on any integer bit width.
8471
8472::
8473
8474 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8475 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8476 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8477
8478Overview:
8479"""""""""
8480
8481The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8482an unsigned addition of the two arguments, and indicate whether a carry
8483occurred during the unsigned summation.
8484
8485Arguments:
8486""""""""""
8487
8488The arguments (%a and %b) and the first element of the result structure
8489may be of integer types of any bit width, but they must have the same
8490bit width. The second element of the result structure must be of type
8491``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8492addition.
8493
8494Semantics:
8495""""""""""
8496
8497The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008498an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008499first element of which is the sum, and the second element of which is a
8500bit specifying if the unsigned summation resulted in a carry.
8501
8502Examples:
8503"""""""""
8504
8505.. code-block:: llvm
8506
8507 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8508 %sum = extractvalue {i32, i1} %res, 0
8509 %obit = extractvalue {i32, i1} %res, 1
8510 br i1 %obit, label %carry, label %normal
8511
8512'``llvm.ssub.with.overflow.*``' Intrinsics
8513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8514
8515Syntax:
8516"""""""
8517
8518This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8519on any integer bit width.
8520
8521::
8522
8523 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8524 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8525 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8526
8527Overview:
8528"""""""""
8529
8530The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8531a signed subtraction of the two arguments, and indicate whether an
8532overflow occurred during the signed subtraction.
8533
8534Arguments:
8535""""""""""
8536
8537The arguments (%a and %b) and the first element of the result structure
8538may be of integer types of any bit width, but they must have the same
8539bit width. The second element of the result structure must be of type
8540``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8541subtraction.
8542
8543Semantics:
8544""""""""""
8545
8546The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008547a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008548first element of which is the subtraction, and the second element of
8549which is a bit specifying if the signed subtraction resulted in an
8550overflow.
8551
8552Examples:
8553"""""""""
8554
8555.. code-block:: llvm
8556
8557 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8558 %sum = extractvalue {i32, i1} %res, 0
8559 %obit = extractvalue {i32, i1} %res, 1
8560 br i1 %obit, label %overflow, label %normal
8561
8562'``llvm.usub.with.overflow.*``' Intrinsics
8563^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8564
8565Syntax:
8566"""""""
8567
8568This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8569on any integer bit width.
8570
8571::
8572
8573 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8574 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8575 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8576
8577Overview:
8578"""""""""
8579
8580The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8581an unsigned subtraction of the two arguments, and indicate whether an
8582overflow occurred during the unsigned subtraction.
8583
8584Arguments:
8585""""""""""
8586
8587The arguments (%a and %b) and the first element of the result structure
8588may be of integer types of any bit width, but they must have the same
8589bit width. The second element of the result structure must be of type
8590``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8591subtraction.
8592
8593Semantics:
8594""""""""""
8595
8596The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008597an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008598the first element of which is the subtraction, and the second element of
8599which is a bit specifying if the unsigned subtraction resulted in an
8600overflow.
8601
8602Examples:
8603"""""""""
8604
8605.. code-block:: llvm
8606
8607 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8608 %sum = extractvalue {i32, i1} %res, 0
8609 %obit = extractvalue {i32, i1} %res, 1
8610 br i1 %obit, label %overflow, label %normal
8611
8612'``llvm.smul.with.overflow.*``' Intrinsics
8613^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8614
8615Syntax:
8616"""""""
8617
8618This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8619on any integer bit width.
8620
8621::
8622
8623 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8624 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8625 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8626
8627Overview:
8628"""""""""
8629
8630The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8631a signed multiplication of the two arguments, and indicate whether an
8632overflow occurred during the signed multiplication.
8633
8634Arguments:
8635""""""""""
8636
8637The arguments (%a and %b) and the first element of the result structure
8638may be of integer types of any bit width, but they must have the same
8639bit width. The second element of the result structure must be of type
8640``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8641multiplication.
8642
8643Semantics:
8644""""""""""
8645
8646The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008647a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008648the first element of which is the multiplication, and the second element
8649of which is a bit specifying if the signed multiplication resulted in an
8650overflow.
8651
8652Examples:
8653"""""""""
8654
8655.. code-block:: llvm
8656
8657 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8658 %sum = extractvalue {i32, i1} %res, 0
8659 %obit = extractvalue {i32, i1} %res, 1
8660 br i1 %obit, label %overflow, label %normal
8661
8662'``llvm.umul.with.overflow.*``' Intrinsics
8663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8664
8665Syntax:
8666"""""""
8667
8668This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8669on any integer bit width.
8670
8671::
8672
8673 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8674 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8675 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8676
8677Overview:
8678"""""""""
8679
8680The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8681a unsigned multiplication of the two arguments, and indicate whether an
8682overflow occurred during the unsigned multiplication.
8683
8684Arguments:
8685""""""""""
8686
8687The arguments (%a and %b) and the first element of the result structure
8688may be of integer types of any bit width, but they must have the same
8689bit width. The second element of the result structure must be of type
8690``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8691multiplication.
8692
8693Semantics:
8694""""""""""
8695
8696The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008697an unsigned multiplication of the two arguments. They return a structure ---
8698the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008699element of which is a bit specifying if the unsigned multiplication
8700resulted in an overflow.
8701
8702Examples:
8703"""""""""
8704
8705.. code-block:: llvm
8706
8707 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8708 %sum = extractvalue {i32, i1} %res, 0
8709 %obit = extractvalue {i32, i1} %res, 1
8710 br i1 %obit, label %overflow, label %normal
8711
8712Specialised Arithmetic Intrinsics
8713---------------------------------
8714
8715'``llvm.fmuladd.*``' Intrinsic
8716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8717
8718Syntax:
8719"""""""
8720
8721::
8722
8723 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8724 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8725
8726Overview:
8727"""""""""
8728
8729The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008730expressions that can be fused if the code generator determines that (a) the
8731target instruction set has support for a fused operation, and (b) that the
8732fused operation is more efficient than the equivalent, separate pair of mul
8733and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008734
8735Arguments:
8736""""""""""
8737
8738The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8739multiplicands, a and b, and an addend c.
8740
8741Semantics:
8742""""""""""
8743
8744The expression:
8745
8746::
8747
8748 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8749
8750is equivalent to the expression a \* b + c, except that rounding will
8751not be performed between the multiplication and addition steps if the
8752code generator fuses the operations. Fusion is not guaranteed, even if
8753the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008754corresponding llvm.fma.\* intrinsic function should be used
8755instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008756
8757Examples:
8758"""""""""
8759
8760.. code-block:: llvm
8761
Tim Northover675a0962014-06-13 14:24:23 +00008762 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00008763
8764Half Precision Floating Point Intrinsics
8765----------------------------------------
8766
8767For most target platforms, half precision floating point is a
8768storage-only format. This means that it is a dense encoding (in memory)
8769but does not support computation in the format.
8770
8771This means that code must first load the half-precision floating point
8772value as an i16, then convert it to float with
8773:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8774then be performed on the float value (including extending to double
8775etc). To store the value back to memory, it is first converted to float
8776if needed, then converted to i16 with
8777:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8778i16 value.
8779
8780.. _int_convert_to_fp16:
8781
8782'``llvm.convert.to.fp16``' Intrinsic
8783^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8784
8785Syntax:
8786"""""""
8787
8788::
8789
Tim Northoverfd7e4242014-07-17 10:51:23 +00008790 declare i16 @llvm.convert.to.fp16.f32(float %a)
8791 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00008792
8793Overview:
8794"""""""""
8795
Tim Northoverfd7e4242014-07-17 10:51:23 +00008796The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8797conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00008798
8799Arguments:
8800""""""""""
8801
8802The intrinsic function contains single argument - the value to be
8803converted.
8804
8805Semantics:
8806""""""""""
8807
Tim Northoverfd7e4242014-07-17 10:51:23 +00008808The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8809conventional floating point format to half precision floating point format. The
8810return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00008811
8812Examples:
8813"""""""""
8814
8815.. code-block:: llvm
8816
Tim Northoverfd7e4242014-07-17 10:51:23 +00008817 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00008818 store i16 %res, i16* @x, align 2
8819
8820.. _int_convert_from_fp16:
8821
8822'``llvm.convert.from.fp16``' Intrinsic
8823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8824
8825Syntax:
8826"""""""
8827
8828::
8829
Tim Northoverfd7e4242014-07-17 10:51:23 +00008830 declare float @llvm.convert.from.fp16.f32(i16 %a)
8831 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008832
8833Overview:
8834"""""""""
8835
8836The '``llvm.convert.from.fp16``' intrinsic function performs a
8837conversion from half precision floating point format to single precision
8838floating point format.
8839
8840Arguments:
8841""""""""""
8842
8843The intrinsic function contains single argument - the value to be
8844converted.
8845
8846Semantics:
8847""""""""""
8848
8849The '``llvm.convert.from.fp16``' intrinsic function performs a
8850conversion from half single precision floating point format to single
8851precision floating point format. The input half-float value is
8852represented by an ``i16`` value.
8853
8854Examples:
8855"""""""""
8856
8857.. code-block:: llvm
8858
8859 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00008860 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008861
8862Debugger Intrinsics
8863-------------------
8864
8865The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8866prefix), are described in the `LLVM Source Level
8867Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8868document.
8869
8870Exception Handling Intrinsics
8871-----------------------------
8872
8873The LLVM exception handling intrinsics (which all start with
8874``llvm.eh.`` prefix), are described in the `LLVM Exception
8875Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8876
8877.. _int_trampoline:
8878
8879Trampoline Intrinsics
8880---------------------
8881
8882These intrinsics make it possible to excise one parameter, marked with
8883the :ref:`nest <nest>` attribute, from a function. The result is a
8884callable function pointer lacking the nest parameter - the caller does
8885not need to provide a value for it. Instead, the value to use is stored
8886in advance in a "trampoline", a block of memory usually allocated on the
8887stack, which also contains code to splice the nest value into the
8888argument list. This is used to implement the GCC nested function address
8889extension.
8890
8891For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8892then the resulting function pointer has signature ``i32 (i32, i32)*``.
8893It can be created as follows:
8894
8895.. code-block:: llvm
8896
8897 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8898 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8899 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8900 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8901 %fp = bitcast i8* %p to i32 (i32, i32)*
8902
8903The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8904``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8905
8906.. _int_it:
8907
8908'``llvm.init.trampoline``' Intrinsic
8909^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8910
8911Syntax:
8912"""""""
8913
8914::
8915
8916 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8917
8918Overview:
8919"""""""""
8920
8921This fills the memory pointed to by ``tramp`` with executable code,
8922turning it into a trampoline.
8923
8924Arguments:
8925""""""""""
8926
8927The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8928pointers. The ``tramp`` argument must point to a sufficiently large and
8929sufficiently aligned block of memory; this memory is written to by the
8930intrinsic. Note that the size and the alignment are target-specific -
8931LLVM currently provides no portable way of determining them, so a
8932front-end that generates this intrinsic needs to have some
8933target-specific knowledge. The ``func`` argument must hold a function
8934bitcast to an ``i8*``.
8935
8936Semantics:
8937""""""""""
8938
8939The block of memory pointed to by ``tramp`` is filled with target
8940dependent code, turning it into a function. Then ``tramp`` needs to be
8941passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8942be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8943function's signature is the same as that of ``func`` with any arguments
8944marked with the ``nest`` attribute removed. At most one such ``nest``
8945argument is allowed, and it must be of pointer type. Calling the new
8946function is equivalent to calling ``func`` with the same argument list,
8947but with ``nval`` used for the missing ``nest`` argument. If, after
8948calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8949modified, then the effect of any later call to the returned function
8950pointer is undefined.
8951
8952.. _int_at:
8953
8954'``llvm.adjust.trampoline``' Intrinsic
8955^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8956
8957Syntax:
8958"""""""
8959
8960::
8961
8962 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8963
8964Overview:
8965"""""""""
8966
8967This performs any required machine-specific adjustment to the address of
8968a trampoline (passed as ``tramp``).
8969
8970Arguments:
8971""""""""""
8972
8973``tramp`` must point to a block of memory which already has trampoline
8974code filled in by a previous call to
8975:ref:`llvm.init.trampoline <int_it>`.
8976
8977Semantics:
8978""""""""""
8979
8980On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00008981different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00008982intrinsic returns the executable address corresponding to ``tramp``
8983after performing the required machine specific adjustments. The pointer
8984returned can then be :ref:`bitcast and executed <int_trampoline>`.
8985
8986Memory Use Markers
8987------------------
8988
Sanjay Patel69bf48e2014-07-04 19:40:43 +00008989This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00008990memory objects and ranges where variables are immutable.
8991
Reid Klecknera534a382013-12-19 02:14:12 +00008992.. _int_lifestart:
8993
Sean Silvab084af42012-12-07 10:36:55 +00008994'``llvm.lifetime.start``' Intrinsic
8995^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8996
8997Syntax:
8998"""""""
8999
9000::
9001
9002 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9003
9004Overview:
9005"""""""""
9006
9007The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9008object's lifetime.
9009
9010Arguments:
9011""""""""""
9012
9013The first argument is a constant integer representing the size of the
9014object, or -1 if it is variable sized. The second argument is a pointer
9015to the object.
9016
9017Semantics:
9018""""""""""
9019
9020This intrinsic indicates that before this point in the code, the value
9021of the memory pointed to by ``ptr`` is dead. This means that it is known
9022to never be used and has an undefined value. A load from the pointer
9023that precedes this intrinsic can be replaced with ``'undef'``.
9024
Reid Klecknera534a382013-12-19 02:14:12 +00009025.. _int_lifeend:
9026
Sean Silvab084af42012-12-07 10:36:55 +00009027'``llvm.lifetime.end``' Intrinsic
9028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9029
9030Syntax:
9031"""""""
9032
9033::
9034
9035 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9036
9037Overview:
9038"""""""""
9039
9040The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9041object's lifetime.
9042
9043Arguments:
9044""""""""""
9045
9046The first argument is a constant integer representing the size of the
9047object, or -1 if it is variable sized. The second argument is a pointer
9048to the object.
9049
9050Semantics:
9051""""""""""
9052
9053This intrinsic indicates that after this point in the code, the value of
9054the memory pointed to by ``ptr`` is dead. This means that it is known to
9055never be used and has an undefined value. Any stores into the memory
9056object following this intrinsic may be removed as dead.
9057
9058'``llvm.invariant.start``' Intrinsic
9059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9060
9061Syntax:
9062"""""""
9063
9064::
9065
9066 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9067
9068Overview:
9069"""""""""
9070
9071The '``llvm.invariant.start``' intrinsic specifies that the contents of
9072a memory object will not change.
9073
9074Arguments:
9075""""""""""
9076
9077The first argument is a constant integer representing the size of the
9078object, or -1 if it is variable sized. The second argument is a pointer
9079to the object.
9080
9081Semantics:
9082""""""""""
9083
9084This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9085the return value, the referenced memory location is constant and
9086unchanging.
9087
9088'``llvm.invariant.end``' Intrinsic
9089^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9090
9091Syntax:
9092"""""""
9093
9094::
9095
9096 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9097
9098Overview:
9099"""""""""
9100
9101The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9102memory object are mutable.
9103
9104Arguments:
9105""""""""""
9106
9107The first argument is the matching ``llvm.invariant.start`` intrinsic.
9108The second argument is a constant integer representing the size of the
9109object, or -1 if it is variable sized and the third argument is a
9110pointer to the object.
9111
9112Semantics:
9113""""""""""
9114
9115This intrinsic indicates that the memory is mutable again.
9116
9117General Intrinsics
9118------------------
9119
9120This class of intrinsics is designed to be generic and has no specific
9121purpose.
9122
9123'``llvm.var.annotation``' Intrinsic
9124^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9125
9126Syntax:
9127"""""""
9128
9129::
9130
9131 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9132
9133Overview:
9134"""""""""
9135
9136The '``llvm.var.annotation``' intrinsic.
9137
9138Arguments:
9139""""""""""
9140
9141The first argument is a pointer to a value, the second is a pointer to a
9142global string, the third is a pointer to a global string which is the
9143source file name, and the last argument is the line number.
9144
9145Semantics:
9146""""""""""
9147
9148This intrinsic allows annotation of local variables with arbitrary
9149strings. This can be useful for special purpose optimizations that want
9150to look for these annotations. These have no other defined use; they are
9151ignored by code generation and optimization.
9152
Michael Gottesman88d18832013-03-26 00:34:27 +00009153'``llvm.ptr.annotation.*``' Intrinsic
9154^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9155
9156Syntax:
9157"""""""
9158
9159This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9160pointer to an integer of any width. *NOTE* you must specify an address space for
9161the pointer. The identifier for the default address space is the integer
9162'``0``'.
9163
9164::
9165
9166 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9167 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9168 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9169 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9170 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9171
9172Overview:
9173"""""""""
9174
9175The '``llvm.ptr.annotation``' intrinsic.
9176
9177Arguments:
9178""""""""""
9179
9180The first argument is a pointer to an integer value of arbitrary bitwidth
9181(result of some expression), the second is a pointer to a global string, the
9182third is a pointer to a global string which is the source file name, and the
9183last argument is the line number. It returns the value of the first argument.
9184
9185Semantics:
9186""""""""""
9187
9188This intrinsic allows annotation of a pointer to an integer with arbitrary
9189strings. This can be useful for special purpose optimizations that want to look
9190for these annotations. These have no other defined use; they are ignored by code
9191generation and optimization.
9192
Sean Silvab084af42012-12-07 10:36:55 +00009193'``llvm.annotation.*``' Intrinsic
9194^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9195
9196Syntax:
9197"""""""
9198
9199This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9200any integer bit width.
9201
9202::
9203
9204 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9205 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9206 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9207 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9208 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9209
9210Overview:
9211"""""""""
9212
9213The '``llvm.annotation``' intrinsic.
9214
9215Arguments:
9216""""""""""
9217
9218The first argument is an integer value (result of some expression), the
9219second is a pointer to a global string, the third is a pointer to a
9220global string which is the source file name, and the last argument is
9221the line number. It returns the value of the first argument.
9222
9223Semantics:
9224""""""""""
9225
9226This intrinsic allows annotations to be put on arbitrary expressions
9227with arbitrary strings. This can be useful for special purpose
9228optimizations that want to look for these annotations. These have no
9229other defined use; they are ignored by code generation and optimization.
9230
9231'``llvm.trap``' Intrinsic
9232^^^^^^^^^^^^^^^^^^^^^^^^^
9233
9234Syntax:
9235"""""""
9236
9237::
9238
9239 declare void @llvm.trap() noreturn nounwind
9240
9241Overview:
9242"""""""""
9243
9244The '``llvm.trap``' intrinsic.
9245
9246Arguments:
9247""""""""""
9248
9249None.
9250
9251Semantics:
9252""""""""""
9253
9254This intrinsic is lowered to the target dependent trap instruction. If
9255the target does not have a trap instruction, this intrinsic will be
9256lowered to a call of the ``abort()`` function.
9257
9258'``llvm.debugtrap``' Intrinsic
9259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9260
9261Syntax:
9262"""""""
9263
9264::
9265
9266 declare void @llvm.debugtrap() nounwind
9267
9268Overview:
9269"""""""""
9270
9271The '``llvm.debugtrap``' intrinsic.
9272
9273Arguments:
9274""""""""""
9275
9276None.
9277
9278Semantics:
9279""""""""""
9280
9281This intrinsic is lowered to code which is intended to cause an
9282execution trap with the intention of requesting the attention of a
9283debugger.
9284
9285'``llvm.stackprotector``' Intrinsic
9286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9287
9288Syntax:
9289"""""""
9290
9291::
9292
9293 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9294
9295Overview:
9296"""""""""
9297
9298The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9299onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9300is placed on the stack before local variables.
9301
9302Arguments:
9303""""""""""
9304
9305The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9306The first argument is the value loaded from the stack guard
9307``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9308enough space to hold the value of the guard.
9309
9310Semantics:
9311""""""""""
9312
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009313This intrinsic causes the prologue/epilogue inserter to force the position of
9314the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9315to ensure that if a local variable on the stack is overwritten, it will destroy
9316the value of the guard. When the function exits, the guard on the stack is
9317checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9318different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9319calling the ``__stack_chk_fail()`` function.
9320
9321'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009322^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009323
9324Syntax:
9325"""""""
9326
9327::
9328
9329 declare void @llvm.stackprotectorcheck(i8** <guard>)
9330
9331Overview:
9332"""""""""
9333
9334The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009335created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009336``__stack_chk_fail()`` function.
9337
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009338Arguments:
9339""""""""""
9340
9341The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9342the variable ``@__stack_chk_guard``.
9343
9344Semantics:
9345""""""""""
9346
9347This intrinsic is provided to perform the stack protector check by comparing
9348``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9349values do not match call the ``__stack_chk_fail()`` function.
9350
9351The reason to provide this as an IR level intrinsic instead of implementing it
9352via other IR operations is that in order to perform this operation at the IR
9353level without an intrinsic, one would need to create additional basic blocks to
9354handle the success/failure cases. This makes it difficult to stop the stack
9355protector check from disrupting sibling tail calls in Codegen. With this
9356intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009357codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009358
Sean Silvab084af42012-12-07 10:36:55 +00009359'``llvm.objectsize``' Intrinsic
9360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9361
9362Syntax:
9363"""""""
9364
9365::
9366
9367 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9368 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9369
9370Overview:
9371"""""""""
9372
9373The ``llvm.objectsize`` intrinsic is designed to provide information to
9374the optimizers to determine at compile time whether a) an operation
9375(like memcpy) will overflow a buffer that corresponds to an object, or
9376b) that a runtime check for overflow isn't necessary. An object in this
9377context means an allocation of a specific class, structure, array, or
9378other object.
9379
9380Arguments:
9381""""""""""
9382
9383The ``llvm.objectsize`` intrinsic takes two arguments. The first
9384argument is a pointer to or into the ``object``. The second argument is
9385a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9386or -1 (if false) when the object size is unknown. The second argument
9387only accepts constants.
9388
9389Semantics:
9390""""""""""
9391
9392The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9393the size of the object concerned. If the size cannot be determined at
9394compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9395on the ``min`` argument).
9396
9397'``llvm.expect``' Intrinsic
9398^^^^^^^^^^^^^^^^^^^^^^^^^^^
9399
9400Syntax:
9401"""""""
9402
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009403This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9404integer bit width.
9405
Sean Silvab084af42012-12-07 10:36:55 +00009406::
9407
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009408 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009409 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9410 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9411
9412Overview:
9413"""""""""
9414
9415The ``llvm.expect`` intrinsic provides information about expected (the
9416most probable) value of ``val``, which can be used by optimizers.
9417
9418Arguments:
9419""""""""""
9420
9421The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9422a value. The second argument is an expected value, this needs to be a
9423constant value, variables are not allowed.
9424
9425Semantics:
9426""""""""""
9427
9428This intrinsic is lowered to the ``val``.
9429
Hal Finkel93046912014-07-25 21:13:35 +00009430'``llvm.assume``' Intrinsic
9431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9432
9433Syntax:
9434"""""""
9435
9436::
9437
9438 declare void @llvm.assume(i1 %cond)
9439
9440Overview:
9441"""""""""
9442
9443The ``llvm.assume`` allows the optimizer to assume that the provided
9444condition is true. This information can then be used in simplifying other parts
9445of the code.
9446
9447Arguments:
9448""""""""""
9449
9450The condition which the optimizer may assume is always true.
9451
9452Semantics:
9453""""""""""
9454
9455The intrinsic allows the optimizer to assume that the provided condition is
9456always true whenever the control flow reaches the intrinsic call. No code is
9457generated for this intrinsic, and instructions that contribute only to the
9458provided condition are not used for code generation. If the condition is
9459violated during execution, the behavior is undefined.
9460
9461Please note that optimizer might limit the transformations performed on values
9462used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9463only used to form the intrinsic's input argument. This might prove undesirable
9464if the extra information provided by the ``llvm.assume`` intrinsic does cause
9465sufficient overall improvement in code quality. For this reason,
9466``llvm.assume`` should not be used to document basic mathematical invariants
9467that the optimizer can otherwise deduce or facts that are of little use to the
9468optimizer.
9469
Sean Silvab084af42012-12-07 10:36:55 +00009470'``llvm.donothing``' Intrinsic
9471^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9472
9473Syntax:
9474"""""""
9475
9476::
9477
9478 declare void @llvm.donothing() nounwind readnone
9479
9480Overview:
9481"""""""""
9482
9483The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9484only intrinsic that can be called with an invoke instruction.
9485
9486Arguments:
9487""""""""""
9488
9489None.
9490
9491Semantics:
9492""""""""""
9493
9494This intrinsic does nothing, and it's removed by optimizers and ignored
9495by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009496
9497Stack Map Intrinsics
9498--------------------
9499
9500LLVM provides experimental intrinsics to support runtime patching
9501mechanisms commonly desired in dynamic language JITs. These intrinsics
9502are described in :doc:`StackMaps`.