blob: ddbf40034942be7de670f2f60522ed7a951fc2aa [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
Tim Northover675a0962014-06-13 14:24:23 +0000120 %0 = add i32 %X, %X ; yields i32:%0
121 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000446.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000467.. _tls_model:
468
469Thread Local Storage Models
470---------------------------
471
472A variable may be defined as ``thread_local``, which means that it will
473not be shared by threads (each thread will have a separated copy of the
474variable). Not all targets support thread-local variables. Optionally, a
475TLS model may be specified:
476
477``localdynamic``
478 For variables that are only used within the current shared library.
479``initialexec``
480 For variables in modules that will not be loaded dynamically.
481``localexec``
482 For variables defined in the executable and only used within it.
483
484If no explicit model is given, the "general dynamic" model is used.
485
486The models correspond to the ELF TLS models; see `ELF Handling For
487Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
488more information on under which circumstances the different models may
489be used. The target may choose a different TLS model if the specified
490model is not supported, or if a better choice of model can be made.
491
492A model can also be specified in a alias, but then it only governs how
493the alias is accessed. It will not have any effect in the aliasee.
494
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000495.. _namedtypes:
496
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000497Structure Types
498---------------
Sean Silvab084af42012-12-07 10:36:55 +0000499
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000500LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
501types <t_struct>`. Literal types are uniqued structurally, but identified types
502are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
503to forward declare a type which is not yet available.
504
505An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000506
507.. code-block:: llvm
508
509 %mytype = type { %mytype*, i32 }
510
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000511Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
512literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000513
514.. _globalvars:
515
516Global Variables
517----------------
518
519Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000520instead of run-time.
521
Bob Wilson85b24f22014-06-12 20:40:33 +0000522Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000523
524Global variables in other translation units can also be declared, in which
525case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000526
Bob Wilson85b24f22014-06-12 20:40:33 +0000527Either global variable definitions or declarations may have an explicit section
528to be placed in and may have an optional explicit alignment specified.
529
Michael Gottesman006039c2013-01-31 05:48:48 +0000530A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000531the contents of the variable will **never** be modified (enabling better
532optimization, allowing the global data to be placed in the read-only
533section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000534initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000535variable.
536
537LLVM explicitly allows *declarations* of global variables to be marked
538constant, even if the final definition of the global is not. This
539capability can be used to enable slightly better optimization of the
540program, but requires the language definition to guarantee that
541optimizations based on the 'constantness' are valid for the translation
542units that do not include the definition.
543
544As SSA values, global variables define pointer values that are in scope
545(i.e. they dominate) all basic blocks in the program. Global variables
546always define a pointer to their "content" type because they describe a
547region of memory, and all memory objects in LLVM are accessed through
548pointers.
549
550Global variables can be marked with ``unnamed_addr`` which indicates
551that the address is not significant, only the content. Constants marked
552like this can be merged with other constants if they have the same
553initializer. Note that a constant with significant address *can* be
554merged with a ``unnamed_addr`` constant, the result being a constant
555whose address is significant.
556
557A global variable may be declared to reside in a target-specific
558numbered address space. For targets that support them, address spaces
559may affect how optimizations are performed and/or what target
560instructions are used to access the variable. The default address space
561is zero. The address space qualifier must precede any other attributes.
562
563LLVM allows an explicit section to be specified for globals. If the
564target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000565Additionally, the global can placed in a comdat if the target has the necessary
566support.
Sean Silvab084af42012-12-07 10:36:55 +0000567
Michael Gottesmane743a302013-02-04 03:22:00 +0000568By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000569variables defined within the module are not modified from their
570initial values before the start of the global initializer. This is
571true even for variables potentially accessible from outside the
572module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000573``@llvm.used`` or dllexported variables. This assumption may be suppressed
574by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000575
Sean Silvab084af42012-12-07 10:36:55 +0000576An explicit alignment may be specified for a global, which must be a
577power of 2. If not present, or if the alignment is set to zero, the
578alignment of the global is set by the target to whatever it feels
579convenient. If an explicit alignment is specified, the global is forced
580to have exactly that alignment. Targets and optimizers are not allowed
581to over-align the global if the global has an assigned section. In this
582case, the extra alignment could be observable: for example, code could
583assume that the globals are densely packed in their section and try to
584iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000585iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000586
Nico Rieck7157bb72014-01-14 15:22:47 +0000587Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
588
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000589Variables and aliasaes can have a
590:ref:`Thread Local Storage Model <tls_model>`.
591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Syntax::
593
594 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000595 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000596 <global | constant> <Type> [<InitializerConstant>]
597 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000598
Sean Silvab084af42012-12-07 10:36:55 +0000599For example, the following defines a global in a numbered address space
600with an initializer, section, and alignment:
601
602.. code-block:: llvm
603
604 @G = addrspace(5) constant float 1.0, section "foo", align 4
605
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000606The following example just declares a global variable
607
608.. code-block:: llvm
609
610 @G = external global i32
611
Sean Silvab084af42012-12-07 10:36:55 +0000612The following example defines a thread-local global with the
613``initialexec`` TLS model:
614
615.. code-block:: llvm
616
617 @G = thread_local(initialexec) global i32 0, align 4
618
619.. _functionstructure:
620
621Functions
622---------
623
624LLVM function definitions consist of the "``define``" keyword, an
625optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000626style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
627an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000628an optional ``unnamed_addr`` attribute, a return type, an optional
629:ref:`parameter attribute <paramattrs>` for the return type, a function
630name, a (possibly empty) argument list (each with optional :ref:`parameter
631attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000632an optional section, an optional alignment,
633an optional :ref:`comdat <langref_comdats>`,
634an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000635curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000636
637LLVM function declarations consist of the "``declare``" keyword, an
638optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000639style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
640an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000641an optional ``unnamed_addr`` attribute, a return type, an optional
642:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000643name, a possibly empty list of arguments, an optional alignment, an optional
644:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000645
Bill Wendling6822ecb2013-10-27 05:09:12 +0000646A function definition contains a list of basic blocks, forming the CFG (Control
647Flow Graph) for the function. Each basic block may optionally start with a label
648(giving the basic block a symbol table entry), contains a list of instructions,
649and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
650function return). If an explicit label is not provided, a block is assigned an
651implicit numbered label, using the next value from the same counter as used for
652unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
653entry block does not have an explicit label, it will be assigned label "%0",
654then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000655
656The first basic block in a function is special in two ways: it is
657immediately executed on entrance to the function, and it is not allowed
658to have predecessor basic blocks (i.e. there can not be any branches to
659the entry block of a function). Because the block can have no
660predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
661
662LLVM allows an explicit section to be specified for functions. If the
663target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000664Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000665
666An explicit alignment may be specified for a function. If not present,
667or if the alignment is set to zero, the alignment of the function is set
668by the target to whatever it feels convenient. If an explicit alignment
669is specified, the function is forced to have at least that much
670alignment. All alignments must be a power of 2.
671
672If the ``unnamed_addr`` attribute is given, the address is know to not
673be significant and two identical functions can be merged.
674
675Syntax::
676
Nico Rieck7157bb72014-01-14 15:22:47 +0000677 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000678 [cconv] [ret attrs]
679 <ResultType> @<FunctionName> ([argument list])
David Majnemerdad0a642014-06-27 18:19:56 +0000680 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>]
681 [align N] [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000682
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000683.. _langref_aliases:
684
Sean Silvab084af42012-12-07 10:36:55 +0000685Aliases
686-------
687
Rafael Espindola64c1e182014-06-03 02:41:57 +0000688Aliases, unlike function or variables, don't create any new data. They
689are just a new symbol and metadata for an existing position.
690
691Aliases have a name and an aliasee that is either a global value or a
692constant expression.
693
Nico Rieck7157bb72014-01-14 15:22:47 +0000694Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000695:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
696<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000697
698Syntax::
699
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000700 @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000701
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000702The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000703``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000704might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000705
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000706Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000707the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
708to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000709
Rafael Espindola64c1e182014-06-03 02:41:57 +0000710Since aliases are only a second name, some restrictions apply, of which
711some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000712
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713* The expression defining the aliasee must be computable at assembly
714 time. Since it is just a name, no relocations can be used.
715
716* No alias in the expression can be weak as the possibility of the
717 intermediate alias being overridden cannot be represented in an
718 object file.
719
720* No global value in the expression can be a declaration, since that
721 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000722
David Majnemerdad0a642014-06-27 18:19:56 +0000723.. _langref_comdats:
724
725Comdats
726-------
727
728Comdat IR provides access to COFF and ELF object file COMDAT functionality.
729
730Comdats have a name which represents the COMDAT key. All global objects which
731specify this key will only end up in the final object file if the linker chooses
732that key over some other key. Aliases are placed in the same COMDAT that their
733aliasee computes to, if any.
734
735Comdats have a selection kind to provide input on how the linker should
736choose between keys in two different object files.
737
738Syntax::
739
740 $<Name> = comdat SelectionKind
741
742The selection kind must be one of the following:
743
744``any``
745 The linker may choose any COMDAT key, the choice is arbitrary.
746``exactmatch``
747 The linker may choose any COMDAT key but the sections must contain the
748 same data.
749``largest``
750 The linker will choose the section containing the largest COMDAT key.
751``noduplicates``
752 The linker requires that only section with this COMDAT key exist.
753``samesize``
754 The linker may choose any COMDAT key but the sections must contain the
755 same amount of data.
756
757Note that the Mach-O platform doesn't support COMDATs and ELF only supports
758``any`` as a selection kind.
759
760Here is an example of a COMDAT group where a function will only be selected if
761the COMDAT key's section is the largest:
762
763.. code-block:: llvm
764
765 $foo = comdat largest
766 @foo = global i32 2, comdat $foo
767
768 define void @bar() comdat $foo {
769 ret void
770 }
771
772In a COFF object file, this will create a COMDAT section with selection kind
773``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
774and another COMDAT section with selection kind
775``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
776section and contains the contents of the ``@baz`` symbol.
777
778There are some restrictions on the properties of the global object.
779It, or an alias to it, must have the same name as the COMDAT group when
780targeting COFF.
781The contents and size of this object may be used during link-time to determine
782which COMDAT groups get selected depending on the selection kind.
783Because the name of the object must match the name of the COMDAT group, the
784linkage of the global object must not be local; local symbols can get renamed
785if a collision occurs in the symbol table.
786
787The combined use of COMDATS and section attributes may yield surprising results.
788For example:
789
790.. code-block:: llvm
791
792 $foo = comdat any
793 $bar = comdat any
794 @g1 = global i32 42, section "sec", comdat $foo
795 @g2 = global i32 42, section "sec", comdat $bar
796
797From the object file perspective, this requires the creation of two sections
798with the same name. This is necessary because both globals belong to different
799COMDAT groups and COMDATs, at the object file level, are represented by
800sections.
801
802Note that certain IR constructs like global variables and functions may create
803COMDATs in the object file in addition to any which are specified using COMDAT
804IR. This arises, for example, when a global variable has linkonce_odr linkage.
805
Sean Silvab084af42012-12-07 10:36:55 +0000806.. _namedmetadatastructure:
807
808Named Metadata
809--------------
810
811Named metadata is a collection of metadata. :ref:`Metadata
812nodes <metadata>` (but not metadata strings) are the only valid
813operands for a named metadata.
814
815Syntax::
816
817 ; Some unnamed metadata nodes, which are referenced by the named metadata.
818 !0 = metadata !{metadata !"zero"}
819 !1 = metadata !{metadata !"one"}
820 !2 = metadata !{metadata !"two"}
821 ; A named metadata.
822 !name = !{!0, !1, !2}
823
824.. _paramattrs:
825
826Parameter Attributes
827--------------------
828
829The return type and each parameter of a function type may have a set of
830*parameter attributes* associated with them. Parameter attributes are
831used to communicate additional information about the result or
832parameters of a function. Parameter attributes are considered to be part
833of the function, not of the function type, so functions with different
834parameter attributes can have the same function type.
835
836Parameter attributes are simple keywords that follow the type specified.
837If multiple parameter attributes are needed, they are space separated.
838For example:
839
840.. code-block:: llvm
841
842 declare i32 @printf(i8* noalias nocapture, ...)
843 declare i32 @atoi(i8 zeroext)
844 declare signext i8 @returns_signed_char()
845
846Note that any attributes for the function result (``nounwind``,
847``readonly``) come immediately after the argument list.
848
849Currently, only the following parameter attributes are defined:
850
851``zeroext``
852 This indicates to the code generator that the parameter or return
853 value should be zero-extended to the extent required by the target's
854 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
855 the caller (for a parameter) or the callee (for a return value).
856``signext``
857 This indicates to the code generator that the parameter or return
858 value should be sign-extended to the extent required by the target's
859 ABI (which is usually 32-bits) by the caller (for a parameter) or
860 the callee (for a return value).
861``inreg``
862 This indicates that this parameter or return value should be treated
863 in a special target-dependent fashion during while emitting code for
864 a function call or return (usually, by putting it in a register as
865 opposed to memory, though some targets use it to distinguish between
866 two different kinds of registers). Use of this attribute is
867 target-specific.
868``byval``
869 This indicates that the pointer parameter should really be passed by
870 value to the function. The attribute implies that a hidden copy of
871 the pointee is made between the caller and the callee, so the callee
872 is unable to modify the value in the caller. This attribute is only
873 valid on LLVM pointer arguments. It is generally used to pass
874 structs and arrays by value, but is also valid on pointers to
875 scalars. The copy is considered to belong to the caller not the
876 callee (for example, ``readonly`` functions should not write to
877 ``byval`` parameters). This is not a valid attribute for return
878 values.
879
880 The byval attribute also supports specifying an alignment with the
881 align attribute. It indicates the alignment of the stack slot to
882 form and the known alignment of the pointer specified to the call
883 site. If the alignment is not specified, then the code generator
884 makes a target-specific assumption.
885
Reid Klecknera534a382013-12-19 02:14:12 +0000886.. _attr_inalloca:
887
888``inalloca``
889
Reid Kleckner60d3a832014-01-16 22:59:24 +0000890 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000891 address of outgoing stack arguments. An ``inalloca`` argument must
892 be a pointer to stack memory produced by an ``alloca`` instruction.
893 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000894 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000895 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000896
Reid Kleckner436c42e2014-01-17 23:58:17 +0000897 An argument allocation may be used by a call at most once because
898 the call may deallocate it. The ``inalloca`` attribute cannot be
899 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000900 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
901 ``inalloca`` attribute also disables LLVM's implicit lowering of
902 large aggregate return values, which means that frontend authors
903 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000904
Reid Kleckner60d3a832014-01-16 22:59:24 +0000905 When the call site is reached, the argument allocation must have
906 been the most recent stack allocation that is still live, or the
907 results are undefined. It is possible to allocate additional stack
908 space after an argument allocation and before its call site, but it
909 must be cleared off with :ref:`llvm.stackrestore
910 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000911
912 See :doc:`InAlloca` for more information on how to use this
913 attribute.
914
Sean Silvab084af42012-12-07 10:36:55 +0000915``sret``
916 This indicates that the pointer parameter specifies the address of a
917 structure that is the return value of the function in the source
918 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000919 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000920 not to trap and to be properly aligned. This may only be applied to
921 the first parameter. This is not a valid attribute for return
922 values.
Sean Silva1703e702014-04-08 21:06:22 +0000923
Hal Finkelccc70902014-07-22 16:58:55 +0000924``align <n>``
925 This indicates that the pointer value may be assumed by the optimizer to
926 have the specified alignment.
927
928 Note that this attribute has additional semantics when combined with the
929 ``byval`` attribute.
930
Sean Silva1703e702014-04-08 21:06:22 +0000931.. _noalias:
932
Sean Silvab084af42012-12-07 10:36:55 +0000933``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000934 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000935 the argument or return value do not alias pointer values which are
936 not *based* on it, ignoring certain "irrelevant" dependencies. For a
937 call to the parent function, dependencies between memory references
938 from before or after the call and from those during the call are
939 "irrelevant" to the ``noalias`` keyword for the arguments and return
940 value used in that call. The caller shares the responsibility with
941 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000942 details, please see the discussion of the NoAlias response in :ref:`alias
943 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000944
945 Note that this definition of ``noalias`` is intentionally similar
946 to the definition of ``restrict`` in C99 for function arguments,
947 though it is slightly weaker.
948
949 For function return values, C99's ``restrict`` is not meaningful,
950 while LLVM's ``noalias`` is.
951``nocapture``
952 This indicates that the callee does not make any copies of the
953 pointer that outlive the callee itself. This is not a valid
954 attribute for return values.
955
956.. _nest:
957
958``nest``
959 This indicates that the pointer parameter can be excised using the
960 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000961 attribute for return values and can only be applied to one parameter.
962
963``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000964 This indicates that the function always returns the argument as its return
965 value. This is an optimization hint to the code generator when generating
966 the caller, allowing tail call optimization and omission of register saves
967 and restores in some cases; it is not checked or enforced when generating
968 the callee. The parameter and the function return type must be valid
969 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
970 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000971
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000972``nonnull``
973 This indicates that the parameter or return pointer is not null. This
974 attribute may only be applied to pointer typed parameters. This is not
975 checked or enforced by LLVM, the caller must ensure that the pointer
976 passed in is non-null, or the callee must ensure that the returned pointer
977 is non-null.
978
Hal Finkelb0407ba2014-07-18 15:51:28 +0000979``dereferenceable(<n>)``
980 This indicates that the parameter or return pointer is dereferenceable. This
981 attribute may only be applied to pointer typed parameters. A pointer that
982 is dereferenceable can be loaded from speculatively without a risk of
983 trapping. The number of bytes known to be dereferenceable must be provided
984 in parentheses. It is legal for the number of bytes to be less than the
985 size of the pointee type. The ``nonnull`` attribute does not imply
986 dereferenceability (consider a pointer to one element past the end of an
987 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
988 ``addrspace(0)`` (which is the default address space).
989
Sean Silvab084af42012-12-07 10:36:55 +0000990.. _gc:
991
992Garbage Collector Names
993-----------------------
994
995Each function may specify a garbage collector name, which is simply a
996string:
997
998.. code-block:: llvm
999
1000 define void @f() gc "name" { ... }
1001
1002The compiler declares the supported values of *name*. Specifying a
1003collector which will cause the compiler to alter its output in order to
1004support the named garbage collection algorithm.
1005
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001006.. _prefixdata:
1007
1008Prefix Data
1009-----------
1010
1011Prefix data is data associated with a function which the code generator
1012will emit immediately before the function body. The purpose of this feature
1013is to allow frontends to associate language-specific runtime metadata with
1014specific functions and make it available through the function pointer while
1015still allowing the function pointer to be called. To access the data for a
1016given function, a program may bitcast the function pointer to a pointer to
1017the constant's type. This implies that the IR symbol points to the start
1018of the prefix data.
1019
1020To maintain the semantics of ordinary function calls, the prefix data must
1021have a particular format. Specifically, it must begin with a sequence of
1022bytes which decode to a sequence of machine instructions, valid for the
1023module's target, which transfer control to the point immediately succeeding
1024the prefix data, without performing any other visible action. This allows
1025the inliner and other passes to reason about the semantics of the function
1026definition without needing to reason about the prefix data. Obviously this
1027makes the format of the prefix data highly target dependent.
1028
Peter Collingbourne213358a2013-09-23 20:14:21 +00001029Prefix data is laid out as if it were an initializer for a global variable
1030of the prefix data's type. No padding is automatically placed between the
1031prefix data and the function body. If padding is required, it must be part
1032of the prefix data.
1033
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001034A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
1035which encodes the ``nop`` instruction:
1036
1037.. code-block:: llvm
1038
1039 define void @f() prefix i8 144 { ... }
1040
1041Generally prefix data can be formed by encoding a relative branch instruction
1042which skips the metadata, as in this example of valid prefix data for the
1043x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1044
1045.. code-block:: llvm
1046
1047 %0 = type <{ i8, i8, i8* }>
1048
1049 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
1050
1051A function may have prefix data but no body. This has similar semantics
1052to the ``available_externally`` linkage in that the data may be used by the
1053optimizers but will not be emitted in the object file.
1054
Bill Wendling63b88192013-02-06 06:52:58 +00001055.. _attrgrp:
1056
1057Attribute Groups
1058----------------
1059
1060Attribute groups are groups of attributes that are referenced by objects within
1061the IR. They are important for keeping ``.ll`` files readable, because a lot of
1062functions will use the same set of attributes. In the degenerative case of a
1063``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1064group will capture the important command line flags used to build that file.
1065
1066An attribute group is a module-level object. To use an attribute group, an
1067object references the attribute group's ID (e.g. ``#37``). An object may refer
1068to more than one attribute group. In that situation, the attributes from the
1069different groups are merged.
1070
1071Here is an example of attribute groups for a function that should always be
1072inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1073
1074.. code-block:: llvm
1075
1076 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001077 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001078
1079 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001080 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001081
1082 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1083 define void @f() #0 #1 { ... }
1084
Sean Silvab084af42012-12-07 10:36:55 +00001085.. _fnattrs:
1086
1087Function Attributes
1088-------------------
1089
1090Function attributes are set to communicate additional information about
1091a function. Function attributes are considered to be part of the
1092function, not of the function type, so functions with different function
1093attributes can have the same function type.
1094
1095Function attributes are simple keywords that follow the type specified.
1096If multiple attributes are needed, they are space separated. For
1097example:
1098
1099.. code-block:: llvm
1100
1101 define void @f() noinline { ... }
1102 define void @f() alwaysinline { ... }
1103 define void @f() alwaysinline optsize { ... }
1104 define void @f() optsize { ... }
1105
Sean Silvab084af42012-12-07 10:36:55 +00001106``alignstack(<n>)``
1107 This attribute indicates that, when emitting the prologue and
1108 epilogue, the backend should forcibly align the stack pointer.
1109 Specify the desired alignment, which must be a power of two, in
1110 parentheses.
1111``alwaysinline``
1112 This attribute indicates that the inliner should attempt to inline
1113 this function into callers whenever possible, ignoring any active
1114 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001115``builtin``
1116 This indicates that the callee function at a call site should be
1117 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001118 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +00001119 direct calls to functions which are declared with the ``nobuiltin``
1120 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001121``cold``
1122 This attribute indicates that this function is rarely called. When
1123 computing edge weights, basic blocks post-dominated by a cold
1124 function call are also considered to be cold; and, thus, given low
1125 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001126``inlinehint``
1127 This attribute indicates that the source code contained a hint that
1128 inlining this function is desirable (such as the "inline" keyword in
1129 C/C++). It is just a hint; it imposes no requirements on the
1130 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001131``jumptable``
1132 This attribute indicates that the function should be added to a
1133 jump-instruction table at code-generation time, and that all address-taken
1134 references to this function should be replaced with a reference to the
1135 appropriate jump-instruction-table function pointer. Note that this creates
1136 a new pointer for the original function, which means that code that depends
1137 on function-pointer identity can break. So, any function annotated with
1138 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001139``minsize``
1140 This attribute suggests that optimization passes and code generator
1141 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001142 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001143 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001144``naked``
1145 This attribute disables prologue / epilogue emission for the
1146 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001147``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001148 This indicates that the callee function at a call site is not recognized as
1149 a built-in function. LLVM will retain the original call and not replace it
1150 with equivalent code based on the semantics of the built-in function, unless
1151 the call site uses the ``builtin`` attribute. This is valid at call sites
1152 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001153``noduplicate``
1154 This attribute indicates that calls to the function cannot be
1155 duplicated. A call to a ``noduplicate`` function may be moved
1156 within its parent function, but may not be duplicated within
1157 its parent function.
1158
1159 A function containing a ``noduplicate`` call may still
1160 be an inlining candidate, provided that the call is not
1161 duplicated by inlining. That implies that the function has
1162 internal linkage and only has one call site, so the original
1163 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001164``noimplicitfloat``
1165 This attributes disables implicit floating point instructions.
1166``noinline``
1167 This attribute indicates that the inliner should never inline this
1168 function in any situation. This attribute may not be used together
1169 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001170``nonlazybind``
1171 This attribute suppresses lazy symbol binding for the function. This
1172 may make calls to the function faster, at the cost of extra program
1173 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001174``noredzone``
1175 This attribute indicates that the code generator should not use a
1176 red zone, even if the target-specific ABI normally permits it.
1177``noreturn``
1178 This function attribute indicates that the function never returns
1179 normally. This produces undefined behavior at runtime if the
1180 function ever does dynamically return.
1181``nounwind``
1182 This function attribute indicates that the function never returns
1183 with an unwind or exceptional control flow. If the function does
1184 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001185``optnone``
1186 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001187 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001188 exception of interprocedural optimization passes.
1189 This attribute cannot be used together with the ``alwaysinline``
1190 attribute; this attribute is also incompatible
1191 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001192
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001193 This attribute requires the ``noinline`` attribute to be specified on
1194 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001195 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001196 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001197``optsize``
1198 This attribute suggests that optimization passes and code generator
1199 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001200 and otherwise do optimizations specifically to reduce code size as
1201 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001202``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001203 On a function, this attribute indicates that the function computes its
1204 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001205 without dereferencing any pointer arguments or otherwise accessing
1206 any mutable state (e.g. memory, control registers, etc) visible to
1207 caller functions. It does not write through any pointer arguments
1208 (including ``byval`` arguments) and never changes any state visible
1209 to callers. This means that it cannot unwind exceptions by calling
1210 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001211
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001212 On an argument, this attribute indicates that the function does not
1213 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001214 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001215``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001216 On a function, this attribute indicates that the function does not write
1217 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001218 modify any state (e.g. memory, control registers, etc) visible to
1219 caller functions. It may dereference pointer arguments and read
1220 state that may be set in the caller. A readonly function always
1221 returns the same value (or unwinds an exception identically) when
1222 called with the same set of arguments and global state. It cannot
1223 unwind an exception by calling the ``C++`` exception throwing
1224 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001225
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001226 On an argument, this attribute indicates that the function does not write
1227 through this pointer argument, even though it may write to the memory that
1228 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001229``returns_twice``
1230 This attribute indicates that this function can return twice. The C
1231 ``setjmp`` is an example of such a function. The compiler disables
1232 some optimizations (like tail calls) in the caller of these
1233 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001234``sanitize_address``
1235 This attribute indicates that AddressSanitizer checks
1236 (dynamic address safety analysis) are enabled for this function.
1237``sanitize_memory``
1238 This attribute indicates that MemorySanitizer checks (dynamic detection
1239 of accesses to uninitialized memory) are enabled for this function.
1240``sanitize_thread``
1241 This attribute indicates that ThreadSanitizer checks
1242 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001243``ssp``
1244 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001245 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001246 placed on the stack before the local variables that's checked upon
1247 return from the function to see if it has been overwritten. A
1248 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001249 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001250
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001251 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1252 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1253 - Calls to alloca() with variable sizes or constant sizes greater than
1254 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001255
Josh Magee24c7f062014-02-01 01:36:16 +00001256 Variables that are identified as requiring a protector will be arranged
1257 on the stack such that they are adjacent to the stack protector guard.
1258
Sean Silvab084af42012-12-07 10:36:55 +00001259 If a function that has an ``ssp`` attribute is inlined into a
1260 function that doesn't have an ``ssp`` attribute, then the resulting
1261 function will have an ``ssp`` attribute.
1262``sspreq``
1263 This attribute indicates that the function should *always* emit a
1264 stack smashing protector. This overrides the ``ssp`` function
1265 attribute.
1266
Josh Magee24c7f062014-02-01 01:36:16 +00001267 Variables that are identified as requiring a protector will be arranged
1268 on the stack such that they are adjacent to the stack protector guard.
1269 The specific layout rules are:
1270
1271 #. Large arrays and structures containing large arrays
1272 (``>= ssp-buffer-size``) are closest to the stack protector.
1273 #. Small arrays and structures containing small arrays
1274 (``< ssp-buffer-size``) are 2nd closest to the protector.
1275 #. Variables that have had their address taken are 3rd closest to the
1276 protector.
1277
Sean Silvab084af42012-12-07 10:36:55 +00001278 If a function that has an ``sspreq`` attribute is inlined into a
1279 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001280 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1281 an ``sspreq`` attribute.
1282``sspstrong``
1283 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001284 protector. This attribute causes a strong heuristic to be used when
1285 determining if a function needs stack protectors. The strong heuristic
1286 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001287
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001288 - Arrays of any size and type
1289 - Aggregates containing an array of any size and type.
1290 - Calls to alloca().
1291 - Local variables that have had their address taken.
1292
Josh Magee24c7f062014-02-01 01:36:16 +00001293 Variables that are identified as requiring a protector will be arranged
1294 on the stack such that they are adjacent to the stack protector guard.
1295 The specific layout rules are:
1296
1297 #. Large arrays and structures containing large arrays
1298 (``>= ssp-buffer-size``) are closest to the stack protector.
1299 #. Small arrays and structures containing small arrays
1300 (``< ssp-buffer-size``) are 2nd closest to the protector.
1301 #. Variables that have had their address taken are 3rd closest to the
1302 protector.
1303
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001304 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001305
1306 If a function that has an ``sspstrong`` attribute is inlined into a
1307 function that doesn't have an ``sspstrong`` attribute, then the
1308 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001309``uwtable``
1310 This attribute indicates that the ABI being targeted requires that
1311 an unwind table entry be produce for this function even if we can
1312 show that no exceptions passes by it. This is normally the case for
1313 the ELF x86-64 abi, but it can be disabled for some compilation
1314 units.
Sean Silvab084af42012-12-07 10:36:55 +00001315
1316.. _moduleasm:
1317
1318Module-Level Inline Assembly
1319----------------------------
1320
1321Modules may contain "module-level inline asm" blocks, which corresponds
1322to the GCC "file scope inline asm" blocks. These blocks are internally
1323concatenated by LLVM and treated as a single unit, but may be separated
1324in the ``.ll`` file if desired. The syntax is very simple:
1325
1326.. code-block:: llvm
1327
1328 module asm "inline asm code goes here"
1329 module asm "more can go here"
1330
1331The strings can contain any character by escaping non-printable
1332characters. The escape sequence used is simply "\\xx" where "xx" is the
1333two digit hex code for the number.
1334
1335The inline asm code is simply printed to the machine code .s file when
1336assembly code is generated.
1337
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001338.. _langref_datalayout:
1339
Sean Silvab084af42012-12-07 10:36:55 +00001340Data Layout
1341-----------
1342
1343A module may specify a target specific data layout string that specifies
1344how data is to be laid out in memory. The syntax for the data layout is
1345simply:
1346
1347.. code-block:: llvm
1348
1349 target datalayout = "layout specification"
1350
1351The *layout specification* consists of a list of specifications
1352separated by the minus sign character ('-'). Each specification starts
1353with a letter and may include other information after the letter to
1354define some aspect of the data layout. The specifications accepted are
1355as follows:
1356
1357``E``
1358 Specifies that the target lays out data in big-endian form. That is,
1359 the bits with the most significance have the lowest address
1360 location.
1361``e``
1362 Specifies that the target lays out data in little-endian form. That
1363 is, the bits with the least significance have the lowest address
1364 location.
1365``S<size>``
1366 Specifies the natural alignment of the stack in bits. Alignment
1367 promotion of stack variables is limited to the natural stack
1368 alignment to avoid dynamic stack realignment. The stack alignment
1369 must be a multiple of 8-bits. If omitted, the natural stack
1370 alignment defaults to "unspecified", which does not prevent any
1371 alignment promotions.
1372``p[n]:<size>:<abi>:<pref>``
1373 This specifies the *size* of a pointer and its ``<abi>`` and
1374 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001375 bits. The address space, ``n`` is optional, and if not specified,
1376 denotes the default address space 0. The value of ``n`` must be
1377 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001378``i<size>:<abi>:<pref>``
1379 This specifies the alignment for an integer type of a given bit
1380 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1381``v<size>:<abi>:<pref>``
1382 This specifies the alignment for a vector type of a given bit
1383 ``<size>``.
1384``f<size>:<abi>:<pref>``
1385 This specifies the alignment for a floating point type of a given bit
1386 ``<size>``. Only values of ``<size>`` that are supported by the target
1387 will work. 32 (float) and 64 (double) are supported on all targets; 80
1388 or 128 (different flavors of long double) are also supported on some
1389 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001390``a:<abi>:<pref>``
1391 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001392``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001393 If present, specifies that llvm names are mangled in the output. The
1394 options are
1395
1396 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1397 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1398 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1399 symbols get a ``_`` prefix.
1400 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1401 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001402``n<size1>:<size2>:<size3>...``
1403 This specifies a set of native integer widths for the target CPU in
1404 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1405 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1406 this set are considered to support most general arithmetic operations
1407 efficiently.
1408
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001409On every specification that takes a ``<abi>:<pref>``, specifying the
1410``<pref>`` alignment is optional. If omitted, the preceding ``:``
1411should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1412
Sean Silvab084af42012-12-07 10:36:55 +00001413When constructing the data layout for a given target, LLVM starts with a
1414default set of specifications which are then (possibly) overridden by
1415the specifications in the ``datalayout`` keyword. The default
1416specifications are given in this list:
1417
1418- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001419- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1420- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1421 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001422- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001423- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1424- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1425- ``i16:16:16`` - i16 is 16-bit aligned
1426- ``i32:32:32`` - i32 is 32-bit aligned
1427- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1428 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001429- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001430- ``f32:32:32`` - float is 32-bit aligned
1431- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001432- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001433- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1434- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001435- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001436
1437When LLVM is determining the alignment for a given type, it uses the
1438following rules:
1439
1440#. If the type sought is an exact match for one of the specifications,
1441 that specification is used.
1442#. If no match is found, and the type sought is an integer type, then
1443 the smallest integer type that is larger than the bitwidth of the
1444 sought type is used. If none of the specifications are larger than
1445 the bitwidth then the largest integer type is used. For example,
1446 given the default specifications above, the i7 type will use the
1447 alignment of i8 (next largest) while both i65 and i256 will use the
1448 alignment of i64 (largest specified).
1449#. If no match is found, and the type sought is a vector type, then the
1450 largest vector type that is smaller than the sought vector type will
1451 be used as a fall back. This happens because <128 x double> can be
1452 implemented in terms of 64 <2 x double>, for example.
1453
1454The function of the data layout string may not be what you expect.
1455Notably, this is not a specification from the frontend of what alignment
1456the code generator should use.
1457
1458Instead, if specified, the target data layout is required to match what
1459the ultimate *code generator* expects. This string is used by the
1460mid-level optimizers to improve code, and this only works if it matches
1461what the ultimate code generator uses. If you would like to generate IR
1462that does not embed this target-specific detail into the IR, then you
1463don't have to specify the string. This will disable some optimizations
1464that require precise layout information, but this also prevents those
1465optimizations from introducing target specificity into the IR.
1466
Bill Wendling5cc90842013-10-18 23:41:25 +00001467.. _langref_triple:
1468
1469Target Triple
1470-------------
1471
1472A module may specify a target triple string that describes the target
1473host. The syntax for the target triple is simply:
1474
1475.. code-block:: llvm
1476
1477 target triple = "x86_64-apple-macosx10.7.0"
1478
1479The *target triple* string consists of a series of identifiers delimited
1480by the minus sign character ('-'). The canonical forms are:
1481
1482::
1483
1484 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1485 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1486
1487This information is passed along to the backend so that it generates
1488code for the proper architecture. It's possible to override this on the
1489command line with the ``-mtriple`` command line option.
1490
Sean Silvab084af42012-12-07 10:36:55 +00001491.. _pointeraliasing:
1492
1493Pointer Aliasing Rules
1494----------------------
1495
1496Any memory access must be done through a pointer value associated with
1497an address range of the memory access, otherwise the behavior is
1498undefined. Pointer values are associated with address ranges according
1499to the following rules:
1500
1501- A pointer value is associated with the addresses associated with any
1502 value it is *based* on.
1503- An address of a global variable is associated with the address range
1504 of the variable's storage.
1505- The result value of an allocation instruction is associated with the
1506 address range of the allocated storage.
1507- A null pointer in the default address-space is associated with no
1508 address.
1509- An integer constant other than zero or a pointer value returned from
1510 a function not defined within LLVM may be associated with address
1511 ranges allocated through mechanisms other than those provided by
1512 LLVM. Such ranges shall not overlap with any ranges of addresses
1513 allocated by mechanisms provided by LLVM.
1514
1515A pointer value is *based* on another pointer value according to the
1516following rules:
1517
1518- A pointer value formed from a ``getelementptr`` operation is *based*
1519 on the first operand of the ``getelementptr``.
1520- The result value of a ``bitcast`` is *based* on the operand of the
1521 ``bitcast``.
1522- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1523 values that contribute (directly or indirectly) to the computation of
1524 the pointer's value.
1525- The "*based* on" relationship is transitive.
1526
1527Note that this definition of *"based"* is intentionally similar to the
1528definition of *"based"* in C99, though it is slightly weaker.
1529
1530LLVM IR does not associate types with memory. The result type of a
1531``load`` merely indicates the size and alignment of the memory from
1532which to load, as well as the interpretation of the value. The first
1533operand type of a ``store`` similarly only indicates the size and
1534alignment of the store.
1535
1536Consequently, type-based alias analysis, aka TBAA, aka
1537``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1538:ref:`Metadata <metadata>` may be used to encode additional information
1539which specialized optimization passes may use to implement type-based
1540alias analysis.
1541
1542.. _volatile:
1543
1544Volatile Memory Accesses
1545------------------------
1546
1547Certain memory accesses, such as :ref:`load <i_load>`'s,
1548:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1549marked ``volatile``. The optimizers must not change the number of
1550volatile operations or change their order of execution relative to other
1551volatile operations. The optimizers *may* change the order of volatile
1552operations relative to non-volatile operations. This is not Java's
1553"volatile" and has no cross-thread synchronization behavior.
1554
Andrew Trick89fc5a62013-01-30 21:19:35 +00001555IR-level volatile loads and stores cannot safely be optimized into
1556llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1557flagged volatile. Likewise, the backend should never split or merge
1558target-legal volatile load/store instructions.
1559
Andrew Trick7e6f9282013-01-31 00:49:39 +00001560.. admonition:: Rationale
1561
1562 Platforms may rely on volatile loads and stores of natively supported
1563 data width to be executed as single instruction. For example, in C
1564 this holds for an l-value of volatile primitive type with native
1565 hardware support, but not necessarily for aggregate types. The
1566 frontend upholds these expectations, which are intentionally
1567 unspecified in the IR. The rules above ensure that IR transformation
1568 do not violate the frontend's contract with the language.
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570.. _memmodel:
1571
1572Memory Model for Concurrent Operations
1573--------------------------------------
1574
1575The LLVM IR does not define any way to start parallel threads of
1576execution or to register signal handlers. Nonetheless, there are
1577platform-specific ways to create them, and we define LLVM IR's behavior
1578in their presence. This model is inspired by the C++0x memory model.
1579
1580For a more informal introduction to this model, see the :doc:`Atomics`.
1581
1582We define a *happens-before* partial order as the least partial order
1583that
1584
1585- Is a superset of single-thread program order, and
1586- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1587 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1588 techniques, like pthread locks, thread creation, thread joining,
1589 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1590 Constraints <ordering>`).
1591
1592Note that program order does not introduce *happens-before* edges
1593between a thread and signals executing inside that thread.
1594
1595Every (defined) read operation (load instructions, memcpy, atomic
1596loads/read-modify-writes, etc.) R reads a series of bytes written by
1597(defined) write operations (store instructions, atomic
1598stores/read-modify-writes, memcpy, etc.). For the purposes of this
1599section, initialized globals are considered to have a write of the
1600initializer which is atomic and happens before any other read or write
1601of the memory in question. For each byte of a read R, R\ :sub:`byte`
1602may see any write to the same byte, except:
1603
1604- If write\ :sub:`1` happens before write\ :sub:`2`, and
1605 write\ :sub:`2` happens before R\ :sub:`byte`, then
1606 R\ :sub:`byte` does not see write\ :sub:`1`.
1607- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1608 R\ :sub:`byte` does not see write\ :sub:`3`.
1609
1610Given that definition, R\ :sub:`byte` is defined as follows:
1611
1612- If R is volatile, the result is target-dependent. (Volatile is
1613 supposed to give guarantees which can support ``sig_atomic_t`` in
1614 C/C++, and may be used for accesses to addresses which do not behave
1615 like normal memory. It does not generally provide cross-thread
1616 synchronization.)
1617- Otherwise, if there is no write to the same byte that happens before
1618 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1619- Otherwise, if R\ :sub:`byte` may see exactly one write,
1620 R\ :sub:`byte` returns the value written by that write.
1621- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1622 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1623 Memory Ordering Constraints <ordering>` section for additional
1624 constraints on how the choice is made.
1625- Otherwise R\ :sub:`byte` returns ``undef``.
1626
1627R returns the value composed of the series of bytes it read. This
1628implies that some bytes within the value may be ``undef`` **without**
1629the entire value being ``undef``. Note that this only defines the
1630semantics of the operation; it doesn't mean that targets will emit more
1631than one instruction to read the series of bytes.
1632
1633Note that in cases where none of the atomic intrinsics are used, this
1634model places only one restriction on IR transformations on top of what
1635is required for single-threaded execution: introducing a store to a byte
1636which might not otherwise be stored is not allowed in general.
1637(Specifically, in the case where another thread might write to and read
1638from an address, introducing a store can change a load that may see
1639exactly one write into a load that may see multiple writes.)
1640
1641.. _ordering:
1642
1643Atomic Memory Ordering Constraints
1644----------------------------------
1645
1646Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1647:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1648:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001649ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001650the same address they *synchronize with*. These semantics are borrowed
1651from Java and C++0x, but are somewhat more colloquial. If these
1652descriptions aren't precise enough, check those specs (see spec
1653references in the :doc:`atomics guide <Atomics>`).
1654:ref:`fence <i_fence>` instructions treat these orderings somewhat
1655differently since they don't take an address. See that instruction's
1656documentation for details.
1657
1658For a simpler introduction to the ordering constraints, see the
1659:doc:`Atomics`.
1660
1661``unordered``
1662 The set of values that can be read is governed by the happens-before
1663 partial order. A value cannot be read unless some operation wrote
1664 it. This is intended to provide a guarantee strong enough to model
1665 Java's non-volatile shared variables. This ordering cannot be
1666 specified for read-modify-write operations; it is not strong enough
1667 to make them atomic in any interesting way.
1668``monotonic``
1669 In addition to the guarantees of ``unordered``, there is a single
1670 total order for modifications by ``monotonic`` operations on each
1671 address. All modification orders must be compatible with the
1672 happens-before order. There is no guarantee that the modification
1673 orders can be combined to a global total order for the whole program
1674 (and this often will not be possible). The read in an atomic
1675 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1676 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1677 order immediately before the value it writes. If one atomic read
1678 happens before another atomic read of the same address, the later
1679 read must see the same value or a later value in the address's
1680 modification order. This disallows reordering of ``monotonic`` (or
1681 stronger) operations on the same address. If an address is written
1682 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1683 read that address repeatedly, the other threads must eventually see
1684 the write. This corresponds to the C++0x/C1x
1685 ``memory_order_relaxed``.
1686``acquire``
1687 In addition to the guarantees of ``monotonic``, a
1688 *synchronizes-with* edge may be formed with a ``release`` operation.
1689 This is intended to model C++'s ``memory_order_acquire``.
1690``release``
1691 In addition to the guarantees of ``monotonic``, if this operation
1692 writes a value which is subsequently read by an ``acquire``
1693 operation, it *synchronizes-with* that operation. (This isn't a
1694 complete description; see the C++0x definition of a release
1695 sequence.) This corresponds to the C++0x/C1x
1696 ``memory_order_release``.
1697``acq_rel`` (acquire+release)
1698 Acts as both an ``acquire`` and ``release`` operation on its
1699 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1700``seq_cst`` (sequentially consistent)
1701 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1702 operation which only reads, ``release`` for an operation which only
1703 writes), there is a global total order on all
1704 sequentially-consistent operations on all addresses, which is
1705 consistent with the *happens-before* partial order and with the
1706 modification orders of all the affected addresses. Each
1707 sequentially-consistent read sees the last preceding write to the
1708 same address in this global order. This corresponds to the C++0x/C1x
1709 ``memory_order_seq_cst`` and Java volatile.
1710
1711.. _singlethread:
1712
1713If an atomic operation is marked ``singlethread``, it only *synchronizes
1714with* or participates in modification and seq\_cst total orderings with
1715other operations running in the same thread (for example, in signal
1716handlers).
1717
1718.. _fastmath:
1719
1720Fast-Math Flags
1721---------------
1722
1723LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1724:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1725:ref:`frem <i_frem>`) have the following flags that can set to enable
1726otherwise unsafe floating point operations
1727
1728``nnan``
1729 No NaNs - Allow optimizations to assume the arguments and result are not
1730 NaN. Such optimizations are required to retain defined behavior over
1731 NaNs, but the value of the result is undefined.
1732
1733``ninf``
1734 No Infs - Allow optimizations to assume the arguments and result are not
1735 +/-Inf. Such optimizations are required to retain defined behavior over
1736 +/-Inf, but the value of the result is undefined.
1737
1738``nsz``
1739 No Signed Zeros - Allow optimizations to treat the sign of a zero
1740 argument or result as insignificant.
1741
1742``arcp``
1743 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1744 argument rather than perform division.
1745
1746``fast``
1747 Fast - Allow algebraically equivalent transformations that may
1748 dramatically change results in floating point (e.g. reassociate). This
1749 flag implies all the others.
1750
1751.. _typesystem:
1752
1753Type System
1754===========
1755
1756The LLVM type system is one of the most important features of the
1757intermediate representation. Being typed enables a number of
1758optimizations to be performed on the intermediate representation
1759directly, without having to do extra analyses on the side before the
1760transformation. A strong type system makes it easier to read the
1761generated code and enables novel analyses and transformations that are
1762not feasible to perform on normal three address code representations.
1763
Rafael Espindola08013342013-12-07 19:34:20 +00001764.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001765
Rafael Espindola08013342013-12-07 19:34:20 +00001766Void Type
1767---------
Sean Silvab084af42012-12-07 10:36:55 +00001768
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001769:Overview:
1770
Rafael Espindola08013342013-12-07 19:34:20 +00001771
1772The void type does not represent any value and has no size.
1773
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001774:Syntax:
1775
Rafael Espindola08013342013-12-07 19:34:20 +00001776
1777::
1778
1779 void
Sean Silvab084af42012-12-07 10:36:55 +00001780
1781
Rafael Espindola08013342013-12-07 19:34:20 +00001782.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001783
Rafael Espindola08013342013-12-07 19:34:20 +00001784Function Type
1785-------------
Sean Silvab084af42012-12-07 10:36:55 +00001786
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001787:Overview:
1788
Sean Silvab084af42012-12-07 10:36:55 +00001789
Rafael Espindola08013342013-12-07 19:34:20 +00001790The function type can be thought of as a function signature. It consists of a
1791return type and a list of formal parameter types. The return type of a function
1792type is a void type or first class type --- except for :ref:`label <t_label>`
1793and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001794
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001795:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001796
Rafael Espindola08013342013-12-07 19:34:20 +00001797::
Sean Silvab084af42012-12-07 10:36:55 +00001798
Rafael Espindola08013342013-12-07 19:34:20 +00001799 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001800
Rafael Espindola08013342013-12-07 19:34:20 +00001801...where '``<parameter list>``' is a comma-separated list of type
1802specifiers. Optionally, the parameter list may include a type ``...``, which
1803indicates that the function takes a variable number of arguments. Variable
1804argument functions can access their arguments with the :ref:`variable argument
1805handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1806except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001807
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001808:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001809
Rafael Espindola08013342013-12-07 19:34:20 +00001810+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1811| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1812+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1813| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1814+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1815| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1816+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1817| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1818+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1819
1820.. _t_firstclass:
1821
1822First Class Types
1823-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001824
1825The :ref:`first class <t_firstclass>` types are perhaps the most important.
1826Values of these types are the only ones which can be produced by
1827instructions.
1828
Rafael Espindola08013342013-12-07 19:34:20 +00001829.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001830
Rafael Espindola08013342013-12-07 19:34:20 +00001831Single Value Types
1832^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001833
Rafael Espindola08013342013-12-07 19:34:20 +00001834These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001835
1836.. _t_integer:
1837
1838Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001839""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001840
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001841:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001842
1843The integer type is a very simple type that simply specifies an
1844arbitrary bit width for the integer type desired. Any bit width from 1
1845bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1846
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001847:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001848
1849::
1850
1851 iN
1852
1853The number of bits the integer will occupy is specified by the ``N``
1854value.
1855
1856Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001857*********
Sean Silvab084af42012-12-07 10:36:55 +00001858
1859+----------------+------------------------------------------------+
1860| ``i1`` | a single-bit integer. |
1861+----------------+------------------------------------------------+
1862| ``i32`` | a 32-bit integer. |
1863+----------------+------------------------------------------------+
1864| ``i1942652`` | a really big integer of over 1 million bits. |
1865+----------------+------------------------------------------------+
1866
1867.. _t_floating:
1868
1869Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001870""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001871
1872.. list-table::
1873 :header-rows: 1
1874
1875 * - Type
1876 - Description
1877
1878 * - ``half``
1879 - 16-bit floating point value
1880
1881 * - ``float``
1882 - 32-bit floating point value
1883
1884 * - ``double``
1885 - 64-bit floating point value
1886
1887 * - ``fp128``
1888 - 128-bit floating point value (112-bit mantissa)
1889
1890 * - ``x86_fp80``
1891 - 80-bit floating point value (X87)
1892
1893 * - ``ppc_fp128``
1894 - 128-bit floating point value (two 64-bits)
1895
Reid Kleckner9a16d082014-03-05 02:41:37 +00001896X86_mmx Type
1897""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001898
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001899:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001900
Reid Kleckner9a16d082014-03-05 02:41:37 +00001901The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001902machine. The operations allowed on it are quite limited: parameters and
1903return values, load and store, and bitcast. User-specified MMX
1904instructions are represented as intrinsic or asm calls with arguments
1905and/or results of this type. There are no arrays, vectors or constants
1906of this type.
1907
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001908:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001909
1910::
1911
Reid Kleckner9a16d082014-03-05 02:41:37 +00001912 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001913
Sean Silvab084af42012-12-07 10:36:55 +00001914
Rafael Espindola08013342013-12-07 19:34:20 +00001915.. _t_pointer:
1916
1917Pointer Type
1918""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001919
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001920:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001921
Rafael Espindola08013342013-12-07 19:34:20 +00001922The pointer type is used to specify memory locations. Pointers are
1923commonly used to reference objects in memory.
1924
1925Pointer types may have an optional address space attribute defining the
1926numbered address space where the pointed-to object resides. The default
1927address space is number zero. The semantics of non-zero address spaces
1928are target-specific.
1929
1930Note that LLVM does not permit pointers to void (``void*``) nor does it
1931permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001932
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001933:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001934
1935::
1936
Rafael Espindola08013342013-12-07 19:34:20 +00001937 <type> *
1938
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001939:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001940
1941+-------------------------+--------------------------------------------------------------------------------------------------------------+
1942| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1943+-------------------------+--------------------------------------------------------------------------------------------------------------+
1944| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1945+-------------------------+--------------------------------------------------------------------------------------------------------------+
1946| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1947+-------------------------+--------------------------------------------------------------------------------------------------------------+
1948
1949.. _t_vector:
1950
1951Vector Type
1952"""""""""""
1953
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001954:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001955
1956A vector type is a simple derived type that represents a vector of
1957elements. Vector types are used when multiple primitive data are
1958operated in parallel using a single instruction (SIMD). A vector type
1959requires a size (number of elements) and an underlying primitive data
1960type. Vector types are considered :ref:`first class <t_firstclass>`.
1961
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001962:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001963
1964::
1965
1966 < <# elements> x <elementtype> >
1967
1968The number of elements is a constant integer value larger than 0;
1969elementtype may be any integer or floating point type, or a pointer to
1970these types. Vectors of size zero are not allowed.
1971
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001972:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001973
1974+-------------------+--------------------------------------------------+
1975| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1976+-------------------+--------------------------------------------------+
1977| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1978+-------------------+--------------------------------------------------+
1979| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1980+-------------------+--------------------------------------------------+
1981| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1982+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001983
1984.. _t_label:
1985
1986Label Type
1987^^^^^^^^^^
1988
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001989:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001990
1991The label type represents code labels.
1992
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001993:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001994
1995::
1996
1997 label
1998
1999.. _t_metadata:
2000
2001Metadata Type
2002^^^^^^^^^^^^^
2003
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002004:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002005
2006The metadata type represents embedded metadata. No derived types may be
2007created from metadata except for :ref:`function <t_function>` arguments.
2008
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002009:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002010
2011::
2012
2013 metadata
2014
Sean Silvab084af42012-12-07 10:36:55 +00002015.. _t_aggregate:
2016
2017Aggregate Types
2018^^^^^^^^^^^^^^^
2019
2020Aggregate Types are a subset of derived types that can contain multiple
2021member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2022aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2023aggregate types.
2024
2025.. _t_array:
2026
2027Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002028""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002029
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002030:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002031
2032The array type is a very simple derived type that arranges elements
2033sequentially in memory. The array type requires a size (number of
2034elements) and an underlying data type.
2035
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002036:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002037
2038::
2039
2040 [<# elements> x <elementtype>]
2041
2042The number of elements is a constant integer value; ``elementtype`` may
2043be any type with a size.
2044
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002045:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002046
2047+------------------+--------------------------------------+
2048| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2049+------------------+--------------------------------------+
2050| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2051+------------------+--------------------------------------+
2052| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2053+------------------+--------------------------------------+
2054
2055Here are some examples of multidimensional arrays:
2056
2057+-----------------------------+----------------------------------------------------------+
2058| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2059+-----------------------------+----------------------------------------------------------+
2060| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2061+-----------------------------+----------------------------------------------------------+
2062| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2063+-----------------------------+----------------------------------------------------------+
2064
2065There is no restriction on indexing beyond the end of the array implied
2066by a static type (though there are restrictions on indexing beyond the
2067bounds of an allocated object in some cases). This means that
2068single-dimension 'variable sized array' addressing can be implemented in
2069LLVM with a zero length array type. An implementation of 'pascal style
2070arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2071example.
2072
Sean Silvab084af42012-12-07 10:36:55 +00002073.. _t_struct:
2074
2075Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002076""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002077
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002078:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002079
2080The structure type is used to represent a collection of data members
2081together in memory. The elements of a structure may be any type that has
2082a size.
2083
2084Structures in memory are accessed using '``load``' and '``store``' by
2085getting a pointer to a field with the '``getelementptr``' instruction.
2086Structures in registers are accessed using the '``extractvalue``' and
2087'``insertvalue``' instructions.
2088
2089Structures may optionally be "packed" structures, which indicate that
2090the alignment of the struct is one byte, and that there is no padding
2091between the elements. In non-packed structs, padding between field types
2092is inserted as defined by the DataLayout string in the module, which is
2093required to match what the underlying code generator expects.
2094
2095Structures can either be "literal" or "identified". A literal structure
2096is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2097identified types are always defined at the top level with a name.
2098Literal types are uniqued by their contents and can never be recursive
2099or opaque since there is no way to write one. Identified types can be
2100recursive, can be opaqued, and are never uniqued.
2101
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002102:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002103
2104::
2105
2106 %T1 = type { <type list> } ; Identified normal struct type
2107 %T2 = type <{ <type list> }> ; Identified packed struct type
2108
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002109:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002110
2111+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2112| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2113+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002114| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002115+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2116| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2117+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2118
2119.. _t_opaque:
2120
2121Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002122""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002123
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002124:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002125
2126Opaque structure types are used to represent named structure types that
2127do not have a body specified. This corresponds (for example) to the C
2128notion of a forward declared structure.
2129
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002130:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002131
2132::
2133
2134 %X = type opaque
2135 %52 = type opaque
2136
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002137:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002138
2139+--------------+-------------------+
2140| ``opaque`` | An opaque type. |
2141+--------------+-------------------+
2142
Sean Silva1703e702014-04-08 21:06:22 +00002143.. _constants:
2144
Sean Silvab084af42012-12-07 10:36:55 +00002145Constants
2146=========
2147
2148LLVM has several different basic types of constants. This section
2149describes them all and their syntax.
2150
2151Simple Constants
2152----------------
2153
2154**Boolean constants**
2155 The two strings '``true``' and '``false``' are both valid constants
2156 of the ``i1`` type.
2157**Integer constants**
2158 Standard integers (such as '4') are constants of the
2159 :ref:`integer <t_integer>` type. Negative numbers may be used with
2160 integer types.
2161**Floating point constants**
2162 Floating point constants use standard decimal notation (e.g.
2163 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2164 hexadecimal notation (see below). The assembler requires the exact
2165 decimal value of a floating-point constant. For example, the
2166 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2167 decimal in binary. Floating point constants must have a :ref:`floating
2168 point <t_floating>` type.
2169**Null pointer constants**
2170 The identifier '``null``' is recognized as a null pointer constant
2171 and must be of :ref:`pointer type <t_pointer>`.
2172
2173The one non-intuitive notation for constants is the hexadecimal form of
2174floating point constants. For example, the form
2175'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2176than) '``double 4.5e+15``'. The only time hexadecimal floating point
2177constants are required (and the only time that they are generated by the
2178disassembler) is when a floating point constant must be emitted but it
2179cannot be represented as a decimal floating point number in a reasonable
2180number of digits. For example, NaN's, infinities, and other special
2181values are represented in their IEEE hexadecimal format so that assembly
2182and disassembly do not cause any bits to change in the constants.
2183
2184When using the hexadecimal form, constants of types half, float, and
2185double are represented using the 16-digit form shown above (which
2186matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002187must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002188precision, respectively. Hexadecimal format is always used for long
2189double, and there are three forms of long double. The 80-bit format used
2190by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2191128-bit format used by PowerPC (two adjacent doubles) is represented by
2192``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002193represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2194will only work if they match the long double format on your target.
2195The IEEE 16-bit format (half precision) is represented by ``0xH``
2196followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2197(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002198
Reid Kleckner9a16d082014-03-05 02:41:37 +00002199There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002200
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002201.. _complexconstants:
2202
Sean Silvab084af42012-12-07 10:36:55 +00002203Complex Constants
2204-----------------
2205
2206Complex constants are a (potentially recursive) combination of simple
2207constants and smaller complex constants.
2208
2209**Structure constants**
2210 Structure constants are represented with notation similar to
2211 structure type definitions (a comma separated list of elements,
2212 surrounded by braces (``{}``)). For example:
2213 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2214 "``@G = external global i32``". Structure constants must have
2215 :ref:`structure type <t_struct>`, and the number and types of elements
2216 must match those specified by the type.
2217**Array constants**
2218 Array constants are represented with notation similar to array type
2219 definitions (a comma separated list of elements, surrounded by
2220 square brackets (``[]``)). For example:
2221 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2222 :ref:`array type <t_array>`, and the number and types of elements must
2223 match those specified by the type.
2224**Vector constants**
2225 Vector constants are represented with notation similar to vector
2226 type definitions (a comma separated list of elements, surrounded by
2227 less-than/greater-than's (``<>``)). For example:
2228 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2229 must have :ref:`vector type <t_vector>`, and the number and types of
2230 elements must match those specified by the type.
2231**Zero initialization**
2232 The string '``zeroinitializer``' can be used to zero initialize a
2233 value to zero of *any* type, including scalar and
2234 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2235 having to print large zero initializers (e.g. for large arrays) and
2236 is always exactly equivalent to using explicit zero initializers.
2237**Metadata node**
2238 A metadata node is a structure-like constant with :ref:`metadata
2239 type <t_metadata>`. For example:
2240 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2241 constants that are meant to be interpreted as part of the
2242 instruction stream, metadata is a place to attach additional
2243 information such as debug info.
2244
2245Global Variable and Function Addresses
2246--------------------------------------
2247
2248The addresses of :ref:`global variables <globalvars>` and
2249:ref:`functions <functionstructure>` are always implicitly valid
2250(link-time) constants. These constants are explicitly referenced when
2251the :ref:`identifier for the global <identifiers>` is used and always have
2252:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2253file:
2254
2255.. code-block:: llvm
2256
2257 @X = global i32 17
2258 @Y = global i32 42
2259 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2260
2261.. _undefvalues:
2262
2263Undefined Values
2264----------------
2265
2266The string '``undef``' can be used anywhere a constant is expected, and
2267indicates that the user of the value may receive an unspecified
2268bit-pattern. Undefined values may be of any type (other than '``label``'
2269or '``void``') and be used anywhere a constant is permitted.
2270
2271Undefined values are useful because they indicate to the compiler that
2272the program is well defined no matter what value is used. This gives the
2273compiler more freedom to optimize. Here are some examples of
2274(potentially surprising) transformations that are valid (in pseudo IR):
2275
2276.. code-block:: llvm
2277
2278 %A = add %X, undef
2279 %B = sub %X, undef
2280 %C = xor %X, undef
2281 Safe:
2282 %A = undef
2283 %B = undef
2284 %C = undef
2285
2286This is safe because all of the output bits are affected by the undef
2287bits. Any output bit can have a zero or one depending on the input bits.
2288
2289.. code-block:: llvm
2290
2291 %A = or %X, undef
2292 %B = and %X, undef
2293 Safe:
2294 %A = -1
2295 %B = 0
2296 Unsafe:
2297 %A = undef
2298 %B = undef
2299
2300These logical operations have bits that are not always affected by the
2301input. For example, if ``%X`` has a zero bit, then the output of the
2302'``and``' operation will always be a zero for that bit, no matter what
2303the corresponding bit from the '``undef``' is. As such, it is unsafe to
2304optimize or assume that the result of the '``and``' is '``undef``'.
2305However, it is safe to assume that all bits of the '``undef``' could be
23060, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2307all the bits of the '``undef``' operand to the '``or``' could be set,
2308allowing the '``or``' to be folded to -1.
2309
2310.. code-block:: llvm
2311
2312 %A = select undef, %X, %Y
2313 %B = select undef, 42, %Y
2314 %C = select %X, %Y, undef
2315 Safe:
2316 %A = %X (or %Y)
2317 %B = 42 (or %Y)
2318 %C = %Y
2319 Unsafe:
2320 %A = undef
2321 %B = undef
2322 %C = undef
2323
2324This set of examples shows that undefined '``select``' (and conditional
2325branch) conditions can go *either way*, but they have to come from one
2326of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2327both known to have a clear low bit, then ``%A`` would have to have a
2328cleared low bit. However, in the ``%C`` example, the optimizer is
2329allowed to assume that the '``undef``' operand could be the same as
2330``%Y``, allowing the whole '``select``' to be eliminated.
2331
2332.. code-block:: llvm
2333
2334 %A = xor undef, undef
2335
2336 %B = undef
2337 %C = xor %B, %B
2338
2339 %D = undef
2340 %E = icmp lt %D, 4
2341 %F = icmp gte %D, 4
2342
2343 Safe:
2344 %A = undef
2345 %B = undef
2346 %C = undef
2347 %D = undef
2348 %E = undef
2349 %F = undef
2350
2351This example points out that two '``undef``' operands are not
2352necessarily the same. This can be surprising to people (and also matches
2353C semantics) where they assume that "``X^X``" is always zero, even if
2354``X`` is undefined. This isn't true for a number of reasons, but the
2355short answer is that an '``undef``' "variable" can arbitrarily change
2356its value over its "live range". This is true because the variable
2357doesn't actually *have a live range*. Instead, the value is logically
2358read from arbitrary registers that happen to be around when needed, so
2359the value is not necessarily consistent over time. In fact, ``%A`` and
2360``%C`` need to have the same semantics or the core LLVM "replace all
2361uses with" concept would not hold.
2362
2363.. code-block:: llvm
2364
2365 %A = fdiv undef, %X
2366 %B = fdiv %X, undef
2367 Safe:
2368 %A = undef
2369 b: unreachable
2370
2371These examples show the crucial difference between an *undefined value*
2372and *undefined behavior*. An undefined value (like '``undef``') is
2373allowed to have an arbitrary bit-pattern. This means that the ``%A``
2374operation can be constant folded to '``undef``', because the '``undef``'
2375could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2376However, in the second example, we can make a more aggressive
2377assumption: because the ``undef`` is allowed to be an arbitrary value,
2378we are allowed to assume that it could be zero. Since a divide by zero
2379has *undefined behavior*, we are allowed to assume that the operation
2380does not execute at all. This allows us to delete the divide and all
2381code after it. Because the undefined operation "can't happen", the
2382optimizer can assume that it occurs in dead code.
2383
2384.. code-block:: llvm
2385
2386 a: store undef -> %X
2387 b: store %X -> undef
2388 Safe:
2389 a: <deleted>
2390 b: unreachable
2391
2392These examples reiterate the ``fdiv`` example: a store *of* an undefined
2393value can be assumed to not have any effect; we can assume that the
2394value is overwritten with bits that happen to match what was already
2395there. However, a store *to* an undefined location could clobber
2396arbitrary memory, therefore, it has undefined behavior.
2397
2398.. _poisonvalues:
2399
2400Poison Values
2401-------------
2402
2403Poison values are similar to :ref:`undef values <undefvalues>`, however
2404they also represent the fact that an instruction or constant expression
2405which cannot evoke side effects has nevertheless detected a condition
2406which results in undefined behavior.
2407
2408There is currently no way of representing a poison value in the IR; they
2409only exist when produced by operations such as :ref:`add <i_add>` with
2410the ``nsw`` flag.
2411
2412Poison value behavior is defined in terms of value *dependence*:
2413
2414- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2415- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2416 their dynamic predecessor basic block.
2417- Function arguments depend on the corresponding actual argument values
2418 in the dynamic callers of their functions.
2419- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2420 instructions that dynamically transfer control back to them.
2421- :ref:`Invoke <i_invoke>` instructions depend on the
2422 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2423 call instructions that dynamically transfer control back to them.
2424- Non-volatile loads and stores depend on the most recent stores to all
2425 of the referenced memory addresses, following the order in the IR
2426 (including loads and stores implied by intrinsics such as
2427 :ref:`@llvm.memcpy <int_memcpy>`.)
2428- An instruction with externally visible side effects depends on the
2429 most recent preceding instruction with externally visible side
2430 effects, following the order in the IR. (This includes :ref:`volatile
2431 operations <volatile>`.)
2432- An instruction *control-depends* on a :ref:`terminator
2433 instruction <terminators>` if the terminator instruction has
2434 multiple successors and the instruction is always executed when
2435 control transfers to one of the successors, and may not be executed
2436 when control is transferred to another.
2437- Additionally, an instruction also *control-depends* on a terminator
2438 instruction if the set of instructions it otherwise depends on would
2439 be different if the terminator had transferred control to a different
2440 successor.
2441- Dependence is transitive.
2442
2443Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2444with the additional affect that any instruction which has a *dependence*
2445on a poison value has undefined behavior.
2446
2447Here are some examples:
2448
2449.. code-block:: llvm
2450
2451 entry:
2452 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2453 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2454 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2455 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2456
2457 store i32 %poison, i32* @g ; Poison value stored to memory.
2458 %poison2 = load i32* @g ; Poison value loaded back from memory.
2459
2460 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2461
2462 %narrowaddr = bitcast i32* @g to i16*
2463 %wideaddr = bitcast i32* @g to i64*
2464 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2465 %poison4 = load i64* %wideaddr ; Returns a poison value.
2466
2467 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2468 br i1 %cmp, label %true, label %end ; Branch to either destination.
2469
2470 true:
2471 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2472 ; it has undefined behavior.
2473 br label %end
2474
2475 end:
2476 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2477 ; Both edges into this PHI are
2478 ; control-dependent on %cmp, so this
2479 ; always results in a poison value.
2480
2481 store volatile i32 0, i32* @g ; This would depend on the store in %true
2482 ; if %cmp is true, or the store in %entry
2483 ; otherwise, so this is undefined behavior.
2484
2485 br i1 %cmp, label %second_true, label %second_end
2486 ; The same branch again, but this time the
2487 ; true block doesn't have side effects.
2488
2489 second_true:
2490 ; No side effects!
2491 ret void
2492
2493 second_end:
2494 store volatile i32 0, i32* @g ; This time, the instruction always depends
2495 ; on the store in %end. Also, it is
2496 ; control-equivalent to %end, so this is
2497 ; well-defined (ignoring earlier undefined
2498 ; behavior in this example).
2499
2500.. _blockaddress:
2501
2502Addresses of Basic Blocks
2503-------------------------
2504
2505``blockaddress(@function, %block)``
2506
2507The '``blockaddress``' constant computes the address of the specified
2508basic block in the specified function, and always has an ``i8*`` type.
2509Taking the address of the entry block is illegal.
2510
2511This value only has defined behavior when used as an operand to the
2512':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2513against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002514undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002515no label is equal to the null pointer. This may be passed around as an
2516opaque pointer sized value as long as the bits are not inspected. This
2517allows ``ptrtoint`` and arithmetic to be performed on these values so
2518long as the original value is reconstituted before the ``indirectbr``
2519instruction.
2520
2521Finally, some targets may provide defined semantics when using the value
2522as the operand to an inline assembly, but that is target specific.
2523
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002524.. _constantexprs:
2525
Sean Silvab084af42012-12-07 10:36:55 +00002526Constant Expressions
2527--------------------
2528
2529Constant expressions are used to allow expressions involving other
2530constants to be used as constants. Constant expressions may be of any
2531:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2532that does not have side effects (e.g. load and call are not supported).
2533The following is the syntax for constant expressions:
2534
2535``trunc (CST to TYPE)``
2536 Truncate a constant to another type. The bit size of CST must be
2537 larger than the bit size of TYPE. Both types must be integers.
2538``zext (CST to TYPE)``
2539 Zero extend a constant to another type. The bit size of CST must be
2540 smaller than the bit size of TYPE. Both types must be integers.
2541``sext (CST to TYPE)``
2542 Sign extend a constant to another type. The bit size of CST must be
2543 smaller than the bit size of TYPE. Both types must be integers.
2544``fptrunc (CST to TYPE)``
2545 Truncate a floating point constant to another floating point type.
2546 The size of CST must be larger than the size of TYPE. Both types
2547 must be floating point.
2548``fpext (CST to TYPE)``
2549 Floating point extend a constant to another type. The size of CST
2550 must be smaller or equal to the size of TYPE. Both types must be
2551 floating point.
2552``fptoui (CST to TYPE)``
2553 Convert a floating point constant to the corresponding unsigned
2554 integer constant. TYPE must be a scalar or vector integer type. CST
2555 must be of scalar or vector floating point type. Both CST and TYPE
2556 must be scalars, or vectors of the same number of elements. If the
2557 value won't fit in the integer type, the results are undefined.
2558``fptosi (CST to TYPE)``
2559 Convert a floating point constant to the corresponding signed
2560 integer constant. TYPE must be a scalar or vector integer type. CST
2561 must be of scalar or vector floating point type. Both CST and TYPE
2562 must be scalars, or vectors of the same number of elements. If the
2563 value won't fit in the integer type, the results are undefined.
2564``uitofp (CST to TYPE)``
2565 Convert an unsigned integer constant to the corresponding floating
2566 point constant. TYPE must be a scalar or vector floating point type.
2567 CST must be of scalar or vector integer type. Both CST and TYPE must
2568 be scalars, or vectors of the same number of elements. If the value
2569 won't fit in the floating point type, the results are undefined.
2570``sitofp (CST to TYPE)``
2571 Convert a signed integer constant to the corresponding floating
2572 point constant. TYPE must be a scalar or vector floating point type.
2573 CST must be of scalar or vector integer type. Both CST and TYPE must
2574 be scalars, or vectors of the same number of elements. If the value
2575 won't fit in the floating point type, the results are undefined.
2576``ptrtoint (CST to TYPE)``
2577 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002578 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002579 pointer type. The ``CST`` value is zero extended, truncated, or
2580 unchanged to make it fit in ``TYPE``.
2581``inttoptr (CST to TYPE)``
2582 Convert an integer constant to a pointer constant. TYPE must be a
2583 pointer type. CST must be of integer type. The CST value is zero
2584 extended, truncated, or unchanged to make it fit in a pointer size.
2585 This one is *really* dangerous!
2586``bitcast (CST to TYPE)``
2587 Convert a constant, CST, to another TYPE. The constraints of the
2588 operands are the same as those for the :ref:`bitcast
2589 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002590``addrspacecast (CST to TYPE)``
2591 Convert a constant pointer or constant vector of pointer, CST, to another
2592 TYPE in a different address space. The constraints of the operands are the
2593 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002594``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2595 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2596 constants. As with the :ref:`getelementptr <i_getelementptr>`
2597 instruction, the index list may have zero or more indexes, which are
2598 required to make sense for the type of "CSTPTR".
2599``select (COND, VAL1, VAL2)``
2600 Perform the :ref:`select operation <i_select>` on constants.
2601``icmp COND (VAL1, VAL2)``
2602 Performs the :ref:`icmp operation <i_icmp>` on constants.
2603``fcmp COND (VAL1, VAL2)``
2604 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2605``extractelement (VAL, IDX)``
2606 Perform the :ref:`extractelement operation <i_extractelement>` on
2607 constants.
2608``insertelement (VAL, ELT, IDX)``
2609 Perform the :ref:`insertelement operation <i_insertelement>` on
2610 constants.
2611``shufflevector (VEC1, VEC2, IDXMASK)``
2612 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2613 constants.
2614``extractvalue (VAL, IDX0, IDX1, ...)``
2615 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2616 constants. The index list is interpreted in a similar manner as
2617 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2618 least one index value must be specified.
2619``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2620 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2621 The index list is interpreted in a similar manner as indices in a
2622 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2623 value must be specified.
2624``OPCODE (LHS, RHS)``
2625 Perform the specified operation of the LHS and RHS constants. OPCODE
2626 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2627 binary <bitwiseops>` operations. The constraints on operands are
2628 the same as those for the corresponding instruction (e.g. no bitwise
2629 operations on floating point values are allowed).
2630
2631Other Values
2632============
2633
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002634.. _inlineasmexprs:
2635
Sean Silvab084af42012-12-07 10:36:55 +00002636Inline Assembler Expressions
2637----------------------------
2638
2639LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2640Inline Assembly <moduleasm>`) through the use of a special value. This
2641value represents the inline assembler as a string (containing the
2642instructions to emit), a list of operand constraints (stored as a
2643string), a flag that indicates whether or not the inline asm expression
2644has side effects, and a flag indicating whether the function containing
2645the asm needs to align its stack conservatively. An example inline
2646assembler expression is:
2647
2648.. code-block:: llvm
2649
2650 i32 (i32) asm "bswap $0", "=r,r"
2651
2652Inline assembler expressions may **only** be used as the callee operand
2653of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2654Thus, typically we have:
2655
2656.. code-block:: llvm
2657
2658 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2659
2660Inline asms with side effects not visible in the constraint list must be
2661marked as having side effects. This is done through the use of the
2662'``sideeffect``' keyword, like so:
2663
2664.. code-block:: llvm
2665
2666 call void asm sideeffect "eieio", ""()
2667
2668In some cases inline asms will contain code that will not work unless
2669the stack is aligned in some way, such as calls or SSE instructions on
2670x86, yet will not contain code that does that alignment within the asm.
2671The compiler should make conservative assumptions about what the asm
2672might contain and should generate its usual stack alignment code in the
2673prologue if the '``alignstack``' keyword is present:
2674
2675.. code-block:: llvm
2676
2677 call void asm alignstack "eieio", ""()
2678
2679Inline asms also support using non-standard assembly dialects. The
2680assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2681the inline asm is using the Intel dialect. Currently, ATT and Intel are
2682the only supported dialects. An example is:
2683
2684.. code-block:: llvm
2685
2686 call void asm inteldialect "eieio", ""()
2687
2688If multiple keywords appear the '``sideeffect``' keyword must come
2689first, the '``alignstack``' keyword second and the '``inteldialect``'
2690keyword last.
2691
2692Inline Asm Metadata
2693^^^^^^^^^^^^^^^^^^^
2694
2695The call instructions that wrap inline asm nodes may have a
2696"``!srcloc``" MDNode attached to it that contains a list of constant
2697integers. If present, the code generator will use the integer as the
2698location cookie value when report errors through the ``LLVMContext``
2699error reporting mechanisms. This allows a front-end to correlate backend
2700errors that occur with inline asm back to the source code that produced
2701it. For example:
2702
2703.. code-block:: llvm
2704
2705 call void asm sideeffect "something bad", ""(), !srcloc !42
2706 ...
2707 !42 = !{ i32 1234567 }
2708
2709It is up to the front-end to make sense of the magic numbers it places
2710in the IR. If the MDNode contains multiple constants, the code generator
2711will use the one that corresponds to the line of the asm that the error
2712occurs on.
2713
2714.. _metadata:
2715
2716Metadata Nodes and Metadata Strings
2717-----------------------------------
2718
2719LLVM IR allows metadata to be attached to instructions in the program
2720that can convey extra information about the code to the optimizers and
2721code generator. One example application of metadata is source-level
2722debug information. There are two metadata primitives: strings and nodes.
2723All metadata has the ``metadata`` type and is identified in syntax by a
2724preceding exclamation point ('``!``').
2725
2726A metadata string is a string surrounded by double quotes. It can
2727contain any character by escaping non-printable characters with
2728"``\xx``" where "``xx``" is the two digit hex code. For example:
2729"``!"test\00"``".
2730
2731Metadata nodes are represented with notation similar to structure
2732constants (a comma separated list of elements, surrounded by braces and
2733preceded by an exclamation point). Metadata nodes can have any values as
2734their operand. For example:
2735
2736.. code-block:: llvm
2737
2738 !{ metadata !"test\00", i32 10}
2739
2740A :ref:`named metadata <namedmetadatastructure>` is a collection of
2741metadata nodes, which can be looked up in the module symbol table. For
2742example:
2743
2744.. code-block:: llvm
2745
2746 !foo = metadata !{!4, !3}
2747
2748Metadata can be used as function arguments. Here ``llvm.dbg.value``
2749function is using two metadata arguments:
2750
2751.. code-block:: llvm
2752
2753 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2754
2755Metadata can be attached with an instruction. Here metadata ``!21`` is
2756attached to the ``add`` instruction using the ``!dbg`` identifier:
2757
2758.. code-block:: llvm
2759
2760 %indvar.next = add i64 %indvar, 1, !dbg !21
2761
2762More information about specific metadata nodes recognized by the
2763optimizers and code generator is found below.
2764
2765'``tbaa``' Metadata
2766^^^^^^^^^^^^^^^^^^^
2767
2768In LLVM IR, memory does not have types, so LLVM's own type system is not
2769suitable for doing TBAA. Instead, metadata is added to the IR to
2770describe a type system of a higher level language. This can be used to
2771implement typical C/C++ TBAA, but it can also be used to implement
2772custom alias analysis behavior for other languages.
2773
2774The current metadata format is very simple. TBAA metadata nodes have up
2775to three fields, e.g.:
2776
2777.. code-block:: llvm
2778
2779 !0 = metadata !{ metadata !"an example type tree" }
2780 !1 = metadata !{ metadata !"int", metadata !0 }
2781 !2 = metadata !{ metadata !"float", metadata !0 }
2782 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2783
2784The first field is an identity field. It can be any value, usually a
2785metadata string, which uniquely identifies the type. The most important
2786name in the tree is the name of the root node. Two trees with different
2787root node names are entirely disjoint, even if they have leaves with
2788common names.
2789
2790The second field identifies the type's parent node in the tree, or is
2791null or omitted for a root node. A type is considered to alias all of
2792its descendants and all of its ancestors in the tree. Also, a type is
2793considered to alias all types in other trees, so that bitcode produced
2794from multiple front-ends is handled conservatively.
2795
2796If the third field is present, it's an integer which if equal to 1
2797indicates that the type is "constant" (meaning
2798``pointsToConstantMemory`` should return true; see `other useful
2799AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2800
2801'``tbaa.struct``' Metadata
2802^^^^^^^^^^^^^^^^^^^^^^^^^^
2803
2804The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2805aggregate assignment operations in C and similar languages, however it
2806is defined to copy a contiguous region of memory, which is more than
2807strictly necessary for aggregate types which contain holes due to
2808padding. Also, it doesn't contain any TBAA information about the fields
2809of the aggregate.
2810
2811``!tbaa.struct`` metadata can describe which memory subregions in a
2812memcpy are padding and what the TBAA tags of the struct are.
2813
2814The current metadata format is very simple. ``!tbaa.struct`` metadata
2815nodes are a list of operands which are in conceptual groups of three.
2816For each group of three, the first operand gives the byte offset of a
2817field in bytes, the second gives its size in bytes, and the third gives
2818its tbaa tag. e.g.:
2819
2820.. code-block:: llvm
2821
2822 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2823
2824This describes a struct with two fields. The first is at offset 0 bytes
2825with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2826and has size 4 bytes and has tbaa tag !2.
2827
2828Note that the fields need not be contiguous. In this example, there is a
28294 byte gap between the two fields. This gap represents padding which
2830does not carry useful data and need not be preserved.
2831
Hal Finkel94146652014-07-24 14:25:39 +00002832'``noalias``' and '``alias.scope``' Metadata
2833^^^^^^^^^^^^^^^^^^^^^^^^^^
2834
2835``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2836noalias memory-access sets. This means that some collection of memory access
2837instructions (loads, stores, memory-accessing calls, etc.) that carry
2838``noalias`` metadata can specifically be specified not to alias with some other
2839collection of memory access instructions that carry ``alias.scope`` metadata.
2840Each type of metadata specifies a list of scopes, and when evaluating an
2841aliasing query, if one of the instructions has a scope in its ``alias.scope``
2842list that is identical to a scope in the other instruction's ``noalias`` list,
2843or is a descendant (in the scope hierarchy) of a scope in the other
2844instruction's ``noalias`` list , then the two memory accesses are assumed not
2845to alias.
2846
2847The metadata identifying each scope is itself a list containing one or two
2848entries. The first entry is the name of the scope. Note that if the name is a
2849string then it can be combined accross functions and translation units. A
2850self-reference can be used to create globally unique scope names.
2851Optionally, a metadata reference to a parent scope can be provided as a second
2852entry in the list.
2853
2854For example,
2855
2856.. code-block:: llvm
2857
2858 ; A root scope (which doubles as a list of itself):
2859 !0 = metadata !{metadata !0}
2860
2861 ; Two child scopes (which must be self-referential to avoid being "uniqued"):
2862 !1 = metadata !{metadata !2} ; A list containing only scope !2
2863 !2 = metadata !{metadata !2, metadata !0} ; Scope !2 is a descendant of scope !0
2864
2865 !3 = metadata !{metadata !4} ; A list containing only scope !4
2866 !4 = metadata !{metadata !4, metadata !0} ; Scope !4 is a descendant of scope !0
2867
2868 ; These two instructions don't alias:
2869 %0 = load float* %c, align 4, !alias.scope !0
2870 store float %0, float* %arrayidx.i, align 4, !noalias !0
2871
2872 ; These two instructions may alias (scope !2 and scope !4 are peers):
2873 %2 = load float* %c, align 4, !alias.scope !1
2874 store float %2, float* %arrayidx.i2, align 4, !noalias !3
2875
2876 ; These two instructions don't alias (scope !2 is a descendant of scope !0
2877 ; and the store does not alias with anything in scope !0 or any of its descendants):
2878 %2 = load float* %c, align 4, !alias.scope !1
2879 store float %0, float* %arrayidx.i, align 4, !noalias !0
2880
2881 ; These two instructions may alias:
2882 %2 = load float* %c, align 4, !alias.scope !0
2883 store float %0, float* %arrayidx.i, align 4, !noalias !1
2884
Sean Silvab084af42012-12-07 10:36:55 +00002885'``fpmath``' Metadata
2886^^^^^^^^^^^^^^^^^^^^^
2887
2888``fpmath`` metadata may be attached to any instruction of floating point
2889type. It can be used to express the maximum acceptable error in the
2890result of that instruction, in ULPs, thus potentially allowing the
2891compiler to use a more efficient but less accurate method of computing
2892it. ULP is defined as follows:
2893
2894 If ``x`` is a real number that lies between two finite consecutive
2895 floating-point numbers ``a`` and ``b``, without being equal to one
2896 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2897 distance between the two non-equal finite floating-point numbers
2898 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2899
2900The metadata node shall consist of a single positive floating point
2901number representing the maximum relative error, for example:
2902
2903.. code-block:: llvm
2904
2905 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2906
2907'``range``' Metadata
2908^^^^^^^^^^^^^^^^^^^^
2909
Jingyue Wu37fcb592014-06-19 16:50:16 +00002910``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2911integer types. It expresses the possible ranges the loaded value or the value
2912returned by the called function at this call site is in. The ranges are
2913represented with a flattened list of integers. The loaded value or the value
2914returned is known to be in the union of the ranges defined by each consecutive
2915pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00002916
2917- The type must match the type loaded by the instruction.
2918- The pair ``a,b`` represents the range ``[a,b)``.
2919- Both ``a`` and ``b`` are constants.
2920- The range is allowed to wrap.
2921- The range should not represent the full or empty set. That is,
2922 ``a!=b``.
2923
2924In addition, the pairs must be in signed order of the lower bound and
2925they must be non-contiguous.
2926
2927Examples:
2928
2929.. code-block:: llvm
2930
2931 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2932 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00002933 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
2934 %d = invoke i8 @bar() to label %cont
2935 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00002936 ...
2937 !0 = metadata !{ i8 0, i8 2 }
2938 !1 = metadata !{ i8 255, i8 2 }
2939 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2940 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2941
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002942'``llvm.loop``'
2943^^^^^^^^^^^^^^^
2944
2945It is sometimes useful to attach information to loop constructs. Currently,
2946loop metadata is implemented as metadata attached to the branch instruction
2947in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002948guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002949specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002950
2951The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002952itself to avoid merging it with any other identifier metadata, e.g.,
2953during module linkage or function inlining. That is, each loop should refer
2954to their own identification metadata even if they reside in separate functions.
2955The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002956constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002957
2958.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002959
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002960 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002961 !1 = metadata !{ metadata !1 }
2962
Mark Heffernan893752a2014-07-18 19:24:51 +00002963The loop identifier metadata can be used to specify additional
2964per-loop metadata. Any operands after the first operand can be treated
2965as user-defined metadata. For example the ``llvm.loop.unroll.count``
2966suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002967
Paul Redmond5fdf8362013-05-28 20:00:34 +00002968.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002969
Paul Redmond5fdf8362013-05-28 20:00:34 +00002970 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2971 ...
2972 !0 = metadata !{ metadata !0, metadata !1 }
Mark Heffernan9d20e422014-07-21 23:11:03 +00002973 !1 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00002974
Mark Heffernan9d20e422014-07-21 23:11:03 +00002975'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
2976^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00002977
Mark Heffernan9d20e422014-07-21 23:11:03 +00002978Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
2979used to control per-loop vectorization and interleaving parameters such as
2980vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00002981conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00002982``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
2983optimization hints and the optimizer will only interleave and vectorize loops if
2984it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
2985which contains information about loop-carried memory dependencies can be helpful
2986in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00002987
Mark Heffernan9d20e422014-07-21 23:11:03 +00002988'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00002989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2990
Mark Heffernan9d20e422014-07-21 23:11:03 +00002991This metadata suggests an interleave count to the loop interleaver.
2992The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00002993second operand is an integer specifying the interleave count. For
2994example:
2995
2996.. code-block:: llvm
2997
Mark Heffernan9d20e422014-07-21 23:11:03 +00002998 !0 = metadata !{ metadata !"llvm.loop.interleave.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00002999
Mark Heffernan9d20e422014-07-21 23:11:03 +00003000Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3001multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3002then the interleave count will be determined automatically.
3003
3004'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003006
3007This metadata selectively enables or disables vectorization for the loop. The
3008first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3009is a bit. If the bit operand value is 1 vectorization is enabled. A value of
30100 disables vectorization:
3011
3012.. code-block:: llvm
3013
3014 !0 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 0 }
3015 !1 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 1 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003016
3017'``llvm.loop.vectorize.width``' Metadata
3018^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3019
3020This metadata sets the target width of the vectorizer. The first
3021operand is the string ``llvm.loop.vectorize.width`` and the second
3022operand is an integer specifying the width. For example:
3023
3024.. code-block:: llvm
3025
3026 !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 }
3027
3028Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3029vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
30300 or if the loop does not have this metadata the width will be
3031determined automatically.
3032
3033'``llvm.loop.unroll``'
3034^^^^^^^^^^^^^^^^^^^^^^
3035
3036Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3037optimization hints such as the unroll factor. ``llvm.loop.unroll``
3038metadata should be used in conjunction with ``llvm.loop`` loop
3039identification metadata. The ``llvm.loop.unroll`` metadata are only
3040optimization hints and the unrolling will only be performed if the
3041optimizer believes it is safe to do so.
3042
Mark Heffernan893752a2014-07-18 19:24:51 +00003043'``llvm.loop.unroll.count``' Metadata
3044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3045
3046This metadata suggests an unroll factor to the loop unroller. The
3047first operand is the string ``llvm.loop.unroll.count`` and the second
3048operand is a positive integer specifying the unroll factor. For
3049example:
3050
3051.. code-block:: llvm
3052
3053 !0 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
3054
3055If the trip count of the loop is less than the unroll count the loop
3056will be partially unrolled.
3057
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003058'``llvm.loop.unroll.disable``' Metadata
3059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3060
3061This metadata either disables loop unrolling. The metadata has a single operand
3062which is the string ``llvm.loop.unroll.disable``. For example:
3063
3064.. code-block:: llvm
3065
3066 !0 = metadata !{ metadata !"llvm.loop.unroll.disable" }
3067
3068'``llvm.loop.unroll.full``' Metadata
3069^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3070
3071This metadata either suggests that the loop should be unrolled fully. The
3072metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3073For example:
3074
3075.. code-block:: llvm
3076
3077 !0 = metadata !{ metadata !"llvm.loop.unroll.full" }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003078
3079'``llvm.mem``'
3080^^^^^^^^^^^^^^^
3081
3082Metadata types used to annotate memory accesses with information helpful
3083for optimizations are prefixed with ``llvm.mem``.
3084
3085'``llvm.mem.parallel_loop_access``' Metadata
3086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3087
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003088The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3089or metadata containing a list of loop identifiers for nested loops.
3090The metadata is attached to memory accessing instructions and denotes that
3091no loop carried memory dependence exist between it and other instructions denoted
3092with the same loop identifier.
3093
3094Precisely, given two instructions ``m1`` and ``m2`` that both have the
3095``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3096set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003097carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003098``L2``.
3099
3100As a special case, if all memory accessing instructions in a loop have
3101``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3102loop has no loop carried memory dependences and is considered to be a parallel
3103loop.
3104
3105Note that if not all memory access instructions have such metadata referring to
3106the loop, then the loop is considered not being trivially parallel. Additional
3107memory dependence analysis is required to make that determination. As a fail
3108safe mechanism, this causes loops that were originally parallel to be considered
3109sequential (if optimization passes that are unaware of the parallel semantics
3110insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003111
3112Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003113both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003114metadata types that refer to the same loop identifier metadata.
3115
3116.. code-block:: llvm
3117
3118 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003119 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003120 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003121 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003122 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003123 ...
3124 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003125
3126 for.end:
3127 ...
3128 !0 = metadata !{ metadata !0 }
3129
3130It is also possible to have nested parallel loops. In that case the
3131memory accesses refer to a list of loop identifier metadata nodes instead of
3132the loop identifier metadata node directly:
3133
3134.. code-block:: llvm
3135
3136 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003137 ...
3138 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3139 ...
3140 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003141
3142 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003143 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003144 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003145 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003146 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003147 ...
3148 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003149
3150 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003151 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003152 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003153 ...
3154 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003155
3156 outer.for.end: ; preds = %for.body
3157 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00003158 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
3159 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
3160 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003161
Sean Silvab084af42012-12-07 10:36:55 +00003162Module Flags Metadata
3163=====================
3164
3165Information about the module as a whole is difficult to convey to LLVM's
3166subsystems. The LLVM IR isn't sufficient to transmit this information.
3167The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003168this. These flags are in the form of key / value pairs --- much like a
3169dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003170look it up.
3171
3172The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3173Each triplet has the following form:
3174
3175- The first element is a *behavior* flag, which specifies the behavior
3176 when two (or more) modules are merged together, and it encounters two
3177 (or more) metadata with the same ID. The supported behaviors are
3178 described below.
3179- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003180 metadata. Each module may only have one flag entry for each unique ID (not
3181 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003182- The third element is the value of the flag.
3183
3184When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003185``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3186each unique metadata ID string, there will be exactly one entry in the merged
3187modules ``llvm.module.flags`` metadata table, and the value for that entry will
3188be determined by the merge behavior flag, as described below. The only exception
3189is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003190
3191The following behaviors are supported:
3192
3193.. list-table::
3194 :header-rows: 1
3195 :widths: 10 90
3196
3197 * - Value
3198 - Behavior
3199
3200 * - 1
3201 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003202 Emits an error if two values disagree, otherwise the resulting value
3203 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003204
3205 * - 2
3206 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003207 Emits a warning if two values disagree. The result value will be the
3208 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003209
3210 * - 3
3211 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003212 Adds a requirement that another module flag be present and have a
3213 specified value after linking is performed. The value must be a
3214 metadata pair, where the first element of the pair is the ID of the
3215 module flag to be restricted, and the second element of the pair is
3216 the value the module flag should be restricted to. This behavior can
3217 be used to restrict the allowable results (via triggering of an
3218 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003219
3220 * - 4
3221 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003222 Uses the specified value, regardless of the behavior or value of the
3223 other module. If both modules specify **Override**, but the values
3224 differ, an error will be emitted.
3225
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003226 * - 5
3227 - **Append**
3228 Appends the two values, which are required to be metadata nodes.
3229
3230 * - 6
3231 - **AppendUnique**
3232 Appends the two values, which are required to be metadata
3233 nodes. However, duplicate entries in the second list are dropped
3234 during the append operation.
3235
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003236It is an error for a particular unique flag ID to have multiple behaviors,
3237except in the case of **Require** (which adds restrictions on another metadata
3238value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003239
3240An example of module flags:
3241
3242.. code-block:: llvm
3243
3244 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3245 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3246 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3247 !3 = metadata !{ i32 3, metadata !"qux",
3248 metadata !{
3249 metadata !"foo", i32 1
3250 }
3251 }
3252 !llvm.module.flags = !{ !0, !1, !2, !3 }
3253
3254- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3255 if two or more ``!"foo"`` flags are seen is to emit an error if their
3256 values are not equal.
3257
3258- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3259 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003260 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003261
3262- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3263 behavior if two or more ``!"qux"`` flags are seen is to emit a
3264 warning if their values are not equal.
3265
3266- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3267
3268 ::
3269
3270 metadata !{ metadata !"foo", i32 1 }
3271
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003272 The behavior is to emit an error if the ``llvm.module.flags`` does not
3273 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3274 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003275
3276Objective-C Garbage Collection Module Flags Metadata
3277----------------------------------------------------
3278
3279On the Mach-O platform, Objective-C stores metadata about garbage
3280collection in a special section called "image info". The metadata
3281consists of a version number and a bitmask specifying what types of
3282garbage collection are supported (if any) by the file. If two or more
3283modules are linked together their garbage collection metadata needs to
3284be merged rather than appended together.
3285
3286The Objective-C garbage collection module flags metadata consists of the
3287following key-value pairs:
3288
3289.. list-table::
3290 :header-rows: 1
3291 :widths: 30 70
3292
3293 * - Key
3294 - Value
3295
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003296 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003297 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003298
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003299 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003300 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003301 always 0.
3302
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003303 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003304 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003305 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3306 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3307 Objective-C ABI version 2.
3308
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003309 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003310 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003311 not. Valid values are 0, for no garbage collection, and 2, for garbage
3312 collection supported.
3313
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003314 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003315 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003316 If present, its value must be 6. This flag requires that the
3317 ``Objective-C Garbage Collection`` flag have the value 2.
3318
3319Some important flag interactions:
3320
3321- If a module with ``Objective-C Garbage Collection`` set to 0 is
3322 merged with a module with ``Objective-C Garbage Collection`` set to
3323 2, then the resulting module has the
3324 ``Objective-C Garbage Collection`` flag set to 0.
3325- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3326 merged with a module with ``Objective-C GC Only`` set to 6.
3327
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003328Automatic Linker Flags Module Flags Metadata
3329--------------------------------------------
3330
3331Some targets support embedding flags to the linker inside individual object
3332files. Typically this is used in conjunction with language extensions which
3333allow source files to explicitly declare the libraries they depend on, and have
3334these automatically be transmitted to the linker via object files.
3335
3336These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003337using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003338to be ``AppendUnique``, and the value for the key is expected to be a metadata
3339node which should be a list of other metadata nodes, each of which should be a
3340list of metadata strings defining linker options.
3341
3342For example, the following metadata section specifies two separate sets of
3343linker options, presumably to link against ``libz`` and the ``Cocoa``
3344framework::
3345
Michael Liaoa7699082013-03-06 18:24:34 +00003346 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003347 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003348 metadata !{ metadata !"-lz" },
3349 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003350 !llvm.module.flags = !{ !0 }
3351
3352The metadata encoding as lists of lists of options, as opposed to a collapsed
3353list of options, is chosen so that the IR encoding can use multiple option
3354strings to specify e.g., a single library, while still having that specifier be
3355preserved as an atomic element that can be recognized by a target specific
3356assembly writer or object file emitter.
3357
3358Each individual option is required to be either a valid option for the target's
3359linker, or an option that is reserved by the target specific assembly writer or
3360object file emitter. No other aspect of these options is defined by the IR.
3361
Oliver Stannard5dc29342014-06-20 10:08:11 +00003362C type width Module Flags Metadata
3363----------------------------------
3364
3365The ARM backend emits a section into each generated object file describing the
3366options that it was compiled with (in a compiler-independent way) to prevent
3367linking incompatible objects, and to allow automatic library selection. Some
3368of these options are not visible at the IR level, namely wchar_t width and enum
3369width.
3370
3371To pass this information to the backend, these options are encoded in module
3372flags metadata, using the following key-value pairs:
3373
3374.. list-table::
3375 :header-rows: 1
3376 :widths: 30 70
3377
3378 * - Key
3379 - Value
3380
3381 * - short_wchar
3382 - * 0 --- sizeof(wchar_t) == 4
3383 * 1 --- sizeof(wchar_t) == 2
3384
3385 * - short_enum
3386 - * 0 --- Enums are at least as large as an ``int``.
3387 * 1 --- Enums are stored in the smallest integer type which can
3388 represent all of its values.
3389
3390For example, the following metadata section specifies that the module was
3391compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3392enum is the smallest type which can represent all of its values::
3393
3394 !llvm.module.flags = !{!0, !1}
3395 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1}
3396 !1 = metadata !{i32 1, metadata !"short_enum", i32 0}
3397
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003398.. _intrinsicglobalvariables:
3399
Sean Silvab084af42012-12-07 10:36:55 +00003400Intrinsic Global Variables
3401==========================
3402
3403LLVM has a number of "magic" global variables that contain data that
3404affect code generation or other IR semantics. These are documented here.
3405All globals of this sort should have a section specified as
3406"``llvm.metadata``". This section and all globals that start with
3407"``llvm.``" are reserved for use by LLVM.
3408
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003409.. _gv_llvmused:
3410
Sean Silvab084af42012-12-07 10:36:55 +00003411The '``llvm.used``' Global Variable
3412-----------------------------------
3413
Rafael Espindola74f2e462013-04-22 14:58:02 +00003414The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003415:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003416pointers to named global variables, functions and aliases which may optionally
3417have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003418use of it is:
3419
3420.. code-block:: llvm
3421
3422 @X = global i8 4
3423 @Y = global i32 123
3424
3425 @llvm.used = appending global [2 x i8*] [
3426 i8* @X,
3427 i8* bitcast (i32* @Y to i8*)
3428 ], section "llvm.metadata"
3429
Rafael Espindola74f2e462013-04-22 14:58:02 +00003430If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3431and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003432symbol that it cannot see (which is why they have to be named). For example, if
3433a variable has internal linkage and no references other than that from the
3434``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3435references from inline asms and other things the compiler cannot "see", and
3436corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003437
3438On some targets, the code generator must emit a directive to the
3439assembler or object file to prevent the assembler and linker from
3440molesting the symbol.
3441
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003442.. _gv_llvmcompilerused:
3443
Sean Silvab084af42012-12-07 10:36:55 +00003444The '``llvm.compiler.used``' Global Variable
3445--------------------------------------------
3446
3447The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3448directive, except that it only prevents the compiler from touching the
3449symbol. On targets that support it, this allows an intelligent linker to
3450optimize references to the symbol without being impeded as it would be
3451by ``@llvm.used``.
3452
3453This is a rare construct that should only be used in rare circumstances,
3454and should not be exposed to source languages.
3455
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003456.. _gv_llvmglobalctors:
3457
Sean Silvab084af42012-12-07 10:36:55 +00003458The '``llvm.global_ctors``' Global Variable
3459-------------------------------------------
3460
3461.. code-block:: llvm
3462
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003463 %0 = type { i32, void ()*, i8* }
3464 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003465
3466The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003467functions, priorities, and an optional associated global or function.
3468The functions referenced by this array will be called in ascending order
3469of priority (i.e. lowest first) when the module is loaded. The order of
3470functions with the same priority is not defined.
3471
3472If the third field is present, non-null, and points to a global variable
3473or function, the initializer function will only run if the associated
3474data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003475
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003476.. _llvmglobaldtors:
3477
Sean Silvab084af42012-12-07 10:36:55 +00003478The '``llvm.global_dtors``' Global Variable
3479-------------------------------------------
3480
3481.. code-block:: llvm
3482
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003483 %0 = type { i32, void ()*, i8* }
3484 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003485
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003486The ``@llvm.global_dtors`` array contains a list of destructor
3487functions, priorities, and an optional associated global or function.
3488The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003489order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003490order of functions with the same priority is not defined.
3491
3492If the third field is present, non-null, and points to a global variable
3493or function, the destructor function will only run if the associated
3494data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003495
3496Instruction Reference
3497=====================
3498
3499The LLVM instruction set consists of several different classifications
3500of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3501instructions <binaryops>`, :ref:`bitwise binary
3502instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3503:ref:`other instructions <otherops>`.
3504
3505.. _terminators:
3506
3507Terminator Instructions
3508-----------------------
3509
3510As mentioned :ref:`previously <functionstructure>`, every basic block in a
3511program ends with a "Terminator" instruction, which indicates which
3512block should be executed after the current block is finished. These
3513terminator instructions typically yield a '``void``' value: they produce
3514control flow, not values (the one exception being the
3515':ref:`invoke <i_invoke>`' instruction).
3516
3517The terminator instructions are: ':ref:`ret <i_ret>`',
3518':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3519':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3520':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3521
3522.. _i_ret:
3523
3524'``ret``' Instruction
3525^^^^^^^^^^^^^^^^^^^^^
3526
3527Syntax:
3528"""""""
3529
3530::
3531
3532 ret <type> <value> ; Return a value from a non-void function
3533 ret void ; Return from void function
3534
3535Overview:
3536"""""""""
3537
3538The '``ret``' instruction is used to return control flow (and optionally
3539a value) from a function back to the caller.
3540
3541There are two forms of the '``ret``' instruction: one that returns a
3542value and then causes control flow, and one that just causes control
3543flow to occur.
3544
3545Arguments:
3546""""""""""
3547
3548The '``ret``' instruction optionally accepts a single argument, the
3549return value. The type of the return value must be a ':ref:`first
3550class <t_firstclass>`' type.
3551
3552A function is not :ref:`well formed <wellformed>` if it it has a non-void
3553return type and contains a '``ret``' instruction with no return value or
3554a return value with a type that does not match its type, or if it has a
3555void return type and contains a '``ret``' instruction with a return
3556value.
3557
3558Semantics:
3559""""""""""
3560
3561When the '``ret``' instruction is executed, control flow returns back to
3562the calling function's context. If the caller is a
3563":ref:`call <i_call>`" instruction, execution continues at the
3564instruction after the call. If the caller was an
3565":ref:`invoke <i_invoke>`" instruction, execution continues at the
3566beginning of the "normal" destination block. If the instruction returns
3567a value, that value shall set the call or invoke instruction's return
3568value.
3569
3570Example:
3571""""""""
3572
3573.. code-block:: llvm
3574
3575 ret i32 5 ; Return an integer value of 5
3576 ret void ; Return from a void function
3577 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3578
3579.. _i_br:
3580
3581'``br``' Instruction
3582^^^^^^^^^^^^^^^^^^^^
3583
3584Syntax:
3585"""""""
3586
3587::
3588
3589 br i1 <cond>, label <iftrue>, label <iffalse>
3590 br label <dest> ; Unconditional branch
3591
3592Overview:
3593"""""""""
3594
3595The '``br``' instruction is used to cause control flow to transfer to a
3596different basic block in the current function. There are two forms of
3597this instruction, corresponding to a conditional branch and an
3598unconditional branch.
3599
3600Arguments:
3601""""""""""
3602
3603The conditional branch form of the '``br``' instruction takes a single
3604'``i1``' value and two '``label``' values. The unconditional form of the
3605'``br``' instruction takes a single '``label``' value as a target.
3606
3607Semantics:
3608""""""""""
3609
3610Upon execution of a conditional '``br``' instruction, the '``i1``'
3611argument is evaluated. If the value is ``true``, control flows to the
3612'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3613to the '``iffalse``' ``label`` argument.
3614
3615Example:
3616""""""""
3617
3618.. code-block:: llvm
3619
3620 Test:
3621 %cond = icmp eq i32 %a, %b
3622 br i1 %cond, label %IfEqual, label %IfUnequal
3623 IfEqual:
3624 ret i32 1
3625 IfUnequal:
3626 ret i32 0
3627
3628.. _i_switch:
3629
3630'``switch``' Instruction
3631^^^^^^^^^^^^^^^^^^^^^^^^
3632
3633Syntax:
3634"""""""
3635
3636::
3637
3638 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3639
3640Overview:
3641"""""""""
3642
3643The '``switch``' instruction is used to transfer control flow to one of
3644several different places. It is a generalization of the '``br``'
3645instruction, allowing a branch to occur to one of many possible
3646destinations.
3647
3648Arguments:
3649""""""""""
3650
3651The '``switch``' instruction uses three parameters: an integer
3652comparison value '``value``', a default '``label``' destination, and an
3653array of pairs of comparison value constants and '``label``'s. The table
3654is not allowed to contain duplicate constant entries.
3655
3656Semantics:
3657""""""""""
3658
3659The ``switch`` instruction specifies a table of values and destinations.
3660When the '``switch``' instruction is executed, this table is searched
3661for the given value. If the value is found, control flow is transferred
3662to the corresponding destination; otherwise, control flow is transferred
3663to the default destination.
3664
3665Implementation:
3666"""""""""""""""
3667
3668Depending on properties of the target machine and the particular
3669``switch`` instruction, this instruction may be code generated in
3670different ways. For example, it could be generated as a series of
3671chained conditional branches or with a lookup table.
3672
3673Example:
3674""""""""
3675
3676.. code-block:: llvm
3677
3678 ; Emulate a conditional br instruction
3679 %Val = zext i1 %value to i32
3680 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3681
3682 ; Emulate an unconditional br instruction
3683 switch i32 0, label %dest [ ]
3684
3685 ; Implement a jump table:
3686 switch i32 %val, label %otherwise [ i32 0, label %onzero
3687 i32 1, label %onone
3688 i32 2, label %ontwo ]
3689
3690.. _i_indirectbr:
3691
3692'``indirectbr``' Instruction
3693^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3694
3695Syntax:
3696"""""""
3697
3698::
3699
3700 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3701
3702Overview:
3703"""""""""
3704
3705The '``indirectbr``' instruction implements an indirect branch to a
3706label within the current function, whose address is specified by
3707"``address``". Address must be derived from a
3708:ref:`blockaddress <blockaddress>` constant.
3709
3710Arguments:
3711""""""""""
3712
3713The '``address``' argument is the address of the label to jump to. The
3714rest of the arguments indicate the full set of possible destinations
3715that the address may point to. Blocks are allowed to occur multiple
3716times in the destination list, though this isn't particularly useful.
3717
3718This destination list is required so that dataflow analysis has an
3719accurate understanding of the CFG.
3720
3721Semantics:
3722""""""""""
3723
3724Control transfers to the block specified in the address argument. All
3725possible destination blocks must be listed in the label list, otherwise
3726this instruction has undefined behavior. This implies that jumps to
3727labels defined in other functions have undefined behavior as well.
3728
3729Implementation:
3730"""""""""""""""
3731
3732This is typically implemented with a jump through a register.
3733
3734Example:
3735""""""""
3736
3737.. code-block:: llvm
3738
3739 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3740
3741.. _i_invoke:
3742
3743'``invoke``' Instruction
3744^^^^^^^^^^^^^^^^^^^^^^^^
3745
3746Syntax:
3747"""""""
3748
3749::
3750
3751 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3752 to label <normal label> unwind label <exception label>
3753
3754Overview:
3755"""""""""
3756
3757The '``invoke``' instruction causes control to transfer to a specified
3758function, with the possibility of control flow transfer to either the
3759'``normal``' label or the '``exception``' label. If the callee function
3760returns with the "``ret``" instruction, control flow will return to the
3761"normal" label. If the callee (or any indirect callees) returns via the
3762":ref:`resume <i_resume>`" instruction or other exception handling
3763mechanism, control is interrupted and continued at the dynamically
3764nearest "exception" label.
3765
3766The '``exception``' label is a `landing
3767pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3768'``exception``' label is required to have the
3769":ref:`landingpad <i_landingpad>`" instruction, which contains the
3770information about the behavior of the program after unwinding happens,
3771as its first non-PHI instruction. The restrictions on the
3772"``landingpad``" instruction's tightly couples it to the "``invoke``"
3773instruction, so that the important information contained within the
3774"``landingpad``" instruction can't be lost through normal code motion.
3775
3776Arguments:
3777""""""""""
3778
3779This instruction requires several arguments:
3780
3781#. The optional "cconv" marker indicates which :ref:`calling
3782 convention <callingconv>` the call should use. If none is
3783 specified, the call defaults to using C calling conventions.
3784#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3785 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3786 are valid here.
3787#. '``ptr to function ty``': shall be the signature of the pointer to
3788 function value being invoked. In most cases, this is a direct
3789 function invocation, but indirect ``invoke``'s are just as possible,
3790 branching off an arbitrary pointer to function value.
3791#. '``function ptr val``': An LLVM value containing a pointer to a
3792 function to be invoked.
3793#. '``function args``': argument list whose types match the function
3794 signature argument types and parameter attributes. All arguments must
3795 be of :ref:`first class <t_firstclass>` type. If the function signature
3796 indicates the function accepts a variable number of arguments, the
3797 extra arguments can be specified.
3798#. '``normal label``': the label reached when the called function
3799 executes a '``ret``' instruction.
3800#. '``exception label``': the label reached when a callee returns via
3801 the :ref:`resume <i_resume>` instruction or other exception handling
3802 mechanism.
3803#. The optional :ref:`function attributes <fnattrs>` list. Only
3804 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3805 attributes are valid here.
3806
3807Semantics:
3808""""""""""
3809
3810This instruction is designed to operate as a standard '``call``'
3811instruction in most regards. The primary difference is that it
3812establishes an association with a label, which is used by the runtime
3813library to unwind the stack.
3814
3815This instruction is used in languages with destructors to ensure that
3816proper cleanup is performed in the case of either a ``longjmp`` or a
3817thrown exception. Additionally, this is important for implementation of
3818'``catch``' clauses in high-level languages that support them.
3819
3820For the purposes of the SSA form, the definition of the value returned
3821by the '``invoke``' instruction is deemed to occur on the edge from the
3822current block to the "normal" label. If the callee unwinds then no
3823return value is available.
3824
3825Example:
3826""""""""
3827
3828.. code-block:: llvm
3829
3830 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003831 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003832 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003833 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003834
3835.. _i_resume:
3836
3837'``resume``' Instruction
3838^^^^^^^^^^^^^^^^^^^^^^^^
3839
3840Syntax:
3841"""""""
3842
3843::
3844
3845 resume <type> <value>
3846
3847Overview:
3848"""""""""
3849
3850The '``resume``' instruction is a terminator instruction that has no
3851successors.
3852
3853Arguments:
3854""""""""""
3855
3856The '``resume``' instruction requires one argument, which must have the
3857same type as the result of any '``landingpad``' instruction in the same
3858function.
3859
3860Semantics:
3861""""""""""
3862
3863The '``resume``' instruction resumes propagation of an existing
3864(in-flight) exception whose unwinding was interrupted with a
3865:ref:`landingpad <i_landingpad>` instruction.
3866
3867Example:
3868""""""""
3869
3870.. code-block:: llvm
3871
3872 resume { i8*, i32 } %exn
3873
3874.. _i_unreachable:
3875
3876'``unreachable``' Instruction
3877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3878
3879Syntax:
3880"""""""
3881
3882::
3883
3884 unreachable
3885
3886Overview:
3887"""""""""
3888
3889The '``unreachable``' instruction has no defined semantics. This
3890instruction is used to inform the optimizer that a particular portion of
3891the code is not reachable. This can be used to indicate that the code
3892after a no-return function cannot be reached, and other facts.
3893
3894Semantics:
3895""""""""""
3896
3897The '``unreachable``' instruction has no defined semantics.
3898
3899.. _binaryops:
3900
3901Binary Operations
3902-----------------
3903
3904Binary operators are used to do most of the computation in a program.
3905They require two operands of the same type, execute an operation on
3906them, and produce a single value. The operands might represent multiple
3907data, as is the case with the :ref:`vector <t_vector>` data type. The
3908result value has the same type as its operands.
3909
3910There are several different binary operators:
3911
3912.. _i_add:
3913
3914'``add``' Instruction
3915^^^^^^^^^^^^^^^^^^^^^
3916
3917Syntax:
3918"""""""
3919
3920::
3921
Tim Northover675a0962014-06-13 14:24:23 +00003922 <result> = add <ty> <op1>, <op2> ; yields ty:result
3923 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
3924 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
3925 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003926
3927Overview:
3928"""""""""
3929
3930The '``add``' instruction returns the sum of its two operands.
3931
3932Arguments:
3933""""""""""
3934
3935The two arguments to the '``add``' instruction must be
3936:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3937arguments must have identical types.
3938
3939Semantics:
3940""""""""""
3941
3942The value produced is the integer sum of the two operands.
3943
3944If the sum has unsigned overflow, the result returned is the
3945mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3946the result.
3947
3948Because LLVM integers use a two's complement representation, this
3949instruction is appropriate for both signed and unsigned integers.
3950
3951``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3952respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3953result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3954unsigned and/or signed overflow, respectively, occurs.
3955
3956Example:
3957""""""""
3958
3959.. code-block:: llvm
3960
Tim Northover675a0962014-06-13 14:24:23 +00003961 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00003962
3963.. _i_fadd:
3964
3965'``fadd``' Instruction
3966^^^^^^^^^^^^^^^^^^^^^^
3967
3968Syntax:
3969"""""""
3970
3971::
3972
Tim Northover675a0962014-06-13 14:24:23 +00003973 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003974
3975Overview:
3976"""""""""
3977
3978The '``fadd``' instruction returns the sum of its two operands.
3979
3980Arguments:
3981""""""""""
3982
3983The two arguments to the '``fadd``' instruction must be :ref:`floating
3984point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3985Both arguments must have identical types.
3986
3987Semantics:
3988""""""""""
3989
3990The value produced is the floating point sum of the two operands. This
3991instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3992which are optimization hints to enable otherwise unsafe floating point
3993optimizations:
3994
3995Example:
3996""""""""
3997
3998.. code-block:: llvm
3999
Tim Northover675a0962014-06-13 14:24:23 +00004000 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004001
4002'``sub``' Instruction
4003^^^^^^^^^^^^^^^^^^^^^
4004
4005Syntax:
4006"""""""
4007
4008::
4009
Tim Northover675a0962014-06-13 14:24:23 +00004010 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4011 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4012 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4013 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004014
4015Overview:
4016"""""""""
4017
4018The '``sub``' instruction returns the difference of its two operands.
4019
4020Note that the '``sub``' instruction is used to represent the '``neg``'
4021instruction present in most other intermediate representations.
4022
4023Arguments:
4024""""""""""
4025
4026The two arguments to the '``sub``' instruction must be
4027:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4028arguments must have identical types.
4029
4030Semantics:
4031""""""""""
4032
4033The value produced is the integer difference of the two operands.
4034
4035If the difference has unsigned overflow, the result returned is the
4036mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4037the result.
4038
4039Because LLVM integers use a two's complement representation, this
4040instruction is appropriate for both signed and unsigned integers.
4041
4042``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4043respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4044result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4045unsigned and/or signed overflow, respectively, occurs.
4046
4047Example:
4048""""""""
4049
4050.. code-block:: llvm
4051
Tim Northover675a0962014-06-13 14:24:23 +00004052 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4053 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004054
4055.. _i_fsub:
4056
4057'``fsub``' Instruction
4058^^^^^^^^^^^^^^^^^^^^^^
4059
4060Syntax:
4061"""""""
4062
4063::
4064
Tim Northover675a0962014-06-13 14:24:23 +00004065 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004066
4067Overview:
4068"""""""""
4069
4070The '``fsub``' instruction returns the difference of its two operands.
4071
4072Note that the '``fsub``' instruction is used to represent the '``fneg``'
4073instruction present in most other intermediate representations.
4074
4075Arguments:
4076""""""""""
4077
4078The two arguments to the '``fsub``' instruction must be :ref:`floating
4079point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4080Both arguments must have identical types.
4081
4082Semantics:
4083""""""""""
4084
4085The value produced is the floating point difference of the two operands.
4086This instruction can also take any number of :ref:`fast-math
4087flags <fastmath>`, which are optimization hints to enable otherwise
4088unsafe floating point optimizations:
4089
4090Example:
4091""""""""
4092
4093.. code-block:: llvm
4094
Tim Northover675a0962014-06-13 14:24:23 +00004095 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4096 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004097
4098'``mul``' Instruction
4099^^^^^^^^^^^^^^^^^^^^^
4100
4101Syntax:
4102"""""""
4103
4104::
4105
Tim Northover675a0962014-06-13 14:24:23 +00004106 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4107 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4108 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4109 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004110
4111Overview:
4112"""""""""
4113
4114The '``mul``' instruction returns the product of its two operands.
4115
4116Arguments:
4117""""""""""
4118
4119The two arguments to the '``mul``' instruction must be
4120:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4121arguments must have identical types.
4122
4123Semantics:
4124""""""""""
4125
4126The value produced is the integer product of the two operands.
4127
4128If the result of the multiplication has unsigned overflow, the result
4129returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4130bit width of the result.
4131
4132Because LLVM integers use a two's complement representation, and the
4133result is the same width as the operands, this instruction returns the
4134correct result for both signed and unsigned integers. If a full product
4135(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4136sign-extended or zero-extended as appropriate to the width of the full
4137product.
4138
4139``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4140respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4141result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4142unsigned and/or signed overflow, respectively, occurs.
4143
4144Example:
4145""""""""
4146
4147.. code-block:: llvm
4148
Tim Northover675a0962014-06-13 14:24:23 +00004149 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004150
4151.. _i_fmul:
4152
4153'``fmul``' Instruction
4154^^^^^^^^^^^^^^^^^^^^^^
4155
4156Syntax:
4157"""""""
4158
4159::
4160
Tim Northover675a0962014-06-13 14:24:23 +00004161 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004162
4163Overview:
4164"""""""""
4165
4166The '``fmul``' instruction returns the product of its two operands.
4167
4168Arguments:
4169""""""""""
4170
4171The two arguments to the '``fmul``' instruction must be :ref:`floating
4172point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4173Both arguments must have identical types.
4174
4175Semantics:
4176""""""""""
4177
4178The value produced is the floating point product of the two operands.
4179This instruction can also take any number of :ref:`fast-math
4180flags <fastmath>`, which are optimization hints to enable otherwise
4181unsafe floating point optimizations:
4182
4183Example:
4184""""""""
4185
4186.. code-block:: llvm
4187
Tim Northover675a0962014-06-13 14:24:23 +00004188 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004189
4190'``udiv``' Instruction
4191^^^^^^^^^^^^^^^^^^^^^^
4192
4193Syntax:
4194"""""""
4195
4196::
4197
Tim Northover675a0962014-06-13 14:24:23 +00004198 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4199 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004200
4201Overview:
4202"""""""""
4203
4204The '``udiv``' instruction returns the quotient of its two operands.
4205
4206Arguments:
4207""""""""""
4208
4209The two arguments to the '``udiv``' instruction must be
4210:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4211arguments must have identical types.
4212
4213Semantics:
4214""""""""""
4215
4216The value produced is the unsigned integer quotient of the two operands.
4217
4218Note that unsigned integer division and signed integer division are
4219distinct operations; for signed integer division, use '``sdiv``'.
4220
4221Division by zero leads to undefined behavior.
4222
4223If the ``exact`` keyword is present, the result value of the ``udiv`` is
4224a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4225such, "((a udiv exact b) mul b) == a").
4226
4227Example:
4228""""""""
4229
4230.. code-block:: llvm
4231
Tim Northover675a0962014-06-13 14:24:23 +00004232 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004233
4234'``sdiv``' Instruction
4235^^^^^^^^^^^^^^^^^^^^^^
4236
4237Syntax:
4238"""""""
4239
4240::
4241
Tim Northover675a0962014-06-13 14:24:23 +00004242 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4243 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004244
4245Overview:
4246"""""""""
4247
4248The '``sdiv``' instruction returns the quotient of its two operands.
4249
4250Arguments:
4251""""""""""
4252
4253The two arguments to the '``sdiv``' instruction must be
4254:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4255arguments must have identical types.
4256
4257Semantics:
4258""""""""""
4259
4260The value produced is the signed integer quotient of the two operands
4261rounded towards zero.
4262
4263Note that signed integer division and unsigned integer division are
4264distinct operations; for unsigned integer division, use '``udiv``'.
4265
4266Division by zero leads to undefined behavior. Overflow also leads to
4267undefined behavior; this is a rare case, but can occur, for example, by
4268doing a 32-bit division of -2147483648 by -1.
4269
4270If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4271a :ref:`poison value <poisonvalues>` if the result would be rounded.
4272
4273Example:
4274""""""""
4275
4276.. code-block:: llvm
4277
Tim Northover675a0962014-06-13 14:24:23 +00004278 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004279
4280.. _i_fdiv:
4281
4282'``fdiv``' Instruction
4283^^^^^^^^^^^^^^^^^^^^^^
4284
4285Syntax:
4286"""""""
4287
4288::
4289
Tim Northover675a0962014-06-13 14:24:23 +00004290 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004291
4292Overview:
4293"""""""""
4294
4295The '``fdiv``' instruction returns the quotient of its two operands.
4296
4297Arguments:
4298""""""""""
4299
4300The two arguments to the '``fdiv``' instruction must be :ref:`floating
4301point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4302Both arguments must have identical types.
4303
4304Semantics:
4305""""""""""
4306
4307The value produced is the floating point quotient of the two operands.
4308This instruction can also take any number of :ref:`fast-math
4309flags <fastmath>`, which are optimization hints to enable otherwise
4310unsafe floating point optimizations:
4311
4312Example:
4313""""""""
4314
4315.. code-block:: llvm
4316
Tim Northover675a0962014-06-13 14:24:23 +00004317 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004318
4319'``urem``' Instruction
4320^^^^^^^^^^^^^^^^^^^^^^
4321
4322Syntax:
4323"""""""
4324
4325::
4326
Tim Northover675a0962014-06-13 14:24:23 +00004327 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004328
4329Overview:
4330"""""""""
4331
4332The '``urem``' instruction returns the remainder from the unsigned
4333division of its two arguments.
4334
4335Arguments:
4336""""""""""
4337
4338The two arguments to the '``urem``' instruction must be
4339:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4340arguments must have identical types.
4341
4342Semantics:
4343""""""""""
4344
4345This instruction returns the unsigned integer *remainder* of a division.
4346This instruction always performs an unsigned division to get the
4347remainder.
4348
4349Note that unsigned integer remainder and signed integer remainder are
4350distinct operations; for signed integer remainder, use '``srem``'.
4351
4352Taking the remainder of a division by zero leads to undefined behavior.
4353
4354Example:
4355""""""""
4356
4357.. code-block:: llvm
4358
Tim Northover675a0962014-06-13 14:24:23 +00004359 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004360
4361'``srem``' Instruction
4362^^^^^^^^^^^^^^^^^^^^^^
4363
4364Syntax:
4365"""""""
4366
4367::
4368
Tim Northover675a0962014-06-13 14:24:23 +00004369 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004370
4371Overview:
4372"""""""""
4373
4374The '``srem``' instruction returns the remainder from the signed
4375division of its two operands. This instruction can also take
4376:ref:`vector <t_vector>` versions of the values in which case the elements
4377must be integers.
4378
4379Arguments:
4380""""""""""
4381
4382The two arguments to the '``srem``' instruction must be
4383:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4384arguments must have identical types.
4385
4386Semantics:
4387""""""""""
4388
4389This instruction returns the *remainder* of a division (where the result
4390is either zero or has the same sign as the dividend, ``op1``), not the
4391*modulo* operator (where the result is either zero or has the same sign
4392as the divisor, ``op2``) of a value. For more information about the
4393difference, see `The Math
4394Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4395table of how this is implemented in various languages, please see
4396`Wikipedia: modulo
4397operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4398
4399Note that signed integer remainder and unsigned integer remainder are
4400distinct operations; for unsigned integer remainder, use '``urem``'.
4401
4402Taking the remainder of a division by zero leads to undefined behavior.
4403Overflow also leads to undefined behavior; this is a rare case, but can
4404occur, for example, by taking the remainder of a 32-bit division of
4405-2147483648 by -1. (The remainder doesn't actually overflow, but this
4406rule lets srem be implemented using instructions that return both the
4407result of the division and the remainder.)
4408
4409Example:
4410""""""""
4411
4412.. code-block:: llvm
4413
Tim Northover675a0962014-06-13 14:24:23 +00004414 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004415
4416.. _i_frem:
4417
4418'``frem``' Instruction
4419^^^^^^^^^^^^^^^^^^^^^^
4420
4421Syntax:
4422"""""""
4423
4424::
4425
Tim Northover675a0962014-06-13 14:24:23 +00004426 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004427
4428Overview:
4429"""""""""
4430
4431The '``frem``' instruction returns the remainder from the division of
4432its two operands.
4433
4434Arguments:
4435""""""""""
4436
4437The two arguments to the '``frem``' instruction must be :ref:`floating
4438point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4439Both arguments must have identical types.
4440
4441Semantics:
4442""""""""""
4443
4444This instruction returns the *remainder* of a division. The remainder
4445has the same sign as the dividend. This instruction can also take any
4446number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4447to enable otherwise unsafe floating point optimizations:
4448
4449Example:
4450""""""""
4451
4452.. code-block:: llvm
4453
Tim Northover675a0962014-06-13 14:24:23 +00004454 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004455
4456.. _bitwiseops:
4457
4458Bitwise Binary Operations
4459-------------------------
4460
4461Bitwise binary operators are used to do various forms of bit-twiddling
4462in a program. They are generally very efficient instructions and can
4463commonly be strength reduced from other instructions. They require two
4464operands of the same type, execute an operation on them, and produce a
4465single value. The resulting value is the same type as its operands.
4466
4467'``shl``' Instruction
4468^^^^^^^^^^^^^^^^^^^^^
4469
4470Syntax:
4471"""""""
4472
4473::
4474
Tim Northover675a0962014-06-13 14:24:23 +00004475 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4476 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4477 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4478 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004479
4480Overview:
4481"""""""""
4482
4483The '``shl``' instruction returns the first operand shifted to the left
4484a specified number of bits.
4485
4486Arguments:
4487""""""""""
4488
4489Both arguments to the '``shl``' instruction must be the same
4490:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4491'``op2``' is treated as an unsigned value.
4492
4493Semantics:
4494""""""""""
4495
4496The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4497where ``n`` is the width of the result. If ``op2`` is (statically or
4498dynamically) negative or equal to or larger than the number of bits in
4499``op1``, the result is undefined. If the arguments are vectors, each
4500vector element of ``op1`` is shifted by the corresponding shift amount
4501in ``op2``.
4502
4503If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4504value <poisonvalues>` if it shifts out any non-zero bits. If the
4505``nsw`` keyword is present, then the shift produces a :ref:`poison
4506value <poisonvalues>` if it shifts out any bits that disagree with the
4507resultant sign bit. As such, NUW/NSW have the same semantics as they
4508would if the shift were expressed as a mul instruction with the same
4509nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4510
4511Example:
4512""""""""
4513
4514.. code-block:: llvm
4515
Tim Northover675a0962014-06-13 14:24:23 +00004516 <result> = shl i32 4, %var ; yields i32: 4 << %var
4517 <result> = shl i32 4, 2 ; yields i32: 16
4518 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004519 <result> = shl i32 1, 32 ; undefined
4520 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4521
4522'``lshr``' Instruction
4523^^^^^^^^^^^^^^^^^^^^^^
4524
4525Syntax:
4526"""""""
4527
4528::
4529
Tim Northover675a0962014-06-13 14:24:23 +00004530 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4531 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004532
4533Overview:
4534"""""""""
4535
4536The '``lshr``' instruction (logical shift right) returns the first
4537operand shifted to the right a specified number of bits with zero fill.
4538
4539Arguments:
4540""""""""""
4541
4542Both arguments to the '``lshr``' instruction must be the same
4543:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4544'``op2``' is treated as an unsigned value.
4545
4546Semantics:
4547""""""""""
4548
4549This instruction always performs a logical shift right operation. The
4550most significant bits of the result will be filled with zero bits after
4551the shift. If ``op2`` is (statically or dynamically) equal to or larger
4552than the number of bits in ``op1``, the result is undefined. If the
4553arguments are vectors, each vector element of ``op1`` is shifted by the
4554corresponding shift amount in ``op2``.
4555
4556If the ``exact`` keyword is present, the result value of the ``lshr`` is
4557a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4558non-zero.
4559
4560Example:
4561""""""""
4562
4563.. code-block:: llvm
4564
Tim Northover675a0962014-06-13 14:24:23 +00004565 <result> = lshr i32 4, 1 ; yields i32:result = 2
4566 <result> = lshr i32 4, 2 ; yields i32:result = 1
4567 <result> = lshr i8 4, 3 ; yields i8:result = 0
4568 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004569 <result> = lshr i32 1, 32 ; undefined
4570 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4571
4572'``ashr``' Instruction
4573^^^^^^^^^^^^^^^^^^^^^^
4574
4575Syntax:
4576"""""""
4577
4578::
4579
Tim Northover675a0962014-06-13 14:24:23 +00004580 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4581 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004582
4583Overview:
4584"""""""""
4585
4586The '``ashr``' instruction (arithmetic shift right) returns the first
4587operand shifted to the right a specified number of bits with sign
4588extension.
4589
4590Arguments:
4591""""""""""
4592
4593Both arguments to the '``ashr``' instruction must be the same
4594:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4595'``op2``' is treated as an unsigned value.
4596
4597Semantics:
4598""""""""""
4599
4600This instruction always performs an arithmetic shift right operation,
4601The most significant bits of the result will be filled with the sign bit
4602of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4603than the number of bits in ``op1``, the result is undefined. If the
4604arguments are vectors, each vector element of ``op1`` is shifted by the
4605corresponding shift amount in ``op2``.
4606
4607If the ``exact`` keyword is present, the result value of the ``ashr`` is
4608a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4609non-zero.
4610
4611Example:
4612""""""""
4613
4614.. code-block:: llvm
4615
Tim Northover675a0962014-06-13 14:24:23 +00004616 <result> = ashr i32 4, 1 ; yields i32:result = 2
4617 <result> = ashr i32 4, 2 ; yields i32:result = 1
4618 <result> = ashr i8 4, 3 ; yields i8:result = 0
4619 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004620 <result> = ashr i32 1, 32 ; undefined
4621 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4622
4623'``and``' Instruction
4624^^^^^^^^^^^^^^^^^^^^^
4625
4626Syntax:
4627"""""""
4628
4629::
4630
Tim Northover675a0962014-06-13 14:24:23 +00004631 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004632
4633Overview:
4634"""""""""
4635
4636The '``and``' instruction returns the bitwise logical and of its two
4637operands.
4638
4639Arguments:
4640""""""""""
4641
4642The two arguments to the '``and``' instruction must be
4643:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4644arguments must have identical types.
4645
4646Semantics:
4647""""""""""
4648
4649The truth table used for the '``and``' instruction is:
4650
4651+-----+-----+-----+
4652| In0 | In1 | Out |
4653+-----+-----+-----+
4654| 0 | 0 | 0 |
4655+-----+-----+-----+
4656| 0 | 1 | 0 |
4657+-----+-----+-----+
4658| 1 | 0 | 0 |
4659+-----+-----+-----+
4660| 1 | 1 | 1 |
4661+-----+-----+-----+
4662
4663Example:
4664""""""""
4665
4666.. code-block:: llvm
4667
Tim Northover675a0962014-06-13 14:24:23 +00004668 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4669 <result> = and i32 15, 40 ; yields i32:result = 8
4670 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004671
4672'``or``' Instruction
4673^^^^^^^^^^^^^^^^^^^^
4674
4675Syntax:
4676"""""""
4677
4678::
4679
Tim Northover675a0962014-06-13 14:24:23 +00004680 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004681
4682Overview:
4683"""""""""
4684
4685The '``or``' instruction returns the bitwise logical inclusive or of its
4686two operands.
4687
4688Arguments:
4689""""""""""
4690
4691The two arguments to the '``or``' instruction must be
4692:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4693arguments must have identical types.
4694
4695Semantics:
4696""""""""""
4697
4698The truth table used for the '``or``' instruction is:
4699
4700+-----+-----+-----+
4701| In0 | In1 | Out |
4702+-----+-----+-----+
4703| 0 | 0 | 0 |
4704+-----+-----+-----+
4705| 0 | 1 | 1 |
4706+-----+-----+-----+
4707| 1 | 0 | 1 |
4708+-----+-----+-----+
4709| 1 | 1 | 1 |
4710+-----+-----+-----+
4711
4712Example:
4713""""""""
4714
4715::
4716
Tim Northover675a0962014-06-13 14:24:23 +00004717 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4718 <result> = or i32 15, 40 ; yields i32:result = 47
4719 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004720
4721'``xor``' Instruction
4722^^^^^^^^^^^^^^^^^^^^^
4723
4724Syntax:
4725"""""""
4726
4727::
4728
Tim Northover675a0962014-06-13 14:24:23 +00004729 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004730
4731Overview:
4732"""""""""
4733
4734The '``xor``' instruction returns the bitwise logical exclusive or of
4735its two operands. The ``xor`` is used to implement the "one's
4736complement" operation, which is the "~" operator in C.
4737
4738Arguments:
4739""""""""""
4740
4741The two arguments to the '``xor``' instruction must be
4742:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4743arguments must have identical types.
4744
4745Semantics:
4746""""""""""
4747
4748The truth table used for the '``xor``' instruction is:
4749
4750+-----+-----+-----+
4751| In0 | In1 | Out |
4752+-----+-----+-----+
4753| 0 | 0 | 0 |
4754+-----+-----+-----+
4755| 0 | 1 | 1 |
4756+-----+-----+-----+
4757| 1 | 0 | 1 |
4758+-----+-----+-----+
4759| 1 | 1 | 0 |
4760+-----+-----+-----+
4761
4762Example:
4763""""""""
4764
4765.. code-block:: llvm
4766
Tim Northover675a0962014-06-13 14:24:23 +00004767 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4768 <result> = xor i32 15, 40 ; yields i32:result = 39
4769 <result> = xor i32 4, 8 ; yields i32:result = 12
4770 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004771
4772Vector Operations
4773-----------------
4774
4775LLVM supports several instructions to represent vector operations in a
4776target-independent manner. These instructions cover the element-access
4777and vector-specific operations needed to process vectors effectively.
4778While LLVM does directly support these vector operations, many
4779sophisticated algorithms will want to use target-specific intrinsics to
4780take full advantage of a specific target.
4781
4782.. _i_extractelement:
4783
4784'``extractelement``' Instruction
4785^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4786
4787Syntax:
4788"""""""
4789
4790::
4791
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004792 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004793
4794Overview:
4795"""""""""
4796
4797The '``extractelement``' instruction extracts a single scalar element
4798from a vector at a specified index.
4799
4800Arguments:
4801""""""""""
4802
4803The first operand of an '``extractelement``' instruction is a value of
4804:ref:`vector <t_vector>` type. The second operand is an index indicating
4805the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004806variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004807
4808Semantics:
4809""""""""""
4810
4811The result is a scalar of the same type as the element type of ``val``.
4812Its value is the value at position ``idx`` of ``val``. If ``idx``
4813exceeds the length of ``val``, the results are undefined.
4814
4815Example:
4816""""""""
4817
4818.. code-block:: llvm
4819
4820 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4821
4822.. _i_insertelement:
4823
4824'``insertelement``' Instruction
4825^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4826
4827Syntax:
4828"""""""
4829
4830::
4831
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004832 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004833
4834Overview:
4835"""""""""
4836
4837The '``insertelement``' instruction inserts a scalar element into a
4838vector at a specified index.
4839
4840Arguments:
4841""""""""""
4842
4843The first operand of an '``insertelement``' instruction is a value of
4844:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4845type must equal the element type of the first operand. The third operand
4846is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004847index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004848
4849Semantics:
4850""""""""""
4851
4852The result is a vector of the same type as ``val``. Its element values
4853are those of ``val`` except at position ``idx``, where it gets the value
4854``elt``. If ``idx`` exceeds the length of ``val``, the results are
4855undefined.
4856
4857Example:
4858""""""""
4859
4860.. code-block:: llvm
4861
4862 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4863
4864.. _i_shufflevector:
4865
4866'``shufflevector``' Instruction
4867^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4868
4869Syntax:
4870"""""""
4871
4872::
4873
4874 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4875
4876Overview:
4877"""""""""
4878
4879The '``shufflevector``' instruction constructs a permutation of elements
4880from two input vectors, returning a vector with the same element type as
4881the input and length that is the same as the shuffle mask.
4882
4883Arguments:
4884""""""""""
4885
4886The first two operands of a '``shufflevector``' instruction are vectors
4887with the same type. The third argument is a shuffle mask whose element
4888type is always 'i32'. The result of the instruction is a vector whose
4889length is the same as the shuffle mask and whose element type is the
4890same as the element type of the first two operands.
4891
4892The shuffle mask operand is required to be a constant vector with either
4893constant integer or undef values.
4894
4895Semantics:
4896""""""""""
4897
4898The elements of the two input vectors are numbered from left to right
4899across both of the vectors. The shuffle mask operand specifies, for each
4900element of the result vector, which element of the two input vectors the
4901result element gets. The element selector may be undef (meaning "don't
4902care") and the second operand may be undef if performing a shuffle from
4903only one vector.
4904
4905Example:
4906""""""""
4907
4908.. code-block:: llvm
4909
4910 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4911 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4912 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4913 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4914 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4915 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4916 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4917 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4918
4919Aggregate Operations
4920--------------------
4921
4922LLVM supports several instructions for working with
4923:ref:`aggregate <t_aggregate>` values.
4924
4925.. _i_extractvalue:
4926
4927'``extractvalue``' Instruction
4928^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4929
4930Syntax:
4931"""""""
4932
4933::
4934
4935 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4936
4937Overview:
4938"""""""""
4939
4940The '``extractvalue``' instruction extracts the value of a member field
4941from an :ref:`aggregate <t_aggregate>` value.
4942
4943Arguments:
4944""""""""""
4945
4946The first operand of an '``extractvalue``' instruction is a value of
4947:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4948constant indices to specify which value to extract in a similar manner
4949as indices in a '``getelementptr``' instruction.
4950
4951The major differences to ``getelementptr`` indexing are:
4952
4953- Since the value being indexed is not a pointer, the first index is
4954 omitted and assumed to be zero.
4955- At least one index must be specified.
4956- Not only struct indices but also array indices must be in bounds.
4957
4958Semantics:
4959""""""""""
4960
4961The result is the value at the position in the aggregate specified by
4962the index operands.
4963
4964Example:
4965""""""""
4966
4967.. code-block:: llvm
4968
4969 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4970
4971.. _i_insertvalue:
4972
4973'``insertvalue``' Instruction
4974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4975
4976Syntax:
4977"""""""
4978
4979::
4980
4981 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4982
4983Overview:
4984"""""""""
4985
4986The '``insertvalue``' instruction inserts a value into a member field in
4987an :ref:`aggregate <t_aggregate>` value.
4988
4989Arguments:
4990""""""""""
4991
4992The first operand of an '``insertvalue``' instruction is a value of
4993:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4994a first-class value to insert. The following operands are constant
4995indices indicating the position at which to insert the value in a
4996similar manner as indices in a '``extractvalue``' instruction. The value
4997to insert must have the same type as the value identified by the
4998indices.
4999
5000Semantics:
5001""""""""""
5002
5003The result is an aggregate of the same type as ``val``. Its value is
5004that of ``val`` except that the value at the position specified by the
5005indices is that of ``elt``.
5006
5007Example:
5008""""""""
5009
5010.. code-block:: llvm
5011
5012 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5013 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
5014 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
5015
5016.. _memoryops:
5017
5018Memory Access and Addressing Operations
5019---------------------------------------
5020
5021A key design point of an SSA-based representation is how it represents
5022memory. In LLVM, no memory locations are in SSA form, which makes things
5023very simple. This section describes how to read, write, and allocate
5024memory in LLVM.
5025
5026.. _i_alloca:
5027
5028'``alloca``' Instruction
5029^^^^^^^^^^^^^^^^^^^^^^^^
5030
5031Syntax:
5032"""""""
5033
5034::
5035
Tim Northover675a0962014-06-13 14:24:23 +00005036 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005037
5038Overview:
5039"""""""""
5040
5041The '``alloca``' instruction allocates memory on the stack frame of the
5042currently executing function, to be automatically released when this
5043function returns to its caller. The object is always allocated in the
5044generic address space (address space zero).
5045
5046Arguments:
5047""""""""""
5048
5049The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5050bytes of memory on the runtime stack, returning a pointer of the
5051appropriate type to the program. If "NumElements" is specified, it is
5052the number of elements allocated, otherwise "NumElements" is defaulted
5053to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005054allocation is guaranteed to be aligned to at least that boundary. The
5055alignment may not be greater than ``1 << 29``. If not specified, or if
5056zero, the target can choose to align the allocation on any convenient
5057boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005058
5059'``type``' may be any sized type.
5060
5061Semantics:
5062""""""""""
5063
5064Memory is allocated; a pointer is returned. The operation is undefined
5065if there is insufficient stack space for the allocation. '``alloca``'d
5066memory is automatically released when the function returns. The
5067'``alloca``' instruction is commonly used to represent automatic
5068variables that must have an address available. When the function returns
5069(either with the ``ret`` or ``resume`` instructions), the memory is
5070reclaimed. Allocating zero bytes is legal, but the result is undefined.
5071The order in which memory is allocated (ie., which way the stack grows)
5072is not specified.
5073
5074Example:
5075""""""""
5076
5077.. code-block:: llvm
5078
Tim Northover675a0962014-06-13 14:24:23 +00005079 %ptr = alloca i32 ; yields i32*:ptr
5080 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5081 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5082 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005083
5084.. _i_load:
5085
5086'``load``' Instruction
5087^^^^^^^^^^^^^^^^^^^^^^
5088
5089Syntax:
5090"""""""
5091
5092::
5093
5094 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
5095 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5096 !<index> = !{ i32 1 }
5097
5098Overview:
5099"""""""""
5100
5101The '``load``' instruction is used to read from memory.
5102
5103Arguments:
5104""""""""""
5105
Eli Bendersky239a78b2013-04-17 20:17:08 +00005106The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005107from which to load. The pointer must point to a :ref:`first
5108class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5109then the optimizer is not allowed to modify the number or order of
5110execution of this ``load`` with other :ref:`volatile
5111operations <volatile>`.
5112
5113If the ``load`` is marked as ``atomic``, it takes an extra
5114:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5115``release`` and ``acq_rel`` orderings are not valid on ``load``
5116instructions. Atomic loads produce :ref:`defined <memmodel>` results
5117when they may see multiple atomic stores. The type of the pointee must
5118be an integer type whose bit width is a power of two greater than or
5119equal to eight and less than or equal to a target-specific size limit.
5120``align`` must be explicitly specified on atomic loads, and the load has
5121undefined behavior if the alignment is not set to a value which is at
5122least the size in bytes of the pointee. ``!nontemporal`` does not have
5123any defined semantics for atomic loads.
5124
5125The optional constant ``align`` argument specifies the alignment of the
5126operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005127or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005128alignment for the target. It is the responsibility of the code emitter
5129to ensure that the alignment information is correct. Overestimating the
5130alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005131may produce less efficient code. An alignment of 1 is always safe. The
5132maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005133
5134The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005135metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005136``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005137metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005138that this load is not expected to be reused in the cache. The code
5139generator may select special instructions to save cache bandwidth, such
5140as the ``MOVNT`` instruction on x86.
5141
5142The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005143metadata name ``<index>`` corresponding to a metadata node with no
5144entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00005145instruction tells the optimizer and code generator that this load
5146address points to memory which does not change value during program
5147execution. The optimizer may then move this load around, for example, by
5148hoisting it out of loops using loop invariant code motion.
5149
5150Semantics:
5151""""""""""
5152
5153The location of memory pointed to is loaded. If the value being loaded
5154is of scalar type then the number of bytes read does not exceed the
5155minimum number of bytes needed to hold all bits of the type. For
5156example, loading an ``i24`` reads at most three bytes. When loading a
5157value of a type like ``i20`` with a size that is not an integral number
5158of bytes, the result is undefined if the value was not originally
5159written using a store of the same type.
5160
5161Examples:
5162"""""""""
5163
5164.. code-block:: llvm
5165
Tim Northover675a0962014-06-13 14:24:23 +00005166 %ptr = alloca i32 ; yields i32*:ptr
5167 store i32 3, i32* %ptr ; yields void
5168 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005169
5170.. _i_store:
5171
5172'``store``' Instruction
5173^^^^^^^^^^^^^^^^^^^^^^^
5174
5175Syntax:
5176"""""""
5177
5178::
5179
Tim Northover675a0962014-06-13 14:24:23 +00005180 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5181 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005182
5183Overview:
5184"""""""""
5185
5186The '``store``' instruction is used to write to memory.
5187
5188Arguments:
5189""""""""""
5190
Eli Benderskyca380842013-04-17 17:17:20 +00005191There are two arguments to the ``store`` instruction: a value to store
5192and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005193operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005194the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005195then the optimizer is not allowed to modify the number or order of
5196execution of this ``store`` with other :ref:`volatile
5197operations <volatile>`.
5198
5199If the ``store`` is marked as ``atomic``, it takes an extra
5200:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5201``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5202instructions. Atomic loads produce :ref:`defined <memmodel>` results
5203when they may see multiple atomic stores. The type of the pointee must
5204be an integer type whose bit width is a power of two greater than or
5205equal to eight and less than or equal to a target-specific size limit.
5206``align`` must be explicitly specified on atomic stores, and the store
5207has undefined behavior if the alignment is not set to a value which is
5208at least the size in bytes of the pointee. ``!nontemporal`` does not
5209have any defined semantics for atomic stores.
5210
Eli Benderskyca380842013-04-17 17:17:20 +00005211The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005212operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005213or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005214alignment for the target. It is the responsibility of the code emitter
5215to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005216alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005217alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005218safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005219
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005220The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005221name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005222value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005223tells the optimizer and code generator that this load is not expected to
5224be reused in the cache. The code generator may select special
5225instructions to save cache bandwidth, such as the MOVNT instruction on
5226x86.
5227
5228Semantics:
5229""""""""""
5230
Eli Benderskyca380842013-04-17 17:17:20 +00005231The contents of memory are updated to contain ``<value>`` at the
5232location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005233of scalar type then the number of bytes written does not exceed the
5234minimum number of bytes needed to hold all bits of the type. For
5235example, storing an ``i24`` writes at most three bytes. When writing a
5236value of a type like ``i20`` with a size that is not an integral number
5237of bytes, it is unspecified what happens to the extra bits that do not
5238belong to the type, but they will typically be overwritten.
5239
5240Example:
5241""""""""
5242
5243.. code-block:: llvm
5244
Tim Northover675a0962014-06-13 14:24:23 +00005245 %ptr = alloca i32 ; yields i32*:ptr
5246 store i32 3, i32* %ptr ; yields void
5247 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005248
5249.. _i_fence:
5250
5251'``fence``' Instruction
5252^^^^^^^^^^^^^^^^^^^^^^^
5253
5254Syntax:
5255"""""""
5256
5257::
5258
Tim Northover675a0962014-06-13 14:24:23 +00005259 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005260
5261Overview:
5262"""""""""
5263
5264The '``fence``' instruction is used to introduce happens-before edges
5265between operations.
5266
5267Arguments:
5268""""""""""
5269
5270'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5271defines what *synchronizes-with* edges they add. They can only be given
5272``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5273
5274Semantics:
5275""""""""""
5276
5277A fence A which has (at least) ``release`` ordering semantics
5278*synchronizes with* a fence B with (at least) ``acquire`` ordering
5279semantics if and only if there exist atomic operations X and Y, both
5280operating on some atomic object M, such that A is sequenced before X, X
5281modifies M (either directly or through some side effect of a sequence
5282headed by X), Y is sequenced before B, and Y observes M. This provides a
5283*happens-before* dependency between A and B. Rather than an explicit
5284``fence``, one (but not both) of the atomic operations X or Y might
5285provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5286still *synchronize-with* the explicit ``fence`` and establish the
5287*happens-before* edge.
5288
5289A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5290``acquire`` and ``release`` semantics specified above, participates in
5291the global program order of other ``seq_cst`` operations and/or fences.
5292
5293The optional ":ref:`singlethread <singlethread>`" argument specifies
5294that the fence only synchronizes with other fences in the same thread.
5295(This is useful for interacting with signal handlers.)
5296
5297Example:
5298""""""""
5299
5300.. code-block:: llvm
5301
Tim Northover675a0962014-06-13 14:24:23 +00005302 fence acquire ; yields void
5303 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005304
5305.. _i_cmpxchg:
5306
5307'``cmpxchg``' Instruction
5308^^^^^^^^^^^^^^^^^^^^^^^^^
5309
5310Syntax:
5311"""""""
5312
5313::
5314
Tim Northover675a0962014-06-13 14:24:23 +00005315 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005316
5317Overview:
5318"""""""""
5319
5320The '``cmpxchg``' instruction is used to atomically modify memory. It
5321loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005322equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005323
5324Arguments:
5325""""""""""
5326
5327There are three arguments to the '``cmpxchg``' instruction: an address
5328to operate on, a value to compare to the value currently be at that
5329address, and a new value to place at that address if the compared values
5330are equal. The type of '<cmp>' must be an integer type whose bit width
5331is a power of two greater than or equal to eight and less than or equal
5332to a target-specific size limit. '<cmp>' and '<new>' must have the same
5333type, and the type of '<pointer>' must be a pointer to that type. If the
5334``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5335to modify the number or order of execution of this ``cmpxchg`` with
5336other :ref:`volatile operations <volatile>`.
5337
Tim Northovere94a5182014-03-11 10:48:52 +00005338The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005339``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5340must be at least ``monotonic``, the ordering constraint on failure must be no
5341stronger than that on success, and the failure ordering cannot be either
5342``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005343
5344The optional "``singlethread``" argument declares that the ``cmpxchg``
5345is only atomic with respect to code (usually signal handlers) running in
5346the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5347respect to all other code in the system.
5348
5349The pointer passed into cmpxchg must have alignment greater than or
5350equal to the size in memory of the operand.
5351
5352Semantics:
5353""""""""""
5354
Tim Northover420a2162014-06-13 14:24:07 +00005355The contents of memory at the location specified by the '``<pointer>``' operand
5356is read and compared to '``<cmp>``'; if the read value is the equal, the
5357'``<new>``' is written. The original value at the location is returned, together
5358with a flag indicating success (true) or failure (false).
5359
5360If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5361permitted: the operation may not write ``<new>`` even if the comparison
5362matched.
5363
5364If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5365if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005366
Tim Northovere94a5182014-03-11 10:48:52 +00005367A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5368identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5369load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005370
5371Example:
5372""""""""
5373
5374.. code-block:: llvm
5375
5376 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005377 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005378 br label %loop
5379
5380 loop:
5381 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5382 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005383 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005384 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5385 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005386 br i1 %success, label %done, label %loop
5387
5388 done:
5389 ...
5390
5391.. _i_atomicrmw:
5392
5393'``atomicrmw``' Instruction
5394^^^^^^^^^^^^^^^^^^^^^^^^^^^
5395
5396Syntax:
5397"""""""
5398
5399::
5400
Tim Northover675a0962014-06-13 14:24:23 +00005401 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005402
5403Overview:
5404"""""""""
5405
5406The '``atomicrmw``' instruction is used to atomically modify memory.
5407
5408Arguments:
5409""""""""""
5410
5411There are three arguments to the '``atomicrmw``' instruction: an
5412operation to apply, an address whose value to modify, an argument to the
5413operation. The operation must be one of the following keywords:
5414
5415- xchg
5416- add
5417- sub
5418- and
5419- nand
5420- or
5421- xor
5422- max
5423- min
5424- umax
5425- umin
5426
5427The type of '<value>' must be an integer type whose bit width is a power
5428of two greater than or equal to eight and less than or equal to a
5429target-specific size limit. The type of the '``<pointer>``' operand must
5430be a pointer to that type. If the ``atomicrmw`` is marked as
5431``volatile``, then the optimizer is not allowed to modify the number or
5432order of execution of this ``atomicrmw`` with other :ref:`volatile
5433operations <volatile>`.
5434
5435Semantics:
5436""""""""""
5437
5438The contents of memory at the location specified by the '``<pointer>``'
5439operand are atomically read, modified, and written back. The original
5440value at the location is returned. The modification is specified by the
5441operation argument:
5442
5443- xchg: ``*ptr = val``
5444- add: ``*ptr = *ptr + val``
5445- sub: ``*ptr = *ptr - val``
5446- and: ``*ptr = *ptr & val``
5447- nand: ``*ptr = ~(*ptr & val)``
5448- or: ``*ptr = *ptr | val``
5449- xor: ``*ptr = *ptr ^ val``
5450- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5451- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5452- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5453 comparison)
5454- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5455 comparison)
5456
5457Example:
5458""""""""
5459
5460.. code-block:: llvm
5461
Tim Northover675a0962014-06-13 14:24:23 +00005462 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005463
5464.. _i_getelementptr:
5465
5466'``getelementptr``' Instruction
5467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5468
5469Syntax:
5470"""""""
5471
5472::
5473
5474 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5475 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5476 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5477
5478Overview:
5479"""""""""
5480
5481The '``getelementptr``' instruction is used to get the address of a
5482subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5483address calculation only and does not access memory.
5484
5485Arguments:
5486""""""""""
5487
5488The first argument is always a pointer or a vector of pointers, and
5489forms the basis of the calculation. The remaining arguments are indices
5490that indicate which of the elements of the aggregate object are indexed.
5491The interpretation of each index is dependent on the type being indexed
5492into. The first index always indexes the pointer value given as the
5493first argument, the second index indexes a value of the type pointed to
5494(not necessarily the value directly pointed to, since the first index
5495can be non-zero), etc. The first type indexed into must be a pointer
5496value, subsequent types can be arrays, vectors, and structs. Note that
5497subsequent types being indexed into can never be pointers, since that
5498would require loading the pointer before continuing calculation.
5499
5500The type of each index argument depends on the type it is indexing into.
5501When indexing into a (optionally packed) structure, only ``i32`` integer
5502**constants** are allowed (when using a vector of indices they must all
5503be the **same** ``i32`` integer constant). When indexing into an array,
5504pointer or vector, integers of any width are allowed, and they are not
5505required to be constant. These integers are treated as signed values
5506where relevant.
5507
5508For example, let's consider a C code fragment and how it gets compiled
5509to LLVM:
5510
5511.. code-block:: c
5512
5513 struct RT {
5514 char A;
5515 int B[10][20];
5516 char C;
5517 };
5518 struct ST {
5519 int X;
5520 double Y;
5521 struct RT Z;
5522 };
5523
5524 int *foo(struct ST *s) {
5525 return &s[1].Z.B[5][13];
5526 }
5527
5528The LLVM code generated by Clang is:
5529
5530.. code-block:: llvm
5531
5532 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5533 %struct.ST = type { i32, double, %struct.RT }
5534
5535 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5536 entry:
5537 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5538 ret i32* %arrayidx
5539 }
5540
5541Semantics:
5542""""""""""
5543
5544In the example above, the first index is indexing into the
5545'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5546= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5547indexes into the third element of the structure, yielding a
5548'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5549structure. The third index indexes into the second element of the
5550structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5551dimensions of the array are subscripted into, yielding an '``i32``'
5552type. The '``getelementptr``' instruction returns a pointer to this
5553element, thus computing a value of '``i32*``' type.
5554
5555Note that it is perfectly legal to index partially through a structure,
5556returning a pointer to an inner element. Because of this, the LLVM code
5557for the given testcase is equivalent to:
5558
5559.. code-block:: llvm
5560
5561 define i32* @foo(%struct.ST* %s) {
5562 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5563 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5564 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5565 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5566 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5567 ret i32* %t5
5568 }
5569
5570If the ``inbounds`` keyword is present, the result value of the
5571``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5572pointer is not an *in bounds* address of an allocated object, or if any
5573of the addresses that would be formed by successive addition of the
5574offsets implied by the indices to the base address with infinitely
5575precise signed arithmetic are not an *in bounds* address of that
5576allocated object. The *in bounds* addresses for an allocated object are
5577all the addresses that point into the object, plus the address one byte
5578past the end. In cases where the base is a vector of pointers the
5579``inbounds`` keyword applies to each of the computations element-wise.
5580
5581If the ``inbounds`` keyword is not present, the offsets are added to the
5582base address with silently-wrapping two's complement arithmetic. If the
5583offsets have a different width from the pointer, they are sign-extended
5584or truncated to the width of the pointer. The result value of the
5585``getelementptr`` may be outside the object pointed to by the base
5586pointer. The result value may not necessarily be used to access memory
5587though, even if it happens to point into allocated storage. See the
5588:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5589information.
5590
5591The getelementptr instruction is often confusing. For some more insight
5592into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5593
5594Example:
5595""""""""
5596
5597.. code-block:: llvm
5598
5599 ; yields [12 x i8]*:aptr
5600 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5601 ; yields i8*:vptr
5602 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5603 ; yields i8*:eptr
5604 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5605 ; yields i32*:iptr
5606 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5607
5608In cases where the pointer argument is a vector of pointers, each index
5609must be a vector with the same number of elements. For example:
5610
5611.. code-block:: llvm
5612
5613 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5614
5615Conversion Operations
5616---------------------
5617
5618The instructions in this category are the conversion instructions
5619(casting) which all take a single operand and a type. They perform
5620various bit conversions on the operand.
5621
5622'``trunc .. to``' Instruction
5623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5624
5625Syntax:
5626"""""""
5627
5628::
5629
5630 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5631
5632Overview:
5633"""""""""
5634
5635The '``trunc``' instruction truncates its operand to the type ``ty2``.
5636
5637Arguments:
5638""""""""""
5639
5640The '``trunc``' instruction takes a value to trunc, and a type to trunc
5641it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5642of the same number of integers. The bit size of the ``value`` must be
5643larger than the bit size of the destination type, ``ty2``. Equal sized
5644types are not allowed.
5645
5646Semantics:
5647""""""""""
5648
5649The '``trunc``' instruction truncates the high order bits in ``value``
5650and converts the remaining bits to ``ty2``. Since the source size must
5651be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5652It will always truncate bits.
5653
5654Example:
5655""""""""
5656
5657.. code-block:: llvm
5658
5659 %X = trunc i32 257 to i8 ; yields i8:1
5660 %Y = trunc i32 123 to i1 ; yields i1:true
5661 %Z = trunc i32 122 to i1 ; yields i1:false
5662 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5663
5664'``zext .. to``' Instruction
5665^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5666
5667Syntax:
5668"""""""
5669
5670::
5671
5672 <result> = zext <ty> <value> to <ty2> ; yields ty2
5673
5674Overview:
5675"""""""""
5676
5677The '``zext``' instruction zero extends its operand to type ``ty2``.
5678
5679Arguments:
5680""""""""""
5681
5682The '``zext``' instruction takes a value to cast, and a type to cast it
5683to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5684the same number of integers. The bit size of the ``value`` must be
5685smaller than the bit size of the destination type, ``ty2``.
5686
5687Semantics:
5688""""""""""
5689
5690The ``zext`` fills the high order bits of the ``value`` with zero bits
5691until it reaches the size of the destination type, ``ty2``.
5692
5693When zero extending from i1, the result will always be either 0 or 1.
5694
5695Example:
5696""""""""
5697
5698.. code-block:: llvm
5699
5700 %X = zext i32 257 to i64 ; yields i64:257
5701 %Y = zext i1 true to i32 ; yields i32:1
5702 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5703
5704'``sext .. to``' Instruction
5705^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5706
5707Syntax:
5708"""""""
5709
5710::
5711
5712 <result> = sext <ty> <value> to <ty2> ; yields ty2
5713
5714Overview:
5715"""""""""
5716
5717The '``sext``' sign extends ``value`` to the type ``ty2``.
5718
5719Arguments:
5720""""""""""
5721
5722The '``sext``' instruction takes a value to cast, and a type to cast it
5723to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5724the same number of integers. The bit size of the ``value`` must be
5725smaller than the bit size of the destination type, ``ty2``.
5726
5727Semantics:
5728""""""""""
5729
5730The '``sext``' instruction performs a sign extension by copying the sign
5731bit (highest order bit) of the ``value`` until it reaches the bit size
5732of the type ``ty2``.
5733
5734When sign extending from i1, the extension always results in -1 or 0.
5735
5736Example:
5737""""""""
5738
5739.. code-block:: llvm
5740
5741 %X = sext i8 -1 to i16 ; yields i16 :65535
5742 %Y = sext i1 true to i32 ; yields i32:-1
5743 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5744
5745'``fptrunc .. to``' Instruction
5746^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5747
5748Syntax:
5749"""""""
5750
5751::
5752
5753 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5754
5755Overview:
5756"""""""""
5757
5758The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5759
5760Arguments:
5761""""""""""
5762
5763The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5764value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5765The size of ``value`` must be larger than the size of ``ty2``. This
5766implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5767
5768Semantics:
5769""""""""""
5770
5771The '``fptrunc``' instruction truncates a ``value`` from a larger
5772:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5773point <t_floating>` type. If the value cannot fit within the
5774destination type, ``ty2``, then the results are undefined.
5775
5776Example:
5777""""""""
5778
5779.. code-block:: llvm
5780
5781 %X = fptrunc double 123.0 to float ; yields float:123.0
5782 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5783
5784'``fpext .. to``' Instruction
5785^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5786
5787Syntax:
5788"""""""
5789
5790::
5791
5792 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5793
5794Overview:
5795"""""""""
5796
5797The '``fpext``' extends a floating point ``value`` to a larger floating
5798point value.
5799
5800Arguments:
5801""""""""""
5802
5803The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5804``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5805to. The source type must be smaller than the destination type.
5806
5807Semantics:
5808""""""""""
5809
5810The '``fpext``' instruction extends the ``value`` from a smaller
5811:ref:`floating point <t_floating>` type to a larger :ref:`floating
5812point <t_floating>` type. The ``fpext`` cannot be used to make a
5813*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5814*no-op cast* for a floating point cast.
5815
5816Example:
5817""""""""
5818
5819.. code-block:: llvm
5820
5821 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5822 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5823
5824'``fptoui .. to``' Instruction
5825^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5826
5827Syntax:
5828"""""""
5829
5830::
5831
5832 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5833
5834Overview:
5835"""""""""
5836
5837The '``fptoui``' converts a floating point ``value`` to its unsigned
5838integer equivalent of type ``ty2``.
5839
5840Arguments:
5841""""""""""
5842
5843The '``fptoui``' instruction takes a value to cast, which must be a
5844scalar or vector :ref:`floating point <t_floating>` value, and a type to
5845cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5846``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5847type with the same number of elements as ``ty``
5848
5849Semantics:
5850""""""""""
5851
5852The '``fptoui``' instruction converts its :ref:`floating
5853point <t_floating>` operand into the nearest (rounding towards zero)
5854unsigned integer value. If the value cannot fit in ``ty2``, the results
5855are undefined.
5856
5857Example:
5858""""""""
5859
5860.. code-block:: llvm
5861
5862 %X = fptoui double 123.0 to i32 ; yields i32:123
5863 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5864 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5865
5866'``fptosi .. to``' Instruction
5867^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5868
5869Syntax:
5870"""""""
5871
5872::
5873
5874 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5875
5876Overview:
5877"""""""""
5878
5879The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5880``value`` to type ``ty2``.
5881
5882Arguments:
5883""""""""""
5884
5885The '``fptosi``' instruction takes a value to cast, which must be a
5886scalar or vector :ref:`floating point <t_floating>` value, and a type to
5887cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5888``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5889type with the same number of elements as ``ty``
5890
5891Semantics:
5892""""""""""
5893
5894The '``fptosi``' instruction converts its :ref:`floating
5895point <t_floating>` operand into the nearest (rounding towards zero)
5896signed integer value. If the value cannot fit in ``ty2``, the results
5897are undefined.
5898
5899Example:
5900""""""""
5901
5902.. code-block:: llvm
5903
5904 %X = fptosi double -123.0 to i32 ; yields i32:-123
5905 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5906 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5907
5908'``uitofp .. to``' Instruction
5909^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5910
5911Syntax:
5912"""""""
5913
5914::
5915
5916 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5917
5918Overview:
5919"""""""""
5920
5921The '``uitofp``' instruction regards ``value`` as an unsigned integer
5922and converts that value to the ``ty2`` type.
5923
5924Arguments:
5925""""""""""
5926
5927The '``uitofp``' instruction takes a value to cast, which must be a
5928scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5929``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5930``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5931type with the same number of elements as ``ty``
5932
5933Semantics:
5934""""""""""
5935
5936The '``uitofp``' instruction interprets its operand as an unsigned
5937integer quantity and converts it to the corresponding floating point
5938value. If the value cannot fit in the floating point value, the results
5939are undefined.
5940
5941Example:
5942""""""""
5943
5944.. code-block:: llvm
5945
5946 %X = uitofp i32 257 to float ; yields float:257.0
5947 %Y = uitofp i8 -1 to double ; yields double:255.0
5948
5949'``sitofp .. to``' Instruction
5950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5951
5952Syntax:
5953"""""""
5954
5955::
5956
5957 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5958
5959Overview:
5960"""""""""
5961
5962The '``sitofp``' instruction regards ``value`` as a signed integer and
5963converts that value to the ``ty2`` type.
5964
5965Arguments:
5966""""""""""
5967
5968The '``sitofp``' instruction takes a value to cast, which must be a
5969scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5970``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5971``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5972type with the same number of elements as ``ty``
5973
5974Semantics:
5975""""""""""
5976
5977The '``sitofp``' instruction interprets its operand as a signed integer
5978quantity and converts it to the corresponding floating point value. If
5979the value cannot fit in the floating point value, the results are
5980undefined.
5981
5982Example:
5983""""""""
5984
5985.. code-block:: llvm
5986
5987 %X = sitofp i32 257 to float ; yields float:257.0
5988 %Y = sitofp i8 -1 to double ; yields double:-1.0
5989
5990.. _i_ptrtoint:
5991
5992'``ptrtoint .. to``' Instruction
5993^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5994
5995Syntax:
5996"""""""
5997
5998::
5999
6000 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6001
6002Overview:
6003"""""""""
6004
6005The '``ptrtoint``' instruction converts the pointer or a vector of
6006pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6007
6008Arguments:
6009""""""""""
6010
6011The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6012a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6013type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6014a vector of integers type.
6015
6016Semantics:
6017""""""""""
6018
6019The '``ptrtoint``' instruction converts ``value`` to integer type
6020``ty2`` by interpreting the pointer value as an integer and either
6021truncating or zero extending that value to the size of the integer type.
6022If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6023``value`` is larger than ``ty2`` then a truncation is done. If they are
6024the same size, then nothing is done (*no-op cast*) other than a type
6025change.
6026
6027Example:
6028""""""""
6029
6030.. code-block:: llvm
6031
6032 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6033 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6034 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6035
6036.. _i_inttoptr:
6037
6038'``inttoptr .. to``' Instruction
6039^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6040
6041Syntax:
6042"""""""
6043
6044::
6045
6046 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6047
6048Overview:
6049"""""""""
6050
6051The '``inttoptr``' instruction converts an integer ``value`` to a
6052pointer type, ``ty2``.
6053
6054Arguments:
6055""""""""""
6056
6057The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6058cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6059type.
6060
6061Semantics:
6062""""""""""
6063
6064The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6065applying either a zero extension or a truncation depending on the size
6066of the integer ``value``. If ``value`` is larger than the size of a
6067pointer then a truncation is done. If ``value`` is smaller than the size
6068of a pointer then a zero extension is done. If they are the same size,
6069nothing is done (*no-op cast*).
6070
6071Example:
6072""""""""
6073
6074.. code-block:: llvm
6075
6076 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6077 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6078 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6079 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6080
6081.. _i_bitcast:
6082
6083'``bitcast .. to``' Instruction
6084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6085
6086Syntax:
6087"""""""
6088
6089::
6090
6091 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6092
6093Overview:
6094"""""""""
6095
6096The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6097changing any bits.
6098
6099Arguments:
6100""""""""""
6101
6102The '``bitcast``' instruction takes a value to cast, which must be a
6103non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006104also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6105bit sizes of ``value`` and the destination type, ``ty2``, must be
6106identical. If the source type is a pointer, the destination type must
6107also be a pointer of the same size. This instruction supports bitwise
6108conversion of vectors to integers and to vectors of other types (as
6109long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006110
6111Semantics:
6112""""""""""
6113
Matt Arsenault24b49c42013-07-31 17:49:08 +00006114The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6115is always a *no-op cast* because no bits change with this
6116conversion. The conversion is done as if the ``value`` had been stored
6117to memory and read back as type ``ty2``. Pointer (or vector of
6118pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006119pointers) types with the same address space through this instruction.
6120To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6121or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006122
6123Example:
6124""""""""
6125
6126.. code-block:: llvm
6127
6128 %X = bitcast i8 255 to i8 ; yields i8 :-1
6129 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6130 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6131 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6132
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006133.. _i_addrspacecast:
6134
6135'``addrspacecast .. to``' Instruction
6136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6137
6138Syntax:
6139"""""""
6140
6141::
6142
6143 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6144
6145Overview:
6146"""""""""
6147
6148The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6149address space ``n`` to type ``pty2`` in address space ``m``.
6150
6151Arguments:
6152""""""""""
6153
6154The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6155to cast and a pointer type to cast it to, which must have a different
6156address space.
6157
6158Semantics:
6159""""""""""
6160
6161The '``addrspacecast``' instruction converts the pointer value
6162``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006163value modification, depending on the target and the address space
6164pair. Pointer conversions within the same address space must be
6165performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006166conversion is legal then both result and operand refer to the same memory
6167location.
6168
6169Example:
6170""""""""
6171
6172.. code-block:: llvm
6173
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006174 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6175 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6176 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006177
Sean Silvab084af42012-12-07 10:36:55 +00006178.. _otherops:
6179
6180Other Operations
6181----------------
6182
6183The instructions in this category are the "miscellaneous" instructions,
6184which defy better classification.
6185
6186.. _i_icmp:
6187
6188'``icmp``' Instruction
6189^^^^^^^^^^^^^^^^^^^^^^
6190
6191Syntax:
6192"""""""
6193
6194::
6195
Tim Northover675a0962014-06-13 14:24:23 +00006196 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006197
6198Overview:
6199"""""""""
6200
6201The '``icmp``' instruction returns a boolean value or a vector of
6202boolean values based on comparison of its two integer, integer vector,
6203pointer, or pointer vector operands.
6204
6205Arguments:
6206""""""""""
6207
6208The '``icmp``' instruction takes three operands. The first operand is
6209the condition code indicating the kind of comparison to perform. It is
6210not a value, just a keyword. The possible condition code are:
6211
6212#. ``eq``: equal
6213#. ``ne``: not equal
6214#. ``ugt``: unsigned greater than
6215#. ``uge``: unsigned greater or equal
6216#. ``ult``: unsigned less than
6217#. ``ule``: unsigned less or equal
6218#. ``sgt``: signed greater than
6219#. ``sge``: signed greater or equal
6220#. ``slt``: signed less than
6221#. ``sle``: signed less or equal
6222
6223The remaining two arguments must be :ref:`integer <t_integer>` or
6224:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6225must also be identical types.
6226
6227Semantics:
6228""""""""""
6229
6230The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6231code given as ``cond``. The comparison performed always yields either an
6232:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6233
6234#. ``eq``: yields ``true`` if the operands are equal, ``false``
6235 otherwise. No sign interpretation is necessary or performed.
6236#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6237 otherwise. No sign interpretation is necessary or performed.
6238#. ``ugt``: interprets the operands as unsigned values and yields
6239 ``true`` if ``op1`` is greater than ``op2``.
6240#. ``uge``: interprets the operands as unsigned values and yields
6241 ``true`` if ``op1`` is greater than or equal to ``op2``.
6242#. ``ult``: interprets the operands as unsigned values and yields
6243 ``true`` if ``op1`` is less than ``op2``.
6244#. ``ule``: interprets the operands as unsigned values and yields
6245 ``true`` if ``op1`` is less than or equal to ``op2``.
6246#. ``sgt``: interprets the operands as signed values and yields ``true``
6247 if ``op1`` is greater than ``op2``.
6248#. ``sge``: interprets the operands as signed values and yields ``true``
6249 if ``op1`` is greater than or equal to ``op2``.
6250#. ``slt``: interprets the operands as signed values and yields ``true``
6251 if ``op1`` is less than ``op2``.
6252#. ``sle``: interprets the operands as signed values and yields ``true``
6253 if ``op1`` is less than or equal to ``op2``.
6254
6255If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6256are compared as if they were integers.
6257
6258If the operands are integer vectors, then they are compared element by
6259element. The result is an ``i1`` vector with the same number of elements
6260as the values being compared. Otherwise, the result is an ``i1``.
6261
6262Example:
6263""""""""
6264
6265.. code-block:: llvm
6266
6267 <result> = icmp eq i32 4, 5 ; yields: result=false
6268 <result> = icmp ne float* %X, %X ; yields: result=false
6269 <result> = icmp ult i16 4, 5 ; yields: result=true
6270 <result> = icmp sgt i16 4, 5 ; yields: result=false
6271 <result> = icmp ule i16 -4, 5 ; yields: result=false
6272 <result> = icmp sge i16 4, 5 ; yields: result=false
6273
6274Note that the code generator does not yet support vector types with the
6275``icmp`` instruction.
6276
6277.. _i_fcmp:
6278
6279'``fcmp``' Instruction
6280^^^^^^^^^^^^^^^^^^^^^^
6281
6282Syntax:
6283"""""""
6284
6285::
6286
Tim Northover675a0962014-06-13 14:24:23 +00006287 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006288
6289Overview:
6290"""""""""
6291
6292The '``fcmp``' instruction returns a boolean value or vector of boolean
6293values based on comparison of its operands.
6294
6295If the operands are floating point scalars, then the result type is a
6296boolean (:ref:`i1 <t_integer>`).
6297
6298If the operands are floating point vectors, then the result type is a
6299vector of boolean with the same number of elements as the operands being
6300compared.
6301
6302Arguments:
6303""""""""""
6304
6305The '``fcmp``' instruction takes three operands. The first operand is
6306the condition code indicating the kind of comparison to perform. It is
6307not a value, just a keyword. The possible condition code are:
6308
6309#. ``false``: no comparison, always returns false
6310#. ``oeq``: ordered and equal
6311#. ``ogt``: ordered and greater than
6312#. ``oge``: ordered and greater than or equal
6313#. ``olt``: ordered and less than
6314#. ``ole``: ordered and less than or equal
6315#. ``one``: ordered and not equal
6316#. ``ord``: ordered (no nans)
6317#. ``ueq``: unordered or equal
6318#. ``ugt``: unordered or greater than
6319#. ``uge``: unordered or greater than or equal
6320#. ``ult``: unordered or less than
6321#. ``ule``: unordered or less than or equal
6322#. ``une``: unordered or not equal
6323#. ``uno``: unordered (either nans)
6324#. ``true``: no comparison, always returns true
6325
6326*Ordered* means that neither operand is a QNAN while *unordered* means
6327that either operand may be a QNAN.
6328
6329Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6330point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6331type. They must have identical types.
6332
6333Semantics:
6334""""""""""
6335
6336The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6337condition code given as ``cond``. If the operands are vectors, then the
6338vectors are compared element by element. Each comparison performed
6339always yields an :ref:`i1 <t_integer>` result, as follows:
6340
6341#. ``false``: always yields ``false``, regardless of operands.
6342#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6343 is equal to ``op2``.
6344#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6345 is greater than ``op2``.
6346#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6347 is greater than or equal to ``op2``.
6348#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6349 is less than ``op2``.
6350#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6351 is less than or equal to ``op2``.
6352#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6353 is not equal to ``op2``.
6354#. ``ord``: yields ``true`` if both operands are not a QNAN.
6355#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6356 equal to ``op2``.
6357#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6358 greater than ``op2``.
6359#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6360 greater than or equal to ``op2``.
6361#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6362 less than ``op2``.
6363#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6364 less than or equal to ``op2``.
6365#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6366 not equal to ``op2``.
6367#. ``uno``: yields ``true`` if either operand is a QNAN.
6368#. ``true``: always yields ``true``, regardless of operands.
6369
6370Example:
6371""""""""
6372
6373.. code-block:: llvm
6374
6375 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6376 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6377 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6378 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6379
6380Note that the code generator does not yet support vector types with the
6381``fcmp`` instruction.
6382
6383.. _i_phi:
6384
6385'``phi``' Instruction
6386^^^^^^^^^^^^^^^^^^^^^
6387
6388Syntax:
6389"""""""
6390
6391::
6392
6393 <result> = phi <ty> [ <val0>, <label0>], ...
6394
6395Overview:
6396"""""""""
6397
6398The '``phi``' instruction is used to implement the φ node in the SSA
6399graph representing the function.
6400
6401Arguments:
6402""""""""""
6403
6404The type of the incoming values is specified with the first type field.
6405After this, the '``phi``' instruction takes a list of pairs as
6406arguments, with one pair for each predecessor basic block of the current
6407block. Only values of :ref:`first class <t_firstclass>` type may be used as
6408the value arguments to the PHI node. Only labels may be used as the
6409label arguments.
6410
6411There must be no non-phi instructions between the start of a basic block
6412and the PHI instructions: i.e. PHI instructions must be first in a basic
6413block.
6414
6415For the purposes of the SSA form, the use of each incoming value is
6416deemed to occur on the edge from the corresponding predecessor block to
6417the current block (but after any definition of an '``invoke``'
6418instruction's return value on the same edge).
6419
6420Semantics:
6421""""""""""
6422
6423At runtime, the '``phi``' instruction logically takes on the value
6424specified by the pair corresponding to the predecessor basic block that
6425executed just prior to the current block.
6426
6427Example:
6428""""""""
6429
6430.. code-block:: llvm
6431
6432 Loop: ; Infinite loop that counts from 0 on up...
6433 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6434 %nextindvar = add i32 %indvar, 1
6435 br label %Loop
6436
6437.. _i_select:
6438
6439'``select``' Instruction
6440^^^^^^^^^^^^^^^^^^^^^^^^
6441
6442Syntax:
6443"""""""
6444
6445::
6446
6447 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6448
6449 selty is either i1 or {<N x i1>}
6450
6451Overview:
6452"""""""""
6453
6454The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006455condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006456
6457Arguments:
6458""""""""""
6459
6460The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6461values indicating the condition, and two values of the same :ref:`first
6462class <t_firstclass>` type. If the val1/val2 are vectors and the
6463condition is a scalar, then entire vectors are selected, not individual
6464elements.
6465
6466Semantics:
6467""""""""""
6468
6469If the condition is an i1 and it evaluates to 1, the instruction returns
6470the first value argument; otherwise, it returns the second value
6471argument.
6472
6473If the condition is a vector of i1, then the value arguments must be
6474vectors of the same size, and the selection is done element by element.
6475
6476Example:
6477""""""""
6478
6479.. code-block:: llvm
6480
6481 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6482
6483.. _i_call:
6484
6485'``call``' Instruction
6486^^^^^^^^^^^^^^^^^^^^^^
6487
6488Syntax:
6489"""""""
6490
6491::
6492
Reid Kleckner5772b772014-04-24 20:14:34 +00006493 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006494
6495Overview:
6496"""""""""
6497
6498The '``call``' instruction represents a simple function call.
6499
6500Arguments:
6501""""""""""
6502
6503This instruction requires several arguments:
6504
Reid Kleckner5772b772014-04-24 20:14:34 +00006505#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6506 should perform tail call optimization. The ``tail`` marker is a hint that
6507 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6508 means that the call must be tail call optimized in order for the program to
6509 be correct. The ``musttail`` marker provides these guarantees:
6510
6511 #. The call will not cause unbounded stack growth if it is part of a
6512 recursive cycle in the call graph.
6513 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6514 forwarded in place.
6515
6516 Both markers imply that the callee does not access allocas or varargs from
6517 the caller. Calls marked ``musttail`` must obey the following additional
6518 rules:
6519
6520 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6521 or a pointer bitcast followed by a ret instruction.
6522 - The ret instruction must return the (possibly bitcasted) value
6523 produced by the call or void.
6524 - The caller and callee prototypes must match. Pointer types of
6525 parameters or return types may differ in pointee type, but not
6526 in address space.
6527 - The calling conventions of the caller and callee must match.
6528 - All ABI-impacting function attributes, such as sret, byval, inreg,
6529 returned, and inalloca, must match.
6530
6531 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6532 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006533
6534 - Caller and callee both have the calling convention ``fastcc``.
6535 - The call is in tail position (ret immediately follows call and ret
6536 uses value of call or is void).
6537 - Option ``-tailcallopt`` is enabled, or
6538 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006539 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006540 met. <CodeGenerator.html#tailcallopt>`_
6541
6542#. The optional "cconv" marker indicates which :ref:`calling
6543 convention <callingconv>` the call should use. If none is
6544 specified, the call defaults to using C calling conventions. The
6545 calling convention of the call must match the calling convention of
6546 the target function, or else the behavior is undefined.
6547#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6548 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6549 are valid here.
6550#. '``ty``': the type of the call instruction itself which is also the
6551 type of the return value. Functions that return no value are marked
6552 ``void``.
6553#. '``fnty``': shall be the signature of the pointer to function value
6554 being invoked. The argument types must match the types implied by
6555 this signature. This type can be omitted if the function is not
6556 varargs and if the function type does not return a pointer to a
6557 function.
6558#. '``fnptrval``': An LLVM value containing a pointer to a function to
6559 be invoked. In most cases, this is a direct function invocation, but
6560 indirect ``call``'s are just as possible, calling an arbitrary pointer
6561 to function value.
6562#. '``function args``': argument list whose types match the function
6563 signature argument types and parameter attributes. All arguments must
6564 be of :ref:`first class <t_firstclass>` type. If the function signature
6565 indicates the function accepts a variable number of arguments, the
6566 extra arguments can be specified.
6567#. The optional :ref:`function attributes <fnattrs>` list. Only
6568 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6569 attributes are valid here.
6570
6571Semantics:
6572""""""""""
6573
6574The '``call``' instruction is used to cause control flow to transfer to
6575a specified function, with its incoming arguments bound to the specified
6576values. Upon a '``ret``' instruction in the called function, control
6577flow continues with the instruction after the function call, and the
6578return value of the function is bound to the result argument.
6579
6580Example:
6581""""""""
6582
6583.. code-block:: llvm
6584
6585 %retval = call i32 @test(i32 %argc)
6586 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6587 %X = tail call i32 @foo() ; yields i32
6588 %Y = tail call fastcc i32 @foo() ; yields i32
6589 call void %foo(i8 97 signext)
6590
6591 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006592 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006593 %gr = extractvalue %struct.A %r, 0 ; yields i32
6594 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6595 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6596 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6597
6598llvm treats calls to some functions with names and arguments that match
6599the standard C99 library as being the C99 library functions, and may
6600perform optimizations or generate code for them under that assumption.
6601This is something we'd like to change in the future to provide better
6602support for freestanding environments and non-C-based languages.
6603
6604.. _i_va_arg:
6605
6606'``va_arg``' Instruction
6607^^^^^^^^^^^^^^^^^^^^^^^^
6608
6609Syntax:
6610"""""""
6611
6612::
6613
6614 <resultval> = va_arg <va_list*> <arglist>, <argty>
6615
6616Overview:
6617"""""""""
6618
6619The '``va_arg``' instruction is used to access arguments passed through
6620the "variable argument" area of a function call. It is used to implement
6621the ``va_arg`` macro in C.
6622
6623Arguments:
6624""""""""""
6625
6626This instruction takes a ``va_list*`` value and the type of the
6627argument. It returns a value of the specified argument type and
6628increments the ``va_list`` to point to the next argument. The actual
6629type of ``va_list`` is target specific.
6630
6631Semantics:
6632""""""""""
6633
6634The '``va_arg``' instruction loads an argument of the specified type
6635from the specified ``va_list`` and causes the ``va_list`` to point to
6636the next argument. For more information, see the variable argument
6637handling :ref:`Intrinsic Functions <int_varargs>`.
6638
6639It is legal for this instruction to be called in a function which does
6640not take a variable number of arguments, for example, the ``vfprintf``
6641function.
6642
6643``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6644function <intrinsics>` because it takes a type as an argument.
6645
6646Example:
6647""""""""
6648
6649See the :ref:`variable argument processing <int_varargs>` section.
6650
6651Note that the code generator does not yet fully support va\_arg on many
6652targets. Also, it does not currently support va\_arg with aggregate
6653types on any target.
6654
6655.. _i_landingpad:
6656
6657'``landingpad``' Instruction
6658^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6659
6660Syntax:
6661"""""""
6662
6663::
6664
6665 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6666 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6667
6668 <clause> := catch <type> <value>
6669 <clause> := filter <array constant type> <array constant>
6670
6671Overview:
6672"""""""""
6673
6674The '``landingpad``' instruction is used by `LLVM's exception handling
6675system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006676is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006677code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6678defines values supplied by the personality function (``pers_fn``) upon
6679re-entry to the function. The ``resultval`` has the type ``resultty``.
6680
6681Arguments:
6682""""""""""
6683
6684This instruction takes a ``pers_fn`` value. This is the personality
6685function associated with the unwinding mechanism. The optional
6686``cleanup`` flag indicates that the landing pad block is a cleanup.
6687
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006688A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006689contains the global variable representing the "type" that may be caught
6690or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6691clause takes an array constant as its argument. Use
6692"``[0 x i8**] undef``" for a filter which cannot throw. The
6693'``landingpad``' instruction must contain *at least* one ``clause`` or
6694the ``cleanup`` flag.
6695
6696Semantics:
6697""""""""""
6698
6699The '``landingpad``' instruction defines the values which are set by the
6700personality function (``pers_fn``) upon re-entry to the function, and
6701therefore the "result type" of the ``landingpad`` instruction. As with
6702calling conventions, how the personality function results are
6703represented in LLVM IR is target specific.
6704
6705The clauses are applied in order from top to bottom. If two
6706``landingpad`` instructions are merged together through inlining, the
6707clauses from the calling function are appended to the list of clauses.
6708When the call stack is being unwound due to an exception being thrown,
6709the exception is compared against each ``clause`` in turn. If it doesn't
6710match any of the clauses, and the ``cleanup`` flag is not set, then
6711unwinding continues further up the call stack.
6712
6713The ``landingpad`` instruction has several restrictions:
6714
6715- A landing pad block is a basic block which is the unwind destination
6716 of an '``invoke``' instruction.
6717- A landing pad block must have a '``landingpad``' instruction as its
6718 first non-PHI instruction.
6719- There can be only one '``landingpad``' instruction within the landing
6720 pad block.
6721- A basic block that is not a landing pad block may not include a
6722 '``landingpad``' instruction.
6723- All '``landingpad``' instructions in a function must have the same
6724 personality function.
6725
6726Example:
6727""""""""
6728
6729.. code-block:: llvm
6730
6731 ;; A landing pad which can catch an integer.
6732 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6733 catch i8** @_ZTIi
6734 ;; A landing pad that is a cleanup.
6735 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6736 cleanup
6737 ;; A landing pad which can catch an integer and can only throw a double.
6738 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6739 catch i8** @_ZTIi
6740 filter [1 x i8**] [@_ZTId]
6741
6742.. _intrinsics:
6743
6744Intrinsic Functions
6745===================
6746
6747LLVM supports the notion of an "intrinsic function". These functions
6748have well known names and semantics and are required to follow certain
6749restrictions. Overall, these intrinsics represent an extension mechanism
6750for the LLVM language that does not require changing all of the
6751transformations in LLVM when adding to the language (or the bitcode
6752reader/writer, the parser, etc...).
6753
6754Intrinsic function names must all start with an "``llvm.``" prefix. This
6755prefix is reserved in LLVM for intrinsic names; thus, function names may
6756not begin with this prefix. Intrinsic functions must always be external
6757functions: you cannot define the body of intrinsic functions. Intrinsic
6758functions may only be used in call or invoke instructions: it is illegal
6759to take the address of an intrinsic function. Additionally, because
6760intrinsic functions are part of the LLVM language, it is required if any
6761are added that they be documented here.
6762
6763Some intrinsic functions can be overloaded, i.e., the intrinsic
6764represents a family of functions that perform the same operation but on
6765different data types. Because LLVM can represent over 8 million
6766different integer types, overloading is used commonly to allow an
6767intrinsic function to operate on any integer type. One or more of the
6768argument types or the result type can be overloaded to accept any
6769integer type. Argument types may also be defined as exactly matching a
6770previous argument's type or the result type. This allows an intrinsic
6771function which accepts multiple arguments, but needs all of them to be
6772of the same type, to only be overloaded with respect to a single
6773argument or the result.
6774
6775Overloaded intrinsics will have the names of its overloaded argument
6776types encoded into its function name, each preceded by a period. Only
6777those types which are overloaded result in a name suffix. Arguments
6778whose type is matched against another type do not. For example, the
6779``llvm.ctpop`` function can take an integer of any width and returns an
6780integer of exactly the same integer width. This leads to a family of
6781functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6782``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6783overloaded, and only one type suffix is required. Because the argument's
6784type is matched against the return type, it does not require its own
6785name suffix.
6786
6787To learn how to add an intrinsic function, please see the `Extending
6788LLVM Guide <ExtendingLLVM.html>`_.
6789
6790.. _int_varargs:
6791
6792Variable Argument Handling Intrinsics
6793-------------------------------------
6794
6795Variable argument support is defined in LLVM with the
6796:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6797functions. These functions are related to the similarly named macros
6798defined in the ``<stdarg.h>`` header file.
6799
6800All of these functions operate on arguments that use a target-specific
6801value type "``va_list``". The LLVM assembly language reference manual
6802does not define what this type is, so all transformations should be
6803prepared to handle these functions regardless of the type used.
6804
6805This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6806variable argument handling intrinsic functions are used.
6807
6808.. code-block:: llvm
6809
6810 define i32 @test(i32 %X, ...) {
6811 ; Initialize variable argument processing
6812 %ap = alloca i8*
6813 %ap2 = bitcast i8** %ap to i8*
6814 call void @llvm.va_start(i8* %ap2)
6815
6816 ; Read a single integer argument
6817 %tmp = va_arg i8** %ap, i32
6818
6819 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6820 %aq = alloca i8*
6821 %aq2 = bitcast i8** %aq to i8*
6822 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6823 call void @llvm.va_end(i8* %aq2)
6824
6825 ; Stop processing of arguments.
6826 call void @llvm.va_end(i8* %ap2)
6827 ret i32 %tmp
6828 }
6829
6830 declare void @llvm.va_start(i8*)
6831 declare void @llvm.va_copy(i8*, i8*)
6832 declare void @llvm.va_end(i8*)
6833
6834.. _int_va_start:
6835
6836'``llvm.va_start``' Intrinsic
6837^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6838
6839Syntax:
6840"""""""
6841
6842::
6843
Nick Lewycky04f6de02013-09-11 22:04:52 +00006844 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006845
6846Overview:
6847"""""""""
6848
6849The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6850subsequent use by ``va_arg``.
6851
6852Arguments:
6853""""""""""
6854
6855The argument is a pointer to a ``va_list`` element to initialize.
6856
6857Semantics:
6858""""""""""
6859
6860The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6861available in C. In a target-dependent way, it initializes the
6862``va_list`` element to which the argument points, so that the next call
6863to ``va_arg`` will produce the first variable argument passed to the
6864function. Unlike the C ``va_start`` macro, this intrinsic does not need
6865to know the last argument of the function as the compiler can figure
6866that out.
6867
6868'``llvm.va_end``' Intrinsic
6869^^^^^^^^^^^^^^^^^^^^^^^^^^^
6870
6871Syntax:
6872"""""""
6873
6874::
6875
6876 declare void @llvm.va_end(i8* <arglist>)
6877
6878Overview:
6879"""""""""
6880
6881The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6882initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6883
6884Arguments:
6885""""""""""
6886
6887The argument is a pointer to a ``va_list`` to destroy.
6888
6889Semantics:
6890""""""""""
6891
6892The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6893available in C. In a target-dependent way, it destroys the ``va_list``
6894element to which the argument points. Calls to
6895:ref:`llvm.va_start <int_va_start>` and
6896:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6897``llvm.va_end``.
6898
6899.. _int_va_copy:
6900
6901'``llvm.va_copy``' Intrinsic
6902^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6903
6904Syntax:
6905"""""""
6906
6907::
6908
6909 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6910
6911Overview:
6912"""""""""
6913
6914The '``llvm.va_copy``' intrinsic copies the current argument position
6915from the source argument list to the destination argument list.
6916
6917Arguments:
6918""""""""""
6919
6920The first argument is a pointer to a ``va_list`` element to initialize.
6921The second argument is a pointer to a ``va_list`` element to copy from.
6922
6923Semantics:
6924""""""""""
6925
6926The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6927available in C. In a target-dependent way, it copies the source
6928``va_list`` element into the destination ``va_list`` element. This
6929intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6930arbitrarily complex and require, for example, memory allocation.
6931
6932Accurate Garbage Collection Intrinsics
6933--------------------------------------
6934
6935LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6936(GC) requires the implementation and generation of these intrinsics.
6937These intrinsics allow identification of :ref:`GC roots on the
6938stack <int_gcroot>`, as well as garbage collector implementations that
6939require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6940Front-ends for type-safe garbage collected languages should generate
6941these intrinsics to make use of the LLVM garbage collectors. For more
6942details, see `Accurate Garbage Collection with
6943LLVM <GarbageCollection.html>`_.
6944
6945The garbage collection intrinsics only operate on objects in the generic
6946address space (address space zero).
6947
6948.. _int_gcroot:
6949
6950'``llvm.gcroot``' Intrinsic
6951^^^^^^^^^^^^^^^^^^^^^^^^^^^
6952
6953Syntax:
6954"""""""
6955
6956::
6957
6958 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6959
6960Overview:
6961"""""""""
6962
6963The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6964the code generator, and allows some metadata to be associated with it.
6965
6966Arguments:
6967""""""""""
6968
6969The first argument specifies the address of a stack object that contains
6970the root pointer. The second pointer (which must be either a constant or
6971a global value address) contains the meta-data to be associated with the
6972root.
6973
6974Semantics:
6975""""""""""
6976
6977At runtime, a call to this intrinsic stores a null pointer into the
6978"ptrloc" location. At compile-time, the code generator generates
6979information to allow the runtime to find the pointer at GC safe points.
6980The '``llvm.gcroot``' intrinsic may only be used in a function which
6981:ref:`specifies a GC algorithm <gc>`.
6982
6983.. _int_gcread:
6984
6985'``llvm.gcread``' Intrinsic
6986^^^^^^^^^^^^^^^^^^^^^^^^^^^
6987
6988Syntax:
6989"""""""
6990
6991::
6992
6993 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6994
6995Overview:
6996"""""""""
6997
6998The '``llvm.gcread``' intrinsic identifies reads of references from heap
6999locations, allowing garbage collector implementations that require read
7000barriers.
7001
7002Arguments:
7003""""""""""
7004
7005The second argument is the address to read from, which should be an
7006address allocated from the garbage collector. The first object is a
7007pointer to the start of the referenced object, if needed by the language
7008runtime (otherwise null).
7009
7010Semantics:
7011""""""""""
7012
7013The '``llvm.gcread``' intrinsic has the same semantics as a load
7014instruction, but may be replaced with substantially more complex code by
7015the garbage collector runtime, as needed. The '``llvm.gcread``'
7016intrinsic may only be used in a function which :ref:`specifies a GC
7017algorithm <gc>`.
7018
7019.. _int_gcwrite:
7020
7021'``llvm.gcwrite``' Intrinsic
7022^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7023
7024Syntax:
7025"""""""
7026
7027::
7028
7029 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7030
7031Overview:
7032"""""""""
7033
7034The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7035locations, allowing garbage collector implementations that require write
7036barriers (such as generational or reference counting collectors).
7037
7038Arguments:
7039""""""""""
7040
7041The first argument is the reference to store, the second is the start of
7042the object to store it to, and the third is the address of the field of
7043Obj to store to. If the runtime does not require a pointer to the
7044object, Obj may be null.
7045
7046Semantics:
7047""""""""""
7048
7049The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7050instruction, but may be replaced with substantially more complex code by
7051the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7052intrinsic may only be used in a function which :ref:`specifies a GC
7053algorithm <gc>`.
7054
7055Code Generator Intrinsics
7056-------------------------
7057
7058These intrinsics are provided by LLVM to expose special features that
7059may only be implemented with code generator support.
7060
7061'``llvm.returnaddress``' Intrinsic
7062^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7063
7064Syntax:
7065"""""""
7066
7067::
7068
7069 declare i8 *@llvm.returnaddress(i32 <level>)
7070
7071Overview:
7072"""""""""
7073
7074The '``llvm.returnaddress``' intrinsic attempts to compute a
7075target-specific value indicating the return address of the current
7076function or one of its callers.
7077
7078Arguments:
7079""""""""""
7080
7081The argument to this intrinsic indicates which function to return the
7082address for. Zero indicates the calling function, one indicates its
7083caller, etc. The argument is **required** to be a constant integer
7084value.
7085
7086Semantics:
7087""""""""""
7088
7089The '``llvm.returnaddress``' intrinsic either returns a pointer
7090indicating the return address of the specified call frame, or zero if it
7091cannot be identified. The value returned by this intrinsic is likely to
7092be incorrect or 0 for arguments other than zero, so it should only be
7093used for debugging purposes.
7094
7095Note that calling this intrinsic does not prevent function inlining or
7096other aggressive transformations, so the value returned may not be that
7097of the obvious source-language caller.
7098
7099'``llvm.frameaddress``' Intrinsic
7100^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7101
7102Syntax:
7103"""""""
7104
7105::
7106
7107 declare i8* @llvm.frameaddress(i32 <level>)
7108
7109Overview:
7110"""""""""
7111
7112The '``llvm.frameaddress``' intrinsic attempts to return the
7113target-specific frame pointer value for the specified stack frame.
7114
7115Arguments:
7116""""""""""
7117
7118The argument to this intrinsic indicates which function to return the
7119frame pointer for. Zero indicates the calling function, one indicates
7120its caller, etc. The argument is **required** to be a constant integer
7121value.
7122
7123Semantics:
7124""""""""""
7125
7126The '``llvm.frameaddress``' intrinsic either returns a pointer
7127indicating the frame address of the specified call frame, or zero if it
7128cannot be identified. The value returned by this intrinsic is likely to
7129be incorrect or 0 for arguments other than zero, so it should only be
7130used for debugging purposes.
7131
7132Note that calling this intrinsic does not prevent function inlining or
7133other aggressive transformations, so the value returned may not be that
7134of the obvious source-language caller.
7135
Renato Golinc7aea402014-05-06 16:51:25 +00007136.. _int_read_register:
7137.. _int_write_register:
7138
7139'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7140^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7141
7142Syntax:
7143"""""""
7144
7145::
7146
7147 declare i32 @llvm.read_register.i32(metadata)
7148 declare i64 @llvm.read_register.i64(metadata)
7149 declare void @llvm.write_register.i32(metadata, i32 @value)
7150 declare void @llvm.write_register.i64(metadata, i64 @value)
7151 !0 = metadata !{metadata !"sp\00"}
7152
7153Overview:
7154"""""""""
7155
7156The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7157provides access to the named register. The register must be valid on
7158the architecture being compiled to. The type needs to be compatible
7159with the register being read.
7160
7161Semantics:
7162""""""""""
7163
7164The '``llvm.read_register``' intrinsic returns the current value of the
7165register, where possible. The '``llvm.write_register``' intrinsic sets
7166the current value of the register, where possible.
7167
7168This is useful to implement named register global variables that need
7169to always be mapped to a specific register, as is common practice on
7170bare-metal programs including OS kernels.
7171
7172The compiler doesn't check for register availability or use of the used
7173register in surrounding code, including inline assembly. Because of that,
7174allocatable registers are not supported.
7175
7176Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007177architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007178work is needed to support other registers and even more so, allocatable
7179registers.
7180
Sean Silvab084af42012-12-07 10:36:55 +00007181.. _int_stacksave:
7182
7183'``llvm.stacksave``' Intrinsic
7184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7185
7186Syntax:
7187"""""""
7188
7189::
7190
7191 declare i8* @llvm.stacksave()
7192
7193Overview:
7194"""""""""
7195
7196The '``llvm.stacksave``' intrinsic is used to remember the current state
7197of the function stack, for use with
7198:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7199implementing language features like scoped automatic variable sized
7200arrays in C99.
7201
7202Semantics:
7203""""""""""
7204
7205This intrinsic returns a opaque pointer value that can be passed to
7206:ref:`llvm.stackrestore <int_stackrestore>`. When an
7207``llvm.stackrestore`` intrinsic is executed with a value saved from
7208``llvm.stacksave``, it effectively restores the state of the stack to
7209the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7210practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7211were allocated after the ``llvm.stacksave`` was executed.
7212
7213.. _int_stackrestore:
7214
7215'``llvm.stackrestore``' Intrinsic
7216^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7217
7218Syntax:
7219"""""""
7220
7221::
7222
7223 declare void @llvm.stackrestore(i8* %ptr)
7224
7225Overview:
7226"""""""""
7227
7228The '``llvm.stackrestore``' intrinsic is used to restore the state of
7229the function stack to the state it was in when the corresponding
7230:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7231useful for implementing language features like scoped automatic variable
7232sized arrays in C99.
7233
7234Semantics:
7235""""""""""
7236
7237See the description for :ref:`llvm.stacksave <int_stacksave>`.
7238
7239'``llvm.prefetch``' Intrinsic
7240^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7241
7242Syntax:
7243"""""""
7244
7245::
7246
7247 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7248
7249Overview:
7250"""""""""
7251
7252The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7253insert a prefetch instruction if supported; otherwise, it is a noop.
7254Prefetches have no effect on the behavior of the program but can change
7255its performance characteristics.
7256
7257Arguments:
7258""""""""""
7259
7260``address`` is the address to be prefetched, ``rw`` is the specifier
7261determining if the fetch should be for a read (0) or write (1), and
7262``locality`` is a temporal locality specifier ranging from (0) - no
7263locality, to (3) - extremely local keep in cache. The ``cache type``
7264specifies whether the prefetch is performed on the data (1) or
7265instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7266arguments must be constant integers.
7267
7268Semantics:
7269""""""""""
7270
7271This intrinsic does not modify the behavior of the program. In
7272particular, prefetches cannot trap and do not produce a value. On
7273targets that support this intrinsic, the prefetch can provide hints to
7274the processor cache for better performance.
7275
7276'``llvm.pcmarker``' Intrinsic
7277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7278
7279Syntax:
7280"""""""
7281
7282::
7283
7284 declare void @llvm.pcmarker(i32 <id>)
7285
7286Overview:
7287"""""""""
7288
7289The '``llvm.pcmarker``' intrinsic is a method to export a Program
7290Counter (PC) in a region of code to simulators and other tools. The
7291method is target specific, but it is expected that the marker will use
7292exported symbols to transmit the PC of the marker. The marker makes no
7293guarantees that it will remain with any specific instruction after
7294optimizations. It is possible that the presence of a marker will inhibit
7295optimizations. The intended use is to be inserted after optimizations to
7296allow correlations of simulation runs.
7297
7298Arguments:
7299""""""""""
7300
7301``id`` is a numerical id identifying the marker.
7302
7303Semantics:
7304""""""""""
7305
7306This intrinsic does not modify the behavior of the program. Backends
7307that do not support this intrinsic may ignore it.
7308
7309'``llvm.readcyclecounter``' Intrinsic
7310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7311
7312Syntax:
7313"""""""
7314
7315::
7316
7317 declare i64 @llvm.readcyclecounter()
7318
7319Overview:
7320"""""""""
7321
7322The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7323counter register (or similar low latency, high accuracy clocks) on those
7324targets that support it. On X86, it should map to RDTSC. On Alpha, it
7325should map to RPCC. As the backing counters overflow quickly (on the
7326order of 9 seconds on alpha), this should only be used for small
7327timings.
7328
7329Semantics:
7330""""""""""
7331
7332When directly supported, reading the cycle counter should not modify any
7333memory. Implementations are allowed to either return a application
7334specific value or a system wide value. On backends without support, this
7335is lowered to a constant 0.
7336
Tim Northoverbc933082013-05-23 19:11:20 +00007337Note that runtime support may be conditional on the privilege-level code is
7338running at and the host platform.
7339
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007340'``llvm.clear_cache``' Intrinsic
7341^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7342
7343Syntax:
7344"""""""
7345
7346::
7347
7348 declare void @llvm.clear_cache(i8*, i8*)
7349
7350Overview:
7351"""""""""
7352
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007353The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7354in the specified range to the execution unit of the processor. On
7355targets with non-unified instruction and data cache, the implementation
7356flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007357
7358Semantics:
7359""""""""""
7360
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007361On platforms with coherent instruction and data caches (e.g. x86), this
7362intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007363cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007364instructions or a system call, if cache flushing requires special
7365privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007366
Sean Silvad02bf3e2014-04-07 22:29:53 +00007367The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007368time library.
Renato Golin93010e62014-03-26 14:01:32 +00007369
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007370This instrinsic does *not* empty the instruction pipeline. Modifications
7371of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007372
Sean Silvab084af42012-12-07 10:36:55 +00007373Standard C Library Intrinsics
7374-----------------------------
7375
7376LLVM provides intrinsics for a few important standard C library
7377functions. These intrinsics allow source-language front-ends to pass
7378information about the alignment of the pointer arguments to the code
7379generator, providing opportunity for more efficient code generation.
7380
7381.. _int_memcpy:
7382
7383'``llvm.memcpy``' Intrinsic
7384^^^^^^^^^^^^^^^^^^^^^^^^^^^
7385
7386Syntax:
7387"""""""
7388
7389This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7390integer bit width and for different address spaces. Not all targets
7391support all bit widths however.
7392
7393::
7394
7395 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7396 i32 <len>, i32 <align>, i1 <isvolatile>)
7397 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7398 i64 <len>, i32 <align>, i1 <isvolatile>)
7399
7400Overview:
7401"""""""""
7402
7403The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7404source location to the destination location.
7405
7406Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7407intrinsics do not return a value, takes extra alignment/isvolatile
7408arguments and the pointers can be in specified address spaces.
7409
7410Arguments:
7411""""""""""
7412
7413The first argument is a pointer to the destination, the second is a
7414pointer to the source. The third argument is an integer argument
7415specifying the number of bytes to copy, the fourth argument is the
7416alignment of the source and destination locations, and the fifth is a
7417boolean indicating a volatile access.
7418
7419If the call to this intrinsic has an alignment value that is not 0 or 1,
7420then the caller guarantees that both the source and destination pointers
7421are aligned to that boundary.
7422
7423If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7424a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7425very cleanly specified and it is unwise to depend on it.
7426
7427Semantics:
7428""""""""""
7429
7430The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7431source location to the destination location, which are not allowed to
7432overlap. It copies "len" bytes of memory over. If the argument is known
7433to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007434argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007435
7436'``llvm.memmove``' Intrinsic
7437^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7438
7439Syntax:
7440"""""""
7441
7442This is an overloaded intrinsic. You can use llvm.memmove on any integer
7443bit width and for different address space. Not all targets support all
7444bit widths however.
7445
7446::
7447
7448 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7449 i32 <len>, i32 <align>, i1 <isvolatile>)
7450 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7451 i64 <len>, i32 <align>, i1 <isvolatile>)
7452
7453Overview:
7454"""""""""
7455
7456The '``llvm.memmove.*``' intrinsics move a block of memory from the
7457source location to the destination location. It is similar to the
7458'``llvm.memcpy``' intrinsic but allows the two memory locations to
7459overlap.
7460
7461Note that, unlike the standard libc function, the ``llvm.memmove.*``
7462intrinsics do not return a value, takes extra alignment/isvolatile
7463arguments and the pointers can be in specified address spaces.
7464
7465Arguments:
7466""""""""""
7467
7468The first argument is a pointer to the destination, the second is a
7469pointer to the source. The third argument is an integer argument
7470specifying the number of bytes to copy, the fourth argument is the
7471alignment of the source and destination locations, and the fifth is a
7472boolean indicating a volatile access.
7473
7474If the call to this intrinsic has an alignment value that is not 0 or 1,
7475then the caller guarantees that the source and destination pointers are
7476aligned to that boundary.
7477
7478If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7479is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7480not very cleanly specified and it is unwise to depend on it.
7481
7482Semantics:
7483""""""""""
7484
7485The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7486source location to the destination location, which may overlap. It
7487copies "len" bytes of memory over. If the argument is known to be
7488aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007489otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007490
7491'``llvm.memset.*``' Intrinsics
7492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7493
7494Syntax:
7495"""""""
7496
7497This is an overloaded intrinsic. You can use llvm.memset on any integer
7498bit width and for different address spaces. However, not all targets
7499support all bit widths.
7500
7501::
7502
7503 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7504 i32 <len>, i32 <align>, i1 <isvolatile>)
7505 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7506 i64 <len>, i32 <align>, i1 <isvolatile>)
7507
7508Overview:
7509"""""""""
7510
7511The '``llvm.memset.*``' intrinsics fill a block of memory with a
7512particular byte value.
7513
7514Note that, unlike the standard libc function, the ``llvm.memset``
7515intrinsic does not return a value and takes extra alignment/volatile
7516arguments. Also, the destination can be in an arbitrary address space.
7517
7518Arguments:
7519""""""""""
7520
7521The first argument is a pointer to the destination to fill, the second
7522is the byte value with which to fill it, the third argument is an
7523integer argument specifying the number of bytes to fill, and the fourth
7524argument is the known alignment of the destination location.
7525
7526If the call to this intrinsic has an alignment value that is not 0 or 1,
7527then the caller guarantees that the destination pointer is aligned to
7528that boundary.
7529
7530If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7531a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7532very cleanly specified and it is unwise to depend on it.
7533
7534Semantics:
7535""""""""""
7536
7537The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7538at the destination location. If the argument is known to be aligned to
7539some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007540it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007541
7542'``llvm.sqrt.*``' Intrinsic
7543^^^^^^^^^^^^^^^^^^^^^^^^^^^
7544
7545Syntax:
7546"""""""
7547
7548This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7549floating point or vector of floating point type. Not all targets support
7550all types however.
7551
7552::
7553
7554 declare float @llvm.sqrt.f32(float %Val)
7555 declare double @llvm.sqrt.f64(double %Val)
7556 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7557 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7558 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7559
7560Overview:
7561"""""""""
7562
7563The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7564returning the same value as the libm '``sqrt``' functions would. Unlike
7565``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7566negative numbers other than -0.0 (which allows for better optimization,
7567because there is no need to worry about errno being set).
7568``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7569
7570Arguments:
7571""""""""""
7572
7573The argument and return value are floating point numbers of the same
7574type.
7575
7576Semantics:
7577""""""""""
7578
7579This function returns the sqrt of the specified operand if it is a
7580nonnegative floating point number.
7581
7582'``llvm.powi.*``' Intrinsic
7583^^^^^^^^^^^^^^^^^^^^^^^^^^^
7584
7585Syntax:
7586"""""""
7587
7588This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7589floating point or vector of floating point type. Not all targets support
7590all types however.
7591
7592::
7593
7594 declare float @llvm.powi.f32(float %Val, i32 %power)
7595 declare double @llvm.powi.f64(double %Val, i32 %power)
7596 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7597 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7598 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7599
7600Overview:
7601"""""""""
7602
7603The '``llvm.powi.*``' intrinsics return the first operand raised to the
7604specified (positive or negative) power. The order of evaluation of
7605multiplications is not defined. When a vector of floating point type is
7606used, the second argument remains a scalar integer value.
7607
7608Arguments:
7609""""""""""
7610
7611The second argument is an integer power, and the first is a value to
7612raise to that power.
7613
7614Semantics:
7615""""""""""
7616
7617This function returns the first value raised to the second power with an
7618unspecified sequence of rounding operations.
7619
7620'``llvm.sin.*``' Intrinsic
7621^^^^^^^^^^^^^^^^^^^^^^^^^^
7622
7623Syntax:
7624"""""""
7625
7626This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7627floating point or vector of floating point type. Not all targets support
7628all types however.
7629
7630::
7631
7632 declare float @llvm.sin.f32(float %Val)
7633 declare double @llvm.sin.f64(double %Val)
7634 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7635 declare fp128 @llvm.sin.f128(fp128 %Val)
7636 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7637
7638Overview:
7639"""""""""
7640
7641The '``llvm.sin.*``' intrinsics return the sine of the operand.
7642
7643Arguments:
7644""""""""""
7645
7646The argument and return value are floating point numbers of the same
7647type.
7648
7649Semantics:
7650""""""""""
7651
7652This function returns the sine of the specified operand, returning the
7653same values as the libm ``sin`` functions would, and handles error
7654conditions in the same way.
7655
7656'``llvm.cos.*``' Intrinsic
7657^^^^^^^^^^^^^^^^^^^^^^^^^^
7658
7659Syntax:
7660"""""""
7661
7662This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7663floating point or vector of floating point type. Not all targets support
7664all types however.
7665
7666::
7667
7668 declare float @llvm.cos.f32(float %Val)
7669 declare double @llvm.cos.f64(double %Val)
7670 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7671 declare fp128 @llvm.cos.f128(fp128 %Val)
7672 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7673
7674Overview:
7675"""""""""
7676
7677The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7678
7679Arguments:
7680""""""""""
7681
7682The argument and return value are floating point numbers of the same
7683type.
7684
7685Semantics:
7686""""""""""
7687
7688This function returns the cosine of the specified operand, returning the
7689same values as the libm ``cos`` functions would, and handles error
7690conditions in the same way.
7691
7692'``llvm.pow.*``' Intrinsic
7693^^^^^^^^^^^^^^^^^^^^^^^^^^
7694
7695Syntax:
7696"""""""
7697
7698This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7699floating point or vector of floating point type. Not all targets support
7700all types however.
7701
7702::
7703
7704 declare float @llvm.pow.f32(float %Val, float %Power)
7705 declare double @llvm.pow.f64(double %Val, double %Power)
7706 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7707 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7708 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7709
7710Overview:
7711"""""""""
7712
7713The '``llvm.pow.*``' intrinsics return the first operand raised to the
7714specified (positive or negative) power.
7715
7716Arguments:
7717""""""""""
7718
7719The second argument is a floating point power, and the first is a value
7720to raise to that power.
7721
7722Semantics:
7723""""""""""
7724
7725This function returns the first value raised to the second power,
7726returning the same values as the libm ``pow`` functions would, and
7727handles error conditions in the same way.
7728
7729'``llvm.exp.*``' Intrinsic
7730^^^^^^^^^^^^^^^^^^^^^^^^^^
7731
7732Syntax:
7733"""""""
7734
7735This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7736floating point or vector of floating point type. Not all targets support
7737all types however.
7738
7739::
7740
7741 declare float @llvm.exp.f32(float %Val)
7742 declare double @llvm.exp.f64(double %Val)
7743 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7744 declare fp128 @llvm.exp.f128(fp128 %Val)
7745 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7746
7747Overview:
7748"""""""""
7749
7750The '``llvm.exp.*``' intrinsics perform the exp function.
7751
7752Arguments:
7753""""""""""
7754
7755The argument and return value are floating point numbers of the same
7756type.
7757
7758Semantics:
7759""""""""""
7760
7761This function returns the same values as the libm ``exp`` functions
7762would, and handles error conditions in the same way.
7763
7764'``llvm.exp2.*``' Intrinsic
7765^^^^^^^^^^^^^^^^^^^^^^^^^^^
7766
7767Syntax:
7768"""""""
7769
7770This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7771floating point or vector of floating point type. Not all targets support
7772all types however.
7773
7774::
7775
7776 declare float @llvm.exp2.f32(float %Val)
7777 declare double @llvm.exp2.f64(double %Val)
7778 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7779 declare fp128 @llvm.exp2.f128(fp128 %Val)
7780 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7781
7782Overview:
7783"""""""""
7784
7785The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7786
7787Arguments:
7788""""""""""
7789
7790The argument and return value are floating point numbers of the same
7791type.
7792
7793Semantics:
7794""""""""""
7795
7796This function returns the same values as the libm ``exp2`` functions
7797would, and handles error conditions in the same way.
7798
7799'``llvm.log.*``' Intrinsic
7800^^^^^^^^^^^^^^^^^^^^^^^^^^
7801
7802Syntax:
7803"""""""
7804
7805This is an overloaded intrinsic. You can use ``llvm.log`` on any
7806floating point or vector of floating point type. Not all targets support
7807all types however.
7808
7809::
7810
7811 declare float @llvm.log.f32(float %Val)
7812 declare double @llvm.log.f64(double %Val)
7813 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7814 declare fp128 @llvm.log.f128(fp128 %Val)
7815 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7816
7817Overview:
7818"""""""""
7819
7820The '``llvm.log.*``' intrinsics perform the log function.
7821
7822Arguments:
7823""""""""""
7824
7825The argument and return value are floating point numbers of the same
7826type.
7827
7828Semantics:
7829""""""""""
7830
7831This function returns the same values as the libm ``log`` functions
7832would, and handles error conditions in the same way.
7833
7834'``llvm.log10.*``' Intrinsic
7835^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7836
7837Syntax:
7838"""""""
7839
7840This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7841floating point or vector of floating point type. Not all targets support
7842all types however.
7843
7844::
7845
7846 declare float @llvm.log10.f32(float %Val)
7847 declare double @llvm.log10.f64(double %Val)
7848 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7849 declare fp128 @llvm.log10.f128(fp128 %Val)
7850 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7851
7852Overview:
7853"""""""""
7854
7855The '``llvm.log10.*``' intrinsics perform the log10 function.
7856
7857Arguments:
7858""""""""""
7859
7860The argument and return value are floating point numbers of the same
7861type.
7862
7863Semantics:
7864""""""""""
7865
7866This function returns the same values as the libm ``log10`` functions
7867would, and handles error conditions in the same way.
7868
7869'``llvm.log2.*``' Intrinsic
7870^^^^^^^^^^^^^^^^^^^^^^^^^^^
7871
7872Syntax:
7873"""""""
7874
7875This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7876floating point or vector of floating point type. Not all targets support
7877all types however.
7878
7879::
7880
7881 declare float @llvm.log2.f32(float %Val)
7882 declare double @llvm.log2.f64(double %Val)
7883 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7884 declare fp128 @llvm.log2.f128(fp128 %Val)
7885 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7886
7887Overview:
7888"""""""""
7889
7890The '``llvm.log2.*``' intrinsics perform the log2 function.
7891
7892Arguments:
7893""""""""""
7894
7895The argument and return value are floating point numbers of the same
7896type.
7897
7898Semantics:
7899""""""""""
7900
7901This function returns the same values as the libm ``log2`` functions
7902would, and handles error conditions in the same way.
7903
7904'``llvm.fma.*``' Intrinsic
7905^^^^^^^^^^^^^^^^^^^^^^^^^^
7906
7907Syntax:
7908"""""""
7909
7910This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7911floating point or vector of floating point type. Not all targets support
7912all types however.
7913
7914::
7915
7916 declare float @llvm.fma.f32(float %a, float %b, float %c)
7917 declare double @llvm.fma.f64(double %a, double %b, double %c)
7918 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7919 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7920 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7921
7922Overview:
7923"""""""""
7924
7925The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7926operation.
7927
7928Arguments:
7929""""""""""
7930
7931The argument and return value are floating point numbers of the same
7932type.
7933
7934Semantics:
7935""""""""""
7936
7937This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007938would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007939
7940'``llvm.fabs.*``' Intrinsic
7941^^^^^^^^^^^^^^^^^^^^^^^^^^^
7942
7943Syntax:
7944"""""""
7945
7946This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7947floating point or vector of floating point type. Not all targets support
7948all types however.
7949
7950::
7951
7952 declare float @llvm.fabs.f32(float %Val)
7953 declare double @llvm.fabs.f64(double %Val)
7954 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7955 declare fp128 @llvm.fabs.f128(fp128 %Val)
7956 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7957
7958Overview:
7959"""""""""
7960
7961The '``llvm.fabs.*``' intrinsics return the absolute value of the
7962operand.
7963
7964Arguments:
7965""""""""""
7966
7967The argument and return value are floating point numbers of the same
7968type.
7969
7970Semantics:
7971""""""""""
7972
7973This function returns the same values as the libm ``fabs`` functions
7974would, and handles error conditions in the same way.
7975
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007976'``llvm.copysign.*``' Intrinsic
7977^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7978
7979Syntax:
7980"""""""
7981
7982This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7983floating point or vector of floating point type. Not all targets support
7984all types however.
7985
7986::
7987
7988 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7989 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7990 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7991 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7992 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7993
7994Overview:
7995"""""""""
7996
7997The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7998first operand and the sign of the second operand.
7999
8000Arguments:
8001""""""""""
8002
8003The arguments and return value are floating point numbers of the same
8004type.
8005
8006Semantics:
8007""""""""""
8008
8009This function returns the same values as the libm ``copysign``
8010functions would, and handles error conditions in the same way.
8011
Sean Silvab084af42012-12-07 10:36:55 +00008012'``llvm.floor.*``' Intrinsic
8013^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8014
8015Syntax:
8016"""""""
8017
8018This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8019floating point or vector of floating point type. Not all targets support
8020all types however.
8021
8022::
8023
8024 declare float @llvm.floor.f32(float %Val)
8025 declare double @llvm.floor.f64(double %Val)
8026 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8027 declare fp128 @llvm.floor.f128(fp128 %Val)
8028 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8029
8030Overview:
8031"""""""""
8032
8033The '``llvm.floor.*``' intrinsics return the floor of the operand.
8034
8035Arguments:
8036""""""""""
8037
8038The argument and return value are floating point numbers of the same
8039type.
8040
8041Semantics:
8042""""""""""
8043
8044This function returns the same values as the libm ``floor`` functions
8045would, and handles error conditions in the same way.
8046
8047'``llvm.ceil.*``' Intrinsic
8048^^^^^^^^^^^^^^^^^^^^^^^^^^^
8049
8050Syntax:
8051"""""""
8052
8053This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8054floating point or vector of floating point type. Not all targets support
8055all types however.
8056
8057::
8058
8059 declare float @llvm.ceil.f32(float %Val)
8060 declare double @llvm.ceil.f64(double %Val)
8061 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8062 declare fp128 @llvm.ceil.f128(fp128 %Val)
8063 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8064
8065Overview:
8066"""""""""
8067
8068The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8069
8070Arguments:
8071""""""""""
8072
8073The argument and return value are floating point numbers of the same
8074type.
8075
8076Semantics:
8077""""""""""
8078
8079This function returns the same values as the libm ``ceil`` functions
8080would, and handles error conditions in the same way.
8081
8082'``llvm.trunc.*``' Intrinsic
8083^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8084
8085Syntax:
8086"""""""
8087
8088This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8089floating point or vector of floating point type. Not all targets support
8090all types however.
8091
8092::
8093
8094 declare float @llvm.trunc.f32(float %Val)
8095 declare double @llvm.trunc.f64(double %Val)
8096 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8097 declare fp128 @llvm.trunc.f128(fp128 %Val)
8098 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8099
8100Overview:
8101"""""""""
8102
8103The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8104nearest integer not larger in magnitude than the operand.
8105
8106Arguments:
8107""""""""""
8108
8109The argument and return value are floating point numbers of the same
8110type.
8111
8112Semantics:
8113""""""""""
8114
8115This function returns the same values as the libm ``trunc`` functions
8116would, and handles error conditions in the same way.
8117
8118'``llvm.rint.*``' Intrinsic
8119^^^^^^^^^^^^^^^^^^^^^^^^^^^
8120
8121Syntax:
8122"""""""
8123
8124This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8125floating point or vector of floating point type. Not all targets support
8126all types however.
8127
8128::
8129
8130 declare float @llvm.rint.f32(float %Val)
8131 declare double @llvm.rint.f64(double %Val)
8132 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8133 declare fp128 @llvm.rint.f128(fp128 %Val)
8134 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8135
8136Overview:
8137"""""""""
8138
8139The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8140nearest integer. It may raise an inexact floating-point exception if the
8141operand isn't an integer.
8142
8143Arguments:
8144""""""""""
8145
8146The argument and return value are floating point numbers of the same
8147type.
8148
8149Semantics:
8150""""""""""
8151
8152This function returns the same values as the libm ``rint`` functions
8153would, and handles error conditions in the same way.
8154
8155'``llvm.nearbyint.*``' Intrinsic
8156^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8157
8158Syntax:
8159"""""""
8160
8161This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8162floating point or vector of floating point type. Not all targets support
8163all types however.
8164
8165::
8166
8167 declare float @llvm.nearbyint.f32(float %Val)
8168 declare double @llvm.nearbyint.f64(double %Val)
8169 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8170 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8171 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8172
8173Overview:
8174"""""""""
8175
8176The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8177nearest integer.
8178
8179Arguments:
8180""""""""""
8181
8182The argument and return value are floating point numbers of the same
8183type.
8184
8185Semantics:
8186""""""""""
8187
8188This function returns the same values as the libm ``nearbyint``
8189functions would, and handles error conditions in the same way.
8190
Hal Finkel171817e2013-08-07 22:49:12 +00008191'``llvm.round.*``' Intrinsic
8192^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8193
8194Syntax:
8195"""""""
8196
8197This is an overloaded intrinsic. You can use ``llvm.round`` on any
8198floating point or vector of floating point type. Not all targets support
8199all types however.
8200
8201::
8202
8203 declare float @llvm.round.f32(float %Val)
8204 declare double @llvm.round.f64(double %Val)
8205 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8206 declare fp128 @llvm.round.f128(fp128 %Val)
8207 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8208
8209Overview:
8210"""""""""
8211
8212The '``llvm.round.*``' intrinsics returns the operand rounded to the
8213nearest integer.
8214
8215Arguments:
8216""""""""""
8217
8218The argument and return value are floating point numbers of the same
8219type.
8220
8221Semantics:
8222""""""""""
8223
8224This function returns the same values as the libm ``round``
8225functions would, and handles error conditions in the same way.
8226
Sean Silvab084af42012-12-07 10:36:55 +00008227Bit Manipulation Intrinsics
8228---------------------------
8229
8230LLVM provides intrinsics for a few important bit manipulation
8231operations. These allow efficient code generation for some algorithms.
8232
8233'``llvm.bswap.*``' Intrinsics
8234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8235
8236Syntax:
8237"""""""
8238
8239This is an overloaded intrinsic function. You can use bswap on any
8240integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8241
8242::
8243
8244 declare i16 @llvm.bswap.i16(i16 <id>)
8245 declare i32 @llvm.bswap.i32(i32 <id>)
8246 declare i64 @llvm.bswap.i64(i64 <id>)
8247
8248Overview:
8249"""""""""
8250
8251The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8252values with an even number of bytes (positive multiple of 16 bits).
8253These are useful for performing operations on data that is not in the
8254target's native byte order.
8255
8256Semantics:
8257""""""""""
8258
8259The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8260and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8261intrinsic returns an i32 value that has the four bytes of the input i32
8262swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8263returned i32 will have its bytes in 3, 2, 1, 0 order. The
8264``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8265concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8266respectively).
8267
8268'``llvm.ctpop.*``' Intrinsic
8269^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8270
8271Syntax:
8272"""""""
8273
8274This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8275bit width, or on any vector with integer elements. Not all targets
8276support all bit widths or vector types, however.
8277
8278::
8279
8280 declare i8 @llvm.ctpop.i8(i8 <src>)
8281 declare i16 @llvm.ctpop.i16(i16 <src>)
8282 declare i32 @llvm.ctpop.i32(i32 <src>)
8283 declare i64 @llvm.ctpop.i64(i64 <src>)
8284 declare i256 @llvm.ctpop.i256(i256 <src>)
8285 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8286
8287Overview:
8288"""""""""
8289
8290The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8291in a value.
8292
8293Arguments:
8294""""""""""
8295
8296The only argument is the value to be counted. The argument may be of any
8297integer type, or a vector with integer elements. The return type must
8298match the argument type.
8299
8300Semantics:
8301""""""""""
8302
8303The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8304each element of a vector.
8305
8306'``llvm.ctlz.*``' Intrinsic
8307^^^^^^^^^^^^^^^^^^^^^^^^^^^
8308
8309Syntax:
8310"""""""
8311
8312This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8313integer bit width, or any vector whose elements are integers. Not all
8314targets support all bit widths or vector types, however.
8315
8316::
8317
8318 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8319 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8320 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8321 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8322 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8323 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8324
8325Overview:
8326"""""""""
8327
8328The '``llvm.ctlz``' family of intrinsic functions counts the number of
8329leading zeros in a variable.
8330
8331Arguments:
8332""""""""""
8333
8334The first argument is the value to be counted. This argument may be of
8335any integer type, or a vectory with integer element type. The return
8336type must match the first argument type.
8337
8338The second argument must be a constant and is a flag to indicate whether
8339the intrinsic should ensure that a zero as the first argument produces a
8340defined result. Historically some architectures did not provide a
8341defined result for zero values as efficiently, and many algorithms are
8342now predicated on avoiding zero-value inputs.
8343
8344Semantics:
8345""""""""""
8346
8347The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8348zeros in a variable, or within each element of the vector. If
8349``src == 0`` then the result is the size in bits of the type of ``src``
8350if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8351``llvm.ctlz(i32 2) = 30``.
8352
8353'``llvm.cttz.*``' Intrinsic
8354^^^^^^^^^^^^^^^^^^^^^^^^^^^
8355
8356Syntax:
8357"""""""
8358
8359This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8360integer bit width, or any vector of integer elements. Not all targets
8361support all bit widths or vector types, however.
8362
8363::
8364
8365 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8366 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8367 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8368 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8369 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8370 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8371
8372Overview:
8373"""""""""
8374
8375The '``llvm.cttz``' family of intrinsic functions counts the number of
8376trailing zeros.
8377
8378Arguments:
8379""""""""""
8380
8381The first argument is the value to be counted. This argument may be of
8382any integer type, or a vectory with integer element type. The return
8383type must match the first argument type.
8384
8385The second argument must be a constant and is a flag to indicate whether
8386the intrinsic should ensure that a zero as the first argument produces a
8387defined result. Historically some architectures did not provide a
8388defined result for zero values as efficiently, and many algorithms are
8389now predicated on avoiding zero-value inputs.
8390
8391Semantics:
8392""""""""""
8393
8394The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8395zeros in a variable, or within each element of a vector. If ``src == 0``
8396then the result is the size in bits of the type of ``src`` if
8397``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8398``llvm.cttz(2) = 1``.
8399
8400Arithmetic with Overflow Intrinsics
8401-----------------------------------
8402
8403LLVM provides intrinsics for some arithmetic with overflow operations.
8404
8405'``llvm.sadd.with.overflow.*``' Intrinsics
8406^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8407
8408Syntax:
8409"""""""
8410
8411This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8412on any integer bit width.
8413
8414::
8415
8416 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8417 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8418 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8419
8420Overview:
8421"""""""""
8422
8423The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8424a signed addition of the two arguments, and indicate whether an overflow
8425occurred during the signed summation.
8426
8427Arguments:
8428""""""""""
8429
8430The arguments (%a and %b) and the first element of the result structure
8431may be of integer types of any bit width, but they must have the same
8432bit width. The second element of the result structure must be of type
8433``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8434addition.
8435
8436Semantics:
8437""""""""""
8438
8439The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008440a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008441first element of which is the signed summation, and the second element
8442of which is a bit specifying if the signed summation resulted in an
8443overflow.
8444
8445Examples:
8446"""""""""
8447
8448.. code-block:: llvm
8449
8450 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8451 %sum = extractvalue {i32, i1} %res, 0
8452 %obit = extractvalue {i32, i1} %res, 1
8453 br i1 %obit, label %overflow, label %normal
8454
8455'``llvm.uadd.with.overflow.*``' Intrinsics
8456^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8457
8458Syntax:
8459"""""""
8460
8461This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8462on any integer bit width.
8463
8464::
8465
8466 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8467 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8468 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8469
8470Overview:
8471"""""""""
8472
8473The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8474an unsigned addition of the two arguments, and indicate whether a carry
8475occurred during the unsigned summation.
8476
8477Arguments:
8478""""""""""
8479
8480The arguments (%a and %b) and the first element of the result structure
8481may be of integer types of any bit width, but they must have the same
8482bit width. The second element of the result structure must be of type
8483``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8484addition.
8485
8486Semantics:
8487""""""""""
8488
8489The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008490an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008491first element of which is the sum, and the second element of which is a
8492bit specifying if the unsigned summation resulted in a carry.
8493
8494Examples:
8495"""""""""
8496
8497.. code-block:: llvm
8498
8499 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8500 %sum = extractvalue {i32, i1} %res, 0
8501 %obit = extractvalue {i32, i1} %res, 1
8502 br i1 %obit, label %carry, label %normal
8503
8504'``llvm.ssub.with.overflow.*``' Intrinsics
8505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8506
8507Syntax:
8508"""""""
8509
8510This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8511on any integer bit width.
8512
8513::
8514
8515 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8516 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8517 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8518
8519Overview:
8520"""""""""
8521
8522The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8523a signed subtraction of the two arguments, and indicate whether an
8524overflow occurred during the signed subtraction.
8525
8526Arguments:
8527""""""""""
8528
8529The arguments (%a and %b) and the first element of the result structure
8530may be of integer types of any bit width, but they must have the same
8531bit width. The second element of the result structure must be of type
8532``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8533subtraction.
8534
8535Semantics:
8536""""""""""
8537
8538The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008539a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008540first element of which is the subtraction, and the second element of
8541which is a bit specifying if the signed subtraction resulted in an
8542overflow.
8543
8544Examples:
8545"""""""""
8546
8547.. code-block:: llvm
8548
8549 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8550 %sum = extractvalue {i32, i1} %res, 0
8551 %obit = extractvalue {i32, i1} %res, 1
8552 br i1 %obit, label %overflow, label %normal
8553
8554'``llvm.usub.with.overflow.*``' Intrinsics
8555^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8556
8557Syntax:
8558"""""""
8559
8560This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8561on any integer bit width.
8562
8563::
8564
8565 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8566 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8567 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8568
8569Overview:
8570"""""""""
8571
8572The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8573an unsigned subtraction of the two arguments, and indicate whether an
8574overflow occurred during the unsigned subtraction.
8575
8576Arguments:
8577""""""""""
8578
8579The arguments (%a and %b) and the first element of the result structure
8580may be of integer types of any bit width, but they must have the same
8581bit width. The second element of the result structure must be of type
8582``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8583subtraction.
8584
8585Semantics:
8586""""""""""
8587
8588The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008589an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008590the first element of which is the subtraction, and the second element of
8591which is a bit specifying if the unsigned subtraction resulted in an
8592overflow.
8593
8594Examples:
8595"""""""""
8596
8597.. code-block:: llvm
8598
8599 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8600 %sum = extractvalue {i32, i1} %res, 0
8601 %obit = extractvalue {i32, i1} %res, 1
8602 br i1 %obit, label %overflow, label %normal
8603
8604'``llvm.smul.with.overflow.*``' Intrinsics
8605^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8606
8607Syntax:
8608"""""""
8609
8610This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8611on any integer bit width.
8612
8613::
8614
8615 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8616 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8617 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8618
8619Overview:
8620"""""""""
8621
8622The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8623a signed multiplication of the two arguments, and indicate whether an
8624overflow occurred during the signed multiplication.
8625
8626Arguments:
8627""""""""""
8628
8629The arguments (%a and %b) and the first element of the result structure
8630may be of integer types of any bit width, but they must have the same
8631bit width. The second element of the result structure must be of type
8632``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8633multiplication.
8634
8635Semantics:
8636""""""""""
8637
8638The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008639a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008640the first element of which is the multiplication, and the second element
8641of which is a bit specifying if the signed multiplication resulted in an
8642overflow.
8643
8644Examples:
8645"""""""""
8646
8647.. code-block:: llvm
8648
8649 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8650 %sum = extractvalue {i32, i1} %res, 0
8651 %obit = extractvalue {i32, i1} %res, 1
8652 br i1 %obit, label %overflow, label %normal
8653
8654'``llvm.umul.with.overflow.*``' Intrinsics
8655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8656
8657Syntax:
8658"""""""
8659
8660This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8661on any integer bit width.
8662
8663::
8664
8665 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8666 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8667 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8668
8669Overview:
8670"""""""""
8671
8672The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8673a unsigned multiplication of the two arguments, and indicate whether an
8674overflow occurred during the unsigned multiplication.
8675
8676Arguments:
8677""""""""""
8678
8679The arguments (%a and %b) and the first element of the result structure
8680may be of integer types of any bit width, but they must have the same
8681bit width. The second element of the result structure must be of type
8682``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8683multiplication.
8684
8685Semantics:
8686""""""""""
8687
8688The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008689an unsigned multiplication of the two arguments. They return a structure ---
8690the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008691element of which is a bit specifying if the unsigned multiplication
8692resulted in an overflow.
8693
8694Examples:
8695"""""""""
8696
8697.. code-block:: llvm
8698
8699 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8700 %sum = extractvalue {i32, i1} %res, 0
8701 %obit = extractvalue {i32, i1} %res, 1
8702 br i1 %obit, label %overflow, label %normal
8703
8704Specialised Arithmetic Intrinsics
8705---------------------------------
8706
8707'``llvm.fmuladd.*``' Intrinsic
8708^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8709
8710Syntax:
8711"""""""
8712
8713::
8714
8715 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8716 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8717
8718Overview:
8719"""""""""
8720
8721The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008722expressions that can be fused if the code generator determines that (a) the
8723target instruction set has support for a fused operation, and (b) that the
8724fused operation is more efficient than the equivalent, separate pair of mul
8725and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008726
8727Arguments:
8728""""""""""
8729
8730The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8731multiplicands, a and b, and an addend c.
8732
8733Semantics:
8734""""""""""
8735
8736The expression:
8737
8738::
8739
8740 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8741
8742is equivalent to the expression a \* b + c, except that rounding will
8743not be performed between the multiplication and addition steps if the
8744code generator fuses the operations. Fusion is not guaranteed, even if
8745the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008746corresponding llvm.fma.\* intrinsic function should be used
8747instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008748
8749Examples:
8750"""""""""
8751
8752.. code-block:: llvm
8753
Tim Northover675a0962014-06-13 14:24:23 +00008754 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00008755
8756Half Precision Floating Point Intrinsics
8757----------------------------------------
8758
8759For most target platforms, half precision floating point is a
8760storage-only format. This means that it is a dense encoding (in memory)
8761but does not support computation in the format.
8762
8763This means that code must first load the half-precision floating point
8764value as an i16, then convert it to float with
8765:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8766then be performed on the float value (including extending to double
8767etc). To store the value back to memory, it is first converted to float
8768if needed, then converted to i16 with
8769:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8770i16 value.
8771
8772.. _int_convert_to_fp16:
8773
8774'``llvm.convert.to.fp16``' Intrinsic
8775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8776
8777Syntax:
8778"""""""
8779
8780::
8781
Tim Northoverfd7e4242014-07-17 10:51:23 +00008782 declare i16 @llvm.convert.to.fp16.f32(float %a)
8783 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00008784
8785Overview:
8786"""""""""
8787
Tim Northoverfd7e4242014-07-17 10:51:23 +00008788The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8789conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00008790
8791Arguments:
8792""""""""""
8793
8794The intrinsic function contains single argument - the value to be
8795converted.
8796
8797Semantics:
8798""""""""""
8799
Tim Northoverfd7e4242014-07-17 10:51:23 +00008800The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8801conventional floating point format to half precision floating point format. The
8802return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00008803
8804Examples:
8805"""""""""
8806
8807.. code-block:: llvm
8808
Tim Northoverfd7e4242014-07-17 10:51:23 +00008809 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00008810 store i16 %res, i16* @x, align 2
8811
8812.. _int_convert_from_fp16:
8813
8814'``llvm.convert.from.fp16``' Intrinsic
8815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8816
8817Syntax:
8818"""""""
8819
8820::
8821
Tim Northoverfd7e4242014-07-17 10:51:23 +00008822 declare float @llvm.convert.from.fp16.f32(i16 %a)
8823 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008824
8825Overview:
8826"""""""""
8827
8828The '``llvm.convert.from.fp16``' intrinsic function performs a
8829conversion from half precision floating point format to single precision
8830floating point format.
8831
8832Arguments:
8833""""""""""
8834
8835The intrinsic function contains single argument - the value to be
8836converted.
8837
8838Semantics:
8839""""""""""
8840
8841The '``llvm.convert.from.fp16``' intrinsic function performs a
8842conversion from half single precision floating point format to single
8843precision floating point format. The input half-float value is
8844represented by an ``i16`` value.
8845
8846Examples:
8847"""""""""
8848
8849.. code-block:: llvm
8850
8851 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00008852 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008853
8854Debugger Intrinsics
8855-------------------
8856
8857The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8858prefix), are described in the `LLVM Source Level
8859Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8860document.
8861
8862Exception Handling Intrinsics
8863-----------------------------
8864
8865The LLVM exception handling intrinsics (which all start with
8866``llvm.eh.`` prefix), are described in the `LLVM Exception
8867Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8868
8869.. _int_trampoline:
8870
8871Trampoline Intrinsics
8872---------------------
8873
8874These intrinsics make it possible to excise one parameter, marked with
8875the :ref:`nest <nest>` attribute, from a function. The result is a
8876callable function pointer lacking the nest parameter - the caller does
8877not need to provide a value for it. Instead, the value to use is stored
8878in advance in a "trampoline", a block of memory usually allocated on the
8879stack, which also contains code to splice the nest value into the
8880argument list. This is used to implement the GCC nested function address
8881extension.
8882
8883For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8884then the resulting function pointer has signature ``i32 (i32, i32)*``.
8885It can be created as follows:
8886
8887.. code-block:: llvm
8888
8889 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8890 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8891 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8892 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8893 %fp = bitcast i8* %p to i32 (i32, i32)*
8894
8895The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8896``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8897
8898.. _int_it:
8899
8900'``llvm.init.trampoline``' Intrinsic
8901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8902
8903Syntax:
8904"""""""
8905
8906::
8907
8908 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8909
8910Overview:
8911"""""""""
8912
8913This fills the memory pointed to by ``tramp`` with executable code,
8914turning it into a trampoline.
8915
8916Arguments:
8917""""""""""
8918
8919The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8920pointers. The ``tramp`` argument must point to a sufficiently large and
8921sufficiently aligned block of memory; this memory is written to by the
8922intrinsic. Note that the size and the alignment are target-specific -
8923LLVM currently provides no portable way of determining them, so a
8924front-end that generates this intrinsic needs to have some
8925target-specific knowledge. The ``func`` argument must hold a function
8926bitcast to an ``i8*``.
8927
8928Semantics:
8929""""""""""
8930
8931The block of memory pointed to by ``tramp`` is filled with target
8932dependent code, turning it into a function. Then ``tramp`` needs to be
8933passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8934be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8935function's signature is the same as that of ``func`` with any arguments
8936marked with the ``nest`` attribute removed. At most one such ``nest``
8937argument is allowed, and it must be of pointer type. Calling the new
8938function is equivalent to calling ``func`` with the same argument list,
8939but with ``nval`` used for the missing ``nest`` argument. If, after
8940calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8941modified, then the effect of any later call to the returned function
8942pointer is undefined.
8943
8944.. _int_at:
8945
8946'``llvm.adjust.trampoline``' Intrinsic
8947^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8948
8949Syntax:
8950"""""""
8951
8952::
8953
8954 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8955
8956Overview:
8957"""""""""
8958
8959This performs any required machine-specific adjustment to the address of
8960a trampoline (passed as ``tramp``).
8961
8962Arguments:
8963""""""""""
8964
8965``tramp`` must point to a block of memory which already has trampoline
8966code filled in by a previous call to
8967:ref:`llvm.init.trampoline <int_it>`.
8968
8969Semantics:
8970""""""""""
8971
8972On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00008973different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00008974intrinsic returns the executable address corresponding to ``tramp``
8975after performing the required machine specific adjustments. The pointer
8976returned can then be :ref:`bitcast and executed <int_trampoline>`.
8977
8978Memory Use Markers
8979------------------
8980
Sanjay Patel69bf48e2014-07-04 19:40:43 +00008981This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00008982memory objects and ranges where variables are immutable.
8983
Reid Klecknera534a382013-12-19 02:14:12 +00008984.. _int_lifestart:
8985
Sean Silvab084af42012-12-07 10:36:55 +00008986'``llvm.lifetime.start``' Intrinsic
8987^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8988
8989Syntax:
8990"""""""
8991
8992::
8993
8994 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8995
8996Overview:
8997"""""""""
8998
8999The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9000object's lifetime.
9001
9002Arguments:
9003""""""""""
9004
9005The first argument is a constant integer representing the size of the
9006object, or -1 if it is variable sized. The second argument is a pointer
9007to the object.
9008
9009Semantics:
9010""""""""""
9011
9012This intrinsic indicates that before this point in the code, the value
9013of the memory pointed to by ``ptr`` is dead. This means that it is known
9014to never be used and has an undefined value. A load from the pointer
9015that precedes this intrinsic can be replaced with ``'undef'``.
9016
Reid Klecknera534a382013-12-19 02:14:12 +00009017.. _int_lifeend:
9018
Sean Silvab084af42012-12-07 10:36:55 +00009019'``llvm.lifetime.end``' Intrinsic
9020^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9021
9022Syntax:
9023"""""""
9024
9025::
9026
9027 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9028
9029Overview:
9030"""""""""
9031
9032The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9033object's lifetime.
9034
9035Arguments:
9036""""""""""
9037
9038The first argument is a constant integer representing the size of the
9039object, or -1 if it is variable sized. The second argument is a pointer
9040to the object.
9041
9042Semantics:
9043""""""""""
9044
9045This intrinsic indicates that after this point in the code, the value of
9046the memory pointed to by ``ptr`` is dead. This means that it is known to
9047never be used and has an undefined value. Any stores into the memory
9048object following this intrinsic may be removed as dead.
9049
9050'``llvm.invariant.start``' Intrinsic
9051^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9052
9053Syntax:
9054"""""""
9055
9056::
9057
9058 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9059
9060Overview:
9061"""""""""
9062
9063The '``llvm.invariant.start``' intrinsic specifies that the contents of
9064a memory object will not change.
9065
9066Arguments:
9067""""""""""
9068
9069The first argument is a constant integer representing the size of the
9070object, or -1 if it is variable sized. The second argument is a pointer
9071to the object.
9072
9073Semantics:
9074""""""""""
9075
9076This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9077the return value, the referenced memory location is constant and
9078unchanging.
9079
9080'``llvm.invariant.end``' Intrinsic
9081^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9082
9083Syntax:
9084"""""""
9085
9086::
9087
9088 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9089
9090Overview:
9091"""""""""
9092
9093The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9094memory object are mutable.
9095
9096Arguments:
9097""""""""""
9098
9099The first argument is the matching ``llvm.invariant.start`` intrinsic.
9100The second argument is a constant integer representing the size of the
9101object, or -1 if it is variable sized and the third argument is a
9102pointer to the object.
9103
9104Semantics:
9105""""""""""
9106
9107This intrinsic indicates that the memory is mutable again.
9108
9109General Intrinsics
9110------------------
9111
9112This class of intrinsics is designed to be generic and has no specific
9113purpose.
9114
9115'``llvm.var.annotation``' Intrinsic
9116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9117
9118Syntax:
9119"""""""
9120
9121::
9122
9123 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9124
9125Overview:
9126"""""""""
9127
9128The '``llvm.var.annotation``' intrinsic.
9129
9130Arguments:
9131""""""""""
9132
9133The first argument is a pointer to a value, the second is a pointer to a
9134global string, the third is a pointer to a global string which is the
9135source file name, and the last argument is the line number.
9136
9137Semantics:
9138""""""""""
9139
9140This intrinsic allows annotation of local variables with arbitrary
9141strings. This can be useful for special purpose optimizations that want
9142to look for these annotations. These have no other defined use; they are
9143ignored by code generation and optimization.
9144
Michael Gottesman88d18832013-03-26 00:34:27 +00009145'``llvm.ptr.annotation.*``' Intrinsic
9146^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9147
9148Syntax:
9149"""""""
9150
9151This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9152pointer to an integer of any width. *NOTE* you must specify an address space for
9153the pointer. The identifier for the default address space is the integer
9154'``0``'.
9155
9156::
9157
9158 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9159 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9160 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9161 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9162 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9163
9164Overview:
9165"""""""""
9166
9167The '``llvm.ptr.annotation``' intrinsic.
9168
9169Arguments:
9170""""""""""
9171
9172The first argument is a pointer to an integer value of arbitrary bitwidth
9173(result of some expression), the second is a pointer to a global string, the
9174third is a pointer to a global string which is the source file name, and the
9175last argument is the line number. It returns the value of the first argument.
9176
9177Semantics:
9178""""""""""
9179
9180This intrinsic allows annotation of a pointer to an integer with arbitrary
9181strings. This can be useful for special purpose optimizations that want to look
9182for these annotations. These have no other defined use; they are ignored by code
9183generation and optimization.
9184
Sean Silvab084af42012-12-07 10:36:55 +00009185'``llvm.annotation.*``' Intrinsic
9186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9187
9188Syntax:
9189"""""""
9190
9191This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9192any integer bit width.
9193
9194::
9195
9196 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9197 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9198 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9199 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9200 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9201
9202Overview:
9203"""""""""
9204
9205The '``llvm.annotation``' intrinsic.
9206
9207Arguments:
9208""""""""""
9209
9210The first argument is an integer value (result of some expression), the
9211second is a pointer to a global string, the third is a pointer to a
9212global string which is the source file name, and the last argument is
9213the line number. It returns the value of the first argument.
9214
9215Semantics:
9216""""""""""
9217
9218This intrinsic allows annotations to be put on arbitrary expressions
9219with arbitrary strings. This can be useful for special purpose
9220optimizations that want to look for these annotations. These have no
9221other defined use; they are ignored by code generation and optimization.
9222
9223'``llvm.trap``' Intrinsic
9224^^^^^^^^^^^^^^^^^^^^^^^^^
9225
9226Syntax:
9227"""""""
9228
9229::
9230
9231 declare void @llvm.trap() noreturn nounwind
9232
9233Overview:
9234"""""""""
9235
9236The '``llvm.trap``' intrinsic.
9237
9238Arguments:
9239""""""""""
9240
9241None.
9242
9243Semantics:
9244""""""""""
9245
9246This intrinsic is lowered to the target dependent trap instruction. If
9247the target does not have a trap instruction, this intrinsic will be
9248lowered to a call of the ``abort()`` function.
9249
9250'``llvm.debugtrap``' Intrinsic
9251^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9252
9253Syntax:
9254"""""""
9255
9256::
9257
9258 declare void @llvm.debugtrap() nounwind
9259
9260Overview:
9261"""""""""
9262
9263The '``llvm.debugtrap``' intrinsic.
9264
9265Arguments:
9266""""""""""
9267
9268None.
9269
9270Semantics:
9271""""""""""
9272
9273This intrinsic is lowered to code which is intended to cause an
9274execution trap with the intention of requesting the attention of a
9275debugger.
9276
9277'``llvm.stackprotector``' Intrinsic
9278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9279
9280Syntax:
9281"""""""
9282
9283::
9284
9285 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9286
9287Overview:
9288"""""""""
9289
9290The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9291onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9292is placed on the stack before local variables.
9293
9294Arguments:
9295""""""""""
9296
9297The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9298The first argument is the value loaded from the stack guard
9299``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9300enough space to hold the value of the guard.
9301
9302Semantics:
9303""""""""""
9304
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009305This intrinsic causes the prologue/epilogue inserter to force the position of
9306the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9307to ensure that if a local variable on the stack is overwritten, it will destroy
9308the value of the guard. When the function exits, the guard on the stack is
9309checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9310different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9311calling the ``__stack_chk_fail()`` function.
9312
9313'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009314^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009315
9316Syntax:
9317"""""""
9318
9319::
9320
9321 declare void @llvm.stackprotectorcheck(i8** <guard>)
9322
9323Overview:
9324"""""""""
9325
9326The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009327created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009328``__stack_chk_fail()`` function.
9329
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009330Arguments:
9331""""""""""
9332
9333The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9334the variable ``@__stack_chk_guard``.
9335
9336Semantics:
9337""""""""""
9338
9339This intrinsic is provided to perform the stack protector check by comparing
9340``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9341values do not match call the ``__stack_chk_fail()`` function.
9342
9343The reason to provide this as an IR level intrinsic instead of implementing it
9344via other IR operations is that in order to perform this operation at the IR
9345level without an intrinsic, one would need to create additional basic blocks to
9346handle the success/failure cases. This makes it difficult to stop the stack
9347protector check from disrupting sibling tail calls in Codegen. With this
9348intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009349codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009350
Sean Silvab084af42012-12-07 10:36:55 +00009351'``llvm.objectsize``' Intrinsic
9352^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9353
9354Syntax:
9355"""""""
9356
9357::
9358
9359 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9360 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9361
9362Overview:
9363"""""""""
9364
9365The ``llvm.objectsize`` intrinsic is designed to provide information to
9366the optimizers to determine at compile time whether a) an operation
9367(like memcpy) will overflow a buffer that corresponds to an object, or
9368b) that a runtime check for overflow isn't necessary. An object in this
9369context means an allocation of a specific class, structure, array, or
9370other object.
9371
9372Arguments:
9373""""""""""
9374
9375The ``llvm.objectsize`` intrinsic takes two arguments. The first
9376argument is a pointer to or into the ``object``. The second argument is
9377a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9378or -1 (if false) when the object size is unknown. The second argument
9379only accepts constants.
9380
9381Semantics:
9382""""""""""
9383
9384The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9385the size of the object concerned. If the size cannot be determined at
9386compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9387on the ``min`` argument).
9388
9389'``llvm.expect``' Intrinsic
9390^^^^^^^^^^^^^^^^^^^^^^^^^^^
9391
9392Syntax:
9393"""""""
9394
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009395This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9396integer bit width.
9397
Sean Silvab084af42012-12-07 10:36:55 +00009398::
9399
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009400 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009401 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9402 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9403
9404Overview:
9405"""""""""
9406
9407The ``llvm.expect`` intrinsic provides information about expected (the
9408most probable) value of ``val``, which can be used by optimizers.
9409
9410Arguments:
9411""""""""""
9412
9413The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9414a value. The second argument is an expected value, this needs to be a
9415constant value, variables are not allowed.
9416
9417Semantics:
9418""""""""""
9419
9420This intrinsic is lowered to the ``val``.
9421
9422'``llvm.donothing``' Intrinsic
9423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9424
9425Syntax:
9426"""""""
9427
9428::
9429
9430 declare void @llvm.donothing() nounwind readnone
9431
9432Overview:
9433"""""""""
9434
9435The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9436only intrinsic that can be called with an invoke instruction.
9437
9438Arguments:
9439""""""""""
9440
9441None.
9442
9443Semantics:
9444""""""""""
9445
9446This intrinsic does nothing, and it's removed by optimizers and ignored
9447by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009448
9449Stack Map Intrinsics
9450--------------------
9451
9452LLVM provides experimental intrinsics to support runtime patching
9453mechanisms commonly desired in dynamic language JITs. These intrinsics
9454are described in :doc:`StackMaps`.