blob: 5a8bd4bb7a189ce64a7ae9553928025fce5bb782 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000016#include "llvm/ADT/APFloat.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
James Molloy493e57d2015-10-26 14:10:46 +000020#include "llvm/ADT/Optional.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000021#include "llvm/ADT/STLExtras.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000022#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000023#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/Analysis/AliasAnalysis.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000028#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000029#include "llvm/Analysis/InstructionSimplify.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000030#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000031#include "llvm/Analysis/LoopInfo.h"
Adam Nemet0965da22017-10-09 23:19:02 +000032#include "llvm/Analysis/OptimizationRemarkEmitter.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000033#include "llvm/Analysis/TargetLibraryInfo.h"
34#include "llvm/IR/Argument.h"
35#include "llvm/IR/Attributes.h"
36#include "llvm/IR/BasicBlock.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000037#include "llvm/IR/CallSite.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000038#include "llvm/IR/Constant.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000039#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000040#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
Matthias Braun50ec0b52017-05-19 22:37:09 +000042#include "llvm/IR/DerivedTypes.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000043#include "llvm/IR/DiagnosticInfo.h"
Hal Finkel60db0582014-09-07 18:57:58 +000044#include "llvm/IR/Dominators.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000045#include "llvm/IR/Function.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000046#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000047#include "llvm/IR/GlobalAlias.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000048#include "llvm/IR/GlobalValue.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000049#include "llvm/IR/GlobalVariable.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000050#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000052#include "llvm/IR/Instructions.h"
53#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000054#include "llvm/IR/Intrinsics.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000055#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/Metadata.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000057#include "llvm/IR/Module.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000058#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000059#include "llvm/IR/PatternMatch.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000060#include "llvm/IR/Type.h"
61#include "llvm/IR/User.h"
62#include "llvm/IR/Value.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/ErrorHandling.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000067#include "llvm/Support/KnownBits.h"
Chris Lattner965c7692008-06-02 01:18:21 +000068#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000069#include <algorithm>
70#include <array>
Eugene Zelenko75075ef2017-09-01 21:37:29 +000071#include <cassert>
72#include <cstdint>
73#include <iterator>
74#include <utility>
75
Chris Lattner965c7692008-06-02 01:18:21 +000076using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000077using namespace llvm::PatternMatch;
78
79const unsigned MaxDepth = 6;
80
Philip Reames1c292272015-03-10 22:43:20 +000081// Controls the number of uses of the value searched for possible
82// dominating comparisons.
83static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000084 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000085
Craig Topper6b3940a2017-05-03 22:25:19 +000086/// Returns the bitwidth of the given scalar or pointer type. For vector types,
87/// returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000088static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000089 if (unsigned BitWidth = Ty->getScalarSizeInBits())
90 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000091
Mehdi Aminia28d91d2015-03-10 02:37:25 +000092 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000093}
Chris Lattner965c7692008-06-02 01:18:21 +000094
Benjamin Kramercfd8d902014-09-12 08:56:53 +000095namespace {
Eugene Zelenko75075ef2017-09-01 21:37:29 +000096
Hal Finkel60db0582014-09-07 18:57:58 +000097// Simplifying using an assume can only be done in a particular control-flow
98// context (the context instruction provides that context). If an assume and
99// the context instruction are not in the same block then the DT helps in
100// figuring out if we can use it.
101struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000102 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000103 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +0000104 const Instruction *CxtI;
105 const DominatorTree *DT;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000106
Sanjay Patel54656ca2017-02-06 18:26:06 +0000107 // Unlike the other analyses, this may be a nullptr because not all clients
108 // provide it currently.
109 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +0000110
Matthias Braun37e5d792016-01-28 06:29:33 +0000111 /// Set of assumptions that should be excluded from further queries.
112 /// This is because of the potential for mutual recursion to cause
113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
114 /// classic case of this is assume(x = y), which will attempt to determine
115 /// bits in x from bits in y, which will attempt to determine bits in y from
116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
Craig Topper6e11a052017-05-08 16:22:48 +0000117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
118 /// (all of which can call computeKnownBits), and so on.
Li Huang755f75f2016-10-15 19:00:04 +0000119 std::array<const Value *, MaxDepth> Excluded;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000120
121 unsigned NumExcluded = 0;
Matthias Braun37e5d792016-01-28 06:29:33 +0000122
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000124 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000125 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000126
127 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000128 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
129 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000130 Excluded = Q.Excluded;
131 Excluded[NumExcluded++] = NewExcl;
132 assert(NumExcluded <= Excluded.size());
133 }
134
135 bool isExcluded(const Value *Value) const {
136 if (NumExcluded == 0)
137 return false;
138 auto End = Excluded.begin() + NumExcluded;
139 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000140 }
141};
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000142
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000143} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000144
Sanjay Patel547e9752014-11-04 16:09:50 +0000145// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000146// the preferred context instruction (if any).
147static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
148 // If we've been provided with a context instruction, then use that (provided
149 // it has been inserted).
150 if (CxtI && CxtI->getParent())
151 return CxtI;
152
153 // If the value is really an already-inserted instruction, then use that.
154 CxtI = dyn_cast<Instruction>(V);
155 if (CxtI && CxtI->getParent())
156 return CxtI;
157
158 return nullptr;
159}
160
Craig Topperb45eabc2017-04-26 16:39:58 +0000161static void computeKnownBits(const Value *V, KnownBits &Known,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000162 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000163
Craig Topperb45eabc2017-04-26 16:39:58 +0000164void llvm::computeKnownBits(const Value *V, KnownBits &Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000165 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000166 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000167 const DominatorTree *DT,
168 OptimizationRemarkEmitter *ORE) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000169 ::computeKnownBits(V, Known, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000170 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000171}
172
Craig Topper6e11a052017-05-08 16:22:48 +0000173static KnownBits computeKnownBits(const Value *V, unsigned Depth,
174 const Query &Q);
175
176KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
177 unsigned Depth, AssumptionCache *AC,
178 const Instruction *CxtI,
Craig Toppera2025ea2017-05-24 16:53:03 +0000179 const DominatorTree *DT,
180 OptimizationRemarkEmitter *ORE) {
181 return ::computeKnownBits(V, Depth,
182 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Craig Topper6e11a052017-05-08 16:22:48 +0000183}
184
Pete Cooper35b00d52016-08-13 01:05:32 +0000185bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
186 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000187 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000188 const DominatorTree *DT) {
189 assert(LHS->getType() == RHS->getType() &&
190 "LHS and RHS should have the same type");
191 assert(LHS->getType()->isIntOrIntVectorTy() &&
192 "LHS and RHS should be integers");
193 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
Craig Topperb45eabc2017-04-26 16:39:58 +0000194 KnownBits LHSKnown(IT->getBitWidth());
195 KnownBits RHSKnown(IT->getBitWidth());
196 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT);
197 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT);
198 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
Jingyue Wuca321902015-05-14 23:53:19 +0000199}
200
Zaara Syeda3a7578c2017-05-31 17:12:38 +0000201bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
202 for (const User *U : CxtI->users()) {
203 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
204 if (IC->isEquality())
205 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
206 if (C->isNullValue())
207 continue;
208 return false;
209 }
210 return true;
211}
212
Pete Cooper35b00d52016-08-13 01:05:32 +0000213static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000214 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000215
Pete Cooper35b00d52016-08-13 01:05:32 +0000216bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
217 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000218 unsigned Depth, AssumptionCache *AC,
219 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000220 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000221 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000222 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000223}
224
Pete Cooper35b00d52016-08-13 01:05:32 +0000225static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000226
Pete Cooper35b00d52016-08-13 01:05:32 +0000227bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000228 AssumptionCache *AC, const Instruction *CxtI,
229 const DominatorTree *DT) {
230 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000231}
232
Pete Cooper35b00d52016-08-13 01:05:32 +0000233bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000234 unsigned Depth,
235 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000236 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000237 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
238 return Known.isNonNegative();
Jingyue Wu10fcea52015-08-20 18:27:04 +0000239}
240
Pete Cooper35b00d52016-08-13 01:05:32 +0000241bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000242 AssumptionCache *AC, const Instruction *CxtI,
243 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000244 if (auto *CI = dyn_cast<ConstantInt>(V))
245 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000246
Philip Reames8f12eba2016-03-09 21:31:47 +0000247 // TODO: We'd doing two recursive queries here. We should factor this such
248 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000249 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
250 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000251}
252
Pete Cooper35b00d52016-08-13 01:05:32 +0000253bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000254 AssumptionCache *AC, const Instruction *CxtI,
255 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000256 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
257 return Known.isNegative();
Nick Lewycky762f8a82016-04-21 00:53:14 +0000258}
259
Pete Cooper35b00d52016-08-13 01:05:32 +0000260static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000261
Pete Cooper35b00d52016-08-13 01:05:32 +0000262bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000263 const DataLayout &DL,
264 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000265 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000266 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
267 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000268 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000269}
270
Pete Cooper35b00d52016-08-13 01:05:32 +0000271static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000272 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000273
Pete Cooper35b00d52016-08-13 01:05:32 +0000274bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
275 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000276 unsigned Depth, AssumptionCache *AC,
277 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000278 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000279 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000280}
281
Pete Cooper35b00d52016-08-13 01:05:32 +0000282static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
283 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000284
Pete Cooper35b00d52016-08-13 01:05:32 +0000285unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000286 unsigned Depth, AssumptionCache *AC,
287 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000288 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000289 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000290}
291
Craig Topper8fbb74b2017-03-24 22:12:10 +0000292static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
293 bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000294 KnownBits &KnownOut, KnownBits &Known2,
Craig Topper8fbb74b2017-03-24 22:12:10 +0000295 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000296 unsigned BitWidth = KnownOut.getBitWidth();
Craig Topper8fbb74b2017-03-24 22:12:10 +0000297
298 // If an initial sequence of bits in the result is not needed, the
299 // corresponding bits in the operands are not needed.
Craig Topperb45eabc2017-04-26 16:39:58 +0000300 KnownBits LHSKnown(BitWidth);
301 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
302 computeKnownBits(Op1, Known2, Depth + 1, Q);
Craig Topper8fbb74b2017-03-24 22:12:10 +0000303
Craig Topperb498a232017-08-08 16:29:35 +0000304 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000305}
306
Pete Cooper35b00d52016-08-13 01:05:32 +0000307static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000308 KnownBits &Known, KnownBits &Known2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000309 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000310 unsigned BitWidth = Known.getBitWidth();
311 computeKnownBits(Op1, Known, Depth + 1, Q);
312 computeKnownBits(Op0, Known2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000313
314 bool isKnownNegative = false;
315 bool isKnownNonNegative = false;
316 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000317 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000318 if (Op0 == Op1) {
319 // The product of a number with itself is non-negative.
320 isKnownNonNegative = true;
321 } else {
Craig Topperca48af32017-04-29 16:43:11 +0000322 bool isKnownNonNegativeOp1 = Known.isNonNegative();
323 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
324 bool isKnownNegativeOp1 = Known.isNegative();
325 bool isKnownNegativeOp0 = Known2.isNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000326 // The product of two numbers with the same sign is non-negative.
327 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
328 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
329 // The product of a negative number and a non-negative number is either
330 // negative or zero.
331 if (!isKnownNonNegative)
332 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000333 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000334 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000335 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000336 }
337 }
338
Simon Dardis70dbd5f2017-12-09 23:25:57 +0000339 assert(!Known.hasConflict() && !Known2.hasConflict());
340 // Compute a conservative estimate for high known-0 bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000341 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
342 Known2.countMinLeadingZeros(),
Nick Lewyckyfa306072012-03-18 23:28:48 +0000343 BitWidth) - BitWidth;
Nick Lewyckyfa306072012-03-18 23:28:48 +0000344 LeadZ = std::min(LeadZ, BitWidth);
Simon Dardis70dbd5f2017-12-09 23:25:57 +0000345
346 // The result of the bottom bits of an integer multiply can be
347 // inferred by looking at the bottom bits of both operands and
348 // multiplying them together.
349 // We can infer at least the minimum number of known trailing bits
350 // of both operands. Depending on number of trailing zeros, we can
351 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
352 // a and b are divisible by m and n respectively.
353 // We then calculate how many of those bits are inferrable and set
354 // the output. For example, the i8 mul:
355 // a = XXXX1100 (12)
356 // b = XXXX1110 (14)
357 // We know the bottom 3 bits are zero since the first can be divided by
358 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
359 // Applying the multiplication to the trimmed arguments gets:
360 // XX11 (3)
361 // X111 (7)
362 // -------
363 // XX11
364 // XX11
365 // XX11
366 // XX11
367 // -------
368 // XXXXX01
369 // Which allows us to infer the 2 LSBs. Since we're multiplying the result
370 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
371 // The proof for this can be described as:
372 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
373 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
374 // umin(countTrailingZeros(C2), C6) +
375 // umin(C5 - umin(countTrailingZeros(C1), C5),
376 // C6 - umin(countTrailingZeros(C2), C6)))) - 1)
377 // %aa = shl i8 %a, C5
378 // %bb = shl i8 %b, C6
379 // %aaa = or i8 %aa, C1
380 // %bbb = or i8 %bb, C2
381 // %mul = mul i8 %aaa, %bbb
382 // %mask = and i8 %mul, C7
383 // =>
384 // %mask = i8 ((C1*C2)&C7)
385 // Where C5, C6 describe the known bits of %a, %b
386 // C1, C2 describe the known bottom bits of %a, %b.
387 // C7 describes the mask of the known bits of the result.
388 APInt Bottom0 = Known.One;
389 APInt Bottom1 = Known2.One;
390
391 // How many times we'd be able to divide each argument by 2 (shr by 1).
392 // This gives us the number of trailing zeros on the multiplication result.
393 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
394 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
395 unsigned TrailZero0 = Known.countMinTrailingZeros();
396 unsigned TrailZero1 = Known2.countMinTrailingZeros();
397 unsigned TrailZ = TrailZero0 + TrailZero1;
398
399 // Figure out the fewest known-bits operand.
400 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
401 TrailBitsKnown1 - TrailZero1);
402 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
403
404 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
405 Bottom1.getLoBits(TrailBitsKnown1);
406
Craig Topperf0aeee02017-05-05 17:36:09 +0000407 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000408 Known.Zero.setHighBits(LeadZ);
Simon Dardis70dbd5f2017-12-09 23:25:57 +0000409 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
410 Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000411
412 // Only make use of no-wrap flags if we failed to compute the sign bit
413 // directly. This matters if the multiplication always overflows, in
414 // which case we prefer to follow the result of the direct computation,
415 // though as the program is invoking undefined behaviour we can choose
416 // whatever we like here.
Craig Topperca48af32017-04-29 16:43:11 +0000417 if (isKnownNonNegative && !Known.isNegative())
418 Known.makeNonNegative();
419 else if (isKnownNegative && !Known.isNonNegative())
420 Known.makeNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000421}
422
Jingyue Wu37fcb592014-06-19 16:50:16 +0000423void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Craig Topperf42b23f2017-04-28 06:28:56 +0000424 KnownBits &Known) {
425 unsigned BitWidth = Known.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000426 unsigned NumRanges = Ranges.getNumOperands() / 2;
427 assert(NumRanges >= 1);
428
Craig Topperf42b23f2017-04-28 06:28:56 +0000429 Known.Zero.setAllBits();
430 Known.One.setAllBits();
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000431
Rafael Espindola53190532012-03-30 15:52:11 +0000432 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000433 ConstantInt *Lower =
434 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
435 ConstantInt *Upper =
436 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000437 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000438
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000439 // The first CommonPrefixBits of all values in Range are equal.
440 unsigned CommonPrefixBits =
441 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
442
443 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Craig Topperf42b23f2017-04-28 06:28:56 +0000444 Known.One &= Range.getUnsignedMax() & Mask;
445 Known.Zero &= ~Range.getUnsignedMax() & Mask;
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000446 }
Rafael Espindola53190532012-03-30 15:52:11 +0000447}
Jay Foad5a29c362014-05-15 12:12:55 +0000448
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000449static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000450 SmallVector<const Value *, 16> WorkSet(1, I);
451 SmallPtrSet<const Value *, 32> Visited;
452 SmallPtrSet<const Value *, 16> EphValues;
453
Hal Finkelf2199b22015-10-23 20:37:08 +0000454 // The instruction defining an assumption's condition itself is always
455 // considered ephemeral to that assumption (even if it has other
456 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000457 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000458 return true;
459
Hal Finkel60db0582014-09-07 18:57:58 +0000460 while (!WorkSet.empty()) {
461 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000462 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000463 continue;
464
465 // If all uses of this value are ephemeral, then so is this value.
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000466 if (llvm::all_of(V->users(), [&](const User *U) {
467 return EphValues.count(U);
468 })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000469 if (V == E)
470 return true;
471
Hal Finkelb03dd4b2017-08-14 17:11:43 +0000472 if (V == I || isSafeToSpeculativelyExecute(V)) {
473 EphValues.insert(V);
474 if (const User *U = dyn_cast<User>(V))
475 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
476 J != JE; ++J)
477 WorkSet.push_back(*J);
478 }
Hal Finkel60db0582014-09-07 18:57:58 +0000479 }
480 }
481
482 return false;
483}
484
485// Is this an intrinsic that cannot be speculated but also cannot trap?
Haicheng Wua4461512017-12-15 14:34:41 +0000486bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
Hal Finkel60db0582014-09-07 18:57:58 +0000487 if (const CallInst *CI = dyn_cast<CallInst>(I))
488 if (Function *F = CI->getCalledFunction())
489 switch (F->getIntrinsicID()) {
490 default: break;
491 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
492 case Intrinsic::assume:
Dan Gohman2c74fe92017-11-08 21:59:51 +0000493 case Intrinsic::sideeffect:
Hal Finkel60db0582014-09-07 18:57:58 +0000494 case Intrinsic::dbg_declare:
495 case Intrinsic::dbg_value:
496 case Intrinsic::invariant_start:
497 case Intrinsic::invariant_end:
498 case Intrinsic::lifetime_start:
499 case Intrinsic::lifetime_end:
500 case Intrinsic::objectsize:
501 case Intrinsic::ptr_annotation:
502 case Intrinsic::var_annotation:
503 return true;
504 }
505
506 return false;
507}
508
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000509bool llvm::isValidAssumeForContext(const Instruction *Inv,
510 const Instruction *CxtI,
511 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000512 // There are two restrictions on the use of an assume:
513 // 1. The assume must dominate the context (or the control flow must
514 // reach the assume whenever it reaches the context).
515 // 2. The context must not be in the assume's set of ephemeral values
516 // (otherwise we will use the assume to prove that the condition
517 // feeding the assume is trivially true, thus causing the removal of
518 // the assume).
519
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000520 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000521 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000522 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000523 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
524 // We don't have a DT, but this trivially dominates.
525 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000526 }
527
Pete Cooper54a02552016-08-12 01:00:15 +0000528 // With or without a DT, the only remaining case we will check is if the
529 // instructions are in the same BB. Give up if that is not the case.
530 if (Inv->getParent() != CxtI->getParent())
531 return false;
532
533 // If we have a dom tree, then we now know that the assume doens't dominate
534 // the other instruction. If we don't have a dom tree then we can check if
535 // the assume is first in the BB.
536 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000537 // Search forward from the assume until we reach the context (or the end
538 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000539 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000540 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000541 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000542 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000543 }
544
Pete Cooper54a02552016-08-12 01:00:15 +0000545 // The context comes first, but they're both in the same block. Make sure
546 // there is nothing in between that might interrupt the control flow.
547 for (BasicBlock::const_iterator I =
548 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
549 I != IE; ++I)
550 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
551 return false;
552
553 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000554}
555
Craig Topperb45eabc2017-04-26 16:39:58 +0000556static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
557 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000558 // Use of assumptions is context-sensitive. If we don't have a context, we
559 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000560 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000561 return;
562
Craig Topperb45eabc2017-04-26 16:39:58 +0000563 unsigned BitWidth = Known.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000564
Hal Finkel8a9a7832017-01-11 13:24:24 +0000565 // Note that the patterns below need to be kept in sync with the code
566 // in AssumptionCache::updateAffectedValues.
567
568 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000569 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000570 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000571 CallInst *I = cast<CallInst>(AssumeVH);
572 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
573 "Got assumption for the wrong function!");
574 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000575 continue;
576
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000577 // Warning: This loop can end up being somewhat performance sensetive.
578 // We're running this loop for once for each value queried resulting in a
579 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000580
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000581 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
582 "must be an assume intrinsic");
583
584 Value *Arg = I->getArgOperand(0);
585
586 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000587 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000588 Known.setAllOnes();
Hal Finkel60db0582014-09-07 18:57:58 +0000589 return;
590 }
Sanjay Patel96669962017-01-17 18:15:49 +0000591 if (match(Arg, m_Not(m_Specific(V))) &&
592 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
593 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000594 Known.setAllZero();
Sanjay Patel96669962017-01-17 18:15:49 +0000595 return;
596 }
Hal Finkel60db0582014-09-07 18:57:58 +0000597
David Majnemer9b609752014-12-12 23:59:29 +0000598 // The remaining tests are all recursive, so bail out if we hit the limit.
599 if (Depth == MaxDepth)
600 continue;
601
Hal Finkel60db0582014-09-07 18:57:58 +0000602 Value *A, *B;
603 auto m_V = m_CombineOr(m_Specific(V),
604 m_CombineOr(m_PtrToInt(m_Specific(V)),
605 m_BitCast(m_Specific(V))));
606
607 CmpInst::Predicate Pred;
Igor Laevskycec8f472017-12-05 12:18:15 +0000608 uint64_t C;
Hal Finkel60db0582014-09-07 18:57:58 +0000609 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000610 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000611 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000612 KnownBits RHSKnown(BitWidth);
613 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
614 Known.Zero |= RHSKnown.Zero;
615 Known.One |= RHSKnown.One;
Hal Finkel60db0582014-09-07 18:57:58 +0000616 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000617 } else if (match(Arg,
618 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000619 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000620 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000621 KnownBits RHSKnown(BitWidth);
622 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
623 KnownBits MaskKnown(BitWidth);
624 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000625
626 // For those bits in the mask that are known to be one, we can propagate
627 // known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000628 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
629 Known.One |= RHSKnown.One & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000630 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000631 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
632 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000633 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000634 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000635 KnownBits RHSKnown(BitWidth);
636 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
637 KnownBits MaskKnown(BitWidth);
638 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000639
640 // For those bits in the mask that are known to be one, we can propagate
641 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000642 Known.Zero |= RHSKnown.One & MaskKnown.One;
643 Known.One |= RHSKnown.Zero & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000644 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000645 } else if (match(Arg,
646 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000647 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000648 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000649 KnownBits RHSKnown(BitWidth);
650 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
651 KnownBits BKnown(BitWidth);
652 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000653
654 // For those bits in B that are known to be zero, we can propagate known
655 // bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000656 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
657 Known.One |= RHSKnown.One & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000658 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000659 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
660 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000661 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000662 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000663 KnownBits RHSKnown(BitWidth);
664 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
665 KnownBits BKnown(BitWidth);
666 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000667
668 // For those bits in B that are known to be zero, we can propagate
669 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000670 Known.Zero |= RHSKnown.One & BKnown.Zero;
671 Known.One |= RHSKnown.Zero & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000672 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000673 } else if (match(Arg,
674 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000675 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000676 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000677 KnownBits RHSKnown(BitWidth);
678 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
679 KnownBits BKnown(BitWidth);
680 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000681
682 // For those bits in B that are known to be zero, we can propagate known
683 // bits from the RHS to V. For those bits in B that are known to be one,
684 // we can propagate inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000685 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
686 Known.One |= RHSKnown.One & BKnown.Zero;
687 Known.Zero |= RHSKnown.One & BKnown.One;
688 Known.One |= RHSKnown.Zero & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000689 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000690 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
691 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000692 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000694 KnownBits RHSKnown(BitWidth);
695 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
696 KnownBits BKnown(BitWidth);
697 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000698
699 // For those bits in B that are known to be zero, we can propagate
700 // inverted known bits from the RHS to V. For those bits in B that are
701 // known to be one, we can propagate known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000702 Known.Zero |= RHSKnown.One & BKnown.Zero;
703 Known.One |= RHSKnown.Zero & BKnown.Zero;
704 Known.Zero |= RHSKnown.Zero & BKnown.One;
705 Known.One |= RHSKnown.One & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000706 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000707 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
708 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000709 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000710 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
711 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000712 KnownBits RHSKnown(BitWidth);
713 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000714 // For those bits in RHS that are known, we can propagate them to known
715 // bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000716 RHSKnown.Zero.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000717 Known.Zero |= RHSKnown.Zero;
Igor Laevskycec8f472017-12-05 12:18:15 +0000718 RHSKnown.One.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000719 Known.One |= RHSKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000720 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000721 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
722 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000723 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000724 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
725 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000726 KnownBits RHSKnown(BitWidth);
727 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000728 // For those bits in RHS that are known, we can propagate them inverted
729 // to known bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000730 RHSKnown.One.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000731 Known.Zero |= RHSKnown.One;
Igor Laevskycec8f472017-12-05 12:18:15 +0000732 RHSKnown.Zero.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000733 Known.One |= RHSKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000734 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000735 } else if (match(Arg,
Craig Topper7b66ffe2017-06-24 06:24:04 +0000736 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000737 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000738 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000739 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
740 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000741 KnownBits RHSKnown(BitWidth);
742 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000743 // For those bits in RHS that are known, we can propagate them to known
744 // bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000745 Known.Zero |= RHSKnown.Zero << C;
746 Known.One |= RHSKnown.One << C;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000747 // assume(~(v >> c) = a)
Craig Topper7b66ffe2017-06-24 06:24:04 +0000748 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000749 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000750 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000751 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
752 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000753 KnownBits RHSKnown(BitWidth);
754 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000755 // For those bits in RHS that are known, we can propagate them inverted
756 // to known bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000757 Known.Zero |= RHSKnown.One << C;
758 Known.One |= RHSKnown.Zero << C;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000759 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000760 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000761 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000763 KnownBits RHSKnown(BitWidth);
764 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000765
Craig Topperca48af32017-04-29 16:43:11 +0000766 if (RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000767 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000768 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000769 }
770 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000771 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000772 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000774 KnownBits RHSKnown(BitWidth);
775 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000776
Craig Topperf0aeee02017-05-05 17:36:09 +0000777 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000778 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000779 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000780 }
781 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000782 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000783 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000784 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000785 KnownBits RHSKnown(BitWidth);
786 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000787
Craig Topperca48af32017-04-29 16:43:11 +0000788 if (RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000789 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000790 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000791 }
792 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000793 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000794 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000795 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000796 KnownBits RHSKnown(BitWidth);
797 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000798
Craig Topperf0aeee02017-05-05 17:36:09 +0000799 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000800 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000801 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000802 }
803 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000804 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000805 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000806 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000807 KnownBits RHSKnown(BitWidth);
808 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000809
810 // Whatever high bits in c are zero are known to be zero.
Craig Topper8df66c62017-05-12 17:20:30 +0000811 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
812 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000813 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000814 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000815 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000816 KnownBits RHSKnown(BitWidth);
817 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000818
819 // Whatever high bits in c are zero are known to be zero (if c is a power
820 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000821 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper8df66c62017-05-12 17:20:30 +0000822 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000823 else
Craig Topper8df66c62017-05-12 17:20:30 +0000824 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
Hal Finkel60db0582014-09-07 18:57:58 +0000825 }
826 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000827
828 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000829 // have a logical fallacy. It's possible that the assumption is not reachable,
830 // so this isn't a real bug. On the other hand, the program may have undefined
831 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
832 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topperb45eabc2017-04-26 16:39:58 +0000833 if (Known.Zero.intersects(Known.One)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000834 Known.resetAll();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000835
Vivek Pandya95906582017-10-11 17:12:59 +0000836 if (Q.ORE)
837 Q.ORE->emit([&]() {
838 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
839 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
840 CxtI)
841 << "Detected conflicting code assumptions. Program may "
842 "have undefined behavior, or compiler may have "
843 "internal error.";
844 });
Sanjay Patel25f6d712017-02-01 15:41:32 +0000845 }
Hal Finkel60db0582014-09-07 18:57:58 +0000846}
847
Sanjay Patelb7d12382017-10-16 14:46:37 +0000848/// Compute known bits from a shift operator, including those with a
849/// non-constant shift amount. Known is the output of this function. Known2 is a
850/// pre-allocated temporary with the same bit width as Known. KZF and KOF are
851/// operator-specific functors that, given the known-zero or known-one bits
852/// respectively, and a shift amount, compute the implied known-zero or
853/// known-one bits of the shift operator's result respectively for that shift
854/// amount. The results from calling KZF and KOF are conservatively combined for
855/// all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000856static void computeKnownBitsFromShiftOperator(
Craig Topperb45eabc2017-04-26 16:39:58 +0000857 const Operator *I, KnownBits &Known, KnownBits &Known2,
858 unsigned Depth, const Query &Q,
Sam McCalld0d43e62017-12-04 12:51:49 +0000859 function_ref<APInt(const APInt &, unsigned)> KZF,
860 function_ref<APInt(const APInt &, unsigned)> KOF) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000861 unsigned BitWidth = Known.getBitWidth();
Hal Finkelf2199b22015-10-23 20:37:08 +0000862
863 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
864 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
865
Craig Topperb45eabc2017-04-26 16:39:58 +0000866 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Sam McCalld0d43e62017-12-04 12:51:49 +0000867 Known.Zero = KZF(Known.Zero, ShiftAmt);
868 Known.One = KOF(Known.One, ShiftAmt);
Sanjay Patele272be72017-10-12 17:31:46 +0000869 // If the known bits conflict, this must be an overflowing left shift, so
870 // the shift result is poison. We can return anything we want. Choose 0 for
871 // the best folding opportunity.
872 if (Known.hasConflict())
873 Known.setAllZero();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000874
Hal Finkelf2199b22015-10-23 20:37:08 +0000875 return;
876 }
877
Craig Topperb45eabc2017-04-26 16:39:58 +0000878 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000879
Sanjay Patele272be72017-10-12 17:31:46 +0000880 // If the shift amount could be greater than or equal to the bit-width of the
881 // LHS, the value could be poison, but bail out because the check below is
882 // expensive. TODO: Should we just carry on?
Craig Topperb45eabc2017-04-26 16:39:58 +0000883 if ((~Known.Zero).uge(BitWidth)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000884 Known.resetAll();
Oliver Stannard06204112017-03-14 10:13:17 +0000885 return;
886 }
887
Craig Topperb45eabc2017-04-26 16:39:58 +0000888 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
Hal Finkelf2199b22015-10-23 20:37:08 +0000889 // BitWidth > 64 and any upper bits are known, we'll end up returning the
890 // limit value (which implies all bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000891 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
892 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
Hal Finkelf2199b22015-10-23 20:37:08 +0000893
894 // It would be more-clearly correct to use the two temporaries for this
895 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Craig Topperf0aeee02017-05-05 17:36:09 +0000896 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000897
James Molloy493e57d2015-10-26 14:10:46 +0000898 // If we know the shifter operand is nonzero, we can sometimes infer more
899 // known bits. However this is expensive to compute, so be lazy about it and
900 // only compute it when absolutely necessary.
901 Optional<bool> ShifterOperandIsNonZero;
902
Hal Finkelf2199b22015-10-23 20:37:08 +0000903 // Early exit if we can't constrain any well-defined shift amount.
Craig Topperf93b7b12017-06-14 17:04:59 +0000904 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
905 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
Sanjay Patelb7d12382017-10-16 14:46:37 +0000906 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000907 if (!*ShifterOperandIsNonZero)
908 return;
909 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000910
Craig Topperb45eabc2017-04-26 16:39:58 +0000911 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000912
Craig Topperb45eabc2017-04-26 16:39:58 +0000913 Known.Zero.setAllBits();
914 Known.One.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000915 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
916 // Combine the shifted known input bits only for those shift amounts
917 // compatible with its known constraints.
918 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
919 continue;
920 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
921 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000922 // If we know the shifter is nonzero, we may be able to infer more known
923 // bits. This check is sunk down as far as possible to avoid the expensive
924 // call to isKnownNonZero if the cheaper checks above fail.
925 if (ShiftAmt == 0) {
926 if (!ShifterOperandIsNonZero.hasValue())
927 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000928 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000929 if (*ShifterOperandIsNonZero)
930 continue;
931 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000932
Sam McCalld0d43e62017-12-04 12:51:49 +0000933 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
934 Known.One &= KOF(Known2.One, ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +0000935 }
936
Sanjay Patele272be72017-10-12 17:31:46 +0000937 // If the known bits conflict, the result is poison. Return a 0 and hope the
938 // caller can further optimize that.
939 if (Known.hasConflict())
940 Known.setAllZero();
Hal Finkelf2199b22015-10-23 20:37:08 +0000941}
942
Craig Topperb45eabc2017-04-26 16:39:58 +0000943static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
944 unsigned Depth, const Query &Q) {
945 unsigned BitWidth = Known.getBitWidth();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000946
Craig Topperb45eabc2017-04-26 16:39:58 +0000947 KnownBits Known2(Known);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000948 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000949 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000950 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000951 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +0000952 computeKnownBitsFromRangeMetadata(*MD, Known);
Jay Foad5a29c362014-05-15 12:12:55 +0000953 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000954 case Instruction::And: {
955 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000956 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
957 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000958
Chris Lattner965c7692008-06-02 01:18:21 +0000959 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000960 Known.One &= Known2.One;
Chris Lattner965c7692008-06-02 01:18:21 +0000961 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000962 Known.Zero |= Known2.Zero;
Philip Reames2d858742015-11-10 18:46:14 +0000963
964 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
965 // here we handle the more general case of adding any odd number by
966 // matching the form add(x, add(x, y)) where y is odd.
967 // TODO: This could be generalized to clearing any bit set in y where the
968 // following bit is known to be unset in y.
969 Value *Y = nullptr;
Craig Topperb45eabc2017-04-26 16:39:58 +0000970 if (!Known.Zero[0] && !Known.One[0] &&
Craig Toppera80f2042017-04-13 19:04:45 +0000971 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
972 m_Value(Y))) ||
973 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
974 m_Value(Y))))) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000975 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000976 computeKnownBits(Y, Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000977 if (Known2.countMinTrailingOnes() > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +0000978 Known.Zero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +0000979 }
Jay Foad5a29c362014-05-15 12:12:55 +0000980 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000981 }
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000982 case Instruction::Or:
Craig Topperb45eabc2017-04-26 16:39:58 +0000983 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
984 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000985
Chris Lattner965c7692008-06-02 01:18:21 +0000986 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000987 Known.Zero &= Known2.Zero;
Chris Lattner965c7692008-06-02 01:18:21 +0000988 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000989 Known.One |= Known2.One;
Jay Foad5a29c362014-05-15 12:12:55 +0000990 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000991 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000992 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
993 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000994
Chris Lattner965c7692008-06-02 01:18:21 +0000995 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000996 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
Chris Lattner965c7692008-06-02 01:18:21 +0000997 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000998 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
999 Known.Zero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +00001000 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001001 }
1002 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +00001003 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperb45eabc2017-04-26 16:39:58 +00001004 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1005 Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001006 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001007 }
1008 case Instruction::UDiv: {
1009 // For the purposes of computing leading zeros we can conservatively
1010 // treat a udiv as a logical right shift by the power of 2 known to
1011 // be less than the denominator.
Craig Topperb45eabc2017-04-26 16:39:58 +00001012 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001013 unsigned LeadZ = Known2.countMinLeadingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001014
Craig Topperf0aeee02017-05-05 17:36:09 +00001015 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001016 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001017 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1018 if (RHSMaxLeadingZeros != BitWidth)
1019 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Chris Lattner965c7692008-06-02 01:18:21 +00001020
Craig Topperb45eabc2017-04-26 16:39:58 +00001021 Known.Zero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +00001022 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001023 }
David Majnemera19d0f22016-08-06 08:16:00 +00001024 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +00001025 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +00001026 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1027 if (SelectPatternResult::isMinOrMax(SPF)) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001028 computeKnownBits(RHS, Known, Depth + 1, Q);
1029 computeKnownBits(LHS, Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +00001030 } else {
Craig Topperb45eabc2017-04-26 16:39:58 +00001031 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1032 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +00001033 }
1034
1035 unsigned MaxHighOnes = 0;
1036 unsigned MaxHighZeros = 0;
1037 if (SPF == SPF_SMAX) {
1038 // If both sides are negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +00001039 if (Known.isNegative() && Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001040 // We can derive a lower bound on the result by taking the max of the
1041 // leading one bits.
Craig Topper8df66c62017-05-12 17:20:30 +00001042 MaxHighOnes =
1043 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001044 // If either side is non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +00001045 else if (Known.isNonNegative() || Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001046 MaxHighZeros = 1;
1047 } else if (SPF == SPF_SMIN) {
1048 // If both sides are non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +00001049 if (Known.isNonNegative() && Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001050 // We can derive an upper bound on the result by taking the max of the
1051 // leading zero bits.
Craig Topper8df66c62017-05-12 17:20:30 +00001052 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1053 Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001054 // If either side is negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +00001055 else if (Known.isNegative() || Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001056 MaxHighOnes = 1;
1057 } else if (SPF == SPF_UMAX) {
1058 // We can derive a lower bound on the result by taking the max of the
1059 // leading one bits.
1060 MaxHighOnes =
Craig Topper8df66c62017-05-12 17:20:30 +00001061 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001062 } else if (SPF == SPF_UMIN) {
1063 // We can derive an upper bound on the result by taking the max of the
1064 // leading zero bits.
1065 MaxHighZeros =
Craig Topper8df66c62017-05-12 17:20:30 +00001066 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001067 }
1068
Chris Lattner965c7692008-06-02 01:18:21 +00001069 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001070 Known.One &= Known2.One;
1071 Known.Zero &= Known2.Zero;
David Majnemera19d0f22016-08-06 08:16:00 +00001072 if (MaxHighOnes > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001073 Known.One.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001074 if (MaxHighZeros > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001075 Known.Zero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001076 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001077 }
Chris Lattner965c7692008-06-02 01:18:21 +00001078 case Instruction::FPTrunc:
1079 case Instruction::FPExt:
1080 case Instruction::FPToUI:
1081 case Instruction::FPToSI:
1082 case Instruction::SIToFP:
1083 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001084 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001085 case Instruction::PtrToInt:
1086 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001087 // Fall through and handle them the same as zext/trunc.
1088 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001089 case Instruction::ZExt:
1090 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001091 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001092
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001093 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001094 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1095 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001096 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001097
1098 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Craig Topperd938fd12017-05-03 22:07:25 +00001099 Known = Known.zextOrTrunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001100 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Craig Topperd938fd12017-05-03 22:07:25 +00001101 Known = Known.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001102 // Any top bits are known to be zero.
1103 if (BitWidth > SrcBitWidth)
Craig Topperb45eabc2017-04-26 16:39:58 +00001104 Known.Zero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001105 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001106 }
1107 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001108 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001109 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001110 // TODO: For now, not handling conversions like:
1111 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001112 !I->getType()->isVectorTy()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001113 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001114 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001115 }
1116 break;
1117 }
1118 case Instruction::SExt: {
1119 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001120 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001121
Craig Topperd938fd12017-05-03 22:07:25 +00001122 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001123 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001124 // If the sign bit of the input is known set or clear, then we know the
1125 // top bits of the result.
Craig Topperd938fd12017-05-03 22:07:25 +00001126 Known = Known.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001127 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001128 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001129 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001130 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001131 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Sam McCalld0d43e62017-12-04 12:51:49 +00001132 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1133 APInt KZResult = KnownZero << ShiftAmt;
1134 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001135 // If this shift has "nsw" keyword, then the result is either a poison
1136 // value or has the same sign bit as the first operand.
Sam McCalld0d43e62017-12-04 12:51:49 +00001137 if (NSW && KnownZero.isSignBitSet())
1138 KZResult.setSignBit();
1139 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001140 };
1141
Sam McCalld0d43e62017-12-04 12:51:49 +00001142 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1143 APInt KOResult = KnownOne << ShiftAmt;
1144 if (NSW && KnownOne.isSignBitSet())
1145 KOResult.setSignBit();
1146 return KOResult;
1147 };
1148
1149 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001150 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001151 }
1152 case Instruction::LShr: {
Sanjay Patelb7d12382017-10-16 14:46:37 +00001153 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Sam McCalld0d43e62017-12-04 12:51:49 +00001154 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1155 APInt KZResult = KnownZero.lshr(ShiftAmt);
1156 // High bits known zero.
1157 KZResult.setHighBits(ShiftAmt);
1158 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001159 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001160
Sam McCalld0d43e62017-12-04 12:51:49 +00001161 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1162 return KnownOne.lshr(ShiftAmt);
1163 };
1164
1165 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001166 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001167 }
1168 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001169 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Sam McCalld0d43e62017-12-04 12:51:49 +00001170 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1171 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001172 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001173
Sam McCalld0d43e62017-12-04 12:51:49 +00001174 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1175 return KnownOne.ashr(ShiftAmt);
1176 };
1177
1178 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001179 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001180 }
Chris Lattner965c7692008-06-02 01:18:21 +00001181 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001182 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001183 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001184 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001185 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001186 }
Chris Lattner965c7692008-06-02 01:18:21 +00001187 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001188 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001189 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001190 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001191 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001192 }
1193 case Instruction::SRem:
1194 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001195 APInt RA = Rem->getValue().abs();
1196 if (RA.isPowerOf2()) {
1197 APInt LowBits = RA - 1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001198 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001199
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001200 // The low bits of the first operand are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +00001201 Known.Zero = Known2.Zero & LowBits;
1202 Known.One = Known2.One & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001203
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001204 // If the first operand is non-negative or has all low bits zero, then
1205 // the upper bits are all zero.
Craig Topperca48af32017-04-29 16:43:11 +00001206 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +00001207 Known.Zero |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001208
1209 // If the first operand is negative and not all low bits are zero, then
1210 // the upper bits are all one.
Craig Topperca48af32017-04-29 16:43:11 +00001211 if (Known2.isNegative() && LowBits.intersects(Known2.One))
Craig Topperb45eabc2017-04-26 16:39:58 +00001212 Known.One |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001213
Craig Topperb45eabc2017-04-26 16:39:58 +00001214 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001215 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001216 }
1217 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001218
1219 // The sign bit is the LHS's sign bit, except when the result of the
1220 // remainder is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +00001221 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topperda886c62017-04-16 21:46:12 +00001222 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +00001223 if (Known2.isNonNegative())
1224 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +00001225
Chris Lattner965c7692008-06-02 01:18:21 +00001226 break;
1227 case Instruction::URem: {
1228 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001229 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001230 if (RA.isPowerOf2()) {
1231 APInt LowBits = (RA - 1);
Craig Topperb45eabc2017-04-26 16:39:58 +00001232 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1233 Known.Zero |= ~LowBits;
1234 Known.One &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001235 break;
1236 }
1237 }
1238
1239 // Since the result is less than or equal to either operand, any leading
1240 // zero bits in either operand must also exist in the result.
Craig Topperb45eabc2017-04-26 16:39:58 +00001241 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1242 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001243
Craig Topper8df66c62017-05-12 17:20:30 +00001244 unsigned Leaders =
1245 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topperf0aeee02017-05-05 17:36:09 +00001246 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001247 Known.Zero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001248 break;
1249 }
1250
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001251 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001252 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001253 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001254 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001255 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001256
Chris Lattner965c7692008-06-02 01:18:21 +00001257 if (Align > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001258 Known.Zero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001259 break;
1260 }
1261 case Instruction::GetElementPtr: {
1262 // Analyze all of the subscripts of this getelementptr instruction
1263 // to determine if we can prove known low zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001264 KnownBits LocalKnown(BitWidth);
1265 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001266 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001267
1268 gep_type_iterator GTI = gep_type_begin(I);
1269 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1270 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001271 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001272 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001273
1274 // Handle case when index is vector zeroinitializer
1275 Constant *CIndex = cast<Constant>(Index);
1276 if (CIndex->isZeroValue())
1277 continue;
1278
1279 if (CIndex->getType()->isVectorTy())
1280 Index = CIndex->getSplatValue();
1281
Chris Lattner965c7692008-06-02 01:18:21 +00001282 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001283 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001284 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001285 TrailZ = std::min<unsigned>(TrailZ,
1286 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001287 } else {
1288 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001289 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001290 if (!IndexedTy->isSized()) {
1291 TrailZ = 0;
1292 break;
1293 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001294 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001295 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Craig Topperb45eabc2017-04-26 16:39:58 +00001296 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1297 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001298 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001299 unsigned(countTrailingZeros(TypeSize) +
Craig Topper8df66c62017-05-12 17:20:30 +00001300 LocalKnown.countMinTrailingZeros()));
Chris Lattner965c7692008-06-02 01:18:21 +00001301 }
1302 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001303
Craig Topperb45eabc2017-04-26 16:39:58 +00001304 Known.Zero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001305 break;
1306 }
1307 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001308 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001309 // Handle the case of a simple two-predecessor recurrence PHI.
1310 // There's a lot more that could theoretically be done here, but
1311 // this is sufficient to catch some interesting cases.
1312 if (P->getNumIncomingValues() == 2) {
1313 for (unsigned i = 0; i != 2; ++i) {
1314 Value *L = P->getIncomingValue(i);
1315 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001316 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001317 if (!LU)
1318 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001319 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001320 // Check for operations that have the property that if
1321 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001322 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001323 if (Opcode == Instruction::Add ||
1324 Opcode == Instruction::Sub ||
1325 Opcode == Instruction::And ||
1326 Opcode == Instruction::Or ||
1327 Opcode == Instruction::Mul) {
1328 Value *LL = LU->getOperand(0);
1329 Value *LR = LU->getOperand(1);
1330 // Find a recurrence.
1331 if (LL == I)
1332 L = LR;
1333 else if (LR == I)
1334 L = LL;
1335 else
1336 break;
1337 // Ok, we have a PHI of the form L op= R. Check for low
1338 // zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001339 computeKnownBits(R, Known2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001340
1341 // We need to take the minimum number of known bits
Craig Topperb45eabc2017-04-26 16:39:58 +00001342 KnownBits Known3(Known);
1343 computeKnownBits(L, Known3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001344
Craig Topper8df66c62017-05-12 17:20:30 +00001345 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1346 Known3.countMinTrailingZeros()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001347
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001348 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1349 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1350 // If initial value of recurrence is nonnegative, and we are adding
1351 // a nonnegative number with nsw, the result can only be nonnegative
1352 // or poison value regardless of the number of times we execute the
1353 // add in phi recurrence. If initial value is negative and we are
1354 // adding a negative number with nsw, the result can only be
1355 // negative or poison value. Similar arguments apply to sub and mul.
1356 //
1357 // (add non-negative, non-negative) --> non-negative
1358 // (add negative, negative) --> negative
1359 if (Opcode == Instruction::Add) {
Craig Topperca48af32017-04-29 16:43:11 +00001360 if (Known2.isNonNegative() && Known3.isNonNegative())
1361 Known.makeNonNegative();
1362 else if (Known2.isNegative() && Known3.isNegative())
1363 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001364 }
1365
1366 // (sub nsw non-negative, negative) --> non-negative
1367 // (sub nsw negative, non-negative) --> negative
1368 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperca48af32017-04-29 16:43:11 +00001369 if (Known2.isNonNegative() && Known3.isNegative())
1370 Known.makeNonNegative();
1371 else if (Known2.isNegative() && Known3.isNonNegative())
1372 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001373 }
1374
1375 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperca48af32017-04-29 16:43:11 +00001376 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1377 Known3.isNonNegative())
1378 Known.makeNonNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001379 }
1380
Chris Lattner965c7692008-06-02 01:18:21 +00001381 break;
1382 }
1383 }
1384 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001385
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001386 // Unreachable blocks may have zero-operand PHI nodes.
1387 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001388 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001389
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001390 // Otherwise take the unions of the known bit sets of the operands,
1391 // taking conservative care to avoid excessive recursion.
Craig Topperb45eabc2017-04-26 16:39:58 +00001392 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001393 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001394 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001395 break;
1396
Craig Topperb45eabc2017-04-26 16:39:58 +00001397 Known.Zero.setAllBits();
1398 Known.One.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001399 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001400 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001401 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001402
Craig Topperb45eabc2017-04-26 16:39:58 +00001403 Known2 = KnownBits(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001404 // Recurse, but cap the recursion to one level, because we don't
1405 // want to waste time spinning around in loops.
Craig Topperb45eabc2017-04-26 16:39:58 +00001406 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1407 Known.Zero &= Known2.Zero;
1408 Known.One &= Known2.One;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001409 // If all bits have been ruled out, there's no need to check
1410 // more operands.
Craig Topperb45eabc2017-04-26 16:39:58 +00001411 if (!Known.Zero && !Known.One)
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001412 break;
1413 }
1414 }
Chris Lattner965c7692008-06-02 01:18:21 +00001415 break;
1416 }
1417 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001418 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001419 // If range metadata is attached to this call, set known bits from that,
1420 // and then intersect with known bits based on other properties of the
1421 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001422 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +00001423 computeKnownBitsFromRangeMetadata(*MD, Known);
Pete Cooper35b00d52016-08-13 01:05:32 +00001424 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001425 computeKnownBits(RV, Known2, Depth + 1, Q);
1426 Known.Zero |= Known2.Zero;
1427 Known.One |= Known2.One;
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001428 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001429 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001430 switch (II->getIntrinsicID()) {
1431 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001432 case Intrinsic::bitreverse:
Craig Topperb45eabc2017-04-26 16:39:58 +00001433 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1434 Known.Zero |= Known2.Zero.reverseBits();
1435 Known.One |= Known2.One.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001436 break;
Philip Reames675418e2015-10-06 20:20:45 +00001437 case Intrinsic::bswap:
Craig Topperb45eabc2017-04-26 16:39:58 +00001438 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1439 Known.Zero |= Known2.Zero.byteSwap();
1440 Known.One |= Known2.One.byteSwap();
Philip Reames675418e2015-10-06 20:20:45 +00001441 break;
Craig Topper868813f2017-05-08 17:22:34 +00001442 case Intrinsic::ctlz: {
1443 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1444 // If we have a known 1, its position is our upper bound.
1445 unsigned PossibleLZ = Known2.One.countLeadingZeros();
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001446 // If this call is undefined for 0, the result will be less than 2^n.
1447 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
Craig Topper868813f2017-05-08 17:22:34 +00001448 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1449 unsigned LowBits = Log2_32(PossibleLZ)+1;
1450 Known.Zero.setBitsFrom(LowBits);
1451 break;
1452 }
1453 case Intrinsic::cttz: {
1454 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1455 // If we have a known 1, its position is our upper bound.
1456 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1457 // If this call is undefined for 0, the result will be less than 2^n.
1458 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1459 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1460 unsigned LowBits = Log2_32(PossibleTZ)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001461 Known.Zero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001462 break;
1463 }
1464 case Intrinsic::ctpop: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001465 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001466 // We can bound the space the count needs. Also, bits known to be zero
1467 // can't contribute to the population.
Craig Topper8df66c62017-05-12 17:20:30 +00001468 unsigned BitsPossiblySet = Known2.countMaxPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001469 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001470 Known.Zero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001471 // TODO: we could bound KnownOne using the lower bound on the number
1472 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001473 break;
1474 }
Chad Rosierb3628842011-05-26 23:13:19 +00001475 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +00001476 Known.Zero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001477 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001478 }
1479 }
1480 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001481 case Instruction::ExtractElement:
1482 // Look through extract element. At the moment we keep this simple and skip
1483 // tracking the specific element. But at least we might find information
1484 // valid for all elements of the vector (for example if vector is sign
1485 // extended, shifted, etc).
Craig Topperb45eabc2017-04-26 16:39:58 +00001486 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Bjorn Pettersson39616032016-10-06 09:56:21 +00001487 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001488 case Instruction::ExtractValue:
1489 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001490 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001491 if (EVI->getNumIndices() != 1) break;
1492 if (EVI->getIndices()[0] == 0) {
1493 switch (II->getIntrinsicID()) {
1494 default: break;
1495 case Intrinsic::uadd_with_overflow:
1496 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001497 computeKnownBitsAddSub(true, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001498 II->getArgOperand(1), false, Known, Known2,
1499 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001500 break;
1501 case Intrinsic::usub_with_overflow:
1502 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001503 computeKnownBitsAddSub(false, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001504 II->getArgOperand(1), false, Known, Known2,
1505 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001506 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001507 case Intrinsic::umul_with_overflow:
1508 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001509 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Craig Topperb45eabc2017-04-26 16:39:58 +00001510 Known, Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001511 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001512 }
1513 }
1514 }
Chris Lattner965c7692008-06-02 01:18:21 +00001515 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001516}
1517
1518/// Determine which bits of V are known to be either zero or one and return
Craig Topper6e11a052017-05-08 16:22:48 +00001519/// them.
1520KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1521 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1522 computeKnownBits(V, Known, Depth, Q);
1523 return Known;
1524}
1525
1526/// Determine which bits of V are known to be either zero or one and return
Craig Topperb45eabc2017-04-26 16:39:58 +00001527/// them in the Known bit set.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001528///
1529/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1530/// we cannot optimize based on the assumption that it is zero without changing
1531/// it to be an explicit zero. If we don't change it to zero, other code could
1532/// optimized based on the contradictory assumption that it is non-zero.
1533/// Because instcombine aggressively folds operations with undef args anyway,
1534/// this won't lose us code quality.
1535///
1536/// This function is defined on values with integer type, values with pointer
1537/// type, and vectors of integers. In the case
1538/// where V is a vector, known zero, and known one values are the
1539/// same width as the vector element, and the bit is set only if it is true
1540/// for all of the elements in the vector.
Craig Topperb45eabc2017-04-26 16:39:58 +00001541void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1542 const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001543 assert(V && "No Value?");
1544 assert(Depth <= MaxDepth && "Limit Search Depth");
Craig Topperb45eabc2017-04-26 16:39:58 +00001545 unsigned BitWidth = Known.getBitWidth();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001546
Craig Topperfde47232017-07-09 07:04:03 +00001547 assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
Craig Topper95d23472017-07-09 07:04:00 +00001548 V->getType()->isPtrOrPtrVectorTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001549 "Not integer or pointer type!");
Craig Topperfde47232017-07-09 07:04:03 +00001550 assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth &&
Craig Topperb45eabc2017-04-26 16:39:58 +00001551 "V and Known should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001552 (void)BitWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001553
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001554 const APInt *C;
1555 if (match(V, m_APInt(C))) {
1556 // We know all of the bits for a scalar constant or a splat vector constant!
Craig Topperb45eabc2017-04-26 16:39:58 +00001557 Known.One = *C;
1558 Known.Zero = ~Known.One;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001559 return;
1560 }
1561 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001562 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001563 Known.setAllZero();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001564 return;
1565 }
1566 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001567 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001568 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001569 // We know that CDS must be a vector of integers. Take the intersection of
1570 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001571 Known.Zero.setAllBits(); Known.One.setAllBits();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001572 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Craig Topperb98ee582017-10-21 16:35:39 +00001573 APInt Elt = CDS->getElementAsAPInt(i);
Craig Topperb45eabc2017-04-26 16:39:58 +00001574 Known.Zero &= ~Elt;
1575 Known.One &= Elt;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001576 }
1577 return;
1578 }
1579
Pete Cooper35b00d52016-08-13 01:05:32 +00001580 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001581 // We know that CV must be a vector of integers. Take the intersection of
1582 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001583 Known.Zero.setAllBits(); Known.One.setAllBits();
David Majnemer3918cdd2016-05-04 06:13:33 +00001584 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1585 Constant *Element = CV->getAggregateElement(i);
1586 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1587 if (!ElementCI) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001588 Known.resetAll();
David Majnemer3918cdd2016-05-04 06:13:33 +00001589 return;
1590 }
Craig Topperb98ee582017-10-21 16:35:39 +00001591 const APInt &Elt = ElementCI->getValue();
Craig Topperb45eabc2017-04-26 16:39:58 +00001592 Known.Zero &= ~Elt;
1593 Known.One &= Elt;
David Majnemer3918cdd2016-05-04 06:13:33 +00001594 }
1595 return;
1596 }
1597
Jingyue Wu12b0c282015-06-15 05:46:29 +00001598 // Start out not knowing anything.
Craig Topperf0aeee02017-05-05 17:36:09 +00001599 Known.resetAll();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001600
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001601 // We can't imply anything about undefs.
1602 if (isa<UndefValue>(V))
1603 return;
1604
1605 // There's no point in looking through other users of ConstantData for
1606 // assumptions. Confirm that we've handled them all.
1607 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1608
Jingyue Wu12b0c282015-06-15 05:46:29 +00001609 // Limit search depth.
1610 // All recursive calls that increase depth must come after this.
1611 if (Depth == MaxDepth)
1612 return;
1613
1614 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1615 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001616 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001617 if (!GA->isInterposable())
Craig Topperb45eabc2017-04-26 16:39:58 +00001618 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001619 return;
1620 }
1621
Pete Cooper35b00d52016-08-13 01:05:32 +00001622 if (const Operator *I = dyn_cast<Operator>(V))
Craig Topperb45eabc2017-04-26 16:39:58 +00001623 computeKnownBitsFromOperator(I, Known, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001624
Craig Topperb45eabc2017-04-26 16:39:58 +00001625 // Aligned pointers have trailing zeros - refine Known.Zero set
Artur Pilipenko029d8532015-09-30 11:55:45 +00001626 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001627 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001628 if (Align)
Craig Topperb45eabc2017-04-26 16:39:58 +00001629 Known.Zero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001630 }
1631
Craig Topperb45eabc2017-04-26 16:39:58 +00001632 // computeKnownBitsFromAssume strictly refines Known.
1633 // Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001634
1635 // Check whether a nearby assume intrinsic can determine some known bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001636 computeKnownBitsFromAssume(V, Known, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001637
Craig Topperb45eabc2017-04-26 16:39:58 +00001638 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001639}
1640
Sanjay Patelaee84212014-11-04 16:27:42 +00001641/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001642/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001643/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001644/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001645bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001646 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00001647 assert(Depth <= MaxDepth && "Limit Search Depth");
1648
Simon Pilgrim9f2ae7e2018-02-06 18:39:23 +00001649 // Attempt to match against constants.
1650 if (OrZero && match(V, m_Power2OrZero()))
1651 return true;
1652 if (match(V, m_Power2()))
1653 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001654
1655 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1656 // it is shifted off the end then the result is undefined.
1657 if (match(V, m_Shl(m_One(), m_Value())))
1658 return true;
1659
Craig Topperbcfd2d12017-04-20 16:56:25 +00001660 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1661 // the bottom. If it is shifted off the bottom then the result is undefined.
1662 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001663 return true;
1664
1665 // The remaining tests are all recursive, so bail out if we hit the limit.
1666 if (Depth++ == MaxDepth)
1667 return false;
1668
Craig Topper9f008862014-04-15 04:59:12 +00001669 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001670 // A shift left or a logical shift right of a power of two is a power of two
1671 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001672 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001673 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001674 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001675
Pete Cooper35b00d52016-08-13 01:05:32 +00001676 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001677 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001678
Pete Cooper35b00d52016-08-13 01:05:32 +00001679 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001680 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1681 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001682
Duncan Sandsba286d72011-10-26 20:55:21 +00001683 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1684 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001685 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1686 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001687 return true;
1688 // X & (-X) is always a power of two or zero.
1689 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1690 return true;
1691 return false;
1692 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001693
David Majnemerb7d54092013-07-30 21:01:36 +00001694 // Adding a power-of-two or zero to the same power-of-two or zero yields
1695 // either the original power-of-two, a larger power-of-two or zero.
1696 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001697 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001698 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1699 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1700 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001701 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001702 return true;
1703 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1704 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001705 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001706 return true;
1707
1708 unsigned BitWidth = V->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00001709 KnownBits LHSBits(BitWidth);
1710 computeKnownBits(X, LHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001711
Craig Topperb45eabc2017-04-26 16:39:58 +00001712 KnownBits RHSBits(BitWidth);
1713 computeKnownBits(Y, RHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001714 // If i8 V is a power of two or zero:
1715 // ZeroBits: 1 1 1 0 1 1 1 1
1716 // ~ZeroBits: 0 0 0 1 0 0 0 0
Craig Topperb45eabc2017-04-26 16:39:58 +00001717 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
David Majnemerb7d54092013-07-30 21:01:36 +00001718 // If OrZero isn't set, we cannot give back a zero result.
1719 // Make sure either the LHS or RHS has a bit set.
Craig Topperb45eabc2017-04-26 16:39:58 +00001720 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
David Majnemerb7d54092013-07-30 21:01:36 +00001721 return true;
1722 }
1723 }
David Majnemerbeab5672013-05-18 19:30:37 +00001724
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001725 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001726 // is a power of two only if the first operand is a power of two and not
1727 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001728 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1729 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001730 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001731 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001732 }
1733
Duncan Sandsd3951082011-01-25 09:38:29 +00001734 return false;
1735}
1736
Chandler Carruth80d3e562012-12-07 02:08:58 +00001737/// \brief Test whether a GEP's result is known to be non-null.
1738///
1739/// Uses properties inherent in a GEP to try to determine whether it is known
1740/// to be non-null.
1741///
1742/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001743static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001744 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001745 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1746 return false;
1747
1748 // FIXME: Support vector-GEPs.
1749 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1750
1751 // If the base pointer is non-null, we cannot walk to a null address with an
1752 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001753 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001754 return true;
1755
Chandler Carruth80d3e562012-12-07 02:08:58 +00001756 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1757 // If so, then the GEP cannot produce a null pointer, as doing so would
1758 // inherently violate the inbounds contract within address space zero.
1759 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1760 GTI != GTE; ++GTI) {
1761 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001762 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001763 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1764 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001765 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001766 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1767 if (ElementOffset > 0)
1768 return true;
1769 continue;
1770 }
1771
1772 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001773 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001774 continue;
1775
1776 // Fast path the constant operand case both for efficiency and so we don't
1777 // increment Depth when just zipping down an all-constant GEP.
1778 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1779 if (!OpC->isZero())
1780 return true;
1781 continue;
1782 }
1783
1784 // We post-increment Depth here because while isKnownNonZero increments it
1785 // as well, when we pop back up that increment won't persist. We don't want
1786 // to recurse 10k times just because we have 10k GEP operands. We don't
1787 // bail completely out because we want to handle constant GEPs regardless
1788 // of depth.
1789 if (Depth++ >= MaxDepth)
1790 continue;
1791
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001792 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001793 return true;
1794 }
1795
1796 return false;
1797}
1798
Nuno Lopes404f1062017-09-09 18:23:11 +00001799static bool isKnownNonNullFromDominatingCondition(const Value *V,
1800 const Instruction *CtxI,
1801 const DominatorTree *DT) {
1802 assert(V->getType()->isPointerTy() && "V must be pointer type");
1803 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1804
1805 if (!CtxI || !DT)
1806 return false;
1807
1808 unsigned NumUsesExplored = 0;
1809 for (auto *U : V->users()) {
1810 // Avoid massive lists
1811 if (NumUsesExplored >= DomConditionsMaxUses)
1812 break;
1813 NumUsesExplored++;
1814
1815 // If the value is used as an argument to a call or invoke, then argument
1816 // attributes may provide an answer about null-ness.
1817 if (auto CS = ImmutableCallSite(U))
1818 if (auto *CalledFunc = CS.getCalledFunction())
1819 for (const Argument &Arg : CalledFunc->args())
1820 if (CS.getArgOperand(Arg.getArgNo()) == V &&
1821 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1822 return true;
1823
1824 // Consider only compare instructions uniquely controlling a branch
1825 CmpInst::Predicate Pred;
1826 if (!match(const_cast<User *>(U),
1827 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1828 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1829 continue;
1830
1831 for (auto *CmpU : U->users()) {
1832 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
1833 assert(BI->isConditional() && "uses a comparison!");
1834
1835 BasicBlock *NonNullSuccessor =
1836 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1837 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1838 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1839 return true;
1840 } else if (Pred == ICmpInst::ICMP_NE &&
1841 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
1842 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
1843 return true;
1844 }
1845 }
1846 }
1847
1848 return false;
1849}
1850
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001851/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1852/// ensure that the value it's attached to is never Value? 'RangeType' is
1853/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001854static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001855 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1856 assert(NumRanges >= 1);
1857 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001858 ConstantInt *Lower =
1859 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1860 ConstantInt *Upper =
1861 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001862 ConstantRange Range(Lower->getValue(), Upper->getValue());
1863 if (Range.contains(Value))
1864 return false;
1865 }
1866 return true;
1867}
1868
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001869/// Return true if the given value is known to be non-zero when defined. For
1870/// vectors, return true if every element is known to be non-zero when
1871/// defined. For pointers, if the context instruction and dominator tree are
1872/// specified, perform context-sensitive analysis and return true if the
1873/// pointer couldn't possibly be null at the specified instruction.
1874/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001875bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001876 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001877 if (C->isNullValue())
1878 return false;
1879 if (isa<ConstantInt>(C))
1880 // Must be non-zero due to null test above.
1881 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001882
1883 // For constant vectors, check that all elements are undefined or known
1884 // non-zero to determine that the whole vector is known non-zero.
1885 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1886 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1887 Constant *Elt = C->getAggregateElement(i);
1888 if (!Elt || Elt->isNullValue())
1889 return false;
1890 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1891 return false;
1892 }
1893 return true;
1894 }
1895
Nuno Lopes404f1062017-09-09 18:23:11 +00001896 // A global variable in address space 0 is non null unless extern weak
1897 // or an absolute symbol reference. Other address spaces may have null as a
1898 // valid address for a global, so we can't assume anything.
1899 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1900 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1901 GV->getType()->getAddressSpace() == 0)
1902 return true;
1903 } else
1904 return false;
Duncan Sandsd3951082011-01-25 09:38:29 +00001905 }
1906
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001907 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001908 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001909 // If the possible ranges don't contain zero, then the value is
1910 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001911 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001912 const APInt ZeroValue(Ty->getBitWidth(), 0);
1913 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1914 return true;
1915 }
1916 }
1917 }
1918
Nuno Lopes404f1062017-09-09 18:23:11 +00001919 // Check for pointer simplifications.
1920 if (V->getType()->isPointerTy()) {
1921 // Alloca never returns null, malloc might.
1922 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
1923 return true;
1924
1925 // A byval, inalloca, or nonnull argument is never null.
1926 if (const Argument *A = dyn_cast<Argument>(V))
1927 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
1928 return true;
1929
1930 // A Load tagged with nonnull metadata is never null.
1931 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1932 if (LI->getMetadata(LLVMContext::MD_nonnull))
1933 return true;
1934
1935 if (auto CS = ImmutableCallSite(V))
1936 if (CS.isReturnNonNull())
1937 return true;
1938 }
1939
Duncan Sandsd3951082011-01-25 09:38:29 +00001940 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001941 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001942 return false;
1943
Nuno Lopes404f1062017-09-09 18:23:11 +00001944 // Check for recursive pointer simplifications.
Chandler Carruth80d3e562012-12-07 02:08:58 +00001945 if (V->getType()->isPointerTy()) {
Nuno Lopes404f1062017-09-09 18:23:11 +00001946 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001947 return true;
Nuno Lopes404f1062017-09-09 18:23:11 +00001948
Pete Cooper35b00d52016-08-13 01:05:32 +00001949 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001950 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001951 return true;
1952 }
1953
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001954 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001955
1956 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001957 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001958 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001959 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001960
1961 // ext X != 0 if X != 0.
1962 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001963 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001964
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001965 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001966 // if the lowest bit is shifted off the end.
Craig Topper6b3940a2017-05-03 22:25:19 +00001967 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001968 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001969 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001970 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001971 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001972
Craig Topperb45eabc2017-04-26 16:39:58 +00001973 KnownBits Known(BitWidth);
1974 computeKnownBits(X, Known, Depth, Q);
1975 if (Known.One[0])
Duncan Sandsd3951082011-01-25 09:38:29 +00001976 return true;
1977 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001978 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001979 // defined if the sign bit is shifted off the end.
1980 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001981 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001982 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001983 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001984 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001985
Craig Topper6e11a052017-05-08 16:22:48 +00001986 KnownBits Known = computeKnownBits(X, Depth, Q);
1987 if (Known.isNegative())
Duncan Sandsd3951082011-01-25 09:38:29 +00001988 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001989
1990 // If the shifter operand is a constant, and all of the bits shifted
1991 // out are known to be zero, and X is known non-zero then at least one
1992 // non-zero bit must remain.
1993 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
James Molloyb6be1eb2015-09-24 16:06:32 +00001994 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1995 // Is there a known one in the portion not shifted out?
Craig Topper8df66c62017-05-12 17:20:30 +00001996 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
James Molloyb6be1eb2015-09-24 16:06:32 +00001997 return true;
1998 // Are all the bits to be shifted out known zero?
NAKAMURA Takumi76bab1f2017-07-11 02:31:51 +00001999 if (Known.countMinTrailingZeros() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002000 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00002001 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002002 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002003 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00002004 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002005 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002006 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002007 // X + Y.
2008 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Craig Topper6e11a052017-05-08 16:22:48 +00002009 KnownBits XKnown = computeKnownBits(X, Depth, Q);
2010 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002011
2012 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002013 // zero unless both X and Y are zero.
Craig Topper6e11a052017-05-08 16:22:48 +00002014 if (XKnown.isNonNegative() && YKnown.isNonNegative())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002015 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002016 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00002017
2018 // If X and Y are both negative (as signed values) then their sum is not
2019 // zero unless both X and Y equal INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00002020 if (XKnown.isNegative() && YKnown.isNegative()) {
Duncan Sandsd3951082011-01-25 09:38:29 +00002021 APInt Mask = APInt::getSignedMaxValue(BitWidth);
2022 // The sign bit of X is set. If some other bit is set then X is not equal
2023 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00002024 if (XKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00002025 return true;
2026 // The sign bit of Y is set. If some other bit is set then Y is not equal
2027 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00002028 if (YKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00002029 return true;
2030 }
2031
2032 // The sum of a non-negative number and a power of two is not zero.
Craig Topper6e11a052017-05-08 16:22:48 +00002033 if (XKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002034 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002035 return true;
Craig Topper6e11a052017-05-08 16:22:48 +00002036 if (YKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002037 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002038 return true;
2039 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00002040 // X * Y.
2041 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00002042 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00002043 // If X and Y are non-zero then so is X * Y as long as the multiplication
2044 // does not overflow.
2045 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002046 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00002047 return true;
2048 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002049 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00002050 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002051 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2052 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002053 return true;
2054 }
James Molloy897048b2015-09-29 14:08:45 +00002055 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00002056 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00002057 // Try and detect a recurrence that monotonically increases from a
2058 // starting value, as these are common as induction variables.
2059 if (PN->getNumIncomingValues() == 2) {
2060 Value *Start = PN->getIncomingValue(0);
2061 Value *Induction = PN->getIncomingValue(1);
2062 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2063 std::swap(Start, Induction);
2064 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2065 if (!C->isZero() && !C->isNegative()) {
2066 ConstantInt *X;
2067 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2068 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2069 !X->isNegative())
2070 return true;
2071 }
2072 }
2073 }
Jun Bum Limca832662016-02-01 17:03:07 +00002074 // Check if all incoming values are non-zero constant.
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002075 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
Craig Topper79ab6432017-07-06 18:39:47 +00002076 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
Jun Bum Limca832662016-02-01 17:03:07 +00002077 });
2078 if (AllNonZeroConstants)
2079 return true;
James Molloy897048b2015-09-29 14:08:45 +00002080 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002081
Craig Topperb45eabc2017-04-26 16:39:58 +00002082 KnownBits Known(BitWidth);
2083 computeKnownBits(V, Known, Depth, Q);
2084 return Known.One != 0;
Duncan Sandsd3951082011-01-25 09:38:29 +00002085}
2086
James Molloy1d88d6f2015-10-22 13:18:42 +00002087/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00002088static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2089 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00002090 if (!BO || BO->getOpcode() != Instruction::Add)
2091 return false;
2092 Value *Op = nullptr;
2093 if (V2 == BO->getOperand(0))
2094 Op = BO->getOperand(1);
2095 else if (V2 == BO->getOperand(1))
2096 Op = BO->getOperand(0);
2097 else
2098 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002099 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002100}
2101
2102/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002103static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
Craig Topper3002d5b2017-06-06 07:13:15 +00002104 if (V1 == V2)
James Molloy1d88d6f2015-10-22 13:18:42 +00002105 return false;
2106 if (V1->getType() != V2->getType())
2107 // We can't look through casts yet.
2108 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002109 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002110 return true;
2111
Craig Topper3002d5b2017-06-06 07:13:15 +00002112 if (V1->getType()->isIntOrIntVectorTy()) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002113 // Are any known bits in V1 contradictory to known bits in V2? If V1
2114 // has a known zero where V2 has a known one, they must not be equal.
Craig Topper8e662f72017-06-06 07:13:11 +00002115 KnownBits Known1 = computeKnownBits(V1, 0, Q);
2116 KnownBits Known2 = computeKnownBits(V2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002117
Craig Topper8365df82017-06-06 07:13:09 +00002118 if (Known1.Zero.intersects(Known2.One) ||
2119 Known2.Zero.intersects(Known1.One))
James Molloy1d88d6f2015-10-22 13:18:42 +00002120 return true;
2121 }
2122 return false;
2123}
2124
Sanjay Patelaee84212014-11-04 16:27:42 +00002125/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2126/// simplify operations downstream. Mask is known to be zero for bits that V
2127/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002128///
2129/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002130/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002131/// where V is a vector, the mask, known zero, and known one values are the
2132/// same width as the vector element, and the bit is set only if it is true
2133/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002134bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002135 const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002136 KnownBits Known(Mask.getBitWidth());
2137 computeKnownBits(V, Known, Depth, Q);
2138 return Mask.isSubsetOf(Known.Zero);
Chris Lattner965c7692008-06-02 01:18:21 +00002139}
2140
Sanjay Patela06d9892016-06-22 19:20:59 +00002141/// For vector constants, loop over the elements and find the constant with the
2142/// minimum number of sign bits. Return 0 if the value is not a vector constant
2143/// or if any element was not analyzed; otherwise, return the count for the
2144/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002145static unsigned computeNumSignBitsVectorConstant(const Value *V,
2146 unsigned TyBits) {
2147 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002148 if (!CV || !CV->getType()->isVectorTy())
2149 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002150
Sanjay Patela06d9892016-06-22 19:20:59 +00002151 unsigned MinSignBits = TyBits;
2152 unsigned NumElts = CV->getType()->getVectorNumElements();
2153 for (unsigned i = 0; i != NumElts; ++i) {
2154 // If we find a non-ConstantInt, bail out.
2155 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2156 if (!Elt)
2157 return 0;
2158
Craig Topper8e8b6ef2017-10-21 16:35:41 +00002159 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
Sanjay Patela06d9892016-06-22 19:20:59 +00002160 }
2161
2162 return MinSignBits;
2163}
Chris Lattner965c7692008-06-02 01:18:21 +00002164
Sanjoy Das39a684d2017-02-25 20:30:45 +00002165static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2166 const Query &Q);
2167
2168static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2169 const Query &Q) {
2170 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2171 assert(Result > 0 && "At least one sign bit needs to be present!");
2172 return Result;
2173}
2174
Sanjay Patelaee84212014-11-04 16:27:42 +00002175/// Return the number of times the sign bit of the register is replicated into
2176/// the other bits. We know that at least 1 bit is always equal to the sign bit
2177/// (itself), but other cases can give us information. For example, immediately
2178/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002179/// other, so we return 3. For vectors, return the number of sign bits for the
2180/// vector element with the mininum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002181static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2182 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00002183 assert(Depth <= MaxDepth && "Limit Search Depth");
Sanjoy Das39a684d2017-02-25 20:30:45 +00002184
2185 // We return the minimum number of sign bits that are guaranteed to be present
2186 // in V, so for undef we have to conservatively return 1. We don't have the
2187 // same behavior for poison though -- that's a FIXME today.
2188
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002189 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002190 unsigned Tmp, Tmp2;
2191 unsigned FirstAnswer = 1;
2192
Jay Foada0653a32014-05-14 21:14:37 +00002193 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002194 // below.
2195
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002196 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002197 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002198
Pete Cooper35b00d52016-08-13 01:05:32 +00002199 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002200 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002201 default: break;
2202 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002203 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002204 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002205
Nadav Rotemc99a3872015-03-06 00:23:58 +00002206 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002207 const APInt *Denominator;
2208 // sdiv X, C -> adds log(C) sign bits.
2209 if (match(U->getOperand(1), m_APInt(Denominator))) {
2210
2211 // Ignore non-positive denominator.
2212 if (!Denominator->isStrictlyPositive())
2213 break;
2214
2215 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002216 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002217
2218 // Add floor(log(C)) bits to the numerator bits.
2219 return std::min(TyBits, NumBits + Denominator->logBase2());
2220 }
2221 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002222 }
2223
2224 case Instruction::SRem: {
2225 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002226 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2227 // positive constant. This let us put a lower bound on the number of sign
2228 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002229 if (match(U->getOperand(1), m_APInt(Denominator))) {
2230
2231 // Ignore non-positive denominator.
2232 if (!Denominator->isStrictlyPositive())
2233 break;
2234
2235 // Calculate the incoming numerator bits. SRem by a positive constant
2236 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002237 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002238 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002239
2240 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002241 // denominator. Given that the denominator is positive, there are two
2242 // cases:
2243 //
2244 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2245 // (1 << ceilLogBase2(C)).
2246 //
2247 // 2. the numerator is negative. Then the result range is (-C,0] and
2248 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2249 //
2250 // Thus a lower bound on the number of sign bits is `TyBits -
2251 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002252
Sanjoy Dase561fee2015-03-25 22:33:53 +00002253 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002254 return std::max(NumrBits, ResBits);
2255 }
2256 break;
2257 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002258
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002259 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002260 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002261 // ashr X, C -> adds C sign bits. Vectors too.
2262 const APInt *ShAmt;
2263 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Simon Pilgrim67207262018-01-01 22:44:59 +00002264 if (ShAmt->uge(TyBits))
Sanjoy Das39a684d2017-02-25 20:30:45 +00002265 break; // Bad shift.
Simon Pilgrim67207262018-01-01 22:44:59 +00002266 unsigned ShAmtLimited = ShAmt->getZExtValue();
Sanjoy Das39a684d2017-02-25 20:30:45 +00002267 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002268 if (Tmp > TyBits) Tmp = TyBits;
2269 }
2270 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002271 }
2272 case Instruction::Shl: {
2273 const APInt *ShAmt;
2274 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002275 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002276 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Simon Pilgrim67207262018-01-01 22:44:59 +00002277 if (ShAmt->uge(TyBits) || // Bad shift.
2278 ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002279 Tmp2 = ShAmt->getZExtValue();
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002280 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002281 }
2282 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002283 }
Chris Lattner965c7692008-06-02 01:18:21 +00002284 case Instruction::And:
2285 case Instruction::Or:
2286 case Instruction::Xor: // NOT is handled here.
2287 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002288 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002289 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002290 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002291 FirstAnswer = std::min(Tmp, Tmp2);
2292 // We computed what we know about the sign bits as our first
2293 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002294 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002295 }
2296 break;
2297
2298 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002299 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002300 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002301 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002302 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002303
Chris Lattner965c7692008-06-02 01:18:21 +00002304 case Instruction::Add:
2305 // Add can have at most one carry bit. Thus we know that the output
2306 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002307 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002308 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002309
Chris Lattner965c7692008-06-02 01:18:21 +00002310 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002311 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002312 if (CRHS->isAllOnesValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002313 KnownBits Known(TyBits);
2314 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002315
Chris Lattner965c7692008-06-02 01:18:21 +00002316 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2317 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002318 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002319 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002320
Chris Lattner965c7692008-06-02 01:18:21 +00002321 // If we are subtracting one from a positive number, there is no carry
2322 // out of the result.
Craig Topperca48af32017-04-29 16:43:11 +00002323 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002324 return Tmp;
2325 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002326
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002327 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002328 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002329 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002330
Chris Lattner965c7692008-06-02 01:18:21 +00002331 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002332 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002333 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002334
Chris Lattner965c7692008-06-02 01:18:21 +00002335 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002336 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002337 if (CLHS->isNullValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002338 KnownBits Known(TyBits);
2339 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002340 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2341 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002342 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002343 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002344
Chris Lattner965c7692008-06-02 01:18:21 +00002345 // If the input is known to be positive (the sign bit is known clear),
2346 // the output of the NEG has the same number of sign bits as the input.
Craig Topperca48af32017-04-29 16:43:11 +00002347 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002348 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002349
Chris Lattner965c7692008-06-02 01:18:21 +00002350 // Otherwise, we treat this like a SUB.
2351 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002352
Chris Lattner965c7692008-06-02 01:18:21 +00002353 // Sub can have at most one carry bit. Thus we know that the output
2354 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002355 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002356 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002357 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002358
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002359 case Instruction::Mul: {
2360 // The output of the Mul can be at most twice the valid bits in the inputs.
2361 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2362 if (SignBitsOp0 == 1) return 1; // Early out.
2363 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2364 if (SignBitsOp1 == 1) return 1;
2365 unsigned OutValidBits =
2366 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2367 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2368 }
2369
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002370 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002371 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002372 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002373 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002374 if (NumIncomingValues > 4) break;
2375 // Unreachable blocks may have zero-operand PHI nodes.
2376 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002377
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002378 // Take the minimum of all incoming values. This can't infinitely loop
2379 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002380 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002381 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002382 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002383 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002384 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002385 }
2386 return Tmp;
2387 }
2388
Chris Lattner965c7692008-06-02 01:18:21 +00002389 case Instruction::Trunc:
2390 // FIXME: it's tricky to do anything useful for this, but it is an important
2391 // case for targets like X86.
2392 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002393
2394 case Instruction::ExtractElement:
2395 // Look through extract element. At the moment we keep this simple and skip
2396 // tracking the specific element. But at least we might find information
2397 // valid for all elements of the vector (for example if vector is sign
2398 // extended, shifted, etc).
2399 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002400 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002401
Chris Lattner965c7692008-06-02 01:18:21 +00002402 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2403 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002404
2405 // If we can examine all elements of a vector constant successfully, we're
2406 // done (we can't do any better than that). If not, keep trying.
2407 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2408 return VecSignBits;
2409
Craig Topperb45eabc2017-04-26 16:39:58 +00002410 KnownBits Known(TyBits);
2411 computeKnownBits(V, Known, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002412
Sanjay Patele0536212016-06-23 17:41:59 +00002413 // If we know that the sign bit is either zero or one, determine the number of
2414 // identical bits in the top of the input value.
Craig Topper8df66c62017-05-12 17:20:30 +00002415 return std::max(FirstAnswer, Known.countMinSignBits());
Chris Lattner965c7692008-06-02 01:18:21 +00002416}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002417
Sanjay Patelaee84212014-11-04 16:27:42 +00002418/// This function computes the integer multiple of Base that equals V.
2419/// If successful, it returns true and returns the multiple in
2420/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002421/// through SExt instructions only if LookThroughSExt is true.
2422bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002423 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002424 const unsigned MaxDepth = 6;
2425
Dan Gohman6a976bb2009-11-18 00:58:27 +00002426 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002427 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002428 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002429
Chris Lattner229907c2011-07-18 04:54:35 +00002430 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002431
Dan Gohman6a976bb2009-11-18 00:58:27 +00002432 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002433
2434 if (Base == 0)
2435 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002436
Victor Hernandez47444882009-11-10 08:28:35 +00002437 if (Base == 1) {
2438 Multiple = V;
2439 return true;
2440 }
2441
2442 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2443 Constant *BaseVal = ConstantInt::get(T, Base);
2444 if (CO && CO == BaseVal) {
2445 // Multiple is 1.
2446 Multiple = ConstantInt::get(T, 1);
2447 return true;
2448 }
2449
2450 if (CI && CI->getZExtValue() % Base == 0) {
2451 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002452 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002453 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002454
Victor Hernandez47444882009-11-10 08:28:35 +00002455 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002456
Victor Hernandez47444882009-11-10 08:28:35 +00002457 Operator *I = dyn_cast<Operator>(V);
2458 if (!I) return false;
2459
2460 switch (I->getOpcode()) {
2461 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002462 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002463 if (!LookThroughSExt) return false;
2464 // otherwise fall through to ZExt
Galina Kistanova244621f2017-05-31 22:16:24 +00002465 LLVM_FALLTHROUGH;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002466 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002467 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2468 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002469 case Instruction::Shl:
2470 case Instruction::Mul: {
2471 Value *Op0 = I->getOperand(0);
2472 Value *Op1 = I->getOperand(1);
2473
2474 if (I->getOpcode() == Instruction::Shl) {
2475 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2476 if (!Op1CI) return false;
2477 // Turn Op0 << Op1 into Op0 * 2^Op1
2478 APInt Op1Int = Op1CI->getValue();
2479 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002480 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002481 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002482 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002483 }
2484
Craig Topper9f008862014-04-15 04:59:12 +00002485 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002486 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2487 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2488 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002489 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002490 MulC->getType()->getPrimitiveSizeInBits())
2491 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002492 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002493 MulC->getType()->getPrimitiveSizeInBits())
2494 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002495
Chris Lattner72d283c2010-09-05 17:20:46 +00002496 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2497 Multiple = ConstantExpr::getMul(MulC, Op1C);
2498 return true;
2499 }
Victor Hernandez47444882009-11-10 08:28:35 +00002500
2501 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2502 if (Mul0CI->getValue() == 1) {
2503 // V == Base * Op1, so return Op1
2504 Multiple = Op1;
2505 return true;
2506 }
2507 }
2508
Craig Topper9f008862014-04-15 04:59:12 +00002509 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002510 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2511 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2512 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002513 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002514 MulC->getType()->getPrimitiveSizeInBits())
2515 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002516 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002517 MulC->getType()->getPrimitiveSizeInBits())
2518 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002519
Chris Lattner72d283c2010-09-05 17:20:46 +00002520 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2521 Multiple = ConstantExpr::getMul(MulC, Op0C);
2522 return true;
2523 }
Victor Hernandez47444882009-11-10 08:28:35 +00002524
2525 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2526 if (Mul1CI->getValue() == 1) {
2527 // V == Base * Op0, so return Op0
2528 Multiple = Op0;
2529 return true;
2530 }
2531 }
Victor Hernandez47444882009-11-10 08:28:35 +00002532 }
2533 }
2534
2535 // We could not determine if V is a multiple of Base.
2536 return false;
2537}
2538
David Majnemerb4b27232016-04-19 19:10:21 +00002539Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2540 const TargetLibraryInfo *TLI) {
2541 const Function *F = ICS.getCalledFunction();
2542 if (!F)
2543 return Intrinsic::not_intrinsic;
2544
2545 if (F->isIntrinsic())
2546 return F->getIntrinsicID();
2547
2548 if (!TLI)
2549 return Intrinsic::not_intrinsic;
2550
David L. Jonesd21529f2017-01-23 23:16:46 +00002551 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002552 // We're going to make assumptions on the semantics of the functions, check
2553 // that the target knows that it's available in this environment and it does
2554 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002555 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2556 return Intrinsic::not_intrinsic;
2557
2558 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002559 return Intrinsic::not_intrinsic;
2560
2561 // Otherwise check if we have a call to a function that can be turned into a
2562 // vector intrinsic.
2563 switch (Func) {
2564 default:
2565 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002566 case LibFunc_sin:
2567 case LibFunc_sinf:
2568 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002569 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002570 case LibFunc_cos:
2571 case LibFunc_cosf:
2572 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002573 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002574 case LibFunc_exp:
2575 case LibFunc_expf:
2576 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002577 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002578 case LibFunc_exp2:
2579 case LibFunc_exp2f:
2580 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002581 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002582 case LibFunc_log:
2583 case LibFunc_logf:
2584 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002585 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002586 case LibFunc_log10:
2587 case LibFunc_log10f:
2588 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002589 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002590 case LibFunc_log2:
2591 case LibFunc_log2f:
2592 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002593 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002594 case LibFunc_fabs:
2595 case LibFunc_fabsf:
2596 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002597 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002598 case LibFunc_fmin:
2599 case LibFunc_fminf:
2600 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002601 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002602 case LibFunc_fmax:
2603 case LibFunc_fmaxf:
2604 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002605 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002606 case LibFunc_copysign:
2607 case LibFunc_copysignf:
2608 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002609 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002610 case LibFunc_floor:
2611 case LibFunc_floorf:
2612 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002613 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002614 case LibFunc_ceil:
2615 case LibFunc_ceilf:
2616 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002617 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002618 case LibFunc_trunc:
2619 case LibFunc_truncf:
2620 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002621 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002622 case LibFunc_rint:
2623 case LibFunc_rintf:
2624 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002625 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002626 case LibFunc_nearbyint:
2627 case LibFunc_nearbyintf:
2628 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002629 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002630 case LibFunc_round:
2631 case LibFunc_roundf:
2632 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002633 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002634 case LibFunc_pow:
2635 case LibFunc_powf:
2636 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002637 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002638 case LibFunc_sqrt:
2639 case LibFunc_sqrtf:
2640 case LibFunc_sqrtl:
Sanjay Patel86d24f12017-11-06 22:40:09 +00002641 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002642 }
2643
2644 return Intrinsic::not_intrinsic;
2645}
2646
Sanjay Patelaee84212014-11-04 16:27:42 +00002647/// Return true if we can prove that the specified FP value is never equal to
2648/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002649///
2650/// NOTE: this function will need to be revisited when we support non-default
2651/// rounding modes!
David Majnemer3ee5f342016-04-13 06:55:52 +00002652bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2653 unsigned Depth) {
Sanjay Patel20df88a2017-11-13 17:56:23 +00002654 if (auto *CFP = dyn_cast<ConstantFP>(V))
Chris Lattnera12a6de2008-06-02 01:29:46 +00002655 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002656
Sanjay Patel20df88a2017-11-13 17:56:23 +00002657 // Limit search depth.
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002658 if (Depth == MaxDepth)
Sanjay Patel20df88a2017-11-13 17:56:23 +00002659 return false;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002660
Sanjay Patel20df88a2017-11-13 17:56:23 +00002661 auto *Op = dyn_cast<Operator>(V);
2662 if (!Op)
2663 return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002664
Sanjay Patel20df88a2017-11-13 17:56:23 +00002665 // Check if the nsz fast-math flag is set.
2666 if (auto *FPO = dyn_cast<FPMathOperator>(Op))
Michael Ilseman0f128372012-12-06 00:07:09 +00002667 if (FPO->hasNoSignedZeros())
2668 return true;
2669
Sanjay Patel9e3d8f42017-11-13 17:40:47 +00002670 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
Sanjay Patel20df88a2017-11-13 17:56:23 +00002671 if (match(Op, m_FAdd(m_Value(), m_Zero())))
Sanjay Patel9e3d8f42017-11-13 17:40:47 +00002672 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002673
Chris Lattnera12a6de2008-06-02 01:29:46 +00002674 // sitofp and uitofp turn into +0.0 for zero.
Sanjay Patel20df88a2017-11-13 17:56:23 +00002675 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
Chris Lattnera12a6de2008-06-02 01:29:46 +00002676 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002677
Sanjay Patel20df88a2017-11-13 17:56:23 +00002678 if (auto *Call = dyn_cast<CallInst>(Op)) {
2679 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002680 switch (IID) {
2681 default:
2682 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002683 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002684 case Intrinsic::sqrt:
Sanjay Patel20df88a2017-11-13 17:56:23 +00002685 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002686 // fabs(x) != -0.0
2687 case Intrinsic::fabs:
2688 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002689 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002690 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002691
Chris Lattnera12a6de2008-06-02 01:29:46 +00002692 return false;
2693}
2694
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002695/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2696/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2697/// bit despite comparing equal.
2698static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2699 const TargetLibraryInfo *TLI,
2700 bool SignBitOnly,
2701 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002702 // TODO: This function does not do the right thing when SignBitOnly is true
2703 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2704 // which flips the sign bits of NaNs. See
2705 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2706
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002707 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2708 return !CFP->getValueAPF().isNegative() ||
2709 (!SignBitOnly && CFP->getValueAPF().isZero());
2710 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002711
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002712 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002713 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002714
2715 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002716 if (!I)
2717 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002718
2719 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002720 default:
2721 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002722 // Unsigned integers are always nonnegative.
2723 case Instruction::UIToFP:
2724 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002725 case Instruction::FMul:
2726 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002727 if (I->getOperand(0) == I->getOperand(1) &&
2728 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002729 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002730
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002731 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002732 case Instruction::FAdd:
2733 case Instruction::FDiv:
2734 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002735 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2736 Depth + 1) &&
2737 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2738 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002739 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002740 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2741 Depth + 1) &&
2742 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2743 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002744 case Instruction::FPExt:
2745 case Instruction::FPTrunc:
2746 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002747 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2748 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002749 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002750 const auto *CI = cast<CallInst>(I);
2751 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002752 switch (IID) {
2753 default:
2754 break;
2755 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002756 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2757 Depth + 1) ||
2758 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2759 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002760 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002761 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2762 Depth + 1) &&
2763 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2764 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002765 case Intrinsic::exp:
2766 case Intrinsic::exp2:
2767 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002768 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002769
2770 case Intrinsic::sqrt:
2771 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2772 if (!SignBitOnly)
2773 return true;
2774 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2775 CannotBeNegativeZero(CI->getOperand(0), TLI));
2776
David Majnemer3ee5f342016-04-13 06:55:52 +00002777 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002778 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002779 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002780 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002781 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002782 }
Justin Lebar322c1272017-01-27 00:58:34 +00002783 // TODO: This is not correct. Given that exp is an integer, here are the
2784 // ways that pow can return a negative value:
2785 //
2786 // pow(x, exp) --> negative if exp is odd and x is negative.
2787 // pow(-0, exp) --> -inf if exp is negative odd.
2788 // pow(-0, exp) --> -0 if exp is positive odd.
2789 // pow(-inf, exp) --> -0 if exp is negative odd.
2790 // pow(-inf, exp) --> -inf if exp is positive odd.
2791 //
2792 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2793 // but we must return false if x == -0. Unfortunately we do not currently
2794 // have a way of expressing this constraint. See details in
2795 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002796 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2797 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002798
David Majnemer3ee5f342016-04-13 06:55:52 +00002799 case Intrinsic::fma:
2800 case Intrinsic::fmuladd:
2801 // x*x+y is non-negative if y is non-negative.
2802 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002803 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2804 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2805 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002806 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002807 break;
2808 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002809 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002810}
2811
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002812bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2813 const TargetLibraryInfo *TLI) {
2814 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2815}
2816
2817bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2818 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2819}
2820
Sanjay Patel6840c5f2017-09-05 23:13:13 +00002821bool llvm::isKnownNeverNaN(const Value *V) {
2822 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
2823
2824 // If we're told that NaNs won't happen, assume they won't.
2825 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
2826 if (FPMathOp->hasNoNaNs())
2827 return true;
2828
2829 // TODO: Handle instructions and potentially recurse like other 'isKnown'
2830 // functions. For example, the result of sitofp is never NaN.
2831
2832 // Handle scalar constants.
2833 if (auto *CFP = dyn_cast<ConstantFP>(V))
2834 return !CFP->isNaN();
2835
2836 // Bail out for constant expressions, but try to handle vector constants.
2837 if (!V->getType()->isVectorTy() || !isa<Constant>(V))
2838 return false;
2839
2840 // For vectors, verify that each element is not NaN.
2841 unsigned NumElts = V->getType()->getVectorNumElements();
2842 for (unsigned i = 0; i != NumElts; ++i) {
2843 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
2844 if (!Elt)
2845 return false;
2846 if (isa<UndefValue>(Elt))
2847 continue;
2848 auto *CElt = dyn_cast<ConstantFP>(Elt);
2849 if (!CElt || CElt->isNaN())
2850 return false;
2851 }
2852 // All elements were confirmed not-NaN or undefined.
2853 return true;
2854}
2855
Sanjay Patelaee84212014-11-04 16:27:42 +00002856/// If the specified value can be set by repeating the same byte in memory,
2857/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002858/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2859/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2860/// byte store (e.g. i16 0x1234), return null.
2861Value *llvm::isBytewiseValue(Value *V) {
2862 // All byte-wide stores are splatable, even of arbitrary variables.
2863 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002864
2865 // Handle 'null' ConstantArrayZero etc.
2866 if (Constant *C = dyn_cast<Constant>(V))
2867 if (C->isNullValue())
2868 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002869
Chris Lattner9cb10352010-12-26 20:15:01 +00002870 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002871 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002872 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2873 if (CFP->getType()->isFloatTy())
2874 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2875 if (CFP->getType()->isDoubleTy())
2876 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2877 // Don't handle long double formats, which have strange constraints.
2878 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002879
Benjamin Kramer17d90152015-02-07 19:29:02 +00002880 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002881 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002882 if (CI->getBitWidth() % 8 == 0) {
2883 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002884
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002885 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002886 return nullptr;
2887 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002888 }
2889 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002890
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002891 // A ConstantDataArray/Vector is splatable if all its members are equal and
2892 // also splatable.
2893 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2894 Value *Elt = CA->getElementAsConstant(0);
2895 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002896 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002897 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002898
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002899 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2900 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002901 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002902
Chris Lattner9cb10352010-12-26 20:15:01 +00002903 return Val;
2904 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002905
Chris Lattner9cb10352010-12-26 20:15:01 +00002906 // Conceptually, we could handle things like:
2907 // %a = zext i8 %X to i16
2908 // %b = shl i16 %a, 8
2909 // %c = or i16 %a, %b
2910 // but until there is an example that actually needs this, it doesn't seem
2911 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002912 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002913}
2914
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002915// This is the recursive version of BuildSubAggregate. It takes a few different
2916// arguments. Idxs is the index within the nested struct From that we are
2917// looking at now (which is of type IndexedType). IdxSkip is the number of
2918// indices from Idxs that should be left out when inserting into the resulting
2919// struct. To is the result struct built so far, new insertvalue instructions
2920// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002921static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002922 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002923 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002924 Instruction *InsertBefore) {
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002925 StructType *STy = dyn_cast<StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002926 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002927 // Save the original To argument so we can modify it
2928 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002929 // General case, the type indexed by Idxs is a struct
2930 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2931 // Process each struct element recursively
2932 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002933 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002934 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002935 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002936 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002937 if (!To) {
2938 // Couldn't find any inserted value for this index? Cleanup
2939 while (PrevTo != OrigTo) {
2940 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2941 PrevTo = Del->getAggregateOperand();
2942 Del->eraseFromParent();
2943 }
2944 // Stop processing elements
2945 break;
2946 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002947 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002948 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002949 if (To)
2950 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002951 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002952 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2953 // the struct's elements had a value that was inserted directly. In the latter
2954 // case, perhaps we can't determine each of the subelements individually, but
2955 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002956
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002957 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002958 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002959
2960 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002961 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002962
2963 // Insert the value in the new (sub) aggregrate
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002964 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2965 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002966}
2967
2968// This helper takes a nested struct and extracts a part of it (which is again a
2969// struct) into a new value. For example, given the struct:
2970// { a, { b, { c, d }, e } }
2971// and the indices "1, 1" this returns
2972// { c, d }.
2973//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002974// It does this by inserting an insertvalue for each element in the resulting
2975// struct, as opposed to just inserting a single struct. This will only work if
2976// each of the elements of the substruct are known (ie, inserted into From by an
2977// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002978//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002979// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002980static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002981 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002982 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002983 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002984 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002985 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002986 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002987 unsigned IdxSkip = Idxs.size();
2988
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002989 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002990}
2991
Sanjay Patelaee84212014-11-04 16:27:42 +00002992/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002993/// the scalar value indexed is already around as a register, for example if it
2994/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002995///
2996/// If InsertBefore is not null, this function will duplicate (modified)
2997/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002998Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2999 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003000 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003001 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00003002 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003003 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003004 // We have indices, so V should have an indexable type.
3005 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3006 "Not looking at a struct or array?");
3007 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3008 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00003009
Chris Lattner67058832012-01-25 06:48:06 +00003010 if (Constant *C = dyn_cast<Constant>(V)) {
3011 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00003012 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00003013 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3014 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003015
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003016 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003017 // Loop the indices for the insertvalue instruction in parallel with the
3018 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00003019 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003020 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3021 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00003022 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003023 // We can't handle this without inserting insertvalues
3024 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00003025 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003026
3027 // The requested index identifies a part of a nested aggregate. Handle
3028 // this specially. For example,
3029 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3030 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3031 // %C = extractvalue {i32, { i32, i32 } } %B, 1
3032 // This can be changed into
3033 // %A = insertvalue {i32, i32 } undef, i32 10, 0
3034 // %C = insertvalue {i32, i32 } %A, i32 11, 1
3035 // which allows the unused 0,0 element from the nested struct to be
3036 // removed.
3037 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3038 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00003039 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003040
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003041 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00003042 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003043 // looking for, then.
3044 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00003045 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003046 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003047 }
3048 // If we end up here, the indices of the insertvalue match with those
3049 // requested (though possibly only partially). Now we recursively look at
3050 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00003051 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00003052 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003053 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003054 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003055
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003056 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00003057 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003058 // something else, we can extract from that something else directly instead.
3059 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00003060
3061 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00003062 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003063 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00003064 SmallVector<unsigned, 5> Idxs;
3065 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003066 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00003067 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00003068
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003069 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00003070 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003071
Craig Topper1bef2c82012-12-22 19:15:35 +00003072 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003073 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00003074
Jay Foad57aa6362011-07-13 10:26:04 +00003075 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003076 }
3077 // Otherwise, we don't know (such as, extracting from a function return value
3078 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00003079 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003080}
Evan Chengda3db112008-06-30 07:31:25 +00003081
Sanjay Patelaee84212014-11-04 16:27:42 +00003082/// Analyze the specified pointer to see if it can be expressed as a base
3083/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00003084Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003085 const DataLayout &DL) {
3086 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00003087 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00003088
3089 // We walk up the defs but use a visited set to handle unreachable code. In
3090 // that case, we stop after accumulating the cycle once (not that it
3091 // matters).
3092 SmallPtrSet<Value *, 16> Visited;
3093 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003094 if (Ptr->getType()->isVectorTy())
3095 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00003096
Nuno Lopes368c4d02012-12-31 20:48:35 +00003097 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00003098 // If one of the values we have visited is an addrspacecast, then
3099 // the pointer type of this GEP may be different from the type
3100 // of the Ptr parameter which was passed to this function. This
3101 // means when we construct GEPOffset, we need to use the size
3102 // of GEP's pointer type rather than the size of the original
3103 // pointer type.
3104 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003105 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3106 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003107
Tom Stellard17eb3412016-10-07 14:23:29 +00003108 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003109
Nuno Lopes368c4d02012-12-31 20:48:35 +00003110 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00003111 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3112 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003113 Ptr = cast<Operator>(Ptr)->getOperand(0);
3114 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003115 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00003116 break;
3117 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00003118 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003119 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00003120 }
3121 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00003122 Offset = ByteOffset.getSExtValue();
3123 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00003124}
3125
Matthias Braun50ec0b52017-05-19 22:37:09 +00003126bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3127 unsigned CharSize) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003128 // Make sure the GEP has exactly three arguments.
3129 if (GEP->getNumOperands() != 3)
3130 return false;
3131
Matthias Braun50ec0b52017-05-19 22:37:09 +00003132 // Make sure the index-ee is a pointer to array of \p CharSize integers.
3133 // CharSize.
David L Kreitzer752c1442016-04-13 14:31:06 +00003134 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Matthias Braun50ec0b52017-05-19 22:37:09 +00003135 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
David L Kreitzer752c1442016-04-13 14:31:06 +00003136 return false;
3137
3138 // Check to make sure that the first operand of the GEP is an integer and
3139 // has value 0 so that we are sure we're indexing into the initializer.
3140 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3141 if (!FirstIdx || !FirstIdx->isZero())
3142 return false;
3143
3144 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003145}
Chris Lattnere28618d2010-11-30 22:25:26 +00003146
Matthias Braun50ec0b52017-05-19 22:37:09 +00003147bool llvm::getConstantDataArrayInfo(const Value *V,
3148 ConstantDataArraySlice &Slice,
3149 unsigned ElementSize, uint64_t Offset) {
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003150 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00003151
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003152 // Look through bitcast instructions and geps.
3153 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00003154
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003155 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003156 // offset.
3157 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003158 // The GEP operator should be based on a pointer to string constant, and is
3159 // indexing into the string constant.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003160 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003161 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003162
Evan Chengda3db112008-06-30 07:31:25 +00003163 // If the second index isn't a ConstantInt, then this is a variable index
3164 // into the array. If this occurs, we can't say anything meaningful about
3165 // the string.
3166 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003167 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003168 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003169 else
3170 return false;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003171 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3172 StartIdx + Offset);
Evan Chengda3db112008-06-30 07:31:25 +00003173 }
Nick Lewycky46209882011-10-20 00:34:35 +00003174
Evan Chengda3db112008-06-30 07:31:25 +00003175 // The GEP instruction, constant or instruction, must reference a global
3176 // variable that is a constant and is initialized. The referenced constant
3177 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003178 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003179 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003180 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003181
Matthias Braun50ec0b52017-05-19 22:37:09 +00003182 const ConstantDataArray *Array;
3183 ArrayType *ArrayTy;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003184 if (GV->getInitializer()->isNullValue()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003185 Type *GVTy = GV->getValueType();
3186 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
Sanjay Patel2ad88f82017-06-12 22:34:37 +00003187 // A zeroinitializer for the array; there is no ConstantDataArray.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003188 Array = nullptr;
3189 } else {
3190 const DataLayout &DL = GV->getParent()->getDataLayout();
3191 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3192 uint64_t Length = SizeInBytes / (ElementSize / 8);
3193 if (Length <= Offset)
3194 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003195
Matthias Braun50ec0b52017-05-19 22:37:09 +00003196 Slice.Array = nullptr;
3197 Slice.Offset = 0;
3198 Slice.Length = Length - Offset;
3199 return true;
3200 }
3201 } else {
3202 // This must be a ConstantDataArray.
3203 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3204 if (!Array)
3205 return false;
3206 ArrayTy = Array->getType();
3207 }
3208 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003209 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003210
Matthias Braun50ec0b52017-05-19 22:37:09 +00003211 uint64_t NumElts = ArrayTy->getArrayNumElements();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003212 if (Offset > NumElts)
3213 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003214
Matthias Braun50ec0b52017-05-19 22:37:09 +00003215 Slice.Array = Array;
3216 Slice.Offset = Offset;
3217 Slice.Length = NumElts - Offset;
3218 return true;
3219}
3220
3221/// This function computes the length of a null-terminated C string pointed to
3222/// by V. If successful, it returns true and returns the string in Str.
3223/// If unsuccessful, it returns false.
3224bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3225 uint64_t Offset, bool TrimAtNul) {
3226 ConstantDataArraySlice Slice;
3227 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3228 return false;
3229
3230 if (Slice.Array == nullptr) {
3231 if (TrimAtNul) {
3232 Str = StringRef();
3233 return true;
3234 }
3235 if (Slice.Length == 1) {
3236 Str = StringRef("", 1);
3237 return true;
3238 }
Sanjay Patelfef83e82017-06-09 14:21:18 +00003239 // We cannot instantiate a StringRef as we do not have an appropriate string
Matthias Braun50ec0b52017-05-19 22:37:09 +00003240 // of 0s at hand.
3241 return false;
3242 }
3243
3244 // Start out with the entire array in the StringRef.
3245 Str = Slice.Array->getAsString();
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003246 // Skip over 'offset' bytes.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003247 Str = Str.substr(Slice.Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003248
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003249 if (TrimAtNul) {
3250 // Trim off the \0 and anything after it. If the array is not nul
3251 // terminated, we just return the whole end of string. The client may know
3252 // some other way that the string is length-bound.
3253 Str = Str.substr(0, Str.find('\0'));
3254 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003255 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003256}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003257
3258// These next two are very similar to the above, but also look through PHI
3259// nodes.
3260// TODO: See if we can integrate these two together.
3261
Sanjay Patelaee84212014-11-04 16:27:42 +00003262/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003263/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003264static uint64_t GetStringLengthH(const Value *V,
Matthias Braun50ec0b52017-05-19 22:37:09 +00003265 SmallPtrSetImpl<const PHINode*> &PHIs,
3266 unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003267 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003268 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003269
3270 // If this is a PHI node, there are two cases: either we have already seen it
3271 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003272 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003273 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003274 return ~0ULL; // already in the set.
3275
3276 // If it was new, see if all the input strings are the same length.
3277 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003278 for (Value *IncValue : PN->incoming_values()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003279 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003280 if (Len == 0) return 0; // Unknown length -> unknown.
3281
3282 if (Len == ~0ULL) continue;
3283
3284 if (Len != LenSoFar && LenSoFar != ~0ULL)
3285 return 0; // Disagree -> unknown.
3286 LenSoFar = Len;
3287 }
3288
3289 // Success, all agree.
3290 return LenSoFar;
3291 }
3292
3293 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003294 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003295 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003296 if (Len1 == 0) return 0;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003297 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003298 if (Len2 == 0) return 0;
3299 if (Len1 == ~0ULL) return Len2;
3300 if (Len2 == ~0ULL) return Len1;
3301 if (Len1 != Len2) return 0;
3302 return Len1;
3303 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003304
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003305 // Otherwise, see if we can read the string.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003306 ConstantDataArraySlice Slice;
3307 if (!getConstantDataArrayInfo(V, Slice, CharSize))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003308 return 0;
3309
Matthias Braun50ec0b52017-05-19 22:37:09 +00003310 if (Slice.Array == nullptr)
3311 return 1;
3312
3313 // Search for nul characters
3314 unsigned NullIndex = 0;
3315 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3316 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3317 break;
3318 }
3319
3320 return NullIndex + 1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003321}
3322
Sanjay Patelaee84212014-11-04 16:27:42 +00003323/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003324/// the specified pointer, return 'len+1'. If we can't, return 0.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003325uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003326 if (!V->getType()->isPointerTy()) return 0;
3327
Pete Cooper35b00d52016-08-13 01:05:32 +00003328 SmallPtrSet<const PHINode*, 32> PHIs;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003329 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003330 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3331 // an empty string as a length.
3332 return Len == ~0ULL ? 1 : Len;
3333}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003334
Adam Nemete2b885c2015-04-23 20:09:20 +00003335/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3336/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003337static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3338 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003339 // Find the loop-defined value.
3340 Loop *L = LI->getLoopFor(PN->getParent());
3341 if (PN->getNumIncomingValues() != 2)
3342 return true;
3343
3344 // Find the value from previous iteration.
3345 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3346 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3347 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3348 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3349 return true;
3350
3351 // If a new pointer is loaded in the loop, the pointer references a different
3352 // object in every iteration. E.g.:
3353 // for (i)
3354 // int *p = a[i];
3355 // ...
3356 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3357 if (!L->isLoopInvariant(Load->getPointerOperand()))
3358 return false;
3359 return true;
3360}
3361
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003362Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3363 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003364 if (!V->getType()->isPointerTy())
3365 return V;
3366 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3367 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3368 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003369 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3370 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003371 V = cast<Operator>(V)->getOperand(0);
3372 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003373 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003374 return V;
3375 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003376 } else if (isa<AllocaInst>(V)) {
3377 // An alloca can't be further simplified.
3378 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003379 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003380 if (auto CS = CallSite(V))
3381 if (Value *RV = CS.getReturnedArgOperand()) {
3382 V = RV;
3383 continue;
3384 }
3385
Dan Gohman05b18f12010-12-15 20:49:55 +00003386 // See if InstructionSimplify knows any relevant tricks.
3387 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003388 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Daniel Berlin4d0fe642017-04-28 19:55:38 +00003389 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003390 V = Simplified;
3391 continue;
3392 }
3393
Dan Gohmana4fcd242010-12-15 20:02:24 +00003394 return V;
3395 }
3396 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3397 }
3398 return V;
3399}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003400
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003401void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003402 const DataLayout &DL, LoopInfo *LI,
3403 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003404 SmallPtrSet<Value *, 4> Visited;
3405 SmallVector<Value *, 4> Worklist;
3406 Worklist.push_back(V);
3407 do {
3408 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003409 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003410
David Blaikie70573dc2014-11-19 07:49:26 +00003411 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003412 continue;
3413
3414 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3415 Worklist.push_back(SI->getTrueValue());
3416 Worklist.push_back(SI->getFalseValue());
3417 continue;
3418 }
3419
3420 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003421 // If this PHI changes the underlying object in every iteration of the
3422 // loop, don't look through it. Consider:
3423 // int **A;
3424 // for (i) {
3425 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3426 // Curr = A[i];
3427 // *Prev, *Curr;
3428 //
3429 // Prev is tracking Curr one iteration behind so they refer to different
3430 // underlying objects.
3431 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3432 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003433 for (Value *IncValue : PN->incoming_values())
3434 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003435 continue;
3436 }
3437
3438 Objects.push_back(P);
3439 } while (!Worklist.empty());
3440}
3441
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003442/// This is the function that does the work of looking through basic
3443/// ptrtoint+arithmetic+inttoptr sequences.
3444static const Value *getUnderlyingObjectFromInt(const Value *V) {
3445 do {
3446 if (const Operator *U = dyn_cast<Operator>(V)) {
3447 // If we find a ptrtoint, we can transfer control back to the
3448 // regular getUnderlyingObjectFromInt.
3449 if (U->getOpcode() == Instruction::PtrToInt)
3450 return U->getOperand(0);
3451 // If we find an add of a constant, a multiplied value, or a phi, it's
3452 // likely that the other operand will lead us to the base
3453 // object. We don't have to worry about the case where the
3454 // object address is somehow being computed by the multiply,
3455 // because our callers only care when the result is an
3456 // identifiable object.
3457 if (U->getOpcode() != Instruction::Add ||
3458 (!isa<ConstantInt>(U->getOperand(1)) &&
3459 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3460 !isa<PHINode>(U->getOperand(1))))
3461 return V;
3462 V = U->getOperand(0);
3463 } else {
3464 return V;
3465 }
3466 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3467 } while (true);
3468}
3469
3470/// This is a wrapper around GetUnderlyingObjects and adds support for basic
3471/// ptrtoint+arithmetic+inttoptr sequences.
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003472/// It returns false if unidentified object is found in GetUnderlyingObjects.
3473bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003474 SmallVectorImpl<Value *> &Objects,
3475 const DataLayout &DL) {
3476 SmallPtrSet<const Value *, 16> Visited;
3477 SmallVector<const Value *, 4> Working(1, V);
3478 do {
3479 V = Working.pop_back_val();
3480
3481 SmallVector<Value *, 4> Objs;
3482 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3483
3484 for (Value *V : Objs) {
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003485 if (!Visited.insert(V).second)
3486 continue;
3487 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3488 const Value *O =
3489 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3490 if (O->getType()->isPointerTy()) {
3491 Working.push_back(O);
3492 continue;
3493 }
3494 }
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003495 // If GetUnderlyingObjects fails to find an identifiable object,
3496 // getUnderlyingObjectsForCodeGen also fails for safety.
3497 if (!isIdentifiedObject(V)) {
3498 Objects.clear();
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003499 return false;
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003500 }
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003501 Objects.push_back(const_cast<Value *>(V));
3502 }
3503 } while (!Working.empty());
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003504 return true;
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003505}
3506
Sanjay Patelaee84212014-11-04 16:27:42 +00003507/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003508bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003509 for (const User *U : V->users()) {
3510 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003511 if (!II) return false;
3512
3513 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3514 II->getIntrinsicID() != Intrinsic::lifetime_end)
3515 return false;
3516 }
3517 return true;
3518}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003519
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003520bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3521 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003522 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003523 const Operator *Inst = dyn_cast<Operator>(V);
3524 if (!Inst)
3525 return false;
3526
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003527 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3528 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3529 if (C->canTrap())
3530 return false;
3531
3532 switch (Inst->getOpcode()) {
3533 default:
3534 return true;
3535 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003536 case Instruction::URem: {
3537 // x / y is undefined if y == 0.
3538 const APInt *V;
3539 if (match(Inst->getOperand(1), m_APInt(V)))
3540 return *V != 0;
3541 return false;
3542 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003543 case Instruction::SDiv:
3544 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003545 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003546 const APInt *Numerator, *Denominator;
3547 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3548 return false;
3549 // We cannot hoist this division if the denominator is 0.
3550 if (*Denominator == 0)
3551 return false;
3552 // It's safe to hoist if the denominator is not 0 or -1.
3553 if (*Denominator != -1)
3554 return true;
3555 // At this point we know that the denominator is -1. It is safe to hoist as
3556 // long we know that the numerator is not INT_MIN.
3557 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3558 return !Numerator->isMinSignedValue();
3559 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003560 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003561 }
3562 case Instruction::Load: {
3563 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003564 if (!LI->isUnordered() ||
3565 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003566 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003567 // Speculative load may load data from dirty regions.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00003568 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3569 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003570 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003571 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003572 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3573 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003574 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003575 case Instruction::Call: {
Matt Arsenaultcf5e7fe2017-04-28 21:13:09 +00003576 auto *CI = cast<const CallInst>(Inst);
3577 const Function *Callee = CI->getCalledFunction();
David Majnemer0a92f862015-08-28 21:13:39 +00003578
Matt Arsenault6a288c12017-05-03 02:26:10 +00003579 // The called function could have undefined behavior or side-effects, even
3580 // if marked readnone nounwind.
3581 return Callee && Callee->isSpeculatable();
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003582 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003583 case Instruction::VAArg:
3584 case Instruction::Alloca:
3585 case Instruction::Invoke:
3586 case Instruction::PHI:
3587 case Instruction::Store:
3588 case Instruction::Ret:
3589 case Instruction::Br:
3590 case Instruction::IndirectBr:
3591 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003592 case Instruction::Unreachable:
3593 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003594 case Instruction::AtomicRMW:
3595 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003596 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003597 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003598 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003599 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003600 case Instruction::CatchRet:
3601 case Instruction::CleanupPad:
3602 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003603 return false; // Misc instructions which have effects
3604 }
3605}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003606
Quentin Colombet6443cce2015-08-06 18:44:34 +00003607bool llvm::mayBeMemoryDependent(const Instruction &I) {
3608 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3609}
3610
Pete Cooper35b00d52016-08-13 01:05:32 +00003611OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3612 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003613 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003614 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003615 const Instruction *CxtI,
3616 const DominatorTree *DT) {
3617 // Multiplying n * m significant bits yields a result of n + m significant
3618 // bits. If the total number of significant bits does not exceed the
3619 // result bit width (minus 1), there is no overflow.
3620 // This means if we have enough leading zero bits in the operands
3621 // we can guarantee that the result does not overflow.
3622 // Ref: "Hacker's Delight" by Henry Warren
3623 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00003624 KnownBits LHSKnown(BitWidth);
3625 KnownBits RHSKnown(BitWidth);
3626 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
3627 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer491331a2015-01-02 07:29:43 +00003628 // Note that underestimating the number of zero bits gives a more
3629 // conservative answer.
Craig Topper8df66c62017-05-12 17:20:30 +00003630 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3631 RHSKnown.countMinLeadingZeros();
David Majnemer491331a2015-01-02 07:29:43 +00003632 // First handle the easy case: if we have enough zero bits there's
3633 // definitely no overflow.
3634 if (ZeroBits >= BitWidth)
3635 return OverflowResult::NeverOverflows;
3636
3637 // Get the largest possible values for each operand.
Craig Topperb45eabc2017-04-26 16:39:58 +00003638 APInt LHSMax = ~LHSKnown.Zero;
3639 APInt RHSMax = ~RHSKnown.Zero;
David Majnemer491331a2015-01-02 07:29:43 +00003640
3641 // We know the multiply operation doesn't overflow if the maximum values for
3642 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003643 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003644 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003645 if (!MaxOverflow)
3646 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003647
David Majnemerc8a576b2015-01-02 07:29:47 +00003648 // We know it always overflows if multiplying the smallest possible values for
3649 // the operands also results in overflow.
3650 bool MinOverflow;
Craig Topperb45eabc2017-04-26 16:39:58 +00003651 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003652 if (MinOverflow)
3653 return OverflowResult::AlwaysOverflows;
3654
3655 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003656}
David Majnemer5310c1e2015-01-07 00:39:50 +00003657
Pete Cooper35b00d52016-08-13 01:05:32 +00003658OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3659 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003660 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003661 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003662 const Instruction *CxtI,
3663 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +00003664 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3665 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3666 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003667
Craig Topper6e11a052017-05-08 16:22:48 +00003668 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003669 // The sign bit is set in both cases: this MUST overflow.
3670 // Create a simple add instruction, and insert it into the struct.
3671 return OverflowResult::AlwaysOverflows;
3672 }
3673
Craig Topper6e11a052017-05-08 16:22:48 +00003674 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003675 // The sign bit is clear in both cases: this CANNOT overflow.
3676 // Create a simple add instruction, and insert it into the struct.
3677 return OverflowResult::NeverOverflows;
3678 }
3679 }
3680
3681 return OverflowResult::MayOverflow;
3682}
James Molloy71b91c22015-05-11 14:42:20 +00003683
Craig Topperbb973722017-05-15 02:44:08 +00003684/// \brief Return true if we can prove that adding the two values of the
3685/// knownbits will not overflow.
3686/// Otherwise return false.
3687static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3688 const KnownBits &RHSKnown) {
3689 // Addition of two 2's complement numbers having opposite signs will never
3690 // overflow.
3691 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3692 (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3693 return true;
3694
3695 // If either of the values is known to be non-negative, adding them can only
3696 // overflow if the second is also non-negative, so we can assume that.
3697 // Two non-negative numbers will only overflow if there is a carry to the
3698 // sign bit, so we can check if even when the values are as big as possible
3699 // there is no overflow to the sign bit.
3700 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3701 APInt MaxLHS = ~LHSKnown.Zero;
3702 MaxLHS.clearSignBit();
3703 APInt MaxRHS = ~RHSKnown.Zero;
3704 MaxRHS.clearSignBit();
3705 APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3706 return Result.isSignBitClear();
3707 }
3708
3709 // If either of the values is known to be negative, adding them can only
3710 // overflow if the second is also negative, so we can assume that.
3711 // Two negative number will only overflow if there is no carry to the sign
3712 // bit, so we can check if even when the values are as small as possible
3713 // there is overflow to the sign bit.
3714 if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
3715 APInt MinLHS = LHSKnown.One;
3716 MinLHS.clearSignBit();
3717 APInt MinRHS = RHSKnown.One;
3718 MinRHS.clearSignBit();
3719 APInt Result = std::move(MinLHS) + std::move(MinRHS);
3720 return Result.isSignBitSet();
3721 }
3722
3723 // If we reached here it means that we know nothing about the sign bits.
3724 // In this case we can't know if there will be an overflow, since by
3725 // changing the sign bits any two values can be made to overflow.
3726 return false;
3727}
3728
Pete Cooper35b00d52016-08-13 01:05:32 +00003729static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3730 const Value *RHS,
3731 const AddOperator *Add,
3732 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003733 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003734 const Instruction *CxtI,
3735 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003736 if (Add && Add->hasNoSignedWrap()) {
3737 return OverflowResult::NeverOverflows;
3738 }
3739
Craig Topperbb973722017-05-15 02:44:08 +00003740 // If LHS and RHS each have at least two sign bits, the addition will look
3741 // like
3742 //
3743 // XX..... +
3744 // YY.....
3745 //
3746 // If the carry into the most significant position is 0, X and Y can't both
3747 // be 1 and therefore the carry out of the addition is also 0.
3748 //
3749 // If the carry into the most significant position is 1, X and Y can't both
3750 // be 0 and therefore the carry out of the addition is also 1.
3751 //
3752 // Since the carry into the most significant position is always equal to
3753 // the carry out of the addition, there is no signed overflow.
3754 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
3755 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
3756 return OverflowResult::NeverOverflows;
3757
Craig Topper6e11a052017-05-08 16:22:48 +00003758 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3759 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003760
Craig Topperbb973722017-05-15 02:44:08 +00003761 if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
Jingyue Wu10fcea52015-08-20 18:27:04 +00003762 return OverflowResult::NeverOverflows;
Jingyue Wu10fcea52015-08-20 18:27:04 +00003763
3764 // The remaining code needs Add to be available. Early returns if not so.
3765 if (!Add)
3766 return OverflowResult::MayOverflow;
3767
3768 // If the sign of Add is the same as at least one of the operands, this add
3769 // CANNOT overflow. This is particularly useful when the sum is
3770 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3771 // operands.
3772 bool LHSOrRHSKnownNonNegative =
Craig Topper6e11a052017-05-08 16:22:48 +00003773 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
Craig Topperbb973722017-05-15 02:44:08 +00003774 bool LHSOrRHSKnownNegative =
3775 (LHSKnown.isNegative() || RHSKnown.isNegative());
Jingyue Wu10fcea52015-08-20 18:27:04 +00003776 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
Craig Topper6e11a052017-05-08 16:22:48 +00003777 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
3778 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
3779 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003780 return OverflowResult::NeverOverflows;
3781 }
3782 }
3783
3784 return OverflowResult::MayOverflow;
3785}
3786
Pete Cooper35b00d52016-08-13 01:05:32 +00003787bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3788 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003789#ifndef NDEBUG
3790 auto IID = II->getIntrinsicID();
3791 assert((IID == Intrinsic::sadd_with_overflow ||
3792 IID == Intrinsic::uadd_with_overflow ||
3793 IID == Intrinsic::ssub_with_overflow ||
3794 IID == Intrinsic::usub_with_overflow ||
3795 IID == Intrinsic::smul_with_overflow ||
3796 IID == Intrinsic::umul_with_overflow) &&
3797 "Not an overflow intrinsic!");
3798#endif
3799
Pete Cooper35b00d52016-08-13 01:05:32 +00003800 SmallVector<const BranchInst *, 2> GuardingBranches;
3801 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003802
Pete Cooper35b00d52016-08-13 01:05:32 +00003803 for (const User *U : II->users()) {
3804 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003805 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3806
3807 if (EVI->getIndices()[0] == 0)
3808 Results.push_back(EVI);
3809 else {
3810 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3811
Pete Cooper35b00d52016-08-13 01:05:32 +00003812 for (const auto *U : EVI->users())
3813 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003814 assert(B->isConditional() && "How else is it using an i1?");
3815 GuardingBranches.push_back(B);
3816 }
3817 }
3818 } else {
3819 // We are using the aggregate directly in a way we don't want to analyze
3820 // here (storing it to a global, say).
3821 return false;
3822 }
3823 }
3824
Pete Cooper35b00d52016-08-13 01:05:32 +00003825 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003826 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3827 if (!NoWrapEdge.isSingleEdge())
3828 return false;
3829
3830 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003831 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003832 // If the extractvalue itself is not executed on overflow, the we don't
3833 // need to check each use separately, since domination is transitive.
3834 if (DT.dominates(NoWrapEdge, Result->getParent()))
3835 continue;
3836
3837 for (auto &RU : Result->uses())
3838 if (!DT.dominates(NoWrapEdge, RU))
3839 return false;
3840 }
3841
3842 return true;
3843 };
3844
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003845 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003846}
3847
3848
Pete Cooper35b00d52016-08-13 01:05:32 +00003849OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003850 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003851 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003852 const Instruction *CxtI,
3853 const DominatorTree *DT) {
3854 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003855 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003856}
3857
Pete Cooper35b00d52016-08-13 01:05:32 +00003858OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3859 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003860 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003861 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003862 const Instruction *CxtI,
3863 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003864 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003865}
3866
Jingyue Wu42f1d672015-07-28 18:22:40 +00003867bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003868 // A memory operation returns normally if it isn't volatile. A volatile
3869 // operation is allowed to trap.
3870 //
3871 // An atomic operation isn't guaranteed to return in a reasonable amount of
3872 // time because it's possible for another thread to interfere with it for an
3873 // arbitrary length of time, but programs aren't allowed to rely on that.
3874 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3875 return !LI->isVolatile();
3876 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3877 return !SI->isVolatile();
3878 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3879 return !CXI->isVolatile();
3880 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3881 return !RMWI->isVolatile();
3882 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3883 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003884
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003885 // If there is no successor, then execution can't transfer to it.
3886 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3887 return !CRI->unwindsToCaller();
3888 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3889 return !CatchSwitch->unwindsToCaller();
3890 if (isa<ResumeInst>(I))
3891 return false;
3892 if (isa<ReturnInst>(I))
3893 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00003894 if (isa<UnreachableInst>(I))
3895 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003896
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003897 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003898 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003899 // Call sites that throw have implicit non-local control flow.
3900 if (!CS.doesNotThrow())
3901 return false;
3902
3903 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3904 // etc. and thus not return. However, LLVM already assumes that
3905 //
3906 // - Thread exiting actions are modeled as writes to memory invisible to
3907 // the program.
3908 //
3909 // - Loops that don't have side effects (side effects are volatile/atomic
3910 // stores and IO) always terminate (see http://llvm.org/PR965).
3911 // Furthermore IO itself is also modeled as writes to memory invisible to
3912 // the program.
3913 //
3914 // We rely on those assumptions here, and use the memory effects of the call
3915 // target as a proxy for checking that it always returns.
3916
3917 // FIXME: This isn't aggressive enough; a call which only writes to a global
3918 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003919 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
Dan Gohman2c74fe92017-11-08 21:59:51 +00003920 match(I, m_Intrinsic<Intrinsic::assume>()) ||
3921 match(I, m_Intrinsic<Intrinsic::sideeffect>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003922 }
3923
3924 // Other instructions return normally.
3925 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003926}
3927
3928bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3929 const Loop *L) {
3930 // The loop header is guaranteed to be executed for every iteration.
3931 //
3932 // FIXME: Relax this constraint to cover all basic blocks that are
3933 // guaranteed to be executed at every iteration.
3934 if (I->getParent() != L->getHeader()) return false;
3935
3936 for (const Instruction &LI : *L->getHeader()) {
3937 if (&LI == I) return true;
3938 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3939 }
3940 llvm_unreachable("Instruction not contained in its own parent basic block.");
3941}
3942
3943bool llvm::propagatesFullPoison(const Instruction *I) {
3944 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003945 case Instruction::Add:
3946 case Instruction::Sub:
3947 case Instruction::Xor:
3948 case Instruction::Trunc:
3949 case Instruction::BitCast:
3950 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00003951 case Instruction::Mul:
3952 case Instruction::Shl:
3953 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003954 // These operations all propagate poison unconditionally. Note that poison
3955 // is not any particular value, so xor or subtraction of poison with
3956 // itself still yields poison, not zero.
3957 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003958
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003959 case Instruction::AShr:
3960 case Instruction::SExt:
3961 // For these operations, one bit of the input is replicated across
3962 // multiple output bits. A replicated poison bit is still poison.
3963 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003964
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003965 case Instruction::ICmp:
3966 // Comparing poison with any value yields poison. This is why, for
3967 // instance, x s< (x +nsw 1) can be folded to true.
3968 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003969
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003970 default:
3971 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003972 }
3973}
3974
3975const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3976 switch (I->getOpcode()) {
3977 case Instruction::Store:
3978 return cast<StoreInst>(I)->getPointerOperand();
3979
3980 case Instruction::Load:
3981 return cast<LoadInst>(I)->getPointerOperand();
3982
3983 case Instruction::AtomicCmpXchg:
3984 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3985
3986 case Instruction::AtomicRMW:
3987 return cast<AtomicRMWInst>(I)->getPointerOperand();
3988
3989 case Instruction::UDiv:
3990 case Instruction::SDiv:
3991 case Instruction::URem:
3992 case Instruction::SRem:
3993 return I->getOperand(1);
3994
3995 default:
3996 return nullptr;
3997 }
3998}
3999
Sanjoy Das08989c72017-04-30 19:41:19 +00004000bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004001 // We currently only look for uses of poison values within the same basic
4002 // block, as that makes it easier to guarantee that the uses will be
4003 // executed given that PoisonI is executed.
4004 //
4005 // FIXME: Expand this to consider uses beyond the same basic block. To do
4006 // this, look out for the distinction between post-dominance and strong
4007 // post-dominance.
4008 const BasicBlock *BB = PoisonI->getParent();
4009
4010 // Set of instructions that we have proved will yield poison if PoisonI
4011 // does.
4012 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004013 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004014 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004015 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004016
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004017 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00004018
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004019 unsigned Iter = 0;
4020 while (Iter++ < MaxDepth) {
4021 for (auto &I : make_range(Begin, End)) {
4022 if (&I != PoisonI) {
4023 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
4024 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
4025 return true;
4026 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4027 return false;
4028 }
4029
4030 // Mark poison that propagates from I through uses of I.
4031 if (YieldsPoison.count(&I)) {
4032 for (const User *User : I.users()) {
4033 const Instruction *UserI = cast<Instruction>(User);
4034 if (propagatesFullPoison(UserI))
4035 YieldsPoison.insert(User);
4036 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004037 }
4038 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004039
4040 if (auto *NextBB = BB->getSingleSuccessor()) {
4041 if (Visited.insert(NextBB).second) {
4042 BB = NextBB;
4043 Begin = BB->getFirstNonPHI()->getIterator();
4044 End = BB->end();
4045 continue;
4046 }
4047 }
4048
4049 break;
Eugene Zelenko75075ef2017-09-01 21:37:29 +00004050 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004051 return false;
4052}
4053
Pete Cooper35b00d52016-08-13 01:05:32 +00004054static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00004055 if (FMF.noNaNs())
4056 return true;
4057
4058 if (auto *C = dyn_cast<ConstantFP>(V))
4059 return !C->isNaN();
4060 return false;
4061}
4062
Pete Cooper35b00d52016-08-13 01:05:32 +00004063static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00004064 if (auto *C = dyn_cast<ConstantFP>(V))
4065 return !C->isZero();
4066 return false;
4067}
4068
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004069/// Match clamp pattern for float types without care about NaNs or signed zeros.
4070/// Given non-min/max outer cmp/select from the clamp pattern this
4071/// function recognizes if it can be substitued by a "canonical" min/max
4072/// pattern.
4073static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4074 Value *CmpLHS, Value *CmpRHS,
4075 Value *TrueVal, Value *FalseVal,
4076 Value *&LHS, Value *&RHS) {
4077 // Try to match
4078 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4079 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4080 // and return description of the outer Max/Min.
4081
4082 // First, check if select has inverse order:
4083 if (CmpRHS == FalseVal) {
4084 std::swap(TrueVal, FalseVal);
4085 Pred = CmpInst::getInversePredicate(Pred);
4086 }
4087
4088 // Assume success now. If there's no match, callers should not use these anyway.
4089 LHS = TrueVal;
4090 RHS = FalseVal;
4091
4092 const APFloat *FC1;
4093 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4094 return {SPF_UNKNOWN, SPNB_NA, false};
4095
4096 const APFloat *FC2;
4097 switch (Pred) {
4098 case CmpInst::FCMP_OLT:
4099 case CmpInst::FCMP_OLE:
4100 case CmpInst::FCMP_ULT:
4101 case CmpInst::FCMP_ULE:
4102 if (match(FalseVal,
4103 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4104 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4105 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4106 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4107 break;
4108 case CmpInst::FCMP_OGT:
4109 case CmpInst::FCMP_OGE:
4110 case CmpInst::FCMP_UGT:
4111 case CmpInst::FCMP_UGE:
4112 if (match(FalseVal,
4113 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4114 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4115 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4116 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4117 break;
4118 default:
4119 break;
4120 }
4121
4122 return {SPF_UNKNOWN, SPNB_NA, false};
4123}
4124
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004125/// Recognize variations of:
4126/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4127static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4128 Value *CmpLHS, Value *CmpRHS,
4129 Value *TrueVal, Value *FalseVal) {
4130 // Swap the select operands and predicate to match the patterns below.
4131 if (CmpRHS != TrueVal) {
4132 Pred = ICmpInst::getSwappedPredicate(Pred);
4133 std::swap(TrueVal, FalseVal);
4134 }
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004135 const APInt *C1;
4136 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4137 const APInt *C2;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004138 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4139 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004140 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004141 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004142
4143 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4144 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004145 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004146 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004147
4148 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4149 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004150 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004151 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004152
4153 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4154 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004155 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004156 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004157 }
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004158 return {SPF_UNKNOWN, SPNB_NA, false};
4159}
4160
Sanjay Patel78114302018-01-02 20:56:45 +00004161/// Recognize variations of:
4162/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4163static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4164 Value *CmpLHS, Value *CmpRHS,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004165 Value *TVal, Value *FVal,
4166 unsigned Depth) {
Sanjay Patel78114302018-01-02 20:56:45 +00004167 // TODO: Allow FP min/max with nnan/nsz.
4168 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
4169
4170 Value *A, *B;
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004171 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
Sanjay Patel78114302018-01-02 20:56:45 +00004172 if (!SelectPatternResult::isMinOrMax(L.Flavor))
4173 return {SPF_UNKNOWN, SPNB_NA, false};
4174
4175 Value *C, *D;
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004176 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
Sanjay Patel78114302018-01-02 20:56:45 +00004177 if (L.Flavor != R.Flavor)
4178 return {SPF_UNKNOWN, SPNB_NA, false};
4179
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004180 // We have something like: x Pred y ? min(a, b) : min(c, d).
4181 // Try to match the compare to the min/max operations of the select operands.
4182 // First, make sure we have the right compare predicate.
Sanjay Patel78114302018-01-02 20:56:45 +00004183 switch (L.Flavor) {
4184 case SPF_SMIN:
4185 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4186 Pred = ICmpInst::getSwappedPredicate(Pred);
4187 std::swap(CmpLHS, CmpRHS);
4188 }
4189 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4190 break;
4191 return {SPF_UNKNOWN, SPNB_NA, false};
4192 case SPF_SMAX:
4193 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4194 Pred = ICmpInst::getSwappedPredicate(Pred);
4195 std::swap(CmpLHS, CmpRHS);
4196 }
4197 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4198 break;
4199 return {SPF_UNKNOWN, SPNB_NA, false};
4200 case SPF_UMIN:
4201 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4202 Pred = ICmpInst::getSwappedPredicate(Pred);
4203 std::swap(CmpLHS, CmpRHS);
4204 }
4205 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4206 break;
4207 return {SPF_UNKNOWN, SPNB_NA, false};
4208 case SPF_UMAX:
4209 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4210 Pred = ICmpInst::getSwappedPredicate(Pred);
4211 std::swap(CmpLHS, CmpRHS);
4212 }
4213 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4214 break;
4215 return {SPF_UNKNOWN, SPNB_NA, false};
4216 default:
Sanjay Patel7dfe96a2018-01-08 18:31:13 +00004217 return {SPF_UNKNOWN, SPNB_NA, false};
Sanjay Patel78114302018-01-02 20:56:45 +00004218 }
4219
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004220 // If there is a common operand in the already matched min/max and the other
4221 // min/max operands match the compare operands (either directly or inverted),
4222 // then this is min/max of the same flavor.
4223
Sanjay Patel78114302018-01-02 20:56:45 +00004224 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004225 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4226 if (D == B) {
4227 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4228 match(A, m_Not(m_Specific(CmpRHS)))))
4229 return {L.Flavor, SPNB_NA, false};
4230 }
Sanjay Patel78114302018-01-02 20:56:45 +00004231 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004232 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4233 if (C == B) {
4234 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4235 match(A, m_Not(m_Specific(CmpRHS)))))
4236 return {L.Flavor, SPNB_NA, false};
4237 }
Sanjay Patel78114302018-01-02 20:56:45 +00004238 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004239 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4240 if (D == A) {
4241 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4242 match(B, m_Not(m_Specific(CmpRHS)))))
4243 return {L.Flavor, SPNB_NA, false};
4244 }
Sanjay Patel78114302018-01-02 20:56:45 +00004245 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004246 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4247 if (C == A) {
4248 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4249 match(B, m_Not(m_Specific(CmpRHS)))))
4250 return {L.Flavor, SPNB_NA, false};
4251 }
Sanjay Patel78114302018-01-02 20:56:45 +00004252
4253 return {SPF_UNKNOWN, SPNB_NA, false};
4254}
4255
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004256/// Match non-obvious integer minimum and maximum sequences.
4257static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4258 Value *CmpLHS, Value *CmpRHS,
4259 Value *TrueVal, Value *FalseVal,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004260 Value *&LHS, Value *&RHS,
4261 unsigned Depth) {
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004262 // Assume success. If there's no match, callers should not use these anyway.
4263 LHS = TrueVal;
4264 RHS = FalseVal;
4265
4266 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4267 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4268 return SPR;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004269
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004270 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
Sanjay Patel78114302018-01-02 20:56:45 +00004271 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4272 return SPR;
4273
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004274 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
Sanjay Patel819f0962016-11-13 19:30:19 +00004275 return {SPF_UNKNOWN, SPNB_NA, false};
4276
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004277 // Z = X -nsw Y
4278 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4279 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4280 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004281 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004282 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004283
4284 // Z = X -nsw Y
4285 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4286 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4287 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004288 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004289 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004290
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004291 const APInt *C1;
Sanjay Patel819f0962016-11-13 19:30:19 +00004292 if (!match(CmpRHS, m_APInt(C1)))
4293 return {SPF_UNKNOWN, SPNB_NA, false};
4294
4295 // An unsigned min/max can be written with a signed compare.
4296 const APInt *C2;
4297 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4298 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4299 // Is the sign bit set?
4300 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4301 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Craig Topper81d772c2017-11-08 19:38:45 +00004302 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4303 C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004304 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004305
4306 // Is the sign bit clear?
4307 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4308 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004309 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4310 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004311 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004312 }
4313
4314 // Look through 'not' ops to find disguised signed min/max.
4315 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4316 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4317 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004318 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004319 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004320
4321 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4322 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4323 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004324 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004325 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004326
4327 return {SPF_UNKNOWN, SPNB_NA, false};
4328}
4329
James Molloy134bec22015-08-11 09:12:57 +00004330static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4331 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004332 Value *CmpLHS, Value *CmpRHS,
4333 Value *TrueVal, Value *FalseVal,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004334 Value *&LHS, Value *&RHS,
4335 unsigned Depth) {
James Molloy71b91c22015-05-11 14:42:20 +00004336 LHS = CmpLHS;
4337 RHS = CmpRHS;
4338
Sanjay Patel9a399792017-12-26 15:09:19 +00004339 // Signed zero may return inconsistent results between implementations.
4340 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4341 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4342 // Therefore, we behave conservatively and only proceed if at least one of the
4343 // operands is known to not be zero or if we don't care about signed zero.
James Molloy134bec22015-08-11 09:12:57 +00004344 switch (Pred) {
4345 default: break;
Sanjay Patel9a399792017-12-26 15:09:19 +00004346 // FIXME: Include OGT/OLT/UGT/ULT.
James Molloy134bec22015-08-11 09:12:57 +00004347 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4348 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4349 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4350 !isKnownNonZero(CmpRHS))
4351 return {SPF_UNKNOWN, SPNB_NA, false};
4352 }
4353
4354 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4355 bool Ordered = false;
4356
4357 // When given one NaN and one non-NaN input:
4358 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4359 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4360 // ordered comparison fails), which could be NaN or non-NaN.
4361 // so here we discover exactly what NaN behavior is required/accepted.
4362 if (CmpInst::isFPPredicate(Pred)) {
4363 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4364 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4365
4366 if (LHSSafe && RHSSafe) {
4367 // Both operands are known non-NaN.
4368 NaNBehavior = SPNB_RETURNS_ANY;
4369 } else if (CmpInst::isOrdered(Pred)) {
4370 // An ordered comparison will return false when given a NaN, so it
4371 // returns the RHS.
4372 Ordered = true;
4373 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004374 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004375 NaNBehavior = SPNB_RETURNS_NAN;
4376 else if (RHSSafe)
4377 NaNBehavior = SPNB_RETURNS_OTHER;
4378 else
4379 // Completely unsafe.
4380 return {SPF_UNKNOWN, SPNB_NA, false};
4381 } else {
4382 Ordered = false;
4383 // An unordered comparison will return true when given a NaN, so it
4384 // returns the LHS.
4385 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004386 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004387 NaNBehavior = SPNB_RETURNS_OTHER;
4388 else if (RHSSafe)
4389 NaNBehavior = SPNB_RETURNS_NAN;
4390 else
4391 // Completely unsafe.
4392 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004393 }
4394 }
4395
James Molloy71b91c22015-05-11 14:42:20 +00004396 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004397 std::swap(CmpLHS, CmpRHS);
4398 Pred = CmpInst::getSwappedPredicate(Pred);
4399 if (NaNBehavior == SPNB_RETURNS_NAN)
4400 NaNBehavior = SPNB_RETURNS_OTHER;
4401 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4402 NaNBehavior = SPNB_RETURNS_NAN;
4403 Ordered = !Ordered;
4404 }
4405
4406 // ([if]cmp X, Y) ? X : Y
4407 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004408 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004409 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004410 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004411 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004412 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004413 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004414 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004415 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004416 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004417 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4418 case FCmpInst::FCMP_UGT:
4419 case FCmpInst::FCMP_UGE:
4420 case FCmpInst::FCMP_OGT:
4421 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4422 case FCmpInst::FCMP_ULT:
4423 case FCmpInst::FCMP_ULE:
4424 case FCmpInst::FCMP_OLT:
4425 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004426 }
4427 }
4428
Sanjay Patele372aec2016-10-27 15:26:10 +00004429 const APInt *C1;
4430 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004431 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4432 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4433
4434 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4435 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Craig Topper81d772c2017-11-08 19:38:45 +00004436 if (Pred == ICmpInst::ICMP_SGT &&
4437 (C1->isNullValue() || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004438 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004439 }
4440
4441 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4442 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Craig Topper81d772c2017-11-08 19:38:45 +00004443 if (Pred == ICmpInst::ICMP_SLT &&
4444 (C1->isNullValue() || C1->isOneValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004445 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004446 }
4447 }
James Molloy71b91c22015-05-11 14:42:20 +00004448 }
4449
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004450 if (CmpInst::isIntPredicate(Pred))
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004451 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004452
4453 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4454 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4455 // semantics than minNum. Be conservative in such case.
4456 if (NaNBehavior != SPNB_RETURNS_ANY ||
4457 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4458 !isKnownNonZero(CmpRHS)))
4459 return {SPF_UNKNOWN, SPNB_NA, false};
4460
4461 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004462}
James Molloy270ef8c2015-05-15 16:04:50 +00004463
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004464/// Helps to match a select pattern in case of a type mismatch.
4465///
4466/// The function processes the case when type of true and false values of a
4467/// select instruction differs from type of the cmp instruction operands because
4468/// of a cast instructon. The function checks if it is legal to move the cast
4469/// operation after "select". If yes, it returns the new second value of
4470/// "select" (with the assumption that cast is moved):
4471/// 1. As operand of cast instruction when both values of "select" are same cast
4472/// instructions.
4473/// 2. As restored constant (by applying reverse cast operation) when the first
4474/// value of the "select" is a cast operation and the second value is a
4475/// constant.
4476/// NOTE: We return only the new second value because the first value could be
4477/// accessed as operand of cast instruction.
James Molloy569cea62015-09-02 17:25:25 +00004478static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4479 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004480 auto *Cast1 = dyn_cast<CastInst>(V1);
4481 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004482 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004483
Sanjay Patel14a4b812017-01-29 16:34:57 +00004484 *CastOp = Cast1->getOpcode();
4485 Type *SrcTy = Cast1->getSrcTy();
4486 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4487 // If V1 and V2 are both the same cast from the same type, look through V1.
4488 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4489 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004490 return nullptr;
4491 }
4492
Sanjay Patel14a4b812017-01-29 16:34:57 +00004493 auto *C = dyn_cast<Constant>(V2);
4494 if (!C)
4495 return nullptr;
4496
David Majnemerd2a074b2016-04-29 18:40:34 +00004497 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004498 switch (*CastOp) {
4499 case Instruction::ZExt:
4500 if (CmpI->isUnsigned())
4501 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4502 break;
4503 case Instruction::SExt:
4504 if (CmpI->isSigned())
4505 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4506 break;
4507 case Instruction::Trunc:
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004508 Constant *CmpConst;
Nikolai Bozhenov9723f122017-10-18 14:24:50 +00004509 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
4510 CmpConst->getType() == SrcTy) {
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004511 // Here we have the following case:
4512 //
4513 // %cond = cmp iN %x, CmpConst
4514 // %tr = trunc iN %x to iK
4515 // %narrowsel = select i1 %cond, iK %t, iK C
4516 //
4517 // We can always move trunc after select operation:
4518 //
4519 // %cond = cmp iN %x, CmpConst
4520 // %widesel = select i1 %cond, iN %x, iN CmpConst
4521 // %tr = trunc iN %widesel to iK
4522 //
4523 // Note that C could be extended in any way because we don't care about
4524 // upper bits after truncation. It can't be abs pattern, because it would
4525 // look like:
4526 //
4527 // select i1 %cond, x, -x.
4528 //
4529 // So only min/max pattern could be matched. Such match requires widened C
4530 // == CmpConst. That is why set widened C = CmpConst, condition trunc
4531 // CmpConst == C is checked below.
4532 CastedTo = CmpConst;
4533 } else {
4534 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4535 }
Sanjay Patel14a4b812017-01-29 16:34:57 +00004536 break;
4537 case Instruction::FPTrunc:
4538 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4539 break;
4540 case Instruction::FPExt:
4541 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4542 break;
4543 case Instruction::FPToUI:
4544 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4545 break;
4546 case Instruction::FPToSI:
4547 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4548 break;
4549 case Instruction::UIToFP:
4550 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4551 break;
4552 case Instruction::SIToFP:
4553 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4554 break;
4555 default:
4556 break;
4557 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004558
4559 if (!CastedTo)
4560 return nullptr;
4561
David Majnemerd2a074b2016-04-29 18:40:34 +00004562 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004563 Constant *CastedBack =
4564 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004565 if (CastedBack != C)
4566 return nullptr;
4567
4568 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004569}
4570
Sanjay Patele8dc0902016-05-23 17:57:54 +00004571SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004572 Instruction::CastOps *CastOp,
4573 unsigned Depth) {
4574 if (Depth >= MaxDepth)
4575 return {SPF_UNKNOWN, SPNB_NA, false};
4576
James Molloy270ef8c2015-05-15 16:04:50 +00004577 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004578 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004579
James Molloy134bec22015-08-11 09:12:57 +00004580 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4581 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004582
James Molloy134bec22015-08-11 09:12:57 +00004583 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004584 Value *CmpLHS = CmpI->getOperand(0);
4585 Value *CmpRHS = CmpI->getOperand(1);
4586 Value *TrueVal = SI->getTrueValue();
4587 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004588 FastMathFlags FMF;
4589 if (isa<FPMathOperator>(CmpI))
4590 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004591
4592 // Bail out early.
4593 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004594 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004595
4596 // Deal with type mismatches.
4597 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
Sanjay Patel9a399792017-12-26 15:09:19 +00004598 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
4599 // If this is a potential fmin/fmax with a cast to integer, then ignore
4600 // -0.0 because there is no corresponding integer value.
4601 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
4602 FMF.setNoSignedZeros();
James Molloy134bec22015-08-11 09:12:57 +00004603 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004604 cast<CastInst>(TrueVal)->getOperand(0), C,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004605 LHS, RHS, Depth);
Sanjay Patel9a399792017-12-26 15:09:19 +00004606 }
4607 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
4608 // If this is a potential fmin/fmax with a cast to integer, then ignore
4609 // -0.0 because there is no corresponding integer value.
4610 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
4611 FMF.setNoSignedZeros();
James Molloy134bec22015-08-11 09:12:57 +00004612 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004613 C, cast<CastInst>(FalseVal)->getOperand(0),
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004614 LHS, RHS, Depth);
Sanjay Patel9a399792017-12-26 15:09:19 +00004615 }
James Molloy270ef8c2015-05-15 16:04:50 +00004616 }
James Molloy134bec22015-08-11 09:12:57 +00004617 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004618 LHS, RHS, Depth);
James Molloy270ef8c2015-05-15 16:04:50 +00004619}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004620
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004621/// Return true if "icmp Pred LHS RHS" is always true.
Chad Rosiere42b44b2017-07-28 14:39:06 +00004622static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
4623 const Value *RHS, const DataLayout &DL,
4624 unsigned Depth) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004625 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004626 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4627 return true;
4628
4629 switch (Pred) {
4630 default:
4631 return false;
4632
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004633 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004634 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004635
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004636 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004637 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004638 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004639 return false;
4640 }
4641
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004642 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004643 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004644
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004645 // LHS u<= LHS +_{nuw} C for any C
4646 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004647 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004648
4649 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004650 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4651 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004652 const APInt *&CA, const APInt *&CB) {
4653 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4654 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4655 return true;
4656
4657 // If X & C == 0 then (X | C) == X +_{nuw} C
4658 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4659 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
Craig Topperb45eabc2017-04-26 16:39:58 +00004660 KnownBits Known(CA->getBitWidth());
Chad Rosiere42b44b2017-07-28 14:39:06 +00004661 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
4662 /*CxtI*/ nullptr, /*DT*/ nullptr);
Craig Topperb45eabc2017-04-26 16:39:58 +00004663 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
Sanjoy Das92568102015-11-10 23:56:20 +00004664 return true;
4665 }
4666
4667 return false;
4668 };
4669
Pete Cooper35b00d52016-08-13 01:05:32 +00004670 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004671 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004672 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4673 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004674
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004675 return false;
4676 }
4677 }
4678}
4679
4680/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004681/// ALHS ARHS" is true. Otherwise, return None.
4682static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004683isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
Chad Rosiere42b44b2017-07-28 14:39:06 +00004684 const Value *ARHS, const Value *BLHS, const Value *BRHS,
4685 const DataLayout &DL, unsigned Depth) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004686 switch (Pred) {
4687 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004688 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004689
4690 case CmpInst::ICMP_SLT:
4691 case CmpInst::ICMP_SLE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004692 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
4693 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004694 return true;
4695 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004696
4697 case CmpInst::ICMP_ULT:
4698 case CmpInst::ICMP_ULE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004699 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
4700 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004701 return true;
4702 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004703 }
4704}
4705
Chad Rosier226a7342016-05-05 17:41:19 +00004706/// Return true if the operands of the two compares match. IsSwappedOps is true
4707/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004708static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4709 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004710 bool &IsSwappedOps) {
4711
4712 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4713 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4714 return IsMatchingOps || IsSwappedOps;
4715}
4716
Chad Rosier41dd31f2016-04-20 19:15:26 +00004717/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4718/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4719/// BRHS" is false. Otherwise, return None if we can't infer anything.
4720static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004721 const Value *ALHS,
4722 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004723 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004724 const Value *BLHS,
4725 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004726 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004727 // Canonicalize the operands so they're matching.
4728 if (IsSwappedOps) {
4729 std::swap(BLHS, BRHS);
4730 BPred = ICmpInst::getSwappedPredicate(BPred);
4731 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004732 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004733 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004734 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004735 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004736
Chad Rosier41dd31f2016-04-20 19:15:26 +00004737 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004738}
4739
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004740/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4741/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4742/// C2" is false. Otherwise, return None if we can't infer anything.
4743static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004744isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4745 const ConstantInt *C1,
4746 CmpInst::Predicate BPred,
4747 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004748 assert(ALHS == BLHS && "LHS operands must match.");
4749 ConstantRange DomCR =
4750 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4751 ConstantRange CR =
4752 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4753 ConstantRange Intersection = DomCR.intersectWith(CR);
4754 ConstantRange Difference = DomCR.difference(CR);
4755 if (Intersection.isEmptySet())
4756 return false;
4757 if (Difference.isEmptySet())
4758 return true;
4759 return None;
4760}
4761
Chad Rosier2f498032017-07-28 18:47:43 +00004762/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4763/// false. Otherwise, return None if we can't infer anything.
4764static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
4765 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004766 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004767 unsigned Depth) {
4768 Value *ALHS = LHS->getOperand(0);
4769 Value *ARHS = LHS->getOperand(1);
Chad Rosiera72a9ff2017-07-06 20:00:25 +00004770 // The rest of the logic assumes the LHS condition is true. If that's not the
4771 // case, invert the predicate to make it so.
Chad Rosier2f498032017-07-28 18:47:43 +00004772 ICmpInst::Predicate APred =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004773 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
Chad Rosier2f498032017-07-28 18:47:43 +00004774
4775 Value *BLHS = RHS->getOperand(0);
4776 Value *BRHS = RHS->getOperand(1);
4777 ICmpInst::Predicate BPred = RHS->getPredicate();
Chad Rosiere2cbd132016-04-25 17:23:36 +00004778
Chad Rosier226a7342016-05-05 17:41:19 +00004779 // Can we infer anything when the two compares have matching operands?
4780 bool IsSwappedOps;
4781 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4782 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4783 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004784 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004785 // No amount of additional analysis will infer the second condition, so
4786 // early exit.
4787 return None;
4788 }
4789
4790 // Can we infer anything when the LHS operands match and the RHS operands are
4791 // constants (not necessarily matching)?
4792 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4793 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4794 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4795 cast<ConstantInt>(BRHS)))
4796 return Implication;
4797 // No amount of additional analysis will infer the second condition, so
4798 // early exit.
4799 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004800 }
4801
Chad Rosier41dd31f2016-04-20 19:15:26 +00004802 if (APred == BPred)
Chad Rosiere42b44b2017-07-28 14:39:06 +00004803 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
Chad Rosier41dd31f2016-04-20 19:15:26 +00004804 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004805}
Chad Rosier2f498032017-07-28 18:47:43 +00004806
Chad Rosierf73a10d2017-08-01 19:22:36 +00004807/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4808/// false. Otherwise, return None if we can't infer anything. We expect the
4809/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
4810static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
4811 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004812 const DataLayout &DL, bool LHSIsTrue,
Chad Rosierf73a10d2017-08-01 19:22:36 +00004813 unsigned Depth) {
4814 // The LHS must be an 'or' or an 'and' instruction.
4815 assert((LHS->getOpcode() == Instruction::And ||
4816 LHS->getOpcode() == Instruction::Or) &&
4817 "Expected LHS to be 'and' or 'or'.");
4818
Davide Italiano1a943a92017-08-09 16:06:54 +00004819 assert(Depth <= MaxDepth && "Hit recursion limit");
Chad Rosierf73a10d2017-08-01 19:22:36 +00004820
4821 // If the result of an 'or' is false, then we know both legs of the 'or' are
4822 // false. Similarly, if the result of an 'and' is true, then we know both
4823 // legs of the 'and' are true.
4824 Value *ALHS, *ARHS;
Chad Rosierdfd1de62017-08-01 20:18:54 +00004825 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
4826 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
Chad Rosierf73a10d2017-08-01 19:22:36 +00004827 // FIXME: Make this non-recursion.
4828 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004829 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004830 return Implication;
4831 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004832 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004833 return Implication;
4834 return None;
4835 }
4836 return None;
4837}
4838
Chad Rosier2f498032017-07-28 18:47:43 +00004839Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004840 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004841 unsigned Depth) {
Davide Italiano30e51942017-08-09 15:13:50 +00004842 // Bail out when we hit the limit.
4843 if (Depth == MaxDepth)
4844 return None;
4845
Chad Rosierf73a10d2017-08-01 19:22:36 +00004846 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
4847 // example.
Chad Rosier2f498032017-07-28 18:47:43 +00004848 if (LHS->getType() != RHS->getType())
4849 return None;
4850
4851 Type *OpTy = LHS->getType();
Chad Rosierf73a10d2017-08-01 19:22:36 +00004852 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
Chad Rosier2f498032017-07-28 18:47:43 +00004853
4854 // LHS ==> RHS by definition
4855 if (LHS == RHS)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004856 return LHSIsTrue;
Chad Rosier2f498032017-07-28 18:47:43 +00004857
Chad Rosierf73a10d2017-08-01 19:22:36 +00004858 // FIXME: Extending the code below to handle vectors.
Chad Rosier2f498032017-07-28 18:47:43 +00004859 if (OpTy->isVectorTy())
Chad Rosier2f498032017-07-28 18:47:43 +00004860 return None;
Chad Rosierf73a10d2017-08-01 19:22:36 +00004861
Chad Rosier2f498032017-07-28 18:47:43 +00004862 assert(OpTy->isIntegerTy(1) && "implied by above");
4863
Chad Rosier2f498032017-07-28 18:47:43 +00004864 // Both LHS and RHS are icmps.
Chad Rosierf73a10d2017-08-01 19:22:36 +00004865 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
4866 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
4867 if (LHSCmp && RHSCmp)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004868 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004869
Chad Rosierf73a10d2017-08-01 19:22:36 +00004870 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
4871 // an icmp. FIXME: Add support for and/or on the RHS.
4872 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
4873 if (LHSBO && RHSCmp) {
4874 if ((LHSBO->getOpcode() == Instruction::And ||
4875 LHSBO->getOpcode() == Instruction::Or))
Chad Rosierdfd1de62017-08-01 20:18:54 +00004876 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004877 }
Chad Rosierf73a10d2017-08-01 19:22:36 +00004878 return None;
Chad Rosier2f498032017-07-28 18:47:43 +00004879}