blob: 8270f9c10725f0de82794521fdef64f351193dc4 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000016#include "llvm/ADT/APFloat.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
James Molloy493e57d2015-10-26 14:10:46 +000020#include "llvm/ADT/Optional.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000021#include "llvm/ADT/STLExtras.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000022#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000023#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/Analysis/AliasAnalysis.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000028#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000029#include "llvm/Analysis/InstructionSimplify.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000030#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000031#include "llvm/Analysis/LoopInfo.h"
Adam Nemet0965da22017-10-09 23:19:02 +000032#include "llvm/Analysis/OptimizationRemarkEmitter.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000033#include "llvm/Analysis/TargetLibraryInfo.h"
34#include "llvm/IR/Argument.h"
35#include "llvm/IR/Attributes.h"
36#include "llvm/IR/BasicBlock.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000037#include "llvm/IR/CallSite.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000038#include "llvm/IR/Constant.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000039#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000040#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
Matthias Braun50ec0b52017-05-19 22:37:09 +000042#include "llvm/IR/DerivedTypes.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000043#include "llvm/IR/DiagnosticInfo.h"
Hal Finkel60db0582014-09-07 18:57:58 +000044#include "llvm/IR/Dominators.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000045#include "llvm/IR/Function.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000046#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000047#include "llvm/IR/GlobalAlias.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000048#include "llvm/IR/GlobalValue.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000049#include "llvm/IR/GlobalVariable.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000050#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000052#include "llvm/IR/Instructions.h"
53#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000054#include "llvm/IR/Intrinsics.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000055#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/Metadata.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000057#include "llvm/IR/Module.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000058#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000059#include "llvm/IR/PatternMatch.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000060#include "llvm/IR/Type.h"
61#include "llvm/IR/User.h"
62#include "llvm/IR/Value.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/ErrorHandling.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000067#include "llvm/Support/KnownBits.h"
Chris Lattner965c7692008-06-02 01:18:21 +000068#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000069#include <algorithm>
70#include <array>
Eugene Zelenko75075ef2017-09-01 21:37:29 +000071#include <cassert>
72#include <cstdint>
73#include <iterator>
74#include <utility>
75
Chris Lattner965c7692008-06-02 01:18:21 +000076using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000077using namespace llvm::PatternMatch;
78
79const unsigned MaxDepth = 6;
80
Philip Reames1c292272015-03-10 22:43:20 +000081// Controls the number of uses of the value searched for possible
82// dominating comparisons.
83static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000084 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000085
Craig Topper6b3940a2017-05-03 22:25:19 +000086/// Returns the bitwidth of the given scalar or pointer type. For vector types,
87/// returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000088static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000089 if (unsigned BitWidth = Ty->getScalarSizeInBits())
90 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000091
Mehdi Aminia28d91d2015-03-10 02:37:25 +000092 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000093}
Chris Lattner965c7692008-06-02 01:18:21 +000094
Benjamin Kramercfd8d902014-09-12 08:56:53 +000095namespace {
Eugene Zelenko75075ef2017-09-01 21:37:29 +000096
Hal Finkel60db0582014-09-07 18:57:58 +000097// Simplifying using an assume can only be done in a particular control-flow
98// context (the context instruction provides that context). If an assume and
99// the context instruction are not in the same block then the DT helps in
100// figuring out if we can use it.
101struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000102 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000103 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +0000104 const Instruction *CxtI;
105 const DominatorTree *DT;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000106
Sanjay Patel54656ca2017-02-06 18:26:06 +0000107 // Unlike the other analyses, this may be a nullptr because not all clients
108 // provide it currently.
109 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +0000110
Matthias Braun37e5d792016-01-28 06:29:33 +0000111 /// Set of assumptions that should be excluded from further queries.
112 /// This is because of the potential for mutual recursion to cause
113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
114 /// classic case of this is assume(x = y), which will attempt to determine
115 /// bits in x from bits in y, which will attempt to determine bits in y from
116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
Craig Topper6e11a052017-05-08 16:22:48 +0000117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
118 /// (all of which can call computeKnownBits), and so on.
Li Huang755f75f2016-10-15 19:00:04 +0000119 std::array<const Value *, MaxDepth> Excluded;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000120
121 unsigned NumExcluded = 0;
Matthias Braun37e5d792016-01-28 06:29:33 +0000122
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000124 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000125 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000126
127 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000128 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
129 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000130 Excluded = Q.Excluded;
131 Excluded[NumExcluded++] = NewExcl;
132 assert(NumExcluded <= Excluded.size());
133 }
134
135 bool isExcluded(const Value *Value) const {
136 if (NumExcluded == 0)
137 return false;
138 auto End = Excluded.begin() + NumExcluded;
139 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000140 }
141};
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000142
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000143} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000144
Sanjay Patel547e9752014-11-04 16:09:50 +0000145// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000146// the preferred context instruction (if any).
147static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
148 // If we've been provided with a context instruction, then use that (provided
149 // it has been inserted).
150 if (CxtI && CxtI->getParent())
151 return CxtI;
152
153 // If the value is really an already-inserted instruction, then use that.
154 CxtI = dyn_cast<Instruction>(V);
155 if (CxtI && CxtI->getParent())
156 return CxtI;
157
158 return nullptr;
159}
160
Craig Topperb45eabc2017-04-26 16:39:58 +0000161static void computeKnownBits(const Value *V, KnownBits &Known,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000162 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000163
Craig Topperb45eabc2017-04-26 16:39:58 +0000164void llvm::computeKnownBits(const Value *V, KnownBits &Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000165 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000166 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000167 const DominatorTree *DT,
168 OptimizationRemarkEmitter *ORE) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000169 ::computeKnownBits(V, Known, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000170 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000171}
172
Craig Topper6e11a052017-05-08 16:22:48 +0000173static KnownBits computeKnownBits(const Value *V, unsigned Depth,
174 const Query &Q);
175
176KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
177 unsigned Depth, AssumptionCache *AC,
178 const Instruction *CxtI,
Craig Toppera2025ea2017-05-24 16:53:03 +0000179 const DominatorTree *DT,
180 OptimizationRemarkEmitter *ORE) {
181 return ::computeKnownBits(V, Depth,
182 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Craig Topper6e11a052017-05-08 16:22:48 +0000183}
184
Pete Cooper35b00d52016-08-13 01:05:32 +0000185bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
186 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000187 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000188 const DominatorTree *DT) {
189 assert(LHS->getType() == RHS->getType() &&
190 "LHS and RHS should have the same type");
191 assert(LHS->getType()->isIntOrIntVectorTy() &&
192 "LHS and RHS should be integers");
193 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
Craig Topperb45eabc2017-04-26 16:39:58 +0000194 KnownBits LHSKnown(IT->getBitWidth());
195 KnownBits RHSKnown(IT->getBitWidth());
196 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT);
197 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT);
198 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
Jingyue Wuca321902015-05-14 23:53:19 +0000199}
200
Zaara Syeda3a7578c2017-05-31 17:12:38 +0000201bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
202 for (const User *U : CxtI->users()) {
203 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
204 if (IC->isEquality())
205 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
206 if (C->isNullValue())
207 continue;
208 return false;
209 }
210 return true;
211}
212
Pete Cooper35b00d52016-08-13 01:05:32 +0000213static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000214 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000215
Pete Cooper35b00d52016-08-13 01:05:32 +0000216bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
217 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000218 unsigned Depth, AssumptionCache *AC,
219 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000220 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000221 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000222 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000223}
224
Pete Cooper35b00d52016-08-13 01:05:32 +0000225static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000226
Pete Cooper35b00d52016-08-13 01:05:32 +0000227bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000228 AssumptionCache *AC, const Instruction *CxtI,
229 const DominatorTree *DT) {
230 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000231}
232
Pete Cooper35b00d52016-08-13 01:05:32 +0000233bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000234 unsigned Depth,
235 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000236 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000237 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
238 return Known.isNonNegative();
Jingyue Wu10fcea52015-08-20 18:27:04 +0000239}
240
Pete Cooper35b00d52016-08-13 01:05:32 +0000241bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000242 AssumptionCache *AC, const Instruction *CxtI,
243 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000244 if (auto *CI = dyn_cast<ConstantInt>(V))
245 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000246
Philip Reames8f12eba2016-03-09 21:31:47 +0000247 // TODO: We'd doing two recursive queries here. We should factor this such
248 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000249 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
250 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000251}
252
Pete Cooper35b00d52016-08-13 01:05:32 +0000253bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000254 AssumptionCache *AC, const Instruction *CxtI,
255 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000256 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
257 return Known.isNegative();
Nick Lewycky762f8a82016-04-21 00:53:14 +0000258}
259
Pete Cooper35b00d52016-08-13 01:05:32 +0000260static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000261
Pete Cooper35b00d52016-08-13 01:05:32 +0000262bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000263 const DataLayout &DL,
264 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000265 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000266 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
267 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000268 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000269}
270
Pete Cooper35b00d52016-08-13 01:05:32 +0000271static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000272 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000273
Pete Cooper35b00d52016-08-13 01:05:32 +0000274bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
275 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000276 unsigned Depth, AssumptionCache *AC,
277 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000278 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000279 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000280}
281
Pete Cooper35b00d52016-08-13 01:05:32 +0000282static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
283 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000284
Pete Cooper35b00d52016-08-13 01:05:32 +0000285unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000286 unsigned Depth, AssumptionCache *AC,
287 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000288 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000289 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000290}
291
Craig Topper8fbb74b2017-03-24 22:12:10 +0000292static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
293 bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000294 KnownBits &KnownOut, KnownBits &Known2,
Craig Topper8fbb74b2017-03-24 22:12:10 +0000295 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000296 unsigned BitWidth = KnownOut.getBitWidth();
Craig Topper8fbb74b2017-03-24 22:12:10 +0000297
298 // If an initial sequence of bits in the result is not needed, the
299 // corresponding bits in the operands are not needed.
Craig Topperb45eabc2017-04-26 16:39:58 +0000300 KnownBits LHSKnown(BitWidth);
301 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
302 computeKnownBits(Op1, Known2, Depth + 1, Q);
Craig Topper8fbb74b2017-03-24 22:12:10 +0000303
Craig Topperb498a232017-08-08 16:29:35 +0000304 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000305}
306
Pete Cooper35b00d52016-08-13 01:05:32 +0000307static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000308 KnownBits &Known, KnownBits &Known2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000309 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000310 unsigned BitWidth = Known.getBitWidth();
311 computeKnownBits(Op1, Known, Depth + 1, Q);
312 computeKnownBits(Op0, Known2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000313
314 bool isKnownNegative = false;
315 bool isKnownNonNegative = false;
316 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000317 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000318 if (Op0 == Op1) {
319 // The product of a number with itself is non-negative.
320 isKnownNonNegative = true;
321 } else {
Craig Topperca48af32017-04-29 16:43:11 +0000322 bool isKnownNonNegativeOp1 = Known.isNonNegative();
323 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
324 bool isKnownNegativeOp1 = Known.isNegative();
325 bool isKnownNegativeOp0 = Known2.isNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000326 // The product of two numbers with the same sign is non-negative.
327 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
328 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
329 // The product of a negative number and a non-negative number is either
330 // negative or zero.
331 if (!isKnownNonNegative)
332 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000333 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000334 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000335 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000336 }
337 }
338
339 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000340 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000341 // More trickiness is possible, but this is sufficient for the
342 // interesting case of alignment computation.
Craig Topper8df66c62017-05-12 17:20:30 +0000343 unsigned TrailZ = Known.countMinTrailingZeros() +
344 Known2.countMinTrailingZeros();
345 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
346 Known2.countMinLeadingZeros(),
Nick Lewyckyfa306072012-03-18 23:28:48 +0000347 BitWidth) - BitWidth;
348
349 TrailZ = std::min(TrailZ, BitWidth);
350 LeadZ = std::min(LeadZ, BitWidth);
Craig Topperf0aeee02017-05-05 17:36:09 +0000351 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000352 Known.Zero.setLowBits(TrailZ);
353 Known.Zero.setHighBits(LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000354
355 // Only make use of no-wrap flags if we failed to compute the sign bit
356 // directly. This matters if the multiplication always overflows, in
357 // which case we prefer to follow the result of the direct computation,
358 // though as the program is invoking undefined behaviour we can choose
359 // whatever we like here.
Craig Topperca48af32017-04-29 16:43:11 +0000360 if (isKnownNonNegative && !Known.isNegative())
361 Known.makeNonNegative();
362 else if (isKnownNegative && !Known.isNonNegative())
363 Known.makeNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000364}
365
Jingyue Wu37fcb592014-06-19 16:50:16 +0000366void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Craig Topperf42b23f2017-04-28 06:28:56 +0000367 KnownBits &Known) {
368 unsigned BitWidth = Known.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000369 unsigned NumRanges = Ranges.getNumOperands() / 2;
370 assert(NumRanges >= 1);
371
Craig Topperf42b23f2017-04-28 06:28:56 +0000372 Known.Zero.setAllBits();
373 Known.One.setAllBits();
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000374
Rafael Espindola53190532012-03-30 15:52:11 +0000375 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000376 ConstantInt *Lower =
377 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
378 ConstantInt *Upper =
379 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000380 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000381
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000382 // The first CommonPrefixBits of all values in Range are equal.
383 unsigned CommonPrefixBits =
384 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
385
386 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Craig Topperf42b23f2017-04-28 06:28:56 +0000387 Known.One &= Range.getUnsignedMax() & Mask;
388 Known.Zero &= ~Range.getUnsignedMax() & Mask;
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000389 }
Rafael Espindola53190532012-03-30 15:52:11 +0000390}
Jay Foad5a29c362014-05-15 12:12:55 +0000391
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000392static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000393 SmallVector<const Value *, 16> WorkSet(1, I);
394 SmallPtrSet<const Value *, 32> Visited;
395 SmallPtrSet<const Value *, 16> EphValues;
396
Hal Finkelf2199b22015-10-23 20:37:08 +0000397 // The instruction defining an assumption's condition itself is always
398 // considered ephemeral to that assumption (even if it has other
399 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000400 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000401 return true;
402
Hal Finkel60db0582014-09-07 18:57:58 +0000403 while (!WorkSet.empty()) {
404 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000405 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000406 continue;
407
408 // If all uses of this value are ephemeral, then so is this value.
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000409 if (llvm::all_of(V->users(), [&](const User *U) {
410 return EphValues.count(U);
411 })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000412 if (V == E)
413 return true;
414
Hal Finkelb03dd4b2017-08-14 17:11:43 +0000415 if (V == I || isSafeToSpeculativelyExecute(V)) {
416 EphValues.insert(V);
417 if (const User *U = dyn_cast<User>(V))
418 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
419 J != JE; ++J)
420 WorkSet.push_back(*J);
421 }
Hal Finkel60db0582014-09-07 18:57:58 +0000422 }
423 }
424
425 return false;
426}
427
428// Is this an intrinsic that cannot be speculated but also cannot trap?
429static bool isAssumeLikeIntrinsic(const Instruction *I) {
430 if (const CallInst *CI = dyn_cast<CallInst>(I))
431 if (Function *F = CI->getCalledFunction())
432 switch (F->getIntrinsicID()) {
433 default: break;
434 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
435 case Intrinsic::assume:
Dan Gohman2c74fe92017-11-08 21:59:51 +0000436 case Intrinsic::sideeffect:
Hal Finkel60db0582014-09-07 18:57:58 +0000437 case Intrinsic::dbg_declare:
438 case Intrinsic::dbg_value:
439 case Intrinsic::invariant_start:
440 case Intrinsic::invariant_end:
441 case Intrinsic::lifetime_start:
442 case Intrinsic::lifetime_end:
443 case Intrinsic::objectsize:
444 case Intrinsic::ptr_annotation:
445 case Intrinsic::var_annotation:
446 return true;
447 }
448
449 return false;
450}
451
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000452bool llvm::isValidAssumeForContext(const Instruction *Inv,
453 const Instruction *CxtI,
454 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000455 // There are two restrictions on the use of an assume:
456 // 1. The assume must dominate the context (or the control flow must
457 // reach the assume whenever it reaches the context).
458 // 2. The context must not be in the assume's set of ephemeral values
459 // (otherwise we will use the assume to prove that the condition
460 // feeding the assume is trivially true, thus causing the removal of
461 // the assume).
462
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000463 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000464 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000465 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000466 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
467 // We don't have a DT, but this trivially dominates.
468 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000469 }
470
Pete Cooper54a02552016-08-12 01:00:15 +0000471 // With or without a DT, the only remaining case we will check is if the
472 // instructions are in the same BB. Give up if that is not the case.
473 if (Inv->getParent() != CxtI->getParent())
474 return false;
475
476 // If we have a dom tree, then we now know that the assume doens't dominate
477 // the other instruction. If we don't have a dom tree then we can check if
478 // the assume is first in the BB.
479 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000480 // Search forward from the assume until we reach the context (or the end
481 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000482 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000483 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000484 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000485 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000486 }
487
Pete Cooper54a02552016-08-12 01:00:15 +0000488 // The context comes first, but they're both in the same block. Make sure
489 // there is nothing in between that might interrupt the control flow.
490 for (BasicBlock::const_iterator I =
491 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
492 I != IE; ++I)
493 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
494 return false;
495
496 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000497}
498
Craig Topperb45eabc2017-04-26 16:39:58 +0000499static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
500 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000501 // Use of assumptions is context-sensitive. If we don't have a context, we
502 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000503 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000504 return;
505
Craig Topperb45eabc2017-04-26 16:39:58 +0000506 unsigned BitWidth = Known.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000507
Hal Finkel8a9a7832017-01-11 13:24:24 +0000508 // Note that the patterns below need to be kept in sync with the code
509 // in AssumptionCache::updateAffectedValues.
510
511 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000512 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000513 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000514 CallInst *I = cast<CallInst>(AssumeVH);
515 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
516 "Got assumption for the wrong function!");
517 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000518 continue;
519
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000520 // Warning: This loop can end up being somewhat performance sensetive.
521 // We're running this loop for once for each value queried resulting in a
522 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000523
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000524 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
525 "must be an assume intrinsic");
526
527 Value *Arg = I->getArgOperand(0);
528
529 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000530 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000531 Known.setAllOnes();
Hal Finkel60db0582014-09-07 18:57:58 +0000532 return;
533 }
Sanjay Patel96669962017-01-17 18:15:49 +0000534 if (match(Arg, m_Not(m_Specific(V))) &&
535 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
536 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000537 Known.setAllZero();
Sanjay Patel96669962017-01-17 18:15:49 +0000538 return;
539 }
Hal Finkel60db0582014-09-07 18:57:58 +0000540
David Majnemer9b609752014-12-12 23:59:29 +0000541 // The remaining tests are all recursive, so bail out if we hit the limit.
542 if (Depth == MaxDepth)
543 continue;
544
Hal Finkel60db0582014-09-07 18:57:58 +0000545 Value *A, *B;
546 auto m_V = m_CombineOr(m_Specific(V),
547 m_CombineOr(m_PtrToInt(m_Specific(V)),
548 m_BitCast(m_Specific(V))));
549
550 CmpInst::Predicate Pred;
Igor Laevskycec8f472017-12-05 12:18:15 +0000551 uint64_t C;
Hal Finkel60db0582014-09-07 18:57:58 +0000552 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000553 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000554 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000555 KnownBits RHSKnown(BitWidth);
556 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
557 Known.Zero |= RHSKnown.Zero;
558 Known.One |= RHSKnown.One;
Hal Finkel60db0582014-09-07 18:57:58 +0000559 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000560 } else if (match(Arg,
561 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000562 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000563 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000564 KnownBits RHSKnown(BitWidth);
565 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
566 KnownBits MaskKnown(BitWidth);
567 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000568
569 // For those bits in the mask that are known to be one, we can propagate
570 // known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000571 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
572 Known.One |= RHSKnown.One & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000573 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000574 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
575 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000576 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000577 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000578 KnownBits RHSKnown(BitWidth);
579 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
580 KnownBits MaskKnown(BitWidth);
581 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000582
583 // For those bits in the mask that are known to be one, we can propagate
584 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000585 Known.Zero |= RHSKnown.One & MaskKnown.One;
586 Known.One |= RHSKnown.Zero & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000587 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000588 } else if (match(Arg,
589 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000590 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000591 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000592 KnownBits RHSKnown(BitWidth);
593 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
594 KnownBits BKnown(BitWidth);
595 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000596
597 // For those bits in B that are known to be zero, we can propagate known
598 // bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000599 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
600 Known.One |= RHSKnown.One & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000601 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000602 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
603 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000604 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000605 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000606 KnownBits RHSKnown(BitWidth);
607 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
608 KnownBits BKnown(BitWidth);
609 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000610
611 // For those bits in B that are known to be zero, we can propagate
612 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000613 Known.Zero |= RHSKnown.One & BKnown.Zero;
614 Known.One |= RHSKnown.Zero & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000615 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000616 } else if (match(Arg,
617 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000618 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000619 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000620 KnownBits RHSKnown(BitWidth);
621 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
622 KnownBits BKnown(BitWidth);
623 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000624
625 // For those bits in B that are known to be zero, we can propagate known
626 // bits from the RHS to V. For those bits in B that are known to be one,
627 // we can propagate inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000628 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
629 Known.One |= RHSKnown.One & BKnown.Zero;
630 Known.Zero |= RHSKnown.One & BKnown.One;
631 Known.One |= RHSKnown.Zero & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000632 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000633 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
634 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000635 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000636 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000637 KnownBits RHSKnown(BitWidth);
638 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
639 KnownBits BKnown(BitWidth);
640 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000641
642 // For those bits in B that are known to be zero, we can propagate
643 // inverted known bits from the RHS to V. For those bits in B that are
644 // known to be one, we can propagate known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000645 Known.Zero |= RHSKnown.One & BKnown.Zero;
646 Known.One |= RHSKnown.Zero & BKnown.Zero;
647 Known.Zero |= RHSKnown.Zero & BKnown.One;
648 Known.One |= RHSKnown.One & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000649 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000650 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
651 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000652 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000653 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
654 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000655 KnownBits RHSKnown(BitWidth);
656 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000657 // For those bits in RHS that are known, we can propagate them to known
658 // bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000659 RHSKnown.Zero.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000660 Known.Zero |= RHSKnown.Zero;
Igor Laevskycec8f472017-12-05 12:18:15 +0000661 RHSKnown.One.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000662 Known.One |= RHSKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000663 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000664 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
665 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000666 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000667 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
668 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000669 KnownBits RHSKnown(BitWidth);
670 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000671 // For those bits in RHS that are known, we can propagate them inverted
672 // to known bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000673 RHSKnown.One.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000674 Known.Zero |= RHSKnown.One;
Igor Laevskycec8f472017-12-05 12:18:15 +0000675 RHSKnown.Zero.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000676 Known.One |= RHSKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000677 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000678 } else if (match(Arg,
Craig Topper7b66ffe2017-06-24 06:24:04 +0000679 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000680 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000681 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000682 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
683 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000684 KnownBits RHSKnown(BitWidth);
685 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000686 // For those bits in RHS that are known, we can propagate them to known
687 // bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000688 Known.Zero |= RHSKnown.Zero << C;
689 Known.One |= RHSKnown.One << C;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000690 // assume(~(v >> c) = a)
Craig Topper7b66ffe2017-06-24 06:24:04 +0000691 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000692 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000693 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000694 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
695 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000696 KnownBits RHSKnown(BitWidth);
697 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000698 // For those bits in RHS that are known, we can propagate them inverted
699 // to known bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000700 Known.Zero |= RHSKnown.One << C;
701 Known.One |= RHSKnown.Zero << C;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000702 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000703 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000704 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000705 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000706 KnownBits RHSKnown(BitWidth);
707 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000708
Craig Topperca48af32017-04-29 16:43:11 +0000709 if (RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000710 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000711 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000712 }
713 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000714 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000715 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000716 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000717 KnownBits RHSKnown(BitWidth);
718 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000719
Craig Topperf0aeee02017-05-05 17:36:09 +0000720 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000721 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000722 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000723 }
724 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000725 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000726 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000727 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000728 KnownBits RHSKnown(BitWidth);
729 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000730
Craig Topperca48af32017-04-29 16:43:11 +0000731 if (RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000732 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000733 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000734 }
735 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000736 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000737 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000738 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000739 KnownBits RHSKnown(BitWidth);
740 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000741
Craig Topperf0aeee02017-05-05 17:36:09 +0000742 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000743 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000744 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000745 }
746 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000747 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000748 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000750 KnownBits RHSKnown(BitWidth);
751 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000752
753 // Whatever high bits in c are zero are known to be zero.
Craig Topper8df66c62017-05-12 17:20:30 +0000754 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
755 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000756 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000757 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000758 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000759 KnownBits RHSKnown(BitWidth);
760 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000761
762 // Whatever high bits in c are zero are known to be zero (if c is a power
763 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000764 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper8df66c62017-05-12 17:20:30 +0000765 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000766 else
Craig Topper8df66c62017-05-12 17:20:30 +0000767 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
Hal Finkel60db0582014-09-07 18:57:58 +0000768 }
769 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000770
771 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000772 // have a logical fallacy. It's possible that the assumption is not reachable,
773 // so this isn't a real bug. On the other hand, the program may have undefined
774 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
775 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topperb45eabc2017-04-26 16:39:58 +0000776 if (Known.Zero.intersects(Known.One)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000777 Known.resetAll();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000778
Vivek Pandya95906582017-10-11 17:12:59 +0000779 if (Q.ORE)
780 Q.ORE->emit([&]() {
781 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
782 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
783 CxtI)
784 << "Detected conflicting code assumptions. Program may "
785 "have undefined behavior, or compiler may have "
786 "internal error.";
787 });
Sanjay Patel25f6d712017-02-01 15:41:32 +0000788 }
Hal Finkel60db0582014-09-07 18:57:58 +0000789}
790
Sanjay Patelb7d12382017-10-16 14:46:37 +0000791/// Compute known bits from a shift operator, including those with a
792/// non-constant shift amount. Known is the output of this function. Known2 is a
793/// pre-allocated temporary with the same bit width as Known. KZF and KOF are
794/// operator-specific functors that, given the known-zero or known-one bits
795/// respectively, and a shift amount, compute the implied known-zero or
796/// known-one bits of the shift operator's result respectively for that shift
797/// amount. The results from calling KZF and KOF are conservatively combined for
798/// all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000799static void computeKnownBitsFromShiftOperator(
Craig Topperb45eabc2017-04-26 16:39:58 +0000800 const Operator *I, KnownBits &Known, KnownBits &Known2,
801 unsigned Depth, const Query &Q,
Sam McCalld0d43e62017-12-04 12:51:49 +0000802 function_ref<APInt(const APInt &, unsigned)> KZF,
803 function_ref<APInt(const APInt &, unsigned)> KOF) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000804 unsigned BitWidth = Known.getBitWidth();
Hal Finkelf2199b22015-10-23 20:37:08 +0000805
806 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
807 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
808
Craig Topperb45eabc2017-04-26 16:39:58 +0000809 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Sam McCalld0d43e62017-12-04 12:51:49 +0000810 Known.Zero = KZF(Known.Zero, ShiftAmt);
811 Known.One = KOF(Known.One, ShiftAmt);
Sanjay Patele272be72017-10-12 17:31:46 +0000812 // If the known bits conflict, this must be an overflowing left shift, so
813 // the shift result is poison. We can return anything we want. Choose 0 for
814 // the best folding opportunity.
815 if (Known.hasConflict())
816 Known.setAllZero();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000817
Hal Finkelf2199b22015-10-23 20:37:08 +0000818 return;
819 }
820
Craig Topperb45eabc2017-04-26 16:39:58 +0000821 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000822
Sanjay Patele272be72017-10-12 17:31:46 +0000823 // If the shift amount could be greater than or equal to the bit-width of the
824 // LHS, the value could be poison, but bail out because the check below is
825 // expensive. TODO: Should we just carry on?
Craig Topperb45eabc2017-04-26 16:39:58 +0000826 if ((~Known.Zero).uge(BitWidth)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000827 Known.resetAll();
Oliver Stannard06204112017-03-14 10:13:17 +0000828 return;
829 }
830
Craig Topperb45eabc2017-04-26 16:39:58 +0000831 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
Hal Finkelf2199b22015-10-23 20:37:08 +0000832 // BitWidth > 64 and any upper bits are known, we'll end up returning the
833 // limit value (which implies all bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000834 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
835 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
Hal Finkelf2199b22015-10-23 20:37:08 +0000836
837 // It would be more-clearly correct to use the two temporaries for this
838 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Craig Topperf0aeee02017-05-05 17:36:09 +0000839 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000840
James Molloy493e57d2015-10-26 14:10:46 +0000841 // If we know the shifter operand is nonzero, we can sometimes infer more
842 // known bits. However this is expensive to compute, so be lazy about it and
843 // only compute it when absolutely necessary.
844 Optional<bool> ShifterOperandIsNonZero;
845
Hal Finkelf2199b22015-10-23 20:37:08 +0000846 // Early exit if we can't constrain any well-defined shift amount.
Craig Topperf93b7b12017-06-14 17:04:59 +0000847 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
848 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
Sanjay Patelb7d12382017-10-16 14:46:37 +0000849 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000850 if (!*ShifterOperandIsNonZero)
851 return;
852 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000853
Craig Topperb45eabc2017-04-26 16:39:58 +0000854 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000855
Craig Topperb45eabc2017-04-26 16:39:58 +0000856 Known.Zero.setAllBits();
857 Known.One.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000858 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
859 // Combine the shifted known input bits only for those shift amounts
860 // compatible with its known constraints.
861 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
862 continue;
863 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
864 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000865 // If we know the shifter is nonzero, we may be able to infer more known
866 // bits. This check is sunk down as far as possible to avoid the expensive
867 // call to isKnownNonZero if the cheaper checks above fail.
868 if (ShiftAmt == 0) {
869 if (!ShifterOperandIsNonZero.hasValue())
870 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000871 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000872 if (*ShifterOperandIsNonZero)
873 continue;
874 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000875
Sam McCalld0d43e62017-12-04 12:51:49 +0000876 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
877 Known.One &= KOF(Known2.One, ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +0000878 }
879
Sanjay Patele272be72017-10-12 17:31:46 +0000880 // If the known bits conflict, the result is poison. Return a 0 and hope the
881 // caller can further optimize that.
882 if (Known.hasConflict())
883 Known.setAllZero();
Hal Finkelf2199b22015-10-23 20:37:08 +0000884}
885
Craig Topperb45eabc2017-04-26 16:39:58 +0000886static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
887 unsigned Depth, const Query &Q) {
888 unsigned BitWidth = Known.getBitWidth();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000889
Craig Topperb45eabc2017-04-26 16:39:58 +0000890 KnownBits Known2(Known);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000891 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000892 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000893 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000894 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +0000895 computeKnownBitsFromRangeMetadata(*MD, Known);
Jay Foad5a29c362014-05-15 12:12:55 +0000896 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000897 case Instruction::And: {
898 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000899 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
900 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000901
Chris Lattner965c7692008-06-02 01:18:21 +0000902 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000903 Known.One &= Known2.One;
Chris Lattner965c7692008-06-02 01:18:21 +0000904 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000905 Known.Zero |= Known2.Zero;
Philip Reames2d858742015-11-10 18:46:14 +0000906
907 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
908 // here we handle the more general case of adding any odd number by
909 // matching the form add(x, add(x, y)) where y is odd.
910 // TODO: This could be generalized to clearing any bit set in y where the
911 // following bit is known to be unset in y.
912 Value *Y = nullptr;
Craig Topperb45eabc2017-04-26 16:39:58 +0000913 if (!Known.Zero[0] && !Known.One[0] &&
Craig Toppera80f2042017-04-13 19:04:45 +0000914 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
915 m_Value(Y))) ||
916 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
917 m_Value(Y))))) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000918 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000919 computeKnownBits(Y, Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000920 if (Known2.countMinTrailingOnes() > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +0000921 Known.Zero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +0000922 }
Jay Foad5a29c362014-05-15 12:12:55 +0000923 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000924 }
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000925 case Instruction::Or:
Craig Topperb45eabc2017-04-26 16:39:58 +0000926 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
927 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000928
Chris Lattner965c7692008-06-02 01:18:21 +0000929 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000930 Known.Zero &= Known2.Zero;
Chris Lattner965c7692008-06-02 01:18:21 +0000931 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000932 Known.One |= Known2.One;
Jay Foad5a29c362014-05-15 12:12:55 +0000933 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000934 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000935 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
936 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000937
Chris Lattner965c7692008-06-02 01:18:21 +0000938 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000939 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
Chris Lattner965c7692008-06-02 01:18:21 +0000940 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000941 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
942 Known.Zero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +0000943 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000944 }
945 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000946 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperb45eabc2017-04-26 16:39:58 +0000947 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
948 Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000949 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000950 }
951 case Instruction::UDiv: {
952 // For the purposes of computing leading zeros we can conservatively
953 // treat a udiv as a logical right shift by the power of 2 known to
954 // be less than the denominator.
Craig Topperb45eabc2017-04-26 16:39:58 +0000955 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000956 unsigned LeadZ = Known2.countMinLeadingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +0000957
Craig Topperf0aeee02017-05-05 17:36:09 +0000958 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000959 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000960 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
961 if (RHSMaxLeadingZeros != BitWidth)
962 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Chris Lattner965c7692008-06-02 01:18:21 +0000963
Craig Topperb45eabc2017-04-26 16:39:58 +0000964 Known.Zero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000965 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000966 }
David Majnemera19d0f22016-08-06 08:16:00 +0000967 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +0000968 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000969 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
970 if (SelectPatternResult::isMinOrMax(SPF)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000971 computeKnownBits(RHS, Known, Depth + 1, Q);
972 computeKnownBits(LHS, Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000973 } else {
Craig Topperb45eabc2017-04-26 16:39:58 +0000974 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
975 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000976 }
977
978 unsigned MaxHighOnes = 0;
979 unsigned MaxHighZeros = 0;
980 if (SPF == SPF_SMAX) {
981 // If both sides are negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +0000982 if (Known.isNegative() && Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000983 // We can derive a lower bound on the result by taking the max of the
984 // leading one bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000985 MaxHighOnes =
986 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +0000987 // If either side is non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000988 else if (Known.isNonNegative() || Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000989 MaxHighZeros = 1;
990 } else if (SPF == SPF_SMIN) {
991 // If both sides are non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000992 if (Known.isNonNegative() && Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000993 // We can derive an upper bound on the result by taking the max of the
994 // leading zero bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000995 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
996 Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +0000997 // If either side is negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +0000998 else if (Known.isNegative() || Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000999 MaxHighOnes = 1;
1000 } else if (SPF == SPF_UMAX) {
1001 // We can derive a lower bound on the result by taking the max of the
1002 // leading one bits.
1003 MaxHighOnes =
Craig Topper8df66c62017-05-12 17:20:30 +00001004 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001005 } else if (SPF == SPF_UMIN) {
1006 // We can derive an upper bound on the result by taking the max of the
1007 // leading zero bits.
1008 MaxHighZeros =
Craig Topper8df66c62017-05-12 17:20:30 +00001009 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001010 }
1011
Chris Lattner965c7692008-06-02 01:18:21 +00001012 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001013 Known.One &= Known2.One;
1014 Known.Zero &= Known2.Zero;
David Majnemera19d0f22016-08-06 08:16:00 +00001015 if (MaxHighOnes > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001016 Known.One.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001017 if (MaxHighZeros > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001018 Known.Zero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001019 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001020 }
Chris Lattner965c7692008-06-02 01:18:21 +00001021 case Instruction::FPTrunc:
1022 case Instruction::FPExt:
1023 case Instruction::FPToUI:
1024 case Instruction::FPToSI:
1025 case Instruction::SIToFP:
1026 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001027 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001028 case Instruction::PtrToInt:
1029 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001030 // Fall through and handle them the same as zext/trunc.
1031 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001032 case Instruction::ZExt:
1033 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001034 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001035
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001036 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001037 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1038 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001039 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001040
1041 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Craig Topperd938fd12017-05-03 22:07:25 +00001042 Known = Known.zextOrTrunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001043 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Craig Topperd938fd12017-05-03 22:07:25 +00001044 Known = Known.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001045 // Any top bits are known to be zero.
1046 if (BitWidth > SrcBitWidth)
Craig Topperb45eabc2017-04-26 16:39:58 +00001047 Known.Zero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001048 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001049 }
1050 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001051 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001052 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001053 // TODO: For now, not handling conversions like:
1054 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001055 !I->getType()->isVectorTy()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001056 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001057 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001058 }
1059 break;
1060 }
1061 case Instruction::SExt: {
1062 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001063 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001064
Craig Topperd938fd12017-05-03 22:07:25 +00001065 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001066 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001067 // If the sign bit of the input is known set or clear, then we know the
1068 // top bits of the result.
Craig Topperd938fd12017-05-03 22:07:25 +00001069 Known = Known.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001070 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001071 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001072 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001073 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001074 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Sam McCalld0d43e62017-12-04 12:51:49 +00001075 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1076 APInt KZResult = KnownZero << ShiftAmt;
1077 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001078 // If this shift has "nsw" keyword, then the result is either a poison
1079 // value or has the same sign bit as the first operand.
Sam McCalld0d43e62017-12-04 12:51:49 +00001080 if (NSW && KnownZero.isSignBitSet())
1081 KZResult.setSignBit();
1082 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001083 };
1084
Sam McCalld0d43e62017-12-04 12:51:49 +00001085 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1086 APInt KOResult = KnownOne << ShiftAmt;
1087 if (NSW && KnownOne.isSignBitSet())
1088 KOResult.setSignBit();
1089 return KOResult;
1090 };
1091
1092 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001093 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001094 }
1095 case Instruction::LShr: {
Sanjay Patelb7d12382017-10-16 14:46:37 +00001096 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Sam McCalld0d43e62017-12-04 12:51:49 +00001097 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1098 APInt KZResult = KnownZero.lshr(ShiftAmt);
1099 // High bits known zero.
1100 KZResult.setHighBits(ShiftAmt);
1101 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001102 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001103
Sam McCalld0d43e62017-12-04 12:51:49 +00001104 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1105 return KnownOne.lshr(ShiftAmt);
1106 };
1107
1108 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001109 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001110 }
1111 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001112 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Sam McCalld0d43e62017-12-04 12:51:49 +00001113 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1114 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001115 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001116
Sam McCalld0d43e62017-12-04 12:51:49 +00001117 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1118 return KnownOne.ashr(ShiftAmt);
1119 };
1120
1121 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001122 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001123 }
Chris Lattner965c7692008-06-02 01:18:21 +00001124 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001125 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001126 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001127 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001128 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001129 }
Chris Lattner965c7692008-06-02 01:18:21 +00001130 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001131 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001132 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001133 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001134 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001135 }
1136 case Instruction::SRem:
1137 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001138 APInt RA = Rem->getValue().abs();
1139 if (RA.isPowerOf2()) {
1140 APInt LowBits = RA - 1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001141 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001142
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001143 // The low bits of the first operand are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +00001144 Known.Zero = Known2.Zero & LowBits;
1145 Known.One = Known2.One & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001146
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001147 // If the first operand is non-negative or has all low bits zero, then
1148 // the upper bits are all zero.
Craig Topperca48af32017-04-29 16:43:11 +00001149 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +00001150 Known.Zero |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001151
1152 // If the first operand is negative and not all low bits are zero, then
1153 // the upper bits are all one.
Craig Topperca48af32017-04-29 16:43:11 +00001154 if (Known2.isNegative() && LowBits.intersects(Known2.One))
Craig Topperb45eabc2017-04-26 16:39:58 +00001155 Known.One |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001156
Craig Topperb45eabc2017-04-26 16:39:58 +00001157 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001158 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001159 }
1160 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001161
1162 // The sign bit is the LHS's sign bit, except when the result of the
1163 // remainder is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +00001164 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topperda886c62017-04-16 21:46:12 +00001165 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +00001166 if (Known2.isNonNegative())
1167 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +00001168
Chris Lattner965c7692008-06-02 01:18:21 +00001169 break;
1170 case Instruction::URem: {
1171 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001172 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001173 if (RA.isPowerOf2()) {
1174 APInt LowBits = (RA - 1);
Craig Topperb45eabc2017-04-26 16:39:58 +00001175 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1176 Known.Zero |= ~LowBits;
1177 Known.One &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001178 break;
1179 }
1180 }
1181
1182 // Since the result is less than or equal to either operand, any leading
1183 // zero bits in either operand must also exist in the result.
Craig Topperb45eabc2017-04-26 16:39:58 +00001184 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1185 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001186
Craig Topper8df66c62017-05-12 17:20:30 +00001187 unsigned Leaders =
1188 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topperf0aeee02017-05-05 17:36:09 +00001189 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001190 Known.Zero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001191 break;
1192 }
1193
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001194 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001195 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001196 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001197 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001198 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001199
Chris Lattner965c7692008-06-02 01:18:21 +00001200 if (Align > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001201 Known.Zero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001202 break;
1203 }
1204 case Instruction::GetElementPtr: {
1205 // Analyze all of the subscripts of this getelementptr instruction
1206 // to determine if we can prove known low zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001207 KnownBits LocalKnown(BitWidth);
1208 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001209 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001210
1211 gep_type_iterator GTI = gep_type_begin(I);
1212 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1213 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001214 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001215 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001216
1217 // Handle case when index is vector zeroinitializer
1218 Constant *CIndex = cast<Constant>(Index);
1219 if (CIndex->isZeroValue())
1220 continue;
1221
1222 if (CIndex->getType()->isVectorTy())
1223 Index = CIndex->getSplatValue();
1224
Chris Lattner965c7692008-06-02 01:18:21 +00001225 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001226 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001227 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001228 TrailZ = std::min<unsigned>(TrailZ,
1229 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001230 } else {
1231 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001232 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001233 if (!IndexedTy->isSized()) {
1234 TrailZ = 0;
1235 break;
1236 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001237 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001238 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Craig Topperb45eabc2017-04-26 16:39:58 +00001239 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1240 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001241 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001242 unsigned(countTrailingZeros(TypeSize) +
Craig Topper8df66c62017-05-12 17:20:30 +00001243 LocalKnown.countMinTrailingZeros()));
Chris Lattner965c7692008-06-02 01:18:21 +00001244 }
1245 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001246
Craig Topperb45eabc2017-04-26 16:39:58 +00001247 Known.Zero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001248 break;
1249 }
1250 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001251 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001252 // Handle the case of a simple two-predecessor recurrence PHI.
1253 // There's a lot more that could theoretically be done here, but
1254 // this is sufficient to catch some interesting cases.
1255 if (P->getNumIncomingValues() == 2) {
1256 for (unsigned i = 0; i != 2; ++i) {
1257 Value *L = P->getIncomingValue(i);
1258 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001259 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001260 if (!LU)
1261 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001262 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001263 // Check for operations that have the property that if
1264 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001265 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001266 if (Opcode == Instruction::Add ||
1267 Opcode == Instruction::Sub ||
1268 Opcode == Instruction::And ||
1269 Opcode == Instruction::Or ||
1270 Opcode == Instruction::Mul) {
1271 Value *LL = LU->getOperand(0);
1272 Value *LR = LU->getOperand(1);
1273 // Find a recurrence.
1274 if (LL == I)
1275 L = LR;
1276 else if (LR == I)
1277 L = LL;
1278 else
1279 break;
1280 // Ok, we have a PHI of the form L op= R. Check for low
1281 // zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001282 computeKnownBits(R, Known2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001283
1284 // We need to take the minimum number of known bits
Craig Topperb45eabc2017-04-26 16:39:58 +00001285 KnownBits Known3(Known);
1286 computeKnownBits(L, Known3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001287
Craig Topper8df66c62017-05-12 17:20:30 +00001288 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1289 Known3.countMinTrailingZeros()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001290
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001291 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1292 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1293 // If initial value of recurrence is nonnegative, and we are adding
1294 // a nonnegative number with nsw, the result can only be nonnegative
1295 // or poison value regardless of the number of times we execute the
1296 // add in phi recurrence. If initial value is negative and we are
1297 // adding a negative number with nsw, the result can only be
1298 // negative or poison value. Similar arguments apply to sub and mul.
1299 //
1300 // (add non-negative, non-negative) --> non-negative
1301 // (add negative, negative) --> negative
1302 if (Opcode == Instruction::Add) {
Craig Topperca48af32017-04-29 16:43:11 +00001303 if (Known2.isNonNegative() && Known3.isNonNegative())
1304 Known.makeNonNegative();
1305 else if (Known2.isNegative() && Known3.isNegative())
1306 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001307 }
1308
1309 // (sub nsw non-negative, negative) --> non-negative
1310 // (sub nsw negative, non-negative) --> negative
1311 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperca48af32017-04-29 16:43:11 +00001312 if (Known2.isNonNegative() && Known3.isNegative())
1313 Known.makeNonNegative();
1314 else if (Known2.isNegative() && Known3.isNonNegative())
1315 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001316 }
1317
1318 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperca48af32017-04-29 16:43:11 +00001319 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1320 Known3.isNonNegative())
1321 Known.makeNonNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001322 }
1323
Chris Lattner965c7692008-06-02 01:18:21 +00001324 break;
1325 }
1326 }
1327 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001328
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001329 // Unreachable blocks may have zero-operand PHI nodes.
1330 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001331 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001332
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001333 // Otherwise take the unions of the known bit sets of the operands,
1334 // taking conservative care to avoid excessive recursion.
Craig Topperb45eabc2017-04-26 16:39:58 +00001335 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001336 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001337 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001338 break;
1339
Craig Topperb45eabc2017-04-26 16:39:58 +00001340 Known.Zero.setAllBits();
1341 Known.One.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001342 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001343 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001344 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001345
Craig Topperb45eabc2017-04-26 16:39:58 +00001346 Known2 = KnownBits(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001347 // Recurse, but cap the recursion to one level, because we don't
1348 // want to waste time spinning around in loops.
Craig Topperb45eabc2017-04-26 16:39:58 +00001349 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1350 Known.Zero &= Known2.Zero;
1351 Known.One &= Known2.One;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001352 // If all bits have been ruled out, there's no need to check
1353 // more operands.
Craig Topperb45eabc2017-04-26 16:39:58 +00001354 if (!Known.Zero && !Known.One)
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001355 break;
1356 }
1357 }
Chris Lattner965c7692008-06-02 01:18:21 +00001358 break;
1359 }
1360 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001361 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001362 // If range metadata is attached to this call, set known bits from that,
1363 // and then intersect with known bits based on other properties of the
1364 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001365 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +00001366 computeKnownBitsFromRangeMetadata(*MD, Known);
Pete Cooper35b00d52016-08-13 01:05:32 +00001367 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001368 computeKnownBits(RV, Known2, Depth + 1, Q);
1369 Known.Zero |= Known2.Zero;
1370 Known.One |= Known2.One;
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001371 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001372 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001373 switch (II->getIntrinsicID()) {
1374 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001375 case Intrinsic::bitreverse:
Craig Topperb45eabc2017-04-26 16:39:58 +00001376 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1377 Known.Zero |= Known2.Zero.reverseBits();
1378 Known.One |= Known2.One.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001379 break;
Philip Reames675418e2015-10-06 20:20:45 +00001380 case Intrinsic::bswap:
Craig Topperb45eabc2017-04-26 16:39:58 +00001381 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1382 Known.Zero |= Known2.Zero.byteSwap();
1383 Known.One |= Known2.One.byteSwap();
Philip Reames675418e2015-10-06 20:20:45 +00001384 break;
Craig Topper868813f2017-05-08 17:22:34 +00001385 case Intrinsic::ctlz: {
1386 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1387 // If we have a known 1, its position is our upper bound.
1388 unsigned PossibleLZ = Known2.One.countLeadingZeros();
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001389 // If this call is undefined for 0, the result will be less than 2^n.
1390 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
Craig Topper868813f2017-05-08 17:22:34 +00001391 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1392 unsigned LowBits = Log2_32(PossibleLZ)+1;
1393 Known.Zero.setBitsFrom(LowBits);
1394 break;
1395 }
1396 case Intrinsic::cttz: {
1397 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1398 // If we have a known 1, its position is our upper bound.
1399 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1400 // If this call is undefined for 0, the result will be less than 2^n.
1401 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1402 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1403 unsigned LowBits = Log2_32(PossibleTZ)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001404 Known.Zero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001405 break;
1406 }
1407 case Intrinsic::ctpop: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001408 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001409 // We can bound the space the count needs. Also, bits known to be zero
1410 // can't contribute to the population.
Craig Topper8df66c62017-05-12 17:20:30 +00001411 unsigned BitsPossiblySet = Known2.countMaxPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001412 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001413 Known.Zero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001414 // TODO: we could bound KnownOne using the lower bound on the number
1415 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001416 break;
1417 }
Chad Rosierb3628842011-05-26 23:13:19 +00001418 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +00001419 Known.Zero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001420 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001421 }
1422 }
1423 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001424 case Instruction::ExtractElement:
1425 // Look through extract element. At the moment we keep this simple and skip
1426 // tracking the specific element. But at least we might find information
1427 // valid for all elements of the vector (for example if vector is sign
1428 // extended, shifted, etc).
Craig Topperb45eabc2017-04-26 16:39:58 +00001429 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Bjorn Pettersson39616032016-10-06 09:56:21 +00001430 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001431 case Instruction::ExtractValue:
1432 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001433 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001434 if (EVI->getNumIndices() != 1) break;
1435 if (EVI->getIndices()[0] == 0) {
1436 switch (II->getIntrinsicID()) {
1437 default: break;
1438 case Intrinsic::uadd_with_overflow:
1439 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001440 computeKnownBitsAddSub(true, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001441 II->getArgOperand(1), false, Known, Known2,
1442 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001443 break;
1444 case Intrinsic::usub_with_overflow:
1445 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001446 computeKnownBitsAddSub(false, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001447 II->getArgOperand(1), false, Known, Known2,
1448 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001449 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001450 case Intrinsic::umul_with_overflow:
1451 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001452 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Craig Topperb45eabc2017-04-26 16:39:58 +00001453 Known, Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001454 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001455 }
1456 }
1457 }
Chris Lattner965c7692008-06-02 01:18:21 +00001458 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001459}
1460
1461/// Determine which bits of V are known to be either zero or one and return
Craig Topper6e11a052017-05-08 16:22:48 +00001462/// them.
1463KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1464 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1465 computeKnownBits(V, Known, Depth, Q);
1466 return Known;
1467}
1468
1469/// Determine which bits of V are known to be either zero or one and return
Craig Topperb45eabc2017-04-26 16:39:58 +00001470/// them in the Known bit set.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001471///
1472/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1473/// we cannot optimize based on the assumption that it is zero without changing
1474/// it to be an explicit zero. If we don't change it to zero, other code could
1475/// optimized based on the contradictory assumption that it is non-zero.
1476/// Because instcombine aggressively folds operations with undef args anyway,
1477/// this won't lose us code quality.
1478///
1479/// This function is defined on values with integer type, values with pointer
1480/// type, and vectors of integers. In the case
1481/// where V is a vector, known zero, and known one values are the
1482/// same width as the vector element, and the bit is set only if it is true
1483/// for all of the elements in the vector.
Craig Topperb45eabc2017-04-26 16:39:58 +00001484void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1485 const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001486 assert(V && "No Value?");
1487 assert(Depth <= MaxDepth && "Limit Search Depth");
Craig Topperb45eabc2017-04-26 16:39:58 +00001488 unsigned BitWidth = Known.getBitWidth();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001489
Craig Topperfde47232017-07-09 07:04:03 +00001490 assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
Craig Topper95d23472017-07-09 07:04:00 +00001491 V->getType()->isPtrOrPtrVectorTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001492 "Not integer or pointer type!");
Craig Topperfde47232017-07-09 07:04:03 +00001493 assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth &&
Craig Topperb45eabc2017-04-26 16:39:58 +00001494 "V and Known should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001495 (void)BitWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001496
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001497 const APInt *C;
1498 if (match(V, m_APInt(C))) {
1499 // We know all of the bits for a scalar constant or a splat vector constant!
Craig Topperb45eabc2017-04-26 16:39:58 +00001500 Known.One = *C;
1501 Known.Zero = ~Known.One;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001502 return;
1503 }
1504 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001505 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001506 Known.setAllZero();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001507 return;
1508 }
1509 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001510 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001511 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001512 // We know that CDS must be a vector of integers. Take the intersection of
1513 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001514 Known.Zero.setAllBits(); Known.One.setAllBits();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001515 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Craig Topperb98ee582017-10-21 16:35:39 +00001516 APInt Elt = CDS->getElementAsAPInt(i);
Craig Topperb45eabc2017-04-26 16:39:58 +00001517 Known.Zero &= ~Elt;
1518 Known.One &= Elt;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001519 }
1520 return;
1521 }
1522
Pete Cooper35b00d52016-08-13 01:05:32 +00001523 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001524 // We know that CV must be a vector of integers. Take the intersection of
1525 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001526 Known.Zero.setAllBits(); Known.One.setAllBits();
David Majnemer3918cdd2016-05-04 06:13:33 +00001527 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1528 Constant *Element = CV->getAggregateElement(i);
1529 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1530 if (!ElementCI) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001531 Known.resetAll();
David Majnemer3918cdd2016-05-04 06:13:33 +00001532 return;
1533 }
Craig Topperb98ee582017-10-21 16:35:39 +00001534 const APInt &Elt = ElementCI->getValue();
Craig Topperb45eabc2017-04-26 16:39:58 +00001535 Known.Zero &= ~Elt;
1536 Known.One &= Elt;
David Majnemer3918cdd2016-05-04 06:13:33 +00001537 }
1538 return;
1539 }
1540
Jingyue Wu12b0c282015-06-15 05:46:29 +00001541 // Start out not knowing anything.
Craig Topperf0aeee02017-05-05 17:36:09 +00001542 Known.resetAll();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001543
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001544 // We can't imply anything about undefs.
1545 if (isa<UndefValue>(V))
1546 return;
1547
1548 // There's no point in looking through other users of ConstantData for
1549 // assumptions. Confirm that we've handled them all.
1550 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1551
Jingyue Wu12b0c282015-06-15 05:46:29 +00001552 // Limit search depth.
1553 // All recursive calls that increase depth must come after this.
1554 if (Depth == MaxDepth)
1555 return;
1556
1557 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1558 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001559 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001560 if (!GA->isInterposable())
Craig Topperb45eabc2017-04-26 16:39:58 +00001561 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001562 return;
1563 }
1564
Pete Cooper35b00d52016-08-13 01:05:32 +00001565 if (const Operator *I = dyn_cast<Operator>(V))
Craig Topperb45eabc2017-04-26 16:39:58 +00001566 computeKnownBitsFromOperator(I, Known, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001567
Craig Topperb45eabc2017-04-26 16:39:58 +00001568 // Aligned pointers have trailing zeros - refine Known.Zero set
Artur Pilipenko029d8532015-09-30 11:55:45 +00001569 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001570 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001571 if (Align)
Craig Topperb45eabc2017-04-26 16:39:58 +00001572 Known.Zero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001573 }
1574
Craig Topperb45eabc2017-04-26 16:39:58 +00001575 // computeKnownBitsFromAssume strictly refines Known.
1576 // Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001577
1578 // Check whether a nearby assume intrinsic can determine some known bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001579 computeKnownBitsFromAssume(V, Known, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001580
Craig Topperb45eabc2017-04-26 16:39:58 +00001581 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001582}
1583
Sanjay Patelaee84212014-11-04 16:27:42 +00001584/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001585/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001586/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001587/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001588bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001589 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00001590 assert(Depth <= MaxDepth && "Limit Search Depth");
1591
Pete Cooper35b00d52016-08-13 01:05:32 +00001592 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001593 if (C->isNullValue())
1594 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001595
1596 const APInt *ConstIntOrConstSplatInt;
1597 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1598 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001599 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001600
1601 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1602 // it is shifted off the end then the result is undefined.
1603 if (match(V, m_Shl(m_One(), m_Value())))
1604 return true;
1605
Craig Topperbcfd2d12017-04-20 16:56:25 +00001606 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1607 // the bottom. If it is shifted off the bottom then the result is undefined.
1608 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001609 return true;
1610
1611 // The remaining tests are all recursive, so bail out if we hit the limit.
1612 if (Depth++ == MaxDepth)
1613 return false;
1614
Craig Topper9f008862014-04-15 04:59:12 +00001615 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001616 // A shift left or a logical shift right of a power of two is a power of two
1617 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001618 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001619 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001620 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001621
Pete Cooper35b00d52016-08-13 01:05:32 +00001622 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001623 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001624
Pete Cooper35b00d52016-08-13 01:05:32 +00001625 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001626 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1627 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001628
Duncan Sandsba286d72011-10-26 20:55:21 +00001629 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1630 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001631 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1632 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001633 return true;
1634 // X & (-X) is always a power of two or zero.
1635 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1636 return true;
1637 return false;
1638 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001639
David Majnemerb7d54092013-07-30 21:01:36 +00001640 // Adding a power-of-two or zero to the same power-of-two or zero yields
1641 // either the original power-of-two, a larger power-of-two or zero.
1642 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001643 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001644 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1645 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1646 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001647 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001648 return true;
1649 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1650 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001651 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001652 return true;
1653
1654 unsigned BitWidth = V->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00001655 KnownBits LHSBits(BitWidth);
1656 computeKnownBits(X, LHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001657
Craig Topperb45eabc2017-04-26 16:39:58 +00001658 KnownBits RHSBits(BitWidth);
1659 computeKnownBits(Y, RHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001660 // If i8 V is a power of two or zero:
1661 // ZeroBits: 1 1 1 0 1 1 1 1
1662 // ~ZeroBits: 0 0 0 1 0 0 0 0
Craig Topperb45eabc2017-04-26 16:39:58 +00001663 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
David Majnemerb7d54092013-07-30 21:01:36 +00001664 // If OrZero isn't set, we cannot give back a zero result.
1665 // Make sure either the LHS or RHS has a bit set.
Craig Topperb45eabc2017-04-26 16:39:58 +00001666 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
David Majnemerb7d54092013-07-30 21:01:36 +00001667 return true;
1668 }
1669 }
David Majnemerbeab5672013-05-18 19:30:37 +00001670
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001671 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001672 // is a power of two only if the first operand is a power of two and not
1673 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001674 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1675 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001676 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001677 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001678 }
1679
Duncan Sandsd3951082011-01-25 09:38:29 +00001680 return false;
1681}
1682
Chandler Carruth80d3e562012-12-07 02:08:58 +00001683/// \brief Test whether a GEP's result is known to be non-null.
1684///
1685/// Uses properties inherent in a GEP to try to determine whether it is known
1686/// to be non-null.
1687///
1688/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001689static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001690 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001691 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1692 return false;
1693
1694 // FIXME: Support vector-GEPs.
1695 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1696
1697 // If the base pointer is non-null, we cannot walk to a null address with an
1698 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001699 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001700 return true;
1701
Chandler Carruth80d3e562012-12-07 02:08:58 +00001702 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1703 // If so, then the GEP cannot produce a null pointer, as doing so would
1704 // inherently violate the inbounds contract within address space zero.
1705 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1706 GTI != GTE; ++GTI) {
1707 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001708 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001709 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1710 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001711 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001712 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1713 if (ElementOffset > 0)
1714 return true;
1715 continue;
1716 }
1717
1718 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001719 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001720 continue;
1721
1722 // Fast path the constant operand case both for efficiency and so we don't
1723 // increment Depth when just zipping down an all-constant GEP.
1724 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1725 if (!OpC->isZero())
1726 return true;
1727 continue;
1728 }
1729
1730 // We post-increment Depth here because while isKnownNonZero increments it
1731 // as well, when we pop back up that increment won't persist. We don't want
1732 // to recurse 10k times just because we have 10k GEP operands. We don't
1733 // bail completely out because we want to handle constant GEPs regardless
1734 // of depth.
1735 if (Depth++ >= MaxDepth)
1736 continue;
1737
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001738 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001739 return true;
1740 }
1741
1742 return false;
1743}
1744
Nuno Lopes404f1062017-09-09 18:23:11 +00001745static bool isKnownNonNullFromDominatingCondition(const Value *V,
1746 const Instruction *CtxI,
1747 const DominatorTree *DT) {
1748 assert(V->getType()->isPointerTy() && "V must be pointer type");
1749 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1750
1751 if (!CtxI || !DT)
1752 return false;
1753
1754 unsigned NumUsesExplored = 0;
1755 for (auto *U : V->users()) {
1756 // Avoid massive lists
1757 if (NumUsesExplored >= DomConditionsMaxUses)
1758 break;
1759 NumUsesExplored++;
1760
1761 // If the value is used as an argument to a call or invoke, then argument
1762 // attributes may provide an answer about null-ness.
1763 if (auto CS = ImmutableCallSite(U))
1764 if (auto *CalledFunc = CS.getCalledFunction())
1765 for (const Argument &Arg : CalledFunc->args())
1766 if (CS.getArgOperand(Arg.getArgNo()) == V &&
1767 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1768 return true;
1769
1770 // Consider only compare instructions uniquely controlling a branch
1771 CmpInst::Predicate Pred;
1772 if (!match(const_cast<User *>(U),
1773 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1774 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1775 continue;
1776
1777 for (auto *CmpU : U->users()) {
1778 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
1779 assert(BI->isConditional() && "uses a comparison!");
1780
1781 BasicBlock *NonNullSuccessor =
1782 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1783 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1784 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1785 return true;
1786 } else if (Pred == ICmpInst::ICMP_NE &&
1787 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
1788 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
1789 return true;
1790 }
1791 }
1792 }
1793
1794 return false;
1795}
1796
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001797/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1798/// ensure that the value it's attached to is never Value? 'RangeType' is
1799/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001800static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001801 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1802 assert(NumRanges >= 1);
1803 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001804 ConstantInt *Lower =
1805 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1806 ConstantInt *Upper =
1807 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001808 ConstantRange Range(Lower->getValue(), Upper->getValue());
1809 if (Range.contains(Value))
1810 return false;
1811 }
1812 return true;
1813}
1814
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001815/// Return true if the given value is known to be non-zero when defined. For
1816/// vectors, return true if every element is known to be non-zero when
1817/// defined. For pointers, if the context instruction and dominator tree are
1818/// specified, perform context-sensitive analysis and return true if the
1819/// pointer couldn't possibly be null at the specified instruction.
1820/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001821bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001822 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001823 if (C->isNullValue())
1824 return false;
1825 if (isa<ConstantInt>(C))
1826 // Must be non-zero due to null test above.
1827 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001828
1829 // For constant vectors, check that all elements are undefined or known
1830 // non-zero to determine that the whole vector is known non-zero.
1831 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1832 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1833 Constant *Elt = C->getAggregateElement(i);
1834 if (!Elt || Elt->isNullValue())
1835 return false;
1836 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1837 return false;
1838 }
1839 return true;
1840 }
1841
Nuno Lopes404f1062017-09-09 18:23:11 +00001842 // A global variable in address space 0 is non null unless extern weak
1843 // or an absolute symbol reference. Other address spaces may have null as a
1844 // valid address for a global, so we can't assume anything.
1845 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1846 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1847 GV->getType()->getAddressSpace() == 0)
1848 return true;
1849 } else
1850 return false;
Duncan Sandsd3951082011-01-25 09:38:29 +00001851 }
1852
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001853 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001854 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001855 // If the possible ranges don't contain zero, then the value is
1856 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001857 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001858 const APInt ZeroValue(Ty->getBitWidth(), 0);
1859 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1860 return true;
1861 }
1862 }
1863 }
1864
Nuno Lopes404f1062017-09-09 18:23:11 +00001865 // Check for pointer simplifications.
1866 if (V->getType()->isPointerTy()) {
1867 // Alloca never returns null, malloc might.
1868 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
1869 return true;
1870
1871 // A byval, inalloca, or nonnull argument is never null.
1872 if (const Argument *A = dyn_cast<Argument>(V))
1873 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
1874 return true;
1875
1876 // A Load tagged with nonnull metadata is never null.
1877 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1878 if (LI->getMetadata(LLVMContext::MD_nonnull))
1879 return true;
1880
1881 if (auto CS = ImmutableCallSite(V))
1882 if (CS.isReturnNonNull())
1883 return true;
1884 }
1885
Duncan Sandsd3951082011-01-25 09:38:29 +00001886 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001887 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001888 return false;
1889
Nuno Lopes404f1062017-09-09 18:23:11 +00001890 // Check for recursive pointer simplifications.
Chandler Carruth80d3e562012-12-07 02:08:58 +00001891 if (V->getType()->isPointerTy()) {
Nuno Lopes404f1062017-09-09 18:23:11 +00001892 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001893 return true;
Nuno Lopes404f1062017-09-09 18:23:11 +00001894
Pete Cooper35b00d52016-08-13 01:05:32 +00001895 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001896 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001897 return true;
1898 }
1899
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001900 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001901
1902 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001903 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001904 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001905 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001906
1907 // ext X != 0 if X != 0.
1908 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001909 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001910
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001911 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001912 // if the lowest bit is shifted off the end.
Craig Topper6b3940a2017-05-03 22:25:19 +00001913 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001914 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001915 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001916 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001917 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001918
Craig Topperb45eabc2017-04-26 16:39:58 +00001919 KnownBits Known(BitWidth);
1920 computeKnownBits(X, Known, Depth, Q);
1921 if (Known.One[0])
Duncan Sandsd3951082011-01-25 09:38:29 +00001922 return true;
1923 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001924 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001925 // defined if the sign bit is shifted off the end.
1926 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001927 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001928 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001929 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001930 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001931
Craig Topper6e11a052017-05-08 16:22:48 +00001932 KnownBits Known = computeKnownBits(X, Depth, Q);
1933 if (Known.isNegative())
Duncan Sandsd3951082011-01-25 09:38:29 +00001934 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001935
1936 // If the shifter operand is a constant, and all of the bits shifted
1937 // out are known to be zero, and X is known non-zero then at least one
1938 // non-zero bit must remain.
1939 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
James Molloyb6be1eb2015-09-24 16:06:32 +00001940 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1941 // Is there a known one in the portion not shifted out?
Craig Topper8df66c62017-05-12 17:20:30 +00001942 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
James Molloyb6be1eb2015-09-24 16:06:32 +00001943 return true;
1944 // Are all the bits to be shifted out known zero?
NAKAMURA Takumi76bab1f2017-07-11 02:31:51 +00001945 if (Known.countMinTrailingZeros() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001946 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001947 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001948 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001949 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001950 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001951 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001952 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001953 // X + Y.
1954 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Craig Topper6e11a052017-05-08 16:22:48 +00001955 KnownBits XKnown = computeKnownBits(X, Depth, Q);
1956 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001957
1958 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001959 // zero unless both X and Y are zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001960 if (XKnown.isNonNegative() && YKnown.isNonNegative())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001961 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001962 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001963
1964 // If X and Y are both negative (as signed values) then their sum is not
1965 // zero unless both X and Y equal INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001966 if (XKnown.isNegative() && YKnown.isNegative()) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001967 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1968 // The sign bit of X is set. If some other bit is set then X is not equal
1969 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001970 if (XKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001971 return true;
1972 // The sign bit of Y is set. If some other bit is set then Y is not equal
1973 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001974 if (YKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001975 return true;
1976 }
1977
1978 // The sum of a non-negative number and a power of two is not zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001979 if (XKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001980 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001981 return true;
Craig Topper6e11a052017-05-08 16:22:48 +00001982 if (YKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001983 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001984 return true;
1985 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001986 // X * Y.
1987 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001988 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001989 // If X and Y are non-zero then so is X * Y as long as the multiplication
1990 // does not overflow.
1991 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001992 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001993 return true;
1994 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001995 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001996 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001997 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1998 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001999 return true;
2000 }
James Molloy897048b2015-09-29 14:08:45 +00002001 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00002002 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00002003 // Try and detect a recurrence that monotonically increases from a
2004 // starting value, as these are common as induction variables.
2005 if (PN->getNumIncomingValues() == 2) {
2006 Value *Start = PN->getIncomingValue(0);
2007 Value *Induction = PN->getIncomingValue(1);
2008 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2009 std::swap(Start, Induction);
2010 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2011 if (!C->isZero() && !C->isNegative()) {
2012 ConstantInt *X;
2013 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2014 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2015 !X->isNegative())
2016 return true;
2017 }
2018 }
2019 }
Jun Bum Limca832662016-02-01 17:03:07 +00002020 // Check if all incoming values are non-zero constant.
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002021 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
Craig Topper79ab6432017-07-06 18:39:47 +00002022 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
Jun Bum Limca832662016-02-01 17:03:07 +00002023 });
2024 if (AllNonZeroConstants)
2025 return true;
James Molloy897048b2015-09-29 14:08:45 +00002026 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002027
Craig Topperb45eabc2017-04-26 16:39:58 +00002028 KnownBits Known(BitWidth);
2029 computeKnownBits(V, Known, Depth, Q);
2030 return Known.One != 0;
Duncan Sandsd3951082011-01-25 09:38:29 +00002031}
2032
James Molloy1d88d6f2015-10-22 13:18:42 +00002033/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00002034static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2035 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00002036 if (!BO || BO->getOpcode() != Instruction::Add)
2037 return false;
2038 Value *Op = nullptr;
2039 if (V2 == BO->getOperand(0))
2040 Op = BO->getOperand(1);
2041 else if (V2 == BO->getOperand(1))
2042 Op = BO->getOperand(0);
2043 else
2044 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002045 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002046}
2047
2048/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002049static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
Craig Topper3002d5b2017-06-06 07:13:15 +00002050 if (V1 == V2)
James Molloy1d88d6f2015-10-22 13:18:42 +00002051 return false;
2052 if (V1->getType() != V2->getType())
2053 // We can't look through casts yet.
2054 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002055 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002056 return true;
2057
Craig Topper3002d5b2017-06-06 07:13:15 +00002058 if (V1->getType()->isIntOrIntVectorTy()) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002059 // Are any known bits in V1 contradictory to known bits in V2? If V1
2060 // has a known zero where V2 has a known one, they must not be equal.
Craig Topper8e662f72017-06-06 07:13:11 +00002061 KnownBits Known1 = computeKnownBits(V1, 0, Q);
2062 KnownBits Known2 = computeKnownBits(V2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002063
Craig Topper8365df82017-06-06 07:13:09 +00002064 if (Known1.Zero.intersects(Known2.One) ||
2065 Known2.Zero.intersects(Known1.One))
James Molloy1d88d6f2015-10-22 13:18:42 +00002066 return true;
2067 }
2068 return false;
2069}
2070
Sanjay Patelaee84212014-11-04 16:27:42 +00002071/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2072/// simplify operations downstream. Mask is known to be zero for bits that V
2073/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002074///
2075/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002076/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002077/// where V is a vector, the mask, known zero, and known one values are the
2078/// same width as the vector element, and the bit is set only if it is true
2079/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002080bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002081 const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002082 KnownBits Known(Mask.getBitWidth());
2083 computeKnownBits(V, Known, Depth, Q);
2084 return Mask.isSubsetOf(Known.Zero);
Chris Lattner965c7692008-06-02 01:18:21 +00002085}
2086
Sanjay Patela06d9892016-06-22 19:20:59 +00002087/// For vector constants, loop over the elements and find the constant with the
2088/// minimum number of sign bits. Return 0 if the value is not a vector constant
2089/// or if any element was not analyzed; otherwise, return the count for the
2090/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002091static unsigned computeNumSignBitsVectorConstant(const Value *V,
2092 unsigned TyBits) {
2093 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002094 if (!CV || !CV->getType()->isVectorTy())
2095 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002096
Sanjay Patela06d9892016-06-22 19:20:59 +00002097 unsigned MinSignBits = TyBits;
2098 unsigned NumElts = CV->getType()->getVectorNumElements();
2099 for (unsigned i = 0; i != NumElts; ++i) {
2100 // If we find a non-ConstantInt, bail out.
2101 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2102 if (!Elt)
2103 return 0;
2104
Craig Topper8e8b6ef2017-10-21 16:35:41 +00002105 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
Sanjay Patela06d9892016-06-22 19:20:59 +00002106 }
2107
2108 return MinSignBits;
2109}
Chris Lattner965c7692008-06-02 01:18:21 +00002110
Sanjoy Das39a684d2017-02-25 20:30:45 +00002111static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2112 const Query &Q);
2113
2114static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2115 const Query &Q) {
2116 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2117 assert(Result > 0 && "At least one sign bit needs to be present!");
2118 return Result;
2119}
2120
Sanjay Patelaee84212014-11-04 16:27:42 +00002121/// Return the number of times the sign bit of the register is replicated into
2122/// the other bits. We know that at least 1 bit is always equal to the sign bit
2123/// (itself), but other cases can give us information. For example, immediately
2124/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002125/// other, so we return 3. For vectors, return the number of sign bits for the
2126/// vector element with the mininum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002127static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2128 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00002129 assert(Depth <= MaxDepth && "Limit Search Depth");
Sanjoy Das39a684d2017-02-25 20:30:45 +00002130
2131 // We return the minimum number of sign bits that are guaranteed to be present
2132 // in V, so for undef we have to conservatively return 1. We don't have the
2133 // same behavior for poison though -- that's a FIXME today.
2134
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002135 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002136 unsigned Tmp, Tmp2;
2137 unsigned FirstAnswer = 1;
2138
Jay Foada0653a32014-05-14 21:14:37 +00002139 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002140 // below.
2141
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002142 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002143 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002144
Pete Cooper35b00d52016-08-13 01:05:32 +00002145 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002146 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002147 default: break;
2148 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002149 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002150 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002151
Nadav Rotemc99a3872015-03-06 00:23:58 +00002152 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002153 const APInt *Denominator;
2154 // sdiv X, C -> adds log(C) sign bits.
2155 if (match(U->getOperand(1), m_APInt(Denominator))) {
2156
2157 // Ignore non-positive denominator.
2158 if (!Denominator->isStrictlyPositive())
2159 break;
2160
2161 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002162 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002163
2164 // Add floor(log(C)) bits to the numerator bits.
2165 return std::min(TyBits, NumBits + Denominator->logBase2());
2166 }
2167 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002168 }
2169
2170 case Instruction::SRem: {
2171 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002172 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2173 // positive constant. This let us put a lower bound on the number of sign
2174 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002175 if (match(U->getOperand(1), m_APInt(Denominator))) {
2176
2177 // Ignore non-positive denominator.
2178 if (!Denominator->isStrictlyPositive())
2179 break;
2180
2181 // Calculate the incoming numerator bits. SRem by a positive constant
2182 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002183 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002184 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002185
2186 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002187 // denominator. Given that the denominator is positive, there are two
2188 // cases:
2189 //
2190 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2191 // (1 << ceilLogBase2(C)).
2192 //
2193 // 2. the numerator is negative. Then the result range is (-C,0] and
2194 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2195 //
2196 // Thus a lower bound on the number of sign bits is `TyBits -
2197 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002198
Sanjoy Dase561fee2015-03-25 22:33:53 +00002199 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002200 return std::max(NumrBits, ResBits);
2201 }
2202 break;
2203 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002204
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002205 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002206 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002207 // ashr X, C -> adds C sign bits. Vectors too.
2208 const APInt *ShAmt;
2209 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Sanjoy Das39a684d2017-02-25 20:30:45 +00002210 unsigned ShAmtLimited = ShAmt->getZExtValue();
2211 if (ShAmtLimited >= TyBits)
2212 break; // Bad shift.
2213 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002214 if (Tmp > TyBits) Tmp = TyBits;
2215 }
2216 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002217 }
2218 case Instruction::Shl: {
2219 const APInt *ShAmt;
2220 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002221 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002222 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002223 Tmp2 = ShAmt->getZExtValue();
2224 if (Tmp2 >= TyBits || // Bad shift.
2225 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2226 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002227 }
2228 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002229 }
Chris Lattner965c7692008-06-02 01:18:21 +00002230 case Instruction::And:
2231 case Instruction::Or:
2232 case Instruction::Xor: // NOT is handled here.
2233 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002234 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002235 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002236 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002237 FirstAnswer = std::min(Tmp, Tmp2);
2238 // We computed what we know about the sign bits as our first
2239 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002240 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002241 }
2242 break;
2243
2244 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002245 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002246 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002247 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002248 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002249
Chris Lattner965c7692008-06-02 01:18:21 +00002250 case Instruction::Add:
2251 // Add can have at most one carry bit. Thus we know that the output
2252 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002253 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002254 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002255
Chris Lattner965c7692008-06-02 01:18:21 +00002256 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002257 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002258 if (CRHS->isAllOnesValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002259 KnownBits Known(TyBits);
2260 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002261
Chris Lattner965c7692008-06-02 01:18:21 +00002262 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2263 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002264 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002265 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002266
Chris Lattner965c7692008-06-02 01:18:21 +00002267 // If we are subtracting one from a positive number, there is no carry
2268 // out of the result.
Craig Topperca48af32017-04-29 16:43:11 +00002269 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002270 return Tmp;
2271 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002272
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002273 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002274 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002275 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002276
Chris Lattner965c7692008-06-02 01:18:21 +00002277 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002278 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002279 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002280
Chris Lattner965c7692008-06-02 01:18:21 +00002281 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002282 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002283 if (CLHS->isNullValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002284 KnownBits Known(TyBits);
2285 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002286 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2287 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002288 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002289 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002290
Chris Lattner965c7692008-06-02 01:18:21 +00002291 // If the input is known to be positive (the sign bit is known clear),
2292 // the output of the NEG has the same number of sign bits as the input.
Craig Topperca48af32017-04-29 16:43:11 +00002293 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002294 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002295
Chris Lattner965c7692008-06-02 01:18:21 +00002296 // Otherwise, we treat this like a SUB.
2297 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002298
Chris Lattner965c7692008-06-02 01:18:21 +00002299 // Sub can have at most one carry bit. Thus we know that the output
2300 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002301 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002302 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002303 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002304
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002305 case Instruction::Mul: {
2306 // The output of the Mul can be at most twice the valid bits in the inputs.
2307 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2308 if (SignBitsOp0 == 1) return 1; // Early out.
2309 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2310 if (SignBitsOp1 == 1) return 1;
2311 unsigned OutValidBits =
2312 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2313 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2314 }
2315
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002316 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002317 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002318 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002319 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002320 if (NumIncomingValues > 4) break;
2321 // Unreachable blocks may have zero-operand PHI nodes.
2322 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002323
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002324 // Take the minimum of all incoming values. This can't infinitely loop
2325 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002326 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002327 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002328 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002329 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002330 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002331 }
2332 return Tmp;
2333 }
2334
Chris Lattner965c7692008-06-02 01:18:21 +00002335 case Instruction::Trunc:
2336 // FIXME: it's tricky to do anything useful for this, but it is an important
2337 // case for targets like X86.
2338 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002339
2340 case Instruction::ExtractElement:
2341 // Look through extract element. At the moment we keep this simple and skip
2342 // tracking the specific element. But at least we might find information
2343 // valid for all elements of the vector (for example if vector is sign
2344 // extended, shifted, etc).
2345 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002346 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002347
Chris Lattner965c7692008-06-02 01:18:21 +00002348 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2349 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002350
2351 // If we can examine all elements of a vector constant successfully, we're
2352 // done (we can't do any better than that). If not, keep trying.
2353 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2354 return VecSignBits;
2355
Craig Topperb45eabc2017-04-26 16:39:58 +00002356 KnownBits Known(TyBits);
2357 computeKnownBits(V, Known, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002358
Sanjay Patele0536212016-06-23 17:41:59 +00002359 // If we know that the sign bit is either zero or one, determine the number of
2360 // identical bits in the top of the input value.
Craig Topper8df66c62017-05-12 17:20:30 +00002361 return std::max(FirstAnswer, Known.countMinSignBits());
Chris Lattner965c7692008-06-02 01:18:21 +00002362}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002363
Sanjay Patelaee84212014-11-04 16:27:42 +00002364/// This function computes the integer multiple of Base that equals V.
2365/// If successful, it returns true and returns the multiple in
2366/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002367/// through SExt instructions only if LookThroughSExt is true.
2368bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002369 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002370 const unsigned MaxDepth = 6;
2371
Dan Gohman6a976bb2009-11-18 00:58:27 +00002372 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002373 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002374 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002375
Chris Lattner229907c2011-07-18 04:54:35 +00002376 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002377
Dan Gohman6a976bb2009-11-18 00:58:27 +00002378 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002379
2380 if (Base == 0)
2381 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002382
Victor Hernandez47444882009-11-10 08:28:35 +00002383 if (Base == 1) {
2384 Multiple = V;
2385 return true;
2386 }
2387
2388 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2389 Constant *BaseVal = ConstantInt::get(T, Base);
2390 if (CO && CO == BaseVal) {
2391 // Multiple is 1.
2392 Multiple = ConstantInt::get(T, 1);
2393 return true;
2394 }
2395
2396 if (CI && CI->getZExtValue() % Base == 0) {
2397 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002398 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002399 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002400
Victor Hernandez47444882009-11-10 08:28:35 +00002401 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002402
Victor Hernandez47444882009-11-10 08:28:35 +00002403 Operator *I = dyn_cast<Operator>(V);
2404 if (!I) return false;
2405
2406 switch (I->getOpcode()) {
2407 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002408 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002409 if (!LookThroughSExt) return false;
2410 // otherwise fall through to ZExt
Galina Kistanova244621f2017-05-31 22:16:24 +00002411 LLVM_FALLTHROUGH;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002412 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002413 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2414 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002415 case Instruction::Shl:
2416 case Instruction::Mul: {
2417 Value *Op0 = I->getOperand(0);
2418 Value *Op1 = I->getOperand(1);
2419
2420 if (I->getOpcode() == Instruction::Shl) {
2421 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2422 if (!Op1CI) return false;
2423 // Turn Op0 << Op1 into Op0 * 2^Op1
2424 APInt Op1Int = Op1CI->getValue();
2425 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002426 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002427 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002428 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002429 }
2430
Craig Topper9f008862014-04-15 04:59:12 +00002431 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002432 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2433 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2434 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002435 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002436 MulC->getType()->getPrimitiveSizeInBits())
2437 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002438 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002439 MulC->getType()->getPrimitiveSizeInBits())
2440 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002441
Chris Lattner72d283c2010-09-05 17:20:46 +00002442 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2443 Multiple = ConstantExpr::getMul(MulC, Op1C);
2444 return true;
2445 }
Victor Hernandez47444882009-11-10 08:28:35 +00002446
2447 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2448 if (Mul0CI->getValue() == 1) {
2449 // V == Base * Op1, so return Op1
2450 Multiple = Op1;
2451 return true;
2452 }
2453 }
2454
Craig Topper9f008862014-04-15 04:59:12 +00002455 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002456 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2457 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2458 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002459 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002460 MulC->getType()->getPrimitiveSizeInBits())
2461 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002462 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002463 MulC->getType()->getPrimitiveSizeInBits())
2464 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002465
Chris Lattner72d283c2010-09-05 17:20:46 +00002466 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2467 Multiple = ConstantExpr::getMul(MulC, Op0C);
2468 return true;
2469 }
Victor Hernandez47444882009-11-10 08:28:35 +00002470
2471 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2472 if (Mul1CI->getValue() == 1) {
2473 // V == Base * Op0, so return Op0
2474 Multiple = Op0;
2475 return true;
2476 }
2477 }
Victor Hernandez47444882009-11-10 08:28:35 +00002478 }
2479 }
2480
2481 // We could not determine if V is a multiple of Base.
2482 return false;
2483}
2484
David Majnemerb4b27232016-04-19 19:10:21 +00002485Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2486 const TargetLibraryInfo *TLI) {
2487 const Function *F = ICS.getCalledFunction();
2488 if (!F)
2489 return Intrinsic::not_intrinsic;
2490
2491 if (F->isIntrinsic())
2492 return F->getIntrinsicID();
2493
2494 if (!TLI)
2495 return Intrinsic::not_intrinsic;
2496
David L. Jonesd21529f2017-01-23 23:16:46 +00002497 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002498 // We're going to make assumptions on the semantics of the functions, check
2499 // that the target knows that it's available in this environment and it does
2500 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002501 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2502 return Intrinsic::not_intrinsic;
2503
2504 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002505 return Intrinsic::not_intrinsic;
2506
2507 // Otherwise check if we have a call to a function that can be turned into a
2508 // vector intrinsic.
2509 switch (Func) {
2510 default:
2511 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002512 case LibFunc_sin:
2513 case LibFunc_sinf:
2514 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002515 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002516 case LibFunc_cos:
2517 case LibFunc_cosf:
2518 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002519 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002520 case LibFunc_exp:
2521 case LibFunc_expf:
2522 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002523 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002524 case LibFunc_exp2:
2525 case LibFunc_exp2f:
2526 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002527 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002528 case LibFunc_log:
2529 case LibFunc_logf:
2530 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002531 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002532 case LibFunc_log10:
2533 case LibFunc_log10f:
2534 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002535 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002536 case LibFunc_log2:
2537 case LibFunc_log2f:
2538 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002539 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002540 case LibFunc_fabs:
2541 case LibFunc_fabsf:
2542 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002543 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002544 case LibFunc_fmin:
2545 case LibFunc_fminf:
2546 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002547 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002548 case LibFunc_fmax:
2549 case LibFunc_fmaxf:
2550 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002551 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002552 case LibFunc_copysign:
2553 case LibFunc_copysignf:
2554 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002555 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002556 case LibFunc_floor:
2557 case LibFunc_floorf:
2558 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002559 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002560 case LibFunc_ceil:
2561 case LibFunc_ceilf:
2562 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002563 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002564 case LibFunc_trunc:
2565 case LibFunc_truncf:
2566 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002567 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002568 case LibFunc_rint:
2569 case LibFunc_rintf:
2570 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002571 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002572 case LibFunc_nearbyint:
2573 case LibFunc_nearbyintf:
2574 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002575 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002576 case LibFunc_round:
2577 case LibFunc_roundf:
2578 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002579 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002580 case LibFunc_pow:
2581 case LibFunc_powf:
2582 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002583 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002584 case LibFunc_sqrt:
2585 case LibFunc_sqrtf:
2586 case LibFunc_sqrtl:
Sanjay Patel86d24f12017-11-06 22:40:09 +00002587 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002588 }
2589
2590 return Intrinsic::not_intrinsic;
2591}
2592
Sanjay Patelaee84212014-11-04 16:27:42 +00002593/// Return true if we can prove that the specified FP value is never equal to
2594/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002595///
2596/// NOTE: this function will need to be revisited when we support non-default
2597/// rounding modes!
David Majnemer3ee5f342016-04-13 06:55:52 +00002598bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2599 unsigned Depth) {
Sanjay Patel20df88a2017-11-13 17:56:23 +00002600 if (auto *CFP = dyn_cast<ConstantFP>(V))
Chris Lattnera12a6de2008-06-02 01:29:46 +00002601 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002602
Sanjay Patel20df88a2017-11-13 17:56:23 +00002603 // Limit search depth.
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002604 if (Depth == MaxDepth)
Sanjay Patel20df88a2017-11-13 17:56:23 +00002605 return false;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002606
Sanjay Patel20df88a2017-11-13 17:56:23 +00002607 auto *Op = dyn_cast<Operator>(V);
2608 if (!Op)
2609 return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002610
Sanjay Patel20df88a2017-11-13 17:56:23 +00002611 // Check if the nsz fast-math flag is set.
2612 if (auto *FPO = dyn_cast<FPMathOperator>(Op))
Michael Ilseman0f128372012-12-06 00:07:09 +00002613 if (FPO->hasNoSignedZeros())
2614 return true;
2615
Sanjay Patel9e3d8f42017-11-13 17:40:47 +00002616 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
Sanjay Patel20df88a2017-11-13 17:56:23 +00002617 if (match(Op, m_FAdd(m_Value(), m_Zero())))
Sanjay Patel9e3d8f42017-11-13 17:40:47 +00002618 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002619
Chris Lattnera12a6de2008-06-02 01:29:46 +00002620 // sitofp and uitofp turn into +0.0 for zero.
Sanjay Patel20df88a2017-11-13 17:56:23 +00002621 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
Chris Lattnera12a6de2008-06-02 01:29:46 +00002622 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002623
Sanjay Patel20df88a2017-11-13 17:56:23 +00002624 if (auto *Call = dyn_cast<CallInst>(Op)) {
2625 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002626 switch (IID) {
2627 default:
2628 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002629 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002630 case Intrinsic::sqrt:
Sanjay Patel20df88a2017-11-13 17:56:23 +00002631 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002632 // fabs(x) != -0.0
2633 case Intrinsic::fabs:
2634 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002635 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002636 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002637
Chris Lattnera12a6de2008-06-02 01:29:46 +00002638 return false;
2639}
2640
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002641/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2642/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2643/// bit despite comparing equal.
2644static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2645 const TargetLibraryInfo *TLI,
2646 bool SignBitOnly,
2647 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002648 // TODO: This function does not do the right thing when SignBitOnly is true
2649 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2650 // which flips the sign bits of NaNs. See
2651 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2652
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002653 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2654 return !CFP->getValueAPF().isNegative() ||
2655 (!SignBitOnly && CFP->getValueAPF().isZero());
2656 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002657
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002658 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002659 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002660
2661 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002662 if (!I)
2663 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002664
2665 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002666 default:
2667 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002668 // Unsigned integers are always nonnegative.
2669 case Instruction::UIToFP:
2670 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002671 case Instruction::FMul:
2672 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002673 if (I->getOperand(0) == I->getOperand(1) &&
2674 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002675 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002676
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002677 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002678 case Instruction::FAdd:
2679 case Instruction::FDiv:
2680 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002681 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2682 Depth + 1) &&
2683 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2684 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002685 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002686 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2687 Depth + 1) &&
2688 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2689 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002690 case Instruction::FPExt:
2691 case Instruction::FPTrunc:
2692 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002693 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2694 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002695 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002696 const auto *CI = cast<CallInst>(I);
2697 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002698 switch (IID) {
2699 default:
2700 break;
2701 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002702 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2703 Depth + 1) ||
2704 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2705 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002706 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002707 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2708 Depth + 1) &&
2709 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2710 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002711 case Intrinsic::exp:
2712 case Intrinsic::exp2:
2713 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002714 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002715
2716 case Intrinsic::sqrt:
2717 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2718 if (!SignBitOnly)
2719 return true;
2720 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2721 CannotBeNegativeZero(CI->getOperand(0), TLI));
2722
David Majnemer3ee5f342016-04-13 06:55:52 +00002723 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002724 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002725 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002726 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002727 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002728 }
Justin Lebar322c1272017-01-27 00:58:34 +00002729 // TODO: This is not correct. Given that exp is an integer, here are the
2730 // ways that pow can return a negative value:
2731 //
2732 // pow(x, exp) --> negative if exp is odd and x is negative.
2733 // pow(-0, exp) --> -inf if exp is negative odd.
2734 // pow(-0, exp) --> -0 if exp is positive odd.
2735 // pow(-inf, exp) --> -0 if exp is negative odd.
2736 // pow(-inf, exp) --> -inf if exp is positive odd.
2737 //
2738 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2739 // but we must return false if x == -0. Unfortunately we do not currently
2740 // have a way of expressing this constraint. See details in
2741 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002742 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2743 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002744
David Majnemer3ee5f342016-04-13 06:55:52 +00002745 case Intrinsic::fma:
2746 case Intrinsic::fmuladd:
2747 // x*x+y is non-negative if y is non-negative.
2748 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002749 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2750 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2751 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002752 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002753 break;
2754 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002755 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002756}
2757
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002758bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2759 const TargetLibraryInfo *TLI) {
2760 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2761}
2762
2763bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2764 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2765}
2766
Sanjay Patel6840c5f2017-09-05 23:13:13 +00002767bool llvm::isKnownNeverNaN(const Value *V) {
2768 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
2769
2770 // If we're told that NaNs won't happen, assume they won't.
2771 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
2772 if (FPMathOp->hasNoNaNs())
2773 return true;
2774
2775 // TODO: Handle instructions and potentially recurse like other 'isKnown'
2776 // functions. For example, the result of sitofp is never NaN.
2777
2778 // Handle scalar constants.
2779 if (auto *CFP = dyn_cast<ConstantFP>(V))
2780 return !CFP->isNaN();
2781
2782 // Bail out for constant expressions, but try to handle vector constants.
2783 if (!V->getType()->isVectorTy() || !isa<Constant>(V))
2784 return false;
2785
2786 // For vectors, verify that each element is not NaN.
2787 unsigned NumElts = V->getType()->getVectorNumElements();
2788 for (unsigned i = 0; i != NumElts; ++i) {
2789 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
2790 if (!Elt)
2791 return false;
2792 if (isa<UndefValue>(Elt))
2793 continue;
2794 auto *CElt = dyn_cast<ConstantFP>(Elt);
2795 if (!CElt || CElt->isNaN())
2796 return false;
2797 }
2798 // All elements were confirmed not-NaN or undefined.
2799 return true;
2800}
2801
Sanjay Patelaee84212014-11-04 16:27:42 +00002802/// If the specified value can be set by repeating the same byte in memory,
2803/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002804/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2805/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2806/// byte store (e.g. i16 0x1234), return null.
2807Value *llvm::isBytewiseValue(Value *V) {
2808 // All byte-wide stores are splatable, even of arbitrary variables.
2809 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002810
2811 // Handle 'null' ConstantArrayZero etc.
2812 if (Constant *C = dyn_cast<Constant>(V))
2813 if (C->isNullValue())
2814 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002815
Chris Lattner9cb10352010-12-26 20:15:01 +00002816 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002817 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002818 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2819 if (CFP->getType()->isFloatTy())
2820 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2821 if (CFP->getType()->isDoubleTy())
2822 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2823 // Don't handle long double formats, which have strange constraints.
2824 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002825
Benjamin Kramer17d90152015-02-07 19:29:02 +00002826 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002827 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002828 if (CI->getBitWidth() % 8 == 0) {
2829 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002830
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002831 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002832 return nullptr;
2833 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002834 }
2835 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002836
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002837 // A ConstantDataArray/Vector is splatable if all its members are equal and
2838 // also splatable.
2839 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2840 Value *Elt = CA->getElementAsConstant(0);
2841 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002842 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002843 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002844
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002845 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2846 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002847 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002848
Chris Lattner9cb10352010-12-26 20:15:01 +00002849 return Val;
2850 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002851
Chris Lattner9cb10352010-12-26 20:15:01 +00002852 // Conceptually, we could handle things like:
2853 // %a = zext i8 %X to i16
2854 // %b = shl i16 %a, 8
2855 // %c = or i16 %a, %b
2856 // but until there is an example that actually needs this, it doesn't seem
2857 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002858 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002859}
2860
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002861// This is the recursive version of BuildSubAggregate. It takes a few different
2862// arguments. Idxs is the index within the nested struct From that we are
2863// looking at now (which is of type IndexedType). IdxSkip is the number of
2864// indices from Idxs that should be left out when inserting into the resulting
2865// struct. To is the result struct built so far, new insertvalue instructions
2866// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002867static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002868 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002869 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002870 Instruction *InsertBefore) {
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002871 StructType *STy = dyn_cast<StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002872 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002873 // Save the original To argument so we can modify it
2874 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002875 // General case, the type indexed by Idxs is a struct
2876 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2877 // Process each struct element recursively
2878 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002879 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002880 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002881 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002882 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002883 if (!To) {
2884 // Couldn't find any inserted value for this index? Cleanup
2885 while (PrevTo != OrigTo) {
2886 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2887 PrevTo = Del->getAggregateOperand();
2888 Del->eraseFromParent();
2889 }
2890 // Stop processing elements
2891 break;
2892 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002893 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002894 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002895 if (To)
2896 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002897 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002898 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2899 // the struct's elements had a value that was inserted directly. In the latter
2900 // case, perhaps we can't determine each of the subelements individually, but
2901 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002902
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002903 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002904 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002905
2906 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002907 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002908
2909 // Insert the value in the new (sub) aggregrate
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002910 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2911 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002912}
2913
2914// This helper takes a nested struct and extracts a part of it (which is again a
2915// struct) into a new value. For example, given the struct:
2916// { a, { b, { c, d }, e } }
2917// and the indices "1, 1" this returns
2918// { c, d }.
2919//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002920// It does this by inserting an insertvalue for each element in the resulting
2921// struct, as opposed to just inserting a single struct. This will only work if
2922// each of the elements of the substruct are known (ie, inserted into From by an
2923// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002924//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002925// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002926static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002927 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002928 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002929 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002930 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002931 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002932 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002933 unsigned IdxSkip = Idxs.size();
2934
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002935 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002936}
2937
Sanjay Patelaee84212014-11-04 16:27:42 +00002938/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002939/// the scalar value indexed is already around as a register, for example if it
2940/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002941///
2942/// If InsertBefore is not null, this function will duplicate (modified)
2943/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002944Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2945 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002946 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002947 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002948 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002949 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002950 // We have indices, so V should have an indexable type.
2951 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2952 "Not looking at a struct or array?");
2953 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2954 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002955
Chris Lattner67058832012-01-25 06:48:06 +00002956 if (Constant *C = dyn_cast<Constant>(V)) {
2957 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002958 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002959 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2960 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002961
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002962 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002963 // Loop the indices for the insertvalue instruction in parallel with the
2964 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002965 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002966 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2967 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002968 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002969 // We can't handle this without inserting insertvalues
2970 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002971 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002972
2973 // The requested index identifies a part of a nested aggregate. Handle
2974 // this specially. For example,
2975 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2976 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2977 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2978 // This can be changed into
2979 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2980 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2981 // which allows the unused 0,0 element from the nested struct to be
2982 // removed.
2983 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2984 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002985 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002986
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002987 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002988 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002989 // looking for, then.
2990 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002991 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002992 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002993 }
2994 // If we end up here, the indices of the insertvalue match with those
2995 // requested (though possibly only partially). Now we recursively look at
2996 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002997 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002998 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002999 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003000 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003001
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003002 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00003003 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003004 // something else, we can extract from that something else directly instead.
3005 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00003006
3007 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00003008 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003009 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00003010 SmallVector<unsigned, 5> Idxs;
3011 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003012 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00003013 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00003014
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003015 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00003016 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003017
Craig Topper1bef2c82012-12-22 19:15:35 +00003018 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003019 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00003020
Jay Foad57aa6362011-07-13 10:26:04 +00003021 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003022 }
3023 // Otherwise, we don't know (such as, extracting from a function return value
3024 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00003025 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003026}
Evan Chengda3db112008-06-30 07:31:25 +00003027
Sanjay Patelaee84212014-11-04 16:27:42 +00003028/// Analyze the specified pointer to see if it can be expressed as a base
3029/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00003030Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003031 const DataLayout &DL) {
3032 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00003033 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00003034
3035 // We walk up the defs but use a visited set to handle unreachable code. In
3036 // that case, we stop after accumulating the cycle once (not that it
3037 // matters).
3038 SmallPtrSet<Value *, 16> Visited;
3039 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003040 if (Ptr->getType()->isVectorTy())
3041 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00003042
Nuno Lopes368c4d02012-12-31 20:48:35 +00003043 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00003044 // If one of the values we have visited is an addrspacecast, then
3045 // the pointer type of this GEP may be different from the type
3046 // of the Ptr parameter which was passed to this function. This
3047 // means when we construct GEPOffset, we need to use the size
3048 // of GEP's pointer type rather than the size of the original
3049 // pointer type.
3050 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003051 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3052 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003053
Tom Stellard17eb3412016-10-07 14:23:29 +00003054 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003055
Nuno Lopes368c4d02012-12-31 20:48:35 +00003056 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00003057 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3058 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003059 Ptr = cast<Operator>(Ptr)->getOperand(0);
3060 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003061 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00003062 break;
3063 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00003064 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003065 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00003066 }
3067 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00003068 Offset = ByteOffset.getSExtValue();
3069 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00003070}
3071
Matthias Braun50ec0b52017-05-19 22:37:09 +00003072bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3073 unsigned CharSize) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003074 // Make sure the GEP has exactly three arguments.
3075 if (GEP->getNumOperands() != 3)
3076 return false;
3077
Matthias Braun50ec0b52017-05-19 22:37:09 +00003078 // Make sure the index-ee is a pointer to array of \p CharSize integers.
3079 // CharSize.
David L Kreitzer752c1442016-04-13 14:31:06 +00003080 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Matthias Braun50ec0b52017-05-19 22:37:09 +00003081 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
David L Kreitzer752c1442016-04-13 14:31:06 +00003082 return false;
3083
3084 // Check to make sure that the first operand of the GEP is an integer and
3085 // has value 0 so that we are sure we're indexing into the initializer.
3086 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3087 if (!FirstIdx || !FirstIdx->isZero())
3088 return false;
3089
3090 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003091}
Chris Lattnere28618d2010-11-30 22:25:26 +00003092
Matthias Braun50ec0b52017-05-19 22:37:09 +00003093bool llvm::getConstantDataArrayInfo(const Value *V,
3094 ConstantDataArraySlice &Slice,
3095 unsigned ElementSize, uint64_t Offset) {
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003096 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00003097
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003098 // Look through bitcast instructions and geps.
3099 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00003100
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003101 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003102 // offset.
3103 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003104 // The GEP operator should be based on a pointer to string constant, and is
3105 // indexing into the string constant.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003106 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003107 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003108
Evan Chengda3db112008-06-30 07:31:25 +00003109 // If the second index isn't a ConstantInt, then this is a variable index
3110 // into the array. If this occurs, we can't say anything meaningful about
3111 // the string.
3112 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003113 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003114 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003115 else
3116 return false;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003117 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3118 StartIdx + Offset);
Evan Chengda3db112008-06-30 07:31:25 +00003119 }
Nick Lewycky46209882011-10-20 00:34:35 +00003120
Evan Chengda3db112008-06-30 07:31:25 +00003121 // The GEP instruction, constant or instruction, must reference a global
3122 // variable that is a constant and is initialized. The referenced constant
3123 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003124 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003125 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003126 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003127
Matthias Braun50ec0b52017-05-19 22:37:09 +00003128 const ConstantDataArray *Array;
3129 ArrayType *ArrayTy;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003130 if (GV->getInitializer()->isNullValue()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003131 Type *GVTy = GV->getValueType();
3132 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
Sanjay Patel2ad88f82017-06-12 22:34:37 +00003133 // A zeroinitializer for the array; there is no ConstantDataArray.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003134 Array = nullptr;
3135 } else {
3136 const DataLayout &DL = GV->getParent()->getDataLayout();
3137 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3138 uint64_t Length = SizeInBytes / (ElementSize / 8);
3139 if (Length <= Offset)
3140 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003141
Matthias Braun50ec0b52017-05-19 22:37:09 +00003142 Slice.Array = nullptr;
3143 Slice.Offset = 0;
3144 Slice.Length = Length - Offset;
3145 return true;
3146 }
3147 } else {
3148 // This must be a ConstantDataArray.
3149 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3150 if (!Array)
3151 return false;
3152 ArrayTy = Array->getType();
3153 }
3154 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003155 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003156
Matthias Braun50ec0b52017-05-19 22:37:09 +00003157 uint64_t NumElts = ArrayTy->getArrayNumElements();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003158 if (Offset > NumElts)
3159 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003160
Matthias Braun50ec0b52017-05-19 22:37:09 +00003161 Slice.Array = Array;
3162 Slice.Offset = Offset;
3163 Slice.Length = NumElts - Offset;
3164 return true;
3165}
3166
3167/// This function computes the length of a null-terminated C string pointed to
3168/// by V. If successful, it returns true and returns the string in Str.
3169/// If unsuccessful, it returns false.
3170bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3171 uint64_t Offset, bool TrimAtNul) {
3172 ConstantDataArraySlice Slice;
3173 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3174 return false;
3175
3176 if (Slice.Array == nullptr) {
3177 if (TrimAtNul) {
3178 Str = StringRef();
3179 return true;
3180 }
3181 if (Slice.Length == 1) {
3182 Str = StringRef("", 1);
3183 return true;
3184 }
Sanjay Patelfef83e82017-06-09 14:21:18 +00003185 // We cannot instantiate a StringRef as we do not have an appropriate string
Matthias Braun50ec0b52017-05-19 22:37:09 +00003186 // of 0s at hand.
3187 return false;
3188 }
3189
3190 // Start out with the entire array in the StringRef.
3191 Str = Slice.Array->getAsString();
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003192 // Skip over 'offset' bytes.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003193 Str = Str.substr(Slice.Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003194
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003195 if (TrimAtNul) {
3196 // Trim off the \0 and anything after it. If the array is not nul
3197 // terminated, we just return the whole end of string. The client may know
3198 // some other way that the string is length-bound.
3199 Str = Str.substr(0, Str.find('\0'));
3200 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003201 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003202}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003203
3204// These next two are very similar to the above, but also look through PHI
3205// nodes.
3206// TODO: See if we can integrate these two together.
3207
Sanjay Patelaee84212014-11-04 16:27:42 +00003208/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003209/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003210static uint64_t GetStringLengthH(const Value *V,
Matthias Braun50ec0b52017-05-19 22:37:09 +00003211 SmallPtrSetImpl<const PHINode*> &PHIs,
3212 unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003213 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003214 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003215
3216 // If this is a PHI node, there are two cases: either we have already seen it
3217 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003218 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003219 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003220 return ~0ULL; // already in the set.
3221
3222 // If it was new, see if all the input strings are the same length.
3223 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003224 for (Value *IncValue : PN->incoming_values()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003225 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003226 if (Len == 0) return 0; // Unknown length -> unknown.
3227
3228 if (Len == ~0ULL) continue;
3229
3230 if (Len != LenSoFar && LenSoFar != ~0ULL)
3231 return 0; // Disagree -> unknown.
3232 LenSoFar = Len;
3233 }
3234
3235 // Success, all agree.
3236 return LenSoFar;
3237 }
3238
3239 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003240 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003241 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003242 if (Len1 == 0) return 0;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003243 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003244 if (Len2 == 0) return 0;
3245 if (Len1 == ~0ULL) return Len2;
3246 if (Len2 == ~0ULL) return Len1;
3247 if (Len1 != Len2) return 0;
3248 return Len1;
3249 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003250
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003251 // Otherwise, see if we can read the string.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003252 ConstantDataArraySlice Slice;
3253 if (!getConstantDataArrayInfo(V, Slice, CharSize))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003254 return 0;
3255
Matthias Braun50ec0b52017-05-19 22:37:09 +00003256 if (Slice.Array == nullptr)
3257 return 1;
3258
3259 // Search for nul characters
3260 unsigned NullIndex = 0;
3261 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3262 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3263 break;
3264 }
3265
3266 return NullIndex + 1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003267}
3268
Sanjay Patelaee84212014-11-04 16:27:42 +00003269/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003270/// the specified pointer, return 'len+1'. If we can't, return 0.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003271uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003272 if (!V->getType()->isPointerTy()) return 0;
3273
Pete Cooper35b00d52016-08-13 01:05:32 +00003274 SmallPtrSet<const PHINode*, 32> PHIs;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003275 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003276 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3277 // an empty string as a length.
3278 return Len == ~0ULL ? 1 : Len;
3279}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003280
Adam Nemete2b885c2015-04-23 20:09:20 +00003281/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3282/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003283static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3284 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003285 // Find the loop-defined value.
3286 Loop *L = LI->getLoopFor(PN->getParent());
3287 if (PN->getNumIncomingValues() != 2)
3288 return true;
3289
3290 // Find the value from previous iteration.
3291 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3292 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3293 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3294 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3295 return true;
3296
3297 // If a new pointer is loaded in the loop, the pointer references a different
3298 // object in every iteration. E.g.:
3299 // for (i)
3300 // int *p = a[i];
3301 // ...
3302 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3303 if (!L->isLoopInvariant(Load->getPointerOperand()))
3304 return false;
3305 return true;
3306}
3307
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003308Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3309 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003310 if (!V->getType()->isPointerTy())
3311 return V;
3312 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3313 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3314 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003315 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3316 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003317 V = cast<Operator>(V)->getOperand(0);
3318 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003319 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003320 return V;
3321 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003322 } else if (isa<AllocaInst>(V)) {
3323 // An alloca can't be further simplified.
3324 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003325 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003326 if (auto CS = CallSite(V))
3327 if (Value *RV = CS.getReturnedArgOperand()) {
3328 V = RV;
3329 continue;
3330 }
3331
Dan Gohman05b18f12010-12-15 20:49:55 +00003332 // See if InstructionSimplify knows any relevant tricks.
3333 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003334 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Daniel Berlin4d0fe642017-04-28 19:55:38 +00003335 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003336 V = Simplified;
3337 continue;
3338 }
3339
Dan Gohmana4fcd242010-12-15 20:02:24 +00003340 return V;
3341 }
3342 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3343 }
3344 return V;
3345}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003346
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003347void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003348 const DataLayout &DL, LoopInfo *LI,
3349 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003350 SmallPtrSet<Value *, 4> Visited;
3351 SmallVector<Value *, 4> Worklist;
3352 Worklist.push_back(V);
3353 do {
3354 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003355 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003356
David Blaikie70573dc2014-11-19 07:49:26 +00003357 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003358 continue;
3359
3360 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3361 Worklist.push_back(SI->getTrueValue());
3362 Worklist.push_back(SI->getFalseValue());
3363 continue;
3364 }
3365
3366 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003367 // If this PHI changes the underlying object in every iteration of the
3368 // loop, don't look through it. Consider:
3369 // int **A;
3370 // for (i) {
3371 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3372 // Curr = A[i];
3373 // *Prev, *Curr;
3374 //
3375 // Prev is tracking Curr one iteration behind so they refer to different
3376 // underlying objects.
3377 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3378 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003379 for (Value *IncValue : PN->incoming_values())
3380 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003381 continue;
3382 }
3383
3384 Objects.push_back(P);
3385 } while (!Worklist.empty());
3386}
3387
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003388/// This is the function that does the work of looking through basic
3389/// ptrtoint+arithmetic+inttoptr sequences.
3390static const Value *getUnderlyingObjectFromInt(const Value *V) {
3391 do {
3392 if (const Operator *U = dyn_cast<Operator>(V)) {
3393 // If we find a ptrtoint, we can transfer control back to the
3394 // regular getUnderlyingObjectFromInt.
3395 if (U->getOpcode() == Instruction::PtrToInt)
3396 return U->getOperand(0);
3397 // If we find an add of a constant, a multiplied value, or a phi, it's
3398 // likely that the other operand will lead us to the base
3399 // object. We don't have to worry about the case where the
3400 // object address is somehow being computed by the multiply,
3401 // because our callers only care when the result is an
3402 // identifiable object.
3403 if (U->getOpcode() != Instruction::Add ||
3404 (!isa<ConstantInt>(U->getOperand(1)) &&
3405 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3406 !isa<PHINode>(U->getOperand(1))))
3407 return V;
3408 V = U->getOperand(0);
3409 } else {
3410 return V;
3411 }
3412 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3413 } while (true);
3414}
3415
3416/// This is a wrapper around GetUnderlyingObjects and adds support for basic
3417/// ptrtoint+arithmetic+inttoptr sequences.
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003418/// It returns false if unidentified object is found in GetUnderlyingObjects.
3419bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003420 SmallVectorImpl<Value *> &Objects,
3421 const DataLayout &DL) {
3422 SmallPtrSet<const Value *, 16> Visited;
3423 SmallVector<const Value *, 4> Working(1, V);
3424 do {
3425 V = Working.pop_back_val();
3426
3427 SmallVector<Value *, 4> Objs;
3428 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3429
3430 for (Value *V : Objs) {
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003431 if (!Visited.insert(V).second)
3432 continue;
3433 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3434 const Value *O =
3435 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3436 if (O->getType()->isPointerTy()) {
3437 Working.push_back(O);
3438 continue;
3439 }
3440 }
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003441 // If GetUnderlyingObjects fails to find an identifiable object,
3442 // getUnderlyingObjectsForCodeGen also fails for safety.
3443 if (!isIdentifiedObject(V)) {
3444 Objects.clear();
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003445 return false;
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003446 }
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003447 Objects.push_back(const_cast<Value *>(V));
3448 }
3449 } while (!Working.empty());
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003450 return true;
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003451}
3452
Sanjay Patelaee84212014-11-04 16:27:42 +00003453/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003454bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003455 for (const User *U : V->users()) {
3456 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003457 if (!II) return false;
3458
3459 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3460 II->getIntrinsicID() != Intrinsic::lifetime_end)
3461 return false;
3462 }
3463 return true;
3464}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003465
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003466bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3467 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003468 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003469 const Operator *Inst = dyn_cast<Operator>(V);
3470 if (!Inst)
3471 return false;
3472
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003473 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3474 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3475 if (C->canTrap())
3476 return false;
3477
3478 switch (Inst->getOpcode()) {
3479 default:
3480 return true;
3481 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003482 case Instruction::URem: {
3483 // x / y is undefined if y == 0.
3484 const APInt *V;
3485 if (match(Inst->getOperand(1), m_APInt(V)))
3486 return *V != 0;
3487 return false;
3488 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003489 case Instruction::SDiv:
3490 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003491 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003492 const APInt *Numerator, *Denominator;
3493 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3494 return false;
3495 // We cannot hoist this division if the denominator is 0.
3496 if (*Denominator == 0)
3497 return false;
3498 // It's safe to hoist if the denominator is not 0 or -1.
3499 if (*Denominator != -1)
3500 return true;
3501 // At this point we know that the denominator is -1. It is safe to hoist as
3502 // long we know that the numerator is not INT_MIN.
3503 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3504 return !Numerator->isMinSignedValue();
3505 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003506 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003507 }
3508 case Instruction::Load: {
3509 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003510 if (!LI->isUnordered() ||
3511 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003512 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003513 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003514 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003515 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003516 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003517 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3518 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003519 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003520 case Instruction::Call: {
Matt Arsenaultcf5e7fe2017-04-28 21:13:09 +00003521 auto *CI = cast<const CallInst>(Inst);
3522 const Function *Callee = CI->getCalledFunction();
David Majnemer0a92f862015-08-28 21:13:39 +00003523
Matt Arsenault6a288c12017-05-03 02:26:10 +00003524 // The called function could have undefined behavior or side-effects, even
3525 // if marked readnone nounwind.
3526 return Callee && Callee->isSpeculatable();
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003527 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003528 case Instruction::VAArg:
3529 case Instruction::Alloca:
3530 case Instruction::Invoke:
3531 case Instruction::PHI:
3532 case Instruction::Store:
3533 case Instruction::Ret:
3534 case Instruction::Br:
3535 case Instruction::IndirectBr:
3536 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003537 case Instruction::Unreachable:
3538 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003539 case Instruction::AtomicRMW:
3540 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003541 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003542 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003543 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003544 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003545 case Instruction::CatchRet:
3546 case Instruction::CleanupPad:
3547 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003548 return false; // Misc instructions which have effects
3549 }
3550}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003551
Quentin Colombet6443cce2015-08-06 18:44:34 +00003552bool llvm::mayBeMemoryDependent(const Instruction &I) {
3553 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3554}
3555
Pete Cooper35b00d52016-08-13 01:05:32 +00003556OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3557 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003558 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003559 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003560 const Instruction *CxtI,
3561 const DominatorTree *DT) {
3562 // Multiplying n * m significant bits yields a result of n + m significant
3563 // bits. If the total number of significant bits does not exceed the
3564 // result bit width (minus 1), there is no overflow.
3565 // This means if we have enough leading zero bits in the operands
3566 // we can guarantee that the result does not overflow.
3567 // Ref: "Hacker's Delight" by Henry Warren
3568 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00003569 KnownBits LHSKnown(BitWidth);
3570 KnownBits RHSKnown(BitWidth);
3571 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
3572 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer491331a2015-01-02 07:29:43 +00003573 // Note that underestimating the number of zero bits gives a more
3574 // conservative answer.
Craig Topper8df66c62017-05-12 17:20:30 +00003575 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3576 RHSKnown.countMinLeadingZeros();
David Majnemer491331a2015-01-02 07:29:43 +00003577 // First handle the easy case: if we have enough zero bits there's
3578 // definitely no overflow.
3579 if (ZeroBits >= BitWidth)
3580 return OverflowResult::NeverOverflows;
3581
3582 // Get the largest possible values for each operand.
Craig Topperb45eabc2017-04-26 16:39:58 +00003583 APInt LHSMax = ~LHSKnown.Zero;
3584 APInt RHSMax = ~RHSKnown.Zero;
David Majnemer491331a2015-01-02 07:29:43 +00003585
3586 // We know the multiply operation doesn't overflow if the maximum values for
3587 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003588 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003589 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003590 if (!MaxOverflow)
3591 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003592
David Majnemerc8a576b2015-01-02 07:29:47 +00003593 // We know it always overflows if multiplying the smallest possible values for
3594 // the operands also results in overflow.
3595 bool MinOverflow;
Craig Topperb45eabc2017-04-26 16:39:58 +00003596 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003597 if (MinOverflow)
3598 return OverflowResult::AlwaysOverflows;
3599
3600 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003601}
David Majnemer5310c1e2015-01-07 00:39:50 +00003602
Pete Cooper35b00d52016-08-13 01:05:32 +00003603OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3604 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003605 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003606 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003607 const Instruction *CxtI,
3608 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +00003609 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3610 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3611 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003612
Craig Topper6e11a052017-05-08 16:22:48 +00003613 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003614 // The sign bit is set in both cases: this MUST overflow.
3615 // Create a simple add instruction, and insert it into the struct.
3616 return OverflowResult::AlwaysOverflows;
3617 }
3618
Craig Topper6e11a052017-05-08 16:22:48 +00003619 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003620 // The sign bit is clear in both cases: this CANNOT overflow.
3621 // Create a simple add instruction, and insert it into the struct.
3622 return OverflowResult::NeverOverflows;
3623 }
3624 }
3625
3626 return OverflowResult::MayOverflow;
3627}
James Molloy71b91c22015-05-11 14:42:20 +00003628
Craig Topperbb973722017-05-15 02:44:08 +00003629/// \brief Return true if we can prove that adding the two values of the
3630/// knownbits will not overflow.
3631/// Otherwise return false.
3632static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3633 const KnownBits &RHSKnown) {
3634 // Addition of two 2's complement numbers having opposite signs will never
3635 // overflow.
3636 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3637 (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3638 return true;
3639
3640 // If either of the values is known to be non-negative, adding them can only
3641 // overflow if the second is also non-negative, so we can assume that.
3642 // Two non-negative numbers will only overflow if there is a carry to the
3643 // sign bit, so we can check if even when the values are as big as possible
3644 // there is no overflow to the sign bit.
3645 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3646 APInt MaxLHS = ~LHSKnown.Zero;
3647 MaxLHS.clearSignBit();
3648 APInt MaxRHS = ~RHSKnown.Zero;
3649 MaxRHS.clearSignBit();
3650 APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3651 return Result.isSignBitClear();
3652 }
3653
3654 // If either of the values is known to be negative, adding them can only
3655 // overflow if the second is also negative, so we can assume that.
3656 // Two negative number will only overflow if there is no carry to the sign
3657 // bit, so we can check if even when the values are as small as possible
3658 // there is overflow to the sign bit.
3659 if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
3660 APInt MinLHS = LHSKnown.One;
3661 MinLHS.clearSignBit();
3662 APInt MinRHS = RHSKnown.One;
3663 MinRHS.clearSignBit();
3664 APInt Result = std::move(MinLHS) + std::move(MinRHS);
3665 return Result.isSignBitSet();
3666 }
3667
3668 // If we reached here it means that we know nothing about the sign bits.
3669 // In this case we can't know if there will be an overflow, since by
3670 // changing the sign bits any two values can be made to overflow.
3671 return false;
3672}
3673
Pete Cooper35b00d52016-08-13 01:05:32 +00003674static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3675 const Value *RHS,
3676 const AddOperator *Add,
3677 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003678 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003679 const Instruction *CxtI,
3680 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003681 if (Add && Add->hasNoSignedWrap()) {
3682 return OverflowResult::NeverOverflows;
3683 }
3684
Craig Topperbb973722017-05-15 02:44:08 +00003685 // If LHS and RHS each have at least two sign bits, the addition will look
3686 // like
3687 //
3688 // XX..... +
3689 // YY.....
3690 //
3691 // If the carry into the most significant position is 0, X and Y can't both
3692 // be 1 and therefore the carry out of the addition is also 0.
3693 //
3694 // If the carry into the most significant position is 1, X and Y can't both
3695 // be 0 and therefore the carry out of the addition is also 1.
3696 //
3697 // Since the carry into the most significant position is always equal to
3698 // the carry out of the addition, there is no signed overflow.
3699 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
3700 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
3701 return OverflowResult::NeverOverflows;
3702
Craig Topper6e11a052017-05-08 16:22:48 +00003703 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3704 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003705
Craig Topperbb973722017-05-15 02:44:08 +00003706 if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
Jingyue Wu10fcea52015-08-20 18:27:04 +00003707 return OverflowResult::NeverOverflows;
Jingyue Wu10fcea52015-08-20 18:27:04 +00003708
3709 // The remaining code needs Add to be available. Early returns if not so.
3710 if (!Add)
3711 return OverflowResult::MayOverflow;
3712
3713 // If the sign of Add is the same as at least one of the operands, this add
3714 // CANNOT overflow. This is particularly useful when the sum is
3715 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3716 // operands.
3717 bool LHSOrRHSKnownNonNegative =
Craig Topper6e11a052017-05-08 16:22:48 +00003718 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
Craig Topperbb973722017-05-15 02:44:08 +00003719 bool LHSOrRHSKnownNegative =
3720 (LHSKnown.isNegative() || RHSKnown.isNegative());
Jingyue Wu10fcea52015-08-20 18:27:04 +00003721 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
Craig Topper6e11a052017-05-08 16:22:48 +00003722 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
3723 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
3724 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003725 return OverflowResult::NeverOverflows;
3726 }
3727 }
3728
3729 return OverflowResult::MayOverflow;
3730}
3731
Pete Cooper35b00d52016-08-13 01:05:32 +00003732bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3733 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003734#ifndef NDEBUG
3735 auto IID = II->getIntrinsicID();
3736 assert((IID == Intrinsic::sadd_with_overflow ||
3737 IID == Intrinsic::uadd_with_overflow ||
3738 IID == Intrinsic::ssub_with_overflow ||
3739 IID == Intrinsic::usub_with_overflow ||
3740 IID == Intrinsic::smul_with_overflow ||
3741 IID == Intrinsic::umul_with_overflow) &&
3742 "Not an overflow intrinsic!");
3743#endif
3744
Pete Cooper35b00d52016-08-13 01:05:32 +00003745 SmallVector<const BranchInst *, 2> GuardingBranches;
3746 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003747
Pete Cooper35b00d52016-08-13 01:05:32 +00003748 for (const User *U : II->users()) {
3749 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003750 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3751
3752 if (EVI->getIndices()[0] == 0)
3753 Results.push_back(EVI);
3754 else {
3755 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3756
Pete Cooper35b00d52016-08-13 01:05:32 +00003757 for (const auto *U : EVI->users())
3758 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003759 assert(B->isConditional() && "How else is it using an i1?");
3760 GuardingBranches.push_back(B);
3761 }
3762 }
3763 } else {
3764 // We are using the aggregate directly in a way we don't want to analyze
3765 // here (storing it to a global, say).
3766 return false;
3767 }
3768 }
3769
Pete Cooper35b00d52016-08-13 01:05:32 +00003770 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003771 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3772 if (!NoWrapEdge.isSingleEdge())
3773 return false;
3774
3775 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003776 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003777 // If the extractvalue itself is not executed on overflow, the we don't
3778 // need to check each use separately, since domination is transitive.
3779 if (DT.dominates(NoWrapEdge, Result->getParent()))
3780 continue;
3781
3782 for (auto &RU : Result->uses())
3783 if (!DT.dominates(NoWrapEdge, RU))
3784 return false;
3785 }
3786
3787 return true;
3788 };
3789
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003790 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003791}
3792
3793
Pete Cooper35b00d52016-08-13 01:05:32 +00003794OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003795 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003796 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003797 const Instruction *CxtI,
3798 const DominatorTree *DT) {
3799 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003800 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003801}
3802
Pete Cooper35b00d52016-08-13 01:05:32 +00003803OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3804 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003805 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003806 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003807 const Instruction *CxtI,
3808 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003809 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003810}
3811
Jingyue Wu42f1d672015-07-28 18:22:40 +00003812bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003813 // A memory operation returns normally if it isn't volatile. A volatile
3814 // operation is allowed to trap.
3815 //
3816 // An atomic operation isn't guaranteed to return in a reasonable amount of
3817 // time because it's possible for another thread to interfere with it for an
3818 // arbitrary length of time, but programs aren't allowed to rely on that.
3819 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3820 return !LI->isVolatile();
3821 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3822 return !SI->isVolatile();
3823 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3824 return !CXI->isVolatile();
3825 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3826 return !RMWI->isVolatile();
3827 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3828 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003829
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003830 // If there is no successor, then execution can't transfer to it.
3831 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3832 return !CRI->unwindsToCaller();
3833 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3834 return !CatchSwitch->unwindsToCaller();
3835 if (isa<ResumeInst>(I))
3836 return false;
3837 if (isa<ReturnInst>(I))
3838 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00003839 if (isa<UnreachableInst>(I))
3840 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003841
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003842 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003843 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003844 // Call sites that throw have implicit non-local control flow.
3845 if (!CS.doesNotThrow())
3846 return false;
3847
3848 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3849 // etc. and thus not return. However, LLVM already assumes that
3850 //
3851 // - Thread exiting actions are modeled as writes to memory invisible to
3852 // the program.
3853 //
3854 // - Loops that don't have side effects (side effects are volatile/atomic
3855 // stores and IO) always terminate (see http://llvm.org/PR965).
3856 // Furthermore IO itself is also modeled as writes to memory invisible to
3857 // the program.
3858 //
3859 // We rely on those assumptions here, and use the memory effects of the call
3860 // target as a proxy for checking that it always returns.
3861
3862 // FIXME: This isn't aggressive enough; a call which only writes to a global
3863 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003864 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
Dan Gohman2c74fe92017-11-08 21:59:51 +00003865 match(I, m_Intrinsic<Intrinsic::assume>()) ||
3866 match(I, m_Intrinsic<Intrinsic::sideeffect>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003867 }
3868
3869 // Other instructions return normally.
3870 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003871}
3872
3873bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3874 const Loop *L) {
3875 // The loop header is guaranteed to be executed for every iteration.
3876 //
3877 // FIXME: Relax this constraint to cover all basic blocks that are
3878 // guaranteed to be executed at every iteration.
3879 if (I->getParent() != L->getHeader()) return false;
3880
3881 for (const Instruction &LI : *L->getHeader()) {
3882 if (&LI == I) return true;
3883 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3884 }
3885 llvm_unreachable("Instruction not contained in its own parent basic block.");
3886}
3887
3888bool llvm::propagatesFullPoison(const Instruction *I) {
3889 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003890 case Instruction::Add:
3891 case Instruction::Sub:
3892 case Instruction::Xor:
3893 case Instruction::Trunc:
3894 case Instruction::BitCast:
3895 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00003896 case Instruction::Mul:
3897 case Instruction::Shl:
3898 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003899 // These operations all propagate poison unconditionally. Note that poison
3900 // is not any particular value, so xor or subtraction of poison with
3901 // itself still yields poison, not zero.
3902 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003903
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003904 case Instruction::AShr:
3905 case Instruction::SExt:
3906 // For these operations, one bit of the input is replicated across
3907 // multiple output bits. A replicated poison bit is still poison.
3908 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003909
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003910 case Instruction::ICmp:
3911 // Comparing poison with any value yields poison. This is why, for
3912 // instance, x s< (x +nsw 1) can be folded to true.
3913 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003914
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003915 default:
3916 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003917 }
3918}
3919
3920const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3921 switch (I->getOpcode()) {
3922 case Instruction::Store:
3923 return cast<StoreInst>(I)->getPointerOperand();
3924
3925 case Instruction::Load:
3926 return cast<LoadInst>(I)->getPointerOperand();
3927
3928 case Instruction::AtomicCmpXchg:
3929 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3930
3931 case Instruction::AtomicRMW:
3932 return cast<AtomicRMWInst>(I)->getPointerOperand();
3933
3934 case Instruction::UDiv:
3935 case Instruction::SDiv:
3936 case Instruction::URem:
3937 case Instruction::SRem:
3938 return I->getOperand(1);
3939
3940 default:
3941 return nullptr;
3942 }
3943}
3944
Sanjoy Das08989c72017-04-30 19:41:19 +00003945bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003946 // We currently only look for uses of poison values within the same basic
3947 // block, as that makes it easier to guarantee that the uses will be
3948 // executed given that PoisonI is executed.
3949 //
3950 // FIXME: Expand this to consider uses beyond the same basic block. To do
3951 // this, look out for the distinction between post-dominance and strong
3952 // post-dominance.
3953 const BasicBlock *BB = PoisonI->getParent();
3954
3955 // Set of instructions that we have proved will yield poison if PoisonI
3956 // does.
3957 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003958 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003959 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003960 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003961
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003962 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003963
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003964 unsigned Iter = 0;
3965 while (Iter++ < MaxDepth) {
3966 for (auto &I : make_range(Begin, End)) {
3967 if (&I != PoisonI) {
3968 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3969 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3970 return true;
3971 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3972 return false;
3973 }
3974
3975 // Mark poison that propagates from I through uses of I.
3976 if (YieldsPoison.count(&I)) {
3977 for (const User *User : I.users()) {
3978 const Instruction *UserI = cast<Instruction>(User);
3979 if (propagatesFullPoison(UserI))
3980 YieldsPoison.insert(User);
3981 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003982 }
3983 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003984
3985 if (auto *NextBB = BB->getSingleSuccessor()) {
3986 if (Visited.insert(NextBB).second) {
3987 BB = NextBB;
3988 Begin = BB->getFirstNonPHI()->getIterator();
3989 End = BB->end();
3990 continue;
3991 }
3992 }
3993
3994 break;
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003995 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003996 return false;
3997}
3998
Pete Cooper35b00d52016-08-13 01:05:32 +00003999static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00004000 if (FMF.noNaNs())
4001 return true;
4002
4003 if (auto *C = dyn_cast<ConstantFP>(V))
4004 return !C->isNaN();
4005 return false;
4006}
4007
Pete Cooper35b00d52016-08-13 01:05:32 +00004008static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00004009 if (auto *C = dyn_cast<ConstantFP>(V))
4010 return !C->isZero();
4011 return false;
4012}
4013
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004014/// Match clamp pattern for float types without care about NaNs or signed zeros.
4015/// Given non-min/max outer cmp/select from the clamp pattern this
4016/// function recognizes if it can be substitued by a "canonical" min/max
4017/// pattern.
4018static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4019 Value *CmpLHS, Value *CmpRHS,
4020 Value *TrueVal, Value *FalseVal,
4021 Value *&LHS, Value *&RHS) {
4022 // Try to match
4023 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4024 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4025 // and return description of the outer Max/Min.
4026
4027 // First, check if select has inverse order:
4028 if (CmpRHS == FalseVal) {
4029 std::swap(TrueVal, FalseVal);
4030 Pred = CmpInst::getInversePredicate(Pred);
4031 }
4032
4033 // Assume success now. If there's no match, callers should not use these anyway.
4034 LHS = TrueVal;
4035 RHS = FalseVal;
4036
4037 const APFloat *FC1;
4038 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4039 return {SPF_UNKNOWN, SPNB_NA, false};
4040
4041 const APFloat *FC2;
4042 switch (Pred) {
4043 case CmpInst::FCMP_OLT:
4044 case CmpInst::FCMP_OLE:
4045 case CmpInst::FCMP_ULT:
4046 case CmpInst::FCMP_ULE:
4047 if (match(FalseVal,
4048 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4049 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4050 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4051 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4052 break;
4053 case CmpInst::FCMP_OGT:
4054 case CmpInst::FCMP_OGE:
4055 case CmpInst::FCMP_UGT:
4056 case CmpInst::FCMP_UGE:
4057 if (match(FalseVal,
4058 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4059 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4060 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4061 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4062 break;
4063 default:
4064 break;
4065 }
4066
4067 return {SPF_UNKNOWN, SPNB_NA, false};
4068}
4069
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004070/// Recognize variations of:
4071/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4072static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4073 Value *CmpLHS, Value *CmpRHS,
4074 Value *TrueVal, Value *FalseVal) {
4075 // Swap the select operands and predicate to match the patterns below.
4076 if (CmpRHS != TrueVal) {
4077 Pred = ICmpInst::getSwappedPredicate(Pred);
4078 std::swap(TrueVal, FalseVal);
4079 }
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004080 const APInt *C1;
4081 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4082 const APInt *C2;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004083 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4084 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004085 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004086 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004087
4088 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4089 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004090 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004091 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004092
4093 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4094 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004095 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004096 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004097
4098 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4099 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004100 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004101 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004102 }
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004103 return {SPF_UNKNOWN, SPNB_NA, false};
4104}
4105
4106/// Match non-obvious integer minimum and maximum sequences.
4107static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4108 Value *CmpLHS, Value *CmpRHS,
4109 Value *TrueVal, Value *FalseVal,
4110 Value *&LHS, Value *&RHS) {
4111 // Assume success. If there's no match, callers should not use these anyway.
4112 LHS = TrueVal;
4113 RHS = FalseVal;
4114
4115 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4116 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4117 return SPR;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004118
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004119 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
Sanjay Patel819f0962016-11-13 19:30:19 +00004120 return {SPF_UNKNOWN, SPNB_NA, false};
4121
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004122 // Z = X -nsw Y
4123 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4124 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4125 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004126 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004127 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004128
4129 // Z = X -nsw Y
4130 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4131 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4132 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004133 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004134 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004135
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004136 const APInt *C1;
Sanjay Patel819f0962016-11-13 19:30:19 +00004137 if (!match(CmpRHS, m_APInt(C1)))
4138 return {SPF_UNKNOWN, SPNB_NA, false};
4139
4140 // An unsigned min/max can be written with a signed compare.
4141 const APInt *C2;
4142 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4143 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4144 // Is the sign bit set?
4145 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4146 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Craig Topper81d772c2017-11-08 19:38:45 +00004147 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4148 C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004149 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004150
4151 // Is the sign bit clear?
4152 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4153 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004154 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4155 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004156 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004157 }
4158
4159 // Look through 'not' ops to find disguised signed min/max.
4160 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4161 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4162 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004163 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004164 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004165
4166 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4167 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4168 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004169 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004170 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004171
4172 return {SPF_UNKNOWN, SPNB_NA, false};
4173}
4174
James Molloy134bec22015-08-11 09:12:57 +00004175static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4176 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004177 Value *CmpLHS, Value *CmpRHS,
4178 Value *TrueVal, Value *FalseVal,
4179 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004180 LHS = CmpLHS;
4181 RHS = CmpRHS;
4182
James Molloy134bec22015-08-11 09:12:57 +00004183 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
4184 // return inconsistent results between implementations.
4185 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4186 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4187 // Therefore we behave conservatively and only proceed if at least one of the
4188 // operands is known to not be zero, or if we don't care about signed zeroes.
4189 switch (Pred) {
4190 default: break;
4191 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4192 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4193 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4194 !isKnownNonZero(CmpRHS))
4195 return {SPF_UNKNOWN, SPNB_NA, false};
4196 }
4197
4198 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4199 bool Ordered = false;
4200
4201 // When given one NaN and one non-NaN input:
4202 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4203 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4204 // ordered comparison fails), which could be NaN or non-NaN.
4205 // so here we discover exactly what NaN behavior is required/accepted.
4206 if (CmpInst::isFPPredicate(Pred)) {
4207 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4208 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4209
4210 if (LHSSafe && RHSSafe) {
4211 // Both operands are known non-NaN.
4212 NaNBehavior = SPNB_RETURNS_ANY;
4213 } else if (CmpInst::isOrdered(Pred)) {
4214 // An ordered comparison will return false when given a NaN, so it
4215 // returns the RHS.
4216 Ordered = true;
4217 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004218 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004219 NaNBehavior = SPNB_RETURNS_NAN;
4220 else if (RHSSafe)
4221 NaNBehavior = SPNB_RETURNS_OTHER;
4222 else
4223 // Completely unsafe.
4224 return {SPF_UNKNOWN, SPNB_NA, false};
4225 } else {
4226 Ordered = false;
4227 // An unordered comparison will return true when given a NaN, so it
4228 // returns the LHS.
4229 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004230 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004231 NaNBehavior = SPNB_RETURNS_OTHER;
4232 else if (RHSSafe)
4233 NaNBehavior = SPNB_RETURNS_NAN;
4234 else
4235 // Completely unsafe.
4236 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004237 }
4238 }
4239
James Molloy71b91c22015-05-11 14:42:20 +00004240 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004241 std::swap(CmpLHS, CmpRHS);
4242 Pred = CmpInst::getSwappedPredicate(Pred);
4243 if (NaNBehavior == SPNB_RETURNS_NAN)
4244 NaNBehavior = SPNB_RETURNS_OTHER;
4245 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4246 NaNBehavior = SPNB_RETURNS_NAN;
4247 Ordered = !Ordered;
4248 }
4249
4250 // ([if]cmp X, Y) ? X : Y
4251 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004252 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004253 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004254 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004255 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004256 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004257 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004258 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004259 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004260 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004261 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4262 case FCmpInst::FCMP_UGT:
4263 case FCmpInst::FCMP_UGE:
4264 case FCmpInst::FCMP_OGT:
4265 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4266 case FCmpInst::FCMP_ULT:
4267 case FCmpInst::FCMP_ULE:
4268 case FCmpInst::FCMP_OLT:
4269 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004270 }
4271 }
4272
Sanjay Patele372aec2016-10-27 15:26:10 +00004273 const APInt *C1;
4274 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004275 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4276 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4277
4278 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4279 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Craig Topper81d772c2017-11-08 19:38:45 +00004280 if (Pred == ICmpInst::ICMP_SGT &&
4281 (C1->isNullValue() || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004282 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004283 }
4284
4285 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4286 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Craig Topper81d772c2017-11-08 19:38:45 +00004287 if (Pred == ICmpInst::ICMP_SLT &&
4288 (C1->isNullValue() || C1->isOneValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004289 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004290 }
4291 }
James Molloy71b91c22015-05-11 14:42:20 +00004292 }
4293
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004294 if (CmpInst::isIntPredicate(Pred))
4295 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4296
4297 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4298 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4299 // semantics than minNum. Be conservative in such case.
4300 if (NaNBehavior != SPNB_RETURNS_ANY ||
4301 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4302 !isKnownNonZero(CmpRHS)))
4303 return {SPF_UNKNOWN, SPNB_NA, false};
4304
4305 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004306}
James Molloy270ef8c2015-05-15 16:04:50 +00004307
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004308/// Helps to match a select pattern in case of a type mismatch.
4309///
4310/// The function processes the case when type of true and false values of a
4311/// select instruction differs from type of the cmp instruction operands because
4312/// of a cast instructon. The function checks if it is legal to move the cast
4313/// operation after "select". If yes, it returns the new second value of
4314/// "select" (with the assumption that cast is moved):
4315/// 1. As operand of cast instruction when both values of "select" are same cast
4316/// instructions.
4317/// 2. As restored constant (by applying reverse cast operation) when the first
4318/// value of the "select" is a cast operation and the second value is a
4319/// constant.
4320/// NOTE: We return only the new second value because the first value could be
4321/// accessed as operand of cast instruction.
James Molloy569cea62015-09-02 17:25:25 +00004322static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4323 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004324 auto *Cast1 = dyn_cast<CastInst>(V1);
4325 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004326 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004327
Sanjay Patel14a4b812017-01-29 16:34:57 +00004328 *CastOp = Cast1->getOpcode();
4329 Type *SrcTy = Cast1->getSrcTy();
4330 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4331 // If V1 and V2 are both the same cast from the same type, look through V1.
4332 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4333 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004334 return nullptr;
4335 }
4336
Sanjay Patel14a4b812017-01-29 16:34:57 +00004337 auto *C = dyn_cast<Constant>(V2);
4338 if (!C)
4339 return nullptr;
4340
David Majnemerd2a074b2016-04-29 18:40:34 +00004341 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004342 switch (*CastOp) {
4343 case Instruction::ZExt:
4344 if (CmpI->isUnsigned())
4345 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4346 break;
4347 case Instruction::SExt:
4348 if (CmpI->isSigned())
4349 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4350 break;
4351 case Instruction::Trunc:
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004352 Constant *CmpConst;
Nikolai Bozhenov9723f122017-10-18 14:24:50 +00004353 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
4354 CmpConst->getType() == SrcTy) {
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004355 // Here we have the following case:
4356 //
4357 // %cond = cmp iN %x, CmpConst
4358 // %tr = trunc iN %x to iK
4359 // %narrowsel = select i1 %cond, iK %t, iK C
4360 //
4361 // We can always move trunc after select operation:
4362 //
4363 // %cond = cmp iN %x, CmpConst
4364 // %widesel = select i1 %cond, iN %x, iN CmpConst
4365 // %tr = trunc iN %widesel to iK
4366 //
4367 // Note that C could be extended in any way because we don't care about
4368 // upper bits after truncation. It can't be abs pattern, because it would
4369 // look like:
4370 //
4371 // select i1 %cond, x, -x.
4372 //
4373 // So only min/max pattern could be matched. Such match requires widened C
4374 // == CmpConst. That is why set widened C = CmpConst, condition trunc
4375 // CmpConst == C is checked below.
4376 CastedTo = CmpConst;
4377 } else {
4378 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4379 }
Sanjay Patel14a4b812017-01-29 16:34:57 +00004380 break;
4381 case Instruction::FPTrunc:
4382 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4383 break;
4384 case Instruction::FPExt:
4385 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4386 break;
4387 case Instruction::FPToUI:
4388 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4389 break;
4390 case Instruction::FPToSI:
4391 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4392 break;
4393 case Instruction::UIToFP:
4394 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4395 break;
4396 case Instruction::SIToFP:
4397 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4398 break;
4399 default:
4400 break;
4401 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004402
4403 if (!CastedTo)
4404 return nullptr;
4405
David Majnemerd2a074b2016-04-29 18:40:34 +00004406 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004407 Constant *CastedBack =
4408 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004409 if (CastedBack != C)
4410 return nullptr;
4411
4412 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004413}
4414
Sanjay Patele8dc0902016-05-23 17:57:54 +00004415SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004416 Instruction::CastOps *CastOp) {
4417 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004418 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004419
James Molloy134bec22015-08-11 09:12:57 +00004420 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4421 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004422
James Molloy134bec22015-08-11 09:12:57 +00004423 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004424 Value *CmpLHS = CmpI->getOperand(0);
4425 Value *CmpRHS = CmpI->getOperand(1);
4426 Value *TrueVal = SI->getTrueValue();
4427 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004428 FastMathFlags FMF;
4429 if (isa<FPMathOperator>(CmpI))
4430 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004431
4432 // Bail out early.
4433 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004434 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004435
4436 // Deal with type mismatches.
4437 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004438 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004439 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004440 cast<CastInst>(TrueVal)->getOperand(0), C,
4441 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004442 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004443 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004444 C, cast<CastInst>(FalseVal)->getOperand(0),
4445 LHS, RHS);
4446 }
James Molloy134bec22015-08-11 09:12:57 +00004447 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004448 LHS, RHS);
4449}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004450
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004451/// Return true if "icmp Pred LHS RHS" is always true.
Chad Rosiere42b44b2017-07-28 14:39:06 +00004452static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
4453 const Value *RHS, const DataLayout &DL,
4454 unsigned Depth) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004455 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004456 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4457 return true;
4458
4459 switch (Pred) {
4460 default:
4461 return false;
4462
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004463 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004464 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004465
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004466 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004467 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004468 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004469 return false;
4470 }
4471
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004472 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004473 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004474
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004475 // LHS u<= LHS +_{nuw} C for any C
4476 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004477 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004478
4479 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004480 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4481 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004482 const APInt *&CA, const APInt *&CB) {
4483 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4484 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4485 return true;
4486
4487 // If X & C == 0 then (X | C) == X +_{nuw} C
4488 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4489 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
Craig Topperb45eabc2017-04-26 16:39:58 +00004490 KnownBits Known(CA->getBitWidth());
Chad Rosiere42b44b2017-07-28 14:39:06 +00004491 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
4492 /*CxtI*/ nullptr, /*DT*/ nullptr);
Craig Topperb45eabc2017-04-26 16:39:58 +00004493 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
Sanjoy Das92568102015-11-10 23:56:20 +00004494 return true;
4495 }
4496
4497 return false;
4498 };
4499
Pete Cooper35b00d52016-08-13 01:05:32 +00004500 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004501 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004502 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4503 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004504
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004505 return false;
4506 }
4507 }
4508}
4509
4510/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004511/// ALHS ARHS" is true. Otherwise, return None.
4512static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004513isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
Chad Rosiere42b44b2017-07-28 14:39:06 +00004514 const Value *ARHS, const Value *BLHS, const Value *BRHS,
4515 const DataLayout &DL, unsigned Depth) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004516 switch (Pred) {
4517 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004518 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004519
4520 case CmpInst::ICMP_SLT:
4521 case CmpInst::ICMP_SLE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004522 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
4523 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004524 return true;
4525 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004526
4527 case CmpInst::ICMP_ULT:
4528 case CmpInst::ICMP_ULE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004529 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
4530 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004531 return true;
4532 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004533 }
4534}
4535
Chad Rosier226a7342016-05-05 17:41:19 +00004536/// Return true if the operands of the two compares match. IsSwappedOps is true
4537/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004538static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4539 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004540 bool &IsSwappedOps) {
4541
4542 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4543 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4544 return IsMatchingOps || IsSwappedOps;
4545}
4546
Chad Rosier41dd31f2016-04-20 19:15:26 +00004547/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4548/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4549/// BRHS" is false. Otherwise, return None if we can't infer anything.
4550static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004551 const Value *ALHS,
4552 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004553 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004554 const Value *BLHS,
4555 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004556 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004557 // Canonicalize the operands so they're matching.
4558 if (IsSwappedOps) {
4559 std::swap(BLHS, BRHS);
4560 BPred = ICmpInst::getSwappedPredicate(BPred);
4561 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004562 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004563 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004564 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004565 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004566
Chad Rosier41dd31f2016-04-20 19:15:26 +00004567 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004568}
4569
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004570/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4571/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4572/// C2" is false. Otherwise, return None if we can't infer anything.
4573static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004574isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4575 const ConstantInt *C1,
4576 CmpInst::Predicate BPred,
4577 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004578 assert(ALHS == BLHS && "LHS operands must match.");
4579 ConstantRange DomCR =
4580 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4581 ConstantRange CR =
4582 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4583 ConstantRange Intersection = DomCR.intersectWith(CR);
4584 ConstantRange Difference = DomCR.difference(CR);
4585 if (Intersection.isEmptySet())
4586 return false;
4587 if (Difference.isEmptySet())
4588 return true;
4589 return None;
4590}
4591
Chad Rosier2f498032017-07-28 18:47:43 +00004592/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4593/// false. Otherwise, return None if we can't infer anything.
4594static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
4595 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004596 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004597 unsigned Depth) {
4598 Value *ALHS = LHS->getOperand(0);
4599 Value *ARHS = LHS->getOperand(1);
Chad Rosiera72a9ff2017-07-06 20:00:25 +00004600 // The rest of the logic assumes the LHS condition is true. If that's not the
4601 // case, invert the predicate to make it so.
Chad Rosier2f498032017-07-28 18:47:43 +00004602 ICmpInst::Predicate APred =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004603 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
Chad Rosier2f498032017-07-28 18:47:43 +00004604
4605 Value *BLHS = RHS->getOperand(0);
4606 Value *BRHS = RHS->getOperand(1);
4607 ICmpInst::Predicate BPred = RHS->getPredicate();
Chad Rosiere2cbd132016-04-25 17:23:36 +00004608
Chad Rosier226a7342016-05-05 17:41:19 +00004609 // Can we infer anything when the two compares have matching operands?
4610 bool IsSwappedOps;
4611 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4612 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4613 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004614 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004615 // No amount of additional analysis will infer the second condition, so
4616 // early exit.
4617 return None;
4618 }
4619
4620 // Can we infer anything when the LHS operands match and the RHS operands are
4621 // constants (not necessarily matching)?
4622 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4623 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4624 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4625 cast<ConstantInt>(BRHS)))
4626 return Implication;
4627 // No amount of additional analysis will infer the second condition, so
4628 // early exit.
4629 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004630 }
4631
Chad Rosier41dd31f2016-04-20 19:15:26 +00004632 if (APred == BPred)
Chad Rosiere42b44b2017-07-28 14:39:06 +00004633 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
Chad Rosier41dd31f2016-04-20 19:15:26 +00004634 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004635}
Chad Rosier2f498032017-07-28 18:47:43 +00004636
Chad Rosierf73a10d2017-08-01 19:22:36 +00004637/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4638/// false. Otherwise, return None if we can't infer anything. We expect the
4639/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
4640static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
4641 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004642 const DataLayout &DL, bool LHSIsTrue,
Chad Rosierf73a10d2017-08-01 19:22:36 +00004643 unsigned Depth) {
4644 // The LHS must be an 'or' or an 'and' instruction.
4645 assert((LHS->getOpcode() == Instruction::And ||
4646 LHS->getOpcode() == Instruction::Or) &&
4647 "Expected LHS to be 'and' or 'or'.");
4648
Davide Italiano1a943a92017-08-09 16:06:54 +00004649 assert(Depth <= MaxDepth && "Hit recursion limit");
Chad Rosierf73a10d2017-08-01 19:22:36 +00004650
4651 // If the result of an 'or' is false, then we know both legs of the 'or' are
4652 // false. Similarly, if the result of an 'and' is true, then we know both
4653 // legs of the 'and' are true.
4654 Value *ALHS, *ARHS;
Chad Rosierdfd1de62017-08-01 20:18:54 +00004655 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
4656 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
Chad Rosierf73a10d2017-08-01 19:22:36 +00004657 // FIXME: Make this non-recursion.
4658 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004659 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004660 return Implication;
4661 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004662 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004663 return Implication;
4664 return None;
4665 }
4666 return None;
4667}
4668
Chad Rosier2f498032017-07-28 18:47:43 +00004669Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004670 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004671 unsigned Depth) {
Davide Italiano30e51942017-08-09 15:13:50 +00004672 // Bail out when we hit the limit.
4673 if (Depth == MaxDepth)
4674 return None;
4675
Chad Rosierf73a10d2017-08-01 19:22:36 +00004676 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
4677 // example.
Chad Rosier2f498032017-07-28 18:47:43 +00004678 if (LHS->getType() != RHS->getType())
4679 return None;
4680
4681 Type *OpTy = LHS->getType();
Chad Rosierf73a10d2017-08-01 19:22:36 +00004682 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
Chad Rosier2f498032017-07-28 18:47:43 +00004683
4684 // LHS ==> RHS by definition
4685 if (LHS == RHS)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004686 return LHSIsTrue;
Chad Rosier2f498032017-07-28 18:47:43 +00004687
Chad Rosierf73a10d2017-08-01 19:22:36 +00004688 // FIXME: Extending the code below to handle vectors.
Chad Rosier2f498032017-07-28 18:47:43 +00004689 if (OpTy->isVectorTy())
Chad Rosier2f498032017-07-28 18:47:43 +00004690 return None;
Chad Rosierf73a10d2017-08-01 19:22:36 +00004691
Chad Rosier2f498032017-07-28 18:47:43 +00004692 assert(OpTy->isIntegerTy(1) && "implied by above");
4693
Chad Rosier2f498032017-07-28 18:47:43 +00004694 // Both LHS and RHS are icmps.
Chad Rosierf73a10d2017-08-01 19:22:36 +00004695 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
4696 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
4697 if (LHSCmp && RHSCmp)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004698 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004699
Chad Rosierf73a10d2017-08-01 19:22:36 +00004700 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
4701 // an icmp. FIXME: Add support for and/or on the RHS.
4702 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
4703 if (LHSBO && RHSCmp) {
4704 if ((LHSBO->getOpcode() == Instruction::And ||
4705 LHSBO->getOpcode() == Instruction::Or))
Chad Rosierdfd1de62017-08-01 20:18:54 +00004706 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004707 }
Chad Rosierf73a10d2017-08-01 19:22:36 +00004708 return None;
Chad Rosier2f498032017-07-28 18:47:43 +00004709}