blob: dbaa277782532e790364cadf51bf3ae1945b9931 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000016#include "llvm/ADT/APFloat.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
James Molloy493e57d2015-10-26 14:10:46 +000020#include "llvm/ADT/Optional.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000021#include "llvm/ADT/STLExtras.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000022#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000023#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/Analysis/AliasAnalysis.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000028#include "llvm/Analysis/AssumptionCache.h"
Max Kazantsev3c284bd2018-08-30 03:39:16 +000029#include "llvm/Analysis/GuardUtils.h"
Dan Gohman949ab782010-12-15 20:10:26 +000030#include "llvm/Analysis/InstructionSimplify.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000031#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000032#include "llvm/Analysis/LoopInfo.h"
Adam Nemet0965da22017-10-09 23:19:02 +000033#include "llvm/Analysis/OptimizationRemarkEmitter.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000034#include "llvm/Analysis/TargetLibraryInfo.h"
35#include "llvm/IR/Argument.h"
36#include "llvm/IR/Attributes.h"
37#include "llvm/IR/BasicBlock.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000038#include "llvm/IR/CallSite.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000039#include "llvm/IR/Constant.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000040#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000041#include "llvm/IR/Constants.h"
42#include "llvm/IR/DataLayout.h"
Matthias Braun50ec0b52017-05-19 22:37:09 +000043#include "llvm/IR/DerivedTypes.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000044#include "llvm/IR/DiagnosticInfo.h"
Hal Finkel60db0582014-09-07 18:57:58 +000045#include "llvm/IR/Dominators.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000046#include "llvm/IR/Function.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000047#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000048#include "llvm/IR/GlobalAlias.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000049#include "llvm/IR/GlobalValue.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000050#include "llvm/IR/GlobalVariable.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000051#include "llvm/IR/InstrTypes.h"
52#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000053#include "llvm/IR/Instructions.h"
54#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000055#include "llvm/IR/Intrinsics.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000056#include "llvm/IR/LLVMContext.h"
57#include "llvm/IR/Metadata.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000058#include "llvm/IR/Module.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000059#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000060#include "llvm/IR/PatternMatch.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000061#include "llvm/IR/Type.h"
62#include "llvm/IR/User.h"
63#include "llvm/IR/Value.h"
64#include "llvm/Support/Casting.h"
65#include "llvm/Support/CommandLine.h"
66#include "llvm/Support/Compiler.h"
67#include "llvm/Support/ErrorHandling.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000068#include "llvm/Support/KnownBits.h"
Chris Lattner965c7692008-06-02 01:18:21 +000069#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000070#include <algorithm>
71#include <array>
Eugene Zelenko75075ef2017-09-01 21:37:29 +000072#include <cassert>
73#include <cstdint>
74#include <iterator>
Fangrui Songf78650a2018-07-30 19:41:25 +000075#include <utility>
Eugene Zelenko75075ef2017-09-01 21:37:29 +000076
Chris Lattner965c7692008-06-02 01:18:21 +000077using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000078using namespace llvm::PatternMatch;
79
80const unsigned MaxDepth = 6;
81
Philip Reames1c292272015-03-10 22:43:20 +000082// Controls the number of uses of the value searched for possible
83// dominating comparisons.
84static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000085 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000086
Craig Topper6b3940a2017-05-03 22:25:19 +000087/// Returns the bitwidth of the given scalar or pointer type. For vector types,
88/// returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000089static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000090 if (unsigned BitWidth = Ty->getScalarSizeInBits())
91 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000092
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000093 return DL.getIndexTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000094}
Chris Lattner965c7692008-06-02 01:18:21 +000095
Benjamin Kramercfd8d902014-09-12 08:56:53 +000096namespace {
Eugene Zelenko75075ef2017-09-01 21:37:29 +000097
Hal Finkel60db0582014-09-07 18:57:58 +000098// Simplifying using an assume can only be done in a particular control-flow
99// context (the context instruction provides that context). If an assume and
100// the context instruction are not in the same block then the DT helps in
101// figuring out if we can use it.
102struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000103 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000104 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +0000105 const Instruction *CxtI;
106 const DominatorTree *DT;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000107
Sanjay Patel54656ca2017-02-06 18:26:06 +0000108 // Unlike the other analyses, this may be a nullptr because not all clients
109 // provide it currently.
110 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +0000111
Matthias Braun37e5d792016-01-28 06:29:33 +0000112 /// Set of assumptions that should be excluded from further queries.
113 /// This is because of the potential for mutual recursion to cause
114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
115 /// classic case of this is assume(x = y), which will attempt to determine
116 /// bits in x from bits in y, which will attempt to determine bits in y from
117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
Craig Topper6e11a052017-05-08 16:22:48 +0000118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
119 /// (all of which can call computeKnownBits), and so on.
Li Huang755f75f2016-10-15 19:00:04 +0000120 std::array<const Value *, MaxDepth> Excluded;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000121
Florian Hahn19f9e322018-08-17 14:39:04 +0000122 /// If true, it is safe to use metadata during simplification.
123 InstrInfoQuery IIQ;
124
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000125 unsigned NumExcluded = 0;
Matthias Braun37e5d792016-01-28 06:29:33 +0000126
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Florian Hahn19f9e322018-08-17 14:39:04 +0000128 const DominatorTree *DT, bool UseInstrInfo,
129 OptimizationRemarkEmitter *ORE = nullptr)
130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000131
132 Query(const Query &Q, const Value *NewExcl)
Florian Hahn19f9e322018-08-17 14:39:04 +0000133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
Sanjay Patel54656ca2017-02-06 18:26:06 +0000134 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000135 Excluded = Q.Excluded;
136 Excluded[NumExcluded++] = NewExcl;
137 assert(NumExcluded <= Excluded.size());
138 }
139
140 bool isExcluded(const Value *Value) const {
141 if (NumExcluded == 0)
142 return false;
143 auto End = Excluded.begin() + NumExcluded;
144 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000145 }
146};
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000147
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000148} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000149
Sanjay Patel547e9752014-11-04 16:09:50 +0000150// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000151// the preferred context instruction (if any).
152static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
153 // If we've been provided with a context instruction, then use that (provided
154 // it has been inserted).
155 if (CxtI && CxtI->getParent())
156 return CxtI;
157
158 // If the value is really an already-inserted instruction, then use that.
159 CxtI = dyn_cast<Instruction>(V);
160 if (CxtI && CxtI->getParent())
161 return CxtI;
162
163 return nullptr;
164}
165
Craig Topperb45eabc2017-04-26 16:39:58 +0000166static void computeKnownBits(const Value *V, KnownBits &Known,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000167 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000168
Craig Topperb45eabc2017-04-26 16:39:58 +0000169void llvm::computeKnownBits(const Value *V, KnownBits &Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000170 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000171 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000172 const DominatorTree *DT,
Florian Hahn19f9e322018-08-17 14:39:04 +0000173 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000174 ::computeKnownBits(V, Known, Depth,
Florian Hahn19f9e322018-08-17 14:39:04 +0000175 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000176}
177
Craig Topper6e11a052017-05-08 16:22:48 +0000178static KnownBits computeKnownBits(const Value *V, unsigned Depth,
179 const Query &Q);
180
181KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
182 unsigned Depth, AssumptionCache *AC,
183 const Instruction *CxtI,
Craig Toppera2025ea2017-05-24 16:53:03 +0000184 const DominatorTree *DT,
Florian Hahn19f9e322018-08-17 14:39:04 +0000185 OptimizationRemarkEmitter *ORE,
186 bool UseInstrInfo) {
187 return ::computeKnownBits(
188 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
Craig Topper6e11a052017-05-08 16:22:48 +0000189}
190
Pete Cooper35b00d52016-08-13 01:05:32 +0000191bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
Florian Hahn19f9e322018-08-17 14:39:04 +0000192 const DataLayout &DL, AssumptionCache *AC,
193 const Instruction *CxtI, const DominatorTree *DT,
194 bool UseInstrInfo) {
Jingyue Wuca321902015-05-14 23:53:19 +0000195 assert(LHS->getType() == RHS->getType() &&
196 "LHS and RHS should have the same type");
197 assert(LHS->getType()->isIntOrIntVectorTy() &&
198 "LHS and RHS should be integers");
Roman Lebedev620b3da2018-04-15 18:59:33 +0000199 // Look for an inverted mask: (X & ~M) op (Y & M).
200 Value *M;
201 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
202 match(RHS, m_c_And(m_Specific(M), m_Value())))
203 return true;
204 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
205 match(LHS, m_c_And(m_Specific(M), m_Value())))
206 return true;
Jingyue Wuca321902015-05-14 23:53:19 +0000207 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
Craig Topperb45eabc2017-04-26 16:39:58 +0000208 KnownBits LHSKnown(IT->getBitWidth());
209 KnownBits RHSKnown(IT->getBitWidth());
Florian Hahn19f9e322018-08-17 14:39:04 +0000210 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
211 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
Craig Topperb45eabc2017-04-26 16:39:58 +0000212 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
Jingyue Wuca321902015-05-14 23:53:19 +0000213}
214
Zaara Syeda3a7578c2017-05-31 17:12:38 +0000215bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
216 for (const User *U : CxtI->users()) {
217 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
218 if (IC->isEquality())
219 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
220 if (C->isNullValue())
221 continue;
222 return false;
223 }
224 return true;
225}
226
Pete Cooper35b00d52016-08-13 01:05:32 +0000227static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000228 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000229
Pete Cooper35b00d52016-08-13 01:05:32 +0000230bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
Florian Hahn19f9e322018-08-17 14:39:04 +0000231 bool OrZero, unsigned Depth,
232 AssumptionCache *AC, const Instruction *CxtI,
233 const DominatorTree *DT, bool UseInstrInfo) {
234 return ::isKnownToBeAPowerOfTwo(
235 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000236}
237
Pete Cooper35b00d52016-08-13 01:05:32 +0000238static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000239
Pete Cooper35b00d52016-08-13 01:05:32 +0000240bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000241 AssumptionCache *AC, const Instruction *CxtI,
Florian Hahn19f9e322018-08-17 14:39:04 +0000242 const DominatorTree *DT, bool UseInstrInfo) {
243 return ::isKnownNonZero(V, Depth,
244 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000245}
246
Pete Cooper35b00d52016-08-13 01:05:32 +0000247bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Florian Hahn19f9e322018-08-17 14:39:04 +0000248 unsigned Depth, AssumptionCache *AC,
249 const Instruction *CxtI, const DominatorTree *DT,
250 bool UseInstrInfo) {
251 KnownBits Known =
252 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
Craig Topper6e11a052017-05-08 16:22:48 +0000253 return Known.isNonNegative();
Jingyue Wu10fcea52015-08-20 18:27:04 +0000254}
255
Pete Cooper35b00d52016-08-13 01:05:32 +0000256bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000257 AssumptionCache *AC, const Instruction *CxtI,
Florian Hahn19f9e322018-08-17 14:39:04 +0000258 const DominatorTree *DT, bool UseInstrInfo) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000259 if (auto *CI = dyn_cast<ConstantInt>(V))
260 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000261
Philip Reames8f12eba2016-03-09 21:31:47 +0000262 // TODO: We'd doing two recursive queries here. We should factor this such
263 // that only a single query is needed.
Florian Hahn19f9e322018-08-17 14:39:04 +0000264 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
265 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
Philip Reames8f12eba2016-03-09 21:31:47 +0000266}
267
Pete Cooper35b00d52016-08-13 01:05:32 +0000268bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000269 AssumptionCache *AC, const Instruction *CxtI,
Florian Hahn19f9e322018-08-17 14:39:04 +0000270 const DominatorTree *DT, bool UseInstrInfo) {
271 KnownBits Known =
272 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
Craig Topper6e11a052017-05-08 16:22:48 +0000273 return Known.isNegative();
Nick Lewycky762f8a82016-04-21 00:53:14 +0000274}
275
Pete Cooper35b00d52016-08-13 01:05:32 +0000276static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000277
Pete Cooper35b00d52016-08-13 01:05:32 +0000278bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Florian Hahn19f9e322018-08-17 14:39:04 +0000279 const DataLayout &DL, AssumptionCache *AC,
280 const Instruction *CxtI, const DominatorTree *DT,
281 bool UseInstrInfo) {
282 return ::isKnownNonEqual(V1, V2,
283 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
284 UseInstrInfo, /*ORE=*/nullptr));
James Molloy1d88d6f2015-10-22 13:18:42 +0000285}
286
Pete Cooper35b00d52016-08-13 01:05:32 +0000287static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000288 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000289
Pete Cooper35b00d52016-08-13 01:05:32 +0000290bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
Florian Hahn19f9e322018-08-17 14:39:04 +0000291 const DataLayout &DL, unsigned Depth,
292 AssumptionCache *AC, const Instruction *CxtI,
293 const DominatorTree *DT, bool UseInstrInfo) {
294 return ::MaskedValueIsZero(
295 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000296}
297
Pete Cooper35b00d52016-08-13 01:05:32 +0000298static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
299 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000300
Pete Cooper35b00d52016-08-13 01:05:32 +0000301unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000302 unsigned Depth, AssumptionCache *AC,
303 const Instruction *CxtI,
Florian Hahn19f9e322018-08-17 14:39:04 +0000304 const DominatorTree *DT, bool UseInstrInfo) {
305 return ::ComputeNumSignBits(
306 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
Hal Finkel60db0582014-09-07 18:57:58 +0000307}
308
Craig Topper8fbb74b2017-03-24 22:12:10 +0000309static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
310 bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000311 KnownBits &KnownOut, KnownBits &Known2,
Craig Topper8fbb74b2017-03-24 22:12:10 +0000312 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000313 unsigned BitWidth = KnownOut.getBitWidth();
Craig Topper8fbb74b2017-03-24 22:12:10 +0000314
315 // If an initial sequence of bits in the result is not needed, the
316 // corresponding bits in the operands are not needed.
Craig Topperb45eabc2017-04-26 16:39:58 +0000317 KnownBits LHSKnown(BitWidth);
318 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
319 computeKnownBits(Op1, Known2, Depth + 1, Q);
Craig Topper8fbb74b2017-03-24 22:12:10 +0000320
Craig Topperb498a232017-08-08 16:29:35 +0000321 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000322}
323
Pete Cooper35b00d52016-08-13 01:05:32 +0000324static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000325 KnownBits &Known, KnownBits &Known2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000326 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000327 unsigned BitWidth = Known.getBitWidth();
328 computeKnownBits(Op1, Known, Depth + 1, Q);
329 computeKnownBits(Op0, Known2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000330
331 bool isKnownNegative = false;
332 bool isKnownNonNegative = false;
333 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000334 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000335 if (Op0 == Op1) {
336 // The product of a number with itself is non-negative.
337 isKnownNonNegative = true;
338 } else {
Craig Topperca48af32017-04-29 16:43:11 +0000339 bool isKnownNonNegativeOp1 = Known.isNonNegative();
340 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
341 bool isKnownNegativeOp1 = Known.isNegative();
342 bool isKnownNegativeOp0 = Known2.isNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000343 // The product of two numbers with the same sign is non-negative.
344 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
345 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
346 // The product of a negative number and a non-negative number is either
347 // negative or zero.
348 if (!isKnownNonNegative)
349 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000350 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000351 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000352 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000353 }
354 }
355
Simon Dardis70dbd5f2017-12-09 23:25:57 +0000356 assert(!Known.hasConflict() && !Known2.hasConflict());
357 // Compute a conservative estimate for high known-0 bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000358 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
359 Known2.countMinLeadingZeros(),
Nick Lewyckyfa306072012-03-18 23:28:48 +0000360 BitWidth) - BitWidth;
Nick Lewyckyfa306072012-03-18 23:28:48 +0000361 LeadZ = std::min(LeadZ, BitWidth);
Simon Dardis70dbd5f2017-12-09 23:25:57 +0000362
363 // The result of the bottom bits of an integer multiply can be
364 // inferred by looking at the bottom bits of both operands and
365 // multiplying them together.
366 // We can infer at least the minimum number of known trailing bits
367 // of both operands. Depending on number of trailing zeros, we can
368 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
369 // a and b are divisible by m and n respectively.
370 // We then calculate how many of those bits are inferrable and set
371 // the output. For example, the i8 mul:
372 // a = XXXX1100 (12)
373 // b = XXXX1110 (14)
374 // We know the bottom 3 bits are zero since the first can be divided by
375 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
376 // Applying the multiplication to the trimmed arguments gets:
377 // XX11 (3)
378 // X111 (7)
379 // -------
380 // XX11
381 // XX11
382 // XX11
383 // XX11
384 // -------
385 // XXXXX01
386 // Which allows us to infer the 2 LSBs. Since we're multiplying the result
387 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
388 // The proof for this can be described as:
389 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
390 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
391 // umin(countTrailingZeros(C2), C6) +
392 // umin(C5 - umin(countTrailingZeros(C1), C5),
393 // C6 - umin(countTrailingZeros(C2), C6)))) - 1)
394 // %aa = shl i8 %a, C5
395 // %bb = shl i8 %b, C6
396 // %aaa = or i8 %aa, C1
397 // %bbb = or i8 %bb, C2
398 // %mul = mul i8 %aaa, %bbb
399 // %mask = and i8 %mul, C7
400 // =>
401 // %mask = i8 ((C1*C2)&C7)
402 // Where C5, C6 describe the known bits of %a, %b
403 // C1, C2 describe the known bottom bits of %a, %b.
404 // C7 describes the mask of the known bits of the result.
405 APInt Bottom0 = Known.One;
406 APInt Bottom1 = Known2.One;
407
408 // How many times we'd be able to divide each argument by 2 (shr by 1).
409 // This gives us the number of trailing zeros on the multiplication result.
410 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
411 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
412 unsigned TrailZero0 = Known.countMinTrailingZeros();
413 unsigned TrailZero1 = Known2.countMinTrailingZeros();
414 unsigned TrailZ = TrailZero0 + TrailZero1;
415
416 // Figure out the fewest known-bits operand.
417 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
418 TrailBitsKnown1 - TrailZero1);
419 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
420
421 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
422 Bottom1.getLoBits(TrailBitsKnown1);
423
Craig Topperf0aeee02017-05-05 17:36:09 +0000424 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000425 Known.Zero.setHighBits(LeadZ);
Simon Dardis70dbd5f2017-12-09 23:25:57 +0000426 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
427 Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000428
429 // Only make use of no-wrap flags if we failed to compute the sign bit
430 // directly. This matters if the multiplication always overflows, in
431 // which case we prefer to follow the result of the direct computation,
432 // though as the program is invoking undefined behaviour we can choose
433 // whatever we like here.
Craig Topperca48af32017-04-29 16:43:11 +0000434 if (isKnownNonNegative && !Known.isNegative())
435 Known.makeNonNegative();
436 else if (isKnownNegative && !Known.isNonNegative())
437 Known.makeNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000438}
439
Jingyue Wu37fcb592014-06-19 16:50:16 +0000440void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Craig Topperf42b23f2017-04-28 06:28:56 +0000441 KnownBits &Known) {
442 unsigned BitWidth = Known.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000443 unsigned NumRanges = Ranges.getNumOperands() / 2;
444 assert(NumRanges >= 1);
445
Craig Topperf42b23f2017-04-28 06:28:56 +0000446 Known.Zero.setAllBits();
447 Known.One.setAllBits();
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000448
Rafael Espindola53190532012-03-30 15:52:11 +0000449 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000450 ConstantInt *Lower =
451 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
452 ConstantInt *Upper =
453 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000454 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000455
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000456 // The first CommonPrefixBits of all values in Range are equal.
457 unsigned CommonPrefixBits =
458 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
459
460 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Craig Topperf42b23f2017-04-28 06:28:56 +0000461 Known.One &= Range.getUnsignedMax() & Mask;
462 Known.Zero &= ~Range.getUnsignedMax() & Mask;
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000463 }
Rafael Espindola53190532012-03-30 15:52:11 +0000464}
Jay Foad5a29c362014-05-15 12:12:55 +0000465
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000466static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000467 SmallVector<const Value *, 16> WorkSet(1, I);
468 SmallPtrSet<const Value *, 32> Visited;
469 SmallPtrSet<const Value *, 16> EphValues;
470
Hal Finkelf2199b22015-10-23 20:37:08 +0000471 // The instruction defining an assumption's condition itself is always
472 // considered ephemeral to that assumption (even if it has other
473 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000474 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000475 return true;
476
Hal Finkel60db0582014-09-07 18:57:58 +0000477 while (!WorkSet.empty()) {
478 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000479 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000480 continue;
481
482 // If all uses of this value are ephemeral, then so is this value.
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000483 if (llvm::all_of(V->users(), [&](const User *U) {
484 return EphValues.count(U);
485 })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000486 if (V == E)
487 return true;
488
Hal Finkelb03dd4b2017-08-14 17:11:43 +0000489 if (V == I || isSafeToSpeculativelyExecute(V)) {
490 EphValues.insert(V);
491 if (const User *U = dyn_cast<User>(V))
492 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
493 J != JE; ++J)
494 WorkSet.push_back(*J);
495 }
Hal Finkel60db0582014-09-07 18:57:58 +0000496 }
497 }
498
499 return false;
500}
501
502// Is this an intrinsic that cannot be speculated but also cannot trap?
Haicheng Wua4461512017-12-15 14:34:41 +0000503bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
Hal Finkel60db0582014-09-07 18:57:58 +0000504 if (const CallInst *CI = dyn_cast<CallInst>(I))
505 if (Function *F = CI->getCalledFunction())
506 switch (F->getIntrinsicID()) {
507 default: break;
508 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
509 case Intrinsic::assume:
Dan Gohman2c74fe92017-11-08 21:59:51 +0000510 case Intrinsic::sideeffect:
Hal Finkel60db0582014-09-07 18:57:58 +0000511 case Intrinsic::dbg_declare:
512 case Intrinsic::dbg_value:
Shiva Chen2c864552018-05-09 02:40:45 +0000513 case Intrinsic::dbg_label:
Hal Finkel60db0582014-09-07 18:57:58 +0000514 case Intrinsic::invariant_start:
515 case Intrinsic::invariant_end:
516 case Intrinsic::lifetime_start:
517 case Intrinsic::lifetime_end:
518 case Intrinsic::objectsize:
519 case Intrinsic::ptr_annotation:
520 case Intrinsic::var_annotation:
521 return true;
522 }
523
524 return false;
525}
526
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000527bool llvm::isValidAssumeForContext(const Instruction *Inv,
528 const Instruction *CxtI,
529 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000530 // There are two restrictions on the use of an assume:
531 // 1. The assume must dominate the context (or the control flow must
532 // reach the assume whenever it reaches the context).
533 // 2. The context must not be in the assume's set of ephemeral values
534 // (otherwise we will use the assume to prove that the condition
535 // feeding the assume is trivially true, thus causing the removal of
536 // the assume).
537
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000538 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000539 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000540 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000541 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
542 // We don't have a DT, but this trivially dominates.
543 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000544 }
545
Pete Cooper54a02552016-08-12 01:00:15 +0000546 // With or without a DT, the only remaining case we will check is if the
547 // instructions are in the same BB. Give up if that is not the case.
548 if (Inv->getParent() != CxtI->getParent())
549 return false;
550
Vedant Kumard3196742018-02-28 19:08:52 +0000551 // If we have a dom tree, then we now know that the assume doesn't dominate
Pete Cooper54a02552016-08-12 01:00:15 +0000552 // the other instruction. If we don't have a dom tree then we can check if
553 // the assume is first in the BB.
554 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000555 // Search forward from the assume until we reach the context (or the end
556 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000557 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000558 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000559 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000560 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000561 }
562
Pete Cooper54a02552016-08-12 01:00:15 +0000563 // The context comes first, but they're both in the same block. Make sure
564 // there is nothing in between that might interrupt the control flow.
565 for (BasicBlock::const_iterator I =
566 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
567 I != IE; ++I)
568 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
569 return false;
570
571 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000572}
573
Craig Topperb45eabc2017-04-26 16:39:58 +0000574static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
575 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000576 // Use of assumptions is context-sensitive. If we don't have a context, we
577 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000578 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000579 return;
580
Craig Topperb45eabc2017-04-26 16:39:58 +0000581 unsigned BitWidth = Known.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000582
Hal Finkel8a9a7832017-01-11 13:24:24 +0000583 // Note that the patterns below need to be kept in sync with the code
584 // in AssumptionCache::updateAffectedValues.
585
586 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000587 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000588 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000589 CallInst *I = cast<CallInst>(AssumeVH);
590 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
591 "Got assumption for the wrong function!");
592 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000593 continue;
594
Vedant Kumard3196742018-02-28 19:08:52 +0000595 // Warning: This loop can end up being somewhat performance sensitive.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000596 // We're running this loop for once for each value queried resulting in a
597 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000598
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000599 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
600 "must be an assume intrinsic");
601
602 Value *Arg = I->getArgOperand(0);
603
604 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000605 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000606 Known.setAllOnes();
Hal Finkel60db0582014-09-07 18:57:58 +0000607 return;
608 }
Sanjay Patel96669962017-01-17 18:15:49 +0000609 if (match(Arg, m_Not(m_Specific(V))) &&
610 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
611 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000612 Known.setAllZero();
Sanjay Patel96669962017-01-17 18:15:49 +0000613 return;
614 }
Hal Finkel60db0582014-09-07 18:57:58 +0000615
David Majnemer9b609752014-12-12 23:59:29 +0000616 // The remaining tests are all recursive, so bail out if we hit the limit.
617 if (Depth == MaxDepth)
618 continue;
619
Hal Finkel60db0582014-09-07 18:57:58 +0000620 Value *A, *B;
621 auto m_V = m_CombineOr(m_Specific(V),
622 m_CombineOr(m_PtrToInt(m_Specific(V)),
623 m_BitCast(m_Specific(V))));
624
625 CmpInst::Predicate Pred;
Igor Laevskycec8f472017-12-05 12:18:15 +0000626 uint64_t C;
Hal Finkel60db0582014-09-07 18:57:58 +0000627 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000628 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000629 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000630 KnownBits RHSKnown(BitWidth);
631 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
632 Known.Zero |= RHSKnown.Zero;
633 Known.One |= RHSKnown.One;
Hal Finkel60db0582014-09-07 18:57:58 +0000634 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000635 } else if (match(Arg,
636 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000637 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000638 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000639 KnownBits RHSKnown(BitWidth);
640 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
641 KnownBits MaskKnown(BitWidth);
642 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000643
644 // For those bits in the mask that are known to be one, we can propagate
645 // known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000646 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
647 Known.One |= RHSKnown.One & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000648 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000649 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
650 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000651 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000652 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000653 KnownBits RHSKnown(BitWidth);
654 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
655 KnownBits MaskKnown(BitWidth);
656 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000657
658 // For those bits in the mask that are known to be one, we can propagate
659 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000660 Known.Zero |= RHSKnown.One & MaskKnown.One;
661 Known.One |= RHSKnown.Zero & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000662 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000663 } else if (match(Arg,
664 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000665 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000666 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000667 KnownBits RHSKnown(BitWidth);
668 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
669 KnownBits BKnown(BitWidth);
670 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000671
672 // For those bits in B that are known to be zero, we can propagate known
673 // bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000674 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
675 Known.One |= RHSKnown.One & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000676 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000677 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
678 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000679 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000680 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000681 KnownBits RHSKnown(BitWidth);
682 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
683 KnownBits BKnown(BitWidth);
684 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000685
686 // For those bits in B that are known to be zero, we can propagate
687 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000688 Known.Zero |= RHSKnown.One & BKnown.Zero;
689 Known.One |= RHSKnown.Zero & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000690 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000691 } else if (match(Arg,
692 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000693 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000694 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000695 KnownBits RHSKnown(BitWidth);
696 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
697 KnownBits BKnown(BitWidth);
698 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000699
700 // For those bits in B that are known to be zero, we can propagate known
701 // bits from the RHS to V. For those bits in B that are known to be one,
702 // we can propagate inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000703 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
704 Known.One |= RHSKnown.One & BKnown.Zero;
705 Known.Zero |= RHSKnown.One & BKnown.One;
706 Known.One |= RHSKnown.Zero & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000707 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000708 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
709 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000710 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000711 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000712 KnownBits RHSKnown(BitWidth);
713 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
714 KnownBits BKnown(BitWidth);
715 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000716
717 // For those bits in B that are known to be zero, we can propagate
718 // inverted known bits from the RHS to V. For those bits in B that are
719 // known to be one, we can propagate known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000720 Known.Zero |= RHSKnown.One & BKnown.Zero;
721 Known.One |= RHSKnown.Zero & BKnown.Zero;
722 Known.Zero |= RHSKnown.Zero & BKnown.One;
723 Known.One |= RHSKnown.One & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000724 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000725 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
726 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000727 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000728 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
729 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000730 KnownBits RHSKnown(BitWidth);
731 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000732 // For those bits in RHS that are known, we can propagate them to known
733 // bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000734 RHSKnown.Zero.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000735 Known.Zero |= RHSKnown.Zero;
Igor Laevskycec8f472017-12-05 12:18:15 +0000736 RHSKnown.One.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000737 Known.One |= RHSKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000738 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000739 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
740 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000741 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000742 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
743 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000744 KnownBits RHSKnown(BitWidth);
745 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000746 // For those bits in RHS that are known, we can propagate them inverted
747 // to known bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000748 RHSKnown.One.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000749 Known.Zero |= RHSKnown.One;
Igor Laevskycec8f472017-12-05 12:18:15 +0000750 RHSKnown.Zero.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000751 Known.One |= RHSKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000752 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000753 } else if (match(Arg,
Craig Topper7b66ffe2017-06-24 06:24:04 +0000754 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000755 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000756 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000757 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
758 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000759 KnownBits RHSKnown(BitWidth);
760 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000761 // For those bits in RHS that are known, we can propagate them to known
762 // bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000763 Known.Zero |= RHSKnown.Zero << C;
764 Known.One |= RHSKnown.One << C;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000765 // assume(~(v >> c) = a)
Craig Topper7b66ffe2017-06-24 06:24:04 +0000766 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000767 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000768 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000769 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
770 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000771 KnownBits RHSKnown(BitWidth);
772 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000773 // For those bits in RHS that are known, we can propagate them inverted
774 // to known bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000775 Known.Zero |= RHSKnown.One << C;
776 Known.One |= RHSKnown.Zero << C;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000777 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000778 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000779 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000780 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000781 KnownBits RHSKnown(BitWidth);
782 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000783
Craig Topperca48af32017-04-29 16:43:11 +0000784 if (RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000785 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000786 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000787 }
788 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000789 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000790 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000791 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000792 KnownBits RHSKnown(BitWidth);
793 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000794
Craig Topperf0aeee02017-05-05 17:36:09 +0000795 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000796 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000797 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000798 }
799 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000800 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000801 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000802 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000803 KnownBits RHSKnown(BitWidth);
804 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000805
Craig Topperca48af32017-04-29 16:43:11 +0000806 if (RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000807 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000808 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000809 }
810 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000811 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000812 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000813 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000814 KnownBits RHSKnown(BitWidth);
815 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000816
Craig Topperf0aeee02017-05-05 17:36:09 +0000817 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000818 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000819 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000820 }
821 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000822 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000823 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000824 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000825 KnownBits RHSKnown(BitWidth);
826 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000827
828 // Whatever high bits in c are zero are known to be zero.
Craig Topper8df66c62017-05-12 17:20:30 +0000829 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
830 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000831 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000832 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000833 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000834 KnownBits RHSKnown(BitWidth);
835 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000836
Sanjay Patela60aec12018-02-08 14:52:40 +0000837 // If the RHS is known zero, then this assumption must be wrong (nothing
838 // is unsigned less than zero). Signal a conflict and get out of here.
839 if (RHSKnown.isZero()) {
840 Known.Zero.setAllBits();
841 Known.One.setAllBits();
842 break;
843 }
844
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000845 // Whatever high bits in c are zero are known to be zero (if c is a power
846 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000847 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper8df66c62017-05-12 17:20:30 +0000848 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000849 else
Craig Topper8df66c62017-05-12 17:20:30 +0000850 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
Hal Finkel60db0582014-09-07 18:57:58 +0000851 }
852 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000853
854 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000855 // have a logical fallacy. It's possible that the assumption is not reachable,
856 // so this isn't a real bug. On the other hand, the program may have undefined
857 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
858 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topperb45eabc2017-04-26 16:39:58 +0000859 if (Known.Zero.intersects(Known.One)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000860 Known.resetAll();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000861
Vivek Pandya95906582017-10-11 17:12:59 +0000862 if (Q.ORE)
863 Q.ORE->emit([&]() {
864 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
865 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
866 CxtI)
867 << "Detected conflicting code assumptions. Program may "
868 "have undefined behavior, or compiler may have "
869 "internal error.";
870 });
Sanjay Patel25f6d712017-02-01 15:41:32 +0000871 }
Hal Finkel60db0582014-09-07 18:57:58 +0000872}
873
Sanjay Patelb7d12382017-10-16 14:46:37 +0000874/// Compute known bits from a shift operator, including those with a
875/// non-constant shift amount. Known is the output of this function. Known2 is a
876/// pre-allocated temporary with the same bit width as Known. KZF and KOF are
Vedant Kumard3196742018-02-28 19:08:52 +0000877/// operator-specific functions that, given the known-zero or known-one bits
Sanjay Patelb7d12382017-10-16 14:46:37 +0000878/// respectively, and a shift amount, compute the implied known-zero or
879/// known-one bits of the shift operator's result respectively for that shift
880/// amount. The results from calling KZF and KOF are conservatively combined for
881/// all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000882static void computeKnownBitsFromShiftOperator(
Craig Topperb45eabc2017-04-26 16:39:58 +0000883 const Operator *I, KnownBits &Known, KnownBits &Known2,
884 unsigned Depth, const Query &Q,
Sam McCalld0d43e62017-12-04 12:51:49 +0000885 function_ref<APInt(const APInt &, unsigned)> KZF,
886 function_ref<APInt(const APInt &, unsigned)> KOF) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000887 unsigned BitWidth = Known.getBitWidth();
Hal Finkelf2199b22015-10-23 20:37:08 +0000888
889 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
890 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
891
Craig Topperb45eabc2017-04-26 16:39:58 +0000892 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Sam McCalld0d43e62017-12-04 12:51:49 +0000893 Known.Zero = KZF(Known.Zero, ShiftAmt);
894 Known.One = KOF(Known.One, ShiftAmt);
Sanjay Patele272be72017-10-12 17:31:46 +0000895 // If the known bits conflict, this must be an overflowing left shift, so
896 // the shift result is poison. We can return anything we want. Choose 0 for
897 // the best folding opportunity.
898 if (Known.hasConflict())
899 Known.setAllZero();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000900
Hal Finkelf2199b22015-10-23 20:37:08 +0000901 return;
902 }
903
Craig Topperb45eabc2017-04-26 16:39:58 +0000904 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000905
Sanjay Patele272be72017-10-12 17:31:46 +0000906 // If the shift amount could be greater than or equal to the bit-width of the
907 // LHS, the value could be poison, but bail out because the check below is
908 // expensive. TODO: Should we just carry on?
Craig Topperb45eabc2017-04-26 16:39:58 +0000909 if ((~Known.Zero).uge(BitWidth)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000910 Known.resetAll();
Oliver Stannard06204112017-03-14 10:13:17 +0000911 return;
912 }
913
Craig Topperb45eabc2017-04-26 16:39:58 +0000914 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
Hal Finkelf2199b22015-10-23 20:37:08 +0000915 // BitWidth > 64 and any upper bits are known, we'll end up returning the
916 // limit value (which implies all bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000917 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
918 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
Hal Finkelf2199b22015-10-23 20:37:08 +0000919
920 // It would be more-clearly correct to use the two temporaries for this
921 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Craig Topperf0aeee02017-05-05 17:36:09 +0000922 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000923
James Molloy493e57d2015-10-26 14:10:46 +0000924 // If we know the shifter operand is nonzero, we can sometimes infer more
925 // known bits. However this is expensive to compute, so be lazy about it and
926 // only compute it when absolutely necessary.
927 Optional<bool> ShifterOperandIsNonZero;
928
Hal Finkelf2199b22015-10-23 20:37:08 +0000929 // Early exit if we can't constrain any well-defined shift amount.
Craig Topperf93b7b12017-06-14 17:04:59 +0000930 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
931 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
Sanjay Patelb7d12382017-10-16 14:46:37 +0000932 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000933 if (!*ShifterOperandIsNonZero)
934 return;
935 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000936
Craig Topperb45eabc2017-04-26 16:39:58 +0000937 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000938
Craig Topperb45eabc2017-04-26 16:39:58 +0000939 Known.Zero.setAllBits();
940 Known.One.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000941 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
942 // Combine the shifted known input bits only for those shift amounts
943 // compatible with its known constraints.
944 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
945 continue;
946 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
947 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000948 // If we know the shifter is nonzero, we may be able to infer more known
949 // bits. This check is sunk down as far as possible to avoid the expensive
950 // call to isKnownNonZero if the cheaper checks above fail.
951 if (ShiftAmt == 0) {
952 if (!ShifterOperandIsNonZero.hasValue())
953 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000954 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000955 if (*ShifterOperandIsNonZero)
956 continue;
957 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000958
Sam McCalld0d43e62017-12-04 12:51:49 +0000959 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
960 Known.One &= KOF(Known2.One, ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +0000961 }
962
Sanjay Patele272be72017-10-12 17:31:46 +0000963 // If the known bits conflict, the result is poison. Return a 0 and hope the
964 // caller can further optimize that.
965 if (Known.hasConflict())
966 Known.setAllZero();
Hal Finkelf2199b22015-10-23 20:37:08 +0000967}
968
Craig Topperb45eabc2017-04-26 16:39:58 +0000969static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
970 unsigned Depth, const Query &Q) {
971 unsigned BitWidth = Known.getBitWidth();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000972
Craig Topperb45eabc2017-04-26 16:39:58 +0000973 KnownBits Known2(Known);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000974 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000975 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000976 case Instruction::Load:
Florian Hahn19f9e322018-08-17 14:39:04 +0000977 if (MDNode *MD =
978 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +0000979 computeKnownBitsFromRangeMetadata(*MD, Known);
Jay Foad5a29c362014-05-15 12:12:55 +0000980 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000981 case Instruction::And: {
982 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000983 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
984 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000985
Chris Lattner965c7692008-06-02 01:18:21 +0000986 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000987 Known.One &= Known2.One;
Chris Lattner965c7692008-06-02 01:18:21 +0000988 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000989 Known.Zero |= Known2.Zero;
Philip Reames2d858742015-11-10 18:46:14 +0000990
991 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
992 // here we handle the more general case of adding any odd number by
993 // matching the form add(x, add(x, y)) where y is odd.
994 // TODO: This could be generalized to clearing any bit set in y where the
995 // following bit is known to be unset in y.
Roman Lebedev6959b8e2018-04-27 21:23:20 +0000996 Value *X = nullptr, *Y = nullptr;
Craig Topperb45eabc2017-04-26 16:39:58 +0000997 if (!Known.Zero[0] && !Known.One[0] &&
Roman Lebedev6959b8e2018-04-27 21:23:20 +0000998 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000999 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001000 computeKnownBits(Y, Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001001 if (Known2.countMinTrailingOnes() > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001002 Known.Zero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +00001003 }
Jay Foad5a29c362014-05-15 12:12:55 +00001004 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001005 }
Eugene Zelenko75075ef2017-09-01 21:37:29 +00001006 case Instruction::Or:
Craig Topperb45eabc2017-04-26 16:39:58 +00001007 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1008 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001009
Chris Lattner965c7692008-06-02 01:18:21 +00001010 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001011 Known.Zero &= Known2.Zero;
Chris Lattner965c7692008-06-02 01:18:21 +00001012 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001013 Known.One |= Known2.One;
Jay Foad5a29c362014-05-15 12:12:55 +00001014 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001015 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001016 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1017 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001018
Chris Lattner965c7692008-06-02 01:18:21 +00001019 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001020 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
Chris Lattner965c7692008-06-02 01:18:21 +00001021 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001022 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1023 Known.Zero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +00001024 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001025 }
1026 case Instruction::Mul: {
Florian Hahn19f9e322018-08-17 14:39:04 +00001027 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
Craig Topperb45eabc2017-04-26 16:39:58 +00001028 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1029 Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001030 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001031 }
1032 case Instruction::UDiv: {
1033 // For the purposes of computing leading zeros we can conservatively
1034 // treat a udiv as a logical right shift by the power of 2 known to
1035 // be less than the denominator.
Craig Topperb45eabc2017-04-26 16:39:58 +00001036 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001037 unsigned LeadZ = Known2.countMinLeadingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001038
Craig Topperf0aeee02017-05-05 17:36:09 +00001039 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001040 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001041 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1042 if (RHSMaxLeadingZeros != BitWidth)
1043 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Chris Lattner965c7692008-06-02 01:18:21 +00001044
Craig Topperb45eabc2017-04-26 16:39:58 +00001045 Known.Zero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +00001046 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001047 }
David Majnemera19d0f22016-08-06 08:16:00 +00001048 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +00001049 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +00001050 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1051 if (SelectPatternResult::isMinOrMax(SPF)) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001052 computeKnownBits(RHS, Known, Depth + 1, Q);
1053 computeKnownBits(LHS, Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +00001054 } else {
Craig Topperb45eabc2017-04-26 16:39:58 +00001055 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1056 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +00001057 }
1058
1059 unsigned MaxHighOnes = 0;
1060 unsigned MaxHighZeros = 0;
1061 if (SPF == SPF_SMAX) {
1062 // If both sides are negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +00001063 if (Known.isNegative() && Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001064 // We can derive a lower bound on the result by taking the max of the
1065 // leading one bits.
Craig Topper8df66c62017-05-12 17:20:30 +00001066 MaxHighOnes =
1067 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001068 // If either side is non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +00001069 else if (Known.isNonNegative() || Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001070 MaxHighZeros = 1;
1071 } else if (SPF == SPF_SMIN) {
1072 // If both sides are non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +00001073 if (Known.isNonNegative() && Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001074 // We can derive an upper bound on the result by taking the max of the
1075 // leading zero bits.
Craig Topper8df66c62017-05-12 17:20:30 +00001076 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1077 Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001078 // If either side is negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +00001079 else if (Known.isNegative() || Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001080 MaxHighOnes = 1;
1081 } else if (SPF == SPF_UMAX) {
1082 // We can derive a lower bound on the result by taking the max of the
1083 // leading one bits.
1084 MaxHighOnes =
Craig Topper8df66c62017-05-12 17:20:30 +00001085 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001086 } else if (SPF == SPF_UMIN) {
1087 // We can derive an upper bound on the result by taking the max of the
1088 // leading zero bits.
1089 MaxHighZeros =
Craig Topper8df66c62017-05-12 17:20:30 +00001090 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topper8f77dca2018-05-25 19:18:09 +00001091 } else if (SPF == SPF_ABS) {
1092 // RHS from matchSelectPattern returns the negation part of abs pattern.
1093 // If the negate has an NSW flag we can assume the sign bit of the result
1094 // will be 0 because that makes abs(INT_MIN) undefined.
Florian Hahn19f9e322018-08-17 14:39:04 +00001095 if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
Craig Topper8f77dca2018-05-25 19:18:09 +00001096 MaxHighZeros = 1;
David Majnemera19d0f22016-08-06 08:16:00 +00001097 }
1098
Chris Lattner965c7692008-06-02 01:18:21 +00001099 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001100 Known.One &= Known2.One;
1101 Known.Zero &= Known2.Zero;
David Majnemera19d0f22016-08-06 08:16:00 +00001102 if (MaxHighOnes > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001103 Known.One.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001104 if (MaxHighZeros > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001105 Known.Zero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001106 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001107 }
Chris Lattner965c7692008-06-02 01:18:21 +00001108 case Instruction::FPTrunc:
1109 case Instruction::FPExt:
1110 case Instruction::FPToUI:
1111 case Instruction::FPToSI:
1112 case Instruction::SIToFP:
1113 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001114 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001115 case Instruction::PtrToInt:
1116 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001117 // Fall through and handle them the same as zext/trunc.
1118 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001119 case Instruction::ZExt:
1120 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001121 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001122
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001123 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001124 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1125 // which fall through here.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001126 Type *ScalarTy = SrcTy->getScalarType();
1127 SrcBitWidth = ScalarTy->isPointerTy() ?
1128 Q.DL.getIndexTypeSizeInBits(ScalarTy) :
1129 Q.DL.getTypeSizeInBits(ScalarTy);
Nadav Rotem15198e92012-10-26 17:17:05 +00001130
1131 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Craig Topperd938fd12017-05-03 22:07:25 +00001132 Known = Known.zextOrTrunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001133 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Craig Topperd938fd12017-05-03 22:07:25 +00001134 Known = Known.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001135 // Any top bits are known to be zero.
1136 if (BitWidth > SrcBitWidth)
Craig Topperb45eabc2017-04-26 16:39:58 +00001137 Known.Zero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001138 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001139 }
1140 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001141 Type *SrcTy = I->getOperand(0)->getType();
Vedant Kumarb3091da2018-07-06 20:17:42 +00001142 if (SrcTy->isIntOrPtrTy() &&
Chris Lattneredb84072009-07-02 16:04:08 +00001143 // TODO: For now, not handling conversions like:
1144 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001145 !I->getType()->isVectorTy()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001146 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001147 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001148 }
1149 break;
1150 }
1151 case Instruction::SExt: {
1152 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001153 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001154
Craig Topperd938fd12017-05-03 22:07:25 +00001155 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001156 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001157 // If the sign bit of the input is known set or clear, then we know the
1158 // top bits of the result.
Craig Topperd938fd12017-05-03 22:07:25 +00001159 Known = Known.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001160 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001161 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001162 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001163 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Florian Hahn19f9e322018-08-17 14:39:04 +00001164 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
Sam McCalld0d43e62017-12-04 12:51:49 +00001165 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1166 APInt KZResult = KnownZero << ShiftAmt;
1167 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001168 // If this shift has "nsw" keyword, then the result is either a poison
1169 // value or has the same sign bit as the first operand.
Sam McCalld0d43e62017-12-04 12:51:49 +00001170 if (NSW && KnownZero.isSignBitSet())
1171 KZResult.setSignBit();
1172 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001173 };
1174
Sam McCalld0d43e62017-12-04 12:51:49 +00001175 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1176 APInt KOResult = KnownOne << ShiftAmt;
1177 if (NSW && KnownOne.isSignBitSet())
1178 KOResult.setSignBit();
1179 return KOResult;
1180 };
1181
1182 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001183 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001184 }
1185 case Instruction::LShr: {
Sanjay Patelb7d12382017-10-16 14:46:37 +00001186 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Sam McCalld0d43e62017-12-04 12:51:49 +00001187 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1188 APInt KZResult = KnownZero.lshr(ShiftAmt);
1189 // High bits known zero.
1190 KZResult.setHighBits(ShiftAmt);
1191 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001192 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001193
Sam McCalld0d43e62017-12-04 12:51:49 +00001194 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1195 return KnownOne.lshr(ShiftAmt);
1196 };
1197
1198 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001199 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001200 }
1201 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001202 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Sam McCalld0d43e62017-12-04 12:51:49 +00001203 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1204 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001205 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001206
Sam McCalld0d43e62017-12-04 12:51:49 +00001207 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1208 return KnownOne.ashr(ShiftAmt);
1209 };
1210
1211 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001212 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001213 }
Chris Lattner965c7692008-06-02 01:18:21 +00001214 case Instruction::Sub: {
Florian Hahn19f9e322018-08-17 14:39:04 +00001215 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
Jay Foada0653a32014-05-14 21:14:37 +00001216 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001217 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001218 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001219 }
Chris Lattner965c7692008-06-02 01:18:21 +00001220 case Instruction::Add: {
Florian Hahn19f9e322018-08-17 14:39:04 +00001221 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
Jay Foada0653a32014-05-14 21:14:37 +00001222 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001223 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001224 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001225 }
1226 case Instruction::SRem:
1227 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001228 APInt RA = Rem->getValue().abs();
1229 if (RA.isPowerOf2()) {
1230 APInt LowBits = RA - 1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001231 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001232
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001233 // The low bits of the first operand are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +00001234 Known.Zero = Known2.Zero & LowBits;
1235 Known.One = Known2.One & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001236
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001237 // If the first operand is non-negative or has all low bits zero, then
1238 // the upper bits are all zero.
Craig Topperca48af32017-04-29 16:43:11 +00001239 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +00001240 Known.Zero |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001241
1242 // If the first operand is negative and not all low bits are zero, then
1243 // the upper bits are all one.
Craig Topperca48af32017-04-29 16:43:11 +00001244 if (Known2.isNegative() && LowBits.intersects(Known2.One))
Craig Topperb45eabc2017-04-26 16:39:58 +00001245 Known.One |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001246
Craig Topperb45eabc2017-04-26 16:39:58 +00001247 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001248 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001249 }
1250 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001251
1252 // The sign bit is the LHS's sign bit, except when the result of the
1253 // remainder is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +00001254 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topperda886c62017-04-16 21:46:12 +00001255 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +00001256 if (Known2.isNonNegative())
1257 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +00001258
Chris Lattner965c7692008-06-02 01:18:21 +00001259 break;
1260 case Instruction::URem: {
1261 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001262 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001263 if (RA.isPowerOf2()) {
1264 APInt LowBits = (RA - 1);
Craig Topperb45eabc2017-04-26 16:39:58 +00001265 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1266 Known.Zero |= ~LowBits;
1267 Known.One &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001268 break;
1269 }
1270 }
1271
1272 // Since the result is less than or equal to either operand, any leading
1273 // zero bits in either operand must also exist in the result.
Craig Topperb45eabc2017-04-26 16:39:58 +00001274 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1275 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001276
Craig Topper8df66c62017-05-12 17:20:30 +00001277 unsigned Leaders =
1278 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topperf0aeee02017-05-05 17:36:09 +00001279 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001280 Known.Zero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001281 break;
1282 }
1283
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001284 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001285 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001286 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001287 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001288 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001289
Chris Lattner965c7692008-06-02 01:18:21 +00001290 if (Align > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001291 Known.Zero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001292 break;
1293 }
1294 case Instruction::GetElementPtr: {
1295 // Analyze all of the subscripts of this getelementptr instruction
1296 // to determine if we can prove known low zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001297 KnownBits LocalKnown(BitWidth);
1298 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001299 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001300
1301 gep_type_iterator GTI = gep_type_begin(I);
1302 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1303 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001304 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001305 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001306
1307 // Handle case when index is vector zeroinitializer
1308 Constant *CIndex = cast<Constant>(Index);
1309 if (CIndex->isZeroValue())
1310 continue;
1311
1312 if (CIndex->getType()->isVectorTy())
1313 Index = CIndex->getSplatValue();
1314
Chris Lattner965c7692008-06-02 01:18:21 +00001315 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001316 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001317 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001318 TrailZ = std::min<unsigned>(TrailZ,
1319 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001320 } else {
1321 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001322 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001323 if (!IndexedTy->isSized()) {
1324 TrailZ = 0;
1325 break;
1326 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001327 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001328 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Craig Topperb45eabc2017-04-26 16:39:58 +00001329 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1330 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001331 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001332 unsigned(countTrailingZeros(TypeSize) +
Craig Topper8df66c62017-05-12 17:20:30 +00001333 LocalKnown.countMinTrailingZeros()));
Chris Lattner965c7692008-06-02 01:18:21 +00001334 }
1335 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001336
Craig Topperb45eabc2017-04-26 16:39:58 +00001337 Known.Zero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001338 break;
1339 }
1340 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001341 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001342 // Handle the case of a simple two-predecessor recurrence PHI.
1343 // There's a lot more that could theoretically be done here, but
1344 // this is sufficient to catch some interesting cases.
1345 if (P->getNumIncomingValues() == 2) {
1346 for (unsigned i = 0; i != 2; ++i) {
1347 Value *L = P->getIncomingValue(i);
1348 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001349 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001350 if (!LU)
1351 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001352 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001353 // Check for operations that have the property that if
1354 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001355 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001356 if (Opcode == Instruction::Add ||
1357 Opcode == Instruction::Sub ||
1358 Opcode == Instruction::And ||
1359 Opcode == Instruction::Or ||
1360 Opcode == Instruction::Mul) {
1361 Value *LL = LU->getOperand(0);
1362 Value *LR = LU->getOperand(1);
1363 // Find a recurrence.
1364 if (LL == I)
1365 L = LR;
1366 else if (LR == I)
1367 L = LL;
1368 else
1369 break;
1370 // Ok, we have a PHI of the form L op= R. Check for low
1371 // zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001372 computeKnownBits(R, Known2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001373
1374 // We need to take the minimum number of known bits
Craig Topperb45eabc2017-04-26 16:39:58 +00001375 KnownBits Known3(Known);
1376 computeKnownBits(L, Known3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001377
Craig Topper8df66c62017-05-12 17:20:30 +00001378 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1379 Known3.countMinTrailingZeros()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001380
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001381 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
Florian Hahn19f9e322018-08-17 14:39:04 +00001382 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001383 // If initial value of recurrence is nonnegative, and we are adding
1384 // a nonnegative number with nsw, the result can only be nonnegative
1385 // or poison value regardless of the number of times we execute the
1386 // add in phi recurrence. If initial value is negative and we are
1387 // adding a negative number with nsw, the result can only be
1388 // negative or poison value. Similar arguments apply to sub and mul.
1389 //
1390 // (add non-negative, non-negative) --> non-negative
1391 // (add negative, negative) --> negative
1392 if (Opcode == Instruction::Add) {
Craig Topperca48af32017-04-29 16:43:11 +00001393 if (Known2.isNonNegative() && Known3.isNonNegative())
1394 Known.makeNonNegative();
1395 else if (Known2.isNegative() && Known3.isNegative())
1396 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001397 }
1398
1399 // (sub nsw non-negative, negative) --> non-negative
1400 // (sub nsw negative, non-negative) --> negative
1401 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperca48af32017-04-29 16:43:11 +00001402 if (Known2.isNonNegative() && Known3.isNegative())
1403 Known.makeNonNegative();
1404 else if (Known2.isNegative() && Known3.isNonNegative())
1405 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001406 }
1407
1408 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperca48af32017-04-29 16:43:11 +00001409 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1410 Known3.isNonNegative())
1411 Known.makeNonNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001412 }
1413
Chris Lattner965c7692008-06-02 01:18:21 +00001414 break;
1415 }
1416 }
1417 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001418
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001419 // Unreachable blocks may have zero-operand PHI nodes.
1420 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001421 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001422
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001423 // Otherwise take the unions of the known bit sets of the operands,
1424 // taking conservative care to avoid excessive recursion.
Craig Topperb45eabc2017-04-26 16:39:58 +00001425 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001426 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001427 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001428 break;
1429
Craig Topperb45eabc2017-04-26 16:39:58 +00001430 Known.Zero.setAllBits();
1431 Known.One.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001432 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001433 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001434 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001435
Craig Topperb45eabc2017-04-26 16:39:58 +00001436 Known2 = KnownBits(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001437 // Recurse, but cap the recursion to one level, because we don't
1438 // want to waste time spinning around in loops.
Craig Topperb45eabc2017-04-26 16:39:58 +00001439 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1440 Known.Zero &= Known2.Zero;
1441 Known.One &= Known2.One;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001442 // If all bits have been ruled out, there's no need to check
1443 // more operands.
Craig Topperb45eabc2017-04-26 16:39:58 +00001444 if (!Known.Zero && !Known.One)
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001445 break;
1446 }
1447 }
Chris Lattner965c7692008-06-02 01:18:21 +00001448 break;
1449 }
1450 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001451 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001452 // If range metadata is attached to this call, set known bits from that,
1453 // and then intersect with known bits based on other properties of the
1454 // function.
Florian Hahn19f9e322018-08-17 14:39:04 +00001455 if (MDNode *MD =
1456 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +00001457 computeKnownBitsFromRangeMetadata(*MD, Known);
Pete Cooper35b00d52016-08-13 01:05:32 +00001458 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001459 computeKnownBits(RV, Known2, Depth + 1, Q);
1460 Known.Zero |= Known2.Zero;
1461 Known.One |= Known2.One;
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001462 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001463 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001464 switch (II->getIntrinsicID()) {
1465 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001466 case Intrinsic::bitreverse:
Craig Topperb45eabc2017-04-26 16:39:58 +00001467 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1468 Known.Zero |= Known2.Zero.reverseBits();
1469 Known.One |= Known2.One.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001470 break;
Philip Reames675418e2015-10-06 20:20:45 +00001471 case Intrinsic::bswap:
Craig Topperb45eabc2017-04-26 16:39:58 +00001472 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1473 Known.Zero |= Known2.Zero.byteSwap();
1474 Known.One |= Known2.One.byteSwap();
Philip Reames675418e2015-10-06 20:20:45 +00001475 break;
Craig Topper868813f2017-05-08 17:22:34 +00001476 case Intrinsic::ctlz: {
1477 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1478 // If we have a known 1, its position is our upper bound.
1479 unsigned PossibleLZ = Known2.One.countLeadingZeros();
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001480 // If this call is undefined for 0, the result will be less than 2^n.
1481 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
Craig Topper868813f2017-05-08 17:22:34 +00001482 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1483 unsigned LowBits = Log2_32(PossibleLZ)+1;
1484 Known.Zero.setBitsFrom(LowBits);
1485 break;
1486 }
1487 case Intrinsic::cttz: {
1488 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1489 // If we have a known 1, its position is our upper bound.
1490 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1491 // If this call is undefined for 0, the result will be less than 2^n.
1492 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1493 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1494 unsigned LowBits = Log2_32(PossibleTZ)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001495 Known.Zero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001496 break;
1497 }
1498 case Intrinsic::ctpop: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001499 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001500 // We can bound the space the count needs. Also, bits known to be zero
1501 // can't contribute to the population.
Craig Topper8df66c62017-05-12 17:20:30 +00001502 unsigned BitsPossiblySet = Known2.countMaxPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001503 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001504 Known.Zero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001505 // TODO: we could bound KnownOne using the lower bound on the number
1506 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001507 break;
1508 }
Nikita Popov687b92c2018-12-02 14:14:11 +00001509 case Intrinsic::fshr:
1510 case Intrinsic::fshl: {
1511 const APInt *SA;
1512 if (!match(I->getOperand(2), m_APInt(SA)))
1513 break;
1514
1515 // Normalize to funnel shift left.
1516 uint64_t ShiftAmt = SA->urem(BitWidth);
1517 if (II->getIntrinsicID() == Intrinsic::fshr)
1518 ShiftAmt = BitWidth - ShiftAmt;
1519
1520 KnownBits Known3(Known);
1521 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1522 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1523
1524 Known.Zero =
1525 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1526 Known.One =
1527 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1528 break;
1529 }
Chad Rosierb3628842011-05-26 23:13:19 +00001530 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +00001531 Known.Zero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001532 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001533 }
1534 }
1535 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001536 case Instruction::ExtractElement:
1537 // Look through extract element. At the moment we keep this simple and skip
1538 // tracking the specific element. But at least we might find information
1539 // valid for all elements of the vector (for example if vector is sign
1540 // extended, shifted, etc).
Craig Topperb45eabc2017-04-26 16:39:58 +00001541 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Bjorn Pettersson39616032016-10-06 09:56:21 +00001542 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001543 case Instruction::ExtractValue:
1544 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001545 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001546 if (EVI->getNumIndices() != 1) break;
1547 if (EVI->getIndices()[0] == 0) {
1548 switch (II->getIntrinsicID()) {
1549 default: break;
1550 case Intrinsic::uadd_with_overflow:
1551 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001552 computeKnownBitsAddSub(true, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001553 II->getArgOperand(1), false, Known, Known2,
1554 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001555 break;
1556 case Intrinsic::usub_with_overflow:
1557 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001558 computeKnownBitsAddSub(false, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001559 II->getArgOperand(1), false, Known, Known2,
1560 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001561 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001562 case Intrinsic::umul_with_overflow:
1563 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001564 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Craig Topperb45eabc2017-04-26 16:39:58 +00001565 Known, Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001566 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001567 }
1568 }
1569 }
Chris Lattner965c7692008-06-02 01:18:21 +00001570 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001571}
1572
1573/// Determine which bits of V are known to be either zero or one and return
Craig Topper6e11a052017-05-08 16:22:48 +00001574/// them.
1575KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1576 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1577 computeKnownBits(V, Known, Depth, Q);
1578 return Known;
1579}
1580
1581/// Determine which bits of V are known to be either zero or one and return
Craig Topperb45eabc2017-04-26 16:39:58 +00001582/// them in the Known bit set.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001583///
1584/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1585/// we cannot optimize based on the assumption that it is zero without changing
1586/// it to be an explicit zero. If we don't change it to zero, other code could
1587/// optimized based on the contradictory assumption that it is non-zero.
1588/// Because instcombine aggressively folds operations with undef args anyway,
1589/// this won't lose us code quality.
1590///
1591/// This function is defined on values with integer type, values with pointer
1592/// type, and vectors of integers. In the case
1593/// where V is a vector, known zero, and known one values are the
1594/// same width as the vector element, and the bit is set only if it is true
1595/// for all of the elements in the vector.
Craig Topperb45eabc2017-04-26 16:39:58 +00001596void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1597 const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001598 assert(V && "No Value?");
1599 assert(Depth <= MaxDepth && "Limit Search Depth");
Craig Topperb45eabc2017-04-26 16:39:58 +00001600 unsigned BitWidth = Known.getBitWidth();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001601
Craig Topperfde47232017-07-09 07:04:03 +00001602 assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
Craig Topper95d23472017-07-09 07:04:00 +00001603 V->getType()->isPtrOrPtrVectorTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001604 "Not integer or pointer type!");
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001605
1606 Type *ScalarTy = V->getType()->getScalarType();
1607 unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
1608 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
1609 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001610 (void)BitWidth;
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001611 (void)ExpectedWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001612
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001613 const APInt *C;
1614 if (match(V, m_APInt(C))) {
1615 // We know all of the bits for a scalar constant or a splat vector constant!
Craig Topperb45eabc2017-04-26 16:39:58 +00001616 Known.One = *C;
1617 Known.Zero = ~Known.One;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001618 return;
1619 }
1620 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001621 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001622 Known.setAllZero();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001623 return;
1624 }
1625 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001626 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001627 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001628 // We know that CDS must be a vector of integers. Take the intersection of
1629 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001630 Known.Zero.setAllBits(); Known.One.setAllBits();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001631 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Craig Topperb98ee582017-10-21 16:35:39 +00001632 APInt Elt = CDS->getElementAsAPInt(i);
Craig Topperb45eabc2017-04-26 16:39:58 +00001633 Known.Zero &= ~Elt;
1634 Known.One &= Elt;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001635 }
1636 return;
1637 }
1638
Pete Cooper35b00d52016-08-13 01:05:32 +00001639 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001640 // We know that CV must be a vector of integers. Take the intersection of
1641 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001642 Known.Zero.setAllBits(); Known.One.setAllBits();
David Majnemer3918cdd2016-05-04 06:13:33 +00001643 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1644 Constant *Element = CV->getAggregateElement(i);
1645 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1646 if (!ElementCI) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001647 Known.resetAll();
David Majnemer3918cdd2016-05-04 06:13:33 +00001648 return;
1649 }
Craig Topperb98ee582017-10-21 16:35:39 +00001650 const APInt &Elt = ElementCI->getValue();
Craig Topperb45eabc2017-04-26 16:39:58 +00001651 Known.Zero &= ~Elt;
1652 Known.One &= Elt;
David Majnemer3918cdd2016-05-04 06:13:33 +00001653 }
1654 return;
1655 }
1656
Jingyue Wu12b0c282015-06-15 05:46:29 +00001657 // Start out not knowing anything.
Craig Topperf0aeee02017-05-05 17:36:09 +00001658 Known.resetAll();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001659
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001660 // We can't imply anything about undefs.
1661 if (isa<UndefValue>(V))
1662 return;
1663
1664 // There's no point in looking through other users of ConstantData for
1665 // assumptions. Confirm that we've handled them all.
1666 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1667
Jingyue Wu12b0c282015-06-15 05:46:29 +00001668 // Limit search depth.
1669 // All recursive calls that increase depth must come after this.
1670 if (Depth == MaxDepth)
1671 return;
1672
1673 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1674 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001675 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001676 if (!GA->isInterposable())
Craig Topperb45eabc2017-04-26 16:39:58 +00001677 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001678 return;
1679 }
1680
Pete Cooper35b00d52016-08-13 01:05:32 +00001681 if (const Operator *I = dyn_cast<Operator>(V))
Craig Topperb45eabc2017-04-26 16:39:58 +00001682 computeKnownBitsFromOperator(I, Known, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001683
Craig Topperb45eabc2017-04-26 16:39:58 +00001684 // Aligned pointers have trailing zeros - refine Known.Zero set
Artur Pilipenko029d8532015-09-30 11:55:45 +00001685 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001686 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001687 if (Align)
Craig Topperb45eabc2017-04-26 16:39:58 +00001688 Known.Zero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001689 }
1690
Craig Topperb45eabc2017-04-26 16:39:58 +00001691 // computeKnownBitsFromAssume strictly refines Known.
1692 // Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001693
1694 // Check whether a nearby assume intrinsic can determine some known bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001695 computeKnownBitsFromAssume(V, Known, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001696
Craig Topperb45eabc2017-04-26 16:39:58 +00001697 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001698}
1699
Sanjay Patelaee84212014-11-04 16:27:42 +00001700/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001701/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001702/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001703/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001704bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001705 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00001706 assert(Depth <= MaxDepth && "Limit Search Depth");
1707
Simon Pilgrim9f2ae7e2018-02-06 18:39:23 +00001708 // Attempt to match against constants.
1709 if (OrZero && match(V, m_Power2OrZero()))
1710 return true;
1711 if (match(V, m_Power2()))
1712 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001713
1714 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1715 // it is shifted off the end then the result is undefined.
1716 if (match(V, m_Shl(m_One(), m_Value())))
1717 return true;
1718
Craig Topperbcfd2d12017-04-20 16:56:25 +00001719 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1720 // the bottom. If it is shifted off the bottom then the result is undefined.
1721 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001722 return true;
1723
1724 // The remaining tests are all recursive, so bail out if we hit the limit.
1725 if (Depth++ == MaxDepth)
1726 return false;
1727
Craig Topper9f008862014-04-15 04:59:12 +00001728 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001729 // A shift left or a logical shift right of a power of two is a power of two
1730 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001731 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001732 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001733 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001734
Pete Cooper35b00d52016-08-13 01:05:32 +00001735 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001736 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001737
Pete Cooper35b00d52016-08-13 01:05:32 +00001738 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001739 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1740 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001741
Duncan Sandsba286d72011-10-26 20:55:21 +00001742 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1743 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001744 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1745 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001746 return true;
1747 // X & (-X) is always a power of two or zero.
1748 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1749 return true;
1750 return false;
1751 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001752
David Majnemerb7d54092013-07-30 21:01:36 +00001753 // Adding a power-of-two or zero to the same power-of-two or zero yields
1754 // either the original power-of-two, a larger power-of-two or zero.
1755 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001756 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
Florian Hahn19f9e322018-08-17 14:39:04 +00001757 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1758 Q.IIQ.hasNoSignedWrap(VOBO)) {
David Majnemerb7d54092013-07-30 21:01:36 +00001759 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1760 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001761 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001762 return true;
1763 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1764 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001765 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001766 return true;
1767
1768 unsigned BitWidth = V->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00001769 KnownBits LHSBits(BitWidth);
1770 computeKnownBits(X, LHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001771
Craig Topperb45eabc2017-04-26 16:39:58 +00001772 KnownBits RHSBits(BitWidth);
1773 computeKnownBits(Y, RHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001774 // If i8 V is a power of two or zero:
1775 // ZeroBits: 1 1 1 0 1 1 1 1
1776 // ~ZeroBits: 0 0 0 1 0 0 0 0
Craig Topperb45eabc2017-04-26 16:39:58 +00001777 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
David Majnemerb7d54092013-07-30 21:01:36 +00001778 // If OrZero isn't set, we cannot give back a zero result.
1779 // Make sure either the LHS or RHS has a bit set.
Craig Topperb45eabc2017-04-26 16:39:58 +00001780 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
David Majnemerb7d54092013-07-30 21:01:36 +00001781 return true;
1782 }
1783 }
David Majnemerbeab5672013-05-18 19:30:37 +00001784
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001785 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001786 // is a power of two only if the first operand is a power of two and not
1787 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001788 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1789 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001790 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001791 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001792 }
1793
Duncan Sandsd3951082011-01-25 09:38:29 +00001794 return false;
1795}
1796
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001797/// Test whether a GEP's result is known to be non-null.
Chandler Carruth80d3e562012-12-07 02:08:58 +00001798///
1799/// Uses properties inherent in a GEP to try to determine whether it is known
1800/// to be non-null.
1801///
1802/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001803static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001804 const Query &Q) {
Manoj Gupta77eeac32018-07-09 22:27:23 +00001805 const Function *F = nullptr;
1806 if (const Instruction *I = dyn_cast<Instruction>(GEP))
1807 F = I->getFunction();
1808
1809 if (!GEP->isInBounds() ||
1810 NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001811 return false;
1812
1813 // FIXME: Support vector-GEPs.
1814 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1815
1816 // If the base pointer is non-null, we cannot walk to a null address with an
1817 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001818 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001819 return true;
1820
Chandler Carruth80d3e562012-12-07 02:08:58 +00001821 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1822 // If so, then the GEP cannot produce a null pointer, as doing so would
1823 // inherently violate the inbounds contract within address space zero.
1824 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1825 GTI != GTE; ++GTI) {
1826 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001827 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001828 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1829 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001830 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001831 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1832 if (ElementOffset > 0)
1833 return true;
1834 continue;
1835 }
1836
1837 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001838 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001839 continue;
1840
1841 // Fast path the constant operand case both for efficiency and so we don't
1842 // increment Depth when just zipping down an all-constant GEP.
1843 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1844 if (!OpC->isZero())
1845 return true;
1846 continue;
1847 }
1848
1849 // We post-increment Depth here because while isKnownNonZero increments it
1850 // as well, when we pop back up that increment won't persist. We don't want
1851 // to recurse 10k times just because we have 10k GEP operands. We don't
1852 // bail completely out because we want to handle constant GEPs regardless
1853 // of depth.
1854 if (Depth++ >= MaxDepth)
1855 continue;
1856
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001857 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001858 return true;
1859 }
1860
1861 return false;
1862}
1863
Nuno Lopes404f1062017-09-09 18:23:11 +00001864static bool isKnownNonNullFromDominatingCondition(const Value *V,
1865 const Instruction *CtxI,
1866 const DominatorTree *DT) {
1867 assert(V->getType()->isPointerTy() && "V must be pointer type");
1868 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1869
1870 if (!CtxI || !DT)
1871 return false;
1872
1873 unsigned NumUsesExplored = 0;
1874 for (auto *U : V->users()) {
1875 // Avoid massive lists
1876 if (NumUsesExplored >= DomConditionsMaxUses)
1877 break;
1878 NumUsesExplored++;
1879
1880 // If the value is used as an argument to a call or invoke, then argument
1881 // attributes may provide an answer about null-ness.
1882 if (auto CS = ImmutableCallSite(U))
1883 if (auto *CalledFunc = CS.getCalledFunction())
1884 for (const Argument &Arg : CalledFunc->args())
1885 if (CS.getArgOperand(Arg.getArgNo()) == V &&
1886 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1887 return true;
1888
1889 // Consider only compare instructions uniquely controlling a branch
1890 CmpInst::Predicate Pred;
1891 if (!match(const_cast<User *>(U),
1892 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1893 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1894 continue;
1895
Max Kazantsev2dbbd642018-08-06 11:14:18 +00001896 SmallVector<const User *, 4> WorkList;
1897 SmallPtrSet<const User *, 4> Visited;
Nuno Lopes404f1062017-09-09 18:23:11 +00001898 for (auto *CmpU : U->users()) {
Max Kazantsev2dbbd642018-08-06 11:14:18 +00001899 assert(WorkList.empty() && "Should be!");
1900 if (Visited.insert(CmpU).second)
1901 WorkList.push_back(CmpU);
Nuno Lopes404f1062017-09-09 18:23:11 +00001902
Max Kazantsev2dbbd642018-08-06 11:14:18 +00001903 while (!WorkList.empty()) {
1904 auto *Curr = WorkList.pop_back_val();
1905
1906 // If a user is an AND, add all its users to the work list. We only
1907 // propagate "pred != null" condition through AND because it is only
1908 // correct to assume that all conditions of AND are met in true branch.
1909 // TODO: Support similar logic of OR and EQ predicate?
1910 if (Pred == ICmpInst::ICMP_NE)
1911 if (auto *BO = dyn_cast<BinaryOperator>(Curr))
1912 if (BO->getOpcode() == Instruction::And) {
1913 for (auto *BOU : BO->users())
1914 if (Visited.insert(BOU).second)
1915 WorkList.push_back(BOU);
1916 continue;
1917 }
1918
1919 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
1920 assert(BI->isConditional() && "uses a comparison!");
1921
1922 BasicBlock *NonNullSuccessor =
1923 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1924 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1925 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1926 return true;
Max Kazantsev3c284bd2018-08-30 03:39:16 +00001927 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
Max Kazantsev2dbbd642018-08-06 11:14:18 +00001928 DT->dominates(cast<Instruction>(Curr), CtxI)) {
Nuno Lopes404f1062017-09-09 18:23:11 +00001929 return true;
Max Kazantsev2dbbd642018-08-06 11:14:18 +00001930 }
Nuno Lopes404f1062017-09-09 18:23:11 +00001931 }
1932 }
1933 }
1934
1935 return false;
1936}
1937
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001938/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1939/// ensure that the value it's attached to is never Value? 'RangeType' is
1940/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001941static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001942 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1943 assert(NumRanges >= 1);
1944 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001945 ConstantInt *Lower =
1946 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1947 ConstantInt *Upper =
1948 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001949 ConstantRange Range(Lower->getValue(), Upper->getValue());
1950 if (Range.contains(Value))
1951 return false;
1952 }
1953 return true;
1954}
1955
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001956/// Return true if the given value is known to be non-zero when defined. For
1957/// vectors, return true if every element is known to be non-zero when
1958/// defined. For pointers, if the context instruction and dominator tree are
1959/// specified, perform context-sensitive analysis and return true if the
1960/// pointer couldn't possibly be null at the specified instruction.
1961/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001962bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001963 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001964 if (C->isNullValue())
1965 return false;
1966 if (isa<ConstantInt>(C))
1967 // Must be non-zero due to null test above.
1968 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001969
1970 // For constant vectors, check that all elements are undefined or known
1971 // non-zero to determine that the whole vector is known non-zero.
1972 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1973 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1974 Constant *Elt = C->getAggregateElement(i);
1975 if (!Elt || Elt->isNullValue())
1976 return false;
1977 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1978 return false;
1979 }
1980 return true;
1981 }
1982
Nuno Lopes404f1062017-09-09 18:23:11 +00001983 // A global variable in address space 0 is non null unless extern weak
1984 // or an absolute symbol reference. Other address spaces may have null as a
1985 // valid address for a global, so we can't assume anything.
1986 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1987 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1988 GV->getType()->getAddressSpace() == 0)
1989 return true;
1990 } else
1991 return false;
Duncan Sandsd3951082011-01-25 09:38:29 +00001992 }
1993
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001994 if (auto *I = dyn_cast<Instruction>(V)) {
Florian Hahn19f9e322018-08-17 14:39:04 +00001995 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001996 // If the possible ranges don't contain zero, then the value is
1997 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001998 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001999 const APInt ZeroValue(Ty->getBitWidth(), 0);
2000 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2001 return true;
2002 }
2003 }
2004 }
2005
Karl-Johan Karlssonebaaa2d2018-05-30 15:56:46 +00002006 // Some of the tests below are recursive, so bail out if we hit the limit.
2007 if (Depth++ >= MaxDepth)
2008 return false;
2009
Nuno Lopes404f1062017-09-09 18:23:11 +00002010 // Check for pointer simplifications.
2011 if (V->getType()->isPointerTy()) {
2012 // Alloca never returns null, malloc might.
2013 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2014 return true;
2015
2016 // A byval, inalloca, or nonnull argument is never null.
2017 if (const Argument *A = dyn_cast<Argument>(V))
2018 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
2019 return true;
2020
2021 // A Load tagged with nonnull metadata is never null.
2022 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Florian Hahn19f9e322018-08-17 14:39:04 +00002023 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
Nuno Lopes404f1062017-09-09 18:23:11 +00002024 return true;
2025
Piotr Padlewski5642a422018-05-18 23:54:33 +00002026 if (auto CS = ImmutableCallSite(V)) {
Nuno Lopes404f1062017-09-09 18:23:11 +00002027 if (CS.isReturnNonNull())
2028 return true;
Piotr Padlewskid6f73462018-05-23 09:16:44 +00002029 if (const auto *RP = getArgumentAliasingToReturnedPointer(CS))
Karl-Johan Karlssonebaaa2d2018-05-30 15:56:46 +00002030 return isKnownNonZero(RP, Depth, Q);
Piotr Padlewski5642a422018-05-18 23:54:33 +00002031 }
Nuno Lopes404f1062017-09-09 18:23:11 +00002032 }
2033
Duncan Sandsd3951082011-01-25 09:38:29 +00002034
Nuno Lopes404f1062017-09-09 18:23:11 +00002035 // Check for recursive pointer simplifications.
Chandler Carruth80d3e562012-12-07 02:08:58 +00002036 if (V->getType()->isPointerTy()) {
Nuno Lopes404f1062017-09-09 18:23:11 +00002037 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002038 return true;
Nuno Lopes404f1062017-09-09 18:23:11 +00002039
Pete Cooper35b00d52016-08-13 01:05:32 +00002040 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002041 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00002042 return true;
2043 }
2044
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002045 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00002046
2047 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00002048 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00002049 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002050 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002051
2052 // ext X != 0 if X != 0.
2053 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002054 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002055
Duncan Sands2e9e4f12011-01-29 13:27:00 +00002056 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00002057 // if the lowest bit is shifted off the end.
Craig Topper6b3940a2017-05-03 22:25:19 +00002058 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002059 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002060 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Florian Hahn19f9e322018-08-17 14:39:04 +00002061 if (Q.IIQ.hasNoUnsignedWrap(BO))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002062 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002063
Craig Topperb45eabc2017-04-26 16:39:58 +00002064 KnownBits Known(BitWidth);
2065 computeKnownBits(X, Known, Depth, Q);
2066 if (Known.One[0])
Duncan Sandsd3951082011-01-25 09:38:29 +00002067 return true;
2068 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00002069 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00002070 // defined if the sign bit is shifted off the end.
2071 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002072 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002073 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002074 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002075 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002076
Craig Topper6e11a052017-05-08 16:22:48 +00002077 KnownBits Known = computeKnownBits(X, Depth, Q);
2078 if (Known.isNegative())
Duncan Sandsd3951082011-01-25 09:38:29 +00002079 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00002080
2081 // If the shifter operand is a constant, and all of the bits shifted
2082 // out are known to be zero, and X is known non-zero then at least one
2083 // non-zero bit must remain.
2084 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
James Molloyb6be1eb2015-09-24 16:06:32 +00002085 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2086 // Is there a known one in the portion not shifted out?
Craig Topper8df66c62017-05-12 17:20:30 +00002087 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
James Molloyb6be1eb2015-09-24 16:06:32 +00002088 return true;
2089 // Are all the bits to be shifted out known zero?
NAKAMURA Takumi76bab1f2017-07-11 02:31:51 +00002090 if (Known.countMinTrailingZeros() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002091 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00002092 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002093 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002094 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00002095 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002096 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002097 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002098 // X + Y.
2099 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Craig Topper6e11a052017-05-08 16:22:48 +00002100 KnownBits XKnown = computeKnownBits(X, Depth, Q);
2101 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002102
2103 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002104 // zero unless both X and Y are zero.
Craig Topper6e11a052017-05-08 16:22:48 +00002105 if (XKnown.isNonNegative() && YKnown.isNonNegative())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002106 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002107 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00002108
2109 // If X and Y are both negative (as signed values) then their sum is not
2110 // zero unless both X and Y equal INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00002111 if (XKnown.isNegative() && YKnown.isNegative()) {
Duncan Sandsd3951082011-01-25 09:38:29 +00002112 APInt Mask = APInt::getSignedMaxValue(BitWidth);
2113 // The sign bit of X is set. If some other bit is set then X is not equal
2114 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00002115 if (XKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00002116 return true;
2117 // The sign bit of Y is set. If some other bit is set then Y is not equal
2118 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00002119 if (YKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00002120 return true;
2121 }
2122
2123 // The sum of a non-negative number and a power of two is not zero.
Craig Topper6e11a052017-05-08 16:22:48 +00002124 if (XKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002125 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002126 return true;
Craig Topper6e11a052017-05-08 16:22:48 +00002127 if (YKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002128 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002129 return true;
2130 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00002131 // X * Y.
2132 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00002133 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00002134 // If X and Y are non-zero then so is X * Y as long as the multiplication
2135 // does not overflow.
Florian Hahn19f9e322018-08-17 14:39:04 +00002136 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002137 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00002138 return true;
2139 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002140 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00002141 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002142 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2143 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002144 return true;
2145 }
James Molloy897048b2015-09-29 14:08:45 +00002146 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00002147 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00002148 // Try and detect a recurrence that monotonically increases from a
2149 // starting value, as these are common as induction variables.
2150 if (PN->getNumIncomingValues() == 2) {
2151 Value *Start = PN->getIncomingValue(0);
2152 Value *Induction = PN->getIncomingValue(1);
2153 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2154 std::swap(Start, Induction);
2155 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2156 if (!C->isZero() && !C->isNegative()) {
2157 ConstantInt *X;
Florian Hahn19f9e322018-08-17 14:39:04 +00002158 if (Q.IIQ.UseInstrInfo &&
2159 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
James Molloy897048b2015-09-29 14:08:45 +00002160 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2161 !X->isNegative())
2162 return true;
2163 }
2164 }
2165 }
Jun Bum Limca832662016-02-01 17:03:07 +00002166 // Check if all incoming values are non-zero constant.
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002167 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
Craig Topper79ab6432017-07-06 18:39:47 +00002168 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
Jun Bum Limca832662016-02-01 17:03:07 +00002169 });
2170 if (AllNonZeroConstants)
2171 return true;
James Molloy897048b2015-09-29 14:08:45 +00002172 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002173
Craig Topperb45eabc2017-04-26 16:39:58 +00002174 KnownBits Known(BitWidth);
2175 computeKnownBits(V, Known, Depth, Q);
2176 return Known.One != 0;
Duncan Sandsd3951082011-01-25 09:38:29 +00002177}
2178
James Molloy1d88d6f2015-10-22 13:18:42 +00002179/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00002180static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2181 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00002182 if (!BO || BO->getOpcode() != Instruction::Add)
2183 return false;
2184 Value *Op = nullptr;
2185 if (V2 == BO->getOperand(0))
2186 Op = BO->getOperand(1);
2187 else if (V2 == BO->getOperand(1))
2188 Op = BO->getOperand(0);
2189 else
2190 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002191 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002192}
2193
2194/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002195static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
Craig Topper3002d5b2017-06-06 07:13:15 +00002196 if (V1 == V2)
James Molloy1d88d6f2015-10-22 13:18:42 +00002197 return false;
2198 if (V1->getType() != V2->getType())
2199 // We can't look through casts yet.
2200 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002201 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002202 return true;
2203
Craig Topper3002d5b2017-06-06 07:13:15 +00002204 if (V1->getType()->isIntOrIntVectorTy()) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002205 // Are any known bits in V1 contradictory to known bits in V2? If V1
2206 // has a known zero where V2 has a known one, they must not be equal.
Craig Topper8e662f72017-06-06 07:13:11 +00002207 KnownBits Known1 = computeKnownBits(V1, 0, Q);
2208 KnownBits Known2 = computeKnownBits(V2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002209
Craig Topper8365df82017-06-06 07:13:09 +00002210 if (Known1.Zero.intersects(Known2.One) ||
2211 Known2.Zero.intersects(Known1.One))
James Molloy1d88d6f2015-10-22 13:18:42 +00002212 return true;
2213 }
2214 return false;
2215}
2216
Sanjay Patelaee84212014-11-04 16:27:42 +00002217/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2218/// simplify operations downstream. Mask is known to be zero for bits that V
2219/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002220///
2221/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002222/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002223/// where V is a vector, the mask, known zero, and known one values are the
2224/// same width as the vector element, and the bit is set only if it is true
2225/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002226bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002227 const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002228 KnownBits Known(Mask.getBitWidth());
2229 computeKnownBits(V, Known, Depth, Q);
2230 return Mask.isSubsetOf(Known.Zero);
Chris Lattner965c7692008-06-02 01:18:21 +00002231}
2232
Craig Topperbec15b62018-08-22 23:27:50 +00002233// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2234// Returns the input and lower/upper bounds.
2235static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2236 const APInt *&CLow, const APInt *&CHigh) {
Craig Topper15f86922018-08-23 17:15:02 +00002237 assert(isa<Operator>(Select) &&
2238 cast<Operator>(Select)->getOpcode() == Instruction::Select &&
Craig Topperdfa176e2018-08-23 17:45:53 +00002239 "Input should be a Select!");
Craig Topperbec15b62018-08-22 23:27:50 +00002240
2241 const Value *LHS, *RHS, *LHS2, *RHS2;
2242 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2243 if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2244 return false;
2245
2246 if (!match(RHS, m_APInt(CLow)))
2247 return false;
2248
2249 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2250 if (getInverseMinMaxFlavor(SPF) != SPF2)
2251 return false;
2252
2253 if (!match(RHS2, m_APInt(CHigh)))
2254 return false;
2255
2256 if (SPF == SPF_SMIN)
2257 std::swap(CLow, CHigh);
2258
2259 In = LHS2;
2260 return CLow->sle(*CHigh);
2261}
2262
Sanjay Patela06d9892016-06-22 19:20:59 +00002263/// For vector constants, loop over the elements and find the constant with the
2264/// minimum number of sign bits. Return 0 if the value is not a vector constant
2265/// or if any element was not analyzed; otherwise, return the count for the
2266/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002267static unsigned computeNumSignBitsVectorConstant(const Value *V,
2268 unsigned TyBits) {
2269 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002270 if (!CV || !CV->getType()->isVectorTy())
2271 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002272
Sanjay Patela06d9892016-06-22 19:20:59 +00002273 unsigned MinSignBits = TyBits;
2274 unsigned NumElts = CV->getType()->getVectorNumElements();
2275 for (unsigned i = 0; i != NumElts; ++i) {
2276 // If we find a non-ConstantInt, bail out.
2277 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2278 if (!Elt)
2279 return 0;
2280
Craig Topper8e8b6ef2017-10-21 16:35:41 +00002281 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
Sanjay Patela06d9892016-06-22 19:20:59 +00002282 }
2283
2284 return MinSignBits;
2285}
Chris Lattner965c7692008-06-02 01:18:21 +00002286
Sanjoy Das39a684d2017-02-25 20:30:45 +00002287static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2288 const Query &Q);
2289
2290static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2291 const Query &Q) {
2292 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2293 assert(Result > 0 && "At least one sign bit needs to be present!");
2294 return Result;
2295}
2296
Sanjay Patelaee84212014-11-04 16:27:42 +00002297/// Return the number of times the sign bit of the register is replicated into
2298/// the other bits. We know that at least 1 bit is always equal to the sign bit
2299/// (itself), but other cases can give us information. For example, immediately
2300/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002301/// other, so we return 3. For vectors, return the number of sign bits for the
Vedant Kumard3196742018-02-28 19:08:52 +00002302/// vector element with the minimum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002303static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2304 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00002305 assert(Depth <= MaxDepth && "Limit Search Depth");
Sanjoy Das39a684d2017-02-25 20:30:45 +00002306
2307 // We return the minimum number of sign bits that are guaranteed to be present
2308 // in V, so for undef we have to conservatively return 1. We don't have the
2309 // same behavior for poison though -- that's a FIXME today.
2310
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002311 Type *ScalarTy = V->getType()->getScalarType();
2312 unsigned TyBits = ScalarTy->isPointerTy() ?
2313 Q.DL.getIndexTypeSizeInBits(ScalarTy) :
2314 Q.DL.getTypeSizeInBits(ScalarTy);
2315
Chris Lattner965c7692008-06-02 01:18:21 +00002316 unsigned Tmp, Tmp2;
2317 unsigned FirstAnswer = 1;
2318
Jay Foada0653a32014-05-14 21:14:37 +00002319 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002320 // below.
2321
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002322 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002323 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002324
Pete Cooper35b00d52016-08-13 01:05:32 +00002325 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002326 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002327 default: break;
2328 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002329 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002330 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002331
Nadav Rotemc99a3872015-03-06 00:23:58 +00002332 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002333 const APInt *Denominator;
2334 // sdiv X, C -> adds log(C) sign bits.
2335 if (match(U->getOperand(1), m_APInt(Denominator))) {
2336
2337 // Ignore non-positive denominator.
2338 if (!Denominator->isStrictlyPositive())
2339 break;
2340
2341 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002342 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002343
2344 // Add floor(log(C)) bits to the numerator bits.
2345 return std::min(TyBits, NumBits + Denominator->logBase2());
2346 }
2347 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002348 }
2349
2350 case Instruction::SRem: {
2351 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002352 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2353 // positive constant. This let us put a lower bound on the number of sign
2354 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002355 if (match(U->getOperand(1), m_APInt(Denominator))) {
2356
2357 // Ignore non-positive denominator.
2358 if (!Denominator->isStrictlyPositive())
2359 break;
2360
2361 // Calculate the incoming numerator bits. SRem by a positive constant
2362 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002363 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002364 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002365
2366 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002367 // denominator. Given that the denominator is positive, there are two
2368 // cases:
2369 //
2370 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2371 // (1 << ceilLogBase2(C)).
2372 //
2373 // 2. the numerator is negative. Then the result range is (-C,0] and
2374 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2375 //
2376 // Thus a lower bound on the number of sign bits is `TyBits -
2377 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002378
Sanjoy Dase561fee2015-03-25 22:33:53 +00002379 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002380 return std::max(NumrBits, ResBits);
2381 }
2382 break;
2383 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002384
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002385 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002386 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002387 // ashr X, C -> adds C sign bits. Vectors too.
2388 const APInt *ShAmt;
2389 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Simon Pilgrim67207262018-01-01 22:44:59 +00002390 if (ShAmt->uge(TyBits))
Sanjoy Das39a684d2017-02-25 20:30:45 +00002391 break; // Bad shift.
Simon Pilgrim67207262018-01-01 22:44:59 +00002392 unsigned ShAmtLimited = ShAmt->getZExtValue();
Sanjoy Das39a684d2017-02-25 20:30:45 +00002393 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002394 if (Tmp > TyBits) Tmp = TyBits;
2395 }
2396 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002397 }
2398 case Instruction::Shl: {
2399 const APInt *ShAmt;
2400 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002401 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002402 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Simon Pilgrim67207262018-01-01 22:44:59 +00002403 if (ShAmt->uge(TyBits) || // Bad shift.
2404 ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002405 Tmp2 = ShAmt->getZExtValue();
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002406 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002407 }
2408 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002409 }
Chris Lattner965c7692008-06-02 01:18:21 +00002410 case Instruction::And:
2411 case Instruction::Or:
2412 case Instruction::Xor: // NOT is handled here.
2413 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002414 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002415 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002416 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002417 FirstAnswer = std::min(Tmp, Tmp2);
2418 // We computed what we know about the sign bits as our first
2419 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002420 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002421 }
2422 break;
2423
Craig Topperbec15b62018-08-22 23:27:50 +00002424 case Instruction::Select: {
2425 // If we have a clamp pattern, we know that the number of sign bits will be
2426 // the minimum of the clamp min/max range.
2427 const Value *X;
2428 const APInt *CLow, *CHigh;
2429 if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2430 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2431
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002432 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002433 if (Tmp == 1) break;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002434 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002435 return std::min(Tmp, Tmp2);
Craig Topperbec15b62018-08-22 23:27:50 +00002436 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002437
Chris Lattner965c7692008-06-02 01:18:21 +00002438 case Instruction::Add:
2439 // Add can have at most one carry bit. Thus we know that the output
2440 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002441 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002442 if (Tmp == 1) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002443
Chris Lattner965c7692008-06-02 01:18:21 +00002444 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002445 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002446 if (CRHS->isAllOnesValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002447 KnownBits Known(TyBits);
2448 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002449
Chris Lattner965c7692008-06-02 01:18:21 +00002450 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2451 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002452 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002453 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002454
Chris Lattner965c7692008-06-02 01:18:21 +00002455 // If we are subtracting one from a positive number, there is no carry
2456 // out of the result.
Craig Topperca48af32017-04-29 16:43:11 +00002457 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002458 return Tmp;
2459 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002460
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002461 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002462 if (Tmp2 == 1) break;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002463 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002464
Chris Lattner965c7692008-06-02 01:18:21 +00002465 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002466 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002467 if (Tmp2 == 1) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002468
Chris Lattner965c7692008-06-02 01:18:21 +00002469 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002470 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002471 if (CLHS->isNullValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002472 KnownBits Known(TyBits);
2473 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002474 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2475 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002476 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002477 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002478
Chris Lattner965c7692008-06-02 01:18:21 +00002479 // If the input is known to be positive (the sign bit is known clear),
2480 // the output of the NEG has the same number of sign bits as the input.
Craig Topperca48af32017-04-29 16:43:11 +00002481 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002482 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002483
Chris Lattner965c7692008-06-02 01:18:21 +00002484 // Otherwise, we treat this like a SUB.
2485 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002486
Chris Lattner965c7692008-06-02 01:18:21 +00002487 // Sub can have at most one carry bit. Thus we know that the output
2488 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002489 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002490 if (Tmp == 1) break;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002491 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002492
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002493 case Instruction::Mul: {
2494 // The output of the Mul can be at most twice the valid bits in the inputs.
2495 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002496 if (SignBitsOp0 == 1) break;
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002497 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002498 if (SignBitsOp1 == 1) break;
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002499 unsigned OutValidBits =
2500 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2501 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2502 }
2503
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002504 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002505 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002506 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002507 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002508 if (NumIncomingValues > 4) break;
2509 // Unreachable blocks may have zero-operand PHI nodes.
2510 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002511
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002512 // Take the minimum of all incoming values. This can't infinitely loop
2513 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002514 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002515 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002516 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002517 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002518 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002519 }
2520 return Tmp;
2521 }
2522
Chris Lattner965c7692008-06-02 01:18:21 +00002523 case Instruction::Trunc:
2524 // FIXME: it's tricky to do anything useful for this, but it is an important
2525 // case for targets like X86.
2526 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002527
2528 case Instruction::ExtractElement:
2529 // Look through extract element. At the moment we keep this simple and skip
2530 // tracking the specific element. But at least we might find information
2531 // valid for all elements of the vector (for example if vector is sign
2532 // extended, shifted, etc).
2533 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Sanjay Patelcc9e4012018-10-26 21:05:14 +00002534
Sanjay Patela68096c2018-11-02 15:51:47 +00002535 case Instruction::ShuffleVector: {
Sanjay Patelcac28b42018-11-03 13:18:55 +00002536 // TODO: This is copied almost directly from the SelectionDAG version of
2537 // ComputeNumSignBits. It would be better if we could share common
2538 // code. If not, make sure that changes are translated to the DAG.
2539
2540 // Collect the minimum number of sign bits that are shared by every vector
2541 // element referenced by the shuffle.
2542 auto *Shuf = cast<ShuffleVectorInst>(U);
2543 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements();
2544 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements();
2545 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2546 for (int i = 0; i != NumMaskElts; ++i) {
2547 int M = Shuf->getMaskValue(i);
2548 assert(M < NumElts * 2 && "Invalid shuffle mask constant");
2549 // For undef elements, we don't know anything about the common state of
2550 // the shuffle result.
2551 if (M == -1)
2552 return 1;
2553 if (M < NumElts)
2554 DemandedLHS.setBit(M % NumElts);
2555 else
2556 DemandedRHS.setBit(M % NumElts);
2557 }
2558 Tmp = std::numeric_limits<unsigned>::max();
2559 if (!!DemandedLHS)
2560 Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q);
2561 if (!!DemandedRHS) {
2562 Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q);
2563 Tmp = std::min(Tmp, Tmp2);
2564 }
2565 // If we don't know anything, early out and try computeKnownBits fall-back.
2566 if (Tmp == 1)
Sanjay Patelcc9e4012018-10-26 21:05:14 +00002567 break;
Sanjay Patelcac28b42018-11-03 13:18:55 +00002568 assert(Tmp <= V->getType()->getScalarSizeInBits() &&
2569 "Failed to determine minimum sign bits");
2570 return Tmp;
Chris Lattner965c7692008-06-02 01:18:21 +00002571 }
Sanjay Patela68096c2018-11-02 15:51:47 +00002572 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002573
Chris Lattner965c7692008-06-02 01:18:21 +00002574 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2575 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002576
2577 // If we can examine all elements of a vector constant successfully, we're
2578 // done (we can't do any better than that). If not, keep trying.
2579 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2580 return VecSignBits;
2581
Craig Topperb45eabc2017-04-26 16:39:58 +00002582 KnownBits Known(TyBits);
2583 computeKnownBits(V, Known, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002584
Sanjay Patele0536212016-06-23 17:41:59 +00002585 // If we know that the sign bit is either zero or one, determine the number of
2586 // identical bits in the top of the input value.
Craig Topper8df66c62017-05-12 17:20:30 +00002587 return std::max(FirstAnswer, Known.countMinSignBits());
Chris Lattner965c7692008-06-02 01:18:21 +00002588}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002589
Sanjay Patelaee84212014-11-04 16:27:42 +00002590/// This function computes the integer multiple of Base that equals V.
2591/// If successful, it returns true and returns the multiple in
2592/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002593/// through SExt instructions only if LookThroughSExt is true.
2594bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002595 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002596 const unsigned MaxDepth = 6;
2597
Dan Gohman6a976bb2009-11-18 00:58:27 +00002598 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002599 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002600 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002601
Chris Lattner229907c2011-07-18 04:54:35 +00002602 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002603
Dan Gohman6a976bb2009-11-18 00:58:27 +00002604 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002605
2606 if (Base == 0)
2607 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002608
Victor Hernandez47444882009-11-10 08:28:35 +00002609 if (Base == 1) {
2610 Multiple = V;
2611 return true;
2612 }
2613
2614 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2615 Constant *BaseVal = ConstantInt::get(T, Base);
2616 if (CO && CO == BaseVal) {
2617 // Multiple is 1.
2618 Multiple = ConstantInt::get(T, 1);
2619 return true;
2620 }
2621
2622 if (CI && CI->getZExtValue() % Base == 0) {
2623 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002624 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002625 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002626
Victor Hernandez47444882009-11-10 08:28:35 +00002627 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002628
Victor Hernandez47444882009-11-10 08:28:35 +00002629 Operator *I = dyn_cast<Operator>(V);
2630 if (!I) return false;
2631
2632 switch (I->getOpcode()) {
2633 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002634 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002635 if (!LookThroughSExt) return false;
2636 // otherwise fall through to ZExt
Galina Kistanova244621f2017-05-31 22:16:24 +00002637 LLVM_FALLTHROUGH;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002638 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002639 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2640 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002641 case Instruction::Shl:
2642 case Instruction::Mul: {
2643 Value *Op0 = I->getOperand(0);
2644 Value *Op1 = I->getOperand(1);
2645
2646 if (I->getOpcode() == Instruction::Shl) {
2647 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2648 if (!Op1CI) return false;
2649 // Turn Op0 << Op1 into Op0 * 2^Op1
2650 APInt Op1Int = Op1CI->getValue();
2651 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002652 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002653 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002654 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002655 }
2656
Craig Topper9f008862014-04-15 04:59:12 +00002657 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002658 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2659 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2660 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002661 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002662 MulC->getType()->getPrimitiveSizeInBits())
2663 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002664 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002665 MulC->getType()->getPrimitiveSizeInBits())
2666 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002667
Chris Lattner72d283c2010-09-05 17:20:46 +00002668 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2669 Multiple = ConstantExpr::getMul(MulC, Op1C);
2670 return true;
2671 }
Victor Hernandez47444882009-11-10 08:28:35 +00002672
2673 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2674 if (Mul0CI->getValue() == 1) {
2675 // V == Base * Op1, so return Op1
2676 Multiple = Op1;
2677 return true;
2678 }
2679 }
2680
Craig Topper9f008862014-04-15 04:59:12 +00002681 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002682 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2683 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2684 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002685 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002686 MulC->getType()->getPrimitiveSizeInBits())
2687 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002688 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002689 MulC->getType()->getPrimitiveSizeInBits())
2690 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002691
Chris Lattner72d283c2010-09-05 17:20:46 +00002692 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2693 Multiple = ConstantExpr::getMul(MulC, Op0C);
2694 return true;
2695 }
Victor Hernandez47444882009-11-10 08:28:35 +00002696
2697 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2698 if (Mul1CI->getValue() == 1) {
2699 // V == Base * Op0, so return Op0
2700 Multiple = Op0;
2701 return true;
2702 }
2703 }
Victor Hernandez47444882009-11-10 08:28:35 +00002704 }
2705 }
2706
2707 // We could not determine if V is a multiple of Base.
2708 return false;
2709}
2710
David Majnemerb4b27232016-04-19 19:10:21 +00002711Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2712 const TargetLibraryInfo *TLI) {
2713 const Function *F = ICS.getCalledFunction();
2714 if (!F)
2715 return Intrinsic::not_intrinsic;
2716
2717 if (F->isIntrinsic())
2718 return F->getIntrinsicID();
2719
2720 if (!TLI)
2721 return Intrinsic::not_intrinsic;
2722
David L. Jonesd21529f2017-01-23 23:16:46 +00002723 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002724 // We're going to make assumptions on the semantics of the functions, check
2725 // that the target knows that it's available in this environment and it does
2726 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002727 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2728 return Intrinsic::not_intrinsic;
2729
2730 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002731 return Intrinsic::not_intrinsic;
2732
2733 // Otherwise check if we have a call to a function that can be turned into a
2734 // vector intrinsic.
2735 switch (Func) {
2736 default:
2737 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002738 case LibFunc_sin:
2739 case LibFunc_sinf:
2740 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002741 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002742 case LibFunc_cos:
2743 case LibFunc_cosf:
2744 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002745 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002746 case LibFunc_exp:
2747 case LibFunc_expf:
2748 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002749 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002750 case LibFunc_exp2:
2751 case LibFunc_exp2f:
2752 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002753 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002754 case LibFunc_log:
2755 case LibFunc_logf:
2756 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002757 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002758 case LibFunc_log10:
2759 case LibFunc_log10f:
2760 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002761 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002762 case LibFunc_log2:
2763 case LibFunc_log2f:
2764 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002765 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002766 case LibFunc_fabs:
2767 case LibFunc_fabsf:
2768 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002769 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002770 case LibFunc_fmin:
2771 case LibFunc_fminf:
2772 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002773 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002774 case LibFunc_fmax:
2775 case LibFunc_fmaxf:
2776 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002777 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002778 case LibFunc_copysign:
2779 case LibFunc_copysignf:
2780 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002781 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002782 case LibFunc_floor:
2783 case LibFunc_floorf:
2784 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002785 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002786 case LibFunc_ceil:
2787 case LibFunc_ceilf:
2788 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002789 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002790 case LibFunc_trunc:
2791 case LibFunc_truncf:
2792 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002793 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002794 case LibFunc_rint:
2795 case LibFunc_rintf:
2796 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002797 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002798 case LibFunc_nearbyint:
2799 case LibFunc_nearbyintf:
2800 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002801 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002802 case LibFunc_round:
2803 case LibFunc_roundf:
2804 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002805 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002806 case LibFunc_pow:
2807 case LibFunc_powf:
2808 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002809 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002810 case LibFunc_sqrt:
2811 case LibFunc_sqrtf:
2812 case LibFunc_sqrtl:
Sanjay Patel86d24f12017-11-06 22:40:09 +00002813 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002814 }
2815
2816 return Intrinsic::not_intrinsic;
2817}
2818
Sanjay Patelaee84212014-11-04 16:27:42 +00002819/// Return true if we can prove that the specified FP value is never equal to
2820/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002821///
2822/// NOTE: this function will need to be revisited when we support non-default
2823/// rounding modes!
David Majnemer3ee5f342016-04-13 06:55:52 +00002824bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2825 unsigned Depth) {
Sanjay Patel20df88a2017-11-13 17:56:23 +00002826 if (auto *CFP = dyn_cast<ConstantFP>(V))
Chris Lattnera12a6de2008-06-02 01:29:46 +00002827 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002828
Sanjay Patel20df88a2017-11-13 17:56:23 +00002829 // Limit search depth.
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002830 if (Depth == MaxDepth)
Sanjay Patel20df88a2017-11-13 17:56:23 +00002831 return false;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002832
Sanjay Patel20df88a2017-11-13 17:56:23 +00002833 auto *Op = dyn_cast<Operator>(V);
2834 if (!Op)
2835 return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002836
Sanjay Patel20df88a2017-11-13 17:56:23 +00002837 // Check if the nsz fast-math flag is set.
2838 if (auto *FPO = dyn_cast<FPMathOperator>(Op))
Michael Ilseman0f128372012-12-06 00:07:09 +00002839 if (FPO->hasNoSignedZeros())
2840 return true;
2841
Sanjay Patel9e3d8f42017-11-13 17:40:47 +00002842 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
Sanjay Patel93e64dd2018-03-25 21:16:33 +00002843 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
Sanjay Patel9e3d8f42017-11-13 17:40:47 +00002844 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002845
Chris Lattnera12a6de2008-06-02 01:29:46 +00002846 // sitofp and uitofp turn into +0.0 for zero.
Sanjay Patel20df88a2017-11-13 17:56:23 +00002847 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
Chris Lattnera12a6de2008-06-02 01:29:46 +00002848 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002849
Sanjay Patel20df88a2017-11-13 17:56:23 +00002850 if (auto *Call = dyn_cast<CallInst>(Op)) {
2851 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002852 switch (IID) {
2853 default:
2854 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002855 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002856 case Intrinsic::sqrt:
Matt Arsenault56b31d82018-08-06 15:16:26 +00002857 case Intrinsic::canonicalize:
Sanjay Patel20df88a2017-11-13 17:56:23 +00002858 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002859 // fabs(x) != -0.0
2860 case Intrinsic::fabs:
2861 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002862 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002863 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002864
Chris Lattnera12a6de2008-06-02 01:29:46 +00002865 return false;
2866}
2867
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002868/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2869/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2870/// bit despite comparing equal.
2871static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2872 const TargetLibraryInfo *TLI,
2873 bool SignBitOnly,
2874 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002875 // TODO: This function does not do the right thing when SignBitOnly is true
2876 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2877 // which flips the sign bits of NaNs. See
2878 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2879
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002880 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2881 return !CFP->getValueAPF().isNegative() ||
2882 (!SignBitOnly && CFP->getValueAPF().isZero());
2883 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002884
Craig Topper69c89722018-02-26 22:33:17 +00002885 // Handle vector of constants.
2886 if (auto *CV = dyn_cast<Constant>(V)) {
2887 if (CV->getType()->isVectorTy()) {
2888 unsigned NumElts = CV->getType()->getVectorNumElements();
2889 for (unsigned i = 0; i != NumElts; ++i) {
2890 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
2891 if (!CFP)
2892 return false;
2893 if (CFP->getValueAPF().isNegative() &&
2894 (SignBitOnly || !CFP->getValueAPF().isZero()))
2895 return false;
2896 }
2897
2898 // All non-negative ConstantFPs.
2899 return true;
2900 }
2901 }
2902
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002903 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002904 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002905
2906 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002907 if (!I)
2908 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002909
2910 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002911 default:
2912 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002913 // Unsigned integers are always nonnegative.
2914 case Instruction::UIToFP:
2915 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002916 case Instruction::FMul:
2917 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002918 if (I->getOperand(0) == I->getOperand(1) &&
2919 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002920 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002921
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002922 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002923 case Instruction::FAdd:
2924 case Instruction::FDiv:
2925 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002926 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2927 Depth + 1) &&
2928 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2929 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002930 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002931 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2932 Depth + 1) &&
2933 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2934 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002935 case Instruction::FPExt:
2936 case Instruction::FPTrunc:
2937 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002938 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2939 Depth + 1);
Craig Topper30199102018-02-27 19:53:45 +00002940 case Instruction::ExtractElement:
2941 // Look through extract element. At the moment we keep this simple and skip
2942 // tracking the specific element. But at least we might find information
2943 // valid for all elements of the vector.
2944 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2945 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002946 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002947 const auto *CI = cast<CallInst>(I);
2948 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002949 switch (IID) {
2950 default:
2951 break;
2952 case Intrinsic::maxnum:
Matt Arsenaultd54b7f02018-08-09 22:40:08 +00002953 return (isKnownNeverNaN(I->getOperand(0), TLI) &&
Sanjay Patelf9a0d592018-08-02 13:46:20 +00002954 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
2955 SignBitOnly, Depth + 1)) ||
Matt Arsenaultd54b7f02018-08-09 22:40:08 +00002956 (isKnownNeverNaN(I->getOperand(1), TLI) &&
Sanjay Patelf9a0d592018-08-02 13:46:20 +00002957 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
2958 SignBitOnly, Depth + 1));
2959
Thomas Livelyc3392502018-10-19 19:01:26 +00002960 case Intrinsic::maximum:
2961 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2962 Depth + 1) ||
2963 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2964 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002965 case Intrinsic::minnum:
Thomas Livelyc3392502018-10-19 19:01:26 +00002966 case Intrinsic::minimum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002967 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2968 Depth + 1) &&
2969 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2970 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002971 case Intrinsic::exp:
2972 case Intrinsic::exp2:
2973 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002974 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002975
2976 case Intrinsic::sqrt:
2977 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2978 if (!SignBitOnly)
2979 return true;
2980 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2981 CannotBeNegativeZero(CI->getOperand(0), TLI));
2982
David Majnemer3ee5f342016-04-13 06:55:52 +00002983 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002984 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002985 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002986 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002987 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002988 }
Justin Lebar322c1272017-01-27 00:58:34 +00002989 // TODO: This is not correct. Given that exp is an integer, here are the
2990 // ways that pow can return a negative value:
2991 //
2992 // pow(x, exp) --> negative if exp is odd and x is negative.
2993 // pow(-0, exp) --> -inf if exp is negative odd.
2994 // pow(-0, exp) --> -0 if exp is positive odd.
2995 // pow(-inf, exp) --> -0 if exp is negative odd.
2996 // pow(-inf, exp) --> -inf if exp is positive odd.
2997 //
2998 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2999 // but we must return false if x == -0. Unfortunately we do not currently
3000 // have a way of expressing this constraint. See details in
3001 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00003002 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3003 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00003004
David Majnemer3ee5f342016-04-13 06:55:52 +00003005 case Intrinsic::fma:
3006 case Intrinsic::fmuladd:
3007 // x*x+y is non-negative if y is non-negative.
3008 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00003009 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3010 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3011 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00003012 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00003013 break;
3014 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003015 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00003016}
3017
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00003018bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3019 const TargetLibraryInfo *TLI) {
3020 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3021}
3022
3023bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3024 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3025}
3026
Matt Arsenaultd54b7f02018-08-09 22:40:08 +00003027bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3028 unsigned Depth) {
Sanjay Patel6840c5f2017-09-05 23:13:13 +00003029 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3030
3031 // If we're told that NaNs won't happen, assume they won't.
3032 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3033 if (FPMathOp->hasNoNaNs())
3034 return true;
3035
Sanjay Patel6840c5f2017-09-05 23:13:13 +00003036 // Handle scalar constants.
3037 if (auto *CFP = dyn_cast<ConstantFP>(V))
3038 return !CFP->isNaN();
3039
Matt Arsenaultd54b7f02018-08-09 22:40:08 +00003040 if (Depth == MaxDepth)
3041 return false;
3042
Matt Arsenault450fcc72018-08-20 16:51:00 +00003043 if (auto *Inst = dyn_cast<Instruction>(V)) {
3044 switch (Inst->getOpcode()) {
3045 case Instruction::FAdd:
3046 case Instruction::FMul:
3047 case Instruction::FSub:
3048 case Instruction::FDiv:
3049 case Instruction::FRem: {
3050 // TODO: Need isKnownNeverInfinity
3051 return false;
3052 }
3053 case Instruction::Select: {
3054 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3055 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3056 }
3057 case Instruction::SIToFP:
3058 case Instruction::UIToFP:
3059 return true;
3060 case Instruction::FPTrunc:
3061 case Instruction::FPExt:
3062 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3063 default:
3064 break;
3065 }
3066 }
3067
Matt Arsenaultd54b7f02018-08-09 22:40:08 +00003068 if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3069 switch (II->getIntrinsicID()) {
3070 case Intrinsic::canonicalize:
3071 case Intrinsic::fabs:
3072 case Intrinsic::copysign:
Matt Arsenault450fcc72018-08-20 16:51:00 +00003073 case Intrinsic::exp:
3074 case Intrinsic::exp2:
3075 case Intrinsic::floor:
3076 case Intrinsic::ceil:
3077 case Intrinsic::trunc:
3078 case Intrinsic::rint:
3079 case Intrinsic::nearbyint:
3080 case Intrinsic::round:
Matt Arsenaultd54b7f02018-08-09 22:40:08 +00003081 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3082 case Intrinsic::sqrt:
3083 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3084 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3085 default:
3086 return false;
3087 }
3088 }
3089
Sanjay Patel6840c5f2017-09-05 23:13:13 +00003090 // Bail out for constant expressions, but try to handle vector constants.
3091 if (!V->getType()->isVectorTy() || !isa<Constant>(V))
3092 return false;
3093
3094 // For vectors, verify that each element is not NaN.
3095 unsigned NumElts = V->getType()->getVectorNumElements();
3096 for (unsigned i = 0; i != NumElts; ++i) {
3097 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3098 if (!Elt)
3099 return false;
3100 if (isa<UndefValue>(Elt))
3101 continue;
3102 auto *CElt = dyn_cast<ConstantFP>(Elt);
3103 if (!CElt || CElt->isNaN())
3104 return false;
3105 }
3106 // All elements were confirmed not-NaN or undefined.
3107 return true;
3108}
3109
Chris Lattner9cb10352010-12-26 20:15:01 +00003110Value *llvm::isBytewiseValue(Value *V) {
JF Bastien73d8e4e2018-09-21 05:17:42 +00003111
Chris Lattner9cb10352010-12-26 20:15:01 +00003112 // All byte-wide stores are splatable, even of arbitrary variables.
JF Bastien73d8e4e2018-09-21 05:17:42 +00003113 if (V->getType()->isIntegerTy(8))
3114 return V;
3115
3116 LLVMContext &Ctx = V->getContext();
3117
3118 // Undef don't care.
3119 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3120 if (isa<UndefValue>(V))
3121 return UndefInt8;
3122
3123 Constant *C = dyn_cast<Constant>(V);
3124 if (!C) {
3125 // Conceptually, we could handle things like:
3126 // %a = zext i8 %X to i16
3127 // %b = shl i16 %a, 8
3128 // %c = or i16 %a, %b
3129 // but until there is an example that actually needs this, it doesn't seem
3130 // worth worrying about.
3131 return nullptr;
3132 }
Chris Lattneracf6b072011-02-19 19:35:49 +00003133
3134 // Handle 'null' ConstantArrayZero etc.
JF Bastien73d8e4e2018-09-21 05:17:42 +00003135 if (C->isNullValue())
3136 return Constant::getNullValue(Type::getInt8Ty(Ctx));
Craig Topper1bef2c82012-12-22 19:15:35 +00003137
JF Bastien73d8e4e2018-09-21 05:17:42 +00003138 // Constant floating-point values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00003139 // corresponding integer value is "byteable". An important case is 0.0.
JF Bastien73d8e4e2018-09-21 05:17:42 +00003140 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3141 Type *Ty = nullptr;
3142 if (CFP->getType()->isHalfTy())
3143 Ty = Type::getInt16Ty(Ctx);
3144 else if (CFP->getType()->isFloatTy())
3145 Ty = Type::getInt32Ty(Ctx);
3146 else if (CFP->getType()->isDoubleTy())
3147 Ty = Type::getInt64Ty(Ctx);
Chris Lattner9cb10352010-12-26 20:15:01 +00003148 // Don't handle long double formats, which have strange constraints.
JF Bastien73d8e4e2018-09-21 05:17:42 +00003149 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty)) : nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00003150 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003151
Benjamin Kramer17d90152015-02-07 19:29:02 +00003152 // We can handle constant integers that are multiple of 8 bits.
JF Bastien73d8e4e2018-09-21 05:17:42 +00003153 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00003154 if (CI->getBitWidth() % 8 == 0) {
3155 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Benjamin Kramerb4b51502015-03-25 16:49:59 +00003156 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00003157 return nullptr;
JF Bastien73d8e4e2018-09-21 05:17:42 +00003158 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00003159 }
3160 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003161
JF Bastien73d8e4e2018-09-21 05:17:42 +00003162 auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3163 if (LHS == RHS)
3164 return LHS;
3165 if (!LHS || !RHS)
Craig Topper9f008862014-04-15 04:59:12 +00003166 return nullptr;
JF Bastien73d8e4e2018-09-21 05:17:42 +00003167 if (LHS == UndefInt8)
3168 return RHS;
3169 if (RHS == UndefInt8)
3170 return LHS;
3171 return nullptr;
3172 };
Craig Topper1bef2c82012-12-22 19:15:35 +00003173
JF Bastien73d8e4e2018-09-21 05:17:42 +00003174 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3175 Value *Val = UndefInt8;
3176 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3177 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I)))))
Craig Topper9f008862014-04-15 04:59:12 +00003178 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00003179 return Val;
3180 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00003181
JF Bastien73d8e4e2018-09-21 05:17:42 +00003182 if (isa<ConstantVector>(C)) {
3183 Constant *Splat = cast<ConstantVector>(C)->getSplatValue();
3184 return Splat ? isBytewiseValue(Splat) : nullptr;
3185 }
3186
3187 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
3188 Value *Val = UndefInt8;
3189 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3190 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I)))))
3191 return nullptr;
3192 return Val;
3193 }
3194
3195 // Don't try to handle the handful of other constants.
Craig Topper9f008862014-04-15 04:59:12 +00003196 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00003197}
3198
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003199// This is the recursive version of BuildSubAggregate. It takes a few different
3200// arguments. Idxs is the index within the nested struct From that we are
3201// looking at now (which is of type IndexedType). IdxSkip is the number of
3202// indices from Idxs that should be left out when inserting into the resulting
3203// struct. To is the result struct built so far, new insertvalue instructions
3204// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00003205static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00003206 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00003207 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00003208 Instruction *InsertBefore) {
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003209 StructType *STy = dyn_cast<StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003210 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003211 // Save the original To argument so we can modify it
3212 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003213 // General case, the type indexed by Idxs is a struct
3214 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3215 // Process each struct element recursively
3216 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003217 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003218 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003219 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003220 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003221 if (!To) {
3222 // Couldn't find any inserted value for this index? Cleanup
3223 while (PrevTo != OrigTo) {
3224 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3225 PrevTo = Del->getAggregateOperand();
3226 Del->eraseFromParent();
3227 }
3228 // Stop processing elements
3229 break;
3230 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003231 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00003232 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003233 if (To)
3234 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003235 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003236 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3237 // the struct's elements had a value that was inserted directly. In the latter
3238 // case, perhaps we can't determine each of the subelements individually, but
3239 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00003240
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003241 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00003242 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003243
3244 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00003245 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003246
Vedant Kumard3196742018-02-28 19:08:52 +00003247 // Insert the value in the new (sub) aggregate
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003248 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3249 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003250}
3251
3252// This helper takes a nested struct and extracts a part of it (which is again a
3253// struct) into a new value. For example, given the struct:
3254// { a, { b, { c, d }, e } }
3255// and the indices "1, 1" this returns
3256// { c, d }.
3257//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003258// It does this by inserting an insertvalue for each element in the resulting
3259// struct, as opposed to just inserting a single struct. This will only work if
3260// each of the elements of the substruct are known (ie, inserted into From by an
3261// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003262//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003263// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00003264static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00003265 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00003266 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00003267 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00003268 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00003269 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00003270 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003271 unsigned IdxSkip = Idxs.size();
3272
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003273 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003274}
3275
Vedant Kumard3196742018-02-28 19:08:52 +00003276/// Given an aggregate and a sequence of indices, see if the scalar value
3277/// indexed is already around as a register, for example if it was inserted
3278/// directly into the aggregate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003279///
3280/// If InsertBefore is not null, this function will duplicate (modified)
3281/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00003282Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3283 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003284 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003285 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00003286 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003287 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003288 // We have indices, so V should have an indexable type.
3289 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3290 "Not looking at a struct or array?");
3291 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3292 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00003293
Chris Lattner67058832012-01-25 06:48:06 +00003294 if (Constant *C = dyn_cast<Constant>(V)) {
3295 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00003296 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00003297 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3298 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003299
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003300 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003301 // Loop the indices for the insertvalue instruction in parallel with the
3302 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00003303 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003304 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3305 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00003306 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003307 // We can't handle this without inserting insertvalues
3308 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00003309 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003310
3311 // The requested index identifies a part of a nested aggregate. Handle
3312 // this specially. For example,
3313 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3314 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3315 // %C = extractvalue {i32, { i32, i32 } } %B, 1
3316 // This can be changed into
3317 // %A = insertvalue {i32, i32 } undef, i32 10, 0
3318 // %C = insertvalue {i32, i32 } %A, i32 11, 1
3319 // which allows the unused 0,0 element from the nested struct to be
3320 // removed.
3321 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3322 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00003323 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003324
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003325 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00003326 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003327 // looking for, then.
3328 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00003329 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003330 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003331 }
3332 // If we end up here, the indices of the insertvalue match with those
3333 // requested (though possibly only partially). Now we recursively look at
3334 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00003335 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00003336 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003337 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003338 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003339
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003340 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00003341 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003342 // something else, we can extract from that something else directly instead.
3343 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00003344
3345 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00003346 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003347 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00003348 SmallVector<unsigned, 5> Idxs;
3349 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003350 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00003351 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00003352
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003353 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00003354 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003355
Craig Topper1bef2c82012-12-22 19:15:35 +00003356 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003357 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00003358
Jay Foad57aa6362011-07-13 10:26:04 +00003359 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003360 }
3361 // Otherwise, we don't know (such as, extracting from a function return value
3362 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00003363 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003364}
Evan Chengda3db112008-06-30 07:31:25 +00003365
Sanjay Patelaee84212014-11-04 16:27:42 +00003366/// Analyze the specified pointer to see if it can be expressed as a base
3367/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00003368Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003369 const DataLayout &DL) {
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00003370 unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00003371 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00003372
3373 // We walk up the defs but use a visited set to handle unreachable code. In
3374 // that case, we stop after accumulating the cycle once (not that it
3375 // matters).
3376 SmallPtrSet<Value *, 16> Visited;
3377 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003378 if (Ptr->getType()->isVectorTy())
3379 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00003380
Nuno Lopes368c4d02012-12-31 20:48:35 +00003381 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00003382 // If one of the values we have visited is an addrspacecast, then
3383 // the pointer type of this GEP may be different from the type
3384 // of the Ptr parameter which was passed to this function. This
3385 // means when we construct GEPOffset, we need to use the size
3386 // of GEP's pointer type rather than the size of the original
3387 // pointer type.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00003388 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003389 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3390 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003391
Tom Stellard17eb3412016-10-07 14:23:29 +00003392 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003393
Nuno Lopes368c4d02012-12-31 20:48:35 +00003394 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00003395 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3396 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003397 Ptr = cast<Operator>(Ptr)->getOperand(0);
3398 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003399 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00003400 break;
3401 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00003402 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003403 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00003404 }
3405 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00003406 Offset = ByteOffset.getSExtValue();
3407 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00003408}
3409
Matthias Braun50ec0b52017-05-19 22:37:09 +00003410bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3411 unsigned CharSize) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003412 // Make sure the GEP has exactly three arguments.
3413 if (GEP->getNumOperands() != 3)
3414 return false;
3415
Matthias Braun50ec0b52017-05-19 22:37:09 +00003416 // Make sure the index-ee is a pointer to array of \p CharSize integers.
3417 // CharSize.
David L Kreitzer752c1442016-04-13 14:31:06 +00003418 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Matthias Braun50ec0b52017-05-19 22:37:09 +00003419 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
David L Kreitzer752c1442016-04-13 14:31:06 +00003420 return false;
3421
3422 // Check to make sure that the first operand of the GEP is an integer and
3423 // has value 0 so that we are sure we're indexing into the initializer.
3424 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3425 if (!FirstIdx || !FirstIdx->isZero())
3426 return false;
3427
3428 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003429}
Chris Lattnere28618d2010-11-30 22:25:26 +00003430
Matthias Braun50ec0b52017-05-19 22:37:09 +00003431bool llvm::getConstantDataArrayInfo(const Value *V,
3432 ConstantDataArraySlice &Slice,
3433 unsigned ElementSize, uint64_t Offset) {
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003434 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00003435
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003436 // Look through bitcast instructions and geps.
3437 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00003438
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003439 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003440 // offset.
3441 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003442 // The GEP operator should be based on a pointer to string constant, and is
3443 // indexing into the string constant.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003444 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003445 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003446
Evan Chengda3db112008-06-30 07:31:25 +00003447 // If the second index isn't a ConstantInt, then this is a variable index
3448 // into the array. If this occurs, we can't say anything meaningful about
3449 // the string.
3450 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003451 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003452 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003453 else
3454 return false;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003455 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3456 StartIdx + Offset);
Evan Chengda3db112008-06-30 07:31:25 +00003457 }
Nick Lewycky46209882011-10-20 00:34:35 +00003458
Evan Chengda3db112008-06-30 07:31:25 +00003459 // The GEP instruction, constant or instruction, must reference a global
3460 // variable that is a constant and is initialized. The referenced constant
3461 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003462 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003463 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003464 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003465
Matthias Braun50ec0b52017-05-19 22:37:09 +00003466 const ConstantDataArray *Array;
3467 ArrayType *ArrayTy;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003468 if (GV->getInitializer()->isNullValue()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003469 Type *GVTy = GV->getValueType();
3470 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
Sanjay Patel2ad88f82017-06-12 22:34:37 +00003471 // A zeroinitializer for the array; there is no ConstantDataArray.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003472 Array = nullptr;
3473 } else {
3474 const DataLayout &DL = GV->getParent()->getDataLayout();
3475 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3476 uint64_t Length = SizeInBytes / (ElementSize / 8);
3477 if (Length <= Offset)
3478 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003479
Matthias Braun50ec0b52017-05-19 22:37:09 +00003480 Slice.Array = nullptr;
3481 Slice.Offset = 0;
3482 Slice.Length = Length - Offset;
3483 return true;
3484 }
3485 } else {
3486 // This must be a ConstantDataArray.
3487 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3488 if (!Array)
3489 return false;
3490 ArrayTy = Array->getType();
3491 }
3492 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003493 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003494
Matthias Braun50ec0b52017-05-19 22:37:09 +00003495 uint64_t NumElts = ArrayTy->getArrayNumElements();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003496 if (Offset > NumElts)
3497 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003498
Matthias Braun50ec0b52017-05-19 22:37:09 +00003499 Slice.Array = Array;
3500 Slice.Offset = Offset;
3501 Slice.Length = NumElts - Offset;
3502 return true;
3503}
3504
3505/// This function computes the length of a null-terminated C string pointed to
3506/// by V. If successful, it returns true and returns the string in Str.
3507/// If unsuccessful, it returns false.
3508bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3509 uint64_t Offset, bool TrimAtNul) {
3510 ConstantDataArraySlice Slice;
3511 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3512 return false;
3513
3514 if (Slice.Array == nullptr) {
3515 if (TrimAtNul) {
3516 Str = StringRef();
3517 return true;
3518 }
3519 if (Slice.Length == 1) {
3520 Str = StringRef("", 1);
3521 return true;
3522 }
Sanjay Patelfef83e82017-06-09 14:21:18 +00003523 // We cannot instantiate a StringRef as we do not have an appropriate string
Matthias Braun50ec0b52017-05-19 22:37:09 +00003524 // of 0s at hand.
3525 return false;
3526 }
3527
3528 // Start out with the entire array in the StringRef.
3529 Str = Slice.Array->getAsString();
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003530 // Skip over 'offset' bytes.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003531 Str = Str.substr(Slice.Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003532
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003533 if (TrimAtNul) {
3534 // Trim off the \0 and anything after it. If the array is not nul
3535 // terminated, we just return the whole end of string. The client may know
3536 // some other way that the string is length-bound.
3537 Str = Str.substr(0, Str.find('\0'));
3538 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003539 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003540}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003541
3542// These next two are very similar to the above, but also look through PHI
3543// nodes.
3544// TODO: See if we can integrate these two together.
3545
Sanjay Patelaee84212014-11-04 16:27:42 +00003546/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003547/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003548static uint64_t GetStringLengthH(const Value *V,
Matthias Braun50ec0b52017-05-19 22:37:09 +00003549 SmallPtrSetImpl<const PHINode*> &PHIs,
3550 unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003551 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003552 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003553
3554 // If this is a PHI node, there are two cases: either we have already seen it
3555 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003556 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003557 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003558 return ~0ULL; // already in the set.
3559
3560 // If it was new, see if all the input strings are the same length.
3561 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003562 for (Value *IncValue : PN->incoming_values()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003563 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003564 if (Len == 0) return 0; // Unknown length -> unknown.
3565
3566 if (Len == ~0ULL) continue;
3567
3568 if (Len != LenSoFar && LenSoFar != ~0ULL)
3569 return 0; // Disagree -> unknown.
3570 LenSoFar = Len;
3571 }
3572
3573 // Success, all agree.
3574 return LenSoFar;
3575 }
3576
3577 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003578 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003579 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003580 if (Len1 == 0) return 0;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003581 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003582 if (Len2 == 0) return 0;
3583 if (Len1 == ~0ULL) return Len2;
3584 if (Len2 == ~0ULL) return Len1;
3585 if (Len1 != Len2) return 0;
3586 return Len1;
3587 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003588
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003589 // Otherwise, see if we can read the string.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003590 ConstantDataArraySlice Slice;
3591 if (!getConstantDataArrayInfo(V, Slice, CharSize))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003592 return 0;
3593
Matthias Braun50ec0b52017-05-19 22:37:09 +00003594 if (Slice.Array == nullptr)
3595 return 1;
3596
3597 // Search for nul characters
3598 unsigned NullIndex = 0;
3599 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3600 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3601 break;
3602 }
3603
3604 return NullIndex + 1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003605}
3606
Sanjay Patelaee84212014-11-04 16:27:42 +00003607/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003608/// the specified pointer, return 'len+1'. If we can't, return 0.
David Bolvansky1f343fa2018-05-22 20:27:36 +00003609uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
David Bolvansky41f4b642018-05-22 15:41:23 +00003610 if (!V->getType()->isPointerTy())
3611 return 0;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003612
Pete Cooper35b00d52016-08-13 01:05:32 +00003613 SmallPtrSet<const PHINode*, 32> PHIs;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003614 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003615 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3616 // an empty string as a length.
3617 return Len == ~0ULL ? 1 : Len;
3618}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003619
Piotr Padlewskid6f73462018-05-23 09:16:44 +00003620const Value *llvm::getArgumentAliasingToReturnedPointer(ImmutableCallSite CS) {
3621 assert(CS &&
3622 "getArgumentAliasingToReturnedPointer only works on nonnull CallSite");
3623 if (const Value *RV = CS.getReturnedArgOperand())
3624 return RV;
3625 // This can be used only as a aliasing property.
3626 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CS))
3627 return CS.getArgOperand(0);
3628 return nullptr;
3629}
3630
3631bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
Piotr Padlewski5b3db452018-07-02 04:49:30 +00003632 ImmutableCallSite CS) {
3633 return CS.getIntrinsicID() == Intrinsic::launder_invariant_group ||
3634 CS.getIntrinsicID() == Intrinsic::strip_invariant_group;
Piotr Padlewskid6f73462018-05-23 09:16:44 +00003635}
3636
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00003637/// \p PN defines a loop-variant pointer to an object. Check if the
Adam Nemete2b885c2015-04-23 20:09:20 +00003638/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003639static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3640 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003641 // Find the loop-defined value.
3642 Loop *L = LI->getLoopFor(PN->getParent());
3643 if (PN->getNumIncomingValues() != 2)
3644 return true;
3645
3646 // Find the value from previous iteration.
3647 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3648 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3649 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3650 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3651 return true;
3652
3653 // If a new pointer is loaded in the loop, the pointer references a different
3654 // object in every iteration. E.g.:
3655 // for (i)
3656 // int *p = a[i];
3657 // ...
3658 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3659 if (!L->isLoopInvariant(Load->getPointerOperand()))
3660 return false;
3661 return true;
3662}
3663
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003664Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3665 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003666 if (!V->getType()->isPointerTy())
3667 return V;
3668 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3669 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3670 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003671 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3672 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003673 V = cast<Operator>(V)->getOperand(0);
3674 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003675 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003676 return V;
3677 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003678 } else if (isa<AllocaInst>(V)) {
3679 // An alloca can't be further simplified.
3680 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003681 } else {
Piotr Padlewskid6f73462018-05-23 09:16:44 +00003682 if (auto CS = CallSite(V)) {
Piotr Padlewski5b3db452018-07-02 04:49:30 +00003683 // CaptureTracking can know about special capturing properties of some
3684 // intrinsics like launder.invariant.group, that can't be expressed with
3685 // the attributes, but have properties like returning aliasing pointer.
3686 // Because some analysis may assume that nocaptured pointer is not
3687 // returned from some special intrinsic (because function would have to
3688 // be marked with returns attribute), it is crucial to use this function
3689 // because it should be in sync with CaptureTracking. Not using it may
3690 // cause weird miscompilations where 2 aliasing pointers are assumed to
3691 // noalias.
Piotr Padlewskid6f73462018-05-23 09:16:44 +00003692 if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) {
3693 V = RP;
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003694 continue;
3695 }
Piotr Padlewskid6f73462018-05-23 09:16:44 +00003696 }
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003697
Dan Gohman05b18f12010-12-15 20:49:55 +00003698 // See if InstructionSimplify knows any relevant tricks.
3699 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003700 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Daniel Berlin4d0fe642017-04-28 19:55:38 +00003701 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003702 V = Simplified;
3703 continue;
3704 }
3705
Dan Gohmana4fcd242010-12-15 20:02:24 +00003706 return V;
3707 }
3708 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3709 }
3710 return V;
3711}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003712
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003713void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003714 const DataLayout &DL, LoopInfo *LI,
3715 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003716 SmallPtrSet<Value *, 4> Visited;
3717 SmallVector<Value *, 4> Worklist;
3718 Worklist.push_back(V);
3719 do {
3720 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003721 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003722
David Blaikie70573dc2014-11-19 07:49:26 +00003723 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003724 continue;
3725
3726 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3727 Worklist.push_back(SI->getTrueValue());
3728 Worklist.push_back(SI->getFalseValue());
3729 continue;
3730 }
3731
3732 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003733 // If this PHI changes the underlying object in every iteration of the
3734 // loop, don't look through it. Consider:
3735 // int **A;
3736 // for (i) {
3737 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3738 // Curr = A[i];
3739 // *Prev, *Curr;
3740 //
3741 // Prev is tracking Curr one iteration behind so they refer to different
3742 // underlying objects.
3743 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3744 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003745 for (Value *IncValue : PN->incoming_values())
3746 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003747 continue;
3748 }
3749
3750 Objects.push_back(P);
3751 } while (!Worklist.empty());
3752}
3753
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003754/// This is the function that does the work of looking through basic
3755/// ptrtoint+arithmetic+inttoptr sequences.
3756static const Value *getUnderlyingObjectFromInt(const Value *V) {
3757 do {
3758 if (const Operator *U = dyn_cast<Operator>(V)) {
3759 // If we find a ptrtoint, we can transfer control back to the
3760 // regular getUnderlyingObjectFromInt.
3761 if (U->getOpcode() == Instruction::PtrToInt)
3762 return U->getOperand(0);
3763 // If we find an add of a constant, a multiplied value, or a phi, it's
3764 // likely that the other operand will lead us to the base
3765 // object. We don't have to worry about the case where the
3766 // object address is somehow being computed by the multiply,
3767 // because our callers only care when the result is an
3768 // identifiable object.
3769 if (U->getOpcode() != Instruction::Add ||
3770 (!isa<ConstantInt>(U->getOperand(1)) &&
3771 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3772 !isa<PHINode>(U->getOperand(1))))
3773 return V;
3774 V = U->getOperand(0);
3775 } else {
3776 return V;
3777 }
3778 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3779 } while (true);
3780}
3781
3782/// This is a wrapper around GetUnderlyingObjects and adds support for basic
3783/// ptrtoint+arithmetic+inttoptr sequences.
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003784/// It returns false if unidentified object is found in GetUnderlyingObjects.
3785bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003786 SmallVectorImpl<Value *> &Objects,
3787 const DataLayout &DL) {
3788 SmallPtrSet<const Value *, 16> Visited;
3789 SmallVector<const Value *, 4> Working(1, V);
3790 do {
3791 V = Working.pop_back_val();
3792
3793 SmallVector<Value *, 4> Objs;
3794 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3795
3796 for (Value *V : Objs) {
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003797 if (!Visited.insert(V).second)
3798 continue;
3799 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3800 const Value *O =
3801 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3802 if (O->getType()->isPointerTy()) {
3803 Working.push_back(O);
3804 continue;
3805 }
3806 }
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003807 // If GetUnderlyingObjects fails to find an identifiable object,
3808 // getUnderlyingObjectsForCodeGen also fails for safety.
3809 if (!isIdentifiedObject(V)) {
3810 Objects.clear();
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003811 return false;
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003812 }
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003813 Objects.push_back(const_cast<Value *>(V));
3814 }
3815 } while (!Working.empty());
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003816 return true;
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003817}
3818
Sanjay Patelaee84212014-11-04 16:27:42 +00003819/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003820bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003821 for (const User *U : V->users()) {
3822 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003823 if (!II) return false;
3824
3825 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3826 II->getIntrinsicID() != Intrinsic::lifetime_end)
3827 return false;
3828 }
3829 return true;
3830}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003831
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003832bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3833 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003834 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003835 const Operator *Inst = dyn_cast<Operator>(V);
3836 if (!Inst)
3837 return false;
3838
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003839 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3840 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3841 if (C->canTrap())
3842 return false;
3843
3844 switch (Inst->getOpcode()) {
3845 default:
3846 return true;
3847 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003848 case Instruction::URem: {
3849 // x / y is undefined if y == 0.
3850 const APInt *V;
3851 if (match(Inst->getOperand(1), m_APInt(V)))
3852 return *V != 0;
3853 return false;
3854 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003855 case Instruction::SDiv:
3856 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003857 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003858 const APInt *Numerator, *Denominator;
3859 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3860 return false;
3861 // We cannot hoist this division if the denominator is 0.
3862 if (*Denominator == 0)
3863 return false;
3864 // It's safe to hoist if the denominator is not 0 or -1.
3865 if (*Denominator != -1)
3866 return true;
3867 // At this point we know that the denominator is -1. It is safe to hoist as
3868 // long we know that the numerator is not INT_MIN.
3869 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3870 return !Numerator->isMinSignedValue();
3871 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003872 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003873 }
3874 case Instruction::Load: {
3875 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003876 if (!LI->isUnordered() ||
3877 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003878 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003879 // Speculative load may load data from dirty regions.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00003880 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3881 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003882 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003883 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003884 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3885 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003886 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003887 case Instruction::Call: {
Matt Arsenaultcf5e7fe2017-04-28 21:13:09 +00003888 auto *CI = cast<const CallInst>(Inst);
3889 const Function *Callee = CI->getCalledFunction();
David Majnemer0a92f862015-08-28 21:13:39 +00003890
Matt Arsenault6a288c12017-05-03 02:26:10 +00003891 // The called function could have undefined behavior or side-effects, even
3892 // if marked readnone nounwind.
3893 return Callee && Callee->isSpeculatable();
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003894 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003895 case Instruction::VAArg:
3896 case Instruction::Alloca:
3897 case Instruction::Invoke:
3898 case Instruction::PHI:
3899 case Instruction::Store:
3900 case Instruction::Ret:
3901 case Instruction::Br:
3902 case Instruction::IndirectBr:
3903 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003904 case Instruction::Unreachable:
3905 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003906 case Instruction::AtomicRMW:
3907 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003908 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003909 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003910 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003911 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003912 case Instruction::CatchRet:
3913 case Instruction::CleanupPad:
3914 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003915 return false; // Misc instructions which have effects
3916 }
3917}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003918
Quentin Colombet6443cce2015-08-06 18:44:34 +00003919bool llvm::mayBeMemoryDependent(const Instruction &I) {
3920 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3921}
3922
Florian Hahn19f9e322018-08-17 14:39:04 +00003923OverflowResult llvm::computeOverflowForUnsignedMul(
3924 const Value *LHS, const Value *RHS, const DataLayout &DL,
3925 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
3926 bool UseInstrInfo) {
David Majnemer491331a2015-01-02 07:29:43 +00003927 // Multiplying n * m significant bits yields a result of n + m significant
3928 // bits. If the total number of significant bits does not exceed the
3929 // result bit width (minus 1), there is no overflow.
3930 // This means if we have enough leading zero bits in the operands
3931 // we can guarantee that the result does not overflow.
3932 // Ref: "Hacker's Delight" by Henry Warren
3933 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00003934 KnownBits LHSKnown(BitWidth);
3935 KnownBits RHSKnown(BitWidth);
Florian Hahn19f9e322018-08-17 14:39:04 +00003936 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3937 UseInstrInfo);
3938 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3939 UseInstrInfo);
David Majnemer491331a2015-01-02 07:29:43 +00003940 // Note that underestimating the number of zero bits gives a more
3941 // conservative answer.
Craig Topper8df66c62017-05-12 17:20:30 +00003942 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3943 RHSKnown.countMinLeadingZeros();
David Majnemer491331a2015-01-02 07:29:43 +00003944 // First handle the easy case: if we have enough zero bits there's
3945 // definitely no overflow.
3946 if (ZeroBits >= BitWidth)
3947 return OverflowResult::NeverOverflows;
3948
3949 // Get the largest possible values for each operand.
Craig Topperb45eabc2017-04-26 16:39:58 +00003950 APInt LHSMax = ~LHSKnown.Zero;
3951 APInt RHSMax = ~RHSKnown.Zero;
David Majnemer491331a2015-01-02 07:29:43 +00003952
3953 // We know the multiply operation doesn't overflow if the maximum values for
3954 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003955 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003956 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003957 if (!MaxOverflow)
3958 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003959
David Majnemerc8a576b2015-01-02 07:29:47 +00003960 // We know it always overflows if multiplying the smallest possible values for
3961 // the operands also results in overflow.
3962 bool MinOverflow;
Craig Topperb45eabc2017-04-26 16:39:58 +00003963 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003964 if (MinOverflow)
3965 return OverflowResult::AlwaysOverflows;
3966
3967 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003968}
David Majnemer5310c1e2015-01-07 00:39:50 +00003969
Florian Hahn19f9e322018-08-17 14:39:04 +00003970OverflowResult
3971llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
3972 const DataLayout &DL, AssumptionCache *AC,
3973 const Instruction *CxtI,
3974 const DominatorTree *DT, bool UseInstrInfo) {
Omer Paparo Bivasfbb83de2018-05-10 19:46:19 +00003975 // Multiplying n * m significant bits yields a result of n + m significant
3976 // bits. If the total number of significant bits does not exceed the
3977 // result bit width (minus 1), there is no overflow.
3978 // This means if we have enough leading sign bits in the operands
3979 // we can guarantee that the result does not overflow.
3980 // Ref: "Hacker's Delight" by Henry Warren
3981 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3982
3983 // Note that underestimating the number of sign bits gives a more
3984 // conservative answer.
3985 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
3986 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
3987
3988 // First handle the easy case: if we have enough sign bits there's
3989 // definitely no overflow.
3990 if (SignBits > BitWidth + 1)
3991 return OverflowResult::NeverOverflows;
3992
3993 // There are two ambiguous cases where there can be no overflow:
3994 // SignBits == BitWidth + 1 and
3995 // SignBits == BitWidth
3996 // The second case is difficult to check, therefore we only handle the
3997 // first case.
3998 if (SignBits == BitWidth + 1) {
3999 // It overflows only when both arguments are negative and the true
4000 // product is exactly the minimum negative number.
4001 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4002 // For simplicity we just check if at least one side is not negative.
Florian Hahn19f9e322018-08-17 14:39:04 +00004003 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4004 nullptr, UseInstrInfo);
4005 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4006 nullptr, UseInstrInfo);
Omer Paparo Bivasfbb83de2018-05-10 19:46:19 +00004007 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4008 return OverflowResult::NeverOverflows;
4009 }
4010 return OverflowResult::MayOverflow;
4011}
4012
Florian Hahn19f9e322018-08-17 14:39:04 +00004013OverflowResult llvm::computeOverflowForUnsignedAdd(
4014 const Value *LHS, const Value *RHS, const DataLayout &DL,
4015 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4016 bool UseInstrInfo) {
4017 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4018 nullptr, UseInstrInfo);
Craig Topper6e11a052017-05-08 16:22:48 +00004019 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
Florian Hahn19f9e322018-08-17 14:39:04 +00004020 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4021 nullptr, UseInstrInfo);
David Majnemer5310c1e2015-01-07 00:39:50 +00004022
Craig Topper6e11a052017-05-08 16:22:48 +00004023 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00004024 // The sign bit is set in both cases: this MUST overflow.
David Majnemer5310c1e2015-01-07 00:39:50 +00004025 return OverflowResult::AlwaysOverflows;
4026 }
4027
Craig Topper6e11a052017-05-08 16:22:48 +00004028 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00004029 // The sign bit is clear in both cases: this CANNOT overflow.
David Majnemer5310c1e2015-01-07 00:39:50 +00004030 return OverflowResult::NeverOverflows;
4031 }
4032 }
4033
4034 return OverflowResult::MayOverflow;
4035}
James Molloy71b91c22015-05-11 14:42:20 +00004036
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00004037/// Return true if we can prove that adding the two values of the
Craig Topperbb973722017-05-15 02:44:08 +00004038/// knownbits will not overflow.
4039/// Otherwise return false.
4040static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
4041 const KnownBits &RHSKnown) {
4042 // Addition of two 2's complement numbers having opposite signs will never
4043 // overflow.
4044 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
4045 (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
4046 return true;
4047
4048 // If either of the values is known to be non-negative, adding them can only
4049 // overflow if the second is also non-negative, so we can assume that.
Fangrui Songf78650a2018-07-30 19:41:25 +00004050 // Two non-negative numbers will only overflow if there is a carry to the
Craig Topperbb973722017-05-15 02:44:08 +00004051 // sign bit, so we can check if even when the values are as big as possible
4052 // there is no overflow to the sign bit.
4053 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
4054 APInt MaxLHS = ~LHSKnown.Zero;
4055 MaxLHS.clearSignBit();
4056 APInt MaxRHS = ~RHSKnown.Zero;
4057 MaxRHS.clearSignBit();
4058 APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
4059 return Result.isSignBitClear();
4060 }
4061
4062 // If either of the values is known to be negative, adding them can only
4063 // overflow if the second is also negative, so we can assume that.
4064 // Two negative number will only overflow if there is no carry to the sign
4065 // bit, so we can check if even when the values are as small as possible
4066 // there is overflow to the sign bit.
4067 if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
4068 APInt MinLHS = LHSKnown.One;
4069 MinLHS.clearSignBit();
4070 APInt MinRHS = RHSKnown.One;
4071 MinRHS.clearSignBit();
4072 APInt Result = std::move(MinLHS) + std::move(MinRHS);
4073 return Result.isSignBitSet();
4074 }
4075
4076 // If we reached here it means that we know nothing about the sign bits.
Fangrui Songf78650a2018-07-30 19:41:25 +00004077 // In this case we can't know if there will be an overflow, since by
Craig Topperbb973722017-05-15 02:44:08 +00004078 // changing the sign bits any two values can be made to overflow.
4079 return false;
4080}
4081
Pete Cooper35b00d52016-08-13 01:05:32 +00004082static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4083 const Value *RHS,
4084 const AddOperator *Add,
4085 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004086 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00004087 const Instruction *CxtI,
4088 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00004089 if (Add && Add->hasNoSignedWrap()) {
4090 return OverflowResult::NeverOverflows;
4091 }
4092
Craig Topperbb973722017-05-15 02:44:08 +00004093 // If LHS and RHS each have at least two sign bits, the addition will look
4094 // like
4095 //
4096 // XX..... +
4097 // YY.....
4098 //
4099 // If the carry into the most significant position is 0, X and Y can't both
4100 // be 1 and therefore the carry out of the addition is also 0.
4101 //
4102 // If the carry into the most significant position is 1, X and Y can't both
4103 // be 0 and therefore the carry out of the addition is also 1.
4104 //
4105 // Since the carry into the most significant position is always equal to
4106 // the carry out of the addition, there is no signed overflow.
4107 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4108 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4109 return OverflowResult::NeverOverflows;
4110
Craig Topper6e11a052017-05-08 16:22:48 +00004111 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
4112 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00004113
Craig Topperbb973722017-05-15 02:44:08 +00004114 if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
Jingyue Wu10fcea52015-08-20 18:27:04 +00004115 return OverflowResult::NeverOverflows;
Jingyue Wu10fcea52015-08-20 18:27:04 +00004116
4117 // The remaining code needs Add to be available. Early returns if not so.
4118 if (!Add)
4119 return OverflowResult::MayOverflow;
4120
4121 // If the sign of Add is the same as at least one of the operands, this add
4122 // CANNOT overflow. This is particularly useful when the sum is
4123 // @llvm.assume'ed non-negative rather than proved so from analyzing its
4124 // operands.
4125 bool LHSOrRHSKnownNonNegative =
Craig Topper6e11a052017-05-08 16:22:48 +00004126 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
Fangrui Songf78650a2018-07-30 19:41:25 +00004127 bool LHSOrRHSKnownNegative =
Craig Topperbb973722017-05-15 02:44:08 +00004128 (LHSKnown.isNegative() || RHSKnown.isNegative());
Jingyue Wu10fcea52015-08-20 18:27:04 +00004129 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
Craig Topper6e11a052017-05-08 16:22:48 +00004130 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
4131 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4132 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00004133 return OverflowResult::NeverOverflows;
4134 }
4135 }
4136
4137 return OverflowResult::MayOverflow;
4138}
4139
Omer Paparo Bivasfbb83de2018-05-10 19:46:19 +00004140OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4141 const Value *RHS,
4142 const DataLayout &DL,
4143 AssumptionCache *AC,
4144 const Instruction *CxtI,
4145 const DominatorTree *DT) {
Omer Paparo Bivasfbb83de2018-05-10 19:46:19 +00004146 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
Nikita Popovcf596a82018-11-28 16:37:04 +00004147 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
4148 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
4149
4150 // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
4151 if (LHSKnown.isNegative() && RHSKnown.isNonNegative())
4152 return OverflowResult::NeverOverflows;
4153
4154 // If the LHS is non-negative and the RHS negative, we always wrap.
4155 if (LHSKnown.isNonNegative() && RHSKnown.isNegative())
4156 return OverflowResult::AlwaysOverflows;
4157 }
Omer Paparo Bivasfbb83de2018-05-10 19:46:19 +00004158
4159 return OverflowResult::MayOverflow;
4160}
4161
4162OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4163 const Value *RHS,
4164 const DataLayout &DL,
4165 AssumptionCache *AC,
4166 const Instruction *CxtI,
4167 const DominatorTree *DT) {
4168 // If LHS and RHS each have at least two sign bits, the subtraction
4169 // cannot overflow.
4170 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4171 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4172 return OverflowResult::NeverOverflows;
4173
4174 KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT);
4175
4176 KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT);
4177
4178 // Subtraction of two 2's complement numbers having identical signs will
4179 // never overflow.
4180 if ((LHSKnown.isNegative() && RHSKnown.isNegative()) ||
4181 (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()))
4182 return OverflowResult::NeverOverflows;
4183
4184 // TODO: implement logic similar to checkRippleForAdd
4185 return OverflowResult::MayOverflow;
4186}
4187
Pete Cooper35b00d52016-08-13 01:05:32 +00004188bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
4189 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004190#ifndef NDEBUG
4191 auto IID = II->getIntrinsicID();
4192 assert((IID == Intrinsic::sadd_with_overflow ||
4193 IID == Intrinsic::uadd_with_overflow ||
4194 IID == Intrinsic::ssub_with_overflow ||
4195 IID == Intrinsic::usub_with_overflow ||
4196 IID == Intrinsic::smul_with_overflow ||
4197 IID == Intrinsic::umul_with_overflow) &&
4198 "Not an overflow intrinsic!");
4199#endif
4200
Pete Cooper35b00d52016-08-13 01:05:32 +00004201 SmallVector<const BranchInst *, 2> GuardingBranches;
4202 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004203
Pete Cooper35b00d52016-08-13 01:05:32 +00004204 for (const User *U : II->users()) {
4205 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004206 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4207
4208 if (EVI->getIndices()[0] == 0)
4209 Results.push_back(EVI);
4210 else {
4211 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4212
Pete Cooper35b00d52016-08-13 01:05:32 +00004213 for (const auto *U : EVI->users())
4214 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004215 assert(B->isConditional() && "How else is it using an i1?");
4216 GuardingBranches.push_back(B);
4217 }
4218 }
4219 } else {
4220 // We are using the aggregate directly in a way we don't want to analyze
4221 // here (storing it to a global, say).
4222 return false;
4223 }
4224 }
4225
Pete Cooper35b00d52016-08-13 01:05:32 +00004226 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004227 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4228 if (!NoWrapEdge.isSingleEdge())
4229 return false;
4230
4231 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00004232 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004233 // If the extractvalue itself is not executed on overflow, the we don't
4234 // need to check each use separately, since domination is transitive.
4235 if (DT.dominates(NoWrapEdge, Result->getParent()))
4236 continue;
4237
4238 for (auto &RU : Result->uses())
4239 if (!DT.dominates(NoWrapEdge, RU))
4240 return false;
4241 }
4242
4243 return true;
4244 };
4245
Eugene Zelenko75075ef2017-09-01 21:37:29 +00004246 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004247}
4248
4249
Pete Cooper35b00d52016-08-13 01:05:32 +00004250OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00004251 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004252 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00004253 const Instruction *CxtI,
4254 const DominatorTree *DT) {
4255 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004256 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00004257}
4258
Pete Cooper35b00d52016-08-13 01:05:32 +00004259OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4260 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00004261 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004262 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00004263 const Instruction *CxtI,
4264 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004265 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00004266}
4267
Jingyue Wu42f1d672015-07-28 18:22:40 +00004268bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00004269 // A memory operation returns normally if it isn't volatile. A volatile
4270 // operation is allowed to trap.
4271 //
4272 // An atomic operation isn't guaranteed to return in a reasonable amount of
4273 // time because it's possible for another thread to interfere with it for an
4274 // arbitrary length of time, but programs aren't allowed to rely on that.
4275 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
4276 return !LI->isVolatile();
4277 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
4278 return !SI->isVolatile();
4279 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
4280 return !CXI->isVolatile();
4281 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
4282 return !RMWI->isVolatile();
4283 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
4284 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00004285
Eli Friedmanf1da33e2016-06-11 21:48:25 +00004286 // If there is no successor, then execution can't transfer to it.
4287 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4288 return !CRI->unwindsToCaller();
4289 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4290 return !CatchSwitch->unwindsToCaller();
4291 if (isa<ResumeInst>(I))
4292 return false;
4293 if (isa<ReturnInst>(I))
4294 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00004295 if (isa<UnreachableInst>(I))
4296 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00004297
Eli Friedmanf1da33e2016-06-11 21:48:25 +00004298 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00004299 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00004300 // Call sites that throw have implicit non-local control flow.
4301 if (!CS.doesNotThrow())
4302 return false;
4303
4304 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4305 // etc. and thus not return. However, LLVM already assumes that
4306 //
4307 // - Thread exiting actions are modeled as writes to memory invisible to
4308 // the program.
4309 //
4310 // - Loops that don't have side effects (side effects are volatile/atomic
4311 // stores and IO) always terminate (see http://llvm.org/PR965).
4312 // Furthermore IO itself is also modeled as writes to memory invisible to
4313 // the program.
4314 //
4315 // We rely on those assumptions here, and use the memory effects of the call
4316 // target as a proxy for checking that it always returns.
4317
4318 // FIXME: This isn't aggressive enough; a call which only writes to a global
4319 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00004320 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
Dan Gohman2c74fe92017-11-08 21:59:51 +00004321 match(I, m_Intrinsic<Intrinsic::assume>()) ||
4322 match(I, m_Intrinsic<Intrinsic::sideeffect>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00004323 }
4324
4325 // Other instructions return normally.
4326 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004327}
4328
Philip Reamesfbffd122018-03-08 21:25:30 +00004329bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4330 // TODO: This is slightly consdervative for invoke instruction since exiting
4331 // via an exception *is* normal control for them.
4332 for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4333 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4334 return false;
4335 return true;
4336}
4337
Jingyue Wu42f1d672015-07-28 18:22:40 +00004338bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4339 const Loop *L) {
4340 // The loop header is guaranteed to be executed for every iteration.
4341 //
4342 // FIXME: Relax this constraint to cover all basic blocks that are
4343 // guaranteed to be executed at every iteration.
4344 if (I->getParent() != L->getHeader()) return false;
4345
4346 for (const Instruction &LI : *L->getHeader()) {
4347 if (&LI == I) return true;
4348 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4349 }
4350 llvm_unreachable("Instruction not contained in its own parent basic block.");
4351}
4352
4353bool llvm::propagatesFullPoison(const Instruction *I) {
4354 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004355 case Instruction::Add:
4356 case Instruction::Sub:
4357 case Instruction::Xor:
4358 case Instruction::Trunc:
4359 case Instruction::BitCast:
4360 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00004361 case Instruction::Mul:
4362 case Instruction::Shl:
4363 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004364 // These operations all propagate poison unconditionally. Note that poison
4365 // is not any particular value, so xor or subtraction of poison with
4366 // itself still yields poison, not zero.
4367 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004368
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004369 case Instruction::AShr:
4370 case Instruction::SExt:
4371 // For these operations, one bit of the input is replicated across
4372 // multiple output bits. A replicated poison bit is still poison.
4373 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004374
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004375 case Instruction::ICmp:
4376 // Comparing poison with any value yields poison. This is why, for
4377 // instance, x s< (x +nsw 1) can be folded to true.
4378 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00004379
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004380 default:
4381 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004382 }
4383}
4384
4385const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
4386 switch (I->getOpcode()) {
4387 case Instruction::Store:
4388 return cast<StoreInst>(I)->getPointerOperand();
4389
4390 case Instruction::Load:
4391 return cast<LoadInst>(I)->getPointerOperand();
4392
4393 case Instruction::AtomicCmpXchg:
4394 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4395
4396 case Instruction::AtomicRMW:
4397 return cast<AtomicRMWInst>(I)->getPointerOperand();
4398
4399 case Instruction::UDiv:
4400 case Instruction::SDiv:
4401 case Instruction::URem:
4402 case Instruction::SRem:
4403 return I->getOperand(1);
4404
4405 default:
4406 return nullptr;
4407 }
4408}
4409
Sanjoy Das08989c72017-04-30 19:41:19 +00004410bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004411 // We currently only look for uses of poison values within the same basic
4412 // block, as that makes it easier to guarantee that the uses will be
4413 // executed given that PoisonI is executed.
4414 //
4415 // FIXME: Expand this to consider uses beyond the same basic block. To do
4416 // this, look out for the distinction between post-dominance and strong
4417 // post-dominance.
4418 const BasicBlock *BB = PoisonI->getParent();
4419
4420 // Set of instructions that we have proved will yield poison if PoisonI
4421 // does.
4422 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004423 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004424 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004425 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004426
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004427 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00004428
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004429 unsigned Iter = 0;
4430 while (Iter++ < MaxDepth) {
4431 for (auto &I : make_range(Begin, End)) {
4432 if (&I != PoisonI) {
4433 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
4434 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
4435 return true;
4436 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4437 return false;
4438 }
4439
4440 // Mark poison that propagates from I through uses of I.
4441 if (YieldsPoison.count(&I)) {
4442 for (const User *User : I.users()) {
4443 const Instruction *UserI = cast<Instruction>(User);
4444 if (propagatesFullPoison(UserI))
4445 YieldsPoison.insert(User);
4446 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004447 }
4448 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004449
4450 if (auto *NextBB = BB->getSingleSuccessor()) {
4451 if (Visited.insert(NextBB).second) {
4452 BB = NextBB;
4453 Begin = BB->getFirstNonPHI()->getIterator();
4454 End = BB->end();
4455 continue;
4456 }
4457 }
4458
4459 break;
Eugene Zelenko75075ef2017-09-01 21:37:29 +00004460 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004461 return false;
4462}
4463
Pete Cooper35b00d52016-08-13 01:05:32 +00004464static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00004465 if (FMF.noNaNs())
4466 return true;
4467
4468 if (auto *C = dyn_cast<ConstantFP>(V))
4469 return !C->isNaN();
Thomas Livelyd47b5c72018-09-28 21:36:43 +00004470
4471 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4472 if (!C->getElementType()->isFloatingPointTy())
4473 return false;
4474 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4475 if (C->getElementAsAPFloat(I).isNaN())
4476 return false;
4477 }
4478 return true;
4479 }
4480
James Molloy134bec22015-08-11 09:12:57 +00004481 return false;
4482}
4483
Pete Cooper35b00d52016-08-13 01:05:32 +00004484static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00004485 if (auto *C = dyn_cast<ConstantFP>(V))
4486 return !C->isZero();
Thomas Livelyd47b5c72018-09-28 21:36:43 +00004487
4488 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4489 if (!C->getElementType()->isFloatingPointTy())
4490 return false;
4491 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4492 if (C->getElementAsAPFloat(I).isZero())
4493 return false;
4494 }
4495 return true;
4496 }
4497
James Molloy134bec22015-08-11 09:12:57 +00004498 return false;
4499}
4500
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004501/// Match clamp pattern for float types without care about NaNs or signed zeros.
4502/// Given non-min/max outer cmp/select from the clamp pattern this
4503/// function recognizes if it can be substitued by a "canonical" min/max
4504/// pattern.
4505static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4506 Value *CmpLHS, Value *CmpRHS,
4507 Value *TrueVal, Value *FalseVal,
4508 Value *&LHS, Value *&RHS) {
4509 // Try to match
4510 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4511 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4512 // and return description of the outer Max/Min.
4513
4514 // First, check if select has inverse order:
4515 if (CmpRHS == FalseVal) {
4516 std::swap(TrueVal, FalseVal);
4517 Pred = CmpInst::getInversePredicate(Pred);
4518 }
4519
4520 // Assume success now. If there's no match, callers should not use these anyway.
4521 LHS = TrueVal;
4522 RHS = FalseVal;
4523
4524 const APFloat *FC1;
4525 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4526 return {SPF_UNKNOWN, SPNB_NA, false};
4527
4528 const APFloat *FC2;
4529 switch (Pred) {
4530 case CmpInst::FCMP_OLT:
4531 case CmpInst::FCMP_OLE:
4532 case CmpInst::FCMP_ULT:
4533 case CmpInst::FCMP_ULE:
4534 if (match(FalseVal,
4535 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4536 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4537 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4538 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4539 break;
4540 case CmpInst::FCMP_OGT:
4541 case CmpInst::FCMP_OGE:
4542 case CmpInst::FCMP_UGT:
4543 case CmpInst::FCMP_UGE:
4544 if (match(FalseVal,
4545 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4546 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4547 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4548 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4549 break;
4550 default:
4551 break;
4552 }
4553
4554 return {SPF_UNKNOWN, SPNB_NA, false};
4555}
4556
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004557/// Recognize variations of:
4558/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4559static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4560 Value *CmpLHS, Value *CmpRHS,
4561 Value *TrueVal, Value *FalseVal) {
4562 // Swap the select operands and predicate to match the patterns below.
4563 if (CmpRHS != TrueVal) {
4564 Pred = ICmpInst::getSwappedPredicate(Pred);
4565 std::swap(TrueVal, FalseVal);
4566 }
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004567 const APInt *C1;
4568 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4569 const APInt *C2;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004570 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4571 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004572 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004573 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004574
4575 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4576 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004577 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004578 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004579
4580 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4581 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004582 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004583 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004584
4585 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4586 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004587 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004588 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004589 }
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004590 return {SPF_UNKNOWN, SPNB_NA, false};
4591}
4592
Sanjay Patel78114302018-01-02 20:56:45 +00004593/// Recognize variations of:
4594/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4595static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4596 Value *CmpLHS, Value *CmpRHS,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004597 Value *TVal, Value *FVal,
4598 unsigned Depth) {
Sanjay Patel78114302018-01-02 20:56:45 +00004599 // TODO: Allow FP min/max with nnan/nsz.
4600 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
4601
4602 Value *A, *B;
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004603 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
Sanjay Patel78114302018-01-02 20:56:45 +00004604 if (!SelectPatternResult::isMinOrMax(L.Flavor))
4605 return {SPF_UNKNOWN, SPNB_NA, false};
4606
4607 Value *C, *D;
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004608 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
Sanjay Patel78114302018-01-02 20:56:45 +00004609 if (L.Flavor != R.Flavor)
4610 return {SPF_UNKNOWN, SPNB_NA, false};
4611
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004612 // We have something like: x Pred y ? min(a, b) : min(c, d).
4613 // Try to match the compare to the min/max operations of the select operands.
4614 // First, make sure we have the right compare predicate.
Sanjay Patel78114302018-01-02 20:56:45 +00004615 switch (L.Flavor) {
4616 case SPF_SMIN:
4617 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4618 Pred = ICmpInst::getSwappedPredicate(Pred);
4619 std::swap(CmpLHS, CmpRHS);
4620 }
4621 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4622 break;
4623 return {SPF_UNKNOWN, SPNB_NA, false};
4624 case SPF_SMAX:
4625 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4626 Pred = ICmpInst::getSwappedPredicate(Pred);
4627 std::swap(CmpLHS, CmpRHS);
4628 }
4629 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4630 break;
4631 return {SPF_UNKNOWN, SPNB_NA, false};
4632 case SPF_UMIN:
4633 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4634 Pred = ICmpInst::getSwappedPredicate(Pred);
4635 std::swap(CmpLHS, CmpRHS);
4636 }
4637 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4638 break;
4639 return {SPF_UNKNOWN, SPNB_NA, false};
4640 case SPF_UMAX:
4641 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4642 Pred = ICmpInst::getSwappedPredicate(Pred);
4643 std::swap(CmpLHS, CmpRHS);
4644 }
4645 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4646 break;
4647 return {SPF_UNKNOWN, SPNB_NA, false};
4648 default:
Sanjay Patel7dfe96a2018-01-08 18:31:13 +00004649 return {SPF_UNKNOWN, SPNB_NA, false};
Sanjay Patel78114302018-01-02 20:56:45 +00004650 }
4651
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004652 // If there is a common operand in the already matched min/max and the other
4653 // min/max operands match the compare operands (either directly or inverted),
4654 // then this is min/max of the same flavor.
4655
Sanjay Patel78114302018-01-02 20:56:45 +00004656 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004657 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4658 if (D == B) {
4659 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4660 match(A, m_Not(m_Specific(CmpRHS)))))
4661 return {L.Flavor, SPNB_NA, false};
4662 }
Sanjay Patel78114302018-01-02 20:56:45 +00004663 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004664 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4665 if (C == B) {
4666 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4667 match(A, m_Not(m_Specific(CmpRHS)))))
4668 return {L.Flavor, SPNB_NA, false};
4669 }
Sanjay Patel78114302018-01-02 20:56:45 +00004670 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004671 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4672 if (D == A) {
4673 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4674 match(B, m_Not(m_Specific(CmpRHS)))))
4675 return {L.Flavor, SPNB_NA, false};
4676 }
Sanjay Patel78114302018-01-02 20:56:45 +00004677 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004678 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4679 if (C == A) {
4680 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4681 match(B, m_Not(m_Specific(CmpRHS)))))
4682 return {L.Flavor, SPNB_NA, false};
4683 }
Sanjay Patel78114302018-01-02 20:56:45 +00004684
4685 return {SPF_UNKNOWN, SPNB_NA, false};
4686}
4687
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004688/// Match non-obvious integer minimum and maximum sequences.
4689static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4690 Value *CmpLHS, Value *CmpRHS,
4691 Value *TrueVal, Value *FalseVal,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004692 Value *&LHS, Value *&RHS,
4693 unsigned Depth) {
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004694 // Assume success. If there's no match, callers should not use these anyway.
4695 LHS = TrueVal;
4696 RHS = FalseVal;
4697
4698 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4699 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4700 return SPR;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004701
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004702 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
Sanjay Patel78114302018-01-02 20:56:45 +00004703 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4704 return SPR;
Fangrui Songf78650a2018-07-30 19:41:25 +00004705
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004706 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
Sanjay Patel819f0962016-11-13 19:30:19 +00004707 return {SPF_UNKNOWN, SPNB_NA, false};
4708
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004709 // Z = X -nsw Y
4710 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4711 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4712 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004713 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004714 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004715
4716 // Z = X -nsw Y
4717 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4718 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4719 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004720 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004721 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004722
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004723 const APInt *C1;
Sanjay Patel819f0962016-11-13 19:30:19 +00004724 if (!match(CmpRHS, m_APInt(C1)))
4725 return {SPF_UNKNOWN, SPNB_NA, false};
4726
4727 // An unsigned min/max can be written with a signed compare.
4728 const APInt *C2;
4729 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4730 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4731 // Is the sign bit set?
4732 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4733 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Craig Topper81d772c2017-11-08 19:38:45 +00004734 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4735 C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004736 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004737
4738 // Is the sign bit clear?
4739 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4740 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004741 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4742 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004743 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004744 }
4745
4746 // Look through 'not' ops to find disguised signed min/max.
4747 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4748 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4749 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004750 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004751 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004752
4753 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4754 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4755 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004756 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004757 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004758
4759 return {SPF_UNKNOWN, SPNB_NA, false};
4760}
4761
Chen Zheng69bb0642018-07-21 12:27:54 +00004762bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
Chen Zhengfdf13ef2018-07-12 03:06:04 +00004763 assert(X && Y && "Invalid operand");
4764
Chen Zheng69bb0642018-07-21 12:27:54 +00004765 // X = sub (0, Y) || X = sub nsw (0, Y)
4766 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
4767 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
Chen Zhengfdf13ef2018-07-12 03:06:04 +00004768 return true;
4769
Chen Zheng69bb0642018-07-21 12:27:54 +00004770 // Y = sub (0, X) || Y = sub nsw (0, X)
4771 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
4772 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
Chen Zhengfdf13ef2018-07-12 03:06:04 +00004773 return true;
4774
Chen Zheng69bb0642018-07-21 12:27:54 +00004775 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
Chen Zhengfdf13ef2018-07-12 03:06:04 +00004776 Value *A, *B;
Chen Zheng69bb0642018-07-21 12:27:54 +00004777 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
4778 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
4779 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
4780 match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
Chen Zhengfdf13ef2018-07-12 03:06:04 +00004781}
4782
James Molloy134bec22015-08-11 09:12:57 +00004783static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4784 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004785 Value *CmpLHS, Value *CmpRHS,
4786 Value *TrueVal, Value *FalseVal,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004787 Value *&LHS, Value *&RHS,
4788 unsigned Depth) {
Sanjay Patele7c94ef2018-11-04 14:28:48 +00004789 if (CmpInst::isFPPredicate(Pred)) {
4790 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
4791 // 0.0 operand, set the compare's 0.0 operands to that same value for the
4792 // purpose of identifying min/max. Disregard vector constants with undefined
4793 // elements because those can not be back-propagated for analysis.
4794 Value *OutputZeroVal = nullptr;
4795 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
4796 !cast<Constant>(TrueVal)->containsUndefElement())
4797 OutputZeroVal = TrueVal;
4798 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
4799 !cast<Constant>(FalseVal)->containsUndefElement())
4800 OutputZeroVal = FalseVal;
4801
4802 if (OutputZeroVal) {
4803 if (match(CmpLHS, m_AnyZeroFP()))
4804 CmpLHS = OutputZeroVal;
4805 if (match(CmpRHS, m_AnyZeroFP()))
4806 CmpRHS = OutputZeroVal;
4807 }
4808 }
4809
James Molloy71b91c22015-05-11 14:42:20 +00004810 LHS = CmpLHS;
4811 RHS = CmpRHS;
4812
Sanjay Patel9a399792017-12-26 15:09:19 +00004813 // Signed zero may return inconsistent results between implementations.
4814 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4815 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4816 // Therefore, we behave conservatively and only proceed if at least one of the
4817 // operands is known to not be zero or if we don't care about signed zero.
James Molloy134bec22015-08-11 09:12:57 +00004818 switch (Pred) {
4819 default: break;
Sanjay Patel9a399792017-12-26 15:09:19 +00004820 // FIXME: Include OGT/OLT/UGT/ULT.
James Molloy134bec22015-08-11 09:12:57 +00004821 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4822 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4823 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4824 !isKnownNonZero(CmpRHS))
4825 return {SPF_UNKNOWN, SPNB_NA, false};
4826 }
4827
4828 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4829 bool Ordered = false;
4830
4831 // When given one NaN and one non-NaN input:
4832 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4833 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4834 // ordered comparison fails), which could be NaN or non-NaN.
4835 // so here we discover exactly what NaN behavior is required/accepted.
4836 if (CmpInst::isFPPredicate(Pred)) {
4837 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4838 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4839
4840 if (LHSSafe && RHSSafe) {
4841 // Both operands are known non-NaN.
4842 NaNBehavior = SPNB_RETURNS_ANY;
4843 } else if (CmpInst::isOrdered(Pred)) {
4844 // An ordered comparison will return false when given a NaN, so it
4845 // returns the RHS.
4846 Ordered = true;
4847 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004848 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004849 NaNBehavior = SPNB_RETURNS_NAN;
4850 else if (RHSSafe)
4851 NaNBehavior = SPNB_RETURNS_OTHER;
4852 else
4853 // Completely unsafe.
4854 return {SPF_UNKNOWN, SPNB_NA, false};
4855 } else {
4856 Ordered = false;
4857 // An unordered comparison will return true when given a NaN, so it
4858 // returns the LHS.
4859 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004860 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004861 NaNBehavior = SPNB_RETURNS_OTHER;
4862 else if (RHSSafe)
4863 NaNBehavior = SPNB_RETURNS_NAN;
4864 else
4865 // Completely unsafe.
4866 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004867 }
4868 }
4869
James Molloy71b91c22015-05-11 14:42:20 +00004870 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004871 std::swap(CmpLHS, CmpRHS);
4872 Pred = CmpInst::getSwappedPredicate(Pred);
4873 if (NaNBehavior == SPNB_RETURNS_NAN)
4874 NaNBehavior = SPNB_RETURNS_OTHER;
4875 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4876 NaNBehavior = SPNB_RETURNS_NAN;
4877 Ordered = !Ordered;
4878 }
4879
4880 // ([if]cmp X, Y) ? X : Y
4881 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004882 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004883 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004884 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004885 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004886 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004887 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004888 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004889 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004890 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004891 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4892 case FCmpInst::FCMP_UGT:
4893 case FCmpInst::FCMP_UGE:
4894 case FCmpInst::FCMP_OGT:
4895 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4896 case FCmpInst::FCMP_ULT:
4897 case FCmpInst::FCMP_ULE:
4898 case FCmpInst::FCMP_OLT:
4899 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004900 }
4901 }
Fangrui Songf78650a2018-07-30 19:41:25 +00004902
Chen Zhengccc84222018-07-16 02:23:00 +00004903 if (isKnownNegation(TrueVal, FalseVal)) {
4904 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
4905 // match against either LHS or sext(LHS).
4906 auto MaybeSExtCmpLHS =
4907 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
4908 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
4909 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
4910 if (match(TrueVal, MaybeSExtCmpLHS)) {
4911 // Set the return values. If the compare uses the negated value (-X >s 0),
4912 // swap the return values because the negated value is always 'RHS'.
Sanjay Patel284ba0c2018-07-02 14:43:40 +00004913 LHS = TrueVal;
4914 RHS = FalseVal;
Chen Zhengccc84222018-07-16 02:23:00 +00004915 if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
4916 std::swap(LHS, RHS);
4917
4918 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
4919 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
4920 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4921 return {SPF_ABS, SPNB_NA, false};
4922
4923 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
4924 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
4925 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4926 return {SPF_NABS, SPNB_NA, false};
4927 }
4928 else if (match(FalseVal, MaybeSExtCmpLHS)) {
4929 // Set the return values. If the compare uses the negated value (-X >s 0),
4930 // swap the return values because the negated value is always 'RHS'.
Sanjay Patel284ba0c2018-07-02 14:43:40 +00004931 LHS = FalseVal;
4932 RHS = TrueVal;
Chen Zhengccc84222018-07-16 02:23:00 +00004933 if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
4934 std::swap(LHS, RHS);
4935
4936 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
4937 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
4938 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4939 return {SPF_NABS, SPNB_NA, false};
4940
4941 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
4942 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
4943 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4944 return {SPF_ABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004945 }
James Molloy71b91c22015-05-11 14:42:20 +00004946 }
4947
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004948 if (CmpInst::isIntPredicate(Pred))
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004949 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004950
4951 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4952 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4953 // semantics than minNum. Be conservative in such case.
4954 if (NaNBehavior != SPNB_RETURNS_ANY ||
4955 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4956 !isKnownNonZero(CmpRHS)))
4957 return {SPF_UNKNOWN, SPNB_NA, false};
4958
4959 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004960}
James Molloy270ef8c2015-05-15 16:04:50 +00004961
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004962/// Helps to match a select pattern in case of a type mismatch.
4963///
4964/// The function processes the case when type of true and false values of a
4965/// select instruction differs from type of the cmp instruction operands because
Vedant Kumar1a8456d2018-03-02 18:57:02 +00004966/// of a cast instruction. The function checks if it is legal to move the cast
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004967/// operation after "select". If yes, it returns the new second value of
4968/// "select" (with the assumption that cast is moved):
4969/// 1. As operand of cast instruction when both values of "select" are same cast
4970/// instructions.
4971/// 2. As restored constant (by applying reverse cast operation) when the first
4972/// value of the "select" is a cast operation and the second value is a
4973/// constant.
4974/// NOTE: We return only the new second value because the first value could be
4975/// accessed as operand of cast instruction.
James Molloy569cea62015-09-02 17:25:25 +00004976static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4977 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004978 auto *Cast1 = dyn_cast<CastInst>(V1);
4979 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004980 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004981
Sanjay Patel14a4b812017-01-29 16:34:57 +00004982 *CastOp = Cast1->getOpcode();
4983 Type *SrcTy = Cast1->getSrcTy();
4984 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4985 // If V1 and V2 are both the same cast from the same type, look through V1.
4986 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4987 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004988 return nullptr;
4989 }
4990
Sanjay Patel14a4b812017-01-29 16:34:57 +00004991 auto *C = dyn_cast<Constant>(V2);
4992 if (!C)
4993 return nullptr;
4994
David Majnemerd2a074b2016-04-29 18:40:34 +00004995 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004996 switch (*CastOp) {
4997 case Instruction::ZExt:
4998 if (CmpI->isUnsigned())
4999 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5000 break;
5001 case Instruction::SExt:
5002 if (CmpI->isSigned())
5003 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5004 break;
5005 case Instruction::Trunc:
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00005006 Constant *CmpConst;
Nikolai Bozhenov9723f122017-10-18 14:24:50 +00005007 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5008 CmpConst->getType() == SrcTy) {
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00005009 // Here we have the following case:
5010 //
5011 // %cond = cmp iN %x, CmpConst
5012 // %tr = trunc iN %x to iK
5013 // %narrowsel = select i1 %cond, iK %t, iK C
5014 //
5015 // We can always move trunc after select operation:
5016 //
5017 // %cond = cmp iN %x, CmpConst
5018 // %widesel = select i1 %cond, iN %x, iN CmpConst
5019 // %tr = trunc iN %widesel to iK
5020 //
5021 // Note that C could be extended in any way because we don't care about
5022 // upper bits after truncation. It can't be abs pattern, because it would
5023 // look like:
5024 //
5025 // select i1 %cond, x, -x.
5026 //
5027 // So only min/max pattern could be matched. Such match requires widened C
5028 // == CmpConst. That is why set widened C = CmpConst, condition trunc
5029 // CmpConst == C is checked below.
5030 CastedTo = CmpConst;
5031 } else {
5032 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5033 }
Sanjay Patel14a4b812017-01-29 16:34:57 +00005034 break;
5035 case Instruction::FPTrunc:
5036 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5037 break;
5038 case Instruction::FPExt:
5039 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5040 break;
5041 case Instruction::FPToUI:
5042 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5043 break;
5044 case Instruction::FPToSI:
5045 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5046 break;
5047 case Instruction::UIToFP:
5048 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5049 break;
5050 case Instruction::SIToFP:
5051 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5052 break;
5053 default:
5054 break;
5055 }
David Majnemerd2a074b2016-04-29 18:40:34 +00005056
5057 if (!CastedTo)
5058 return nullptr;
5059
David Majnemerd2a074b2016-04-29 18:40:34 +00005060 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00005061 Constant *CastedBack =
5062 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00005063 if (CastedBack != C)
5064 return nullptr;
5065
5066 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00005067}
5068
Sanjay Patele8dc0902016-05-23 17:57:54 +00005069SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00005070 Instruction::CastOps *CastOp,
5071 unsigned Depth) {
5072 if (Depth >= MaxDepth)
5073 return {SPF_UNKNOWN, SPNB_NA, false};
5074
James Molloy270ef8c2015-05-15 16:04:50 +00005075 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00005076 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00005077
James Molloy134bec22015-08-11 09:12:57 +00005078 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5079 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00005080
James Molloy134bec22015-08-11 09:12:57 +00005081 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00005082 Value *CmpLHS = CmpI->getOperand(0);
5083 Value *CmpRHS = CmpI->getOperand(1);
5084 Value *TrueVal = SI->getTrueValue();
5085 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00005086 FastMathFlags FMF;
5087 if (isa<FPMathOperator>(CmpI))
5088 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00005089
5090 // Bail out early.
5091 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00005092 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00005093
5094 // Deal with type mismatches.
5095 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
Sanjay Patel9a399792017-12-26 15:09:19 +00005096 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5097 // If this is a potential fmin/fmax with a cast to integer, then ignore
5098 // -0.0 because there is no corresponding integer value.
5099 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5100 FMF.setNoSignedZeros();
James Molloy134bec22015-08-11 09:12:57 +00005101 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00005102 cast<CastInst>(TrueVal)->getOperand(0), C,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00005103 LHS, RHS, Depth);
Sanjay Patel9a399792017-12-26 15:09:19 +00005104 }
5105 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5106 // If this is a potential fmin/fmax with a cast to integer, then ignore
5107 // -0.0 because there is no corresponding integer value.
5108 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5109 FMF.setNoSignedZeros();
James Molloy134bec22015-08-11 09:12:57 +00005110 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00005111 C, cast<CastInst>(FalseVal)->getOperand(0),
Sanjay Patel1d91ec32018-01-24 15:20:37 +00005112 LHS, RHS, Depth);
Sanjay Patel9a399792017-12-26 15:09:19 +00005113 }
James Molloy270ef8c2015-05-15 16:04:50 +00005114 }
James Molloy134bec22015-08-11 09:12:57 +00005115 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00005116 LHS, RHS, Depth);
James Molloy270ef8c2015-05-15 16:04:50 +00005117}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00005118
Sanjay Patel7ed0bc22018-03-06 16:57:55 +00005119CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5120 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5121 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5122 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5123 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5124 if (SPF == SPF_FMINNUM)
5125 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5126 if (SPF == SPF_FMAXNUM)
5127 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5128 llvm_unreachable("unhandled!");
5129}
5130
5131SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5132 if (SPF == SPF_SMIN) return SPF_SMAX;
5133 if (SPF == SPF_UMIN) return SPF_UMAX;
5134 if (SPF == SPF_SMAX) return SPF_SMIN;
5135 if (SPF == SPF_UMAX) return SPF_UMIN;
5136 llvm_unreachable("unhandled!");
5137}
5138
5139CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5140 return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5141}
5142
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005143/// Return true if "icmp Pred LHS RHS" is always true.
Chad Rosiere42b44b2017-07-28 14:39:06 +00005144static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5145 const Value *RHS, const DataLayout &DL,
5146 unsigned Depth) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00005147 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005148 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5149 return true;
5150
5151 switch (Pred) {
5152 default:
5153 return false;
5154
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005155 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00005156 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005157
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005158 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00005159 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00005160 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005161 return false;
5162 }
5163
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005164 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00005165 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005166
Sanjoy Dasdc26df42015-11-11 00:16:41 +00005167 // LHS u<= LHS +_{nuw} C for any C
5168 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00005169 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00005170
5171 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00005172 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5173 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00005174 const APInt *&CA, const APInt *&CB) {
5175 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5176 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5177 return true;
5178
5179 // If X & C == 0 then (X | C) == X +_{nuw} C
5180 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5181 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
Craig Topperb45eabc2017-04-26 16:39:58 +00005182 KnownBits Known(CA->getBitWidth());
Chad Rosiere42b44b2017-07-28 14:39:06 +00005183 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5184 /*CxtI*/ nullptr, /*DT*/ nullptr);
Craig Topperb45eabc2017-04-26 16:39:58 +00005185 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
Sanjoy Das92568102015-11-10 23:56:20 +00005186 return true;
5187 }
5188
5189 return false;
5190 };
5191
Pete Cooper35b00d52016-08-13 01:05:32 +00005192 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00005193 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00005194 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5195 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00005196
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005197 return false;
5198 }
5199 }
5200}
5201
5202/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00005203/// ALHS ARHS" is true. Otherwise, return None.
5204static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00005205isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
Chad Rosiere42b44b2017-07-28 14:39:06 +00005206 const Value *ARHS, const Value *BLHS, const Value *BRHS,
5207 const DataLayout &DL, unsigned Depth) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005208 switch (Pred) {
5209 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00005210 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005211
5212 case CmpInst::ICMP_SLT:
5213 case CmpInst::ICMP_SLE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00005214 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5215 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00005216 return true;
5217 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005218
5219 case CmpInst::ICMP_ULT:
5220 case CmpInst::ICMP_ULE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00005221 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5222 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00005223 return true;
5224 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005225 }
5226}
5227
Chad Rosier226a7342016-05-05 17:41:19 +00005228/// Return true if the operands of the two compares match. IsSwappedOps is true
5229/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00005230static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5231 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00005232 bool &IsSwappedOps) {
5233
5234 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5235 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5236 return IsMatchingOps || IsSwappedOps;
5237}
5238
Sanjay Patel798c5982018-12-19 16:49:18 +00005239/// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
5240/// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
5241/// Otherwise, return None if we can't infer anything.
Chad Rosier41dd31f2016-04-20 19:15:26 +00005242static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Chad Rosier41dd31f2016-04-20 19:15:26 +00005243 CmpInst::Predicate BPred,
Sanjay Patel798c5982018-12-19 16:49:18 +00005244 bool AreSwappedOps) {
5245 // Canonicalize the predicate as if the operands were not commuted.
5246 if (AreSwappedOps)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00005247 BPred = ICmpInst::getSwappedPredicate(BPred);
Sanjay Patel798c5982018-12-19 16:49:18 +00005248
Chad Rosier99bc4802016-04-21 16:18:02 +00005249 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00005250 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00005251 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00005252 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00005253
Chad Rosier41dd31f2016-04-20 19:15:26 +00005254 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00005255}
5256
Sanjay Patel798c5982018-12-19 16:49:18 +00005257/// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
5258/// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
5259/// Otherwise, return None if we can't infer anything.
Chad Rosier25cfb7d2016-05-05 15:39:18 +00005260static Optional<bool>
Sanjay Patel798c5982018-12-19 16:49:18 +00005261isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00005262 const ConstantInt *C1,
5263 CmpInst::Predicate BPred,
Sanjay Patel798c5982018-12-19 16:49:18 +00005264 const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00005265 ConstantRange DomCR =
5266 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
5267 ConstantRange CR =
5268 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
5269 ConstantRange Intersection = DomCR.intersectWith(CR);
5270 ConstantRange Difference = DomCR.difference(CR);
5271 if (Intersection.isEmptySet())
5272 return false;
5273 if (Difference.isEmptySet())
5274 return true;
5275 return None;
5276}
5277
Chad Rosier2f498032017-07-28 18:47:43 +00005278/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
5279/// false. Otherwise, return None if we can't infer anything.
5280static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
5281 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00005282 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00005283 unsigned Depth) {
5284 Value *ALHS = LHS->getOperand(0);
5285 Value *ARHS = LHS->getOperand(1);
Chad Rosiera72a9ff2017-07-06 20:00:25 +00005286 // The rest of the logic assumes the LHS condition is true. If that's not the
5287 // case, invert the predicate to make it so.
Chad Rosier2f498032017-07-28 18:47:43 +00005288 ICmpInst::Predicate APred =
Chad Rosierdfd1de62017-08-01 20:18:54 +00005289 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
Chad Rosier2f498032017-07-28 18:47:43 +00005290
5291 Value *BLHS = RHS->getOperand(0);
5292 Value *BRHS = RHS->getOperand(1);
5293 ICmpInst::Predicate BPred = RHS->getPredicate();
Chad Rosiere2cbd132016-04-25 17:23:36 +00005294
Chad Rosier226a7342016-05-05 17:41:19 +00005295 // Can we infer anything when the two compares have matching operands?
Sanjay Patel798c5982018-12-19 16:49:18 +00005296 bool AreSwappedOps;
5297 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
Chad Rosier226a7342016-05-05 17:41:19 +00005298 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
Sanjay Patel798c5982018-12-19 16:49:18 +00005299 APred, BPred, AreSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00005300 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00005301 // No amount of additional analysis will infer the second condition, so
5302 // early exit.
5303 return None;
5304 }
5305
5306 // Can we infer anything when the LHS operands match and the RHS operands are
5307 // constants (not necessarily matching)?
5308 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
5309 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
Sanjay Patel798c5982018-12-19 16:49:18 +00005310 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
Chad Rosier226a7342016-05-05 17:41:19 +00005311 return Implication;
5312 // No amount of additional analysis will infer the second condition, so
5313 // early exit.
5314 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00005315 }
5316
Chad Rosier41dd31f2016-04-20 19:15:26 +00005317 if (APred == BPred)
Chad Rosiere42b44b2017-07-28 14:39:06 +00005318 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
Chad Rosier41dd31f2016-04-20 19:15:26 +00005319 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00005320}
Chad Rosier2f498032017-07-28 18:47:43 +00005321
Chad Rosierf73a10d2017-08-01 19:22:36 +00005322/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
5323/// false. Otherwise, return None if we can't infer anything. We expect the
5324/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
5325static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
5326 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00005327 const DataLayout &DL, bool LHSIsTrue,
Chad Rosierf73a10d2017-08-01 19:22:36 +00005328 unsigned Depth) {
5329 // The LHS must be an 'or' or an 'and' instruction.
5330 assert((LHS->getOpcode() == Instruction::And ||
5331 LHS->getOpcode() == Instruction::Or) &&
5332 "Expected LHS to be 'and' or 'or'.");
5333
Davide Italiano1a943a92017-08-09 16:06:54 +00005334 assert(Depth <= MaxDepth && "Hit recursion limit");
Chad Rosierf73a10d2017-08-01 19:22:36 +00005335
5336 // If the result of an 'or' is false, then we know both legs of the 'or' are
5337 // false. Similarly, if the result of an 'and' is true, then we know both
5338 // legs of the 'and' are true.
5339 Value *ALHS, *ARHS;
Chad Rosierdfd1de62017-08-01 20:18:54 +00005340 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
5341 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
Chad Rosierf73a10d2017-08-01 19:22:36 +00005342 // FIXME: Make this non-recursion.
5343 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00005344 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00005345 return Implication;
5346 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00005347 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00005348 return Implication;
5349 return None;
5350 }
5351 return None;
5352}
5353
Chad Rosier2f498032017-07-28 18:47:43 +00005354Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00005355 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00005356 unsigned Depth) {
Davide Italiano30e51942017-08-09 15:13:50 +00005357 // Bail out when we hit the limit.
5358 if (Depth == MaxDepth)
5359 return None;
5360
Chad Rosierf73a10d2017-08-01 19:22:36 +00005361 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
5362 // example.
Chad Rosier2f498032017-07-28 18:47:43 +00005363 if (LHS->getType() != RHS->getType())
5364 return None;
5365
5366 Type *OpTy = LHS->getType();
Chad Rosierf73a10d2017-08-01 19:22:36 +00005367 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
Chad Rosier2f498032017-07-28 18:47:43 +00005368
5369 // LHS ==> RHS by definition
5370 if (LHS == RHS)
Chad Rosierdfd1de62017-08-01 20:18:54 +00005371 return LHSIsTrue;
Chad Rosier2f498032017-07-28 18:47:43 +00005372
Chad Rosierf73a10d2017-08-01 19:22:36 +00005373 // FIXME: Extending the code below to handle vectors.
Chad Rosier2f498032017-07-28 18:47:43 +00005374 if (OpTy->isVectorTy())
Chad Rosier2f498032017-07-28 18:47:43 +00005375 return None;
Chad Rosierf73a10d2017-08-01 19:22:36 +00005376
Chad Rosier2f498032017-07-28 18:47:43 +00005377 assert(OpTy->isIntegerTy(1) && "implied by above");
5378
Chad Rosier2f498032017-07-28 18:47:43 +00005379 // Both LHS and RHS are icmps.
Chad Rosierf73a10d2017-08-01 19:22:36 +00005380 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
5381 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
5382 if (LHSCmp && RHSCmp)
Chad Rosierdfd1de62017-08-01 20:18:54 +00005383 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00005384
Chad Rosierf73a10d2017-08-01 19:22:36 +00005385 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
5386 // an icmp. FIXME: Add support for and/or on the RHS.
5387 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
5388 if (LHSBO && RHSCmp) {
5389 if ((LHSBO->getOpcode() == Instruction::And ||
5390 LHSBO->getOpcode() == Instruction::Or))
Chad Rosierdfd1de62017-08-01 20:18:54 +00005391 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00005392 }
Chad Rosierf73a10d2017-08-01 19:22:36 +00005393 return None;
Chad Rosier2f498032017-07-28 18:47:43 +00005394}
Sanjay Patel7d82d372018-12-02 13:26:03 +00005395
5396Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
5397 const Instruction *ContextI,
5398 const DataLayout &DL) {
5399 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
5400 if (!ContextI || !ContextI->getParent())
5401 return None;
5402
5403 // TODO: This is a poor/cheap way to determine dominance. Should we use a
5404 // dominator tree (eg, from a SimplifyQuery) instead?
5405 const BasicBlock *ContextBB = ContextI->getParent();
5406 const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
5407 if (!PredBB)
5408 return None;
5409
5410 // We need a conditional branch in the predecessor.
5411 Value *PredCond;
5412 BasicBlock *TrueBB, *FalseBB;
5413 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
5414 return None;
5415
5416 // The branch should get simplified. Don't bother simplifying this condition.
5417 if (TrueBB == FalseBB)
5418 return None;
5419
5420 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
5421 "Predecessor block does not point to successor?");
5422
5423 // Is this condition implied by the predecessor condition?
5424 bool CondIsTrue = TrueBB == ContextBB;
5425 return isImpliedCondition(PredCond, Cond, DL, CondIsTrue);
5426}