blob: 5329a0134b6f68c1618c09ee7c0ad14dd48fbd4a [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner00950542001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000040 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000044 </ol>
45 </li>
Chris Lattner00950542001-06-06 20:29:01 +000046 <li><a href="#t_derived">Derived Types</a>
47 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000048 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000049 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000050 <li><a href="#t_function">Function Type</a></li>
51 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000052 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000053 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000054 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000055 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000056 </ol>
57 </li>
Chris Lattner242d61d2009-02-02 07:32:36 +000058 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000059 </ol>
60 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000061 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000062 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000063 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner70882792009-02-28 18:32:25 +000064 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000065 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
66 <li><a href="#undefvalues">Undefined Values</a></li>
67 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000068 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000069 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000070 <li><a href="#othervalues">Other Values</a>
71 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000072 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000073 </ol>
74 </li>
Chris Lattner00950542001-06-06 20:29:01 +000075 <li><a href="#instref">Instruction Reference</a>
76 <ol>
77 <li><a href="#terminators">Terminator Instructions</a>
78 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000079 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
80 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000081 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
82 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000083 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000084 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000085 </ol>
86 </li>
Chris Lattner00950542001-06-06 20:29:01 +000087 <li><a href="#binaryops">Binary Operations</a>
88 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000089 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
90 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
91 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000092 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
93 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
94 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000095 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
96 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
97 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000098 </ol>
99 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000100 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
101 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000102 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
103 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
104 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000105 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000106 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000107 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000108 </ol>
109 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000110 <li><a href="#vectorops">Vector Operations</a>
111 <ol>
112 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
113 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
114 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000115 </ol>
116 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000117 <li><a href="#aggregateops">Aggregate Operations</a>
118 <ol>
119 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
120 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
121 </ol>
122 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000123 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000124 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000125 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
126 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
127 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000128 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
129 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
130 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000131 </ol>
132 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000133 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000134 <ol>
135 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
136 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
137 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000140 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
141 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
142 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
143 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000144 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
145 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000146 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000147 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000148 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000149 <li><a href="#otherops">Other Operations</a>
150 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000151 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
152 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000153 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
154 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000155 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000156 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000157 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000158 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000159 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000161 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000162 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000163 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000164 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000165 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
166 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000167 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
168 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
169 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000170 </ol>
171 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000172 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
173 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000174 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
175 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
176 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000177 </ol>
178 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000179 <li><a href="#int_codegen">Code Generator Intrinsics</a>
180 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000181 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
182 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
183 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
184 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
185 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
186 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
187 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000188 </ol>
189 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000190 <li><a href="#int_libc">Standard C Library Intrinsics</a>
191 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000192 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000197 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000200 </ol>
201 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000202 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000203 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000204 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000205 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000208 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
209 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000210 </ol>
211 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000212 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
213 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000214 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
215 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
216 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
217 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
218 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling41b485c2009-02-08 23:00:09 +0000219 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000220 </ol>
221 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000222 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000223 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000224 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000225 <ol>
226 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000227 </ol>
228 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000229 <li><a href="#int_atomics">Atomic intrinsics</a>
230 <ol>
231 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
232 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
233 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
234 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
235 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
236 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
237 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
238 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
239 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
240 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
241 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
242 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
243 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
244 </ol>
245 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000246 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000247 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000248 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000249 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000250 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000251 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000252 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000253 '<tt>llvm.trap</tt>' Intrinsic</a></li>
254 <li><a href="#int_stackprotector">
255 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000256 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000257 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000258 </ol>
259 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000260</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000261
262<div class="doc_author">
263 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
264 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000265</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000266
Chris Lattner00950542001-06-06 20:29:01 +0000267<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000268<div class="doc_section"> <a name="abstract">Abstract </a></div>
269<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000270
Misha Brukman9d0919f2003-11-08 01:05:38 +0000271<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000272<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000273LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000274type safety, low-level operations, flexibility, and the capability of
275representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000276representation used throughout all phases of the LLVM compilation
277strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000278</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000279
Chris Lattner00950542001-06-06 20:29:01 +0000280<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000281<div class="doc_section"> <a name="introduction">Introduction</a> </div>
282<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000283
Misha Brukman9d0919f2003-11-08 01:05:38 +0000284<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000285
Chris Lattner261efe92003-11-25 01:02:51 +0000286<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000287different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000288representation (suitable for fast loading by a Just-In-Time compiler),
289and as a human readable assembly language representation. This allows
290LLVM to provide a powerful intermediate representation for efficient
291compiler transformations and analysis, while providing a natural means
292to debug and visualize the transformations. The three different forms
293of LLVM are all equivalent. This document describes the human readable
294representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000295
John Criswellc1f786c2005-05-13 22:25:59 +0000296<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000297while being expressive, typed, and extensible at the same time. It
298aims to be a "universal IR" of sorts, by being at a low enough level
299that high-level ideas may be cleanly mapped to it (similar to how
300microprocessors are "universal IR's", allowing many source languages to
301be mapped to them). By providing type information, LLVM can be used as
302the target of optimizations: for example, through pointer analysis, it
303can be proven that a C automatic variable is never accessed outside of
304the current function... allowing it to be promoted to a simple SSA
305value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000306
Misha Brukman9d0919f2003-11-08 01:05:38 +0000307</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000308
Chris Lattner00950542001-06-06 20:29:01 +0000309<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000310<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000311
Misha Brukman9d0919f2003-11-08 01:05:38 +0000312<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000313
Chris Lattner261efe92003-11-25 01:02:51 +0000314<p>It is important to note that this document describes 'well formed'
315LLVM assembly language. There is a difference between what the parser
316accepts and what is considered 'well formed'. For example, the
317following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000318
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000319<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000320<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000321%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000322</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000323</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000324
Chris Lattner261efe92003-11-25 01:02:51 +0000325<p>...because the definition of <tt>%x</tt> does not dominate all of
326its uses. The LLVM infrastructure provides a verification pass that may
327be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000328automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000329the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000330by the verifier pass indicate bugs in transformation passes or input to
331the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000332</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000333
Chris Lattnercc689392007-10-03 17:34:29 +0000334<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000335
Chris Lattner00950542001-06-06 20:29:01 +0000336<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000337<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000338<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000339
Misha Brukman9d0919f2003-11-08 01:05:38 +0000340<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000341
Reid Spencer2c452282007-08-07 14:34:28 +0000342 <p>LLVM identifiers come in two basic types: global and local. Global
343 identifiers (functions, global variables) begin with the @ character. Local
344 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000345 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000346
Chris Lattner00950542001-06-06 20:29:01 +0000347<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000348 <li>Named values are represented as a string of characters with their prefix.
349 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
350 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000351 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000352 with quotes. Special characters may be escaped using "\xx" where xx is the
353 ASCII code for the character in hexadecimal. In this way, any character can
354 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000355
Reid Spencer2c452282007-08-07 14:34:28 +0000356 <li>Unnamed values are represented as an unsigned numeric value with their
357 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000358
Reid Spencercc16dc32004-12-09 18:02:53 +0000359 <li>Constants, which are described in a <a href="#constants">section about
360 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000361</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000362
Reid Spencer2c452282007-08-07 14:34:28 +0000363<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000364don't need to worry about name clashes with reserved words, and the set of
365reserved words may be expanded in the future without penalty. Additionally,
366unnamed identifiers allow a compiler to quickly come up with a temporary
367variable without having to avoid symbol table conflicts.</p>
368
Chris Lattner261efe92003-11-25 01:02:51 +0000369<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000370languages. There are keywords for different opcodes
371('<tt><a href="#i_add">add</a></tt>',
372 '<tt><a href="#i_bitcast">bitcast</a></tt>',
373 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000374href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000375and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000376none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000377
378<p>Here is an example of LLVM code to multiply the integer variable
379'<tt>%X</tt>' by 8:</p>
380
Misha Brukman9d0919f2003-11-08 01:05:38 +0000381<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000382
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000383<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000384<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000385%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000386</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000387</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000388
Misha Brukman9d0919f2003-11-08 01:05:38 +0000389<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000390
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000391<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000392<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000393%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000394</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000395</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000396
Misha Brukman9d0919f2003-11-08 01:05:38 +0000397<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000398
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000399<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000400<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000401<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
402<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
403%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000404</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000405</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000406
Chris Lattner261efe92003-11-25 01:02:51 +0000407<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
408important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000409
Chris Lattner00950542001-06-06 20:29:01 +0000410<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000411
412 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
413 line.</li>
414
415 <li>Unnamed temporaries are created when the result of a computation is not
416 assigned to a named value.</li>
417
Misha Brukman9d0919f2003-11-08 01:05:38 +0000418 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000419
Misha Brukman9d0919f2003-11-08 01:05:38 +0000420</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000421
John Criswelle4c57cc2005-05-12 16:52:32 +0000422<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000423demonstrating instructions, we will follow an instruction with a comment that
424defines the type and name of value produced. Comments are shown in italic
425text.</p>
426
Misha Brukman9d0919f2003-11-08 01:05:38 +0000427</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000428
429<!-- *********************************************************************** -->
430<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
431<!-- *********************************************************************** -->
432
433<!-- ======================================================================= -->
434<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
435</div>
436
437<div class="doc_text">
438
439<p>LLVM programs are composed of "Module"s, each of which is a
440translation unit of the input programs. Each module consists of
441functions, global variables, and symbol table entries. Modules may be
442combined together with the LLVM linker, which merges function (and
443global variable) definitions, resolves forward declarations, and merges
444symbol table entries. Here is an example of the "hello world" module:</p>
445
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000446<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000447<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000448<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
449 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000450
451<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000452<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000453
454<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000455define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000456 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000457 %cast210 = <a
Dan Gohman2a08c532009-01-04 23:44:43 +0000458 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000459
460 <i>; Call puts function to write out the string to stdout...</i>
461 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000462 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000463 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000464 href="#i_ret">ret</a> i32 0<br>}<br>
465</pre>
466</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000467
468<p>This example is made up of a <a href="#globalvars">global variable</a>
469named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
470function, and a <a href="#functionstructure">function definition</a>
471for "<tt>main</tt>".</p>
472
Chris Lattnere5d947b2004-12-09 16:36:40 +0000473<p>In general, a module is made up of a list of global values,
474where both functions and global variables are global values. Global values are
475represented by a pointer to a memory location (in this case, a pointer to an
476array of char, and a pointer to a function), and have one of the following <a
477href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000478
Chris Lattnere5d947b2004-12-09 16:36:40 +0000479</div>
480
481<!-- ======================================================================= -->
482<div class="doc_subsection">
483 <a name="linkage">Linkage Types</a>
484</div>
485
486<div class="doc_text">
487
488<p>
489All Global Variables and Functions have one of the following types of linkage:
490</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000491
492<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000493
Rafael Espindolabb46f522009-01-15 20:18:42 +0000494 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
495
496 <dd>Global values with private linkage are only directly accessible by
497 objects in the current module. In particular, linking code into a module with
498 an private global value may cause the private to be renamed as necessary to
499 avoid collisions. Because the symbol is private to the module, all
500 references can be updated. This doesn't show up in any symbol table in the
501 object file.
502 </dd>
503
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000504 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000505
Duncan Sands81d05c22009-01-16 09:29:46 +0000506 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindolabb46f522009-01-15 20:18:42 +0000507 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000508 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000509 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000510
Chris Lattnerfa730212004-12-09 16:11:40 +0000511 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000512
Chris Lattner4887bd82007-01-14 06:51:48 +0000513 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
514 the same name when linkage occurs. This is typically used to implement
515 inline functions, templates, or other code which must be generated in each
516 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
517 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000518 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000519
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000520 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
521
522 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
523 linkage, except that unreferenced <tt>common</tt> globals may not be
524 discarded. This is used for globals that may be emitted in multiple
525 translation units, but that are not guaranteed to be emitted into every
526 translation unit that uses them. One example of this is tentative
527 definitions in C, such as "<tt>int X;</tt>" at global scope.
528 </dd>
529
Chris Lattnerfa730212004-12-09 16:11:40 +0000530 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000531
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000532 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
533 that some targets may choose to emit different assembly sequences for them
534 for target-dependent reasons. This is used for globals that are declared
535 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000536 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000537
Chris Lattnerfa730212004-12-09 16:11:40 +0000538 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000539
540 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
541 pointer to array type. When two global variables with appending linkage are
542 linked together, the two global arrays are appended together. This is the
543 LLVM, typesafe, equivalent of having the system linker append together
544 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000545 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000546
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000547 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000548 <dd>The semantics of this linkage follow the ELF object file model: the
549 symbol is weak until linked, if not linked, the symbol becomes null instead
550 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000551 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000552
Chris Lattnerfa730212004-12-09 16:11:40 +0000553 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000554
555 <dd>If none of the above identifiers are used, the global is externally
556 visible, meaning that it participates in linkage and can be used to resolve
557 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000558 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000559</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000560
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000561 <p>
562 The next two types of linkage are targeted for Microsoft Windows platform
563 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000564 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000565 </p>
566
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000567 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000568 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
569
570 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
571 or variable via a global pointer to a pointer that is set up by the DLL
572 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman79564122009-01-12 21:35:55 +0000573 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000574 </dd>
575
576 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
577
578 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
579 pointer to a pointer in a DLL, so that it can be referenced with the
580 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman79564122009-01-12 21:35:55 +0000581 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000582 name.
583 </dd>
584
Chris Lattnerfa730212004-12-09 16:11:40 +0000585</dl>
586
Dan Gohmanf0032762008-11-24 17:18:39 +0000587<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000588variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
589variable and was linked with this one, one of the two would be renamed,
590preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
591external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000592outside of the current module.</p>
593<p>It is illegal for a function <i>declaration</i>
594to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000595or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000596<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000597linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000598</div>
599
600<!-- ======================================================================= -->
601<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000602 <a name="callingconv">Calling Conventions</a>
603</div>
604
605<div class="doc_text">
606
607<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
608and <a href="#i_invoke">invokes</a> can all have an optional calling convention
609specified for the call. The calling convention of any pair of dynamic
610caller/callee must match, or the behavior of the program is undefined. The
611following calling conventions are supported by LLVM, and more may be added in
612the future:</p>
613
614<dl>
615 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
616
617 <dd>This calling convention (the default if no other calling convention is
618 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000619 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000620 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000621 </dd>
622
623 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
624
625 <dd>This calling convention attempts to make calls as fast as possible
626 (e.g. by passing things in registers). This calling convention allows the
627 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000628 without having to conform to an externally specified ABI (Application Binary
629 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000630 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
631 supported. This calling convention does not support varargs and requires the
632 prototype of all callees to exactly match the prototype of the function
633 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000634 </dd>
635
636 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
637
638 <dd>This calling convention attempts to make code in the caller as efficient
639 as possible under the assumption that the call is not commonly executed. As
640 such, these calls often preserve all registers so that the call does not break
641 any live ranges in the caller side. This calling convention does not support
642 varargs and requires the prototype of all callees to exactly match the
643 prototype of the function definition.
644 </dd>
645
Chris Lattnercfe6b372005-05-07 01:46:40 +0000646 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000647
648 <dd>Any calling convention may be specified by number, allowing
649 target-specific calling conventions to be used. Target specific calling
650 conventions start at 64.
651 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000652</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000653
654<p>More calling conventions can be added/defined on an as-needed basis, to
655support pascal conventions or any other well-known target-independent
656convention.</p>
657
658</div>
659
660<!-- ======================================================================= -->
661<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000662 <a name="visibility">Visibility Styles</a>
663</div>
664
665<div class="doc_text">
666
667<p>
668All Global Variables and Functions have one of the following visibility styles:
669</p>
670
671<dl>
672 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
673
Chris Lattnerd3eda892008-08-05 18:29:16 +0000674 <dd>On targets that use the ELF object file format, default visibility means
675 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000676 modules and, in shared libraries, means that the declared entity may be
677 overridden. On Darwin, default visibility means that the declaration is
678 visible to other modules. Default visibility corresponds to "external
679 linkage" in the language.
680 </dd>
681
682 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
683
684 <dd>Two declarations of an object with hidden visibility refer to the same
685 object if they are in the same shared object. Usually, hidden visibility
686 indicates that the symbol will not be placed into the dynamic symbol table,
687 so no other module (executable or shared library) can reference it
688 directly.
689 </dd>
690
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000691 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
692
693 <dd>On ELF, protected visibility indicates that the symbol will be placed in
694 the dynamic symbol table, but that references within the defining module will
695 bind to the local symbol. That is, the symbol cannot be overridden by another
696 module.
697 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000698</dl>
699
700</div>
701
702<!-- ======================================================================= -->
703<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000704 <a name="namedtypes">Named Types</a>
705</div>
706
707<div class="doc_text">
708
709<p>LLVM IR allows you to specify name aliases for certain types. This can make
710it easier to read the IR and make the IR more condensed (particularly when
711recursive types are involved). An example of a name specification is:
712</p>
713
714<div class="doc_code">
715<pre>
716%mytype = type { %mytype*, i32 }
717</pre>
718</div>
719
720<p>You may give a name to any <a href="#typesystem">type</a> except "<a
721href="t_void">void</a>". Type name aliases may be used anywhere a type is
722expected with the syntax "%mytype".</p>
723
724<p>Note that type names are aliases for the structural type that they indicate,
725and that you can therefore specify multiple names for the same type. This often
726leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
727structural typing, the name is not part of the type. When printing out LLVM IR,
728the printer will pick <em>one name</em> to render all types of a particular
729shape. This means that if you have code where two different source types end up
730having the same LLVM type, that the dumper will sometimes print the "wrong" or
731unexpected type. This is an important design point and isn't going to
732change.</p>
733
734</div>
735
Chris Lattnere7886e42009-01-11 20:53:49 +0000736<!-- ======================================================================= -->
737<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000738 <a name="globalvars">Global Variables</a>
739</div>
740
741<div class="doc_text">
742
Chris Lattner3689a342005-02-12 19:30:21 +0000743<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000744instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000745an explicit section to be placed in, and may have an optional explicit alignment
746specified. A variable may be defined as "thread_local", which means that it
747will not be shared by threads (each thread will have a separated copy of the
748variable). A variable may be defined as a global "constant," which indicates
749that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000750optimization, allowing the global data to be placed in the read-only section of
751an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000752cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000753
754<p>
755LLVM explicitly allows <em>declarations</em> of global variables to be marked
756constant, even if the final definition of the global is not. This capability
757can be used to enable slightly better optimization of the program, but requires
758the language definition to guarantee that optimizations based on the
759'constantness' are valid for the translation units that do not include the
760definition.
761</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000762
763<p>As SSA values, global variables define pointer values that are in
764scope (i.e. they dominate) all basic blocks in the program. Global
765variables always define a pointer to their "content" type because they
766describe a region of memory, and all memory objects in LLVM are
767accessed through pointers.</p>
768
Christopher Lamb284d9922007-12-11 09:31:00 +0000769<p>A global variable may be declared to reside in a target-specifc numbered
770address space. For targets that support them, address spaces may affect how
771optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000772the variable. The default address space is zero. The address space qualifier
773must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000774
Chris Lattner88f6c462005-11-12 00:45:07 +0000775<p>LLVM allows an explicit section to be specified for globals. If the target
776supports it, it will emit globals to the section specified.</p>
777
Chris Lattner2cbdc452005-11-06 08:02:57 +0000778<p>An explicit alignment may be specified for a global. If not present, or if
779the alignment is set to zero, the alignment of the global is set by the target
780to whatever it feels convenient. If an explicit alignment is specified, the
781global is forced to have at least that much alignment. All alignments must be
782a power of 2.</p>
783
Christopher Lamb284d9922007-12-11 09:31:00 +0000784<p>For example, the following defines a global in a numbered address space with
785an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000786
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000787<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000788<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000789@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000790</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000791</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000792
Chris Lattnerfa730212004-12-09 16:11:40 +0000793</div>
794
795
796<!-- ======================================================================= -->
797<div class="doc_subsection">
798 <a name="functionstructure">Functions</a>
799</div>
800
801<div class="doc_text">
802
Reid Spencerca86e162006-12-31 07:07:53 +0000803<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
804an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000805<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000806<a href="#callingconv">calling convention</a>, a return type, an optional
807<a href="#paramattrs">parameter attribute</a> for the return type, a function
808name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000809<a href="#paramattrs">parameter attributes</a>), optional
810<a href="#fnattrs">function attributes</a>, an optional section,
811an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000812an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000813
814LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
815optional <a href="#linkage">linkage type</a>, an optional
816<a href="#visibility">visibility style</a>, an optional
817<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000818<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000819name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000820<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000821
Chris Lattnerd3eda892008-08-05 18:29:16 +0000822<p>A function definition contains a list of basic blocks, forming the CFG
823(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000824the function. Each basic block may optionally start with a label (giving the
825basic block a symbol table entry), contains a list of instructions, and ends
826with a <a href="#terminators">terminator</a> instruction (such as a branch or
827function return).</p>
828
Chris Lattner4a3c9012007-06-08 16:52:14 +0000829<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000830executed on entrance to the function, and it is not allowed to have predecessor
831basic blocks (i.e. there can not be any branches to the entry block of a
832function). Because the block can have no predecessors, it also cannot have any
833<a href="#i_phi">PHI nodes</a>.</p>
834
Chris Lattner88f6c462005-11-12 00:45:07 +0000835<p>LLVM allows an explicit section to be specified for functions. If the target
836supports it, it will emit functions to the section specified.</p>
837
Chris Lattner2cbdc452005-11-06 08:02:57 +0000838<p>An explicit alignment may be specified for a function. If not present, or if
839the alignment is set to zero, the alignment of the function is set by the target
840to whatever it feels convenient. If an explicit alignment is specified, the
841function is forced to have at least that much alignment. All alignments must be
842a power of 2.</p>
843
Devang Patel307e8ab2008-10-07 17:48:33 +0000844 <h5>Syntax:</h5>
845
846<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000847<tt>
848define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
849 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
850 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
851 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
852 [<a href="#gc">gc</a>] { ... }
853</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000854</div>
855
Chris Lattnerfa730212004-12-09 16:11:40 +0000856</div>
857
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000858
859<!-- ======================================================================= -->
860<div class="doc_subsection">
861 <a name="aliasstructure">Aliases</a>
862</div>
863<div class="doc_text">
864 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000865 function, global variable, another alias or bitcast of global value). Aliases
866 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000867 optional <a href="#visibility">visibility style</a>.</p>
868
869 <h5>Syntax:</h5>
870
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000871<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000872<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000873@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000874</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000875</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000876
877</div>
878
879
880
Chris Lattner4e9aba72006-01-23 23:23:47 +0000881<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000882<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
883<div class="doc_text">
884 <p>The return type and each parameter of a function type may have a set of
885 <i>parameter attributes</i> associated with them. Parameter attributes are
886 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000887 a function. Parameter attributes are considered to be part of the function,
888 not of the function type, so functions with different parameter attributes
889 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000890
Reid Spencer950e9f82007-01-15 18:27:39 +0000891 <p>Parameter attributes are simple keywords that follow the type specified. If
892 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000893 example:</p>
894
895<div class="doc_code">
896<pre>
Nick Lewyckyb6a7d252009-02-15 23:06:14 +0000897declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000898declare i32 @atoi(i8 zeroext)
899declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000900</pre>
901</div>
902
Duncan Sandsdc024672007-11-27 13:23:08 +0000903 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
904 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000905
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000906 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000907 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000908 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000909 <dd>This indicates to the code generator that the parameter or return value
910 should be zero-extended to a 32-bit value by the caller (for a parameter)
911 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000912
Reid Spencer9445e9a2007-07-19 23:13:04 +0000913 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000914 <dd>This indicates to the code generator that the parameter or return value
915 should be sign-extended to a 32-bit value by the caller (for a parameter)
916 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000917
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000918 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000919 <dd>This indicates that this parameter or return value should be treated
920 in a special target-dependent fashion during while emitting code for a
921 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000922 to memory, though some targets use it to distinguish between two different
923 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000924
Duncan Sandsedb05df2008-10-06 08:14:18 +0000925 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000926 <dd>This indicates that the pointer parameter should really be passed by
927 value to the function. The attribute implies that a hidden copy of the
928 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000929 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000930 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000931 value, but is also valid on pointers to scalars. The copy is considered to
932 belong to the caller not the callee (for example,
933 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000934 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerce459b12009-02-05 05:42:28 +0000935 values. The byval attribute also supports specifying an alignment with the
936 align attribute. This has a target-specific effect on the code generator
937 that usually indicates a desired alignment for the synthesized stack
938 slot.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000939
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000940 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000941 <dd>This indicates that the pointer parameter specifies the address of a
942 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000943 This pointer must be guaranteed by the caller to be valid: loads and stores
944 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000945 be applied to the first parameter. This is not a valid attribute for
946 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000947
Zhou Shengfebca342007-06-05 05:28:26 +0000948 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000949 <dd>This indicates that the pointer does not alias any global or any other
950 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000951 case. On a function return value, <tt>noalias</tt> additionally indicates
952 that the pointer does not alias any other pointers visible to the
Nick Lewyckyf23d0d32008-12-19 06:39:12 +0000953 caller. For further details, please see the discussion of the NoAlias
954 response in
955 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
956 analysis</a>.</dd>
957
958 <dt><tt>nocapture</tt></dt>
959 <dd>This indicates that the callee does not make any copies of the pointer
960 that outlive the callee itself. This is not a valid attribute for return
961 values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000962
Duncan Sands50f19f52007-07-27 19:57:41 +0000963 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000964 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000965 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
966 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000967 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000968
Reid Spencerca86e162006-12-31 07:07:53 +0000969</div>
970
971<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000972<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000973 <a name="gc">Garbage Collector Names</a>
974</div>
975
976<div class="doc_text">
977<p>Each function may specify a garbage collector name, which is simply a
978string.</p>
979
980<div class="doc_code"><pre
981>define void @f() gc "name" { ...</pre></div>
982
983<p>The compiler declares the supported values of <i>name</i>. Specifying a
984collector which will cause the compiler to alter its output in order to support
985the named garbage collection algorithm.</p>
986</div>
987
988<!-- ======================================================================= -->
989<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000990 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +0000991</div>
992
993<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000994
995<p>Function attributes are set to communicate additional information about
996 a function. Function attributes are considered to be part of the function,
997 not of the function type, so functions with different parameter attributes
998 can have the same function type.</p>
999
1000 <p>Function attributes are simple keywords that follow the type specified. If
1001 multiple attributes are needed, they are space separated. For
1002 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001003
1004<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001005<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001006define void @f() noinline { ... }
1007define void @f() alwaysinline { ... }
1008define void @f() alwaysinline optsize { ... }
1009define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001010</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001011</div>
1012
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001013<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001014<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001015<dd>This attribute indicates that the inliner should attempt to inline this
1016function into callers whenever possible, ignoring any active inlining size
1017threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001018
Devang Patel2c9c3e72008-09-26 23:51:19 +00001019<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001020<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +00001021in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +00001022<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001023
Devang Patel2c9c3e72008-09-26 23:51:19 +00001024<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +00001025<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +00001026make choices that keep the code size of this function low, and otherwise do
1027optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001028
Devang Patel2c9c3e72008-09-26 23:51:19 +00001029<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001030<dd>This function attribute indicates that the function never returns normally.
1031This produces undefined behavior at runtime if the function ever does
1032dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001033
1034<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001035<dd>This function attribute indicates that the function never returns with an
1036unwind or exceptional control flow. If the function does unwind, its runtime
1037behavior is undefined.</dd>
1038
1039<dt><tt>readnone</tt></dt>
Duncan Sandsedb05df2008-10-06 08:14:18 +00001040<dd>This attribute indicates that the function computes its result (or the
1041exception it throws) based strictly on its arguments, without dereferencing any
1042pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1043registers, etc) visible to caller functions. It does not write through any
1044pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
1045never changes any state visible to callers.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001046
Duncan Sandsedb05df2008-10-06 08:14:18 +00001047<dt><tt><a name="readonly">readonly</a></tt></dt>
1048<dd>This attribute indicates that the function does not write through any
1049pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1050or otherwise modify any state (e.g. memory, control registers, etc) visible to
1051caller functions. It may dereference pointer arguments and read state that may
1052be set in the caller. A readonly function always returns the same value (or
1053throws the same exception) when called with the same set of arguments and global
1054state.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001055
1056<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001057<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +00001058protector. It is in the form of a "canary"&mdash;a random value placed on the
1059stack before the local variables that's checked upon return from the function to
1060see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001061needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001062
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001063<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
1064that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
1065have an <tt>ssp</tt> attribute.</p></dd>
1066
1067<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001068<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001069stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001070function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001071
1072<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
1073function that doesn't have an <tt>sspreq</tt> attribute or which has
1074an <tt>ssp</tt> attribute, then the resulting function will have
1075an <tt>sspreq</tt> attribute.</p></dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001076</dl>
1077
Devang Patelf8b94812008-09-04 23:05:13 +00001078</div>
1079
1080<!-- ======================================================================= -->
1081<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001082 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001083</div>
1084
1085<div class="doc_text">
1086<p>
1087Modules may contain "module-level inline asm" blocks, which corresponds to the
1088GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1089LLVM and treated as a single unit, but may be separated in the .ll file if
1090desired. The syntax is very simple:
1091</p>
1092
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001093<div class="doc_code">
1094<pre>
1095module asm "inline asm code goes here"
1096module asm "more can go here"
1097</pre>
1098</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001099
1100<p>The strings can contain any character by escaping non-printable characters.
1101 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1102 for the number.
1103</p>
1104
1105<p>
1106 The inline asm code is simply printed to the machine code .s file when
1107 assembly code is generated.
1108</p>
1109</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001110
Reid Spencerde151942007-02-19 23:54:10 +00001111<!-- ======================================================================= -->
1112<div class="doc_subsection">
1113 <a name="datalayout">Data Layout</a>
1114</div>
1115
1116<div class="doc_text">
1117<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001118data is to be laid out in memory. The syntax for the data layout is simply:</p>
1119<pre> target datalayout = "<i>layout specification</i>"</pre>
1120<p>The <i>layout specification</i> consists of a list of specifications
1121separated by the minus sign character ('-'). Each specification starts with a
1122letter and may include other information after the letter to define some
1123aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001124<dl>
1125 <dt><tt>E</tt></dt>
1126 <dd>Specifies that the target lays out data in big-endian form. That is, the
1127 bits with the most significance have the lowest address location.</dd>
1128 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001129 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001130 the bits with the least significance have the lowest address location.</dd>
1131 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1132 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1133 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1134 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1135 too.</dd>
1136 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1137 <dd>This specifies the alignment for an integer type of a given bit
1138 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1139 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1140 <dd>This specifies the alignment for a vector type of a given bit
1141 <i>size</i>.</dd>
1142 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1143 <dd>This specifies the alignment for a floating point type of a given bit
1144 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1145 (double).</dd>
1146 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1147 <dd>This specifies the alignment for an aggregate type of a given bit
1148 <i>size</i>.</dd>
1149</dl>
1150<p>When constructing the data layout for a given target, LLVM starts with a
1151default set of specifications which are then (possibly) overriden by the
1152specifications in the <tt>datalayout</tt> keyword. The default specifications
1153are given in this list:</p>
1154<ul>
1155 <li><tt>E</tt> - big endian</li>
1156 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1157 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1158 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1159 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1160 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001161 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001162 alignment of 64-bits</li>
1163 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1164 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1165 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1166 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1167 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1168</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001169<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001170following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001171<ol>
1172 <li>If the type sought is an exact match for one of the specifications, that
1173 specification is used.</li>
1174 <li>If no match is found, and the type sought is an integer type, then the
1175 smallest integer type that is larger than the bitwidth of the sought type is
1176 used. If none of the specifications are larger than the bitwidth then the the
1177 largest integer type is used. For example, given the default specifications
1178 above, the i7 type will use the alignment of i8 (next largest) while both
1179 i65 and i256 will use the alignment of i64 (largest specified).</li>
1180 <li>If no match is found, and the type sought is a vector type, then the
1181 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001182 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1183 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001184</ol>
1185</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001186
Chris Lattner00950542001-06-06 20:29:01 +00001187<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001188<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1189<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001190
Misha Brukman9d0919f2003-11-08 01:05:38 +00001191<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001192
Misha Brukman9d0919f2003-11-08 01:05:38 +00001193<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001194intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001195optimizations to be performed on the intermediate representation directly,
1196without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001197extra analyses on the side before the transformation. A strong type
1198system makes it easier to read the generated code and enables novel
1199analyses and transformations that are not feasible to perform on normal
1200three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001201
1202</div>
1203
Chris Lattner00950542001-06-06 20:29:01 +00001204<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001205<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001206Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001207<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001208<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001209classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001210
1211<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001212 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001213 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001214 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001215 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001216 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001217 </tr>
1218 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001219 <td><a href="#t_floating">floating point</a></td>
1220 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001221 </tr>
1222 <tr>
1223 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001224 <td><a href="#t_integer">integer</a>,
1225 <a href="#t_floating">floating point</a>,
1226 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001227 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001228 <a href="#t_struct">structure</a>,
1229 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001230 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001231 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001232 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001233 <tr>
1234 <td><a href="#t_primitive">primitive</a></td>
1235 <td><a href="#t_label">label</a>,
1236 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001237 <a href="#t_floating">floating point</a>.</td>
1238 </tr>
1239 <tr>
1240 <td><a href="#t_derived">derived</a></td>
1241 <td><a href="#t_integer">integer</a>,
1242 <a href="#t_array">array</a>,
1243 <a href="#t_function">function</a>,
1244 <a href="#t_pointer">pointer</a>,
1245 <a href="#t_struct">structure</a>,
1246 <a href="#t_pstruct">packed structure</a>,
1247 <a href="#t_vector">vector</a>,
1248 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001249 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001250 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001251 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001252</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001253
Chris Lattner261efe92003-11-25 01:02:51 +00001254<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1255most important. Values of these types are the only ones which can be
1256produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001257instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001258</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001259
Chris Lattner00950542001-06-06 20:29:01 +00001260<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001261<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001262
Chris Lattner4f69f462008-01-04 04:32:38 +00001263<div class="doc_text">
1264<p>The primitive types are the fundamental building blocks of the LLVM
1265system.</p>
1266
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001267</div>
1268
Chris Lattner4f69f462008-01-04 04:32:38 +00001269<!-- _______________________________________________________________________ -->
1270<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1271
1272<div class="doc_text">
1273 <table>
1274 <tbody>
1275 <tr><th>Type</th><th>Description</th></tr>
1276 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1277 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1278 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1279 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1280 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1281 </tbody>
1282 </table>
1283</div>
1284
1285<!-- _______________________________________________________________________ -->
1286<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1287
1288<div class="doc_text">
1289<h5>Overview:</h5>
1290<p>The void type does not represent any value and has no size.</p>
1291
1292<h5>Syntax:</h5>
1293
1294<pre>
1295 void
1296</pre>
1297</div>
1298
1299<!-- _______________________________________________________________________ -->
1300<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1301
1302<div class="doc_text">
1303<h5>Overview:</h5>
1304<p>The label type represents code labels.</p>
1305
1306<h5>Syntax:</h5>
1307
1308<pre>
1309 label
1310</pre>
1311</div>
1312
1313
1314<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001315<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001316
Misha Brukman9d0919f2003-11-08 01:05:38 +00001317<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001318
Chris Lattner261efe92003-11-25 01:02:51 +00001319<p>The real power in LLVM comes from the derived types in the system.
1320This is what allows a programmer to represent arrays, functions,
1321pointers, and other useful types. Note that these derived types may be
1322recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001323
Misha Brukman9d0919f2003-11-08 01:05:38 +00001324</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001325
Chris Lattner00950542001-06-06 20:29:01 +00001326<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001327<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1328
1329<div class="doc_text">
1330
1331<h5>Overview:</h5>
1332<p>The integer type is a very simple derived type that simply specifies an
1333arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13342^23-1 (about 8 million) can be specified.</p>
1335
1336<h5>Syntax:</h5>
1337
1338<pre>
1339 iN
1340</pre>
1341
1342<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1343value.</p>
1344
1345<h5>Examples:</h5>
1346<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001347 <tbody>
1348 <tr>
1349 <td><tt>i1</tt></td>
1350 <td>a single-bit integer.</td>
1351 </tr><tr>
1352 <td><tt>i32</tt></td>
1353 <td>a 32-bit integer.</td>
1354 </tr><tr>
1355 <td><tt>i1942652</tt></td>
1356 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001357 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001358 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001359</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001360
1361<p>Note that the code generator does not yet support large integer types
1362to be used as function return types. The specific limit on how large a
1363return type the code generator can currently handle is target-dependent;
1364currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1365targets.</p>
1366
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001367</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001368
1369<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001370<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001371
Misha Brukman9d0919f2003-11-08 01:05:38 +00001372<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001373
Chris Lattner00950542001-06-06 20:29:01 +00001374<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001375
Misha Brukman9d0919f2003-11-08 01:05:38 +00001376<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001377sequentially in memory. The array type requires a size (number of
1378elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001379
Chris Lattner7faa8832002-04-14 06:13:44 +00001380<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001381
1382<pre>
1383 [&lt;# elements&gt; x &lt;elementtype&gt;]
1384</pre>
1385
John Criswelle4c57cc2005-05-12 16:52:32 +00001386<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001387be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001388
Chris Lattner7faa8832002-04-14 06:13:44 +00001389<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001390<table class="layout">
1391 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001392 <td class="left"><tt>[40 x i32]</tt></td>
1393 <td class="left">Array of 40 32-bit integer values.</td>
1394 </tr>
1395 <tr class="layout">
1396 <td class="left"><tt>[41 x i32]</tt></td>
1397 <td class="left">Array of 41 32-bit integer values.</td>
1398 </tr>
1399 <tr class="layout">
1400 <td class="left"><tt>[4 x i8]</tt></td>
1401 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001402 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001403</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001404<p>Here are some examples of multidimensional arrays:</p>
1405<table class="layout">
1406 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001407 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1408 <td class="left">3x4 array of 32-bit integer values.</td>
1409 </tr>
1410 <tr class="layout">
1411 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1412 <td class="left">12x10 array of single precision floating point values.</td>
1413 </tr>
1414 <tr class="layout">
1415 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1416 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001417 </tr>
1418</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001419
John Criswell0ec250c2005-10-24 16:17:18 +00001420<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1421length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001422LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1423As a special case, however, zero length arrays are recognized to be variable
1424length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001425type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001426
Dan Gohmand8791e52009-01-24 15:58:40 +00001427<p>Note that the code generator does not yet support large aggregate types
1428to be used as function return types. The specific limit on how large an
1429aggregate return type the code generator can currently handle is
1430target-dependent, and also dependent on the aggregate element types.</p>
1431
Misha Brukman9d0919f2003-11-08 01:05:38 +00001432</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001433
Chris Lattner00950542001-06-06 20:29:01 +00001434<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001435<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001436<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001437
Chris Lattner00950542001-06-06 20:29:01 +00001438<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001439
Chris Lattner261efe92003-11-25 01:02:51 +00001440<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001441consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001442return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001443If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001444class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001445
Chris Lattner00950542001-06-06 20:29:01 +00001446<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001447
1448<pre>
1449 &lt;returntype list&gt; (&lt;parameter list&gt;)
1450</pre>
1451
John Criswell0ec250c2005-10-24 16:17:18 +00001452<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001453specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001454which indicates that the function takes a variable number of arguments.
1455Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001456 href="#int_varargs">variable argument handling intrinsic</a> functions.
1457'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1458<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001459
Chris Lattner00950542001-06-06 20:29:01 +00001460<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001461<table class="layout">
1462 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001463 <td class="left"><tt>i32 (i32)</tt></td>
1464 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001465 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001466 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001467 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001468 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001469 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1470 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001471 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001472 <tt>float</tt>.
1473 </td>
1474 </tr><tr class="layout">
1475 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1476 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001477 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001478 which returns an integer. This is the signature for <tt>printf</tt> in
1479 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001480 </td>
Devang Patela582f402008-03-24 05:35:41 +00001481 </tr><tr class="layout">
1482 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001483 <td class="left">A function taking an <tt>i32</tt>, returning two
1484 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001485 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001486 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001487</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001488
Misha Brukman9d0919f2003-11-08 01:05:38 +00001489</div>
Chris Lattner00950542001-06-06 20:29:01 +00001490<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001491<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001492<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001493<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001494<p>The structure type is used to represent a collection of data members
1495together in memory. The packing of the field types is defined to match
1496the ABI of the underlying processor. The elements of a structure may
1497be any type that has a size.</p>
1498<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1499and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1500field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1501instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001502<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001503<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001504<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001505<table class="layout">
1506 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001507 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1508 <td class="left">A triple of three <tt>i32</tt> values</td>
1509 </tr><tr class="layout">
1510 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1511 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1512 second element is a <a href="#t_pointer">pointer</a> to a
1513 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1514 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001515 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001516</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001517
1518<p>Note that the code generator does not yet support large aggregate types
1519to be used as function return types. The specific limit on how large an
1520aggregate return type the code generator can currently handle is
1521target-dependent, and also dependent on the aggregate element types.</p>
1522
Misha Brukman9d0919f2003-11-08 01:05:38 +00001523</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001524
Chris Lattner00950542001-06-06 20:29:01 +00001525<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001526<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1527</div>
1528<div class="doc_text">
1529<h5>Overview:</h5>
1530<p>The packed structure type is used to represent a collection of data members
1531together in memory. There is no padding between fields. Further, the alignment
1532of a packed structure is 1 byte. The elements of a packed structure may
1533be any type that has a size.</p>
1534<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1535and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1536field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1537instruction.</p>
1538<h5>Syntax:</h5>
1539<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1540<h5>Examples:</h5>
1541<table class="layout">
1542 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001543 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1544 <td class="left">A triple of three <tt>i32</tt> values</td>
1545 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001546 <td class="left">
1547<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001548 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1549 second element is a <a href="#t_pointer">pointer</a> to a
1550 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1551 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001552 </tr>
1553</table>
1554</div>
1555
1556<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001557<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001558<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001559<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001560<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001561reference to another object, which must live in memory. Pointer types may have
1562an optional address space attribute defining the target-specific numbered
1563address space where the pointed-to object resides. The default address space is
1564zero.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001565
1566<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
Chris Lattnere220e8c2009-02-08 22:21:28 +00001567it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001568
Chris Lattner7faa8832002-04-14 06:13:44 +00001569<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001570<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001571<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001572<table class="layout">
1573 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001574 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001575 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1576 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1577 </tr>
1578 <tr class="layout">
1579 <td class="left"><tt>i32 (i32 *) *</tt></td>
1580 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001581 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001582 <tt>i32</tt>.</td>
1583 </tr>
1584 <tr class="layout">
1585 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1586 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1587 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001588 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001589</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001590</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001591
Chris Lattnera58561b2004-08-12 19:12:28 +00001592<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001593<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001594<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001595
Chris Lattnera58561b2004-08-12 19:12:28 +00001596<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001597
Reid Spencer485bad12007-02-15 03:07:05 +00001598<p>A vector type is a simple derived type that represents a vector
1599of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001600are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001601A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001602elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001603of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001604considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001605
Chris Lattnera58561b2004-08-12 19:12:28 +00001606<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001607
1608<pre>
1609 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1610</pre>
1611
John Criswellc1f786c2005-05-13 22:25:59 +00001612<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001613be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001614
Chris Lattnera58561b2004-08-12 19:12:28 +00001615<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001616
Reid Spencerd3f876c2004-11-01 08:19:36 +00001617<table class="layout">
1618 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001619 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1620 <td class="left">Vector of 4 32-bit integer values.</td>
1621 </tr>
1622 <tr class="layout">
1623 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1624 <td class="left">Vector of 8 32-bit floating-point values.</td>
1625 </tr>
1626 <tr class="layout">
1627 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1628 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001629 </tr>
1630</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001631
1632<p>Note that the code generator does not yet support large vector types
1633to be used as function return types. The specific limit on how large a
1634vector return type codegen can currently handle is target-dependent;
1635currently it's often a few times longer than a hardware vector register.</p>
1636
Misha Brukman9d0919f2003-11-08 01:05:38 +00001637</div>
1638
Chris Lattner69c11bb2005-04-25 17:34:15 +00001639<!-- _______________________________________________________________________ -->
1640<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1641<div class="doc_text">
1642
1643<h5>Overview:</h5>
1644
1645<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001646corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001647In LLVM, opaque types can eventually be resolved to any type (not just a
1648structure type).</p>
1649
1650<h5>Syntax:</h5>
1651
1652<pre>
1653 opaque
1654</pre>
1655
1656<h5>Examples:</h5>
1657
1658<table class="layout">
1659 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001660 <td class="left"><tt>opaque</tt></td>
1661 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001662 </tr>
1663</table>
1664</div>
1665
Chris Lattner242d61d2009-02-02 07:32:36 +00001666<!-- ======================================================================= -->
1667<div class="doc_subsection">
1668 <a name="t_uprefs">Type Up-references</a>
1669</div>
1670
1671<div class="doc_text">
1672<h5>Overview:</h5>
1673<p>
1674An "up reference" allows you to refer to a lexically enclosing type without
1675requiring it to have a name. For instance, a structure declaration may contain a
1676pointer to any of the types it is lexically a member of. Example of up
1677references (with their equivalent as named type declarations) include:</p>
1678
1679<pre>
Chris Lattner3060f5b2009-02-09 10:00:56 +00001680 { \2 * } %x = type { %x* }
Chris Lattner242d61d2009-02-02 07:32:36 +00001681 { \2 }* %y = type { %y }*
1682 \1* %z = type %z*
1683</pre>
1684
1685<p>
1686An up reference is needed by the asmprinter for printing out cyclic types when
1687there is no declared name for a type in the cycle. Because the asmprinter does
1688not want to print out an infinite type string, it needs a syntax to handle
1689recursive types that have no names (all names are optional in llvm IR).
1690</p>
1691
1692<h5>Syntax:</h5>
1693<pre>
1694 \&lt;level&gt;
1695</pre>
1696
1697<p>
1698The level is the count of the lexical type that is being referred to.
1699</p>
1700
1701<h5>Examples:</h5>
1702
1703<table class="layout">
1704 <tr class="layout">
1705 <td class="left"><tt>\1*</tt></td>
1706 <td class="left">Self-referential pointer.</td>
1707 </tr>
1708 <tr class="layout">
1709 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1710 <td class="left">Recursive structure where the upref refers to the out-most
1711 structure.</td>
1712 </tr>
1713</table>
1714</div>
1715
Chris Lattner69c11bb2005-04-25 17:34:15 +00001716
Chris Lattnerc3f59762004-12-09 17:30:23 +00001717<!-- *********************************************************************** -->
1718<div class="doc_section"> <a name="constants">Constants</a> </div>
1719<!-- *********************************************************************** -->
1720
1721<div class="doc_text">
1722
1723<p>LLVM has several different basic types of constants. This section describes
1724them all and their syntax.</p>
1725
1726</div>
1727
1728<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001729<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001730
1731<div class="doc_text">
1732
1733<dl>
1734 <dt><b>Boolean constants</b></dt>
1735
1736 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001737 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001738 </dd>
1739
1740 <dt><b>Integer constants</b></dt>
1741
Reid Spencercc16dc32004-12-09 18:02:53 +00001742 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001743 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001744 integer types.
1745 </dd>
1746
1747 <dt><b>Floating point constants</b></dt>
1748
1749 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1750 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001751 notation (see below). The assembler requires the exact decimal value of
1752 a floating-point constant. For example, the assembler accepts 1.25 but
1753 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1754 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001755
1756 <dt><b>Null pointer constants</b></dt>
1757
John Criswell9e2485c2004-12-10 15:51:16 +00001758 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001759 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1760
1761</dl>
1762
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001763<p>The one non-intuitive notation for constants is the hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001764of floating point constants. For example, the form '<tt>double
17650x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
17664.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001767(and the only time that they are generated by the disassembler) is when a
1768floating point constant must be emitted but it cannot be represented as a
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001769decimal floating point number in a reasonable number of digits. For example,
1770NaN's, infinities, and other
Reid Spencercc16dc32004-12-09 18:02:53 +00001771special values are represented in their IEEE hexadecimal format so that
1772assembly and disassembly do not cause any bits to change in the constants.</p>
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001773<p>When using the hexadecimal form, constants of types float and double are
1774represented using the 16-digit form shown above (which matches the IEEE754
1775representation for double); float values must, however, be exactly representable
1776as IEE754 single precision.
1777Hexadecimal format is always used for long
1778double, and there are three forms of long double. The 80-bit
1779format used by x86 is represented as <tt>0xK</tt>
1780followed by 20 hexadecimal digits.
1781The 128-bit format used by PowerPC (two adjacent doubles) is represented
1782by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
1783format is represented
1784by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
1785target uses this format. Long doubles will only work if they match
1786the long double format on your target. All hexadecimal formats are big-endian
1787(sign bit at the left).</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001788</div>
1789
1790<!-- ======================================================================= -->
Chris Lattner70882792009-02-28 18:32:25 +00001791<div class="doc_subsection">
1792<a name="aggregateconstants"> <!-- old anchor -->
1793<a name="complexconstants">Complex Constants</a></a>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001794</div>
1795
1796<div class="doc_text">
Chris Lattner70882792009-02-28 18:32:25 +00001797<p>Complex constants are a (potentially recursive) combination of simple
1798constants and smaller complex constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001799
1800<dl>
1801 <dt><b>Structure constants</b></dt>
1802
1803 <dd>Structure constants are represented with notation similar to structure
1804 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001805 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1806 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001807 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001808 types of elements must match those specified by the type.
1809 </dd>
1810
1811 <dt><b>Array constants</b></dt>
1812
1813 <dd>Array constants are represented with notation similar to array type
1814 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001815 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001816 constants must have <a href="#t_array">array type</a>, and the number and
1817 types of elements must match those specified by the type.
1818 </dd>
1819
Reid Spencer485bad12007-02-15 03:07:05 +00001820 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001821
Reid Spencer485bad12007-02-15 03:07:05 +00001822 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001823 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001824 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001825 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001826 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001827 match those specified by the type.
1828 </dd>
1829
1830 <dt><b>Zero initialization</b></dt>
1831
1832 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1833 value to zero of <em>any</em> type, including scalar and aggregate types.
1834 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001835 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001836 initializers.
1837 </dd>
1838</dl>
1839
1840</div>
1841
1842<!-- ======================================================================= -->
1843<div class="doc_subsection">
1844 <a name="globalconstants">Global Variable and Function Addresses</a>
1845</div>
1846
1847<div class="doc_text">
1848
1849<p>The addresses of <a href="#globalvars">global variables</a> and <a
1850href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001851constants. These constants are explicitly referenced when the <a
1852href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001853href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1854file:</p>
1855
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001856<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001857<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001858@X = global i32 17
1859@Y = global i32 42
1860@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001861</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001862</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001863
1864</div>
1865
1866<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001867<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001868<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001869 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001870 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001871 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001872
Reid Spencer2dc45b82004-12-09 18:13:12 +00001873 <p>Undefined values indicate to the compiler that the program is well defined
1874 no matter what value is used, giving the compiler more freedom to optimize.
1875 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001876</div>
1877
1878<!-- ======================================================================= -->
1879<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1880</div>
1881
1882<div class="doc_text">
1883
1884<p>Constant expressions are used to allow expressions involving other constants
1885to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001886href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001887that does not have side effects (e.g. load and call are not supported). The
1888following is the syntax for constant expressions:</p>
1889
1890<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001891 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1892 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001893 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001894
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001895 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1896 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001897 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001898
1899 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1900 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001901 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001902
1903 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1904 <dd>Truncate a floating point constant to another floating point type. The
1905 size of CST must be larger than the size of TYPE. Both types must be
1906 floating point.</dd>
1907
1908 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1909 <dd>Floating point extend a constant to another type. The size of CST must be
1910 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1911
Reid Spencer1539a1c2007-07-31 14:40:14 +00001912 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001913 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001914 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1915 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1916 of the same number of elements. If the value won't fit in the integer type,
1917 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001918
Reid Spencerd4448792006-11-09 23:03:26 +00001919 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001920 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001921 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1922 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1923 of the same number of elements. If the value won't fit in the integer type,
1924 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001925
Reid Spencerd4448792006-11-09 23:03:26 +00001926 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001927 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001928 constant. TYPE must be a scalar or vector floating point type. CST must be of
1929 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1930 of the same number of elements. If the value won't fit in the floating point
1931 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001932
Reid Spencerd4448792006-11-09 23:03:26 +00001933 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001934 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001935 constant. TYPE must be a scalar or vector floating point type. CST must be of
1936 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1937 of the same number of elements. If the value won't fit in the floating point
1938 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001939
Reid Spencer5c0ef472006-11-11 23:08:07 +00001940 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1941 <dd>Convert a pointer typed constant to the corresponding integer constant
1942 TYPE must be an integer type. CST must be of pointer type. The CST value is
1943 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1944
1945 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1946 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1947 pointer type. CST must be of integer type. The CST value is zero extended,
1948 truncated, or unchanged to make it fit in a pointer size. This one is
1949 <i>really</i> dangerous!</dd>
1950
1951 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner03bbad62009-02-28 18:27:03 +00001952 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
1953 are the same as those for the <a href="#i_bitcast">bitcast
1954 instruction</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001955
1956 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1957
1958 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1959 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1960 instruction, the index list may have zero or more indexes, which are required
1961 to make sense for the type of "CSTPTR".</dd>
1962
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001963 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1964
1965 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001966 constants.</dd>
1967
1968 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1969 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1970
1971 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1972 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001973
Nate Begemanac80ade2008-05-12 19:01:56 +00001974 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1975 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1976
1977 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1978 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1979
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001980 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1981
1982 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00001983 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001984
Robert Bocchino05ccd702006-01-15 20:48:27 +00001985 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1986
1987 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001988 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001989
Chris Lattnerc1989542006-04-08 00:13:41 +00001990
1991 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1992
1993 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001994 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001995
Chris Lattnerc3f59762004-12-09 17:30:23 +00001996 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1997
Reid Spencer2dc45b82004-12-09 18:13:12 +00001998 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1999 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00002000 binary</a> operations. The constraints on operands are the same as those for
2001 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00002002 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002003</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002004</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00002005
Chris Lattner00950542001-06-06 20:29:01 +00002006<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00002007<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2008<!-- *********************************************************************** -->
2009
2010<!-- ======================================================================= -->
2011<div class="doc_subsection">
2012<a name="inlineasm">Inline Assembler Expressions</a>
2013</div>
2014
2015<div class="doc_text">
2016
2017<p>
2018LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2019Module-Level Inline Assembly</a>) through the use of a special value. This
2020value represents the inline assembler as a string (containing the instructions
2021to emit), a list of operand constraints (stored as a string), and a flag that
2022indicates whether or not the inline asm expression has side effects. An example
2023inline assembler expression is:
2024</p>
2025
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002026<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002027<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002028i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002029</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002030</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002031
2032<p>
2033Inline assembler expressions may <b>only</b> be used as the callee operand of
2034a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2035</p>
2036
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002037<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002038<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002039%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002040</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002041</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002042
2043<p>
2044Inline asms with side effects not visible in the constraint list must be marked
2045as having side effects. This is done through the use of the
2046'<tt>sideeffect</tt>' keyword, like so:
2047</p>
2048
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002049<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002050<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002051call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002052</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002053</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002054
2055<p>TODO: The format of the asm and constraints string still need to be
2056documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00002057need to be documented). This is probably best done by reference to another
2058document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00002059</p>
2060
2061</div>
2062
2063<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00002064<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2065<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002066
Misha Brukman9d0919f2003-11-08 01:05:38 +00002067<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002068
Chris Lattner261efe92003-11-25 01:02:51 +00002069<p>The LLVM instruction set consists of several different
2070classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00002071instructions</a>, <a href="#binaryops">binary instructions</a>,
2072<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00002073 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2074instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002075
Misha Brukman9d0919f2003-11-08 01:05:38 +00002076</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002077
Chris Lattner00950542001-06-06 20:29:01 +00002078<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002079<div class="doc_subsection"> <a name="terminators">Terminator
2080Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002081
Misha Brukman9d0919f2003-11-08 01:05:38 +00002082<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002083
Chris Lattner261efe92003-11-25 01:02:51 +00002084<p>As mentioned <a href="#functionstructure">previously</a>, every
2085basic block in a program ends with a "Terminator" instruction, which
2086indicates which block should be executed after the current block is
2087finished. These terminator instructions typically yield a '<tt>void</tt>'
2088value: they produce control flow, not values (the one exception being
2089the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00002090<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00002091 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2092instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00002093the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2094 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2095 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002096
Misha Brukman9d0919f2003-11-08 01:05:38 +00002097</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002098
Chris Lattner00950542001-06-06 20:29:01 +00002099<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002100<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2101Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002102<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002103<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002104<pre>
2105 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002106 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002107</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002108
Chris Lattner00950542001-06-06 20:29:01 +00002109<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002110
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002111<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2112optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00002113<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002114returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00002115control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002116
Chris Lattner00950542001-06-06 20:29:01 +00002117<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002118
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002119<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2120the return value. The type of the return value must be a
2121'<a href="#t_firstclass">first class</a>' type.</p>
2122
2123<p>A function is not <a href="#wellformed">well formed</a> if
2124it it has a non-void return type and contains a '<tt>ret</tt>'
2125instruction with no return value or a return value with a type that
2126does not match its type, or if it has a void return type and contains
2127a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002128
Chris Lattner00950542001-06-06 20:29:01 +00002129<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002130
Chris Lattner261efe92003-11-25 01:02:51 +00002131<p>When the '<tt>ret</tt>' instruction is executed, control flow
2132returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00002133 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00002134the instruction after the call. If the caller was an "<a
2135 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00002136at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00002137returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00002138return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002139
Chris Lattner00950542001-06-06 20:29:01 +00002140<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002141
2142<pre>
2143 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002144 ret void <i>; Return from a void function</i>
Chris Lattner70882792009-02-28 18:32:25 +00002145 ret { i32, i8 } { i32 4, i8 2 } <i>; Return an struct of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002146</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002147
Dan Gohmand8791e52009-01-24 15:58:40 +00002148<p>Note that the code generator does not yet fully support large
2149 return values. The specific sizes that are currently supported are
2150 dependent on the target. For integers, on 32-bit targets the limit
2151 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2152 For aggregate types, the current limits are dependent on the element
2153 types; for example targets are often limited to 2 total integer
2154 elements and 2 total floating-point elements.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002155
Misha Brukman9d0919f2003-11-08 01:05:38 +00002156</div>
Chris Lattner00950542001-06-06 20:29:01 +00002157<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002158<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002159<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002160<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002161<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002162</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002163<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002164<p>The '<tt>br</tt>' instruction is used to cause control flow to
2165transfer to a different basic block in the current function. There are
2166two forms of this instruction, corresponding to a conditional branch
2167and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002168<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002169<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002170single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002171unconditional form of the '<tt>br</tt>' instruction takes a single
2172'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002173<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002174<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002175argument is evaluated. If the value is <tt>true</tt>, control flows
2176to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2177control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002178<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002179<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002180 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002181</div>
Chris Lattner00950542001-06-06 20:29:01 +00002182<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002183<div class="doc_subsubsection">
2184 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2185</div>
2186
Misha Brukman9d0919f2003-11-08 01:05:38 +00002187<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002188<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002189
2190<pre>
2191 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2192</pre>
2193
Chris Lattner00950542001-06-06 20:29:01 +00002194<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002195
2196<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2197several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002198instruction, allowing a branch to occur to one of many possible
2199destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002200
2201
Chris Lattner00950542001-06-06 20:29:01 +00002202<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002203
2204<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2205comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2206an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2207table is not allowed to contain duplicate constant entries.</p>
2208
Chris Lattner00950542001-06-06 20:29:01 +00002209<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002210
Chris Lattner261efe92003-11-25 01:02:51 +00002211<p>The <tt>switch</tt> instruction specifies a table of values and
2212destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002213table is searched for the given value. If the value is found, control flow is
2214transfered to the corresponding destination; otherwise, control flow is
2215transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002216
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002217<h5>Implementation:</h5>
2218
2219<p>Depending on properties of the target machine and the particular
2220<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002221ways. For example, it could be generated as a series of chained conditional
2222branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002223
2224<h5>Example:</h5>
2225
2226<pre>
2227 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002228 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002229 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002230
2231 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002232 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002233
2234 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002235 switch i32 %val, label %otherwise [ i32 0, label %onzero
2236 i32 1, label %onone
2237 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002238</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002239</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002240
Chris Lattner00950542001-06-06 20:29:01 +00002241<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002242<div class="doc_subsubsection">
2243 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2244</div>
2245
Misha Brukman9d0919f2003-11-08 01:05:38 +00002246<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002247
Chris Lattner00950542001-06-06 20:29:01 +00002248<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002249
2250<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002251 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002252 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002253</pre>
2254
Chris Lattner6536cfe2002-05-06 22:08:29 +00002255<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002256
2257<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2258function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002259'<tt>normal</tt>' label or the
2260'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002261"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2262"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002263href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002264continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002265
Chris Lattner00950542001-06-06 20:29:01 +00002266<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002267
Misha Brukman9d0919f2003-11-08 01:05:38 +00002268<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002269
Chris Lattner00950542001-06-06 20:29:01 +00002270<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002271 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002272 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002273 convention</a> the call should use. If none is specified, the call defaults
2274 to using C calling conventions.
2275 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002276
2277 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2278 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2279 and '<tt>inreg</tt>' attributes are valid here.</li>
2280
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002281 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2282 function value being invoked. In most cases, this is a direct function
2283 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2284 an arbitrary pointer to function value.
2285 </li>
2286
2287 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2288 function to be invoked. </li>
2289
2290 <li>'<tt>function args</tt>': argument list whose types match the function
2291 signature argument types. If the function signature indicates the function
2292 accepts a variable number of arguments, the extra arguments can be
2293 specified. </li>
2294
2295 <li>'<tt>normal label</tt>': the label reached when the called function
2296 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2297
2298 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2299 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2300
Devang Patel307e8ab2008-10-07 17:48:33 +00002301 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002302 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2303 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002304</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002305
Chris Lattner00950542001-06-06 20:29:01 +00002306<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002307
Misha Brukman9d0919f2003-11-08 01:05:38 +00002308<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002309href="#i_call">call</a></tt>' instruction in most regards. The primary
2310difference is that it establishes an association with a label, which is used by
2311the runtime library to unwind the stack.</p>
2312
2313<p>This instruction is used in languages with destructors to ensure that proper
2314cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2315exception. Additionally, this is important for implementation of
2316'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2317
Chris Lattner00950542001-06-06 20:29:01 +00002318<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002319<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002320 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002321 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002322 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002323 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002324</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002325</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002326
2327
Chris Lattner27f71f22003-09-03 00:41:47 +00002328<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002329
Chris Lattner261efe92003-11-25 01:02:51 +00002330<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2331Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002332
Misha Brukman9d0919f2003-11-08 01:05:38 +00002333<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002334
Chris Lattner27f71f22003-09-03 00:41:47 +00002335<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002336<pre>
2337 unwind
2338</pre>
2339
Chris Lattner27f71f22003-09-03 00:41:47 +00002340<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002341
2342<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2343at the first callee in the dynamic call stack which used an <a
2344href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2345primarily used to implement exception handling.</p>
2346
Chris Lattner27f71f22003-09-03 00:41:47 +00002347<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002348
Chris Lattner72ed2002008-04-19 21:01:16 +00002349<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002350immediately halt. The dynamic call stack is then searched for the first <a
2351href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2352execution continues at the "exceptional" destination block specified by the
2353<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2354dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002355</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002356
2357<!-- _______________________________________________________________________ -->
2358
2359<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2360Instruction</a> </div>
2361
2362<div class="doc_text">
2363
2364<h5>Syntax:</h5>
2365<pre>
2366 unreachable
2367</pre>
2368
2369<h5>Overview:</h5>
2370
2371<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2372instruction is used to inform the optimizer that a particular portion of the
2373code is not reachable. This can be used to indicate that the code after a
2374no-return function cannot be reached, and other facts.</p>
2375
2376<h5>Semantics:</h5>
2377
2378<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2379</div>
2380
2381
2382
Chris Lattner00950542001-06-06 20:29:01 +00002383<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002384<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002385<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002386<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002387program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002388produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002389multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002390The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002391<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002392</div>
Chris Lattner00950542001-06-06 20:29:01 +00002393<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002394<div class="doc_subsubsection">
2395 <a name="i_add">'<tt>add</tt>' Instruction</a>
2396</div>
2397
Misha Brukman9d0919f2003-11-08 01:05:38 +00002398<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002399
Chris Lattner00950542001-06-06 20:29:01 +00002400<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002401
2402<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002403 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002404</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002405
Chris Lattner00950542001-06-06 20:29:01 +00002406<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002407
Misha Brukman9d0919f2003-11-08 01:05:38 +00002408<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002409
Chris Lattner00950542001-06-06 20:29:01 +00002410<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002411
2412<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2413 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2414 <a href="#t_vector">vector</a> values. Both arguments must have identical
2415 types.</p>
2416
Chris Lattner00950542001-06-06 20:29:01 +00002417<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002418
Misha Brukman9d0919f2003-11-08 01:05:38 +00002419<p>The value produced is the integer or floating point sum of the two
2420operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002421
Chris Lattner5ec89832008-01-28 00:36:27 +00002422<p>If an integer sum has unsigned overflow, the result returned is the
2423mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2424the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002425
Chris Lattner5ec89832008-01-28 00:36:27 +00002426<p>Because LLVM integers use a two's complement representation, this
2427instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002428
Chris Lattner00950542001-06-06 20:29:01 +00002429<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002430
2431<pre>
2432 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002433</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002434</div>
Chris Lattner00950542001-06-06 20:29:01 +00002435<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002436<div class="doc_subsubsection">
2437 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2438</div>
2439
Misha Brukman9d0919f2003-11-08 01:05:38 +00002440<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002441
Chris Lattner00950542001-06-06 20:29:01 +00002442<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002443
2444<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002445 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002446</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002447
Chris Lattner00950542001-06-06 20:29:01 +00002448<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002449
Misha Brukman9d0919f2003-11-08 01:05:38 +00002450<p>The '<tt>sub</tt>' instruction returns the difference of its two
2451operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002452
2453<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2454'<tt>neg</tt>' instruction present in most other intermediate
2455representations.</p>
2456
Chris Lattner00950542001-06-06 20:29:01 +00002457<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002458
2459<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2460 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2461 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2462 types.</p>
2463
Chris Lattner00950542001-06-06 20:29:01 +00002464<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002465
Chris Lattner261efe92003-11-25 01:02:51 +00002466<p>The value produced is the integer or floating point difference of
2467the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002468
Chris Lattner5ec89832008-01-28 00:36:27 +00002469<p>If an integer difference has unsigned overflow, the result returned is the
2470mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2471the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002472
Chris Lattner5ec89832008-01-28 00:36:27 +00002473<p>Because LLVM integers use a two's complement representation, this
2474instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002475
Chris Lattner00950542001-06-06 20:29:01 +00002476<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002477<pre>
2478 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002479 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002480</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002481</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002482
Chris Lattner00950542001-06-06 20:29:01 +00002483<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002484<div class="doc_subsubsection">
2485 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2486</div>
2487
Misha Brukman9d0919f2003-11-08 01:05:38 +00002488<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002489
Chris Lattner00950542001-06-06 20:29:01 +00002490<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002491<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002492</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002493<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002494<p>The '<tt>mul</tt>' instruction returns the product of its two
2495operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002496
Chris Lattner00950542001-06-06 20:29:01 +00002497<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002498
2499<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2500href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2501or <a href="#t_vector">vector</a> values. Both arguments must have identical
2502types.</p>
2503
Chris Lattner00950542001-06-06 20:29:01 +00002504<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002505
Chris Lattner261efe92003-11-25 01:02:51 +00002506<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002507two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002508
Chris Lattner5ec89832008-01-28 00:36:27 +00002509<p>If the result of an integer multiplication has unsigned overflow,
2510the result returned is the mathematical result modulo
25112<sup>n</sup>, where n is the bit width of the result.</p>
2512<p>Because LLVM integers use a two's complement representation, and the
2513result is the same width as the operands, this instruction returns the
2514correct result for both signed and unsigned integers. If a full product
2515(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2516should be sign-extended or zero-extended as appropriate to the
2517width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002518<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002519<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002520</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002521</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002522
Chris Lattner00950542001-06-06 20:29:01 +00002523<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002524<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2525</a></div>
2526<div class="doc_text">
2527<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002528<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002529</pre>
2530<h5>Overview:</h5>
2531<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2532operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002533
Reid Spencer1628cec2006-10-26 06:15:43 +00002534<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002535
Reid Spencer1628cec2006-10-26 06:15:43 +00002536<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002537<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2538values. Both arguments must have identical types.</p>
2539
Reid Spencer1628cec2006-10-26 06:15:43 +00002540<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002541
Chris Lattner5ec89832008-01-28 00:36:27 +00002542<p>The value produced is the unsigned integer quotient of the two operands.</p>
2543<p>Note that unsigned integer division and signed integer division are distinct
2544operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2545<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002546<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002547<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002548</pre>
2549</div>
2550<!-- _______________________________________________________________________ -->
2551<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2552</a> </div>
2553<div class="doc_text">
2554<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002555<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002556 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002557</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002558
Reid Spencer1628cec2006-10-26 06:15:43 +00002559<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002560
Reid Spencer1628cec2006-10-26 06:15:43 +00002561<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2562operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002563
Reid Spencer1628cec2006-10-26 06:15:43 +00002564<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002565
2566<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2567<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2568values. Both arguments must have identical types.</p>
2569
Reid Spencer1628cec2006-10-26 06:15:43 +00002570<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002571<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002572<p>Note that signed integer division and unsigned integer division are distinct
2573operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2574<p>Division by zero leads to undefined behavior. Overflow also leads to
2575undefined behavior; this is a rare case, but can occur, for example,
2576by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002577<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002578<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002579</pre>
2580</div>
2581<!-- _______________________________________________________________________ -->
2582<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002583Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002584<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002585<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002586<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002587 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002588</pre>
2589<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002590
Reid Spencer1628cec2006-10-26 06:15:43 +00002591<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002592operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002593
Chris Lattner261efe92003-11-25 01:02:51 +00002594<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002595
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002596<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002597<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2598of floating point values. Both arguments must have identical types.</p>
2599
Chris Lattner261efe92003-11-25 01:02:51 +00002600<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002601
Reid Spencer1628cec2006-10-26 06:15:43 +00002602<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002603
Chris Lattner261efe92003-11-25 01:02:51 +00002604<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002605
2606<pre>
2607 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002608</pre>
2609</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002610
Chris Lattner261efe92003-11-25 01:02:51 +00002611<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002612<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2613</div>
2614<div class="doc_text">
2615<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002616<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002617</pre>
2618<h5>Overview:</h5>
2619<p>The '<tt>urem</tt>' instruction returns the remainder from the
2620unsigned division of its two arguments.</p>
2621<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002622<p>The two arguments to the '<tt>urem</tt>' instruction must be
2623<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2624values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002625<h5>Semantics:</h5>
2626<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002627This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002628<p>Note that unsigned integer remainder and signed integer remainder are
2629distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2630<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002631<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002632<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002633</pre>
2634
2635</div>
2636<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002637<div class="doc_subsubsection">
2638 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2639</div>
2640
Chris Lattner261efe92003-11-25 01:02:51 +00002641<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002642
Chris Lattner261efe92003-11-25 01:02:51 +00002643<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002644
2645<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002646 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002647</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002648
Chris Lattner261efe92003-11-25 01:02:51 +00002649<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002650
Reid Spencer0a783f72006-11-02 01:53:59 +00002651<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002652signed division of its two operands. This instruction can also take
2653<a href="#t_vector">vector</a> versions of the values in which case
2654the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002655
Chris Lattner261efe92003-11-25 01:02:51 +00002656<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002657
Reid Spencer0a783f72006-11-02 01:53:59 +00002658<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002659<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2660values. Both arguments must have identical types.</p>
2661
Chris Lattner261efe92003-11-25 01:02:51 +00002662<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002663
Reid Spencer0a783f72006-11-02 01:53:59 +00002664<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002665has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2666operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002667a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002668 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002669Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002670please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002671Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002672<p>Note that signed integer remainder and unsigned integer remainder are
2673distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2674<p>Taking the remainder of a division by zero leads to undefined behavior.
2675Overflow also leads to undefined behavior; this is a rare case, but can occur,
2676for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2677(The remainder doesn't actually overflow, but this rule lets srem be
2678implemented using instructions that return both the result of the division
2679and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002680<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002681<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002682</pre>
2683
2684</div>
2685<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002686<div class="doc_subsubsection">
2687 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2688
Reid Spencer0a783f72006-11-02 01:53:59 +00002689<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002690
Reid Spencer0a783f72006-11-02 01:53:59 +00002691<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002692<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002693</pre>
2694<h5>Overview:</h5>
2695<p>The '<tt>frem</tt>' instruction returns the remainder from the
2696division of its two operands.</p>
2697<h5>Arguments:</h5>
2698<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002699<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2700of floating point values. Both arguments must have identical types.</p>
2701
Reid Spencer0a783f72006-11-02 01:53:59 +00002702<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002703
Chris Lattnera73afe02008-04-01 18:45:27 +00002704<p>This instruction returns the <i>remainder</i> of a division.
2705The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002706
Reid Spencer0a783f72006-11-02 01:53:59 +00002707<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002708
2709<pre>
2710 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002711</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002712</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002713
Reid Spencer8e11bf82007-02-02 13:57:07 +00002714<!-- ======================================================================= -->
2715<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2716Operations</a> </div>
2717<div class="doc_text">
2718<p>Bitwise binary operators are used to do various forms of
2719bit-twiddling in a program. They are generally very efficient
2720instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002721instructions. They require two operands of the same type, execute an operation on them,
2722and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002723</div>
2724
Reid Spencer569f2fa2007-01-31 21:39:12 +00002725<!-- _______________________________________________________________________ -->
2726<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2727Instruction</a> </div>
2728<div class="doc_text">
2729<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002730<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002731</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002732
Reid Spencer569f2fa2007-01-31 21:39:12 +00002733<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002734
Reid Spencer569f2fa2007-01-31 21:39:12 +00002735<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2736the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002737
Reid Spencer569f2fa2007-01-31 21:39:12 +00002738<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002739
Reid Spencer569f2fa2007-01-31 21:39:12 +00002740<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002741 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002742type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002743
Reid Spencer569f2fa2007-01-31 21:39:12 +00002744<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002745
Gabor Greiffb224a22008-08-07 21:46:00 +00002746<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2747where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang01f8d092008-12-10 08:55:09 +00002748equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2749If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2750corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002751
Reid Spencer569f2fa2007-01-31 21:39:12 +00002752<h5>Example:</h5><pre>
2753 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2754 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2755 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002756 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002757 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002758</pre>
2759</div>
2760<!-- _______________________________________________________________________ -->
2761<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2762Instruction</a> </div>
2763<div class="doc_text">
2764<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002765<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002766</pre>
2767
2768<h5>Overview:</h5>
2769<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002770operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002771
2772<h5>Arguments:</h5>
2773<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002774<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002775type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002776
2777<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002778
Reid Spencer569f2fa2007-01-31 21:39:12 +00002779<p>This instruction always performs a logical shift right operation. The most
2780significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002781shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang01f8d092008-12-10 08:55:09 +00002782the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2783vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2784amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002785
2786<h5>Example:</h5>
2787<pre>
2788 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2789 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2790 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2791 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002792 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002793 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002794</pre>
2795</div>
2796
Reid Spencer8e11bf82007-02-02 13:57:07 +00002797<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002798<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2799Instruction</a> </div>
2800<div class="doc_text">
2801
2802<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002803<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002804</pre>
2805
2806<h5>Overview:</h5>
2807<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002808operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002809
2810<h5>Arguments:</h5>
2811<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002812<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002813type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002814
2815<h5>Semantics:</h5>
2816<p>This instruction always performs an arithmetic shift right operation,
2817The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002818of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang01f8d092008-12-10 08:55:09 +00002819larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
2820arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2821corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002822
2823<h5>Example:</h5>
2824<pre>
2825 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2826 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2827 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2828 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002829 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002830 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002831</pre>
2832</div>
2833
Chris Lattner00950542001-06-06 20:29:01 +00002834<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002835<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2836Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002837
Misha Brukman9d0919f2003-11-08 01:05:38 +00002838<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002839
Chris Lattner00950542001-06-06 20:29:01 +00002840<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002841
2842<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002843 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002844</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002845
Chris Lattner00950542001-06-06 20:29:01 +00002846<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002847
Chris Lattner261efe92003-11-25 01:02:51 +00002848<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2849its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002850
Chris Lattner00950542001-06-06 20:29:01 +00002851<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002852
2853<p>The two arguments to the '<tt>and</tt>' instruction must be
2854<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2855values. Both arguments must have identical types.</p>
2856
Chris Lattner00950542001-06-06 20:29:01 +00002857<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002858<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002859<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002860<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002861<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002862 <tbody>
2863 <tr>
2864 <td>In0</td>
2865 <td>In1</td>
2866 <td>Out</td>
2867 </tr>
2868 <tr>
2869 <td>0</td>
2870 <td>0</td>
2871 <td>0</td>
2872 </tr>
2873 <tr>
2874 <td>0</td>
2875 <td>1</td>
2876 <td>0</td>
2877 </tr>
2878 <tr>
2879 <td>1</td>
2880 <td>0</td>
2881 <td>0</td>
2882 </tr>
2883 <tr>
2884 <td>1</td>
2885 <td>1</td>
2886 <td>1</td>
2887 </tr>
2888 </tbody>
2889</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002890</div>
Chris Lattner00950542001-06-06 20:29:01 +00002891<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002892<pre>
2893 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002894 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2895 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002896</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002897</div>
Chris Lattner00950542001-06-06 20:29:01 +00002898<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002899<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002900<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002901<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002902<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002903</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002904<h5>Overview:</h5>
2905<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2906or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002907<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002908
2909<p>The two arguments to the '<tt>or</tt>' instruction must be
2910<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2911values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002912<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002913<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002914<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002915<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002916<table border="1" cellspacing="0" cellpadding="4">
2917 <tbody>
2918 <tr>
2919 <td>In0</td>
2920 <td>In1</td>
2921 <td>Out</td>
2922 </tr>
2923 <tr>
2924 <td>0</td>
2925 <td>0</td>
2926 <td>0</td>
2927 </tr>
2928 <tr>
2929 <td>0</td>
2930 <td>1</td>
2931 <td>1</td>
2932 </tr>
2933 <tr>
2934 <td>1</td>
2935 <td>0</td>
2936 <td>1</td>
2937 </tr>
2938 <tr>
2939 <td>1</td>
2940 <td>1</td>
2941 <td>1</td>
2942 </tr>
2943 </tbody>
2944</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002945</div>
Chris Lattner00950542001-06-06 20:29:01 +00002946<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002947<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2948 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2949 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002950</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002951</div>
Chris Lattner00950542001-06-06 20:29:01 +00002952<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002953<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2954Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002955<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002956<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002957<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002958</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002959<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002960<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2961or of its two operands. The <tt>xor</tt> is used to implement the
2962"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002963<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002964<p>The two arguments to the '<tt>xor</tt>' instruction must be
2965<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2966values. Both arguments must have identical types.</p>
2967
Chris Lattner00950542001-06-06 20:29:01 +00002968<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002969
Misha Brukman9d0919f2003-11-08 01:05:38 +00002970<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002971<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002972<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002973<table border="1" cellspacing="0" cellpadding="4">
2974 <tbody>
2975 <tr>
2976 <td>In0</td>
2977 <td>In1</td>
2978 <td>Out</td>
2979 </tr>
2980 <tr>
2981 <td>0</td>
2982 <td>0</td>
2983 <td>0</td>
2984 </tr>
2985 <tr>
2986 <td>0</td>
2987 <td>1</td>
2988 <td>1</td>
2989 </tr>
2990 <tr>
2991 <td>1</td>
2992 <td>0</td>
2993 <td>1</td>
2994 </tr>
2995 <tr>
2996 <td>1</td>
2997 <td>1</td>
2998 <td>0</td>
2999 </tr>
3000 </tbody>
3001</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003002</div>
Chris Lattner261efe92003-11-25 01:02:51 +00003003<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00003004<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003005<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3006 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3007 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3008 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00003009</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003010</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003011
Chris Lattner00950542001-06-06 20:29:01 +00003012<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003013<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00003014 <a name="vectorops">Vector Operations</a>
3015</div>
3016
3017<div class="doc_text">
3018
3019<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003020target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00003021vector-specific operations needed to process vectors effectively. While LLVM
3022does directly support these vector operations, many sophisticated algorithms
3023will want to use target-specific intrinsics to take full advantage of a specific
3024target.</p>
3025
3026</div>
3027
3028<!-- _______________________________________________________________________ -->
3029<div class="doc_subsubsection">
3030 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3031</div>
3032
3033<div class="doc_text">
3034
3035<h5>Syntax:</h5>
3036
3037<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003038 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003039</pre>
3040
3041<h5>Overview:</h5>
3042
3043<p>
3044The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003045element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003046</p>
3047
3048
3049<h5>Arguments:</h5>
3050
3051<p>
3052The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003053value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00003054an index indicating the position from which to extract the element.
3055The index may be a variable.</p>
3056
3057<h5>Semantics:</h5>
3058
3059<p>
3060The result is a scalar of the same type as the element type of
3061<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3062<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3063results are undefined.
3064</p>
3065
3066<h5>Example:</h5>
3067
3068<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003069 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003070</pre>
3071</div>
3072
3073
3074<!-- _______________________________________________________________________ -->
3075<div class="doc_subsubsection">
3076 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3077</div>
3078
3079<div class="doc_text">
3080
3081<h5>Syntax:</h5>
3082
3083<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00003084 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003085</pre>
3086
3087<h5>Overview:</h5>
3088
3089<p>
3090The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003091element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003092</p>
3093
3094
3095<h5>Arguments:</h5>
3096
3097<p>
3098The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003099value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00003100scalar value whose type must equal the element type of the first
3101operand. The third operand is an index indicating the position at
3102which to insert the value. The index may be a variable.</p>
3103
3104<h5>Semantics:</h5>
3105
3106<p>
Reid Spencer485bad12007-02-15 03:07:05 +00003107The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00003108element values are those of <tt>val</tt> except at position
3109<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3110exceeds the length of <tt>val</tt>, the results are undefined.
3111</p>
3112
3113<h5>Example:</h5>
3114
3115<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003116 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003117</pre>
3118</div>
3119
3120<!-- _______________________________________________________________________ -->
3121<div class="doc_subsubsection">
3122 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3123</div>
3124
3125<div class="doc_text">
3126
3127<h5>Syntax:</h5>
3128
3129<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003130 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003131</pre>
3132
3133<h5>Overview:</h5>
3134
3135<p>
3136The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00003137from two input vectors, returning a vector with the same element type as
3138the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00003139</p>
3140
3141<h5>Arguments:</h5>
3142
3143<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003144The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3145with types that match each other. The third argument is a shuffle mask whose
3146element type is always 'i32'. The result of the instruction is a vector whose
3147length is the same as the shuffle mask and whose element type is the same as
3148the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00003149</p>
3150
3151<p>
3152The shuffle mask operand is required to be a constant vector with either
3153constant integer or undef values.
3154</p>
3155
3156<h5>Semantics:</h5>
3157
3158<p>
3159The elements of the two input vectors are numbered from left to right across
3160both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00003161the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00003162gets. The element selector may be undef (meaning "don't care") and the second
3163operand may be undef if performing a shuffle from only one vector.
3164</p>
3165
3166<h5>Example:</h5>
3167
3168<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003169 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003170 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003171 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3172 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003173 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3174 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3175 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3176 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003177</pre>
3178</div>
3179
Tanya Lattner09474292006-04-14 19:24:33 +00003180
Chris Lattner3df241e2006-04-08 23:07:04 +00003181<!-- ======================================================================= -->
3182<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003183 <a name="aggregateops">Aggregate Operations</a>
3184</div>
3185
3186<div class="doc_text">
3187
3188<p>LLVM supports several instructions for working with aggregate values.
3189</p>
3190
3191</div>
3192
3193<!-- _______________________________________________________________________ -->
3194<div class="doc_subsubsection">
3195 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3196</div>
3197
3198<div class="doc_text">
3199
3200<h5>Syntax:</h5>
3201
3202<pre>
3203 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3204</pre>
3205
3206<h5>Overview:</h5>
3207
3208<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003209The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3210or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003211</p>
3212
3213
3214<h5>Arguments:</h5>
3215
3216<p>
3217The first operand of an '<tt>extractvalue</tt>' instruction is a
3218value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003219type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003220in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003221'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3222</p>
3223
3224<h5>Semantics:</h5>
3225
3226<p>
3227The result is the value at the position in the aggregate specified by
3228the index operands.
3229</p>
3230
3231<h5>Example:</h5>
3232
3233<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003234 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003235</pre>
3236</div>
3237
3238
3239<!-- _______________________________________________________________________ -->
3240<div class="doc_subsubsection">
3241 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3242</div>
3243
3244<div class="doc_text">
3245
3246<h5>Syntax:</h5>
3247
3248<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003249 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003250</pre>
3251
3252<h5>Overview:</h5>
3253
3254<p>
3255The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003256into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003257</p>
3258
3259
3260<h5>Arguments:</h5>
3261
3262<p>
3263The first operand of an '<tt>insertvalue</tt>' instruction is a
3264value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3265The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003266The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003267indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003268indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003269'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3270The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003271by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003272</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003273
3274<h5>Semantics:</h5>
3275
3276<p>
3277The result is an aggregate of the same type as <tt>val</tt>. Its
3278value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003279specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003280</p>
3281
3282<h5>Example:</h5>
3283
3284<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003285 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003286</pre>
3287</div>
3288
3289
3290<!-- ======================================================================= -->
3291<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003292 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003293</div>
3294
Misha Brukman9d0919f2003-11-08 01:05:38 +00003295<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003296
Chris Lattner261efe92003-11-25 01:02:51 +00003297<p>A key design point of an SSA-based representation is how it
3298represents memory. In LLVM, no memory locations are in SSA form, which
3299makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003300allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003301
Misha Brukman9d0919f2003-11-08 01:05:38 +00003302</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003303
Chris Lattner00950542001-06-06 20:29:01 +00003304<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003305<div class="doc_subsubsection">
3306 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3307</div>
3308
Misha Brukman9d0919f2003-11-08 01:05:38 +00003309<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003310
Chris Lattner00950542001-06-06 20:29:01 +00003311<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003312
3313<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003314 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003315</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003316
Chris Lattner00950542001-06-06 20:29:01 +00003317<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003318
Chris Lattner261efe92003-11-25 01:02:51 +00003319<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003320heap and returns a pointer to it. The object is always allocated in the generic
3321address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003322
Chris Lattner00950542001-06-06 20:29:01 +00003323<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003324
3325<p>The '<tt>malloc</tt>' instruction allocates
3326<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003327bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003328appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003329number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003330If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003331be aligned to at least that boundary. If not specified, or if zero, the target can
3332choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003333
Misha Brukman9d0919f2003-11-08 01:05:38 +00003334<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003335
Chris Lattner00950542001-06-06 20:29:01 +00003336<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003337
Chris Lattner261efe92003-11-25 01:02:51 +00003338<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003339a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003340result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003341
Chris Lattner2cbdc452005-11-06 08:02:57 +00003342<h5>Example:</h5>
3343
3344<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003345 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003346
Bill Wendlingaac388b2007-05-29 09:42:13 +00003347 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3348 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3349 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3350 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3351 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003352</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003353
3354<p>Note that the code generator does not yet respect the
3355 alignment value.</p>
3356
Misha Brukman9d0919f2003-11-08 01:05:38 +00003357</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003358
Chris Lattner00950542001-06-06 20:29:01 +00003359<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003360<div class="doc_subsubsection">
3361 <a name="i_free">'<tt>free</tt>' Instruction</a>
3362</div>
3363
Misha Brukman9d0919f2003-11-08 01:05:38 +00003364<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003365
Chris Lattner00950542001-06-06 20:29:01 +00003366<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003367
3368<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003369 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003370</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003371
Chris Lattner00950542001-06-06 20:29:01 +00003372<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003373
Chris Lattner261efe92003-11-25 01:02:51 +00003374<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003375memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003376
Chris Lattner00950542001-06-06 20:29:01 +00003377<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003378
Chris Lattner261efe92003-11-25 01:02:51 +00003379<p>'<tt>value</tt>' shall be a pointer value that points to a value
3380that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3381instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003382
Chris Lattner00950542001-06-06 20:29:01 +00003383<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003384
John Criswell9e2485c2004-12-10 15:51:16 +00003385<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003386after this instruction executes. If the pointer is null, the operation
3387is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003388
Chris Lattner00950542001-06-06 20:29:01 +00003389<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003390
3391<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003392 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003393 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003394</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003395</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003396
Chris Lattner00950542001-06-06 20:29:01 +00003397<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003398<div class="doc_subsubsection">
3399 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3400</div>
3401
Misha Brukman9d0919f2003-11-08 01:05:38 +00003402<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003403
Chris Lattner00950542001-06-06 20:29:01 +00003404<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003405
3406<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003407 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003408</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003409
Chris Lattner00950542001-06-06 20:29:01 +00003410<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003411
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003412<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3413currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003414returns to its caller. The object is always allocated in the generic address
3415space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003416
Chris Lattner00950542001-06-06 20:29:01 +00003417<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003418
John Criswell9e2485c2004-12-10 15:51:16 +00003419<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003420bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003421appropriate type to the program. If "NumElements" is specified, it is the
3422number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003423If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003424to be aligned to at least that boundary. If not specified, or if zero, the target
3425can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003426
Misha Brukman9d0919f2003-11-08 01:05:38 +00003427<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003428
Chris Lattner00950542001-06-06 20:29:01 +00003429<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003430
Chris Lattner72ed2002008-04-19 21:01:16 +00003431<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3432there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003433memory is automatically released when the function returns. The '<tt>alloca</tt>'
3434instruction is commonly used to represent automatic variables that must
3435have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003436 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003437instructions), the memory is reclaimed. Allocating zero bytes
3438is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003439
Chris Lattner00950542001-06-06 20:29:01 +00003440<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003441
3442<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003443 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3444 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3445 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3446 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003447</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003448</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003449
Chris Lattner00950542001-06-06 20:29:01 +00003450<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003451<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3452Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003453<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003454<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003455<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003456<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003457<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003458<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003459<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003460address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003461 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003462marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003463the number or order of execution of this <tt>load</tt> with other
3464volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3465instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003466<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003467The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003468(that is, the alignment of the memory address). A value of 0 or an
3469omitted "align" argument means that the operation has the preferential
3470alignment for the target. It is the responsibility of the code emitter
3471to ensure that the alignment information is correct. Overestimating
3472the alignment results in an undefined behavior. Underestimating the
3473alignment may produce less efficient code. An alignment of 1 is always
3474safe.
3475</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003476<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003477<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003478<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003479<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003480 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003481 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3482 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003483</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003484</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003485<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003486<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3487Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003488<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003489<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003490<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3491 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003492</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003493<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003494<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003495<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003496<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003497to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003498operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3499of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003500operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003501optimizer is not allowed to modify the number or order of execution of
3502this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3503 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003504<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003505The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003506(that is, the alignment of the memory address). A value of 0 or an
3507omitted "align" argument means that the operation has the preferential
3508alignment for the target. It is the responsibility of the code emitter
3509to ensure that the alignment information is correct. Overestimating
3510the alignment results in an undefined behavior. Underestimating the
3511alignment may produce less efficient code. An alignment of 1 is always
3512safe.
3513</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003514<h5>Semantics:</h5>
3515<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3516at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003517<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003518<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003519 store i32 3, i32* %ptr <i>; yields {void}</i>
3520 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003521</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003522</div>
3523
Chris Lattner2b7d3202002-05-06 03:03:22 +00003524<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003525<div class="doc_subsubsection">
3526 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3527</div>
3528
Misha Brukman9d0919f2003-11-08 01:05:38 +00003529<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003530<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003531<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003532 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003533</pre>
3534
Chris Lattner7faa8832002-04-14 06:13:44 +00003535<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003536
3537<p>
3538The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003539subelement of an aggregate data structure. It performs address calculation only
3540and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003541
Chris Lattner7faa8832002-04-14 06:13:44 +00003542<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003543
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003544<p>The first argument is always a pointer, and forms the basis of the
3545calculation. The remaining arguments are indices, that indicate which of the
3546elements of the aggregate object are indexed. The interpretation of each index
3547is dependent on the type being indexed into. The first index always indexes the
3548pointer value given as the first argument, the second index indexes a value of
3549the type pointed to (not necessarily the value directly pointed to, since the
3550first index can be non-zero), etc. The first type indexed into must be a pointer
3551value, subsequent types can be arrays, vectors and structs. Note that subsequent
3552types being indexed into can never be pointers, since that would require loading
3553the pointer before continuing calculation.</p>
3554
3555<p>The type of each index argument depends on the type it is indexing into.
3556When indexing into a (packed) structure, only <tt>i32</tt> integer
3557<b>constants</b> are allowed. When indexing into an array, pointer or vector,
3558only integers of 32 or 64 bits are allowed (also non-constants). 32-bit values
3559will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003560
Chris Lattner261efe92003-11-25 01:02:51 +00003561<p>For example, let's consider a C code fragment and how it gets
3562compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003563
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003564<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003565<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003566struct RT {
3567 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003568 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003569 char C;
3570};
3571struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003572 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003573 double Y;
3574 struct RT Z;
3575};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003576
Chris Lattnercabc8462007-05-29 15:43:56 +00003577int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003578 return &amp;s[1].Z.B[5][13];
3579}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003580</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003581</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003582
Misha Brukman9d0919f2003-11-08 01:05:38 +00003583<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003584
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003585<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003586<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00003587%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3588%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003589
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003590define i32* %foo(%ST* %s) {
3591entry:
3592 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3593 ret i32* %reg
3594}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003595</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003596</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003597
Chris Lattner7faa8832002-04-14 06:13:44 +00003598<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003599
Misha Brukman9d0919f2003-11-08 01:05:38 +00003600<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003601type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003602}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003603the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3604i8 }</tt>' type, another structure. The third index indexes into the second
3605element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003606array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003607'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3608to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003609
Chris Lattner261efe92003-11-25 01:02:51 +00003610<p>Note that it is perfectly legal to index partially through a
3611structure, returning a pointer to an inner element. Because of this,
3612the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003613
3614<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003615 define i32* %foo(%ST* %s) {
3616 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003617 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3618 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003619 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3620 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3621 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003622 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003623</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003624
3625<p>Note that it is undefined to access an array out of bounds: array and
3626pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003627The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003628defined to be accessible as variable length arrays, which requires access
3629beyond the zero'th element.</p>
3630
Chris Lattner884a9702006-08-15 00:45:58 +00003631<p>The getelementptr instruction is often confusing. For some more insight
3632into how it works, see <a href="GetElementPtr.html">the getelementptr
3633FAQ</a>.</p>
3634
Chris Lattner7faa8832002-04-14 06:13:44 +00003635<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003636
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003637<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003638 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003639 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3640 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003641 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003642 <i>; yields i8*:eptr</i>
3643 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003644</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003645</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003646
Chris Lattner00950542001-06-06 20:29:01 +00003647<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003648<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003649</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003650<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003651<p>The instructions in this category are the conversion instructions (casting)
3652which all take a single operand and a type. They perform various bit conversions
3653on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003654</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003655
Chris Lattner6536cfe2002-05-06 22:08:29 +00003656<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003657<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003658 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3659</div>
3660<div class="doc_text">
3661
3662<h5>Syntax:</h5>
3663<pre>
3664 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3665</pre>
3666
3667<h5>Overview:</h5>
3668<p>
3669The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3670</p>
3671
3672<h5>Arguments:</h5>
3673<p>
3674The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3675be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003676and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003677type. The bit size of <tt>value</tt> must be larger than the bit size of
3678<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003679
3680<h5>Semantics:</h5>
3681<p>
3682The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003683and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3684larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3685It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003686
3687<h5>Example:</h5>
3688<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003689 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003690 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3691 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003692</pre>
3693</div>
3694
3695<!-- _______________________________________________________________________ -->
3696<div class="doc_subsubsection">
3697 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3698</div>
3699<div class="doc_text">
3700
3701<h5>Syntax:</h5>
3702<pre>
3703 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3704</pre>
3705
3706<h5>Overview:</h5>
3707<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3708<tt>ty2</tt>.</p>
3709
3710
3711<h5>Arguments:</h5>
3712<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003713<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3714also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003715<tt>value</tt> must be smaller than the bit size of the destination type,
3716<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003717
3718<h5>Semantics:</h5>
3719<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003720bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003721
Reid Spencerb5929522007-01-12 15:46:11 +00003722<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003723
3724<h5>Example:</h5>
3725<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003726 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003727 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003728</pre>
3729</div>
3730
3731<!-- _______________________________________________________________________ -->
3732<div class="doc_subsubsection">
3733 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3734</div>
3735<div class="doc_text">
3736
3737<h5>Syntax:</h5>
3738<pre>
3739 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3740</pre>
3741
3742<h5>Overview:</h5>
3743<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3744
3745<h5>Arguments:</h5>
3746<p>
3747The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003748<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3749also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003750<tt>value</tt> must be smaller than the bit size of the destination type,
3751<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003752
3753<h5>Semantics:</h5>
3754<p>
3755The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3756bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003757the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003758
Reid Spencerc78f3372007-01-12 03:35:51 +00003759<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003760
3761<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003762<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003763 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003764 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003765</pre>
3766</div>
3767
3768<!-- _______________________________________________________________________ -->
3769<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003770 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3771</div>
3772
3773<div class="doc_text">
3774
3775<h5>Syntax:</h5>
3776
3777<pre>
3778 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3779</pre>
3780
3781<h5>Overview:</h5>
3782<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3783<tt>ty2</tt>.</p>
3784
3785
3786<h5>Arguments:</h5>
3787<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3788 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3789cast it to. The size of <tt>value</tt> must be larger than the size of
3790<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3791<i>no-op cast</i>.</p>
3792
3793<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003794<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3795<a href="#t_floating">floating point</a> type to a smaller
3796<a href="#t_floating">floating point</a> type. If the value cannot fit within
3797the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003798
3799<h5>Example:</h5>
3800<pre>
3801 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3802 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3803</pre>
3804</div>
3805
3806<!-- _______________________________________________________________________ -->
3807<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003808 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3809</div>
3810<div class="doc_text">
3811
3812<h5>Syntax:</h5>
3813<pre>
3814 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3815</pre>
3816
3817<h5>Overview:</h5>
3818<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3819floating point value.</p>
3820
3821<h5>Arguments:</h5>
3822<p>The '<tt>fpext</tt>' instruction takes a
3823<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003824and a <a href="#t_floating">floating point</a> type to cast it to. The source
3825type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003826
3827<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003828<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003829<a href="#t_floating">floating point</a> type to a larger
3830<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003831used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003832<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003833
3834<h5>Example:</h5>
3835<pre>
3836 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3837 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3838</pre>
3839</div>
3840
3841<!-- _______________________________________________________________________ -->
3842<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003843 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003844</div>
3845<div class="doc_text">
3846
3847<h5>Syntax:</h5>
3848<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003849 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003850</pre>
3851
3852<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003853<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003854unsigned integer equivalent of type <tt>ty2</tt>.
3855</p>
3856
3857<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003858<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003859scalar or vector <a href="#t_floating">floating point</a> value, and a type
3860to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3861type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3862vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003863
3864<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003865<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003866<a href="#t_floating">floating point</a> operand into the nearest (rounding
3867towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3868the results are undefined.</p>
3869
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003870<h5>Example:</h5>
3871<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003872 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003873 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003874 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003875</pre>
3876</div>
3877
3878<!-- _______________________________________________________________________ -->
3879<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003880 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003881</div>
3882<div class="doc_text">
3883
3884<h5>Syntax:</h5>
3885<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003886 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003887</pre>
3888
3889<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003890<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003891<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003892</p>
3893
Chris Lattner6536cfe2002-05-06 22:08:29 +00003894<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003895<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003896scalar or vector <a href="#t_floating">floating point</a> value, and a type
3897to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3898type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3899vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003900
Chris Lattner6536cfe2002-05-06 22:08:29 +00003901<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003902<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003903<a href="#t_floating">floating point</a> operand into the nearest (rounding
3904towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3905the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003906
Chris Lattner33ba0d92001-07-09 00:26:23 +00003907<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003908<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003909 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003910 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003911 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003912</pre>
3913</div>
3914
3915<!-- _______________________________________________________________________ -->
3916<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003917 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003918</div>
3919<div class="doc_text">
3920
3921<h5>Syntax:</h5>
3922<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003923 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003924</pre>
3925
3926<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003927<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003928integer and converts that value to the <tt>ty2</tt> type.</p>
3929
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003930<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003931<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3932scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3933to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3934type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3935floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003936
3937<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003938<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003939integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003940the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003941
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003942<h5>Example:</h5>
3943<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003944 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003945 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003946</pre>
3947</div>
3948
3949<!-- _______________________________________________________________________ -->
3950<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003951 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003952</div>
3953<div class="doc_text">
3954
3955<h5>Syntax:</h5>
3956<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003957 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003958</pre>
3959
3960<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003961<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003962integer and converts that value to the <tt>ty2</tt> type.</p>
3963
3964<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003965<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3966scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3967to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3968type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3969floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003970
3971<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003972<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003973integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003974the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003975
3976<h5>Example:</h5>
3977<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003978 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003979 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003980</pre>
3981</div>
3982
3983<!-- _______________________________________________________________________ -->
3984<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003985 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3986</div>
3987<div class="doc_text">
3988
3989<h5>Syntax:</h5>
3990<pre>
3991 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3992</pre>
3993
3994<h5>Overview:</h5>
3995<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3996the integer type <tt>ty2</tt>.</p>
3997
3998<h5>Arguments:</h5>
3999<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00004000must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00004001<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004002
4003<h5>Semantics:</h5>
4004<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4005<tt>ty2</tt> by interpreting the pointer value as an integer and either
4006truncating or zero extending that value to the size of the integer type. If
4007<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4008<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00004009are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4010change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004011
4012<h5>Example:</h5>
4013<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004014 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4015 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004016</pre>
4017</div>
4018
4019<!-- _______________________________________________________________________ -->
4020<div class="doc_subsubsection">
4021 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4022</div>
4023<div class="doc_text">
4024
4025<h5>Syntax:</h5>
4026<pre>
4027 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4028</pre>
4029
4030<h5>Overview:</h5>
4031<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4032a pointer type, <tt>ty2</tt>.</p>
4033
4034<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00004035<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00004036value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004037<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004038
4039<h5>Semantics:</h5>
4040<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4041<tt>ty2</tt> by applying either a zero extension or a truncation depending on
4042the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4043size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4044the size of a pointer then a zero extension is done. If they are the same size,
4045nothing is done (<i>no-op cast</i>).</p>
4046
4047<h5>Example:</h5>
4048<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004049 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4050 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4051 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004052</pre>
4053</div>
4054
4055<!-- _______________________________________________________________________ -->
4056<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00004057 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004058</div>
4059<div class="doc_text">
4060
4061<h5>Syntax:</h5>
4062<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004063 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004064</pre>
4065
4066<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004067
Reid Spencer5c0ef472006-11-11 23:08:07 +00004068<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004069<tt>ty2</tt> without changing any bits.</p>
4070
4071<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004072
Reid Spencer5c0ef472006-11-11 23:08:07 +00004073<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00004074a non-aggregate first class value, and a type to cast it to, which must also be
4075a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4076<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00004077and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00004078type is a pointer, the destination type must also be a pointer. This
4079instruction supports bitwise conversion of vectors to integers and to vectors
4080of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004081
4082<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004083<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00004084<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4085this conversion. The conversion is done as if the <tt>value</tt> had been
4086stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4087converted to other pointer types with this instruction. To convert pointers to
4088other types, use the <a href="#i_inttoptr">inttoptr</a> or
4089<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004090
4091<h5>Example:</h5>
4092<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004093 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004094 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004095 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00004096</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004097</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004098
Reid Spencer2fd21e62006-11-08 01:18:52 +00004099<!-- ======================================================================= -->
4100<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4101<div class="doc_text">
4102<p>The instructions in this category are the "miscellaneous"
4103instructions, which defy better classification.</p>
4104</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004105
4106<!-- _______________________________________________________________________ -->
4107<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4108</div>
4109<div class="doc_text">
4110<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004111<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004112</pre>
4113<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004114<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4115a vector of boolean values based on comparison
4116of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004117<h5>Arguments:</h5>
4118<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004119the condition code indicating the kind of comparison to perform. It is not
4120a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004121</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004122<ol>
4123 <li><tt>eq</tt>: equal</li>
4124 <li><tt>ne</tt>: not equal </li>
4125 <li><tt>ugt</tt>: unsigned greater than</li>
4126 <li><tt>uge</tt>: unsigned greater or equal</li>
4127 <li><tt>ult</tt>: unsigned less than</li>
4128 <li><tt>ule</tt>: unsigned less or equal</li>
4129 <li><tt>sgt</tt>: signed greater than</li>
4130 <li><tt>sge</tt>: signed greater or equal</li>
4131 <li><tt>slt</tt>: signed less than</li>
4132 <li><tt>sle</tt>: signed less or equal</li>
4133</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00004134<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00004135<a href="#t_pointer">pointer</a>
4136or integer <a href="#t_vector">vector</a> typed.
4137They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004138<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004139<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00004140the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00004141yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004142</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004143<ol>
4144 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4145 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4146 </li>
4147 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00004148 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004149 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004150 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004151 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004152 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004153 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004154 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004155 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004156 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004157 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004158 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004159 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004160 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004161 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004162 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004163 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004164 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004165</ol>
4166<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00004167values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004168<p>If the operands are integer vectors, then they are compared
4169element by element. The result is an <tt>i1</tt> vector with
4170the same number of elements as the values being compared.
4171Otherwise, the result is an <tt>i1</tt>.
4172</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004173
4174<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004175<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4176 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4177 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4178 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4179 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4180 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004181</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004182
4183<p>Note that the code generator does not yet support vector types with
4184 the <tt>icmp</tt> instruction.</p>
4185
Reid Spencerf3a70a62006-11-18 21:50:54 +00004186</div>
4187
4188<!-- _______________________________________________________________________ -->
4189<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4190</div>
4191<div class="doc_text">
4192<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004193<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004194</pre>
4195<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004196<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4197or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004198of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004199<p>
4200If the operands are floating point scalars, then the result
4201type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4202</p>
4203<p>If the operands are floating point vectors, then the result type
4204is a vector of boolean with the same number of elements as the
4205operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004206<h5>Arguments:</h5>
4207<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004208the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004209a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004210<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004211 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004212 <li><tt>oeq</tt>: ordered and equal</li>
4213 <li><tt>ogt</tt>: ordered and greater than </li>
4214 <li><tt>oge</tt>: ordered and greater than or equal</li>
4215 <li><tt>olt</tt>: ordered and less than </li>
4216 <li><tt>ole</tt>: ordered and less than or equal</li>
4217 <li><tt>one</tt>: ordered and not equal</li>
4218 <li><tt>ord</tt>: ordered (no nans)</li>
4219 <li><tt>ueq</tt>: unordered or equal</li>
4220 <li><tt>ugt</tt>: unordered or greater than </li>
4221 <li><tt>uge</tt>: unordered or greater than or equal</li>
4222 <li><tt>ult</tt>: unordered or less than </li>
4223 <li><tt>ule</tt>: unordered or less than or equal</li>
4224 <li><tt>une</tt>: unordered or not equal</li>
4225 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004226 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004227</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004228<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004229<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004230<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4231either a <a href="#t_floating">floating point</a> type
4232or a <a href="#t_vector">vector</a> of floating point type.
4233They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004234<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004235<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004236according to the condition code given as <tt>cond</tt>.
4237If the operands are vectors, then the vectors are compared
4238element by element.
4239Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004240always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004241<ol>
4242 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004243 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004244 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004245 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004246 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004247 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004248 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004249 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004250 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004251 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004252 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004253 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004254 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004255 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4256 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004257 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004258 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004259 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004260 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004261 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004262 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004263 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004264 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004265 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004266 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004267 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004268 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004269 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4270</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004271
4272<h5>Example:</h5>
4273<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004274 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4275 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4276 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004277</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004278
4279<p>Note that the code generator does not yet support vector types with
4280 the <tt>fcmp</tt> instruction.</p>
4281
Reid Spencerf3a70a62006-11-18 21:50:54 +00004282</div>
4283
Reid Spencer2fd21e62006-11-08 01:18:52 +00004284<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004285<div class="doc_subsubsection">
4286 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4287</div>
4288<div class="doc_text">
4289<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004290<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004291</pre>
4292<h5>Overview:</h5>
4293<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4294element-wise comparison of its two integer vector operands.</p>
4295<h5>Arguments:</h5>
4296<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4297the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004298a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004299<ol>
4300 <li><tt>eq</tt>: equal</li>
4301 <li><tt>ne</tt>: not equal </li>
4302 <li><tt>ugt</tt>: unsigned greater than</li>
4303 <li><tt>uge</tt>: unsigned greater or equal</li>
4304 <li><tt>ult</tt>: unsigned less than</li>
4305 <li><tt>ule</tt>: unsigned less or equal</li>
4306 <li><tt>sgt</tt>: signed greater than</li>
4307 <li><tt>sge</tt>: signed greater or equal</li>
4308 <li><tt>slt</tt>: signed less than</li>
4309 <li><tt>sle</tt>: signed less or equal</li>
4310</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004311<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004312<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4313<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004314<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004315according to the condition code given as <tt>cond</tt>. The comparison yields a
4316<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4317identical type as the values being compared. The most significant bit in each
4318element is 1 if the element-wise comparison evaluates to true, and is 0
4319otherwise. All other bits of the result are undefined. The condition codes
4320are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman0e451ce2008-10-14 16:51:45 +00004321instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004322
4323<h5>Example:</h5>
4324<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004325 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4326 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004327</pre>
4328</div>
4329
4330<!-- _______________________________________________________________________ -->
4331<div class="doc_subsubsection">
4332 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4333</div>
4334<div class="doc_text">
4335<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004336<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004337<h5>Overview:</h5>
4338<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4339element-wise comparison of its two floating point vector operands. The output
4340elements have the same width as the input elements.</p>
4341<h5>Arguments:</h5>
4342<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4343the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004344a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004345<ol>
4346 <li><tt>false</tt>: no comparison, always returns false</li>
4347 <li><tt>oeq</tt>: ordered and equal</li>
4348 <li><tt>ogt</tt>: ordered and greater than </li>
4349 <li><tt>oge</tt>: ordered and greater than or equal</li>
4350 <li><tt>olt</tt>: ordered and less than </li>
4351 <li><tt>ole</tt>: ordered and less than or equal</li>
4352 <li><tt>one</tt>: ordered and not equal</li>
4353 <li><tt>ord</tt>: ordered (no nans)</li>
4354 <li><tt>ueq</tt>: unordered or equal</li>
4355 <li><tt>ugt</tt>: unordered or greater than </li>
4356 <li><tt>uge</tt>: unordered or greater than or equal</li>
4357 <li><tt>ult</tt>: unordered or less than </li>
4358 <li><tt>ule</tt>: unordered or less than or equal</li>
4359 <li><tt>une</tt>: unordered or not equal</li>
4360 <li><tt>uno</tt>: unordered (either nans)</li>
4361 <li><tt>true</tt>: no comparison, always returns true</li>
4362</ol>
4363<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4364<a href="#t_floating">floating point</a> typed. They must also be identical
4365types.</p>
4366<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004367<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004368according to the condition code given as <tt>cond</tt>. The comparison yields a
4369<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4370an identical number of elements as the values being compared, and each element
4371having identical with to the width of the floating point elements. The most
4372significant bit in each element is 1 if the element-wise comparison evaluates to
4373true, and is 0 otherwise. All other bits of the result are undefined. The
4374condition codes are evaluated identically to the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004375<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004376
4377<h5>Example:</h5>
4378<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +00004379 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4380 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4381
4382 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4383 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemanac80ade2008-05-12 19:01:56 +00004384</pre>
4385</div>
4386
4387<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004388<div class="doc_subsubsection">
4389 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4390</div>
4391
Reid Spencer2fd21e62006-11-08 01:18:52 +00004392<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004393
Reid Spencer2fd21e62006-11-08 01:18:52 +00004394<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004395
Reid Spencer2fd21e62006-11-08 01:18:52 +00004396<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4397<h5>Overview:</h5>
4398<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4399the SSA graph representing the function.</p>
4400<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004401
Jeff Cohenb627eab2007-04-29 01:07:00 +00004402<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004403field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4404as arguments, with one pair for each predecessor basic block of the
4405current block. Only values of <a href="#t_firstclass">first class</a>
4406type may be used as the value arguments to the PHI node. Only labels
4407may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004408
Reid Spencer2fd21e62006-11-08 01:18:52 +00004409<p>There must be no non-phi instructions between the start of a basic
4410block and the PHI instructions: i.e. PHI instructions must be first in
4411a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004412
Reid Spencer2fd21e62006-11-08 01:18:52 +00004413<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004414
Jeff Cohenb627eab2007-04-29 01:07:00 +00004415<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4416specified by the pair corresponding to the predecessor basic block that executed
4417just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004418
Reid Spencer2fd21e62006-11-08 01:18:52 +00004419<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004420<pre>
4421Loop: ; Infinite loop that counts from 0 on up...
4422 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4423 %nextindvar = add i32 %indvar, 1
4424 br label %Loop
4425</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004426</div>
4427
Chris Lattnercc37aae2004-03-12 05:50:16 +00004428<!-- _______________________________________________________________________ -->
4429<div class="doc_subsubsection">
4430 <a name="i_select">'<tt>select</tt>' Instruction</a>
4431</div>
4432
4433<div class="doc_text">
4434
4435<h5>Syntax:</h5>
4436
4437<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004438 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4439
Dan Gohman0e451ce2008-10-14 16:51:45 +00004440 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004441</pre>
4442
4443<h5>Overview:</h5>
4444
4445<p>
4446The '<tt>select</tt>' instruction is used to choose one value based on a
4447condition, without branching.
4448</p>
4449
4450
4451<h5>Arguments:</h5>
4452
4453<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004454The '<tt>select</tt>' instruction requires an 'i1' value or
4455a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004456condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004457type. If the val1/val2 are vectors and
4458the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004459individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004460</p>
4461
4462<h5>Semantics:</h5>
4463
4464<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004465If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004466value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004467</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004468<p>
4469If the condition is a vector of i1, then the value arguments must
4470be vectors of the same size, and the selection is done element
4471by element.
4472</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004473
4474<h5>Example:</h5>
4475
4476<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004477 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004478</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004479
4480<p>Note that the code generator does not yet support conditions
4481 with vector type.</p>
4482
Chris Lattnercc37aae2004-03-12 05:50:16 +00004483</div>
4484
Robert Bocchino05ccd702006-01-15 20:48:27 +00004485
4486<!-- _______________________________________________________________________ -->
4487<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004488 <a name="i_call">'<tt>call</tt>' Instruction</a>
4489</div>
4490
Misha Brukman9d0919f2003-11-08 01:05:38 +00004491<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004492
Chris Lattner00950542001-06-06 20:29:01 +00004493<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004494<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004495 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004496</pre>
4497
Chris Lattner00950542001-06-06 20:29:01 +00004498<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004499
Misha Brukman9d0919f2003-11-08 01:05:38 +00004500<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004501
Chris Lattner00950542001-06-06 20:29:01 +00004502<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004503
Misha Brukman9d0919f2003-11-08 01:05:38 +00004504<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004505
Chris Lattner6536cfe2002-05-06 22:08:29 +00004506<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004507 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004508 <p>The optional "tail" marker indicates whether the callee function accesses
4509 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004510 function call is eligible for tail call optimization. Note that calls may
4511 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004512 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004513 </li>
4514 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004515 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004516 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004517 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004518 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004519
4520 <li>
4521 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4522 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4523 and '<tt>inreg</tt>' attributes are valid here.</p>
4524 </li>
4525
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004526 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004527 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4528 the type of the return value. Functions that return no value are marked
4529 <tt><a href="#t_void">void</a></tt>.</p>
4530 </li>
4531 <li>
4532 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4533 value being invoked. The argument types must match the types implied by
4534 this signature. This type can be omitted if the function is not varargs
4535 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004536 </li>
4537 <li>
4538 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4539 be invoked. In most cases, this is a direct function invocation, but
4540 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004541 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004542 </li>
4543 <li>
4544 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004545 function signature argument types. All arguments must be of
4546 <a href="#t_firstclass">first class</a> type. If the function signature
4547 indicates the function accepts a variable number of arguments, the extra
4548 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004549 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004550 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004551 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004552 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4553 '<tt>readnone</tt>' attributes are valid here.</p>
4554 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004555</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004556
Chris Lattner00950542001-06-06 20:29:01 +00004557<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004558
Chris Lattner261efe92003-11-25 01:02:51 +00004559<p>The '<tt>call</tt>' instruction is used to cause control flow to
4560transfer to a specified function, with its incoming arguments bound to
4561the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4562instruction in the called function, control flow continues with the
4563instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004564function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004565
Chris Lattner00950542001-06-06 20:29:01 +00004566<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004567
4568<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004569 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004570 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4571 %X = tail call i32 @foo() <i>; yields i32</i>
4572 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4573 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004574
4575 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004576 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004577 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4578 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004579 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004580 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004581</pre>
4582
Misha Brukman9d0919f2003-11-08 01:05:38 +00004583</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004584
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004585<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004586<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004587 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004588</div>
4589
Misha Brukman9d0919f2003-11-08 01:05:38 +00004590<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004591
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004592<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004593
4594<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004595 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004596</pre>
4597
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004598<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004599
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004600<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004601the "variable argument" area of a function call. It is used to implement the
4602<tt>va_arg</tt> macro in C.</p>
4603
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004604<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004605
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004606<p>This instruction takes a <tt>va_list*</tt> value and the type of
4607the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004608increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004609actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004610
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004611<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004612
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004613<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4614type from the specified <tt>va_list</tt> and causes the
4615<tt>va_list</tt> to point to the next argument. For more information,
4616see the variable argument handling <a href="#int_varargs">Intrinsic
4617Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004618
4619<p>It is legal for this instruction to be called in a function which does not
4620take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004621function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004622
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004623<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004624href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004625argument.</p>
4626
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004627<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004628
4629<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4630
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00004631<p>Note that the code generator does not yet fully support va_arg
4632 on many targets. Also, it does not currently support va_arg with
4633 aggregate types on any target.</p>
4634
Misha Brukman9d0919f2003-11-08 01:05:38 +00004635</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004636
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004637<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004638<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4639<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004640
Misha Brukman9d0919f2003-11-08 01:05:38 +00004641<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004642
4643<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004644well known names and semantics and are required to follow certain restrictions.
4645Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004646language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004647adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004648
John Criswellfc6b8952005-05-16 16:17:45 +00004649<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004650prefix is reserved in LLVM for intrinsic names; thus, function names may not
4651begin with this prefix. Intrinsic functions must always be external functions:
4652you cannot define the body of intrinsic functions. Intrinsic functions may
4653only be used in call or invoke instructions: it is illegal to take the address
4654of an intrinsic function. Additionally, because intrinsic functions are part
4655of the LLVM language, it is required if any are added that they be documented
4656here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004657
Chandler Carruth69940402007-08-04 01:51:18 +00004658<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4659a family of functions that perform the same operation but on different data
4660types. Because LLVM can represent over 8 million different integer types,
4661overloading is used commonly to allow an intrinsic function to operate on any
4662integer type. One or more of the argument types or the result type can be
4663overloaded to accept any integer type. Argument types may also be defined as
4664exactly matching a previous argument's type or the result type. This allows an
4665intrinsic function which accepts multiple arguments, but needs all of them to
4666be of the same type, to only be overloaded with respect to a single argument or
4667the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004668
Chandler Carruth69940402007-08-04 01:51:18 +00004669<p>Overloaded intrinsics will have the names of its overloaded argument types
4670encoded into its function name, each preceded by a period. Only those types
4671which are overloaded result in a name suffix. Arguments whose type is matched
4672against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4673take an integer of any width and returns an integer of exactly the same integer
4674width. This leads to a family of functions such as
4675<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4676Only one type, the return type, is overloaded, and only one type suffix is
4677required. Because the argument's type is matched against the return type, it
4678does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004679
4680<p>To learn how to add an intrinsic function, please see the
4681<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004682</p>
4683
Misha Brukman9d0919f2003-11-08 01:05:38 +00004684</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004685
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004686<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004687<div class="doc_subsection">
4688 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4689</div>
4690
Misha Brukman9d0919f2003-11-08 01:05:38 +00004691<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004692
Misha Brukman9d0919f2003-11-08 01:05:38 +00004693<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004694 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004695intrinsic functions. These functions are related to the similarly
4696named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004697
Chris Lattner261efe92003-11-25 01:02:51 +00004698<p>All of these functions operate on arguments that use a
4699target-specific value type "<tt>va_list</tt>". The LLVM assembly
4700language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004701transformations should be prepared to handle these functions regardless of
4702the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004703
Chris Lattner374ab302006-05-15 17:26:46 +00004704<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004705instruction and the variable argument handling intrinsic functions are
4706used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004707
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004708<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004709<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004710define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004711 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004712 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004713 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004714 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004715
4716 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004717 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004718
4719 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004720 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004721 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004722 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004723 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004724
4725 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004726 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004727 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004728}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004729
4730declare void @llvm.va_start(i8*)
4731declare void @llvm.va_copy(i8*, i8*)
4732declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004733</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004734</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004735
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004736</div>
4737
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004738<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004739<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004740 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004741</div>
4742
4743
Misha Brukman9d0919f2003-11-08 01:05:38 +00004744<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004745<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004746<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004747<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004748<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004749<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4750href="#i_va_arg">va_arg</a></tt>.</p>
4751
4752<h5>Arguments:</h5>
4753
Dan Gohman0e451ce2008-10-14 16:51:45 +00004754<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004755
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004756<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004757
Dan Gohman0e451ce2008-10-14 16:51:45 +00004758<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004759macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004760<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004761<tt>va_arg</tt> will produce the first variable argument passed to the function.
4762Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004763last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004764
Misha Brukman9d0919f2003-11-08 01:05:38 +00004765</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004766
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004767<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004768<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004769 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004770</div>
4771
Misha Brukman9d0919f2003-11-08 01:05:38 +00004772<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004773<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004774<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004775<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004776
Jeff Cohenb627eab2007-04-29 01:07:00 +00004777<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004778which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004779or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004780
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004781<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004782
Jeff Cohenb627eab2007-04-29 01:07:00 +00004783<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004784
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004785<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004786
Misha Brukman9d0919f2003-11-08 01:05:38 +00004787<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004788macro available in C. In a target-dependent way, it destroys the
4789<tt>va_list</tt> element to which the argument points. Calls to <a
4790href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4791<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4792<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004793
Misha Brukman9d0919f2003-11-08 01:05:38 +00004794</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004795
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004796<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004797<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004798 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004799</div>
4800
Misha Brukman9d0919f2003-11-08 01:05:38 +00004801<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004802
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004803<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004804
4805<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004806 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004807</pre>
4808
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004809<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004810
Jeff Cohenb627eab2007-04-29 01:07:00 +00004811<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4812from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004813
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004814<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004815
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004816<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004817The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004818
Chris Lattnerd7923912004-05-23 21:06:01 +00004819
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004820<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004821
Jeff Cohenb627eab2007-04-29 01:07:00 +00004822<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4823macro available in C. In a target-dependent way, it copies the source
4824<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4825intrinsic is necessary because the <tt><a href="#int_va_start">
4826llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4827example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004828
Misha Brukman9d0919f2003-11-08 01:05:38 +00004829</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004830
Chris Lattner33aec9e2004-02-12 17:01:32 +00004831<!-- ======================================================================= -->
4832<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004833 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4834</div>
4835
4836<div class="doc_text">
4837
4838<p>
4839LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004840Collection</a> (GC) requires the implementation and generation of these
4841intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004842These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004843stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004844href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004845Front-ends for type-safe garbage collected languages should generate these
4846intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4847href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4848</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004849
4850<p>The garbage collection intrinsics only operate on objects in the generic
4851 address space (address space zero).</p>
4852
Chris Lattnerd7923912004-05-23 21:06:01 +00004853</div>
4854
4855<!-- _______________________________________________________________________ -->
4856<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004857 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004858</div>
4859
4860<div class="doc_text">
4861
4862<h5>Syntax:</h5>
4863
4864<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004865 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004866</pre>
4867
4868<h5>Overview:</h5>
4869
John Criswell9e2485c2004-12-10 15:51:16 +00004870<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004871the code generator, and allows some metadata to be associated with it.</p>
4872
4873<h5>Arguments:</h5>
4874
4875<p>The first argument specifies the address of a stack object that contains the
4876root pointer. The second pointer (which must be either a constant or a global
4877value address) contains the meta-data to be associated with the root.</p>
4878
4879<h5>Semantics:</h5>
4880
Chris Lattner05d67092008-04-24 05:59:56 +00004881<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004882location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004883the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4884intrinsic may only be used in a function which <a href="#gc">specifies a GC
4885algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004886
4887</div>
4888
4889
4890<!-- _______________________________________________________________________ -->
4891<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004892 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004893</div>
4894
4895<div class="doc_text">
4896
4897<h5>Syntax:</h5>
4898
4899<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004900 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004901</pre>
4902
4903<h5>Overview:</h5>
4904
4905<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4906locations, allowing garbage collector implementations that require read
4907barriers.</p>
4908
4909<h5>Arguments:</h5>
4910
Chris Lattner80626e92006-03-14 20:02:51 +00004911<p>The second argument is the address to read from, which should be an address
4912allocated from the garbage collector. The first object is a pointer to the
4913start of the referenced object, if needed by the language runtime (otherwise
4914null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004915
4916<h5>Semantics:</h5>
4917
4918<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4919instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004920garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4921may only be used in a function which <a href="#gc">specifies a GC
4922algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004923
4924</div>
4925
4926
4927<!-- _______________________________________________________________________ -->
4928<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004929 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004930</div>
4931
4932<div class="doc_text">
4933
4934<h5>Syntax:</h5>
4935
4936<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004937 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004938</pre>
4939
4940<h5>Overview:</h5>
4941
4942<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4943locations, allowing garbage collector implementations that require write
4944barriers (such as generational or reference counting collectors).</p>
4945
4946<h5>Arguments:</h5>
4947
Chris Lattner80626e92006-03-14 20:02:51 +00004948<p>The first argument is the reference to store, the second is the start of the
4949object to store it to, and the third is the address of the field of Obj to
4950store to. If the runtime does not require a pointer to the object, Obj may be
4951null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004952
4953<h5>Semantics:</h5>
4954
4955<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4956instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004957garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4958may only be used in a function which <a href="#gc">specifies a GC
4959algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004960
4961</div>
4962
4963
4964
4965<!-- ======================================================================= -->
4966<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004967 <a name="int_codegen">Code Generator Intrinsics</a>
4968</div>
4969
4970<div class="doc_text">
4971<p>
4972These intrinsics are provided by LLVM to expose special features that may only
4973be implemented with code generator support.
4974</p>
4975
4976</div>
4977
4978<!-- _______________________________________________________________________ -->
4979<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004980 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004981</div>
4982
4983<div class="doc_text">
4984
4985<h5>Syntax:</h5>
4986<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004987 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004988</pre>
4989
4990<h5>Overview:</h5>
4991
4992<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004993The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4994target-specific value indicating the return address of the current function
4995or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004996</p>
4997
4998<h5>Arguments:</h5>
4999
5000<p>
5001The argument to this intrinsic indicates which function to return the address
5002for. Zero indicates the calling function, one indicates its caller, etc. The
5003argument is <b>required</b> to be a constant integer value.
5004</p>
5005
5006<h5>Semantics:</h5>
5007
5008<p>
5009The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
5010the return address of the specified call frame, or zero if it cannot be
5011identified. The value returned by this intrinsic is likely to be incorrect or 0
5012for arguments other than zero, so it should only be used for debugging purposes.
5013</p>
5014
5015<p>
5016Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005017aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005018source-language caller.
5019</p>
5020</div>
5021
5022
5023<!-- _______________________________________________________________________ -->
5024<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005025 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005026</div>
5027
5028<div class="doc_text">
5029
5030<h5>Syntax:</h5>
5031<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005032 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005033</pre>
5034
5035<h5>Overview:</h5>
5036
5037<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005038The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5039target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00005040</p>
5041
5042<h5>Arguments:</h5>
5043
5044<p>
5045The argument to this intrinsic indicates which function to return the frame
5046pointer for. Zero indicates the calling function, one indicates its caller,
5047etc. The argument is <b>required</b> to be a constant integer value.
5048</p>
5049
5050<h5>Semantics:</h5>
5051
5052<p>
5053The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5054the frame address of the specified call frame, or zero if it cannot be
5055identified. The value returned by this intrinsic is likely to be incorrect or 0
5056for arguments other than zero, so it should only be used for debugging purposes.
5057</p>
5058
5059<p>
5060Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005061aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005062source-language caller.
5063</p>
5064</div>
5065
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005066<!-- _______________________________________________________________________ -->
5067<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005068 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005069</div>
5070
5071<div class="doc_text">
5072
5073<h5>Syntax:</h5>
5074<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005075 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00005076</pre>
5077
5078<h5>Overview:</h5>
5079
5080<p>
5081The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00005082the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00005083<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5084features like scoped automatic variable sized arrays in C99.
5085</p>
5086
5087<h5>Semantics:</h5>
5088
5089<p>
5090This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005091href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00005092<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5093<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5094state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5095practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5096that were allocated after the <tt>llvm.stacksave</tt> was executed.
5097</p>
5098
5099</div>
5100
5101<!-- _______________________________________________________________________ -->
5102<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005103 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005104</div>
5105
5106<div class="doc_text">
5107
5108<h5>Syntax:</h5>
5109<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005110 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005111</pre>
5112
5113<h5>Overview:</h5>
5114
5115<p>
5116The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5117the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005118href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00005119useful for implementing language features like scoped automatic variable sized
5120arrays in C99.
5121</p>
5122
5123<h5>Semantics:</h5>
5124
5125<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00005126See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00005127</p>
5128
5129</div>
5130
5131
5132<!-- _______________________________________________________________________ -->
5133<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005134 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005135</div>
5136
5137<div class="doc_text">
5138
5139<h5>Syntax:</h5>
5140<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005141 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005142</pre>
5143
5144<h5>Overview:</h5>
5145
5146
5147<p>
5148The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00005149a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5150no
5151effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00005152characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005153</p>
5154
5155<h5>Arguments:</h5>
5156
5157<p>
5158<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5159determining if the fetch should be for a read (0) or write (1), and
5160<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00005161locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005162<tt>locality</tt> arguments must be constant integers.
5163</p>
5164
5165<h5>Semantics:</h5>
5166
5167<p>
5168This intrinsic does not modify the behavior of the program. In particular,
5169prefetches cannot trap and do not produce a value. On targets that support this
5170intrinsic, the prefetch can provide hints to the processor cache for better
5171performance.
5172</p>
5173
5174</div>
5175
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005176<!-- _______________________________________________________________________ -->
5177<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005178 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005179</div>
5180
5181<div class="doc_text">
5182
5183<h5>Syntax:</h5>
5184<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005185 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005186</pre>
5187
5188<h5>Overview:</h5>
5189
5190
5191<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005192The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005193(PC) in a region of
5194code to simulators and other tools. The method is target specific, but it is
5195expected that the marker will use exported symbols to transmit the PC of the
5196marker.
5197The marker makes no guarantees that it will remain with any specific instruction
5198after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005199optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005200correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005201</p>
5202
5203<h5>Arguments:</h5>
5204
5205<p>
5206<tt>id</tt> is a numerical id identifying the marker.
5207</p>
5208
5209<h5>Semantics:</h5>
5210
5211<p>
5212This intrinsic does not modify the behavior of the program. Backends that do not
5213support this intrinisic may ignore it.
5214</p>
5215
5216</div>
5217
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005218<!-- _______________________________________________________________________ -->
5219<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005220 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005221</div>
5222
5223<div class="doc_text">
5224
5225<h5>Syntax:</h5>
5226<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005227 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005228</pre>
5229
5230<h5>Overview:</h5>
5231
5232
5233<p>
5234The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5235counter register (or similar low latency, high accuracy clocks) on those targets
5236that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5237As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5238should only be used for small timings.
5239</p>
5240
5241<h5>Semantics:</h5>
5242
5243<p>
5244When directly supported, reading the cycle counter should not modify any memory.
5245Implementations are allowed to either return a application specific value or a
5246system wide value. On backends without support, this is lowered to a constant 0.
5247</p>
5248
5249</div>
5250
Chris Lattner10610642004-02-14 04:08:35 +00005251<!-- ======================================================================= -->
5252<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005253 <a name="int_libc">Standard C Library Intrinsics</a>
5254</div>
5255
5256<div class="doc_text">
5257<p>
Chris Lattner10610642004-02-14 04:08:35 +00005258LLVM provides intrinsics for a few important standard C library functions.
5259These intrinsics allow source-language front-ends to pass information about the
5260alignment of the pointer arguments to the code generator, providing opportunity
5261for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005262</p>
5263
5264</div>
5265
5266<!-- _______________________________________________________________________ -->
5267<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005268 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005269</div>
5270
5271<div class="doc_text">
5272
5273<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005274<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5275width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005276<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005277 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5278 i8 &lt;len&gt;, i32 &lt;align&gt;)
5279 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5280 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005281 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005282 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005283 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005284 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005285</pre>
5286
5287<h5>Overview:</h5>
5288
5289<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005290The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005291location to the destination location.
5292</p>
5293
5294<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005295Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5296intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005297</p>
5298
5299<h5>Arguments:</h5>
5300
5301<p>
5302The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005303the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005304specifying the number of bytes to copy, and the fourth argument is the alignment
5305of the source and destination locations.
5306</p>
5307
Chris Lattner3301ced2004-02-12 21:18:15 +00005308<p>
5309If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005310the caller guarantees that both the source and destination pointers are aligned
5311to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005312</p>
5313
Chris Lattner33aec9e2004-02-12 17:01:32 +00005314<h5>Semantics:</h5>
5315
5316<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005317The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005318location to the destination location, which are not allowed to overlap. It
5319copies "len" bytes of memory over. If the argument is known to be aligned to
5320some boundary, this can be specified as the fourth argument, otherwise it should
5321be set to 0 or 1.
5322</p>
5323</div>
5324
5325
Chris Lattner0eb51b42004-02-12 18:10:10 +00005326<!-- _______________________________________________________________________ -->
5327<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005328 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005329</div>
5330
5331<div class="doc_text">
5332
5333<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005334<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5335width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005336<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005337 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5338 i8 &lt;len&gt;, i32 &lt;align&gt;)
5339 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5340 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005341 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005342 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005343 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005344 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005345</pre>
5346
5347<h5>Overview:</h5>
5348
5349<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005350The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5351location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005352'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005353</p>
5354
5355<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005356Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5357intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005358</p>
5359
5360<h5>Arguments:</h5>
5361
5362<p>
5363The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005364the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005365specifying the number of bytes to copy, and the fourth argument is the alignment
5366of the source and destination locations.
5367</p>
5368
Chris Lattner3301ced2004-02-12 21:18:15 +00005369<p>
5370If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005371the caller guarantees that the source and destination pointers are aligned to
5372that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005373</p>
5374
Chris Lattner0eb51b42004-02-12 18:10:10 +00005375<h5>Semantics:</h5>
5376
5377<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005378The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005379location to the destination location, which may overlap. It
5380copies "len" bytes of memory over. If the argument is known to be aligned to
5381some boundary, this can be specified as the fourth argument, otherwise it should
5382be set to 0 or 1.
5383</p>
5384</div>
5385
Chris Lattner8ff75902004-01-06 05:31:32 +00005386
Chris Lattner10610642004-02-14 04:08:35 +00005387<!-- _______________________________________________________________________ -->
5388<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005389 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005390</div>
5391
5392<div class="doc_text">
5393
5394<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005395<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5396width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005397<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005398 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5399 i8 &lt;len&gt;, i32 &lt;align&gt;)
5400 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5401 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005402 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005403 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005404 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005405 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005406</pre>
5407
5408<h5>Overview:</h5>
5409
5410<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005411The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005412byte value.
5413</p>
5414
5415<p>
5416Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5417does not return a value, and takes an extra alignment argument.
5418</p>
5419
5420<h5>Arguments:</h5>
5421
5422<p>
5423The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005424byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005425argument specifying the number of bytes to fill, and the fourth argument is the
5426known alignment of destination location.
5427</p>
5428
5429<p>
5430If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005431the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005432</p>
5433
5434<h5>Semantics:</h5>
5435
5436<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005437The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5438the
Chris Lattner10610642004-02-14 04:08:35 +00005439destination location. If the argument is known to be aligned to some boundary,
5440this can be specified as the fourth argument, otherwise it should be set to 0 or
54411.
5442</p>
5443</div>
5444
5445
Chris Lattner32006282004-06-11 02:28:03 +00005446<!-- _______________________________________________________________________ -->
5447<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005448 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005449</div>
5450
5451<div class="doc_text">
5452
5453<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005454<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005455floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005456types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005457<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005458 declare float @llvm.sqrt.f32(float %Val)
5459 declare double @llvm.sqrt.f64(double %Val)
5460 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5461 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5462 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005463</pre>
5464
5465<h5>Overview:</h5>
5466
5467<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005468The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005469returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005470<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005471negative numbers other than -0.0 (which allows for better optimization, because
5472there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5473defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005474</p>
5475
5476<h5>Arguments:</h5>
5477
5478<p>
5479The argument and return value are floating point numbers of the same type.
5480</p>
5481
5482<h5>Semantics:</h5>
5483
5484<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005485This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005486floating point number.
5487</p>
5488</div>
5489
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005490<!-- _______________________________________________________________________ -->
5491<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005492 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005493</div>
5494
5495<div class="doc_text">
5496
5497<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005498<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005499floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005500types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005501<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005502 declare float @llvm.powi.f32(float %Val, i32 %power)
5503 declare double @llvm.powi.f64(double %Val, i32 %power)
5504 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5505 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5506 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005507</pre>
5508
5509<h5>Overview:</h5>
5510
5511<p>
5512The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5513specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005514multiplications is not defined. When a vector of floating point type is
5515used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005516</p>
5517
5518<h5>Arguments:</h5>
5519
5520<p>
5521The second argument is an integer power, and the first is a value to raise to
5522that power.
5523</p>
5524
5525<h5>Semantics:</h5>
5526
5527<p>
5528This function returns the first value raised to the second power with an
5529unspecified sequence of rounding operations.</p>
5530</div>
5531
Dan Gohman91c284c2007-10-15 20:30:11 +00005532<!-- _______________________________________________________________________ -->
5533<div class="doc_subsubsection">
5534 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5535</div>
5536
5537<div class="doc_text">
5538
5539<h5>Syntax:</h5>
5540<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5541floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005542types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005543<pre>
5544 declare float @llvm.sin.f32(float %Val)
5545 declare double @llvm.sin.f64(double %Val)
5546 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5547 declare fp128 @llvm.sin.f128(fp128 %Val)
5548 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5549</pre>
5550
5551<h5>Overview:</h5>
5552
5553<p>
5554The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5555</p>
5556
5557<h5>Arguments:</h5>
5558
5559<p>
5560The argument and return value are floating point numbers of the same type.
5561</p>
5562
5563<h5>Semantics:</h5>
5564
5565<p>
5566This function returns the sine of the specified operand, returning the
5567same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005568conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005569</div>
5570
5571<!-- _______________________________________________________________________ -->
5572<div class="doc_subsubsection">
5573 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5574</div>
5575
5576<div class="doc_text">
5577
5578<h5>Syntax:</h5>
5579<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5580floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005581types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005582<pre>
5583 declare float @llvm.cos.f32(float %Val)
5584 declare double @llvm.cos.f64(double %Val)
5585 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5586 declare fp128 @llvm.cos.f128(fp128 %Val)
5587 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5588</pre>
5589
5590<h5>Overview:</h5>
5591
5592<p>
5593The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5594</p>
5595
5596<h5>Arguments:</h5>
5597
5598<p>
5599The argument and return value are floating point numbers of the same type.
5600</p>
5601
5602<h5>Semantics:</h5>
5603
5604<p>
5605This function returns the cosine of the specified operand, returning the
5606same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005607conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005608</div>
5609
5610<!-- _______________________________________________________________________ -->
5611<div class="doc_subsubsection">
5612 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5613</div>
5614
5615<div class="doc_text">
5616
5617<h5>Syntax:</h5>
5618<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5619floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005620types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005621<pre>
5622 declare float @llvm.pow.f32(float %Val, float %Power)
5623 declare double @llvm.pow.f64(double %Val, double %Power)
5624 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5625 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5626 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5627</pre>
5628
5629<h5>Overview:</h5>
5630
5631<p>
5632The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5633specified (positive or negative) power.
5634</p>
5635
5636<h5>Arguments:</h5>
5637
5638<p>
5639The second argument is a floating point power, and the first is a value to
5640raise to that power.
5641</p>
5642
5643<h5>Semantics:</h5>
5644
5645<p>
5646This function returns the first value raised to the second power,
5647returning the
5648same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005649conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005650</div>
5651
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005652
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005653<!-- ======================================================================= -->
5654<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005655 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005656</div>
5657
5658<div class="doc_text">
5659<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005660LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005661These allow efficient code generation for some algorithms.
5662</p>
5663
5664</div>
5665
5666<!-- _______________________________________________________________________ -->
5667<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005668 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005669</div>
5670
5671<div class="doc_text">
5672
5673<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005674<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005675type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005676<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005677 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5678 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5679 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005680</pre>
5681
5682<h5>Overview:</h5>
5683
5684<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005685The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005686values with an even number of bytes (positive multiple of 16 bits). These are
5687useful for performing operations on data that is not in the target's native
5688byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005689</p>
5690
5691<h5>Semantics:</h5>
5692
5693<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005694The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005695and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5696intrinsic returns an i32 value that has the four bytes of the input i32
5697swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005698i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5699<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005700additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005701</p>
5702
5703</div>
5704
5705<!-- _______________________________________________________________________ -->
5706<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005707 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005708</div>
5709
5710<div class="doc_text">
5711
5712<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005713<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005714width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005715<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005716 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005717 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005718 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005719 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5720 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005721</pre>
5722
5723<h5>Overview:</h5>
5724
5725<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005726The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5727value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005728</p>
5729
5730<h5>Arguments:</h5>
5731
5732<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005733The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005734integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005735</p>
5736
5737<h5>Semantics:</h5>
5738
5739<p>
5740The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5741</p>
5742</div>
5743
5744<!-- _______________________________________________________________________ -->
5745<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005746 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005747</div>
5748
5749<div class="doc_text">
5750
5751<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005752<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005753integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005754<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005755 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5756 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005757 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005758 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5759 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005760</pre>
5761
5762<h5>Overview:</h5>
5763
5764<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005765The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5766leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005767</p>
5768
5769<h5>Arguments:</h5>
5770
5771<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005772The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005773integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005774</p>
5775
5776<h5>Semantics:</h5>
5777
5778<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005779The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5780in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005781of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005782</p>
5783</div>
Chris Lattner32006282004-06-11 02:28:03 +00005784
5785
Chris Lattnereff29ab2005-05-15 19:39:26 +00005786
5787<!-- _______________________________________________________________________ -->
5788<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005789 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005790</div>
5791
5792<div class="doc_text">
5793
5794<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005795<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005796integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005797<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005798 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5799 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005800 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005801 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5802 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005803</pre>
5804
5805<h5>Overview:</h5>
5806
5807<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005808The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5809trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005810</p>
5811
5812<h5>Arguments:</h5>
5813
5814<p>
5815The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005816integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005817</p>
5818
5819<h5>Semantics:</h5>
5820
5821<p>
5822The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5823in a variable. If the src == 0 then the result is the size in bits of the type
5824of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5825</p>
5826</div>
5827
Reid Spencer497d93e2007-04-01 08:27:01 +00005828<!-- _______________________________________________________________________ -->
5829<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005830 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005831</div>
5832
5833<div class="doc_text">
5834
5835<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005836<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005837on any integer bit width.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005838<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005839 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5840 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005841</pre>
5842
5843<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005844<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005845range of bits from an integer value and returns them in the same bit width as
5846the original value.</p>
5847
5848<h5>Arguments:</h5>
5849<p>The first argument, <tt>%val</tt> and the result may be integer types of
5850any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005851arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005852
5853<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005854<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005855of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5856<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5857operates in forward mode.</p>
5858<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5859right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005860only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5861<ol>
5862 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5863 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5864 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5865 to determine the number of bits to retain.</li>
5866 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005867 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005868</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005869<p>In reverse mode, a similar computation is made except that the bits are
5870returned in the reverse order. So, for example, if <tt>X</tt> has the value
5871<tt>i16 0x0ACF (101011001111)</tt> and we apply
5872<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5873<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005874</div>
5875
Reid Spencerf86037f2007-04-11 23:23:49 +00005876<div class="doc_subsubsection">
5877 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5878</div>
5879
5880<div class="doc_text">
5881
5882<h5>Syntax:</h5>
5883<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005884on any integer bit width.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005885<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005886 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5887 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005888</pre>
5889
5890<h5>Overview:</h5>
5891<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5892of bits in an integer value with another integer value. It returns the integer
5893with the replaced bits.</p>
5894
5895<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005896<p>The first argument, <tt>%val</tt>, and the result may be integer types of
5897any bit width, but they must have the same bit width. <tt>%val</tt> is the value
Reid Spencerf86037f2007-04-11 23:23:49 +00005898whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5899integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5900type since they specify only a bit index.</p>
5901
5902<h5>Semantics:</h5>
5903<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5904of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5905<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5906operates in forward mode.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005907
Reid Spencerf86037f2007-04-11 23:23:49 +00005908<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5909truncating it down to the size of the replacement area or zero extending it
5910up to that size.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005911
Reid Spencerf86037f2007-04-11 23:23:49 +00005912<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5913are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5914in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman0e451ce2008-10-14 16:51:45 +00005915to the <tt>%hi</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005916
Reid Spencerc6749c42007-05-14 16:50:20 +00005917<p>In reverse mode, a similar computation is made except that the bits are
5918reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman0e451ce2008-10-14 16:51:45 +00005919<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005920
Reid Spencerf86037f2007-04-11 23:23:49 +00005921<h5>Examples:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005922
Reid Spencerf86037f2007-04-11 23:23:49 +00005923<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005924 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005925 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5926 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5927 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005928 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005929</pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005930
5931</div>
5932
Bill Wendlingda01af72009-02-08 04:04:40 +00005933<!-- ======================================================================= -->
5934<div class="doc_subsection">
5935 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
5936</div>
5937
5938<div class="doc_text">
5939<p>
5940LLVM provides intrinsics for some arithmetic with overflow operations.
5941</p>
5942
5943</div>
5944
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005945<!-- _______________________________________________________________________ -->
5946<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00005947 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005948</div>
5949
5950<div class="doc_text">
5951
5952<h5>Syntax:</h5>
5953
5954<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00005955on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005956
5957<pre>
5958 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
5959 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
5960 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
5961</pre>
5962
5963<h5>Overview:</h5>
5964
5965<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5966a signed addition of the two arguments, and indicate whether an overflow
5967occurred during the signed summation.</p>
5968
5969<h5>Arguments:</h5>
5970
5971<p>The arguments (%a and %b) and the first element of the result structure may
5972be of integer types of any bit width, but they must have the same bit width. The
5973second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
5974and <tt>%b</tt> are the two values that will undergo signed addition.</p>
5975
5976<h5>Semantics:</h5>
5977
5978<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5979a signed addition of the two variables. They return a structure &mdash; the
5980first element of which is the signed summation, and the second element of which
5981is a bit specifying if the signed summation resulted in an overflow.</p>
5982
5983<h5>Examples:</h5>
5984<pre>
5985 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
5986 %sum = extractvalue {i32, i1} %res, 0
5987 %obit = extractvalue {i32, i1} %res, 1
5988 br i1 %obit, label %overflow, label %normal
5989</pre>
5990
5991</div>
5992
5993<!-- _______________________________________________________________________ -->
5994<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00005995 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005996</div>
5997
5998<div class="doc_text">
5999
6000<h5>Syntax:</h5>
6001
6002<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006003on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006004
6005<pre>
6006 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6007 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6008 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6009</pre>
6010
6011<h5>Overview:</h5>
6012
6013<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6014an unsigned addition of the two arguments, and indicate whether a carry occurred
6015during the unsigned summation.</p>
6016
6017<h5>Arguments:</h5>
6018
6019<p>The arguments (%a and %b) and the first element of the result structure may
6020be of integer types of any bit width, but they must have the same bit width. The
6021second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6022and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6023
6024<h5>Semantics:</h5>
6025
6026<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6027an unsigned addition of the two arguments. They return a structure &mdash; the
6028first element of which is the sum, and the second element of which is a bit
6029specifying if the unsigned summation resulted in a carry.</p>
6030
6031<h5>Examples:</h5>
6032<pre>
6033 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6034 %sum = extractvalue {i32, i1} %res, 0
6035 %obit = extractvalue {i32, i1} %res, 1
6036 br i1 %obit, label %carry, label %normal
6037</pre>
6038
6039</div>
6040
6041<!-- _______________________________________________________________________ -->
6042<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006043 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006044</div>
6045
6046<div class="doc_text">
6047
6048<h5>Syntax:</h5>
6049
6050<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006051on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006052
6053<pre>
6054 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6055 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6056 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6057</pre>
6058
6059<h5>Overview:</h5>
6060
6061<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6062a signed subtraction of the two arguments, and indicate whether an overflow
6063occurred during the signed subtraction.</p>
6064
6065<h5>Arguments:</h5>
6066
6067<p>The arguments (%a and %b) and the first element of the result structure may
6068be of integer types of any bit width, but they must have the same bit width. The
6069second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6070and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6071
6072<h5>Semantics:</h5>
6073
6074<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6075a signed subtraction of the two arguments. They return a structure &mdash; the
6076first element of which is the subtraction, and the second element of which is a bit
6077specifying if the signed subtraction resulted in an overflow.</p>
6078
6079<h5>Examples:</h5>
6080<pre>
6081 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6082 %sum = extractvalue {i32, i1} %res, 0
6083 %obit = extractvalue {i32, i1} %res, 1
6084 br i1 %obit, label %overflow, label %normal
6085</pre>
6086
6087</div>
6088
6089<!-- _______________________________________________________________________ -->
6090<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006091 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006092</div>
6093
6094<div class="doc_text">
6095
6096<h5>Syntax:</h5>
6097
6098<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006099on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006100
6101<pre>
6102 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6103 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6104 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6105</pre>
6106
6107<h5>Overview:</h5>
6108
6109<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6110an unsigned subtraction of the two arguments, and indicate whether an overflow
6111occurred during the unsigned subtraction.</p>
6112
6113<h5>Arguments:</h5>
6114
6115<p>The arguments (%a and %b) and the first element of the result structure may
6116be of integer types of any bit width, but they must have the same bit width. The
6117second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6118and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6119
6120<h5>Semantics:</h5>
6121
6122<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6123an unsigned subtraction of the two arguments. They return a structure &mdash; the
6124first element of which is the subtraction, and the second element of which is a bit
6125specifying if the unsigned subtraction resulted in an overflow.</p>
6126
6127<h5>Examples:</h5>
6128<pre>
6129 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6130 %sum = extractvalue {i32, i1} %res, 0
6131 %obit = extractvalue {i32, i1} %res, 1
6132 br i1 %obit, label %overflow, label %normal
6133</pre>
6134
6135</div>
6136
6137<!-- _______________________________________________________________________ -->
6138<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006139 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006140</div>
6141
6142<div class="doc_text">
6143
6144<h5>Syntax:</h5>
6145
6146<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006147on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006148
6149<pre>
6150 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6151 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6152 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6153</pre>
6154
6155<h5>Overview:</h5>
6156
6157<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6158a signed multiplication of the two arguments, and indicate whether an overflow
6159occurred during the signed multiplication.</p>
6160
6161<h5>Arguments:</h5>
6162
6163<p>The arguments (%a and %b) and the first element of the result structure may
6164be of integer types of any bit width, but they must have the same bit width. The
6165second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6166and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6167
6168<h5>Semantics:</h5>
6169
6170<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6171a signed multiplication of the two arguments. They return a structure &mdash;
6172the first element of which is the multiplication, and the second element of
6173which is a bit specifying if the signed multiplication resulted in an
6174overflow.</p>
6175
6176<h5>Examples:</h5>
6177<pre>
6178 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6179 %sum = extractvalue {i32, i1} %res, 0
6180 %obit = extractvalue {i32, i1} %res, 1
6181 br i1 %obit, label %overflow, label %normal
6182</pre>
6183
Reid Spencerf86037f2007-04-11 23:23:49 +00006184</div>
6185
Bill Wendling41b485c2009-02-08 23:00:09 +00006186<!-- _______________________________________________________________________ -->
6187<div class="doc_subsubsection">
6188 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6189</div>
6190
6191<div class="doc_text">
6192
6193<h5>Syntax:</h5>
6194
6195<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6196on any integer bit width.</p>
6197
6198<pre>
6199 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6200 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6201 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6202</pre>
6203
6204<h5>Overview:</h5>
6205
6206<p><i><b>Warning:</b> '<tt>llvm.umul.with.overflow</tt>' is badly broken. It is
6207actively being fixed, but it should not currently be used!</i></p>
6208
6209<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6210a unsigned multiplication of the two arguments, and indicate whether an overflow
6211occurred during the unsigned multiplication.</p>
6212
6213<h5>Arguments:</h5>
6214
6215<p>The arguments (%a and %b) and the first element of the result structure may
6216be of integer types of any bit width, but they must have the same bit width. The
6217second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6218and <tt>%b</tt> are the two values that will undergo unsigned
6219multiplication.</p>
6220
6221<h5>Semantics:</h5>
6222
6223<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6224an unsigned multiplication of the two arguments. They return a structure &mdash;
6225the first element of which is the multiplication, and the second element of
6226which is a bit specifying if the unsigned multiplication resulted in an
6227overflow.</p>
6228
6229<h5>Examples:</h5>
6230<pre>
6231 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6232 %sum = extractvalue {i32, i1} %res, 0
6233 %obit = extractvalue {i32, i1} %res, 1
6234 br i1 %obit, label %overflow, label %normal
6235</pre>
6236
6237</div>
6238
Chris Lattner8ff75902004-01-06 05:31:32 +00006239<!-- ======================================================================= -->
6240<div class="doc_subsection">
6241 <a name="int_debugger">Debugger Intrinsics</a>
6242</div>
6243
6244<div class="doc_text">
6245<p>
6246The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6247are described in the <a
6248href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6249Debugging</a> document.
6250</p>
6251</div>
6252
6253
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006254<!-- ======================================================================= -->
6255<div class="doc_subsection">
6256 <a name="int_eh">Exception Handling Intrinsics</a>
6257</div>
6258
6259<div class="doc_text">
6260<p> The LLVM exception handling intrinsics (which all start with
6261<tt>llvm.eh.</tt> prefix), are described in the <a
6262href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6263Handling</a> document. </p>
6264</div>
6265
Tanya Lattner6d806e92007-06-15 20:50:54 +00006266<!-- ======================================================================= -->
6267<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00006268 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00006269</div>
6270
6271<div class="doc_text">
6272<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006273 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00006274 the <tt>nest</tt> attribute, from a function. The result is a callable
6275 function pointer lacking the nest parameter - the caller does not need
6276 to provide a value for it. Instead, the value to use is stored in
6277 advance in a "trampoline", a block of memory usually allocated
6278 on the stack, which also contains code to splice the nest value into the
6279 argument list. This is used to implement the GCC nested function address
6280 extension.
6281</p>
6282<p>
6283 For example, if the function is
6284 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00006285 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006286<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006287 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6288 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6289 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6290 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00006291</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00006292 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6293 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006294</div>
6295
6296<!-- _______________________________________________________________________ -->
6297<div class="doc_subsubsection">
6298 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6299</div>
6300<div class="doc_text">
6301<h5>Syntax:</h5>
6302<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006303declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00006304</pre>
6305<h5>Overview:</h5>
6306<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006307 This fills the memory pointed to by <tt>tramp</tt> with code
6308 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00006309</p>
6310<h5>Arguments:</h5>
6311<p>
6312 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6313 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6314 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00006315 intrinsic. Note that the size and the alignment are target-specific - LLVM
6316 currently provides no portable way of determining them, so a front-end that
6317 generates this intrinsic needs to have some target-specific knowledge.
6318 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00006319</p>
6320<h5>Semantics:</h5>
6321<p>
6322 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00006323 dependent code, turning it into a function. A pointer to this function is
6324 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00006325 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006326 before being called. The new function's signature is the same as that of
6327 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6328 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6329 of pointer type. Calling the new function is equivalent to calling
6330 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6331 missing <tt>nest</tt> argument. If, after calling
6332 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6333 modified, then the effect of any later call to the returned function pointer is
6334 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00006335</p>
6336</div>
6337
6338<!-- ======================================================================= -->
6339<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006340 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6341</div>
6342
6343<div class="doc_text">
6344<p>
6345 These intrinsic functions expand the "universal IR" of LLVM to represent
6346 hardware constructs for atomic operations and memory synchronization. This
6347 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00006348 is aimed at a low enough level to allow any programming models or APIs
6349 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006350 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6351 hardware behavior. Just as hardware provides a "universal IR" for source
6352 languages, it also provides a starting point for developing a "universal"
6353 atomic operation and synchronization IR.
6354</p>
6355<p>
6356 These do <em>not</em> form an API such as high-level threading libraries,
6357 software transaction memory systems, atomic primitives, and intrinsic
6358 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6359 application libraries. The hardware interface provided by LLVM should allow
6360 a clean implementation of all of these APIs and parallel programming models.
6361 No one model or paradigm should be selected above others unless the hardware
6362 itself ubiquitously does so.
6363
6364</p>
6365</div>
6366
6367<!-- _______________________________________________________________________ -->
6368<div class="doc_subsubsection">
6369 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6370</div>
6371<div class="doc_text">
6372<h5>Syntax:</h5>
6373<pre>
6374declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
6375i1 &lt;device&gt; )
6376
6377</pre>
6378<h5>Overview:</h5>
6379<p>
6380 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6381 specific pairs of memory access types.
6382</p>
6383<h5>Arguments:</h5>
6384<p>
6385 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6386 The first four arguments enables a specific barrier as listed below. The fith
6387 argument specifies that the barrier applies to io or device or uncached memory.
6388
6389</p>
6390 <ul>
6391 <li><tt>ll</tt>: load-load barrier</li>
6392 <li><tt>ls</tt>: load-store barrier</li>
6393 <li><tt>sl</tt>: store-load barrier</li>
6394 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006395 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006396 </ul>
6397<h5>Semantics:</h5>
6398<p>
6399 This intrinsic causes the system to enforce some ordering constraints upon
6400 the loads and stores of the program. This barrier does not indicate
6401 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6402 which they occur. For any of the specified pairs of load and store operations
6403 (f.ex. load-load, or store-load), all of the first operations preceding the
6404 barrier will complete before any of the second operations succeeding the
6405 barrier begin. Specifically the semantics for each pairing is as follows:
6406</p>
6407 <ul>
6408 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6409 after the barrier begins.</li>
6410
6411 <li><tt>ls</tt>: All loads before the barrier must complete before any
6412 store after the barrier begins.</li>
6413 <li><tt>ss</tt>: All stores before the barrier must complete before any
6414 store after the barrier begins.</li>
6415 <li><tt>sl</tt>: All stores before the barrier must complete before any
6416 load after the barrier begins.</li>
6417 </ul>
6418<p>
6419 These semantics are applied with a logical "and" behavior when more than one
6420 is enabled in a single memory barrier intrinsic.
6421</p>
6422<p>
6423 Backends may implement stronger barriers than those requested when they do not
6424 support as fine grained a barrier as requested. Some architectures do not
6425 need all types of barriers and on such architectures, these become noops.
6426</p>
6427<h5>Example:</h5>
6428<pre>
6429%ptr = malloc i32
6430 store i32 4, %ptr
6431
6432%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6433 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6434 <i>; guarantee the above finishes</i>
6435 store i32 8, %ptr <i>; before this begins</i>
6436</pre>
6437</div>
6438
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006439<!-- _______________________________________________________________________ -->
6440<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006441 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006442</div>
6443<div class="doc_text">
6444<h5>Syntax:</h5>
6445<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00006446 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6447 any integer bit width and for different address spaces. Not all targets
6448 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006449
6450<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006451declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6452declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6453declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6454declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006455
6456</pre>
6457<h5>Overview:</h5>
6458<p>
6459 This loads a value in memory and compares it to a given value. If they are
6460 equal, it stores a new value into the memory.
6461</p>
6462<h5>Arguments:</h5>
6463<p>
Mon P Wang28873102008-06-25 08:15:39 +00006464 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006465 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6466 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6467 this integer type. While any bit width integer may be used, targets may only
6468 lower representations they support in hardware.
6469
6470</p>
6471<h5>Semantics:</h5>
6472<p>
6473 This entire intrinsic must be executed atomically. It first loads the value
6474 in memory pointed to by <tt>ptr</tt> and compares it with the value
6475 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6476 loaded value is yielded in all cases. This provides the equivalent of an
6477 atomic compare-and-swap operation within the SSA framework.
6478</p>
6479<h5>Examples:</h5>
6480
6481<pre>
6482%ptr = malloc i32
6483 store i32 4, %ptr
6484
6485%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006486%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006487 <i>; yields {i32}:result1 = 4</i>
6488%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6489%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6490
6491%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006492%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006493 <i>; yields {i32}:result2 = 8</i>
6494%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6495
6496%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6497</pre>
6498</div>
6499
6500<!-- _______________________________________________________________________ -->
6501<div class="doc_subsubsection">
6502 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6503</div>
6504<div class="doc_text">
6505<h5>Syntax:</h5>
6506
6507<p>
6508 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6509 integer bit width. Not all targets support all bit widths however.</p>
6510<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006511declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6512declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6513declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6514declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006515
6516</pre>
6517<h5>Overview:</h5>
6518<p>
6519 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6520 the value from memory. It then stores the value in <tt>val</tt> in the memory
6521 at <tt>ptr</tt>.
6522</p>
6523<h5>Arguments:</h5>
6524
6525<p>
Mon P Wang28873102008-06-25 08:15:39 +00006526 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006527 <tt>val</tt> argument and the result must be integers of the same bit width.
6528 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6529 integer type. The targets may only lower integer representations they
6530 support.
6531</p>
6532<h5>Semantics:</h5>
6533<p>
6534 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6535 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6536 equivalent of an atomic swap operation within the SSA framework.
6537
6538</p>
6539<h5>Examples:</h5>
6540<pre>
6541%ptr = malloc i32
6542 store i32 4, %ptr
6543
6544%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006545%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006546 <i>; yields {i32}:result1 = 4</i>
6547%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6548%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6549
6550%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006551%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006552 <i>; yields {i32}:result2 = 8</i>
6553
6554%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6555%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6556</pre>
6557</div>
6558
6559<!-- _______________________________________________________________________ -->
6560<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006561 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006562
6563</div>
6564<div class="doc_text">
6565<h5>Syntax:</h5>
6566<p>
Mon P Wang28873102008-06-25 08:15:39 +00006567 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006568 integer bit width. Not all targets support all bit widths however.</p>
6569<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006570declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6571declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6572declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6573declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006574
6575</pre>
6576<h5>Overview:</h5>
6577<p>
6578 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6579 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6580</p>
6581<h5>Arguments:</h5>
6582<p>
6583
6584 The intrinsic takes two arguments, the first a pointer to an integer value
6585 and the second an integer value. The result is also an integer value. These
6586 integer types can have any bit width, but they must all have the same bit
6587 width. The targets may only lower integer representations they support.
6588</p>
6589<h5>Semantics:</h5>
6590<p>
6591 This intrinsic does a series of operations atomically. It first loads the
6592 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6593 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6594</p>
6595
6596<h5>Examples:</h5>
6597<pre>
6598%ptr = malloc i32
6599 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006600%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006601 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006602%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006603 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006604%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006605 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006606%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006607</pre>
6608</div>
6609
Mon P Wang28873102008-06-25 08:15:39 +00006610<!-- _______________________________________________________________________ -->
6611<div class="doc_subsubsection">
6612 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6613
6614</div>
6615<div class="doc_text">
6616<h5>Syntax:</h5>
6617<p>
6618 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006619 any integer bit width and for different address spaces. Not all targets
6620 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006621<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006622declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6623declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6624declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6625declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006626
6627</pre>
6628<h5>Overview:</h5>
6629<p>
6630 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6631 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6632</p>
6633<h5>Arguments:</h5>
6634<p>
6635
6636 The intrinsic takes two arguments, the first a pointer to an integer value
6637 and the second an integer value. The result is also an integer value. These
6638 integer types can have any bit width, but they must all have the same bit
6639 width. The targets may only lower integer representations they support.
6640</p>
6641<h5>Semantics:</h5>
6642<p>
6643 This intrinsic does a series of operations atomically. It first loads the
6644 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6645 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6646</p>
6647
6648<h5>Examples:</h5>
6649<pre>
6650%ptr = malloc i32
6651 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006652%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006653 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006654%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006655 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006656%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006657 <i>; yields {i32}:result3 = 2</i>
6658%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6659</pre>
6660</div>
6661
6662<!-- _______________________________________________________________________ -->
6663<div class="doc_subsubsection">
6664 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6665 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6666 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6667 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6668
6669</div>
6670<div class="doc_text">
6671<h5>Syntax:</h5>
6672<p>
6673 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6674 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006675 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6676 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006677<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006678declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6679declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6680declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6681declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006682
6683</pre>
6684
6685<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006686declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6687declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6688declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6689declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006690
6691</pre>
6692
6693<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006694declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6695declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6696declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6697declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006698
6699</pre>
6700
6701<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006702declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6703declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6704declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6705declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006706
6707</pre>
6708<h5>Overview:</h5>
6709<p>
6710 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6711 the value stored in memory at <tt>ptr</tt>. It yields the original value
6712 at <tt>ptr</tt>.
6713</p>
6714<h5>Arguments:</h5>
6715<p>
6716
6717 These intrinsics take two arguments, the first a pointer to an integer value
6718 and the second an integer value. The result is also an integer value. These
6719 integer types can have any bit width, but they must all have the same bit
6720 width. The targets may only lower integer representations they support.
6721</p>
6722<h5>Semantics:</h5>
6723<p>
6724 These intrinsics does a series of operations atomically. They first load the
6725 value stored at <tt>ptr</tt>. They then do the bitwise operation
6726 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6727 value stored at <tt>ptr</tt>.
6728</p>
6729
6730<h5>Examples:</h5>
6731<pre>
6732%ptr = malloc i32
6733 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006734%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006735 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006736%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006737 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006738%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006739 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006740%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006741 <i>; yields {i32}:result3 = FF</i>
6742%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6743</pre>
6744</div>
6745
6746
6747<!-- _______________________________________________________________________ -->
6748<div class="doc_subsubsection">
6749 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6750 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6751 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6752 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6753
6754</div>
6755<div class="doc_text">
6756<h5>Syntax:</h5>
6757<p>
6758 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6759 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006760 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6761 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006762 support all bit widths however.</p>
6763<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006764declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6765declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6766declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6767declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006768
6769</pre>
6770
6771<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006772declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6773declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6774declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6775declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006776
6777</pre>
6778
6779<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006780declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6781declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6782declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6783declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006784
6785</pre>
6786
6787<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006788declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6789declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6790declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6791declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006792
6793</pre>
6794<h5>Overview:</h5>
6795<p>
6796 These intrinsics takes the signed or unsigned minimum or maximum of
6797 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6798 original value at <tt>ptr</tt>.
6799</p>
6800<h5>Arguments:</h5>
6801<p>
6802
6803 These intrinsics take two arguments, the first a pointer to an integer value
6804 and the second an integer value. The result is also an integer value. These
6805 integer types can have any bit width, but they must all have the same bit
6806 width. The targets may only lower integer representations they support.
6807</p>
6808<h5>Semantics:</h5>
6809<p>
6810 These intrinsics does a series of operations atomically. They first load the
6811 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6812 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6813 the original value stored at <tt>ptr</tt>.
6814</p>
6815
6816<h5>Examples:</h5>
6817<pre>
6818%ptr = malloc i32
6819 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006820%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006821 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006822%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006823 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006824%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006825 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006826%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006827 <i>; yields {i32}:result3 = 8</i>
6828%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6829</pre>
6830</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006831
6832<!-- ======================================================================= -->
6833<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006834 <a name="int_general">General Intrinsics</a>
6835</div>
6836
6837<div class="doc_text">
6838<p> This class of intrinsics is designed to be generic and has
6839no specific purpose. </p>
6840</div>
6841
6842<!-- _______________________________________________________________________ -->
6843<div class="doc_subsubsection">
6844 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6845</div>
6846
6847<div class="doc_text">
6848
6849<h5>Syntax:</h5>
6850<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006851 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006852</pre>
6853
6854<h5>Overview:</h5>
6855
6856<p>
6857The '<tt>llvm.var.annotation</tt>' intrinsic
6858</p>
6859
6860<h5>Arguments:</h5>
6861
6862<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006863The first argument is a pointer to a value, the second is a pointer to a
6864global string, the third is a pointer to a global string which is the source
6865file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006866</p>
6867
6868<h5>Semantics:</h5>
6869
6870<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006871This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006872This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006873annotations. These have no other defined use, they are ignored by code
6874generation and optimization.
6875</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006876</div>
6877
Tanya Lattnerb6367882007-09-21 22:59:12 +00006878<!-- _______________________________________________________________________ -->
6879<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006880 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006881</div>
6882
6883<div class="doc_text">
6884
6885<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006886<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6887any integer bit width.
6888</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006889<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006890 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6891 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6892 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6893 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6894 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006895</pre>
6896
6897<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006898
6899<p>
6900The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006901</p>
6902
6903<h5>Arguments:</h5>
6904
6905<p>
6906The first argument is an integer value (result of some expression),
6907the second is a pointer to a global string, the third is a pointer to a global
6908string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006909It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006910</p>
6911
6912<h5>Semantics:</h5>
6913
6914<p>
6915This intrinsic allows annotations to be put on arbitrary expressions
6916with arbitrary strings. This can be useful for special purpose optimizations
6917that want to look for these annotations. These have no other defined use, they
6918are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00006919</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006920</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006921
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006922<!-- _______________________________________________________________________ -->
6923<div class="doc_subsubsection">
6924 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6925</div>
6926
6927<div class="doc_text">
6928
6929<h5>Syntax:</h5>
6930<pre>
6931 declare void @llvm.trap()
6932</pre>
6933
6934<h5>Overview:</h5>
6935
6936<p>
6937The '<tt>llvm.trap</tt>' intrinsic
6938</p>
6939
6940<h5>Arguments:</h5>
6941
6942<p>
6943None
6944</p>
6945
6946<h5>Semantics:</h5>
6947
6948<p>
6949This intrinsics is lowered to the target dependent trap instruction. If the
6950target does not have a trap instruction, this intrinsic will be lowered to the
6951call of the abort() function.
6952</p>
6953</div>
6954
Bill Wendling69e4adb2008-11-19 05:56:17 +00006955<!-- _______________________________________________________________________ -->
6956<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00006957 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00006958</div>
6959<div class="doc_text">
6960<h5>Syntax:</h5>
6961<pre>
6962declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
6963
6964</pre>
6965<h5>Overview:</h5>
6966<p>
6967 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
6968 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
6969 it is placed on the stack before local variables.
6970</p>
6971<h5>Arguments:</h5>
6972<p>
6973 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
6974 first argument is the value loaded from the stack guard
6975 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
6976 has enough space to hold the value of the guard.
6977</p>
6978<h5>Semantics:</h5>
6979<p>
6980 This intrinsic causes the prologue/epilogue inserter to force the position of
6981 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6982 stack. This is to ensure that if a local variable on the stack is overwritten,
6983 it will destroy the value of the guard. When the function exits, the guard on
6984 the stack is checked against the original guard. If they're different, then
6985 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
6986</p>
6987</div>
6988
Chris Lattner00950542001-06-06 20:29:01 +00006989<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006990<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006991<address>
6992 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00006993 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006994 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00006995 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006996
6997 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006998 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006999 Last modified: $Date$
7000</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00007001
Misha Brukman9d0919f2003-11-08 01:05:38 +00007002</body>
7003</html>