blob: 0ff375b98d850b776d9937befa8464c580b12a10 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
Chris Lattner2ac19022010-11-15 05:19:05 +000014#define DEBUG_TYPE "mccodeemitter"
Chris Lattner45762472010-02-03 21:24:49 +000015#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
Evan Cheng59ee62d2011-07-11 03:57:24 +000021#include "llvm/MC/MCSubtargetInfo.h"
Rafael Espindola64e67192010-10-20 16:46:08 +000022#include "llvm/MC/MCSymbol.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000023#include "llvm/Support/raw_ostream.h"
Evan Cheng59ee62d2011-07-11 03:57:24 +000024
Chris Lattner45762472010-02-03 21:24:49 +000025using namespace llvm;
26
27namespace {
28class X86MCCodeEmitter : public MCCodeEmitter {
Argyrios Kyrtzidis8c8b9ee2010-08-15 10:27:23 +000029 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
30 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Evan Cheng59ee62d2011-07-11 03:57:24 +000031 const MCInstrInfo &MCII;
32 const MCSubtargetInfo &STI;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000033 MCContext &Ctx;
Chris Lattner45762472010-02-03 21:24:49 +000034public:
Evan Cheng59ee62d2011-07-11 03:57:24 +000035 X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
36 MCContext &ctx)
37 : MCII(mcii), STI(sti), Ctx(ctx) {
Chris Lattner45762472010-02-03 21:24:49 +000038 }
39
40 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000041
Evan Cheng59ee62d2011-07-11 03:57:24 +000042 bool is64BitMode() const {
43 // FIXME: Can tablegen auto-generate this?
44 return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
45 }
46
Chris Lattner28249d92010-02-05 01:53:19 +000047 static unsigned GetX86RegNum(const MCOperand &MO) {
Evan Cheng0e6a0522011-07-18 20:57:22 +000048 return X86_MC::getX86RegNum(MO.getReg());
Chris Lattner28249d92010-02-05 01:53:19 +000049 }
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000050
51 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
52 // 0-7 and the difference between the 2 groups is given by the REX prefix.
53 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
54 // in 1's complement form, example:
55 //
56 // ModRM field => XMM9 => 1
57 // VEX.VVVV => XMM9 => ~9
58 //
59 // See table 4-35 of Intel AVX Programming Reference for details.
60 static unsigned char getVEXRegisterEncoding(const MCInst &MI,
61 unsigned OpNum) {
62 unsigned SrcReg = MI.getOperand(OpNum).getReg();
63 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +000064 if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) ||
65 (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15))
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000066 SrcRegNum += 8;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000067
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000068 // The registers represented through VEX_VVVV should
69 // be encoded in 1's complement form.
70 return (~SrcRegNum) & 0xf;
71 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000072
Chris Lattner37ce80e2010-02-10 06:41:02 +000073 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000074 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000075 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000076 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000077
Chris Lattner37ce80e2010-02-10 06:41:02 +000078 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
79 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000080 // Output the constant in little endian byte order.
81 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000082 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000083 Val >>= 8;
84 }
85 }
Chris Lattner0e73c392010-02-05 06:16:07 +000086
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000087 void EmitImmediate(const MCOperand &Disp,
Chris Lattnercf653392010-02-12 22:36:47 +000088 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +000089 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +000090 SmallVectorImpl<MCFixup> &Fixups,
91 int ImmOffset = 0) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000092
Chris Lattner28249d92010-02-05 01:53:19 +000093 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
94 unsigned RM) {
95 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
96 return RM | (RegOpcode << 3) | (Mod << 6);
97 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000098
Chris Lattner28249d92010-02-05 01:53:19 +000099 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000100 unsigned &CurByte, raw_ostream &OS) const {
101 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000102 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000103
Chris Lattner0e73c392010-02-05 06:16:07 +0000104 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000105 unsigned &CurByte, raw_ostream &OS) const {
106 // SIB byte is in the same format as the ModRMByte.
107 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000108 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000109
110
Chris Lattner1ac23b12010-02-05 02:18:40 +0000111 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000112 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000113 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000114 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000115
Daniel Dunbar73c55742010-02-09 22:59:55 +0000116 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
117 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000118
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000119 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Evan Chenge837dea2011-06-28 19:10:37 +0000120 const MCInst &MI, const MCInstrDesc &Desc,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000121 raw_ostream &OS) const;
122
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000123 void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
124 int MemOperand, const MCInst &MI,
125 raw_ostream &OS) const;
126
Chris Lattner834df192010-07-08 22:28:12 +0000127 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Evan Chenge837dea2011-06-28 19:10:37 +0000128 const MCInst &MI, const MCInstrDesc &Desc,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000129 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000130};
131
132} // end anonymous namespace
133
134
Evan Cheng59ee62d2011-07-11 03:57:24 +0000135MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
136 const MCSubtargetInfo &STI,
137 MCContext &Ctx) {
138 return new X86MCCodeEmitter(MCII, STI, Ctx);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000139}
140
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000141/// isDisp8 - Return true if this signed displacement fits in a 8-bit
142/// sign-extended field.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000143static bool isDisp8(int Value) {
144 return Value == (signed char)Value;
145}
146
Chris Lattnercf653392010-02-12 22:36:47 +0000147/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
148/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000149static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000150 unsigned Size = X86II::getSizeOfImm(TSFlags);
151 bool isPCRel = X86II::isImmPCRel(TSFlags);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000152
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000153 return MCFixup::getKindForSize(Size, isPCRel);
Chris Lattnercf653392010-02-12 22:36:47 +0000154}
155
Chris Lattner8a507292010-09-29 03:33:25 +0000156/// Is32BitMemOperand - Return true if the specified instruction with a memory
157/// operand should emit the 0x67 prefix byte in 64-bit mode due to a 32-bit
158/// memory operand. Op specifies the operand # of the memoperand.
159static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
160 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
161 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
162
Nick Lewycky8892b032010-09-29 18:56:57 +0000163 if ((BaseReg.getReg() != 0 && X86::GR32RegClass.contains(BaseReg.getReg())) ||
164 (IndexReg.getReg() != 0 && X86::GR32RegClass.contains(IndexReg.getReg())))
Chris Lattner8a507292010-09-29 03:33:25 +0000165 return true;
166 return false;
167}
Chris Lattnercf653392010-02-12 22:36:47 +0000168
Rafael Espindola64e67192010-10-20 16:46:08 +0000169/// StartsWithGlobalOffsetTable - Return true for the simple cases where this
170/// expression starts with _GLOBAL_OFFSET_TABLE_. This is a needed to support
171/// PIC on ELF i386 as that symbol is magic. We check only simple case that
172/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
173/// of a binary expression.
174static bool StartsWithGlobalOffsetTable(const MCExpr *Expr) {
175 if (Expr->getKind() == MCExpr::Binary) {
176 const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
177 Expr = BE->getLHS();
178 }
179
180 if (Expr->getKind() != MCExpr::SymbolRef)
181 return false;
182
183 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
184 const MCSymbol &S = Ref->getSymbol();
185 return S.getName() == "_GLOBAL_OFFSET_TABLE_";
186}
187
Chris Lattner0e73c392010-02-05 06:16:07 +0000188void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000189EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000190 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000191 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Rafael Espindolad93ceeb2010-11-23 07:20:12 +0000192 const MCExpr *Expr = NULL;
Chris Lattner8496a262010-02-10 06:30:00 +0000193 if (DispOp.isImm()) {
Rafael Espindolad93ceeb2010-11-23 07:20:12 +0000194 // If this is a simple integer displacement that doesn't require a relocation,
195 // emit it now.
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000196 if (FixupKind != FK_PCRel_1 &&
197 FixupKind != FK_PCRel_2 &&
198 FixupKind != FK_PCRel_4) {
Rafael Espindolad93ceeb2010-11-23 07:20:12 +0000199 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
200 return;
201 }
202 Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
203 } else {
204 Expr = DispOp.getExpr();
Chris Lattner0e73c392010-02-05 06:16:07 +0000205 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000206
Chris Lattner835acab2010-02-12 23:00:36 +0000207 // If we have an immoffset, add it to the expression.
Eli Friedmana4d0bd82011-07-20 19:36:11 +0000208 if ((FixupKind == FK_Data_4 ||
209 FixupKind == MCFixupKind(X86::reloc_signed_4byte)) &&
210 StartsWithGlobalOffsetTable(Expr)) {
Rafael Espindola64e67192010-10-20 16:46:08 +0000211 assert(ImmOffset == 0);
Rafael Espindola24ba4f72010-10-24 17:35:42 +0000212
213 FixupKind = MCFixupKind(X86::reloc_global_offset_table);
Rafael Espindola64e67192010-10-20 16:46:08 +0000214 ImmOffset = CurByte;
215 }
216
Chris Lattnera08b5872010-02-16 05:03:17 +0000217 // If the fixup is pc-relative, we need to bias the value to be relative to
218 // the start of the field, not the end of the field.
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000219 if (FixupKind == FK_PCRel_4 ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000220 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
221 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000222 ImmOffset -= 4;
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000223 if (FixupKind == FK_PCRel_2)
Chris Lattnerda3051a2010-07-07 22:35:13 +0000224 ImmOffset -= 2;
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000225 if (FixupKind == FK_PCRel_1)
Chris Lattnera08b5872010-02-16 05:03:17 +0000226 ImmOffset -= 1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000227
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000228 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000229 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000230 Ctx);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000231
Chris Lattner5dccfad2010-02-10 06:52:12 +0000232 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000233 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000234 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000235}
236
Chris Lattner1ac23b12010-02-05 02:18:40 +0000237void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
238 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000239 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000240 raw_ostream &OS,
241 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8a507292010-09-29 03:33:25 +0000242 const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
243 const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg);
244 const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
245 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000246 unsigned BaseReg = Base.getReg();
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000247
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000248 // Handle %rip relative addressing.
249 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Evan Cheng59ee62d2011-07-11 03:57:24 +0000250 assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
Eric Christopher497f1eb2010-06-08 22:57:33 +0000251 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000252 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000253
Chris Lattner0f53cf22010-03-18 18:10:56 +0000254 unsigned FixupKind = X86::reloc_riprel_4byte;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000255
Chris Lattner0f53cf22010-03-18 18:10:56 +0000256 // movq loads are handled with a special relocation form which allows the
257 // linker to eliminate some loads for GOT references which end up in the
258 // same linkage unit.
Jakob Stoklund Olesend0eeeeb2010-10-12 17:15:00 +0000259 if (MI.getOpcode() == X86::MOV64rm)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000260 FixupKind = X86::reloc_riprel_4byte_movq_load;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000261
Chris Lattner835acab2010-02-12 23:00:36 +0000262 // rip-relative addressing is actually relative to the *next* instruction.
263 // Since an immediate can follow the mod/rm byte for an instruction, this
264 // means that we need to bias the immediate field of the instruction with
265 // the size of the immediate field. If we have this case, add it into the
266 // expression to emit.
267 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000268
Chris Lattner0f53cf22010-03-18 18:10:56 +0000269 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000270 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000271 return;
272 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000273
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000274 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000275
Chris Lattnera8168ec2010-02-09 21:57:34 +0000276 // Determine whether a SIB byte is needed.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000277 // If no BaseReg, issue a RIP relative instruction only if the MCE can
Chris Lattner1ac23b12010-02-05 02:18:40 +0000278 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
279 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000280
Chris Lattnera8168ec2010-02-09 21:57:34 +0000281 if (// The SIB byte must be used if there is an index register.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000282 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000283 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
284 // encode to an R/M value of 4, which indicates that a SIB byte is
285 // present.
286 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000287 // If there is no base register and we're in 64-bit mode, we need a SIB
288 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
Evan Cheng59ee62d2011-07-11 03:57:24 +0000289 (!is64BitMode() || BaseReg != 0)) {
Chris Lattnera8168ec2010-02-09 21:57:34 +0000290
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000291 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000292 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000293 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000294 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000295 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000296
Chris Lattnera8168ec2010-02-09 21:57:34 +0000297 // If the base is not EBP/ESP and there is no displacement, use simple
298 // indirect register encoding, this handles addresses like [EAX]. The
299 // encoding for [EBP] with no displacement means [disp32] so we handle it
300 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000301 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000302 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000303 return;
304 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000305
Chris Lattnera8168ec2010-02-09 21:57:34 +0000306 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000307 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000308 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000309 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000310 return;
311 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000312
Chris Lattnera8168ec2010-02-09 21:57:34 +0000313 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000314 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000315 EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
316 Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000317 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000318 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000319
Chris Lattner0e73c392010-02-05 06:16:07 +0000320 // We need a SIB byte, so start by outputting the ModR/M byte first
321 assert(IndexReg.getReg() != X86::ESP &&
322 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000323
Chris Lattner0e73c392010-02-05 06:16:07 +0000324 bool ForceDisp32 = false;
325 bool ForceDisp8 = false;
326 if (BaseReg == 0) {
327 // If there is no base register, we emit the special case SIB byte with
328 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000329 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000330 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000331 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000332 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000333 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000334 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000335 } else if (Disp.getImm() == 0 &&
336 // Base reg can't be anything that ends up with '5' as the base
337 // reg, it is the magic [*] nomenclature that indicates no base.
338 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000339 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000340 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000341 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000342 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000343 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000344 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
345 } else {
346 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000347 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000348 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000349
Chris Lattner0e73c392010-02-05 06:16:07 +0000350 // Calculate what the SS field value should be...
351 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
352 unsigned SS = SSTable[Scale.getImm()];
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000353
Chris Lattner0e73c392010-02-05 06:16:07 +0000354 if (BaseReg == 0) {
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000355 // Handle the SIB byte for the case where there is no base, see Intel
Chris Lattner0e73c392010-02-05 06:16:07 +0000356 // Manual 2A, table 2-7. The displacement has already been output.
357 unsigned IndexRegNo;
358 if (IndexReg.getReg())
359 IndexRegNo = GetX86RegNum(IndexReg);
360 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
361 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000362 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000363 } else {
364 unsigned IndexRegNo;
365 if (IndexReg.getReg())
366 IndexRegNo = GetX86RegNum(IndexReg);
367 else
368 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000369 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000370 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000371
Chris Lattner0e73c392010-02-05 06:16:07 +0000372 // Do we need to output a displacement?
373 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000374 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000375 else if (ForceDisp32 || Disp.getImm() != 0)
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000376 EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
377 Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000378}
379
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000380/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
381/// called VEX.
382void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000383 int MemOperand, const MCInst &MI,
Evan Chenge837dea2011-06-28 19:10:37 +0000384 const MCInstrDesc &Desc,
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000385 raw_ostream &OS) const {
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000386 bool HasVEX_4V = false;
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000387 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000388 HasVEX_4V = true;
389
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000390 // VEX_R: opcode externsion equivalent to REX.R in
391 // 1's complement (inverted) form
392 //
393 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
394 // 0: Same as REX_R=1 (64 bit mode only)
395 //
396 unsigned char VEX_R = 0x1;
397
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000398 // VEX_X: equivalent to REX.X, only used when a
399 // register is used for index in SIB Byte.
400 //
401 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
402 // 0: Same as REX.X=1 (64-bit mode only)
403 unsigned char VEX_X = 0x1;
404
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000405 // VEX_B:
406 //
407 // 1: Same as REX_B=0 (ignored in 32-bit mode)
408 // 0: Same as REX_B=1 (64 bit mode only)
409 //
410 unsigned char VEX_B = 0x1;
411
412 // VEX_W: opcode specific (use like REX.W, or used for
413 // opcode extension, or ignored, depending on the opcode byte)
414 unsigned char VEX_W = 0;
415
416 // VEX_5M (VEX m-mmmmm field):
417 //
418 // 0b00000: Reserved for future use
419 // 0b00001: implied 0F leading opcode
420 // 0b00010: implied 0F 38 leading opcode bytes
421 // 0b00011: implied 0F 3A leading opcode bytes
422 // 0b00100-0b11111: Reserved for future use
423 //
424 unsigned char VEX_5M = 0x1;
425
426 // VEX_4V (VEX vvvv field): a register specifier
427 // (in 1's complement form) or 1111 if unused.
428 unsigned char VEX_4V = 0xf;
429
430 // VEX_L (Vector Length):
431 //
432 // 0: scalar or 128-bit vector
433 // 1: 256-bit vector
434 //
435 unsigned char VEX_L = 0;
436
437 // VEX_PP: opcode extension providing equivalent
438 // functionality of a SIMD prefix
439 //
440 // 0b00: None
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000441 // 0b01: 66
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000442 // 0b10: F3
443 // 0b11: F2
444 //
445 unsigned char VEX_PP = 0;
446
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000447 // Encode the operand size opcode prefix as needed.
448 if (TSFlags & X86II::OpSize)
449 VEX_PP = 0x01;
450
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000451 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000452 VEX_W = 1;
453
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000454 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
Bruno Cardoso Lopes87a85c72010-07-13 21:07:28 +0000455 VEX_L = 1;
456
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000457 switch (TSFlags & X86II::Op0Mask) {
458 default: assert(0 && "Invalid prefix!");
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000459 case X86II::T8: // 0F 38
460 VEX_5M = 0x2;
461 break;
462 case X86II::TA: // 0F 3A
463 VEX_5M = 0x3;
464 break;
465 case X86II::TF: // F2 0F 38
466 VEX_PP = 0x3;
467 VEX_5M = 0x2;
468 break;
469 case X86II::XS: // F3 0F
470 VEX_PP = 0x2;
471 break;
472 case X86II::XD: // F2 0F
473 VEX_PP = 0x3;
474 break;
Joerg Sonnenberger4a8ac8d2011-04-04 16:58:13 +0000475 case X86II::A6: // Bypass: Not used by VEX
476 case X86II::A7: // Bypass: Not used by VEX
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000477 case X86II::TB: // Bypass: Not used by VEX
478 case 0:
479 break; // No prefix!
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000480 }
481
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +0000482 // Set the vector length to 256-bit if YMM0-YMM15 is used
483 for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
484 if (!MI.getOperand(i).isReg())
485 continue;
486 unsigned SrcReg = MI.getOperand(i).getReg();
487 if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
488 VEX_L = 1;
489 }
490
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000491 unsigned NumOps = MI.getNumOperands();
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000492 unsigned CurOp = 0;
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000493 bool IsDestMem = false;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000494
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000495 switch (TSFlags & X86II::FormMask) {
496 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000497 case X86II::MRMDestMem:
498 IsDestMem = true;
499 // The important info for the VEX prefix is never beyond the address
500 // registers. Don't check beyond that.
501 NumOps = CurOp = X86::AddrNumOperands;
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000502 case X86II::MRM0m: case X86II::MRM1m:
503 case X86II::MRM2m: case X86II::MRM3m:
504 case X86II::MRM4m: case X86II::MRM5m:
505 case X86II::MRM6m: case X86II::MRM7m:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000506 case X86II::MRMSrcMem:
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000507 case X86II::MRMSrcReg:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000508 if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000509 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000510 VEX_R = 0x0;
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000511 CurOp++;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000512
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000513 if (HasVEX_4V) {
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000514 VEX_4V = getVEXRegisterEncoding(MI, IsDestMem ? CurOp-1 : CurOp);
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000515 CurOp++;
516 }
517
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000518 // To only check operands before the memory address ones, start
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000519 // the search from the beginning
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000520 if (IsDestMem)
521 CurOp = 0;
522
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000523 // If the last register should be encoded in the immediate field
Bruno Cardoso Lopes01066802010-07-06 22:38:32 +0000524 // do not use any bit from VEX prefix to this register, ignore it
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000525 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM)
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000526 NumOps--;
527
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000528 for (; CurOp != NumOps; ++CurOp) {
529 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000530 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
531 VEX_B = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000532 if (!VEX_B && MO.isReg() &&
533 ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000534 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
535 VEX_X = 0x0;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000536 }
537 break;
Bruno Cardoso Lopescf6ca032010-07-21 08:56:24 +0000538 default: // MRMDestReg, MRM0r-MRM7r, RawFrm
539 if (!MI.getNumOperands())
540 break;
541
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000542 if (MI.getOperand(CurOp).isReg() &&
543 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
544 VEX_B = 0;
545
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000546 if (HasVEX_4V)
547 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
548
549 CurOp++;
550 for (; CurOp != NumOps; ++CurOp) {
551 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000552 if (MO.isReg() && !HasVEX_4V &&
553 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
554 VEX_R = 0x0;
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000555 }
556 break;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000557 }
558
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000559 // Emit segment override opcode prefix as needed.
560 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
561
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000562 // VEX opcode prefix can have 2 or 3 bytes
563 //
564 // 3 bytes:
565 // +-----+ +--------------+ +-------------------+
566 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
567 // +-----+ +--------------+ +-------------------+
568 // 2 bytes:
569 // +-----+ +-------------------+
570 // | C5h | | R | vvvv | L | pp |
571 // +-----+ +-------------------+
572 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000573 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
574
Bruno Cardoso Lopesf5cd8c52010-07-02 22:06:54 +0000575 if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000576 EmitByte(0xC5, CurByte, OS);
577 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
578 return;
579 }
580
581 // 3 byte VEX prefix
582 EmitByte(0xC4, CurByte, OS);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000583 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000584 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
585}
586
Chris Lattner39a612e2010-02-05 22:10:22 +0000587/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
588/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
589/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000590static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Evan Chenge837dea2011-06-28 19:10:37 +0000591 const MCInstrDesc &Desc) {
Chris Lattner7e851802010-02-11 22:39:10 +0000592 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000593 if (TSFlags & X86II::REX_W)
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000594 REX |= 1 << 3; // set REX.W
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000595
Chris Lattner39a612e2010-02-05 22:10:22 +0000596 if (MI.getNumOperands() == 0) return REX;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000597
Chris Lattner39a612e2010-02-05 22:10:22 +0000598 unsigned NumOps = MI.getNumOperands();
599 // FIXME: MCInst should explicitize the two-addrness.
600 bool isTwoAddr = NumOps > 1 &&
Evan Chenge837dea2011-06-28 19:10:37 +0000601 Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000602
Chris Lattner39a612e2010-02-05 22:10:22 +0000603 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
604 unsigned i = isTwoAddr ? 1 : 0;
605 for (; i != NumOps; ++i) {
606 const MCOperand &MO = MI.getOperand(i);
607 if (!MO.isReg()) continue;
608 unsigned Reg = MO.getReg();
609 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000610 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
611 // that returns non-zero.
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000612 REX |= 0x40; // REX fixed encoding prefix
Chris Lattner39a612e2010-02-05 22:10:22 +0000613 break;
614 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000615
Chris Lattner39a612e2010-02-05 22:10:22 +0000616 switch (TSFlags & X86II::FormMask) {
617 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
618 case X86II::MRMSrcReg:
619 if (MI.getOperand(0).isReg() &&
620 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000621 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000622 i = isTwoAddr ? 2 : 1;
623 for (; i != NumOps; ++i) {
624 const MCOperand &MO = MI.getOperand(i);
625 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000626 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000627 }
628 break;
629 case X86II::MRMSrcMem: {
630 if (MI.getOperand(0).isReg() &&
631 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000632 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000633 unsigned Bit = 0;
634 i = isTwoAddr ? 2 : 1;
635 for (; i != NumOps; ++i) {
636 const MCOperand &MO = MI.getOperand(i);
637 if (MO.isReg()) {
638 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000639 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000640 Bit++;
641 }
642 }
643 break;
644 }
645 case X86II::MRM0m: case X86II::MRM1m:
646 case X86II::MRM2m: case X86II::MRM3m:
647 case X86II::MRM4m: case X86II::MRM5m:
648 case X86II::MRM6m: case X86II::MRM7m:
649 case X86II::MRMDestMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000650 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
Chris Lattner39a612e2010-02-05 22:10:22 +0000651 i = isTwoAddr ? 1 : 0;
652 if (NumOps > e && MI.getOperand(e).isReg() &&
653 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000654 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000655 unsigned Bit = 0;
656 for (; i != e; ++i) {
657 const MCOperand &MO = MI.getOperand(i);
658 if (MO.isReg()) {
659 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000660 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000661 Bit++;
662 }
663 }
664 break;
665 }
666 default:
667 if (MI.getOperand(0).isReg() &&
668 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000669 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000670 i = isTwoAddr ? 2 : 1;
671 for (unsigned e = NumOps; i != e; ++i) {
672 const MCOperand &MO = MI.getOperand(i);
673 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000674 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000675 }
676 break;
677 }
678 return REX;
679}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000680
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000681/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
682void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
683 unsigned &CurByte, int MemOperand,
684 const MCInst &MI,
Chris Lattner9d199892010-07-04 22:56:10 +0000685 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000686 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000687 default: assert(0 && "Invalid segment!");
Chris Lattner834df192010-07-08 22:28:12 +0000688 case 0:
689 // No segment override, check for explicit one on memory operand.
Chris Lattner599b5312010-07-08 23:46:44 +0000690 if (MemOperand != -1) { // If the instruction has a memory operand.
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000691 switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
Chris Lattner834df192010-07-08 22:28:12 +0000692 default: assert(0 && "Unknown segment register!");
693 case 0: break;
694 case X86::CS: EmitByte(0x2E, CurByte, OS); break;
695 case X86::SS: EmitByte(0x36, CurByte, OS); break;
696 case X86::DS: EmitByte(0x3E, CurByte, OS); break;
697 case X86::ES: EmitByte(0x26, CurByte, OS); break;
698 case X86::FS: EmitByte(0x64, CurByte, OS); break;
699 case X86::GS: EmitByte(0x65, CurByte, OS); break;
700 }
701 }
702 break;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000703 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000704 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000705 break;
706 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000707 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000708 break;
709 }
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000710}
711
712/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
713///
714/// MemOperand is the operand # of the start of a memory operand if present. If
715/// Not present, it is -1.
716void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
717 int MemOperand, const MCInst &MI,
Evan Chenge837dea2011-06-28 19:10:37 +0000718 const MCInstrDesc &Desc,
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000719 raw_ostream &OS) const {
720
721 // Emit the lock opcode prefix as needed.
722 if (TSFlags & X86II::LOCK)
723 EmitByte(0xF0, CurByte, OS);
724
725 // Emit segment override opcode prefix as needed.
726 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000727
Chris Lattner1e80f402010-02-03 21:57:59 +0000728 // Emit the repeat opcode prefix as needed.
729 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000730 EmitByte(0xF3, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000731
Chris Lattner1e80f402010-02-03 21:57:59 +0000732 // Emit the address size opcode prefix as needed.
Chris Lattner8a507292010-09-29 03:33:25 +0000733 if ((TSFlags & X86II::AdSize) ||
Evan Cheng59ee62d2011-07-11 03:57:24 +0000734 (MemOperand != -1 && is64BitMode() && Is32BitMemOperand(MI, MemOperand)))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000735 EmitByte(0x67, CurByte, OS);
Chris Lattner78a19462010-09-29 03:43:43 +0000736
737 // Emit the operand size opcode prefix as needed.
738 if (TSFlags & X86II::OpSize)
739 EmitByte(0x66, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000740
Chris Lattner1e80f402010-02-03 21:57:59 +0000741 bool Need0FPrefix = false;
742 switch (TSFlags & X86II::Op0Mask) {
743 default: assert(0 && "Invalid prefix!");
744 case 0: break; // No prefix!
745 case X86II::REP: break; // already handled.
746 case X86II::TB: // Two-byte opcode prefix
747 case X86II::T8: // 0F 38
748 case X86II::TA: // 0F 3A
Joerg Sonnenberger4a8ac8d2011-04-04 16:58:13 +0000749 case X86II::A6: // 0F A6
750 case X86II::A7: // 0F A7
Chris Lattner1e80f402010-02-03 21:57:59 +0000751 Need0FPrefix = true;
752 break;
753 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000754 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000755 Need0FPrefix = true;
756 break;
757 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000758 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000759 Need0FPrefix = true;
760 break;
761 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000762 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000763 Need0FPrefix = true;
764 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000765 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
766 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
767 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
768 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
769 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
770 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
771 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
772 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000773 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000774
Chris Lattner1e80f402010-02-03 21:57:59 +0000775 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000776 // FIXME: Can this come before F2 etc to simplify emission?
Evan Cheng59ee62d2011-07-11 03:57:24 +0000777 if (is64BitMode()) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000778 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000779 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000780 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000781
Chris Lattner1e80f402010-02-03 21:57:59 +0000782 // 0x0F escape code must be emitted just before the opcode.
783 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000784 EmitByte(0x0F, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000785
Chris Lattner1e80f402010-02-03 21:57:59 +0000786 // FIXME: Pull this up into previous switch if REX can be moved earlier.
787 switch (TSFlags & X86II::Op0Mask) {
788 case X86II::TF: // F2 0F 38
789 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000790 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000791 break;
792 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000793 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000794 break;
Joerg Sonnenberger4a8ac8d2011-04-04 16:58:13 +0000795 case X86II::A6: // 0F A6
796 EmitByte(0xA6, CurByte, OS);
797 break;
798 case X86II::A7: // 0F A7
799 EmitByte(0xA7, CurByte, OS);
800 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000801 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000802}
803
804void X86MCCodeEmitter::
805EncodeInstruction(const MCInst &MI, raw_ostream &OS,
806 SmallVectorImpl<MCFixup> &Fixups) const {
807 unsigned Opcode = MI.getOpcode();
Evan Cheng59ee62d2011-07-11 03:57:24 +0000808 const MCInstrDesc &Desc = MCII.get(Opcode);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000809 uint64_t TSFlags = Desc.TSFlags;
810
Chris Lattner757e8d62010-07-09 00:17:50 +0000811 // Pseudo instructions don't get encoded.
812 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
813 return;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000814
Chris Lattner834df192010-07-08 22:28:12 +0000815 // If this is a two-address instruction, skip one of the register operands.
816 // FIXME: This should be handled during MCInst lowering.
817 unsigned NumOps = Desc.getNumOperands();
818 unsigned CurOp = 0;
Evan Chenge837dea2011-06-28 19:10:37 +0000819 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1)
Chris Lattner834df192010-07-08 22:28:12 +0000820 ++CurOp;
Evan Chenge837dea2011-06-28 19:10:37 +0000821 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, MCOI::TIED_TO)== 0)
Chris Lattner834df192010-07-08 22:28:12 +0000822 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
823 --NumOps;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000824
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000825 // Keep track of the current byte being emitted.
826 unsigned CurByte = 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000827
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000828 // Is this instruction encoded using the AVX VEX prefix?
829 bool HasVEXPrefix = false;
830
831 // It uses the VEX.VVVV field?
832 bool HasVEX_4V = false;
833
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000834 if ((TSFlags >> X86II::VEXShift) & X86II::VEX)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000835 HasVEXPrefix = true;
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000836 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000837 HasVEX_4V = true;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000838
Chris Lattner548abfc2010-10-03 18:08:05 +0000839
Chris Lattner834df192010-07-08 22:28:12 +0000840 // Determine where the memory operand starts, if present.
841 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
842 if (MemoryOperand != -1) MemoryOperand += CurOp;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000843
Chris Lattner834df192010-07-08 22:28:12 +0000844 if (!HasVEXPrefix)
845 EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
846 else
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000847 EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000848
Chris Lattner548abfc2010-10-03 18:08:05 +0000849
Chris Lattner74a21512010-02-05 19:24:13 +0000850 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner548abfc2010-10-03 18:08:05 +0000851
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000852 if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
Chris Lattner548abfc2010-10-03 18:08:05 +0000853 BaseOpcode = 0x0F; // Weird 3DNow! encoding.
854
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000855 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000856 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000857 case X86II::MRMInitReg:
858 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000859 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000860 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner757e8d62010-07-09 00:17:50 +0000861 case X86II::Pseudo:
862 assert(0 && "Pseudo instruction shouldn't be emitted");
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000863 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000864 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000865 break;
Chris Lattner59f8a6a2010-08-19 01:18:43 +0000866
Chris Lattner40cc3f82010-09-17 18:02:29 +0000867 case X86II::RawFrmImm8:
868 EmitByte(BaseOpcode, CurByte, OS);
869 EmitImmediate(MI.getOperand(CurOp++),
870 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
871 CurByte, OS, Fixups);
872 EmitImmediate(MI.getOperand(CurOp++), 1, FK_Data_1, CurByte, OS, Fixups);
873 break;
Chris Lattner59f8a6a2010-08-19 01:18:43 +0000874 case X86II::RawFrmImm16:
875 EmitByte(BaseOpcode, CurByte, OS);
876 EmitImmediate(MI.getOperand(CurOp++),
877 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
878 CurByte, OS, Fixups);
879 EmitImmediate(MI.getOperand(CurOp++), 2, FK_Data_2, CurByte, OS, Fixups);
880 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000881
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000882 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000883 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000884 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000885
Chris Lattner28249d92010-02-05 01:53:19 +0000886 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000887 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000888 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000889 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000890 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000891 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000892
Chris Lattner1ac23b12010-02-05 02:18:40 +0000893 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000894 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000895 SrcRegNum = CurOp + X86::AddrNumOperands;
896
897 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
898 SrcRegNum++;
899
Chris Lattner1ac23b12010-02-05 02:18:40 +0000900 EmitMemModRMByte(MI, CurOp,
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000901 GetX86RegNum(MI.getOperand(SrcRegNum)),
Chris Lattner835acab2010-02-12 23:00:36 +0000902 TSFlags, CurByte, OS, Fixups);
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000903 CurOp = SrcRegNum + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000904 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000905
Chris Lattnerdaa45552010-02-05 19:04:37 +0000906 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000907 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000908 SrcRegNum = CurOp + 1;
909
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000910 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000911 SrcRegNum++;
912
913 EmitRegModRMByte(MI.getOperand(SrcRegNum),
914 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
915 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000916 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000917
Chris Lattnerdaa45552010-02-05 19:04:37 +0000918 case X86II::MRMSrcMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000919 int AddrOperands = X86::AddrNumOperands;
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000920 unsigned FirstMemOp = CurOp+1;
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000921 if (HasVEX_4V) {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000922 ++AddrOperands;
923 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
924 }
Chris Lattnerdaa45552010-02-05 19:04:37 +0000925
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000926 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000927
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000928 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000929 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000930 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000931 break;
932 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000933
934 case X86II::MRM0r: case X86II::MRM1r:
935 case X86II::MRM2r: case X86II::MRM3r:
936 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000937 case X86II::MRM6r: case X86II::MRM7r:
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000938 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
939 CurOp++;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000940 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000941 EmitRegModRMByte(MI.getOperand(CurOp++),
942 (TSFlags & X86II::FormMask)-X86II::MRM0r,
943 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000944 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000945 case X86II::MRM0m: case X86II::MRM1m:
946 case X86II::MRM2m: case X86II::MRM3m:
947 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000948 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000949 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000950 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000951 TSFlags, CurByte, OS, Fixups);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000952 CurOp += X86::AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000953 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000954 case X86II::MRM_C1:
955 EmitByte(BaseOpcode, CurByte, OS);
956 EmitByte(0xC1, CurByte, OS);
957 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000958 case X86II::MRM_C2:
959 EmitByte(BaseOpcode, CurByte, OS);
960 EmitByte(0xC2, CurByte, OS);
961 break;
962 case X86II::MRM_C3:
963 EmitByte(BaseOpcode, CurByte, OS);
964 EmitByte(0xC3, CurByte, OS);
965 break;
966 case X86II::MRM_C4:
967 EmitByte(BaseOpcode, CurByte, OS);
968 EmitByte(0xC4, CurByte, OS);
969 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000970 case X86II::MRM_C8:
971 EmitByte(BaseOpcode, CurByte, OS);
972 EmitByte(0xC8, CurByte, OS);
973 break;
974 case X86II::MRM_C9:
975 EmitByte(BaseOpcode, CurByte, OS);
976 EmitByte(0xC9, CurByte, OS);
977 break;
978 case X86II::MRM_E8:
979 EmitByte(BaseOpcode, CurByte, OS);
980 EmitByte(0xE8, CurByte, OS);
981 break;
982 case X86II::MRM_F0:
983 EmitByte(BaseOpcode, CurByte, OS);
984 EmitByte(0xF0, CurByte, OS);
985 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000986 case X86II::MRM_F8:
987 EmitByte(BaseOpcode, CurByte, OS);
988 EmitByte(0xF8, CurByte, OS);
989 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000990 case X86II::MRM_F9:
991 EmitByte(BaseOpcode, CurByte, OS);
992 EmitByte(0xF9, CurByte, OS);
993 break;
Rafael Espindola87ca0e02011-02-22 00:35:18 +0000994 case X86II::MRM_D0:
995 EmitByte(BaseOpcode, CurByte, OS);
996 EmitByte(0xD0, CurByte, OS);
997 break;
998 case X86II::MRM_D1:
999 EmitByte(BaseOpcode, CurByte, OS);
1000 EmitByte(0xD1, CurByte, OS);
1001 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +00001002 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +00001003
Chris Lattner8b0f7a72010-02-11 07:06:31 +00001004 // If there is a remaining operand, it must be a trailing immediate. Emit it
1005 // according to the right size for the instruction.
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001006 if (CurOp != NumOps) {
1007 // The last source register of a 4 operand instruction in AVX is encoded
1008 // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
Joerg Sonnenberger229e4522011-04-04 15:58:30 +00001009 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001010 const MCOperand &MO = MI.getOperand(CurOp++);
1011 bool IsExtReg =
1012 X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
1013 unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
1014 RegNum |= GetX86RegNum(MO) << 4;
1015 EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
1016 Fixups);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001017 } else {
1018 unsigned FixupKind;
Rafael Espindola3ee33aa2010-12-16 22:50:01 +00001019 // FIXME: Is there a better way to know that we need a signed relocation?
Rafael Espindolaa3bff992011-05-19 20:32:34 +00001020 if (MI.getOpcode() == X86::ADD64ri32 ||
1021 MI.getOpcode() == X86::MOV64ri32 ||
Rafael Espindola3ee33aa2010-12-16 22:50:01 +00001022 MI.getOpcode() == X86::MOV64mi32 ||
1023 MI.getOpcode() == X86::PUSH64i32)
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001024 FixupKind = X86::reloc_signed_4byte;
1025 else
1026 FixupKind = getImmFixupKind(TSFlags);
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001027 EmitImmediate(MI.getOperand(CurOp++),
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001028 X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001029 CurByte, OS, Fixups);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001030 }
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001031 }
1032
Joerg Sonnenberger229e4522011-04-04 15:58:30 +00001033 if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
Chris Lattner548abfc2010-10-03 18:08:05 +00001034 EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1035
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001036
Chris Lattner28249d92010-02-05 01:53:19 +00001037#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +00001038 // FIXME: Verify.
1039 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +00001040 errs() << "Cannot encode all operands of: ";
1041 MI.dump();
1042 errs() << '\n';
1043 abort();
1044 }
1045#endif
Chris Lattner45762472010-02-03 21:24:49 +00001046}