blob: a799f7c05b2202a743851cbea2ffeabb8bac838f [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000016#include "llvm/ADT/APFloat.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
James Molloy493e57d2015-10-26 14:10:46 +000020#include "llvm/ADT/Optional.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000021#include "llvm/ADT/STLExtras.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000022#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000023#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/Analysis/AliasAnalysis.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000028#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000029#include "llvm/Analysis/InstructionSimplify.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000030#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000031#include "llvm/Analysis/LoopInfo.h"
Adam Nemet0965da22017-10-09 23:19:02 +000032#include "llvm/Analysis/OptimizationRemarkEmitter.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000033#include "llvm/Analysis/TargetLibraryInfo.h"
34#include "llvm/IR/Argument.h"
35#include "llvm/IR/Attributes.h"
36#include "llvm/IR/BasicBlock.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000037#include "llvm/IR/CallSite.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000038#include "llvm/IR/Constant.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000039#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000040#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
Matthias Braun50ec0b52017-05-19 22:37:09 +000042#include "llvm/IR/DerivedTypes.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000043#include "llvm/IR/DiagnosticInfo.h"
Hal Finkel60db0582014-09-07 18:57:58 +000044#include "llvm/IR/Dominators.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000045#include "llvm/IR/Function.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000046#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000047#include "llvm/IR/GlobalAlias.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000048#include "llvm/IR/GlobalValue.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000049#include "llvm/IR/GlobalVariable.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000050#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000052#include "llvm/IR/Instructions.h"
53#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000054#include "llvm/IR/Intrinsics.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000055#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/Metadata.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000057#include "llvm/IR/Module.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000058#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000059#include "llvm/IR/PatternMatch.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000060#include "llvm/IR/Type.h"
61#include "llvm/IR/User.h"
62#include "llvm/IR/Value.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/ErrorHandling.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000067#include "llvm/Support/KnownBits.h"
Chris Lattner965c7692008-06-02 01:18:21 +000068#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000069#include <algorithm>
70#include <array>
Eugene Zelenko75075ef2017-09-01 21:37:29 +000071#include <cassert>
72#include <cstdint>
73#include <iterator>
74#include <utility>
75
Chris Lattner965c7692008-06-02 01:18:21 +000076using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000077using namespace llvm::PatternMatch;
78
79const unsigned MaxDepth = 6;
80
Philip Reames1c292272015-03-10 22:43:20 +000081// Controls the number of uses of the value searched for possible
82// dominating comparisons.
83static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000084 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000085
Craig Topper6b3940a2017-05-03 22:25:19 +000086/// Returns the bitwidth of the given scalar or pointer type. For vector types,
87/// returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000088static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000089 if (unsigned BitWidth = Ty->getScalarSizeInBits())
90 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000091
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000092 return DL.getIndexTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000093}
Chris Lattner965c7692008-06-02 01:18:21 +000094
Benjamin Kramercfd8d902014-09-12 08:56:53 +000095namespace {
Eugene Zelenko75075ef2017-09-01 21:37:29 +000096
Hal Finkel60db0582014-09-07 18:57:58 +000097// Simplifying using an assume can only be done in a particular control-flow
98// context (the context instruction provides that context). If an assume and
99// the context instruction are not in the same block then the DT helps in
100// figuring out if we can use it.
101struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000102 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000103 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +0000104 const Instruction *CxtI;
105 const DominatorTree *DT;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000106
Sanjay Patel54656ca2017-02-06 18:26:06 +0000107 // Unlike the other analyses, this may be a nullptr because not all clients
108 // provide it currently.
109 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +0000110
Matthias Braun37e5d792016-01-28 06:29:33 +0000111 /// Set of assumptions that should be excluded from further queries.
112 /// This is because of the potential for mutual recursion to cause
113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
114 /// classic case of this is assume(x = y), which will attempt to determine
115 /// bits in x from bits in y, which will attempt to determine bits in y from
116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
Craig Topper6e11a052017-05-08 16:22:48 +0000117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
118 /// (all of which can call computeKnownBits), and so on.
Li Huang755f75f2016-10-15 19:00:04 +0000119 std::array<const Value *, MaxDepth> Excluded;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000120
121 unsigned NumExcluded = 0;
Matthias Braun37e5d792016-01-28 06:29:33 +0000122
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000124 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000125 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000126
127 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000128 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
129 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000130 Excluded = Q.Excluded;
131 Excluded[NumExcluded++] = NewExcl;
132 assert(NumExcluded <= Excluded.size());
133 }
134
135 bool isExcluded(const Value *Value) const {
136 if (NumExcluded == 0)
137 return false;
138 auto End = Excluded.begin() + NumExcluded;
139 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000140 }
141};
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000142
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000143} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000144
Sanjay Patel547e9752014-11-04 16:09:50 +0000145// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000146// the preferred context instruction (if any).
147static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
148 // If we've been provided with a context instruction, then use that (provided
149 // it has been inserted).
150 if (CxtI && CxtI->getParent())
151 return CxtI;
152
153 // If the value is really an already-inserted instruction, then use that.
154 CxtI = dyn_cast<Instruction>(V);
155 if (CxtI && CxtI->getParent())
156 return CxtI;
157
158 return nullptr;
159}
160
Craig Topperb45eabc2017-04-26 16:39:58 +0000161static void computeKnownBits(const Value *V, KnownBits &Known,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000162 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000163
Craig Topperb45eabc2017-04-26 16:39:58 +0000164void llvm::computeKnownBits(const Value *V, KnownBits &Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000165 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000166 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000167 const DominatorTree *DT,
168 OptimizationRemarkEmitter *ORE) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000169 ::computeKnownBits(V, Known, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000170 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000171}
172
Craig Topper6e11a052017-05-08 16:22:48 +0000173static KnownBits computeKnownBits(const Value *V, unsigned Depth,
174 const Query &Q);
175
176KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
177 unsigned Depth, AssumptionCache *AC,
178 const Instruction *CxtI,
Craig Toppera2025ea2017-05-24 16:53:03 +0000179 const DominatorTree *DT,
180 OptimizationRemarkEmitter *ORE) {
181 return ::computeKnownBits(V, Depth,
182 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Craig Topper6e11a052017-05-08 16:22:48 +0000183}
184
Pete Cooper35b00d52016-08-13 01:05:32 +0000185bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
186 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000187 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000188 const DominatorTree *DT) {
189 assert(LHS->getType() == RHS->getType() &&
190 "LHS and RHS should have the same type");
191 assert(LHS->getType()->isIntOrIntVectorTy() &&
192 "LHS and RHS should be integers");
Roman Lebedev620b3da2018-04-15 18:59:33 +0000193 // Look for an inverted mask: (X & ~M) op (Y & M).
194 Value *M;
195 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
196 match(RHS, m_c_And(m_Specific(M), m_Value())))
197 return true;
198 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
199 match(LHS, m_c_And(m_Specific(M), m_Value())))
200 return true;
Jingyue Wuca321902015-05-14 23:53:19 +0000201 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
Craig Topperb45eabc2017-04-26 16:39:58 +0000202 KnownBits LHSKnown(IT->getBitWidth());
203 KnownBits RHSKnown(IT->getBitWidth());
204 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT);
205 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT);
206 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
Jingyue Wuca321902015-05-14 23:53:19 +0000207}
208
Zaara Syeda3a7578c2017-05-31 17:12:38 +0000209bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
210 for (const User *U : CxtI->users()) {
211 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
212 if (IC->isEquality())
213 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
214 if (C->isNullValue())
215 continue;
216 return false;
217 }
218 return true;
219}
220
Pete Cooper35b00d52016-08-13 01:05:32 +0000221static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000222 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000223
Pete Cooper35b00d52016-08-13 01:05:32 +0000224bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
225 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000226 unsigned Depth, AssumptionCache *AC,
227 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000228 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000229 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000230 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000231}
232
Pete Cooper35b00d52016-08-13 01:05:32 +0000233static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000234
Pete Cooper35b00d52016-08-13 01:05:32 +0000235bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000236 AssumptionCache *AC, const Instruction *CxtI,
237 const DominatorTree *DT) {
238 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000239}
240
Pete Cooper35b00d52016-08-13 01:05:32 +0000241bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000242 unsigned Depth,
243 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000244 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000245 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
246 return Known.isNonNegative();
Jingyue Wu10fcea52015-08-20 18:27:04 +0000247}
248
Pete Cooper35b00d52016-08-13 01:05:32 +0000249bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000250 AssumptionCache *AC, const Instruction *CxtI,
251 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000252 if (auto *CI = dyn_cast<ConstantInt>(V))
253 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000254
Philip Reames8f12eba2016-03-09 21:31:47 +0000255 // TODO: We'd doing two recursive queries here. We should factor this such
256 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000257 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
258 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000259}
260
Pete Cooper35b00d52016-08-13 01:05:32 +0000261bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000262 AssumptionCache *AC, const Instruction *CxtI,
263 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000264 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
265 return Known.isNegative();
Nick Lewycky762f8a82016-04-21 00:53:14 +0000266}
267
Pete Cooper35b00d52016-08-13 01:05:32 +0000268static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000269
Pete Cooper35b00d52016-08-13 01:05:32 +0000270bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000271 const DataLayout &DL,
272 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000273 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000274 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
275 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000276 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000277}
278
Pete Cooper35b00d52016-08-13 01:05:32 +0000279static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000280 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000281
Pete Cooper35b00d52016-08-13 01:05:32 +0000282bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
283 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000284 unsigned Depth, AssumptionCache *AC,
285 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000286 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000287 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000288}
289
Pete Cooper35b00d52016-08-13 01:05:32 +0000290static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
291 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000292
Pete Cooper35b00d52016-08-13 01:05:32 +0000293unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000294 unsigned Depth, AssumptionCache *AC,
295 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000296 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000297 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000298}
299
Craig Topper8fbb74b2017-03-24 22:12:10 +0000300static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
301 bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000302 KnownBits &KnownOut, KnownBits &Known2,
Craig Topper8fbb74b2017-03-24 22:12:10 +0000303 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000304 unsigned BitWidth = KnownOut.getBitWidth();
Craig Topper8fbb74b2017-03-24 22:12:10 +0000305
306 // If an initial sequence of bits in the result is not needed, the
307 // corresponding bits in the operands are not needed.
Craig Topperb45eabc2017-04-26 16:39:58 +0000308 KnownBits LHSKnown(BitWidth);
309 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
310 computeKnownBits(Op1, Known2, Depth + 1, Q);
Craig Topper8fbb74b2017-03-24 22:12:10 +0000311
Craig Topperb498a232017-08-08 16:29:35 +0000312 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000313}
314
Pete Cooper35b00d52016-08-13 01:05:32 +0000315static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000316 KnownBits &Known, KnownBits &Known2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000317 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000318 unsigned BitWidth = Known.getBitWidth();
319 computeKnownBits(Op1, Known, Depth + 1, Q);
320 computeKnownBits(Op0, Known2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000321
322 bool isKnownNegative = false;
323 bool isKnownNonNegative = false;
324 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000325 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000326 if (Op0 == Op1) {
327 // The product of a number with itself is non-negative.
328 isKnownNonNegative = true;
329 } else {
Craig Topperca48af32017-04-29 16:43:11 +0000330 bool isKnownNonNegativeOp1 = Known.isNonNegative();
331 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
332 bool isKnownNegativeOp1 = Known.isNegative();
333 bool isKnownNegativeOp0 = Known2.isNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000334 // The product of two numbers with the same sign is non-negative.
335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337 // The product of a negative number and a non-negative number is either
338 // negative or zero.
339 if (!isKnownNonNegative)
340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000341 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000343 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000344 }
345 }
346
Simon Dardis70dbd5f2017-12-09 23:25:57 +0000347 assert(!Known.hasConflict() && !Known2.hasConflict());
348 // Compute a conservative estimate for high known-0 bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000349 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
350 Known2.countMinLeadingZeros(),
Nick Lewyckyfa306072012-03-18 23:28:48 +0000351 BitWidth) - BitWidth;
Nick Lewyckyfa306072012-03-18 23:28:48 +0000352 LeadZ = std::min(LeadZ, BitWidth);
Simon Dardis70dbd5f2017-12-09 23:25:57 +0000353
354 // The result of the bottom bits of an integer multiply can be
355 // inferred by looking at the bottom bits of both operands and
356 // multiplying them together.
357 // We can infer at least the minimum number of known trailing bits
358 // of both operands. Depending on number of trailing zeros, we can
359 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
360 // a and b are divisible by m and n respectively.
361 // We then calculate how many of those bits are inferrable and set
362 // the output. For example, the i8 mul:
363 // a = XXXX1100 (12)
364 // b = XXXX1110 (14)
365 // We know the bottom 3 bits are zero since the first can be divided by
366 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
367 // Applying the multiplication to the trimmed arguments gets:
368 // XX11 (3)
369 // X111 (7)
370 // -------
371 // XX11
372 // XX11
373 // XX11
374 // XX11
375 // -------
376 // XXXXX01
377 // Which allows us to infer the 2 LSBs. Since we're multiplying the result
378 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
379 // The proof for this can be described as:
380 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
381 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
382 // umin(countTrailingZeros(C2), C6) +
383 // umin(C5 - umin(countTrailingZeros(C1), C5),
384 // C6 - umin(countTrailingZeros(C2), C6)))) - 1)
385 // %aa = shl i8 %a, C5
386 // %bb = shl i8 %b, C6
387 // %aaa = or i8 %aa, C1
388 // %bbb = or i8 %bb, C2
389 // %mul = mul i8 %aaa, %bbb
390 // %mask = and i8 %mul, C7
391 // =>
392 // %mask = i8 ((C1*C2)&C7)
393 // Where C5, C6 describe the known bits of %a, %b
394 // C1, C2 describe the known bottom bits of %a, %b.
395 // C7 describes the mask of the known bits of the result.
396 APInt Bottom0 = Known.One;
397 APInt Bottom1 = Known2.One;
398
399 // How many times we'd be able to divide each argument by 2 (shr by 1).
400 // This gives us the number of trailing zeros on the multiplication result.
401 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
402 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
403 unsigned TrailZero0 = Known.countMinTrailingZeros();
404 unsigned TrailZero1 = Known2.countMinTrailingZeros();
405 unsigned TrailZ = TrailZero0 + TrailZero1;
406
407 // Figure out the fewest known-bits operand.
408 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
409 TrailBitsKnown1 - TrailZero1);
410 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
411
412 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
413 Bottom1.getLoBits(TrailBitsKnown1);
414
Craig Topperf0aeee02017-05-05 17:36:09 +0000415 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000416 Known.Zero.setHighBits(LeadZ);
Simon Dardis70dbd5f2017-12-09 23:25:57 +0000417 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
418 Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000419
420 // Only make use of no-wrap flags if we failed to compute the sign bit
421 // directly. This matters if the multiplication always overflows, in
422 // which case we prefer to follow the result of the direct computation,
423 // though as the program is invoking undefined behaviour we can choose
424 // whatever we like here.
Craig Topperca48af32017-04-29 16:43:11 +0000425 if (isKnownNonNegative && !Known.isNegative())
426 Known.makeNonNegative();
427 else if (isKnownNegative && !Known.isNonNegative())
428 Known.makeNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000429}
430
Jingyue Wu37fcb592014-06-19 16:50:16 +0000431void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Craig Topperf42b23f2017-04-28 06:28:56 +0000432 KnownBits &Known) {
433 unsigned BitWidth = Known.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000434 unsigned NumRanges = Ranges.getNumOperands() / 2;
435 assert(NumRanges >= 1);
436
Craig Topperf42b23f2017-04-28 06:28:56 +0000437 Known.Zero.setAllBits();
438 Known.One.setAllBits();
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000439
Rafael Espindola53190532012-03-30 15:52:11 +0000440 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000441 ConstantInt *Lower =
442 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
443 ConstantInt *Upper =
444 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000445 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000446
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000447 // The first CommonPrefixBits of all values in Range are equal.
448 unsigned CommonPrefixBits =
449 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
450
451 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Craig Topperf42b23f2017-04-28 06:28:56 +0000452 Known.One &= Range.getUnsignedMax() & Mask;
453 Known.Zero &= ~Range.getUnsignedMax() & Mask;
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000454 }
Rafael Espindola53190532012-03-30 15:52:11 +0000455}
Jay Foad5a29c362014-05-15 12:12:55 +0000456
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000457static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000458 SmallVector<const Value *, 16> WorkSet(1, I);
459 SmallPtrSet<const Value *, 32> Visited;
460 SmallPtrSet<const Value *, 16> EphValues;
461
Hal Finkelf2199b22015-10-23 20:37:08 +0000462 // The instruction defining an assumption's condition itself is always
463 // considered ephemeral to that assumption (even if it has other
464 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000465 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000466 return true;
467
Hal Finkel60db0582014-09-07 18:57:58 +0000468 while (!WorkSet.empty()) {
469 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000470 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000471 continue;
472
473 // If all uses of this value are ephemeral, then so is this value.
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000474 if (llvm::all_of(V->users(), [&](const User *U) {
475 return EphValues.count(U);
476 })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000477 if (V == E)
478 return true;
479
Hal Finkelb03dd4b2017-08-14 17:11:43 +0000480 if (V == I || isSafeToSpeculativelyExecute(V)) {
481 EphValues.insert(V);
482 if (const User *U = dyn_cast<User>(V))
483 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
484 J != JE; ++J)
485 WorkSet.push_back(*J);
486 }
Hal Finkel60db0582014-09-07 18:57:58 +0000487 }
488 }
489
490 return false;
491}
492
493// Is this an intrinsic that cannot be speculated but also cannot trap?
Haicheng Wua4461512017-12-15 14:34:41 +0000494bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
Hal Finkel60db0582014-09-07 18:57:58 +0000495 if (const CallInst *CI = dyn_cast<CallInst>(I))
496 if (Function *F = CI->getCalledFunction())
497 switch (F->getIntrinsicID()) {
498 default: break;
499 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
500 case Intrinsic::assume:
Dan Gohman2c74fe92017-11-08 21:59:51 +0000501 case Intrinsic::sideeffect:
Hal Finkel60db0582014-09-07 18:57:58 +0000502 case Intrinsic::dbg_declare:
503 case Intrinsic::dbg_value:
504 case Intrinsic::invariant_start:
505 case Intrinsic::invariant_end:
506 case Intrinsic::lifetime_start:
507 case Intrinsic::lifetime_end:
508 case Intrinsic::objectsize:
509 case Intrinsic::ptr_annotation:
510 case Intrinsic::var_annotation:
511 return true;
512 }
513
514 return false;
515}
516
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000517bool llvm::isValidAssumeForContext(const Instruction *Inv,
518 const Instruction *CxtI,
519 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000520 // There are two restrictions on the use of an assume:
521 // 1. The assume must dominate the context (or the control flow must
522 // reach the assume whenever it reaches the context).
523 // 2. The context must not be in the assume's set of ephemeral values
524 // (otherwise we will use the assume to prove that the condition
525 // feeding the assume is trivially true, thus causing the removal of
526 // the assume).
527
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000528 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000529 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000530 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000531 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
532 // We don't have a DT, but this trivially dominates.
533 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000534 }
535
Pete Cooper54a02552016-08-12 01:00:15 +0000536 // With or without a DT, the only remaining case we will check is if the
537 // instructions are in the same BB. Give up if that is not the case.
538 if (Inv->getParent() != CxtI->getParent())
539 return false;
540
Vedant Kumard3196742018-02-28 19:08:52 +0000541 // If we have a dom tree, then we now know that the assume doesn't dominate
Pete Cooper54a02552016-08-12 01:00:15 +0000542 // the other instruction. If we don't have a dom tree then we can check if
543 // the assume is first in the BB.
544 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000545 // Search forward from the assume until we reach the context (or the end
546 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000547 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000548 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000549 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000550 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000551 }
552
Pete Cooper54a02552016-08-12 01:00:15 +0000553 // The context comes first, but they're both in the same block. Make sure
554 // there is nothing in between that might interrupt the control flow.
555 for (BasicBlock::const_iterator I =
556 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
557 I != IE; ++I)
558 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
559 return false;
560
561 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000562}
563
Craig Topperb45eabc2017-04-26 16:39:58 +0000564static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
565 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000566 // Use of assumptions is context-sensitive. If we don't have a context, we
567 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000568 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000569 return;
570
Craig Topperb45eabc2017-04-26 16:39:58 +0000571 unsigned BitWidth = Known.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000572
Hal Finkel8a9a7832017-01-11 13:24:24 +0000573 // Note that the patterns below need to be kept in sync with the code
574 // in AssumptionCache::updateAffectedValues.
575
576 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000577 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000578 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000579 CallInst *I = cast<CallInst>(AssumeVH);
580 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
581 "Got assumption for the wrong function!");
582 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000583 continue;
584
Vedant Kumard3196742018-02-28 19:08:52 +0000585 // Warning: This loop can end up being somewhat performance sensitive.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000586 // We're running this loop for once for each value queried resulting in a
587 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000588
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000589 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
590 "must be an assume intrinsic");
591
592 Value *Arg = I->getArgOperand(0);
593
594 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000595 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000596 Known.setAllOnes();
Hal Finkel60db0582014-09-07 18:57:58 +0000597 return;
598 }
Sanjay Patel96669962017-01-17 18:15:49 +0000599 if (match(Arg, m_Not(m_Specific(V))) &&
600 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
601 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000602 Known.setAllZero();
Sanjay Patel96669962017-01-17 18:15:49 +0000603 return;
604 }
Hal Finkel60db0582014-09-07 18:57:58 +0000605
David Majnemer9b609752014-12-12 23:59:29 +0000606 // The remaining tests are all recursive, so bail out if we hit the limit.
607 if (Depth == MaxDepth)
608 continue;
609
Hal Finkel60db0582014-09-07 18:57:58 +0000610 Value *A, *B;
611 auto m_V = m_CombineOr(m_Specific(V),
612 m_CombineOr(m_PtrToInt(m_Specific(V)),
613 m_BitCast(m_Specific(V))));
614
615 CmpInst::Predicate Pred;
Igor Laevskycec8f472017-12-05 12:18:15 +0000616 uint64_t C;
Hal Finkel60db0582014-09-07 18:57:58 +0000617 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000618 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000619 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000620 KnownBits RHSKnown(BitWidth);
621 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
622 Known.Zero |= RHSKnown.Zero;
623 Known.One |= RHSKnown.One;
Hal Finkel60db0582014-09-07 18:57:58 +0000624 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000625 } else if (match(Arg,
626 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000627 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000628 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000629 KnownBits RHSKnown(BitWidth);
630 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
631 KnownBits MaskKnown(BitWidth);
632 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000633
634 // For those bits in the mask that are known to be one, we can propagate
635 // known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000636 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
637 Known.One |= RHSKnown.One & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000638 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000639 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
640 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000641 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000642 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000643 KnownBits RHSKnown(BitWidth);
644 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
645 KnownBits MaskKnown(BitWidth);
646 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000647
648 // For those bits in the mask that are known to be one, we can propagate
649 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000650 Known.Zero |= RHSKnown.One & MaskKnown.One;
651 Known.One |= RHSKnown.Zero & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000652 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000653 } else if (match(Arg,
654 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000655 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000656 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000657 KnownBits RHSKnown(BitWidth);
658 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
659 KnownBits BKnown(BitWidth);
660 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000661
662 // For those bits in B that are known to be zero, we can propagate known
663 // bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000664 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
665 Known.One |= RHSKnown.One & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000666 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000667 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
668 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000669 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000670 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000671 KnownBits RHSKnown(BitWidth);
672 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
673 KnownBits BKnown(BitWidth);
674 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000675
676 // For those bits in B that are known to be zero, we can propagate
677 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000678 Known.Zero |= RHSKnown.One & BKnown.Zero;
679 Known.One |= RHSKnown.Zero & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000680 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000681 } else if (match(Arg,
682 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000683 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000684 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000685 KnownBits RHSKnown(BitWidth);
686 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
687 KnownBits BKnown(BitWidth);
688 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000689
690 // For those bits in B that are known to be zero, we can propagate known
691 // bits from the RHS to V. For those bits in B that are known to be one,
692 // we can propagate inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000693 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
694 Known.One |= RHSKnown.One & BKnown.Zero;
695 Known.Zero |= RHSKnown.One & BKnown.One;
696 Known.One |= RHSKnown.Zero & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000697 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000698 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
699 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000700 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000701 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000702 KnownBits RHSKnown(BitWidth);
703 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
704 KnownBits BKnown(BitWidth);
705 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000706
707 // For those bits in B that are known to be zero, we can propagate
708 // inverted known bits from the RHS to V. For those bits in B that are
709 // known to be one, we can propagate known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000710 Known.Zero |= RHSKnown.One & BKnown.Zero;
711 Known.One |= RHSKnown.Zero & BKnown.Zero;
712 Known.Zero |= RHSKnown.Zero & BKnown.One;
713 Known.One |= RHSKnown.One & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000714 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000715 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
716 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000717 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000718 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
719 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000720 KnownBits RHSKnown(BitWidth);
721 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000722 // For those bits in RHS that are known, we can propagate them to known
723 // bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000724 RHSKnown.Zero.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000725 Known.Zero |= RHSKnown.Zero;
Igor Laevskycec8f472017-12-05 12:18:15 +0000726 RHSKnown.One.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000727 Known.One |= RHSKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000728 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000729 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
730 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000731 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000732 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
733 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000734 KnownBits RHSKnown(BitWidth);
735 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000736 // For those bits in RHS that are known, we can propagate them inverted
737 // to known bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000738 RHSKnown.One.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000739 Known.Zero |= RHSKnown.One;
Igor Laevskycec8f472017-12-05 12:18:15 +0000740 RHSKnown.Zero.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000741 Known.One |= RHSKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000742 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000743 } else if (match(Arg,
Craig Topper7b66ffe2017-06-24 06:24:04 +0000744 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000745 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000746 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000747 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
748 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000749 KnownBits RHSKnown(BitWidth);
750 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000751 // For those bits in RHS that are known, we can propagate them to known
752 // bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000753 Known.Zero |= RHSKnown.Zero << C;
754 Known.One |= RHSKnown.One << C;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000755 // assume(~(v >> c) = a)
Craig Topper7b66ffe2017-06-24 06:24:04 +0000756 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000757 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000758 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000759 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
760 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000761 KnownBits RHSKnown(BitWidth);
762 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000763 // For those bits in RHS that are known, we can propagate them inverted
764 // to known bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000765 Known.Zero |= RHSKnown.One << C;
766 Known.One |= RHSKnown.Zero << C;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000767 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000768 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000769 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000770 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000771 KnownBits RHSKnown(BitWidth);
772 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000773
Craig Topperca48af32017-04-29 16:43:11 +0000774 if (RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000775 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000776 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000777 }
778 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000779 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000780 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000781 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000782 KnownBits RHSKnown(BitWidth);
783 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000784
Craig Topperf0aeee02017-05-05 17:36:09 +0000785 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000786 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000787 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000788 }
789 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000790 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000791 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000792 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000793 KnownBits RHSKnown(BitWidth);
794 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000795
Craig Topperca48af32017-04-29 16:43:11 +0000796 if (RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000797 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000798 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000799 }
800 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000801 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000802 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000803 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000804 KnownBits RHSKnown(BitWidth);
805 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000806
Craig Topperf0aeee02017-05-05 17:36:09 +0000807 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000808 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000809 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000810 }
811 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000812 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000813 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000814 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000815 KnownBits RHSKnown(BitWidth);
816 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000817
818 // Whatever high bits in c are zero are known to be zero.
Craig Topper8df66c62017-05-12 17:20:30 +0000819 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
820 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000821 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000822 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000823 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000824 KnownBits RHSKnown(BitWidth);
825 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000826
Sanjay Patela60aec12018-02-08 14:52:40 +0000827 // If the RHS is known zero, then this assumption must be wrong (nothing
828 // is unsigned less than zero). Signal a conflict and get out of here.
829 if (RHSKnown.isZero()) {
830 Known.Zero.setAllBits();
831 Known.One.setAllBits();
832 break;
833 }
834
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000835 // Whatever high bits in c are zero are known to be zero (if c is a power
836 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000837 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper8df66c62017-05-12 17:20:30 +0000838 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000839 else
Craig Topper8df66c62017-05-12 17:20:30 +0000840 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
Hal Finkel60db0582014-09-07 18:57:58 +0000841 }
842 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000843
844 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000845 // have a logical fallacy. It's possible that the assumption is not reachable,
846 // so this isn't a real bug. On the other hand, the program may have undefined
847 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
848 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topperb45eabc2017-04-26 16:39:58 +0000849 if (Known.Zero.intersects(Known.One)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000850 Known.resetAll();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000851
Vivek Pandya95906582017-10-11 17:12:59 +0000852 if (Q.ORE)
853 Q.ORE->emit([&]() {
854 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
855 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
856 CxtI)
857 << "Detected conflicting code assumptions. Program may "
858 "have undefined behavior, or compiler may have "
859 "internal error.";
860 });
Sanjay Patel25f6d712017-02-01 15:41:32 +0000861 }
Hal Finkel60db0582014-09-07 18:57:58 +0000862}
863
Sanjay Patelb7d12382017-10-16 14:46:37 +0000864/// Compute known bits from a shift operator, including those with a
865/// non-constant shift amount. Known is the output of this function. Known2 is a
866/// pre-allocated temporary with the same bit width as Known. KZF and KOF are
Vedant Kumard3196742018-02-28 19:08:52 +0000867/// operator-specific functions that, given the known-zero or known-one bits
Sanjay Patelb7d12382017-10-16 14:46:37 +0000868/// respectively, and a shift amount, compute the implied known-zero or
869/// known-one bits of the shift operator's result respectively for that shift
870/// amount. The results from calling KZF and KOF are conservatively combined for
871/// all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000872static void computeKnownBitsFromShiftOperator(
Craig Topperb45eabc2017-04-26 16:39:58 +0000873 const Operator *I, KnownBits &Known, KnownBits &Known2,
874 unsigned Depth, const Query &Q,
Sam McCalld0d43e62017-12-04 12:51:49 +0000875 function_ref<APInt(const APInt &, unsigned)> KZF,
876 function_ref<APInt(const APInt &, unsigned)> KOF) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000877 unsigned BitWidth = Known.getBitWidth();
Hal Finkelf2199b22015-10-23 20:37:08 +0000878
879 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
880 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
881
Craig Topperb45eabc2017-04-26 16:39:58 +0000882 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Sam McCalld0d43e62017-12-04 12:51:49 +0000883 Known.Zero = KZF(Known.Zero, ShiftAmt);
884 Known.One = KOF(Known.One, ShiftAmt);
Sanjay Patele272be72017-10-12 17:31:46 +0000885 // If the known bits conflict, this must be an overflowing left shift, so
886 // the shift result is poison. We can return anything we want. Choose 0 for
887 // the best folding opportunity.
888 if (Known.hasConflict())
889 Known.setAllZero();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000890
Hal Finkelf2199b22015-10-23 20:37:08 +0000891 return;
892 }
893
Craig Topperb45eabc2017-04-26 16:39:58 +0000894 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000895
Sanjay Patele272be72017-10-12 17:31:46 +0000896 // If the shift amount could be greater than or equal to the bit-width of the
897 // LHS, the value could be poison, but bail out because the check below is
898 // expensive. TODO: Should we just carry on?
Craig Topperb45eabc2017-04-26 16:39:58 +0000899 if ((~Known.Zero).uge(BitWidth)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000900 Known.resetAll();
Oliver Stannard06204112017-03-14 10:13:17 +0000901 return;
902 }
903
Craig Topperb45eabc2017-04-26 16:39:58 +0000904 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
Hal Finkelf2199b22015-10-23 20:37:08 +0000905 // BitWidth > 64 and any upper bits are known, we'll end up returning the
906 // limit value (which implies all bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000907 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
908 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
Hal Finkelf2199b22015-10-23 20:37:08 +0000909
910 // It would be more-clearly correct to use the two temporaries for this
911 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Craig Topperf0aeee02017-05-05 17:36:09 +0000912 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000913
James Molloy493e57d2015-10-26 14:10:46 +0000914 // If we know the shifter operand is nonzero, we can sometimes infer more
915 // known bits. However this is expensive to compute, so be lazy about it and
916 // only compute it when absolutely necessary.
917 Optional<bool> ShifterOperandIsNonZero;
918
Hal Finkelf2199b22015-10-23 20:37:08 +0000919 // Early exit if we can't constrain any well-defined shift amount.
Craig Topperf93b7b12017-06-14 17:04:59 +0000920 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
921 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
Sanjay Patelb7d12382017-10-16 14:46:37 +0000922 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000923 if (!*ShifterOperandIsNonZero)
924 return;
925 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000926
Craig Topperb45eabc2017-04-26 16:39:58 +0000927 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000928
Craig Topperb45eabc2017-04-26 16:39:58 +0000929 Known.Zero.setAllBits();
930 Known.One.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000931 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
932 // Combine the shifted known input bits only for those shift amounts
933 // compatible with its known constraints.
934 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
935 continue;
936 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
937 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000938 // If we know the shifter is nonzero, we may be able to infer more known
939 // bits. This check is sunk down as far as possible to avoid the expensive
940 // call to isKnownNonZero if the cheaper checks above fail.
941 if (ShiftAmt == 0) {
942 if (!ShifterOperandIsNonZero.hasValue())
943 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000944 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000945 if (*ShifterOperandIsNonZero)
946 continue;
947 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000948
Sam McCalld0d43e62017-12-04 12:51:49 +0000949 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
950 Known.One &= KOF(Known2.One, ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +0000951 }
952
Sanjay Patele272be72017-10-12 17:31:46 +0000953 // If the known bits conflict, the result is poison. Return a 0 and hope the
954 // caller can further optimize that.
955 if (Known.hasConflict())
956 Known.setAllZero();
Hal Finkelf2199b22015-10-23 20:37:08 +0000957}
958
Craig Topperb45eabc2017-04-26 16:39:58 +0000959static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
960 unsigned Depth, const Query &Q) {
961 unsigned BitWidth = Known.getBitWidth();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000962
Craig Topperb45eabc2017-04-26 16:39:58 +0000963 KnownBits Known2(Known);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000964 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000965 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000966 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000967 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +0000968 computeKnownBitsFromRangeMetadata(*MD, Known);
Jay Foad5a29c362014-05-15 12:12:55 +0000969 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000970 case Instruction::And: {
971 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000972 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
973 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000974
Chris Lattner965c7692008-06-02 01:18:21 +0000975 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000976 Known.One &= Known2.One;
Chris Lattner965c7692008-06-02 01:18:21 +0000977 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000978 Known.Zero |= Known2.Zero;
Philip Reames2d858742015-11-10 18:46:14 +0000979
980 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
981 // here we handle the more general case of adding any odd number by
982 // matching the form add(x, add(x, y)) where y is odd.
983 // TODO: This could be generalized to clearing any bit set in y where the
984 // following bit is known to be unset in y.
Roman Lebedev6959b8e2018-04-27 21:23:20 +0000985 Value *X = nullptr, *Y = nullptr;
Craig Topperb45eabc2017-04-26 16:39:58 +0000986 if (!Known.Zero[0] && !Known.One[0] &&
Roman Lebedev6959b8e2018-04-27 21:23:20 +0000987 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000988 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000989 computeKnownBits(Y, Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000990 if (Known2.countMinTrailingOnes() > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +0000991 Known.Zero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +0000992 }
Jay Foad5a29c362014-05-15 12:12:55 +0000993 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000994 }
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000995 case Instruction::Or:
Craig Topperb45eabc2017-04-26 16:39:58 +0000996 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
997 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000998
Chris Lattner965c7692008-06-02 01:18:21 +0000999 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001000 Known.Zero &= Known2.Zero;
Chris Lattner965c7692008-06-02 01:18:21 +00001001 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001002 Known.One |= Known2.One;
Jay Foad5a29c362014-05-15 12:12:55 +00001003 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001004 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001005 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1006 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001007
Chris Lattner965c7692008-06-02 01:18:21 +00001008 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001009 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
Chris Lattner965c7692008-06-02 01:18:21 +00001010 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001011 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1012 Known.Zero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +00001013 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001014 }
1015 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +00001016 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperb45eabc2017-04-26 16:39:58 +00001017 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1018 Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001019 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001020 }
1021 case Instruction::UDiv: {
1022 // For the purposes of computing leading zeros we can conservatively
1023 // treat a udiv as a logical right shift by the power of 2 known to
1024 // be less than the denominator.
Craig Topperb45eabc2017-04-26 16:39:58 +00001025 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001026 unsigned LeadZ = Known2.countMinLeadingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001027
Craig Topperf0aeee02017-05-05 17:36:09 +00001028 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001029 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001030 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1031 if (RHSMaxLeadingZeros != BitWidth)
1032 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Chris Lattner965c7692008-06-02 01:18:21 +00001033
Craig Topperb45eabc2017-04-26 16:39:58 +00001034 Known.Zero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +00001035 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001036 }
David Majnemera19d0f22016-08-06 08:16:00 +00001037 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +00001038 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +00001039 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1040 if (SelectPatternResult::isMinOrMax(SPF)) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001041 computeKnownBits(RHS, Known, Depth + 1, Q);
1042 computeKnownBits(LHS, Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +00001043 } else {
Craig Topperb45eabc2017-04-26 16:39:58 +00001044 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1045 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +00001046 }
1047
1048 unsigned MaxHighOnes = 0;
1049 unsigned MaxHighZeros = 0;
1050 if (SPF == SPF_SMAX) {
1051 // If both sides are negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +00001052 if (Known.isNegative() && Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001053 // We can derive a lower bound on the result by taking the max of the
1054 // leading one bits.
Craig Topper8df66c62017-05-12 17:20:30 +00001055 MaxHighOnes =
1056 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001057 // If either side is non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +00001058 else if (Known.isNonNegative() || Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001059 MaxHighZeros = 1;
1060 } else if (SPF == SPF_SMIN) {
1061 // If both sides are non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +00001062 if (Known.isNonNegative() && Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001063 // We can derive an upper bound on the result by taking the max of the
1064 // leading zero bits.
Craig Topper8df66c62017-05-12 17:20:30 +00001065 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1066 Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001067 // If either side is negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +00001068 else if (Known.isNegative() || Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001069 MaxHighOnes = 1;
1070 } else if (SPF == SPF_UMAX) {
1071 // We can derive a lower bound on the result by taking the max of the
1072 // leading one bits.
1073 MaxHighOnes =
Craig Topper8df66c62017-05-12 17:20:30 +00001074 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001075 } else if (SPF == SPF_UMIN) {
1076 // We can derive an upper bound on the result by taking the max of the
1077 // leading zero bits.
1078 MaxHighZeros =
Craig Topper8df66c62017-05-12 17:20:30 +00001079 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001080 }
1081
Chris Lattner965c7692008-06-02 01:18:21 +00001082 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001083 Known.One &= Known2.One;
1084 Known.Zero &= Known2.Zero;
David Majnemera19d0f22016-08-06 08:16:00 +00001085 if (MaxHighOnes > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001086 Known.One.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001087 if (MaxHighZeros > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001088 Known.Zero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001089 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001090 }
Chris Lattner965c7692008-06-02 01:18:21 +00001091 case Instruction::FPTrunc:
1092 case Instruction::FPExt:
1093 case Instruction::FPToUI:
1094 case Instruction::FPToSI:
1095 case Instruction::SIToFP:
1096 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001097 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001098 case Instruction::PtrToInt:
1099 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001100 // Fall through and handle them the same as zext/trunc.
1101 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001102 case Instruction::ZExt:
1103 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001104 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001105
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001106 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001107 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1108 // which fall through here.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001109 Type *ScalarTy = SrcTy->getScalarType();
1110 SrcBitWidth = ScalarTy->isPointerTy() ?
1111 Q.DL.getIndexTypeSizeInBits(ScalarTy) :
1112 Q.DL.getTypeSizeInBits(ScalarTy);
Nadav Rotem15198e92012-10-26 17:17:05 +00001113
1114 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Craig Topperd938fd12017-05-03 22:07:25 +00001115 Known = Known.zextOrTrunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001116 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Craig Topperd938fd12017-05-03 22:07:25 +00001117 Known = Known.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001118 // Any top bits are known to be zero.
1119 if (BitWidth > SrcBitWidth)
Craig Topperb45eabc2017-04-26 16:39:58 +00001120 Known.Zero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001121 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001122 }
1123 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001124 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001125 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001126 // TODO: For now, not handling conversions like:
1127 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001128 !I->getType()->isVectorTy()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001129 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001130 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001131 }
1132 break;
1133 }
1134 case Instruction::SExt: {
1135 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001136 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001137
Craig Topperd938fd12017-05-03 22:07:25 +00001138 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001139 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001140 // If the sign bit of the input is known set or clear, then we know the
1141 // top bits of the result.
Craig Topperd938fd12017-05-03 22:07:25 +00001142 Known = Known.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001143 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001144 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001145 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001146 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001147 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Sam McCalld0d43e62017-12-04 12:51:49 +00001148 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1149 APInt KZResult = KnownZero << ShiftAmt;
1150 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001151 // If this shift has "nsw" keyword, then the result is either a poison
1152 // value or has the same sign bit as the first operand.
Sam McCalld0d43e62017-12-04 12:51:49 +00001153 if (NSW && KnownZero.isSignBitSet())
1154 KZResult.setSignBit();
1155 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001156 };
1157
Sam McCalld0d43e62017-12-04 12:51:49 +00001158 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1159 APInt KOResult = KnownOne << ShiftAmt;
1160 if (NSW && KnownOne.isSignBitSet())
1161 KOResult.setSignBit();
1162 return KOResult;
1163 };
1164
1165 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001166 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001167 }
1168 case Instruction::LShr: {
Sanjay Patelb7d12382017-10-16 14:46:37 +00001169 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Sam McCalld0d43e62017-12-04 12:51:49 +00001170 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1171 APInt KZResult = KnownZero.lshr(ShiftAmt);
1172 // High bits known zero.
1173 KZResult.setHighBits(ShiftAmt);
1174 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001175 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001176
Sam McCalld0d43e62017-12-04 12:51:49 +00001177 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1178 return KnownOne.lshr(ShiftAmt);
1179 };
1180
1181 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001182 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001183 }
1184 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001185 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Sam McCalld0d43e62017-12-04 12:51:49 +00001186 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1187 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001188 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001189
Sam McCalld0d43e62017-12-04 12:51:49 +00001190 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1191 return KnownOne.ashr(ShiftAmt);
1192 };
1193
1194 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001195 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001196 }
Chris Lattner965c7692008-06-02 01:18:21 +00001197 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001198 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001199 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001200 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001201 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001202 }
Chris Lattner965c7692008-06-02 01:18:21 +00001203 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001204 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001205 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001206 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001207 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001208 }
1209 case Instruction::SRem:
1210 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001211 APInt RA = Rem->getValue().abs();
1212 if (RA.isPowerOf2()) {
1213 APInt LowBits = RA - 1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001214 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001215
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001216 // The low bits of the first operand are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +00001217 Known.Zero = Known2.Zero & LowBits;
1218 Known.One = Known2.One & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001219
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001220 // If the first operand is non-negative or has all low bits zero, then
1221 // the upper bits are all zero.
Craig Topperca48af32017-04-29 16:43:11 +00001222 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +00001223 Known.Zero |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001224
1225 // If the first operand is negative and not all low bits are zero, then
1226 // the upper bits are all one.
Craig Topperca48af32017-04-29 16:43:11 +00001227 if (Known2.isNegative() && LowBits.intersects(Known2.One))
Craig Topperb45eabc2017-04-26 16:39:58 +00001228 Known.One |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001229
Craig Topperb45eabc2017-04-26 16:39:58 +00001230 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001231 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001232 }
1233 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001234
1235 // The sign bit is the LHS's sign bit, except when the result of the
1236 // remainder is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +00001237 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topperda886c62017-04-16 21:46:12 +00001238 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +00001239 if (Known2.isNonNegative())
1240 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +00001241
Chris Lattner965c7692008-06-02 01:18:21 +00001242 break;
1243 case Instruction::URem: {
1244 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001245 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001246 if (RA.isPowerOf2()) {
1247 APInt LowBits = (RA - 1);
Craig Topperb45eabc2017-04-26 16:39:58 +00001248 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1249 Known.Zero |= ~LowBits;
1250 Known.One &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001251 break;
1252 }
1253 }
1254
1255 // Since the result is less than or equal to either operand, any leading
1256 // zero bits in either operand must also exist in the result.
Craig Topperb45eabc2017-04-26 16:39:58 +00001257 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1258 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001259
Craig Topper8df66c62017-05-12 17:20:30 +00001260 unsigned Leaders =
1261 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topperf0aeee02017-05-05 17:36:09 +00001262 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001263 Known.Zero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001264 break;
1265 }
1266
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001267 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001268 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001269 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001270 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001271 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001272
Chris Lattner965c7692008-06-02 01:18:21 +00001273 if (Align > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001274 Known.Zero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001275 break;
1276 }
1277 case Instruction::GetElementPtr: {
1278 // Analyze all of the subscripts of this getelementptr instruction
1279 // to determine if we can prove known low zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001280 KnownBits LocalKnown(BitWidth);
1281 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001282 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001283
1284 gep_type_iterator GTI = gep_type_begin(I);
1285 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1286 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001287 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001288 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001289
1290 // Handle case when index is vector zeroinitializer
1291 Constant *CIndex = cast<Constant>(Index);
1292 if (CIndex->isZeroValue())
1293 continue;
1294
1295 if (CIndex->getType()->isVectorTy())
1296 Index = CIndex->getSplatValue();
1297
Chris Lattner965c7692008-06-02 01:18:21 +00001298 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001299 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001300 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001301 TrailZ = std::min<unsigned>(TrailZ,
1302 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001303 } else {
1304 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001305 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001306 if (!IndexedTy->isSized()) {
1307 TrailZ = 0;
1308 break;
1309 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001310 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001311 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Craig Topperb45eabc2017-04-26 16:39:58 +00001312 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1313 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001314 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001315 unsigned(countTrailingZeros(TypeSize) +
Craig Topper8df66c62017-05-12 17:20:30 +00001316 LocalKnown.countMinTrailingZeros()));
Chris Lattner965c7692008-06-02 01:18:21 +00001317 }
1318 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001319
Craig Topperb45eabc2017-04-26 16:39:58 +00001320 Known.Zero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001321 break;
1322 }
1323 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001324 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001325 // Handle the case of a simple two-predecessor recurrence PHI.
1326 // There's a lot more that could theoretically be done here, but
1327 // this is sufficient to catch some interesting cases.
1328 if (P->getNumIncomingValues() == 2) {
1329 for (unsigned i = 0; i != 2; ++i) {
1330 Value *L = P->getIncomingValue(i);
1331 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001332 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001333 if (!LU)
1334 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001335 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001336 // Check for operations that have the property that if
1337 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001338 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001339 if (Opcode == Instruction::Add ||
1340 Opcode == Instruction::Sub ||
1341 Opcode == Instruction::And ||
1342 Opcode == Instruction::Or ||
1343 Opcode == Instruction::Mul) {
1344 Value *LL = LU->getOperand(0);
1345 Value *LR = LU->getOperand(1);
1346 // Find a recurrence.
1347 if (LL == I)
1348 L = LR;
1349 else if (LR == I)
1350 L = LL;
1351 else
1352 break;
1353 // Ok, we have a PHI of the form L op= R. Check for low
1354 // zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001355 computeKnownBits(R, Known2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001356
1357 // We need to take the minimum number of known bits
Craig Topperb45eabc2017-04-26 16:39:58 +00001358 KnownBits Known3(Known);
1359 computeKnownBits(L, Known3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001360
Craig Topper8df66c62017-05-12 17:20:30 +00001361 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1362 Known3.countMinTrailingZeros()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001363
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001364 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1365 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1366 // If initial value of recurrence is nonnegative, and we are adding
1367 // a nonnegative number with nsw, the result can only be nonnegative
1368 // or poison value regardless of the number of times we execute the
1369 // add in phi recurrence. If initial value is negative and we are
1370 // adding a negative number with nsw, the result can only be
1371 // negative or poison value. Similar arguments apply to sub and mul.
1372 //
1373 // (add non-negative, non-negative) --> non-negative
1374 // (add negative, negative) --> negative
1375 if (Opcode == Instruction::Add) {
Craig Topperca48af32017-04-29 16:43:11 +00001376 if (Known2.isNonNegative() && Known3.isNonNegative())
1377 Known.makeNonNegative();
1378 else if (Known2.isNegative() && Known3.isNegative())
1379 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001380 }
1381
1382 // (sub nsw non-negative, negative) --> non-negative
1383 // (sub nsw negative, non-negative) --> negative
1384 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperca48af32017-04-29 16:43:11 +00001385 if (Known2.isNonNegative() && Known3.isNegative())
1386 Known.makeNonNegative();
1387 else if (Known2.isNegative() && Known3.isNonNegative())
1388 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001389 }
1390
1391 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperca48af32017-04-29 16:43:11 +00001392 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1393 Known3.isNonNegative())
1394 Known.makeNonNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001395 }
1396
Chris Lattner965c7692008-06-02 01:18:21 +00001397 break;
1398 }
1399 }
1400 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001401
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001402 // Unreachable blocks may have zero-operand PHI nodes.
1403 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001404 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001405
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001406 // Otherwise take the unions of the known bit sets of the operands,
1407 // taking conservative care to avoid excessive recursion.
Craig Topperb45eabc2017-04-26 16:39:58 +00001408 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001409 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001410 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001411 break;
1412
Craig Topperb45eabc2017-04-26 16:39:58 +00001413 Known.Zero.setAllBits();
1414 Known.One.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001415 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001416 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001417 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001418
Craig Topperb45eabc2017-04-26 16:39:58 +00001419 Known2 = KnownBits(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001420 // Recurse, but cap the recursion to one level, because we don't
1421 // want to waste time spinning around in loops.
Craig Topperb45eabc2017-04-26 16:39:58 +00001422 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1423 Known.Zero &= Known2.Zero;
1424 Known.One &= Known2.One;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001425 // If all bits have been ruled out, there's no need to check
1426 // more operands.
Craig Topperb45eabc2017-04-26 16:39:58 +00001427 if (!Known.Zero && !Known.One)
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001428 break;
1429 }
1430 }
Chris Lattner965c7692008-06-02 01:18:21 +00001431 break;
1432 }
1433 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001434 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001435 // If range metadata is attached to this call, set known bits from that,
1436 // and then intersect with known bits based on other properties of the
1437 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001438 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +00001439 computeKnownBitsFromRangeMetadata(*MD, Known);
Pete Cooper35b00d52016-08-13 01:05:32 +00001440 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001441 computeKnownBits(RV, Known2, Depth + 1, Q);
1442 Known.Zero |= Known2.Zero;
1443 Known.One |= Known2.One;
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001444 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001445 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001446 switch (II->getIntrinsicID()) {
1447 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001448 case Intrinsic::bitreverse:
Craig Topperb45eabc2017-04-26 16:39:58 +00001449 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1450 Known.Zero |= Known2.Zero.reverseBits();
1451 Known.One |= Known2.One.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001452 break;
Philip Reames675418e2015-10-06 20:20:45 +00001453 case Intrinsic::bswap:
Craig Topperb45eabc2017-04-26 16:39:58 +00001454 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1455 Known.Zero |= Known2.Zero.byteSwap();
1456 Known.One |= Known2.One.byteSwap();
Philip Reames675418e2015-10-06 20:20:45 +00001457 break;
Craig Topper868813f2017-05-08 17:22:34 +00001458 case Intrinsic::ctlz: {
1459 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1460 // If we have a known 1, its position is our upper bound.
1461 unsigned PossibleLZ = Known2.One.countLeadingZeros();
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001462 // If this call is undefined for 0, the result will be less than 2^n.
1463 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
Craig Topper868813f2017-05-08 17:22:34 +00001464 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1465 unsigned LowBits = Log2_32(PossibleLZ)+1;
1466 Known.Zero.setBitsFrom(LowBits);
1467 break;
1468 }
1469 case Intrinsic::cttz: {
1470 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1471 // If we have a known 1, its position is our upper bound.
1472 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1473 // If this call is undefined for 0, the result will be less than 2^n.
1474 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1475 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1476 unsigned LowBits = Log2_32(PossibleTZ)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001477 Known.Zero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001478 break;
1479 }
1480 case Intrinsic::ctpop: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001481 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001482 // We can bound the space the count needs. Also, bits known to be zero
1483 // can't contribute to the population.
Craig Topper8df66c62017-05-12 17:20:30 +00001484 unsigned BitsPossiblySet = Known2.countMaxPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001485 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001486 Known.Zero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001487 // TODO: we could bound KnownOne using the lower bound on the number
1488 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001489 break;
1490 }
Chad Rosierb3628842011-05-26 23:13:19 +00001491 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +00001492 Known.Zero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001493 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001494 }
1495 }
1496 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001497 case Instruction::ExtractElement:
1498 // Look through extract element. At the moment we keep this simple and skip
1499 // tracking the specific element. But at least we might find information
1500 // valid for all elements of the vector (for example if vector is sign
1501 // extended, shifted, etc).
Craig Topperb45eabc2017-04-26 16:39:58 +00001502 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Bjorn Pettersson39616032016-10-06 09:56:21 +00001503 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001504 case Instruction::ExtractValue:
1505 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001506 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001507 if (EVI->getNumIndices() != 1) break;
1508 if (EVI->getIndices()[0] == 0) {
1509 switch (II->getIntrinsicID()) {
1510 default: break;
1511 case Intrinsic::uadd_with_overflow:
1512 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001513 computeKnownBitsAddSub(true, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001514 II->getArgOperand(1), false, Known, Known2,
1515 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001516 break;
1517 case Intrinsic::usub_with_overflow:
1518 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001519 computeKnownBitsAddSub(false, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001520 II->getArgOperand(1), false, Known, Known2,
1521 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001522 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001523 case Intrinsic::umul_with_overflow:
1524 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001525 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Craig Topperb45eabc2017-04-26 16:39:58 +00001526 Known, Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001527 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001528 }
1529 }
1530 }
Chris Lattner965c7692008-06-02 01:18:21 +00001531 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001532}
1533
1534/// Determine which bits of V are known to be either zero or one and return
Craig Topper6e11a052017-05-08 16:22:48 +00001535/// them.
1536KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1537 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1538 computeKnownBits(V, Known, Depth, Q);
1539 return Known;
1540}
1541
1542/// Determine which bits of V are known to be either zero or one and return
Craig Topperb45eabc2017-04-26 16:39:58 +00001543/// them in the Known bit set.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001544///
1545/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1546/// we cannot optimize based on the assumption that it is zero without changing
1547/// it to be an explicit zero. If we don't change it to zero, other code could
1548/// optimized based on the contradictory assumption that it is non-zero.
1549/// Because instcombine aggressively folds operations with undef args anyway,
1550/// this won't lose us code quality.
1551///
1552/// This function is defined on values with integer type, values with pointer
1553/// type, and vectors of integers. In the case
1554/// where V is a vector, known zero, and known one values are the
1555/// same width as the vector element, and the bit is set only if it is true
1556/// for all of the elements in the vector.
Craig Topperb45eabc2017-04-26 16:39:58 +00001557void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1558 const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001559 assert(V && "No Value?");
1560 assert(Depth <= MaxDepth && "Limit Search Depth");
Craig Topperb45eabc2017-04-26 16:39:58 +00001561 unsigned BitWidth = Known.getBitWidth();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001562
Craig Topperfde47232017-07-09 07:04:03 +00001563 assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
Craig Topper95d23472017-07-09 07:04:00 +00001564 V->getType()->isPtrOrPtrVectorTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001565 "Not integer or pointer type!");
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001566
1567 Type *ScalarTy = V->getType()->getScalarType();
1568 unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
1569 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
1570 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001571 (void)BitWidth;
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001572 (void)ExpectedWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001573
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001574 const APInt *C;
1575 if (match(V, m_APInt(C))) {
1576 // We know all of the bits for a scalar constant or a splat vector constant!
Craig Topperb45eabc2017-04-26 16:39:58 +00001577 Known.One = *C;
1578 Known.Zero = ~Known.One;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001579 return;
1580 }
1581 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001582 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001583 Known.setAllZero();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001584 return;
1585 }
1586 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001587 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001588 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001589 // We know that CDS must be a vector of integers. Take the intersection of
1590 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001591 Known.Zero.setAllBits(); Known.One.setAllBits();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001592 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Craig Topperb98ee582017-10-21 16:35:39 +00001593 APInt Elt = CDS->getElementAsAPInt(i);
Craig Topperb45eabc2017-04-26 16:39:58 +00001594 Known.Zero &= ~Elt;
1595 Known.One &= Elt;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001596 }
1597 return;
1598 }
1599
Pete Cooper35b00d52016-08-13 01:05:32 +00001600 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001601 // We know that CV must be a vector of integers. Take the intersection of
1602 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001603 Known.Zero.setAllBits(); Known.One.setAllBits();
David Majnemer3918cdd2016-05-04 06:13:33 +00001604 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1605 Constant *Element = CV->getAggregateElement(i);
1606 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1607 if (!ElementCI) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001608 Known.resetAll();
David Majnemer3918cdd2016-05-04 06:13:33 +00001609 return;
1610 }
Craig Topperb98ee582017-10-21 16:35:39 +00001611 const APInt &Elt = ElementCI->getValue();
Craig Topperb45eabc2017-04-26 16:39:58 +00001612 Known.Zero &= ~Elt;
1613 Known.One &= Elt;
David Majnemer3918cdd2016-05-04 06:13:33 +00001614 }
1615 return;
1616 }
1617
Jingyue Wu12b0c282015-06-15 05:46:29 +00001618 // Start out not knowing anything.
Craig Topperf0aeee02017-05-05 17:36:09 +00001619 Known.resetAll();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001620
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001621 // We can't imply anything about undefs.
1622 if (isa<UndefValue>(V))
1623 return;
1624
1625 // There's no point in looking through other users of ConstantData for
1626 // assumptions. Confirm that we've handled them all.
1627 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1628
Jingyue Wu12b0c282015-06-15 05:46:29 +00001629 // Limit search depth.
1630 // All recursive calls that increase depth must come after this.
1631 if (Depth == MaxDepth)
1632 return;
1633
1634 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1635 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001636 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001637 if (!GA->isInterposable())
Craig Topperb45eabc2017-04-26 16:39:58 +00001638 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001639 return;
1640 }
1641
Pete Cooper35b00d52016-08-13 01:05:32 +00001642 if (const Operator *I = dyn_cast<Operator>(V))
Craig Topperb45eabc2017-04-26 16:39:58 +00001643 computeKnownBitsFromOperator(I, Known, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001644
Craig Topperb45eabc2017-04-26 16:39:58 +00001645 // Aligned pointers have trailing zeros - refine Known.Zero set
Artur Pilipenko029d8532015-09-30 11:55:45 +00001646 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001647 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001648 if (Align)
Craig Topperb45eabc2017-04-26 16:39:58 +00001649 Known.Zero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001650 }
1651
Craig Topperb45eabc2017-04-26 16:39:58 +00001652 // computeKnownBitsFromAssume strictly refines Known.
1653 // Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001654
1655 // Check whether a nearby assume intrinsic can determine some known bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001656 computeKnownBitsFromAssume(V, Known, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001657
Craig Topperb45eabc2017-04-26 16:39:58 +00001658 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001659}
1660
Sanjay Patelaee84212014-11-04 16:27:42 +00001661/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001662/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001663/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001664/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001665bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001666 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00001667 assert(Depth <= MaxDepth && "Limit Search Depth");
1668
Simon Pilgrim9f2ae7e2018-02-06 18:39:23 +00001669 // Attempt to match against constants.
1670 if (OrZero && match(V, m_Power2OrZero()))
1671 return true;
1672 if (match(V, m_Power2()))
1673 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001674
1675 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1676 // it is shifted off the end then the result is undefined.
1677 if (match(V, m_Shl(m_One(), m_Value())))
1678 return true;
1679
Craig Topperbcfd2d12017-04-20 16:56:25 +00001680 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1681 // the bottom. If it is shifted off the bottom then the result is undefined.
1682 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001683 return true;
1684
1685 // The remaining tests are all recursive, so bail out if we hit the limit.
1686 if (Depth++ == MaxDepth)
1687 return false;
1688
Craig Topper9f008862014-04-15 04:59:12 +00001689 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001690 // A shift left or a logical shift right of a power of two is a power of two
1691 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001692 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001693 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001694 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001695
Pete Cooper35b00d52016-08-13 01:05:32 +00001696 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001697 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001698
Pete Cooper35b00d52016-08-13 01:05:32 +00001699 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001700 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1701 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001702
Duncan Sandsba286d72011-10-26 20:55:21 +00001703 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1704 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001705 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1706 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001707 return true;
1708 // X & (-X) is always a power of two or zero.
1709 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1710 return true;
1711 return false;
1712 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001713
David Majnemerb7d54092013-07-30 21:01:36 +00001714 // Adding a power-of-two or zero to the same power-of-two or zero yields
1715 // either the original power-of-two, a larger power-of-two or zero.
1716 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001717 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001718 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1719 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1720 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001721 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001722 return true;
1723 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1724 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001725 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001726 return true;
1727
1728 unsigned BitWidth = V->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00001729 KnownBits LHSBits(BitWidth);
1730 computeKnownBits(X, LHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001731
Craig Topperb45eabc2017-04-26 16:39:58 +00001732 KnownBits RHSBits(BitWidth);
1733 computeKnownBits(Y, RHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001734 // If i8 V is a power of two or zero:
1735 // ZeroBits: 1 1 1 0 1 1 1 1
1736 // ~ZeroBits: 0 0 0 1 0 0 0 0
Craig Topperb45eabc2017-04-26 16:39:58 +00001737 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
David Majnemerb7d54092013-07-30 21:01:36 +00001738 // If OrZero isn't set, we cannot give back a zero result.
1739 // Make sure either the LHS or RHS has a bit set.
Craig Topperb45eabc2017-04-26 16:39:58 +00001740 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
David Majnemerb7d54092013-07-30 21:01:36 +00001741 return true;
1742 }
1743 }
David Majnemerbeab5672013-05-18 19:30:37 +00001744
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001745 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001746 // is a power of two only if the first operand is a power of two and not
1747 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001748 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1749 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001750 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001751 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001752 }
1753
Duncan Sandsd3951082011-01-25 09:38:29 +00001754 return false;
1755}
1756
Chandler Carruth80d3e562012-12-07 02:08:58 +00001757/// \brief Test whether a GEP's result is known to be non-null.
1758///
1759/// Uses properties inherent in a GEP to try to determine whether it is known
1760/// to be non-null.
1761///
1762/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001763static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001764 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001765 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1766 return false;
1767
1768 // FIXME: Support vector-GEPs.
1769 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1770
1771 // If the base pointer is non-null, we cannot walk to a null address with an
1772 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001773 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001774 return true;
1775
Chandler Carruth80d3e562012-12-07 02:08:58 +00001776 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1777 // If so, then the GEP cannot produce a null pointer, as doing so would
1778 // inherently violate the inbounds contract within address space zero.
1779 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1780 GTI != GTE; ++GTI) {
1781 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001782 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001783 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1784 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001785 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001786 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1787 if (ElementOffset > 0)
1788 return true;
1789 continue;
1790 }
1791
1792 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001793 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001794 continue;
1795
1796 // Fast path the constant operand case both for efficiency and so we don't
1797 // increment Depth when just zipping down an all-constant GEP.
1798 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1799 if (!OpC->isZero())
1800 return true;
1801 continue;
1802 }
1803
1804 // We post-increment Depth here because while isKnownNonZero increments it
1805 // as well, when we pop back up that increment won't persist. We don't want
1806 // to recurse 10k times just because we have 10k GEP operands. We don't
1807 // bail completely out because we want to handle constant GEPs regardless
1808 // of depth.
1809 if (Depth++ >= MaxDepth)
1810 continue;
1811
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001812 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001813 return true;
1814 }
1815
1816 return false;
1817}
1818
Nuno Lopes404f1062017-09-09 18:23:11 +00001819static bool isKnownNonNullFromDominatingCondition(const Value *V,
1820 const Instruction *CtxI,
1821 const DominatorTree *DT) {
1822 assert(V->getType()->isPointerTy() && "V must be pointer type");
1823 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1824
1825 if (!CtxI || !DT)
1826 return false;
1827
1828 unsigned NumUsesExplored = 0;
1829 for (auto *U : V->users()) {
1830 // Avoid massive lists
1831 if (NumUsesExplored >= DomConditionsMaxUses)
1832 break;
1833 NumUsesExplored++;
1834
1835 // If the value is used as an argument to a call or invoke, then argument
1836 // attributes may provide an answer about null-ness.
1837 if (auto CS = ImmutableCallSite(U))
1838 if (auto *CalledFunc = CS.getCalledFunction())
1839 for (const Argument &Arg : CalledFunc->args())
1840 if (CS.getArgOperand(Arg.getArgNo()) == V &&
1841 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1842 return true;
1843
1844 // Consider only compare instructions uniquely controlling a branch
1845 CmpInst::Predicate Pred;
1846 if (!match(const_cast<User *>(U),
1847 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1848 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1849 continue;
1850
1851 for (auto *CmpU : U->users()) {
1852 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
1853 assert(BI->isConditional() && "uses a comparison!");
1854
1855 BasicBlock *NonNullSuccessor =
1856 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1857 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1858 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1859 return true;
1860 } else if (Pred == ICmpInst::ICMP_NE &&
1861 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
1862 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
1863 return true;
1864 }
1865 }
1866 }
1867
1868 return false;
1869}
1870
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001871/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1872/// ensure that the value it's attached to is never Value? 'RangeType' is
1873/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001874static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001875 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1876 assert(NumRanges >= 1);
1877 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001878 ConstantInt *Lower =
1879 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1880 ConstantInt *Upper =
1881 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001882 ConstantRange Range(Lower->getValue(), Upper->getValue());
1883 if (Range.contains(Value))
1884 return false;
1885 }
1886 return true;
1887}
1888
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001889/// Return true if the given value is known to be non-zero when defined. For
1890/// vectors, return true if every element is known to be non-zero when
1891/// defined. For pointers, if the context instruction and dominator tree are
1892/// specified, perform context-sensitive analysis and return true if the
1893/// pointer couldn't possibly be null at the specified instruction.
1894/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001895bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001896 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001897 if (C->isNullValue())
1898 return false;
1899 if (isa<ConstantInt>(C))
1900 // Must be non-zero due to null test above.
1901 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001902
1903 // For constant vectors, check that all elements are undefined or known
1904 // non-zero to determine that the whole vector is known non-zero.
1905 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1906 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1907 Constant *Elt = C->getAggregateElement(i);
1908 if (!Elt || Elt->isNullValue())
1909 return false;
1910 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1911 return false;
1912 }
1913 return true;
1914 }
1915
Nuno Lopes404f1062017-09-09 18:23:11 +00001916 // A global variable in address space 0 is non null unless extern weak
1917 // or an absolute symbol reference. Other address spaces may have null as a
1918 // valid address for a global, so we can't assume anything.
1919 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1920 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1921 GV->getType()->getAddressSpace() == 0)
1922 return true;
1923 } else
1924 return false;
Duncan Sandsd3951082011-01-25 09:38:29 +00001925 }
1926
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001927 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001928 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001929 // If the possible ranges don't contain zero, then the value is
1930 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001931 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001932 const APInt ZeroValue(Ty->getBitWidth(), 0);
1933 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1934 return true;
1935 }
1936 }
1937 }
1938
Nuno Lopes404f1062017-09-09 18:23:11 +00001939 // Check for pointer simplifications.
1940 if (V->getType()->isPointerTy()) {
1941 // Alloca never returns null, malloc might.
1942 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
1943 return true;
1944
1945 // A byval, inalloca, or nonnull argument is never null.
1946 if (const Argument *A = dyn_cast<Argument>(V))
1947 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
1948 return true;
1949
1950 // A Load tagged with nonnull metadata is never null.
1951 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1952 if (LI->getMetadata(LLVMContext::MD_nonnull))
1953 return true;
1954
1955 if (auto CS = ImmutableCallSite(V))
1956 if (CS.isReturnNonNull())
1957 return true;
1958 }
1959
Duncan Sandsd3951082011-01-25 09:38:29 +00001960 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001961 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001962 return false;
1963
Nuno Lopes404f1062017-09-09 18:23:11 +00001964 // Check for recursive pointer simplifications.
Chandler Carruth80d3e562012-12-07 02:08:58 +00001965 if (V->getType()->isPointerTy()) {
Nuno Lopes404f1062017-09-09 18:23:11 +00001966 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001967 return true;
Nuno Lopes404f1062017-09-09 18:23:11 +00001968
Pete Cooper35b00d52016-08-13 01:05:32 +00001969 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001970 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001971 return true;
1972 }
1973
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001974 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001975
1976 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001977 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001978 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001979 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001980
1981 // ext X != 0 if X != 0.
1982 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001983 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001984
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001985 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001986 // if the lowest bit is shifted off the end.
Craig Topper6b3940a2017-05-03 22:25:19 +00001987 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001988 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001989 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001990 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001991 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001992
Craig Topperb45eabc2017-04-26 16:39:58 +00001993 KnownBits Known(BitWidth);
1994 computeKnownBits(X, Known, Depth, Q);
1995 if (Known.One[0])
Duncan Sandsd3951082011-01-25 09:38:29 +00001996 return true;
1997 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001998 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001999 // defined if the sign bit is shifted off the end.
2000 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002001 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002002 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002003 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002004 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002005
Craig Topper6e11a052017-05-08 16:22:48 +00002006 KnownBits Known = computeKnownBits(X, Depth, Q);
2007 if (Known.isNegative())
Duncan Sandsd3951082011-01-25 09:38:29 +00002008 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00002009
2010 // If the shifter operand is a constant, and all of the bits shifted
2011 // out are known to be zero, and X is known non-zero then at least one
2012 // non-zero bit must remain.
2013 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
James Molloyb6be1eb2015-09-24 16:06:32 +00002014 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2015 // Is there a known one in the portion not shifted out?
Craig Topper8df66c62017-05-12 17:20:30 +00002016 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
James Molloyb6be1eb2015-09-24 16:06:32 +00002017 return true;
2018 // Are all the bits to be shifted out known zero?
NAKAMURA Takumi76bab1f2017-07-11 02:31:51 +00002019 if (Known.countMinTrailingZeros() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002020 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00002021 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002022 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002023 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00002024 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002025 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002026 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002027 // X + Y.
2028 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Craig Topper6e11a052017-05-08 16:22:48 +00002029 KnownBits XKnown = computeKnownBits(X, Depth, Q);
2030 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002031
2032 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002033 // zero unless both X and Y are zero.
Craig Topper6e11a052017-05-08 16:22:48 +00002034 if (XKnown.isNonNegative() && YKnown.isNonNegative())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002035 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002036 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00002037
2038 // If X and Y are both negative (as signed values) then their sum is not
2039 // zero unless both X and Y equal INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00002040 if (XKnown.isNegative() && YKnown.isNegative()) {
Duncan Sandsd3951082011-01-25 09:38:29 +00002041 APInt Mask = APInt::getSignedMaxValue(BitWidth);
2042 // The sign bit of X is set. If some other bit is set then X is not equal
2043 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00002044 if (XKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00002045 return true;
2046 // The sign bit of Y is set. If some other bit is set then Y is not equal
2047 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00002048 if (YKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00002049 return true;
2050 }
2051
2052 // The sum of a non-negative number and a power of two is not zero.
Craig Topper6e11a052017-05-08 16:22:48 +00002053 if (XKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002054 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002055 return true;
Craig Topper6e11a052017-05-08 16:22:48 +00002056 if (YKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002057 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002058 return true;
2059 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00002060 // X * Y.
2061 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00002062 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00002063 // If X and Y are non-zero then so is X * Y as long as the multiplication
2064 // does not overflow.
2065 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002066 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00002067 return true;
2068 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002069 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00002070 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002071 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2072 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002073 return true;
2074 }
James Molloy897048b2015-09-29 14:08:45 +00002075 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00002076 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00002077 // Try and detect a recurrence that monotonically increases from a
2078 // starting value, as these are common as induction variables.
2079 if (PN->getNumIncomingValues() == 2) {
2080 Value *Start = PN->getIncomingValue(0);
2081 Value *Induction = PN->getIncomingValue(1);
2082 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2083 std::swap(Start, Induction);
2084 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2085 if (!C->isZero() && !C->isNegative()) {
2086 ConstantInt *X;
2087 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2088 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2089 !X->isNegative())
2090 return true;
2091 }
2092 }
2093 }
Jun Bum Limca832662016-02-01 17:03:07 +00002094 // Check if all incoming values are non-zero constant.
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002095 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
Craig Topper79ab6432017-07-06 18:39:47 +00002096 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
Jun Bum Limca832662016-02-01 17:03:07 +00002097 });
2098 if (AllNonZeroConstants)
2099 return true;
James Molloy897048b2015-09-29 14:08:45 +00002100 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002101
Craig Topperb45eabc2017-04-26 16:39:58 +00002102 KnownBits Known(BitWidth);
2103 computeKnownBits(V, Known, Depth, Q);
2104 return Known.One != 0;
Duncan Sandsd3951082011-01-25 09:38:29 +00002105}
2106
James Molloy1d88d6f2015-10-22 13:18:42 +00002107/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00002108static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2109 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00002110 if (!BO || BO->getOpcode() != Instruction::Add)
2111 return false;
2112 Value *Op = nullptr;
2113 if (V2 == BO->getOperand(0))
2114 Op = BO->getOperand(1);
2115 else if (V2 == BO->getOperand(1))
2116 Op = BO->getOperand(0);
2117 else
2118 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002119 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002120}
2121
2122/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002123static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
Craig Topper3002d5b2017-06-06 07:13:15 +00002124 if (V1 == V2)
James Molloy1d88d6f2015-10-22 13:18:42 +00002125 return false;
2126 if (V1->getType() != V2->getType())
2127 // We can't look through casts yet.
2128 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002129 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002130 return true;
2131
Craig Topper3002d5b2017-06-06 07:13:15 +00002132 if (V1->getType()->isIntOrIntVectorTy()) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002133 // Are any known bits in V1 contradictory to known bits in V2? If V1
2134 // has a known zero where V2 has a known one, they must not be equal.
Craig Topper8e662f72017-06-06 07:13:11 +00002135 KnownBits Known1 = computeKnownBits(V1, 0, Q);
2136 KnownBits Known2 = computeKnownBits(V2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002137
Craig Topper8365df82017-06-06 07:13:09 +00002138 if (Known1.Zero.intersects(Known2.One) ||
2139 Known2.Zero.intersects(Known1.One))
James Molloy1d88d6f2015-10-22 13:18:42 +00002140 return true;
2141 }
2142 return false;
2143}
2144
Sanjay Patelaee84212014-11-04 16:27:42 +00002145/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2146/// simplify operations downstream. Mask is known to be zero for bits that V
2147/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002148///
2149/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002150/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002151/// where V is a vector, the mask, known zero, and known one values are the
2152/// same width as the vector element, and the bit is set only if it is true
2153/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002154bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002155 const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002156 KnownBits Known(Mask.getBitWidth());
2157 computeKnownBits(V, Known, Depth, Q);
2158 return Mask.isSubsetOf(Known.Zero);
Chris Lattner965c7692008-06-02 01:18:21 +00002159}
2160
Sanjay Patela06d9892016-06-22 19:20:59 +00002161/// For vector constants, loop over the elements and find the constant with the
2162/// minimum number of sign bits. Return 0 if the value is not a vector constant
2163/// or if any element was not analyzed; otherwise, return the count for the
2164/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002165static unsigned computeNumSignBitsVectorConstant(const Value *V,
2166 unsigned TyBits) {
2167 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002168 if (!CV || !CV->getType()->isVectorTy())
2169 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002170
Sanjay Patela06d9892016-06-22 19:20:59 +00002171 unsigned MinSignBits = TyBits;
2172 unsigned NumElts = CV->getType()->getVectorNumElements();
2173 for (unsigned i = 0; i != NumElts; ++i) {
2174 // If we find a non-ConstantInt, bail out.
2175 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2176 if (!Elt)
2177 return 0;
2178
Craig Topper8e8b6ef2017-10-21 16:35:41 +00002179 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
Sanjay Patela06d9892016-06-22 19:20:59 +00002180 }
2181
2182 return MinSignBits;
2183}
Chris Lattner965c7692008-06-02 01:18:21 +00002184
Sanjoy Das39a684d2017-02-25 20:30:45 +00002185static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2186 const Query &Q);
2187
2188static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2189 const Query &Q) {
2190 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2191 assert(Result > 0 && "At least one sign bit needs to be present!");
2192 return Result;
2193}
2194
Sanjay Patelaee84212014-11-04 16:27:42 +00002195/// Return the number of times the sign bit of the register is replicated into
2196/// the other bits. We know that at least 1 bit is always equal to the sign bit
2197/// (itself), but other cases can give us information. For example, immediately
2198/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002199/// other, so we return 3. For vectors, return the number of sign bits for the
Vedant Kumard3196742018-02-28 19:08:52 +00002200/// vector element with the minimum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002201static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2202 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00002203 assert(Depth <= MaxDepth && "Limit Search Depth");
Sanjoy Das39a684d2017-02-25 20:30:45 +00002204
2205 // We return the minimum number of sign bits that are guaranteed to be present
2206 // in V, so for undef we have to conservatively return 1. We don't have the
2207 // same behavior for poison though -- that's a FIXME today.
2208
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002209 Type *ScalarTy = V->getType()->getScalarType();
2210 unsigned TyBits = ScalarTy->isPointerTy() ?
2211 Q.DL.getIndexTypeSizeInBits(ScalarTy) :
2212 Q.DL.getTypeSizeInBits(ScalarTy);
2213
Chris Lattner965c7692008-06-02 01:18:21 +00002214 unsigned Tmp, Tmp2;
2215 unsigned FirstAnswer = 1;
2216
Jay Foada0653a32014-05-14 21:14:37 +00002217 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002218 // below.
2219
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002220 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002221 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002222
Pete Cooper35b00d52016-08-13 01:05:32 +00002223 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002224 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002225 default: break;
2226 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002227 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002228 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002229
Nadav Rotemc99a3872015-03-06 00:23:58 +00002230 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002231 const APInt *Denominator;
2232 // sdiv X, C -> adds log(C) sign bits.
2233 if (match(U->getOperand(1), m_APInt(Denominator))) {
2234
2235 // Ignore non-positive denominator.
2236 if (!Denominator->isStrictlyPositive())
2237 break;
2238
2239 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002240 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002241
2242 // Add floor(log(C)) bits to the numerator bits.
2243 return std::min(TyBits, NumBits + Denominator->logBase2());
2244 }
2245 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002246 }
2247
2248 case Instruction::SRem: {
2249 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002250 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2251 // positive constant. This let us put a lower bound on the number of sign
2252 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002253 if (match(U->getOperand(1), m_APInt(Denominator))) {
2254
2255 // Ignore non-positive denominator.
2256 if (!Denominator->isStrictlyPositive())
2257 break;
2258
2259 // Calculate the incoming numerator bits. SRem by a positive constant
2260 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002261 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002262 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002263
2264 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002265 // denominator. Given that the denominator is positive, there are two
2266 // cases:
2267 //
2268 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2269 // (1 << ceilLogBase2(C)).
2270 //
2271 // 2. the numerator is negative. Then the result range is (-C,0] and
2272 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2273 //
2274 // Thus a lower bound on the number of sign bits is `TyBits -
2275 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002276
Sanjoy Dase561fee2015-03-25 22:33:53 +00002277 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002278 return std::max(NumrBits, ResBits);
2279 }
2280 break;
2281 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002282
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002283 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002284 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002285 // ashr X, C -> adds C sign bits. Vectors too.
2286 const APInt *ShAmt;
2287 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Simon Pilgrim67207262018-01-01 22:44:59 +00002288 if (ShAmt->uge(TyBits))
Sanjoy Das39a684d2017-02-25 20:30:45 +00002289 break; // Bad shift.
Simon Pilgrim67207262018-01-01 22:44:59 +00002290 unsigned ShAmtLimited = ShAmt->getZExtValue();
Sanjoy Das39a684d2017-02-25 20:30:45 +00002291 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002292 if (Tmp > TyBits) Tmp = TyBits;
2293 }
2294 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002295 }
2296 case Instruction::Shl: {
2297 const APInt *ShAmt;
2298 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002299 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002300 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Simon Pilgrim67207262018-01-01 22:44:59 +00002301 if (ShAmt->uge(TyBits) || // Bad shift.
2302 ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002303 Tmp2 = ShAmt->getZExtValue();
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002304 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002305 }
2306 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002307 }
Chris Lattner965c7692008-06-02 01:18:21 +00002308 case Instruction::And:
2309 case Instruction::Or:
2310 case Instruction::Xor: // NOT is handled here.
2311 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002312 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002313 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002314 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002315 FirstAnswer = std::min(Tmp, Tmp2);
2316 // We computed what we know about the sign bits as our first
2317 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002318 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002319 }
2320 break;
2321
2322 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002323 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002324 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002325 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002326 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002327
Chris Lattner965c7692008-06-02 01:18:21 +00002328 case Instruction::Add:
2329 // Add can have at most one carry bit. Thus we know that the output
2330 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002331 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002332 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002333
Chris Lattner965c7692008-06-02 01:18:21 +00002334 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002335 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002336 if (CRHS->isAllOnesValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002337 KnownBits Known(TyBits);
2338 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002339
Chris Lattner965c7692008-06-02 01:18:21 +00002340 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2341 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002342 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002343 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002344
Chris Lattner965c7692008-06-02 01:18:21 +00002345 // If we are subtracting one from a positive number, there is no carry
2346 // out of the result.
Craig Topperca48af32017-04-29 16:43:11 +00002347 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002348 return Tmp;
2349 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002350
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002351 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002352 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002353 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002354
Chris Lattner965c7692008-06-02 01:18:21 +00002355 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002356 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002357 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002358
Chris Lattner965c7692008-06-02 01:18:21 +00002359 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002360 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002361 if (CLHS->isNullValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002362 KnownBits Known(TyBits);
2363 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002364 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2365 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002366 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002367 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002368
Chris Lattner965c7692008-06-02 01:18:21 +00002369 // If the input is known to be positive (the sign bit is known clear),
2370 // the output of the NEG has the same number of sign bits as the input.
Craig Topperca48af32017-04-29 16:43:11 +00002371 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002372 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002373
Chris Lattner965c7692008-06-02 01:18:21 +00002374 // Otherwise, we treat this like a SUB.
2375 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002376
Chris Lattner965c7692008-06-02 01:18:21 +00002377 // Sub can have at most one carry bit. Thus we know that the output
2378 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002379 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002380 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002381 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002382
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002383 case Instruction::Mul: {
2384 // The output of the Mul can be at most twice the valid bits in the inputs.
2385 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2386 if (SignBitsOp0 == 1) return 1; // Early out.
2387 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2388 if (SignBitsOp1 == 1) return 1;
2389 unsigned OutValidBits =
2390 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2391 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2392 }
2393
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002394 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002395 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002396 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002397 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002398 if (NumIncomingValues > 4) break;
2399 // Unreachable blocks may have zero-operand PHI nodes.
2400 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002401
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002402 // Take the minimum of all incoming values. This can't infinitely loop
2403 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002404 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002405 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002406 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002407 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002408 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002409 }
2410 return Tmp;
2411 }
2412
Chris Lattner965c7692008-06-02 01:18:21 +00002413 case Instruction::Trunc:
2414 // FIXME: it's tricky to do anything useful for this, but it is an important
2415 // case for targets like X86.
2416 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002417
2418 case Instruction::ExtractElement:
2419 // Look through extract element. At the moment we keep this simple and skip
2420 // tracking the specific element. But at least we might find information
2421 // valid for all elements of the vector (for example if vector is sign
2422 // extended, shifted, etc).
2423 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002424 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002425
Chris Lattner965c7692008-06-02 01:18:21 +00002426 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2427 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002428
2429 // If we can examine all elements of a vector constant successfully, we're
2430 // done (we can't do any better than that). If not, keep trying.
2431 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2432 return VecSignBits;
2433
Craig Topperb45eabc2017-04-26 16:39:58 +00002434 KnownBits Known(TyBits);
2435 computeKnownBits(V, Known, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002436
Sanjay Patele0536212016-06-23 17:41:59 +00002437 // If we know that the sign bit is either zero or one, determine the number of
2438 // identical bits in the top of the input value.
Craig Topper8df66c62017-05-12 17:20:30 +00002439 return std::max(FirstAnswer, Known.countMinSignBits());
Chris Lattner965c7692008-06-02 01:18:21 +00002440}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002441
Sanjay Patelaee84212014-11-04 16:27:42 +00002442/// This function computes the integer multiple of Base that equals V.
2443/// If successful, it returns true and returns the multiple in
2444/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002445/// through SExt instructions only if LookThroughSExt is true.
2446bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002447 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002448 const unsigned MaxDepth = 6;
2449
Dan Gohman6a976bb2009-11-18 00:58:27 +00002450 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002451 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002452 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002453
Chris Lattner229907c2011-07-18 04:54:35 +00002454 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002455
Dan Gohman6a976bb2009-11-18 00:58:27 +00002456 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002457
2458 if (Base == 0)
2459 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002460
Victor Hernandez47444882009-11-10 08:28:35 +00002461 if (Base == 1) {
2462 Multiple = V;
2463 return true;
2464 }
2465
2466 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2467 Constant *BaseVal = ConstantInt::get(T, Base);
2468 if (CO && CO == BaseVal) {
2469 // Multiple is 1.
2470 Multiple = ConstantInt::get(T, 1);
2471 return true;
2472 }
2473
2474 if (CI && CI->getZExtValue() % Base == 0) {
2475 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002476 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002477 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002478
Victor Hernandez47444882009-11-10 08:28:35 +00002479 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002480
Victor Hernandez47444882009-11-10 08:28:35 +00002481 Operator *I = dyn_cast<Operator>(V);
2482 if (!I) return false;
2483
2484 switch (I->getOpcode()) {
2485 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002486 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002487 if (!LookThroughSExt) return false;
2488 // otherwise fall through to ZExt
Galina Kistanova244621f2017-05-31 22:16:24 +00002489 LLVM_FALLTHROUGH;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002490 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002491 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2492 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002493 case Instruction::Shl:
2494 case Instruction::Mul: {
2495 Value *Op0 = I->getOperand(0);
2496 Value *Op1 = I->getOperand(1);
2497
2498 if (I->getOpcode() == Instruction::Shl) {
2499 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2500 if (!Op1CI) return false;
2501 // Turn Op0 << Op1 into Op0 * 2^Op1
2502 APInt Op1Int = Op1CI->getValue();
2503 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002504 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002505 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002506 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002507 }
2508
Craig Topper9f008862014-04-15 04:59:12 +00002509 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002510 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2511 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2512 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002513 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002514 MulC->getType()->getPrimitiveSizeInBits())
2515 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002516 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002517 MulC->getType()->getPrimitiveSizeInBits())
2518 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002519
Chris Lattner72d283c2010-09-05 17:20:46 +00002520 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2521 Multiple = ConstantExpr::getMul(MulC, Op1C);
2522 return true;
2523 }
Victor Hernandez47444882009-11-10 08:28:35 +00002524
2525 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2526 if (Mul0CI->getValue() == 1) {
2527 // V == Base * Op1, so return Op1
2528 Multiple = Op1;
2529 return true;
2530 }
2531 }
2532
Craig Topper9f008862014-04-15 04:59:12 +00002533 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002534 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2535 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2536 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002537 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002538 MulC->getType()->getPrimitiveSizeInBits())
2539 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002540 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002541 MulC->getType()->getPrimitiveSizeInBits())
2542 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002543
Chris Lattner72d283c2010-09-05 17:20:46 +00002544 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2545 Multiple = ConstantExpr::getMul(MulC, Op0C);
2546 return true;
2547 }
Victor Hernandez47444882009-11-10 08:28:35 +00002548
2549 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2550 if (Mul1CI->getValue() == 1) {
2551 // V == Base * Op0, so return Op0
2552 Multiple = Op0;
2553 return true;
2554 }
2555 }
Victor Hernandez47444882009-11-10 08:28:35 +00002556 }
2557 }
2558
2559 // We could not determine if V is a multiple of Base.
2560 return false;
2561}
2562
David Majnemerb4b27232016-04-19 19:10:21 +00002563Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2564 const TargetLibraryInfo *TLI) {
2565 const Function *F = ICS.getCalledFunction();
2566 if (!F)
2567 return Intrinsic::not_intrinsic;
2568
2569 if (F->isIntrinsic())
2570 return F->getIntrinsicID();
2571
2572 if (!TLI)
2573 return Intrinsic::not_intrinsic;
2574
David L. Jonesd21529f2017-01-23 23:16:46 +00002575 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002576 // We're going to make assumptions on the semantics of the functions, check
2577 // that the target knows that it's available in this environment and it does
2578 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002579 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2580 return Intrinsic::not_intrinsic;
2581
2582 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002583 return Intrinsic::not_intrinsic;
2584
2585 // Otherwise check if we have a call to a function that can be turned into a
2586 // vector intrinsic.
2587 switch (Func) {
2588 default:
2589 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002590 case LibFunc_sin:
2591 case LibFunc_sinf:
2592 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002593 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002594 case LibFunc_cos:
2595 case LibFunc_cosf:
2596 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002597 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002598 case LibFunc_exp:
2599 case LibFunc_expf:
2600 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002601 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002602 case LibFunc_exp2:
2603 case LibFunc_exp2f:
2604 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002605 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002606 case LibFunc_log:
2607 case LibFunc_logf:
2608 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002609 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002610 case LibFunc_log10:
2611 case LibFunc_log10f:
2612 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002613 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002614 case LibFunc_log2:
2615 case LibFunc_log2f:
2616 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002617 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002618 case LibFunc_fabs:
2619 case LibFunc_fabsf:
2620 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002621 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002622 case LibFunc_fmin:
2623 case LibFunc_fminf:
2624 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002625 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002626 case LibFunc_fmax:
2627 case LibFunc_fmaxf:
2628 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002629 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002630 case LibFunc_copysign:
2631 case LibFunc_copysignf:
2632 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002633 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002634 case LibFunc_floor:
2635 case LibFunc_floorf:
2636 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002637 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002638 case LibFunc_ceil:
2639 case LibFunc_ceilf:
2640 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002641 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002642 case LibFunc_trunc:
2643 case LibFunc_truncf:
2644 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002645 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002646 case LibFunc_rint:
2647 case LibFunc_rintf:
2648 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002649 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002650 case LibFunc_nearbyint:
2651 case LibFunc_nearbyintf:
2652 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002653 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002654 case LibFunc_round:
2655 case LibFunc_roundf:
2656 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002657 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002658 case LibFunc_pow:
2659 case LibFunc_powf:
2660 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002661 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002662 case LibFunc_sqrt:
2663 case LibFunc_sqrtf:
2664 case LibFunc_sqrtl:
Sanjay Patel86d24f12017-11-06 22:40:09 +00002665 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002666 }
2667
2668 return Intrinsic::not_intrinsic;
2669}
2670
Sanjay Patelaee84212014-11-04 16:27:42 +00002671/// Return true if we can prove that the specified FP value is never equal to
2672/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002673///
2674/// NOTE: this function will need to be revisited when we support non-default
2675/// rounding modes!
David Majnemer3ee5f342016-04-13 06:55:52 +00002676bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2677 unsigned Depth) {
Sanjay Patel20df88a2017-11-13 17:56:23 +00002678 if (auto *CFP = dyn_cast<ConstantFP>(V))
Chris Lattnera12a6de2008-06-02 01:29:46 +00002679 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002680
Sanjay Patel20df88a2017-11-13 17:56:23 +00002681 // Limit search depth.
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002682 if (Depth == MaxDepth)
Sanjay Patel20df88a2017-11-13 17:56:23 +00002683 return false;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002684
Sanjay Patel20df88a2017-11-13 17:56:23 +00002685 auto *Op = dyn_cast<Operator>(V);
2686 if (!Op)
2687 return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002688
Sanjay Patel20df88a2017-11-13 17:56:23 +00002689 // Check if the nsz fast-math flag is set.
2690 if (auto *FPO = dyn_cast<FPMathOperator>(Op))
Michael Ilseman0f128372012-12-06 00:07:09 +00002691 if (FPO->hasNoSignedZeros())
2692 return true;
2693
Sanjay Patel9e3d8f42017-11-13 17:40:47 +00002694 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
Sanjay Patel93e64dd2018-03-25 21:16:33 +00002695 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
Sanjay Patel9e3d8f42017-11-13 17:40:47 +00002696 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002697
Chris Lattnera12a6de2008-06-02 01:29:46 +00002698 // sitofp and uitofp turn into +0.0 for zero.
Sanjay Patel20df88a2017-11-13 17:56:23 +00002699 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
Chris Lattnera12a6de2008-06-02 01:29:46 +00002700 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002701
Sanjay Patel20df88a2017-11-13 17:56:23 +00002702 if (auto *Call = dyn_cast<CallInst>(Op)) {
2703 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002704 switch (IID) {
2705 default:
2706 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002707 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002708 case Intrinsic::sqrt:
Sanjay Patel20df88a2017-11-13 17:56:23 +00002709 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002710 // fabs(x) != -0.0
2711 case Intrinsic::fabs:
2712 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002713 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002714 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002715
Chris Lattnera12a6de2008-06-02 01:29:46 +00002716 return false;
2717}
2718
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002719/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2720/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2721/// bit despite comparing equal.
2722static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2723 const TargetLibraryInfo *TLI,
2724 bool SignBitOnly,
2725 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002726 // TODO: This function does not do the right thing when SignBitOnly is true
2727 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2728 // which flips the sign bits of NaNs. See
2729 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2730
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002731 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2732 return !CFP->getValueAPF().isNegative() ||
2733 (!SignBitOnly && CFP->getValueAPF().isZero());
2734 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002735
Craig Topper69c89722018-02-26 22:33:17 +00002736 // Handle vector of constants.
2737 if (auto *CV = dyn_cast<Constant>(V)) {
2738 if (CV->getType()->isVectorTy()) {
2739 unsigned NumElts = CV->getType()->getVectorNumElements();
2740 for (unsigned i = 0; i != NumElts; ++i) {
2741 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
2742 if (!CFP)
2743 return false;
2744 if (CFP->getValueAPF().isNegative() &&
2745 (SignBitOnly || !CFP->getValueAPF().isZero()))
2746 return false;
2747 }
2748
2749 // All non-negative ConstantFPs.
2750 return true;
2751 }
2752 }
2753
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002754 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002755 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002756
2757 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002758 if (!I)
2759 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002760
2761 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002762 default:
2763 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002764 // Unsigned integers are always nonnegative.
2765 case Instruction::UIToFP:
2766 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002767 case Instruction::FMul:
2768 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002769 if (I->getOperand(0) == I->getOperand(1) &&
2770 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002771 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002772
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002773 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002774 case Instruction::FAdd:
2775 case Instruction::FDiv:
2776 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002777 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2778 Depth + 1) &&
2779 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2780 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002781 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002782 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2783 Depth + 1) &&
2784 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2785 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002786 case Instruction::FPExt:
2787 case Instruction::FPTrunc:
2788 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002789 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2790 Depth + 1);
Craig Topper30199102018-02-27 19:53:45 +00002791 case Instruction::ExtractElement:
2792 // Look through extract element. At the moment we keep this simple and skip
2793 // tracking the specific element. But at least we might find information
2794 // valid for all elements of the vector.
2795 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2796 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002797 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002798 const auto *CI = cast<CallInst>(I);
2799 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002800 switch (IID) {
2801 default:
2802 break;
2803 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002804 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2805 Depth + 1) ||
2806 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2807 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002808 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002809 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2810 Depth + 1) &&
2811 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2812 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002813 case Intrinsic::exp:
2814 case Intrinsic::exp2:
2815 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002816 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002817
2818 case Intrinsic::sqrt:
2819 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2820 if (!SignBitOnly)
2821 return true;
2822 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2823 CannotBeNegativeZero(CI->getOperand(0), TLI));
2824
David Majnemer3ee5f342016-04-13 06:55:52 +00002825 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002826 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002827 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002828 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002829 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002830 }
Justin Lebar322c1272017-01-27 00:58:34 +00002831 // TODO: This is not correct. Given that exp is an integer, here are the
2832 // ways that pow can return a negative value:
2833 //
2834 // pow(x, exp) --> negative if exp is odd and x is negative.
2835 // pow(-0, exp) --> -inf if exp is negative odd.
2836 // pow(-0, exp) --> -0 if exp is positive odd.
2837 // pow(-inf, exp) --> -0 if exp is negative odd.
2838 // pow(-inf, exp) --> -inf if exp is positive odd.
2839 //
2840 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2841 // but we must return false if x == -0. Unfortunately we do not currently
2842 // have a way of expressing this constraint. See details in
2843 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002844 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2845 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002846
David Majnemer3ee5f342016-04-13 06:55:52 +00002847 case Intrinsic::fma:
2848 case Intrinsic::fmuladd:
2849 // x*x+y is non-negative if y is non-negative.
2850 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002851 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2852 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2853 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002854 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002855 break;
2856 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002857 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002858}
2859
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002860bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2861 const TargetLibraryInfo *TLI) {
2862 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2863}
2864
2865bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2866 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2867}
2868
Sanjay Patel6840c5f2017-09-05 23:13:13 +00002869bool llvm::isKnownNeverNaN(const Value *V) {
2870 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
2871
2872 // If we're told that NaNs won't happen, assume they won't.
2873 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
2874 if (FPMathOp->hasNoNaNs())
2875 return true;
2876
2877 // TODO: Handle instructions and potentially recurse like other 'isKnown'
2878 // functions. For example, the result of sitofp is never NaN.
2879
2880 // Handle scalar constants.
2881 if (auto *CFP = dyn_cast<ConstantFP>(V))
2882 return !CFP->isNaN();
2883
2884 // Bail out for constant expressions, but try to handle vector constants.
2885 if (!V->getType()->isVectorTy() || !isa<Constant>(V))
2886 return false;
2887
2888 // For vectors, verify that each element is not NaN.
2889 unsigned NumElts = V->getType()->getVectorNumElements();
2890 for (unsigned i = 0; i != NumElts; ++i) {
2891 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
2892 if (!Elt)
2893 return false;
2894 if (isa<UndefValue>(Elt))
2895 continue;
2896 auto *CElt = dyn_cast<ConstantFP>(Elt);
2897 if (!CElt || CElt->isNaN())
2898 return false;
2899 }
2900 // All elements were confirmed not-NaN or undefined.
2901 return true;
2902}
2903
Sanjay Patelaee84212014-11-04 16:27:42 +00002904/// If the specified value can be set by repeating the same byte in memory,
2905/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002906/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2907/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2908/// byte store (e.g. i16 0x1234), return null.
2909Value *llvm::isBytewiseValue(Value *V) {
2910 // All byte-wide stores are splatable, even of arbitrary variables.
2911 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002912
2913 // Handle 'null' ConstantArrayZero etc.
2914 if (Constant *C = dyn_cast<Constant>(V))
2915 if (C->isNullValue())
2916 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002917
Chris Lattner9cb10352010-12-26 20:15:01 +00002918 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002919 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002920 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2921 if (CFP->getType()->isFloatTy())
2922 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2923 if (CFP->getType()->isDoubleTy())
2924 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2925 // Don't handle long double formats, which have strange constraints.
2926 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002927
Benjamin Kramer17d90152015-02-07 19:29:02 +00002928 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002929 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002930 if (CI->getBitWidth() % 8 == 0) {
2931 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002932
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002933 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002934 return nullptr;
2935 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002936 }
2937 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002938
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002939 // A ConstantDataArray/Vector is splatable if all its members are equal and
2940 // also splatable.
2941 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2942 Value *Elt = CA->getElementAsConstant(0);
2943 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002944 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002945 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002946
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002947 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2948 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002949 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002950
Chris Lattner9cb10352010-12-26 20:15:01 +00002951 return Val;
2952 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002953
Chris Lattner9cb10352010-12-26 20:15:01 +00002954 // Conceptually, we could handle things like:
2955 // %a = zext i8 %X to i16
2956 // %b = shl i16 %a, 8
2957 // %c = or i16 %a, %b
2958 // but until there is an example that actually needs this, it doesn't seem
2959 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002960 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002961}
2962
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002963// This is the recursive version of BuildSubAggregate. It takes a few different
2964// arguments. Idxs is the index within the nested struct From that we are
2965// looking at now (which is of type IndexedType). IdxSkip is the number of
2966// indices from Idxs that should be left out when inserting into the resulting
2967// struct. To is the result struct built so far, new insertvalue instructions
2968// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002969static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002970 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002971 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002972 Instruction *InsertBefore) {
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002973 StructType *STy = dyn_cast<StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002974 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002975 // Save the original To argument so we can modify it
2976 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002977 // General case, the type indexed by Idxs is a struct
2978 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2979 // Process each struct element recursively
2980 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002981 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002982 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002983 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002984 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002985 if (!To) {
2986 // Couldn't find any inserted value for this index? Cleanup
2987 while (PrevTo != OrigTo) {
2988 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2989 PrevTo = Del->getAggregateOperand();
2990 Del->eraseFromParent();
2991 }
2992 // Stop processing elements
2993 break;
2994 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002995 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002996 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002997 if (To)
2998 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002999 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003000 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3001 // the struct's elements had a value that was inserted directly. In the latter
3002 // case, perhaps we can't determine each of the subelements individually, but
3003 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00003004
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003005 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00003006 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003007
3008 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00003009 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003010
Vedant Kumard3196742018-02-28 19:08:52 +00003011 // Insert the value in the new (sub) aggregate
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003012 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3013 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003014}
3015
3016// This helper takes a nested struct and extracts a part of it (which is again a
3017// struct) into a new value. For example, given the struct:
3018// { a, { b, { c, d }, e } }
3019// and the indices "1, 1" this returns
3020// { c, d }.
3021//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003022// It does this by inserting an insertvalue for each element in the resulting
3023// struct, as opposed to just inserting a single struct. This will only work if
3024// each of the elements of the substruct are known (ie, inserted into From by an
3025// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003026//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003027// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00003028static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00003029 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00003030 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00003031 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00003032 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00003033 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00003034 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003035 unsigned IdxSkip = Idxs.size();
3036
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003037 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003038}
3039
Vedant Kumard3196742018-02-28 19:08:52 +00003040/// Given an aggregate and a sequence of indices, see if the scalar value
3041/// indexed is already around as a register, for example if it was inserted
3042/// directly into the aggregate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003043///
3044/// If InsertBefore is not null, this function will duplicate (modified)
3045/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00003046Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3047 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003048 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003049 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00003050 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003051 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003052 // We have indices, so V should have an indexable type.
3053 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3054 "Not looking at a struct or array?");
3055 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3056 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00003057
Chris Lattner67058832012-01-25 06:48:06 +00003058 if (Constant *C = dyn_cast<Constant>(V)) {
3059 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00003060 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00003061 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3062 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003063
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003064 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003065 // Loop the indices for the insertvalue instruction in parallel with the
3066 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00003067 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003068 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3069 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00003070 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003071 // We can't handle this without inserting insertvalues
3072 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00003073 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003074
3075 // The requested index identifies a part of a nested aggregate. Handle
3076 // this specially. For example,
3077 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3078 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3079 // %C = extractvalue {i32, { i32, i32 } } %B, 1
3080 // This can be changed into
3081 // %A = insertvalue {i32, i32 } undef, i32 10, 0
3082 // %C = insertvalue {i32, i32 } %A, i32 11, 1
3083 // which allows the unused 0,0 element from the nested struct to be
3084 // removed.
3085 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3086 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00003087 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003088
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003089 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00003090 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003091 // looking for, then.
3092 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00003093 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003094 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003095 }
3096 // If we end up here, the indices of the insertvalue match with those
3097 // requested (though possibly only partially). Now we recursively look at
3098 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00003099 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00003100 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003101 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003102 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003103
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003104 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00003105 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003106 // something else, we can extract from that something else directly instead.
3107 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00003108
3109 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00003110 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003111 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00003112 SmallVector<unsigned, 5> Idxs;
3113 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003114 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00003115 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00003116
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003117 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00003118 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003119
Craig Topper1bef2c82012-12-22 19:15:35 +00003120 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003121 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00003122
Jay Foad57aa6362011-07-13 10:26:04 +00003123 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003124 }
3125 // Otherwise, we don't know (such as, extracting from a function return value
3126 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00003127 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003128}
Evan Chengda3db112008-06-30 07:31:25 +00003129
Sanjay Patelaee84212014-11-04 16:27:42 +00003130/// Analyze the specified pointer to see if it can be expressed as a base
3131/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00003132Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003133 const DataLayout &DL) {
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00003134 unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00003135 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00003136
3137 // We walk up the defs but use a visited set to handle unreachable code. In
3138 // that case, we stop after accumulating the cycle once (not that it
3139 // matters).
3140 SmallPtrSet<Value *, 16> Visited;
3141 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003142 if (Ptr->getType()->isVectorTy())
3143 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00003144
Nuno Lopes368c4d02012-12-31 20:48:35 +00003145 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00003146 // If one of the values we have visited is an addrspacecast, then
3147 // the pointer type of this GEP may be different from the type
3148 // of the Ptr parameter which was passed to this function. This
3149 // means when we construct GEPOffset, we need to use the size
3150 // of GEP's pointer type rather than the size of the original
3151 // pointer type.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00003152 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003153 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3154 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003155
Tom Stellard17eb3412016-10-07 14:23:29 +00003156 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003157
Nuno Lopes368c4d02012-12-31 20:48:35 +00003158 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00003159 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3160 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003161 Ptr = cast<Operator>(Ptr)->getOperand(0);
3162 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003163 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00003164 break;
3165 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00003166 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003167 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00003168 }
3169 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00003170 Offset = ByteOffset.getSExtValue();
3171 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00003172}
3173
Matthias Braun50ec0b52017-05-19 22:37:09 +00003174bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3175 unsigned CharSize) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003176 // Make sure the GEP has exactly three arguments.
3177 if (GEP->getNumOperands() != 3)
3178 return false;
3179
Matthias Braun50ec0b52017-05-19 22:37:09 +00003180 // Make sure the index-ee is a pointer to array of \p CharSize integers.
3181 // CharSize.
David L Kreitzer752c1442016-04-13 14:31:06 +00003182 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Matthias Braun50ec0b52017-05-19 22:37:09 +00003183 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
David L Kreitzer752c1442016-04-13 14:31:06 +00003184 return false;
3185
3186 // Check to make sure that the first operand of the GEP is an integer and
3187 // has value 0 so that we are sure we're indexing into the initializer.
3188 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3189 if (!FirstIdx || !FirstIdx->isZero())
3190 return false;
3191
3192 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003193}
Chris Lattnere28618d2010-11-30 22:25:26 +00003194
Matthias Braun50ec0b52017-05-19 22:37:09 +00003195bool llvm::getConstantDataArrayInfo(const Value *V,
3196 ConstantDataArraySlice &Slice,
3197 unsigned ElementSize, uint64_t Offset) {
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003198 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00003199
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003200 // Look through bitcast instructions and geps.
3201 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00003202
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003203 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003204 // offset.
3205 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003206 // The GEP operator should be based on a pointer to string constant, and is
3207 // indexing into the string constant.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003208 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003209 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003210
Evan Chengda3db112008-06-30 07:31:25 +00003211 // If the second index isn't a ConstantInt, then this is a variable index
3212 // into the array. If this occurs, we can't say anything meaningful about
3213 // the string.
3214 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003215 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003216 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003217 else
3218 return false;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003219 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3220 StartIdx + Offset);
Evan Chengda3db112008-06-30 07:31:25 +00003221 }
Nick Lewycky46209882011-10-20 00:34:35 +00003222
Evan Chengda3db112008-06-30 07:31:25 +00003223 // The GEP instruction, constant or instruction, must reference a global
3224 // variable that is a constant and is initialized. The referenced constant
3225 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003226 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003227 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003228 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003229
Matthias Braun50ec0b52017-05-19 22:37:09 +00003230 const ConstantDataArray *Array;
3231 ArrayType *ArrayTy;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003232 if (GV->getInitializer()->isNullValue()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003233 Type *GVTy = GV->getValueType();
3234 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
Sanjay Patel2ad88f82017-06-12 22:34:37 +00003235 // A zeroinitializer for the array; there is no ConstantDataArray.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003236 Array = nullptr;
3237 } else {
3238 const DataLayout &DL = GV->getParent()->getDataLayout();
3239 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3240 uint64_t Length = SizeInBytes / (ElementSize / 8);
3241 if (Length <= Offset)
3242 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003243
Matthias Braun50ec0b52017-05-19 22:37:09 +00003244 Slice.Array = nullptr;
3245 Slice.Offset = 0;
3246 Slice.Length = Length - Offset;
3247 return true;
3248 }
3249 } else {
3250 // This must be a ConstantDataArray.
3251 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3252 if (!Array)
3253 return false;
3254 ArrayTy = Array->getType();
3255 }
3256 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003257 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003258
Matthias Braun50ec0b52017-05-19 22:37:09 +00003259 uint64_t NumElts = ArrayTy->getArrayNumElements();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003260 if (Offset > NumElts)
3261 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003262
Matthias Braun50ec0b52017-05-19 22:37:09 +00003263 Slice.Array = Array;
3264 Slice.Offset = Offset;
3265 Slice.Length = NumElts - Offset;
3266 return true;
3267}
3268
3269/// This function computes the length of a null-terminated C string pointed to
3270/// by V. If successful, it returns true and returns the string in Str.
3271/// If unsuccessful, it returns false.
3272bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3273 uint64_t Offset, bool TrimAtNul) {
3274 ConstantDataArraySlice Slice;
3275 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3276 return false;
3277
3278 if (Slice.Array == nullptr) {
3279 if (TrimAtNul) {
3280 Str = StringRef();
3281 return true;
3282 }
3283 if (Slice.Length == 1) {
3284 Str = StringRef("", 1);
3285 return true;
3286 }
Sanjay Patelfef83e82017-06-09 14:21:18 +00003287 // We cannot instantiate a StringRef as we do not have an appropriate string
Matthias Braun50ec0b52017-05-19 22:37:09 +00003288 // of 0s at hand.
3289 return false;
3290 }
3291
3292 // Start out with the entire array in the StringRef.
3293 Str = Slice.Array->getAsString();
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003294 // Skip over 'offset' bytes.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003295 Str = Str.substr(Slice.Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003296
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003297 if (TrimAtNul) {
3298 // Trim off the \0 and anything after it. If the array is not nul
3299 // terminated, we just return the whole end of string. The client may know
3300 // some other way that the string is length-bound.
3301 Str = Str.substr(0, Str.find('\0'));
3302 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003303 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003304}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003305
3306// These next two are very similar to the above, but also look through PHI
3307// nodes.
3308// TODO: See if we can integrate these two together.
3309
Sanjay Patelaee84212014-11-04 16:27:42 +00003310/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003311/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003312static uint64_t GetStringLengthH(const Value *V,
Matthias Braun50ec0b52017-05-19 22:37:09 +00003313 SmallPtrSetImpl<const PHINode*> &PHIs,
3314 unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003315 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003316 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003317
3318 // If this is a PHI node, there are two cases: either we have already seen it
3319 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003320 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003321 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003322 return ~0ULL; // already in the set.
3323
3324 // If it was new, see if all the input strings are the same length.
3325 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003326 for (Value *IncValue : PN->incoming_values()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003327 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003328 if (Len == 0) return 0; // Unknown length -> unknown.
3329
3330 if (Len == ~0ULL) continue;
3331
3332 if (Len != LenSoFar && LenSoFar != ~0ULL)
3333 return 0; // Disagree -> unknown.
3334 LenSoFar = Len;
3335 }
3336
3337 // Success, all agree.
3338 return LenSoFar;
3339 }
3340
3341 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003342 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003343 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003344 if (Len1 == 0) return 0;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003345 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003346 if (Len2 == 0) return 0;
3347 if (Len1 == ~0ULL) return Len2;
3348 if (Len2 == ~0ULL) return Len1;
3349 if (Len1 != Len2) return 0;
3350 return Len1;
3351 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003352
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003353 // Otherwise, see if we can read the string.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003354 ConstantDataArraySlice Slice;
3355 if (!getConstantDataArrayInfo(V, Slice, CharSize))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003356 return 0;
3357
Matthias Braun50ec0b52017-05-19 22:37:09 +00003358 if (Slice.Array == nullptr)
3359 return 1;
3360
3361 // Search for nul characters
3362 unsigned NullIndex = 0;
3363 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3364 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3365 break;
3366 }
3367
3368 return NullIndex + 1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003369}
3370
Sanjay Patelaee84212014-11-04 16:27:42 +00003371/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003372/// the specified pointer, return 'len+1'. If we can't, return 0.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003373uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003374 if (!V->getType()->isPointerTy()) return 0;
3375
Pete Cooper35b00d52016-08-13 01:05:32 +00003376 SmallPtrSet<const PHINode*, 32> PHIs;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003377 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003378 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3379 // an empty string as a length.
3380 return Len == ~0ULL ? 1 : Len;
3381}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003382
Adam Nemete2b885c2015-04-23 20:09:20 +00003383/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3384/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003385static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3386 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003387 // Find the loop-defined value.
3388 Loop *L = LI->getLoopFor(PN->getParent());
3389 if (PN->getNumIncomingValues() != 2)
3390 return true;
3391
3392 // Find the value from previous iteration.
3393 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3394 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3395 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3396 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3397 return true;
3398
3399 // If a new pointer is loaded in the loop, the pointer references a different
3400 // object in every iteration. E.g.:
3401 // for (i)
3402 // int *p = a[i];
3403 // ...
3404 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3405 if (!L->isLoopInvariant(Load->getPointerOperand()))
3406 return false;
3407 return true;
3408}
3409
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003410Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3411 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003412 if (!V->getType()->isPointerTy())
3413 return V;
3414 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3415 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3416 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003417 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3418 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003419 V = cast<Operator>(V)->getOperand(0);
3420 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003421 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003422 return V;
3423 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003424 } else if (isa<AllocaInst>(V)) {
3425 // An alloca can't be further simplified.
3426 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003427 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003428 if (auto CS = CallSite(V))
3429 if (Value *RV = CS.getReturnedArgOperand()) {
3430 V = RV;
3431 continue;
3432 }
3433
Dan Gohman05b18f12010-12-15 20:49:55 +00003434 // See if InstructionSimplify knows any relevant tricks.
3435 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003436 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Daniel Berlin4d0fe642017-04-28 19:55:38 +00003437 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003438 V = Simplified;
3439 continue;
3440 }
3441
Dan Gohmana4fcd242010-12-15 20:02:24 +00003442 return V;
3443 }
3444 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3445 }
3446 return V;
3447}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003448
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003449void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003450 const DataLayout &DL, LoopInfo *LI,
3451 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003452 SmallPtrSet<Value *, 4> Visited;
3453 SmallVector<Value *, 4> Worklist;
3454 Worklist.push_back(V);
3455 do {
3456 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003457 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003458
David Blaikie70573dc2014-11-19 07:49:26 +00003459 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003460 continue;
3461
3462 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3463 Worklist.push_back(SI->getTrueValue());
3464 Worklist.push_back(SI->getFalseValue());
3465 continue;
3466 }
3467
3468 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003469 // If this PHI changes the underlying object in every iteration of the
3470 // loop, don't look through it. Consider:
3471 // int **A;
3472 // for (i) {
3473 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3474 // Curr = A[i];
3475 // *Prev, *Curr;
3476 //
3477 // Prev is tracking Curr one iteration behind so they refer to different
3478 // underlying objects.
3479 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3480 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003481 for (Value *IncValue : PN->incoming_values())
3482 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003483 continue;
3484 }
3485
3486 Objects.push_back(P);
3487 } while (!Worklist.empty());
3488}
3489
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003490/// This is the function that does the work of looking through basic
3491/// ptrtoint+arithmetic+inttoptr sequences.
3492static const Value *getUnderlyingObjectFromInt(const Value *V) {
3493 do {
3494 if (const Operator *U = dyn_cast<Operator>(V)) {
3495 // If we find a ptrtoint, we can transfer control back to the
3496 // regular getUnderlyingObjectFromInt.
3497 if (U->getOpcode() == Instruction::PtrToInt)
3498 return U->getOperand(0);
3499 // If we find an add of a constant, a multiplied value, or a phi, it's
3500 // likely that the other operand will lead us to the base
3501 // object. We don't have to worry about the case where the
3502 // object address is somehow being computed by the multiply,
3503 // because our callers only care when the result is an
3504 // identifiable object.
3505 if (U->getOpcode() != Instruction::Add ||
3506 (!isa<ConstantInt>(U->getOperand(1)) &&
3507 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3508 !isa<PHINode>(U->getOperand(1))))
3509 return V;
3510 V = U->getOperand(0);
3511 } else {
3512 return V;
3513 }
3514 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3515 } while (true);
3516}
3517
3518/// This is a wrapper around GetUnderlyingObjects and adds support for basic
3519/// ptrtoint+arithmetic+inttoptr sequences.
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003520/// It returns false if unidentified object is found in GetUnderlyingObjects.
3521bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003522 SmallVectorImpl<Value *> &Objects,
3523 const DataLayout &DL) {
3524 SmallPtrSet<const Value *, 16> Visited;
3525 SmallVector<const Value *, 4> Working(1, V);
3526 do {
3527 V = Working.pop_back_val();
3528
3529 SmallVector<Value *, 4> Objs;
3530 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3531
3532 for (Value *V : Objs) {
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003533 if (!Visited.insert(V).second)
3534 continue;
3535 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3536 const Value *O =
3537 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3538 if (O->getType()->isPointerTy()) {
3539 Working.push_back(O);
3540 continue;
3541 }
3542 }
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003543 // If GetUnderlyingObjects fails to find an identifiable object,
3544 // getUnderlyingObjectsForCodeGen also fails for safety.
3545 if (!isIdentifiedObject(V)) {
3546 Objects.clear();
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003547 return false;
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003548 }
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003549 Objects.push_back(const_cast<Value *>(V));
3550 }
3551 } while (!Working.empty());
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003552 return true;
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003553}
3554
Sanjay Patelaee84212014-11-04 16:27:42 +00003555/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003556bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003557 for (const User *U : V->users()) {
3558 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003559 if (!II) return false;
3560
3561 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3562 II->getIntrinsicID() != Intrinsic::lifetime_end)
3563 return false;
3564 }
3565 return true;
3566}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003567
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003568bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3569 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003570 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003571 const Operator *Inst = dyn_cast<Operator>(V);
3572 if (!Inst)
3573 return false;
3574
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003575 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3576 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3577 if (C->canTrap())
3578 return false;
3579
3580 switch (Inst->getOpcode()) {
3581 default:
3582 return true;
3583 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003584 case Instruction::URem: {
3585 // x / y is undefined if y == 0.
3586 const APInt *V;
3587 if (match(Inst->getOperand(1), m_APInt(V)))
3588 return *V != 0;
3589 return false;
3590 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003591 case Instruction::SDiv:
3592 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003593 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003594 const APInt *Numerator, *Denominator;
3595 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3596 return false;
3597 // We cannot hoist this division if the denominator is 0.
3598 if (*Denominator == 0)
3599 return false;
3600 // It's safe to hoist if the denominator is not 0 or -1.
3601 if (*Denominator != -1)
3602 return true;
3603 // At this point we know that the denominator is -1. It is safe to hoist as
3604 // long we know that the numerator is not INT_MIN.
3605 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3606 return !Numerator->isMinSignedValue();
3607 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003608 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003609 }
3610 case Instruction::Load: {
3611 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003612 if (!LI->isUnordered() ||
3613 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003614 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003615 // Speculative load may load data from dirty regions.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00003616 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3617 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003618 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003619 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003620 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3621 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003622 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003623 case Instruction::Call: {
Matt Arsenaultcf5e7fe2017-04-28 21:13:09 +00003624 auto *CI = cast<const CallInst>(Inst);
3625 const Function *Callee = CI->getCalledFunction();
David Majnemer0a92f862015-08-28 21:13:39 +00003626
Matt Arsenault6a288c12017-05-03 02:26:10 +00003627 // The called function could have undefined behavior or side-effects, even
3628 // if marked readnone nounwind.
3629 return Callee && Callee->isSpeculatable();
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003630 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003631 case Instruction::VAArg:
3632 case Instruction::Alloca:
3633 case Instruction::Invoke:
3634 case Instruction::PHI:
3635 case Instruction::Store:
3636 case Instruction::Ret:
3637 case Instruction::Br:
3638 case Instruction::IndirectBr:
3639 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003640 case Instruction::Unreachable:
3641 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003642 case Instruction::AtomicRMW:
3643 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003644 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003645 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003646 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003647 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003648 case Instruction::CatchRet:
3649 case Instruction::CleanupPad:
3650 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003651 return false; // Misc instructions which have effects
3652 }
3653}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003654
Quentin Colombet6443cce2015-08-06 18:44:34 +00003655bool llvm::mayBeMemoryDependent(const Instruction &I) {
3656 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3657}
3658
Pete Cooper35b00d52016-08-13 01:05:32 +00003659OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3660 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003661 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003662 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003663 const Instruction *CxtI,
3664 const DominatorTree *DT) {
3665 // Multiplying n * m significant bits yields a result of n + m significant
3666 // bits. If the total number of significant bits does not exceed the
3667 // result bit width (minus 1), there is no overflow.
3668 // This means if we have enough leading zero bits in the operands
3669 // we can guarantee that the result does not overflow.
3670 // Ref: "Hacker's Delight" by Henry Warren
3671 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00003672 KnownBits LHSKnown(BitWidth);
3673 KnownBits RHSKnown(BitWidth);
3674 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
3675 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer491331a2015-01-02 07:29:43 +00003676 // Note that underestimating the number of zero bits gives a more
3677 // conservative answer.
Craig Topper8df66c62017-05-12 17:20:30 +00003678 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3679 RHSKnown.countMinLeadingZeros();
David Majnemer491331a2015-01-02 07:29:43 +00003680 // First handle the easy case: if we have enough zero bits there's
3681 // definitely no overflow.
3682 if (ZeroBits >= BitWidth)
3683 return OverflowResult::NeverOverflows;
3684
3685 // Get the largest possible values for each operand.
Craig Topperb45eabc2017-04-26 16:39:58 +00003686 APInt LHSMax = ~LHSKnown.Zero;
3687 APInt RHSMax = ~RHSKnown.Zero;
David Majnemer491331a2015-01-02 07:29:43 +00003688
3689 // We know the multiply operation doesn't overflow if the maximum values for
3690 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003691 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003692 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003693 if (!MaxOverflow)
3694 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003695
David Majnemerc8a576b2015-01-02 07:29:47 +00003696 // We know it always overflows if multiplying the smallest possible values for
3697 // the operands also results in overflow.
3698 bool MinOverflow;
Craig Topperb45eabc2017-04-26 16:39:58 +00003699 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003700 if (MinOverflow)
3701 return OverflowResult::AlwaysOverflows;
3702
3703 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003704}
David Majnemer5310c1e2015-01-07 00:39:50 +00003705
Pete Cooper35b00d52016-08-13 01:05:32 +00003706OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3707 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003708 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003709 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003710 const Instruction *CxtI,
3711 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +00003712 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3713 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3714 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003715
Craig Topper6e11a052017-05-08 16:22:48 +00003716 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003717 // The sign bit is set in both cases: this MUST overflow.
3718 // Create a simple add instruction, and insert it into the struct.
3719 return OverflowResult::AlwaysOverflows;
3720 }
3721
Craig Topper6e11a052017-05-08 16:22:48 +00003722 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003723 // The sign bit is clear in both cases: this CANNOT overflow.
3724 // Create a simple add instruction, and insert it into the struct.
3725 return OverflowResult::NeverOverflows;
3726 }
3727 }
3728
3729 return OverflowResult::MayOverflow;
3730}
James Molloy71b91c22015-05-11 14:42:20 +00003731
Craig Topperbb973722017-05-15 02:44:08 +00003732/// \brief Return true if we can prove that adding the two values of the
3733/// knownbits will not overflow.
3734/// Otherwise return false.
3735static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3736 const KnownBits &RHSKnown) {
3737 // Addition of two 2's complement numbers having opposite signs will never
3738 // overflow.
3739 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3740 (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3741 return true;
3742
3743 // If either of the values is known to be non-negative, adding them can only
3744 // overflow if the second is also non-negative, so we can assume that.
3745 // Two non-negative numbers will only overflow if there is a carry to the
3746 // sign bit, so we can check if even when the values are as big as possible
3747 // there is no overflow to the sign bit.
3748 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3749 APInt MaxLHS = ~LHSKnown.Zero;
3750 MaxLHS.clearSignBit();
3751 APInt MaxRHS = ~RHSKnown.Zero;
3752 MaxRHS.clearSignBit();
3753 APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3754 return Result.isSignBitClear();
3755 }
3756
3757 // If either of the values is known to be negative, adding them can only
3758 // overflow if the second is also negative, so we can assume that.
3759 // Two negative number will only overflow if there is no carry to the sign
3760 // bit, so we can check if even when the values are as small as possible
3761 // there is overflow to the sign bit.
3762 if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
3763 APInt MinLHS = LHSKnown.One;
3764 MinLHS.clearSignBit();
3765 APInt MinRHS = RHSKnown.One;
3766 MinRHS.clearSignBit();
3767 APInt Result = std::move(MinLHS) + std::move(MinRHS);
3768 return Result.isSignBitSet();
3769 }
3770
3771 // If we reached here it means that we know nothing about the sign bits.
3772 // In this case we can't know if there will be an overflow, since by
3773 // changing the sign bits any two values can be made to overflow.
3774 return false;
3775}
3776
Pete Cooper35b00d52016-08-13 01:05:32 +00003777static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3778 const Value *RHS,
3779 const AddOperator *Add,
3780 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003781 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003782 const Instruction *CxtI,
3783 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003784 if (Add && Add->hasNoSignedWrap()) {
3785 return OverflowResult::NeverOverflows;
3786 }
3787
Craig Topperbb973722017-05-15 02:44:08 +00003788 // If LHS and RHS each have at least two sign bits, the addition will look
3789 // like
3790 //
3791 // XX..... +
3792 // YY.....
3793 //
3794 // If the carry into the most significant position is 0, X and Y can't both
3795 // be 1 and therefore the carry out of the addition is also 0.
3796 //
3797 // If the carry into the most significant position is 1, X and Y can't both
3798 // be 0 and therefore the carry out of the addition is also 1.
3799 //
3800 // Since the carry into the most significant position is always equal to
3801 // the carry out of the addition, there is no signed overflow.
3802 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
3803 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
3804 return OverflowResult::NeverOverflows;
3805
Craig Topper6e11a052017-05-08 16:22:48 +00003806 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3807 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003808
Craig Topperbb973722017-05-15 02:44:08 +00003809 if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
Jingyue Wu10fcea52015-08-20 18:27:04 +00003810 return OverflowResult::NeverOverflows;
Jingyue Wu10fcea52015-08-20 18:27:04 +00003811
3812 // The remaining code needs Add to be available. Early returns if not so.
3813 if (!Add)
3814 return OverflowResult::MayOverflow;
3815
3816 // If the sign of Add is the same as at least one of the operands, this add
3817 // CANNOT overflow. This is particularly useful when the sum is
3818 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3819 // operands.
3820 bool LHSOrRHSKnownNonNegative =
Craig Topper6e11a052017-05-08 16:22:48 +00003821 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
Craig Topperbb973722017-05-15 02:44:08 +00003822 bool LHSOrRHSKnownNegative =
3823 (LHSKnown.isNegative() || RHSKnown.isNegative());
Jingyue Wu10fcea52015-08-20 18:27:04 +00003824 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
Craig Topper6e11a052017-05-08 16:22:48 +00003825 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
3826 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
3827 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003828 return OverflowResult::NeverOverflows;
3829 }
3830 }
3831
3832 return OverflowResult::MayOverflow;
3833}
3834
Pete Cooper35b00d52016-08-13 01:05:32 +00003835bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3836 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003837#ifndef NDEBUG
3838 auto IID = II->getIntrinsicID();
3839 assert((IID == Intrinsic::sadd_with_overflow ||
3840 IID == Intrinsic::uadd_with_overflow ||
3841 IID == Intrinsic::ssub_with_overflow ||
3842 IID == Intrinsic::usub_with_overflow ||
3843 IID == Intrinsic::smul_with_overflow ||
3844 IID == Intrinsic::umul_with_overflow) &&
3845 "Not an overflow intrinsic!");
3846#endif
3847
Pete Cooper35b00d52016-08-13 01:05:32 +00003848 SmallVector<const BranchInst *, 2> GuardingBranches;
3849 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003850
Pete Cooper35b00d52016-08-13 01:05:32 +00003851 for (const User *U : II->users()) {
3852 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003853 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3854
3855 if (EVI->getIndices()[0] == 0)
3856 Results.push_back(EVI);
3857 else {
3858 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3859
Pete Cooper35b00d52016-08-13 01:05:32 +00003860 for (const auto *U : EVI->users())
3861 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003862 assert(B->isConditional() && "How else is it using an i1?");
3863 GuardingBranches.push_back(B);
3864 }
3865 }
3866 } else {
3867 // We are using the aggregate directly in a way we don't want to analyze
3868 // here (storing it to a global, say).
3869 return false;
3870 }
3871 }
3872
Pete Cooper35b00d52016-08-13 01:05:32 +00003873 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003874 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3875 if (!NoWrapEdge.isSingleEdge())
3876 return false;
3877
3878 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003879 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003880 // If the extractvalue itself is not executed on overflow, the we don't
3881 // need to check each use separately, since domination is transitive.
3882 if (DT.dominates(NoWrapEdge, Result->getParent()))
3883 continue;
3884
3885 for (auto &RU : Result->uses())
3886 if (!DT.dominates(NoWrapEdge, RU))
3887 return false;
3888 }
3889
3890 return true;
3891 };
3892
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003893 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003894}
3895
3896
Pete Cooper35b00d52016-08-13 01:05:32 +00003897OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003898 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003899 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003900 const Instruction *CxtI,
3901 const DominatorTree *DT) {
3902 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003903 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003904}
3905
Pete Cooper35b00d52016-08-13 01:05:32 +00003906OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3907 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003908 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003909 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003910 const Instruction *CxtI,
3911 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003912 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003913}
3914
Jingyue Wu42f1d672015-07-28 18:22:40 +00003915bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003916 // A memory operation returns normally if it isn't volatile. A volatile
3917 // operation is allowed to trap.
3918 //
3919 // An atomic operation isn't guaranteed to return in a reasonable amount of
3920 // time because it's possible for another thread to interfere with it for an
3921 // arbitrary length of time, but programs aren't allowed to rely on that.
3922 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3923 return !LI->isVolatile();
3924 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3925 return !SI->isVolatile();
3926 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3927 return !CXI->isVolatile();
3928 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3929 return !RMWI->isVolatile();
3930 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3931 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003932
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003933 // If there is no successor, then execution can't transfer to it.
3934 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3935 return !CRI->unwindsToCaller();
3936 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3937 return !CatchSwitch->unwindsToCaller();
3938 if (isa<ResumeInst>(I))
3939 return false;
3940 if (isa<ReturnInst>(I))
3941 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00003942 if (isa<UnreachableInst>(I))
3943 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003944
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003945 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003946 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003947 // Call sites that throw have implicit non-local control flow.
3948 if (!CS.doesNotThrow())
3949 return false;
3950
3951 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3952 // etc. and thus not return. However, LLVM already assumes that
3953 //
3954 // - Thread exiting actions are modeled as writes to memory invisible to
3955 // the program.
3956 //
3957 // - Loops that don't have side effects (side effects are volatile/atomic
3958 // stores and IO) always terminate (see http://llvm.org/PR965).
3959 // Furthermore IO itself is also modeled as writes to memory invisible to
3960 // the program.
3961 //
3962 // We rely on those assumptions here, and use the memory effects of the call
3963 // target as a proxy for checking that it always returns.
3964
3965 // FIXME: This isn't aggressive enough; a call which only writes to a global
3966 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003967 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
Dan Gohman2c74fe92017-11-08 21:59:51 +00003968 match(I, m_Intrinsic<Intrinsic::assume>()) ||
3969 match(I, m_Intrinsic<Intrinsic::sideeffect>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003970 }
3971
3972 // Other instructions return normally.
3973 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003974}
3975
Philip Reamesfbffd122018-03-08 21:25:30 +00003976bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
3977 // TODO: This is slightly consdervative for invoke instruction since exiting
3978 // via an exception *is* normal control for them.
3979 for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
3980 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
3981 return false;
3982 return true;
3983}
3984
Jingyue Wu42f1d672015-07-28 18:22:40 +00003985bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3986 const Loop *L) {
3987 // The loop header is guaranteed to be executed for every iteration.
3988 //
3989 // FIXME: Relax this constraint to cover all basic blocks that are
3990 // guaranteed to be executed at every iteration.
3991 if (I->getParent() != L->getHeader()) return false;
3992
3993 for (const Instruction &LI : *L->getHeader()) {
3994 if (&LI == I) return true;
3995 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3996 }
3997 llvm_unreachable("Instruction not contained in its own parent basic block.");
3998}
3999
4000bool llvm::propagatesFullPoison(const Instruction *I) {
4001 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004002 case Instruction::Add:
4003 case Instruction::Sub:
4004 case Instruction::Xor:
4005 case Instruction::Trunc:
4006 case Instruction::BitCast:
4007 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00004008 case Instruction::Mul:
4009 case Instruction::Shl:
4010 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004011 // These operations all propagate poison unconditionally. Note that poison
4012 // is not any particular value, so xor or subtraction of poison with
4013 // itself still yields poison, not zero.
4014 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004015
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004016 case Instruction::AShr:
4017 case Instruction::SExt:
4018 // For these operations, one bit of the input is replicated across
4019 // multiple output bits. A replicated poison bit is still poison.
4020 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004021
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004022 case Instruction::ICmp:
4023 // Comparing poison with any value yields poison. This is why, for
4024 // instance, x s< (x +nsw 1) can be folded to true.
4025 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00004026
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004027 default:
4028 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004029 }
4030}
4031
4032const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
4033 switch (I->getOpcode()) {
4034 case Instruction::Store:
4035 return cast<StoreInst>(I)->getPointerOperand();
4036
4037 case Instruction::Load:
4038 return cast<LoadInst>(I)->getPointerOperand();
4039
4040 case Instruction::AtomicCmpXchg:
4041 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4042
4043 case Instruction::AtomicRMW:
4044 return cast<AtomicRMWInst>(I)->getPointerOperand();
4045
4046 case Instruction::UDiv:
4047 case Instruction::SDiv:
4048 case Instruction::URem:
4049 case Instruction::SRem:
4050 return I->getOperand(1);
4051
4052 default:
4053 return nullptr;
4054 }
4055}
4056
Sanjoy Das08989c72017-04-30 19:41:19 +00004057bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004058 // We currently only look for uses of poison values within the same basic
4059 // block, as that makes it easier to guarantee that the uses will be
4060 // executed given that PoisonI is executed.
4061 //
4062 // FIXME: Expand this to consider uses beyond the same basic block. To do
4063 // this, look out for the distinction between post-dominance and strong
4064 // post-dominance.
4065 const BasicBlock *BB = PoisonI->getParent();
4066
4067 // Set of instructions that we have proved will yield poison if PoisonI
4068 // does.
4069 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004070 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004071 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004072 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004073
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004074 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00004075
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004076 unsigned Iter = 0;
4077 while (Iter++ < MaxDepth) {
4078 for (auto &I : make_range(Begin, End)) {
4079 if (&I != PoisonI) {
4080 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
4081 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
4082 return true;
4083 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4084 return false;
4085 }
4086
4087 // Mark poison that propagates from I through uses of I.
4088 if (YieldsPoison.count(&I)) {
4089 for (const User *User : I.users()) {
4090 const Instruction *UserI = cast<Instruction>(User);
4091 if (propagatesFullPoison(UserI))
4092 YieldsPoison.insert(User);
4093 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004094 }
4095 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004096
4097 if (auto *NextBB = BB->getSingleSuccessor()) {
4098 if (Visited.insert(NextBB).second) {
4099 BB = NextBB;
4100 Begin = BB->getFirstNonPHI()->getIterator();
4101 End = BB->end();
4102 continue;
4103 }
4104 }
4105
4106 break;
Eugene Zelenko75075ef2017-09-01 21:37:29 +00004107 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004108 return false;
4109}
4110
Pete Cooper35b00d52016-08-13 01:05:32 +00004111static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00004112 if (FMF.noNaNs())
4113 return true;
4114
4115 if (auto *C = dyn_cast<ConstantFP>(V))
4116 return !C->isNaN();
4117 return false;
4118}
4119
Pete Cooper35b00d52016-08-13 01:05:32 +00004120static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00004121 if (auto *C = dyn_cast<ConstantFP>(V))
4122 return !C->isZero();
4123 return false;
4124}
4125
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004126/// Match clamp pattern for float types without care about NaNs or signed zeros.
4127/// Given non-min/max outer cmp/select from the clamp pattern this
4128/// function recognizes if it can be substitued by a "canonical" min/max
4129/// pattern.
4130static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4131 Value *CmpLHS, Value *CmpRHS,
4132 Value *TrueVal, Value *FalseVal,
4133 Value *&LHS, Value *&RHS) {
4134 // Try to match
4135 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4136 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4137 // and return description of the outer Max/Min.
4138
4139 // First, check if select has inverse order:
4140 if (CmpRHS == FalseVal) {
4141 std::swap(TrueVal, FalseVal);
4142 Pred = CmpInst::getInversePredicate(Pred);
4143 }
4144
4145 // Assume success now. If there's no match, callers should not use these anyway.
4146 LHS = TrueVal;
4147 RHS = FalseVal;
4148
4149 const APFloat *FC1;
4150 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4151 return {SPF_UNKNOWN, SPNB_NA, false};
4152
4153 const APFloat *FC2;
4154 switch (Pred) {
4155 case CmpInst::FCMP_OLT:
4156 case CmpInst::FCMP_OLE:
4157 case CmpInst::FCMP_ULT:
4158 case CmpInst::FCMP_ULE:
4159 if (match(FalseVal,
4160 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4161 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4162 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4163 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4164 break;
4165 case CmpInst::FCMP_OGT:
4166 case CmpInst::FCMP_OGE:
4167 case CmpInst::FCMP_UGT:
4168 case CmpInst::FCMP_UGE:
4169 if (match(FalseVal,
4170 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4171 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4172 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4173 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4174 break;
4175 default:
4176 break;
4177 }
4178
4179 return {SPF_UNKNOWN, SPNB_NA, false};
4180}
4181
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004182/// Recognize variations of:
4183/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4184static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4185 Value *CmpLHS, Value *CmpRHS,
4186 Value *TrueVal, Value *FalseVal) {
4187 // Swap the select operands and predicate to match the patterns below.
4188 if (CmpRHS != TrueVal) {
4189 Pred = ICmpInst::getSwappedPredicate(Pred);
4190 std::swap(TrueVal, FalseVal);
4191 }
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004192 const APInt *C1;
4193 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4194 const APInt *C2;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004195 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4196 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004197 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004198 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004199
4200 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4201 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004202 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004203 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004204
4205 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4206 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004207 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004208 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004209
4210 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4211 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004212 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004213 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004214 }
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004215 return {SPF_UNKNOWN, SPNB_NA, false};
4216}
4217
Sanjay Patel78114302018-01-02 20:56:45 +00004218/// Recognize variations of:
4219/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4220static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4221 Value *CmpLHS, Value *CmpRHS,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004222 Value *TVal, Value *FVal,
4223 unsigned Depth) {
Sanjay Patel78114302018-01-02 20:56:45 +00004224 // TODO: Allow FP min/max with nnan/nsz.
4225 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
4226
4227 Value *A, *B;
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004228 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
Sanjay Patel78114302018-01-02 20:56:45 +00004229 if (!SelectPatternResult::isMinOrMax(L.Flavor))
4230 return {SPF_UNKNOWN, SPNB_NA, false};
4231
4232 Value *C, *D;
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004233 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
Sanjay Patel78114302018-01-02 20:56:45 +00004234 if (L.Flavor != R.Flavor)
4235 return {SPF_UNKNOWN, SPNB_NA, false};
4236
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004237 // We have something like: x Pred y ? min(a, b) : min(c, d).
4238 // Try to match the compare to the min/max operations of the select operands.
4239 // First, make sure we have the right compare predicate.
Sanjay Patel78114302018-01-02 20:56:45 +00004240 switch (L.Flavor) {
4241 case SPF_SMIN:
4242 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4243 Pred = ICmpInst::getSwappedPredicate(Pred);
4244 std::swap(CmpLHS, CmpRHS);
4245 }
4246 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4247 break;
4248 return {SPF_UNKNOWN, SPNB_NA, false};
4249 case SPF_SMAX:
4250 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4251 Pred = ICmpInst::getSwappedPredicate(Pred);
4252 std::swap(CmpLHS, CmpRHS);
4253 }
4254 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4255 break;
4256 return {SPF_UNKNOWN, SPNB_NA, false};
4257 case SPF_UMIN:
4258 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4259 Pred = ICmpInst::getSwappedPredicate(Pred);
4260 std::swap(CmpLHS, CmpRHS);
4261 }
4262 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4263 break;
4264 return {SPF_UNKNOWN, SPNB_NA, false};
4265 case SPF_UMAX:
4266 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4267 Pred = ICmpInst::getSwappedPredicate(Pred);
4268 std::swap(CmpLHS, CmpRHS);
4269 }
4270 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4271 break;
4272 return {SPF_UNKNOWN, SPNB_NA, false};
4273 default:
Sanjay Patel7dfe96a2018-01-08 18:31:13 +00004274 return {SPF_UNKNOWN, SPNB_NA, false};
Sanjay Patel78114302018-01-02 20:56:45 +00004275 }
4276
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004277 // If there is a common operand in the already matched min/max and the other
4278 // min/max operands match the compare operands (either directly or inverted),
4279 // then this is min/max of the same flavor.
4280
Sanjay Patel78114302018-01-02 20:56:45 +00004281 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004282 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4283 if (D == B) {
4284 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4285 match(A, m_Not(m_Specific(CmpRHS)))))
4286 return {L.Flavor, SPNB_NA, false};
4287 }
Sanjay Patel78114302018-01-02 20:56:45 +00004288 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004289 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4290 if (C == B) {
4291 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4292 match(A, m_Not(m_Specific(CmpRHS)))))
4293 return {L.Flavor, SPNB_NA, false};
4294 }
Sanjay Patel78114302018-01-02 20:56:45 +00004295 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004296 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4297 if (D == A) {
4298 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4299 match(B, m_Not(m_Specific(CmpRHS)))))
4300 return {L.Flavor, SPNB_NA, false};
4301 }
Sanjay Patel78114302018-01-02 20:56:45 +00004302 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004303 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4304 if (C == A) {
4305 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4306 match(B, m_Not(m_Specific(CmpRHS)))))
4307 return {L.Flavor, SPNB_NA, false};
4308 }
Sanjay Patel78114302018-01-02 20:56:45 +00004309
4310 return {SPF_UNKNOWN, SPNB_NA, false};
4311}
4312
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004313/// Match non-obvious integer minimum and maximum sequences.
4314static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4315 Value *CmpLHS, Value *CmpRHS,
4316 Value *TrueVal, Value *FalseVal,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004317 Value *&LHS, Value *&RHS,
4318 unsigned Depth) {
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004319 // Assume success. If there's no match, callers should not use these anyway.
4320 LHS = TrueVal;
4321 RHS = FalseVal;
4322
4323 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4324 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4325 return SPR;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004326
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004327 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
Sanjay Patel78114302018-01-02 20:56:45 +00004328 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4329 return SPR;
4330
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004331 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
Sanjay Patel819f0962016-11-13 19:30:19 +00004332 return {SPF_UNKNOWN, SPNB_NA, false};
4333
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004334 // Z = X -nsw Y
4335 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4336 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4337 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004338 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004339 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004340
4341 // Z = X -nsw Y
4342 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4343 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4344 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004345 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004346 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004347
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004348 const APInt *C1;
Sanjay Patel819f0962016-11-13 19:30:19 +00004349 if (!match(CmpRHS, m_APInt(C1)))
4350 return {SPF_UNKNOWN, SPNB_NA, false};
4351
4352 // An unsigned min/max can be written with a signed compare.
4353 const APInt *C2;
4354 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4355 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4356 // Is the sign bit set?
4357 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4358 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Craig Topper81d772c2017-11-08 19:38:45 +00004359 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4360 C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004361 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004362
4363 // Is the sign bit clear?
4364 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4365 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004366 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4367 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004368 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004369 }
4370
4371 // Look through 'not' ops to find disguised signed min/max.
4372 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4373 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4374 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004375 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004376 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004377
4378 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4379 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4380 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004381 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004382 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004383
4384 return {SPF_UNKNOWN, SPNB_NA, false};
4385}
4386
James Molloy134bec22015-08-11 09:12:57 +00004387static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4388 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004389 Value *CmpLHS, Value *CmpRHS,
4390 Value *TrueVal, Value *FalseVal,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004391 Value *&LHS, Value *&RHS,
4392 unsigned Depth) {
James Molloy71b91c22015-05-11 14:42:20 +00004393 LHS = CmpLHS;
4394 RHS = CmpRHS;
4395
Sanjay Patel9a399792017-12-26 15:09:19 +00004396 // Signed zero may return inconsistent results between implementations.
4397 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4398 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4399 // Therefore, we behave conservatively and only proceed if at least one of the
4400 // operands is known to not be zero or if we don't care about signed zero.
James Molloy134bec22015-08-11 09:12:57 +00004401 switch (Pred) {
4402 default: break;
Sanjay Patel9a399792017-12-26 15:09:19 +00004403 // FIXME: Include OGT/OLT/UGT/ULT.
James Molloy134bec22015-08-11 09:12:57 +00004404 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4405 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4406 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4407 !isKnownNonZero(CmpRHS))
4408 return {SPF_UNKNOWN, SPNB_NA, false};
4409 }
4410
4411 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4412 bool Ordered = false;
4413
4414 // When given one NaN and one non-NaN input:
4415 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4416 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4417 // ordered comparison fails), which could be NaN or non-NaN.
4418 // so here we discover exactly what NaN behavior is required/accepted.
4419 if (CmpInst::isFPPredicate(Pred)) {
4420 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4421 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4422
4423 if (LHSSafe && RHSSafe) {
4424 // Both operands are known non-NaN.
4425 NaNBehavior = SPNB_RETURNS_ANY;
4426 } else if (CmpInst::isOrdered(Pred)) {
4427 // An ordered comparison will return false when given a NaN, so it
4428 // returns the RHS.
4429 Ordered = true;
4430 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004431 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004432 NaNBehavior = SPNB_RETURNS_NAN;
4433 else if (RHSSafe)
4434 NaNBehavior = SPNB_RETURNS_OTHER;
4435 else
4436 // Completely unsafe.
4437 return {SPF_UNKNOWN, SPNB_NA, false};
4438 } else {
4439 Ordered = false;
4440 // An unordered comparison will return true when given a NaN, so it
4441 // returns the LHS.
4442 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004443 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004444 NaNBehavior = SPNB_RETURNS_OTHER;
4445 else if (RHSSafe)
4446 NaNBehavior = SPNB_RETURNS_NAN;
4447 else
4448 // Completely unsafe.
4449 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004450 }
4451 }
4452
James Molloy71b91c22015-05-11 14:42:20 +00004453 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004454 std::swap(CmpLHS, CmpRHS);
4455 Pred = CmpInst::getSwappedPredicate(Pred);
4456 if (NaNBehavior == SPNB_RETURNS_NAN)
4457 NaNBehavior = SPNB_RETURNS_OTHER;
4458 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4459 NaNBehavior = SPNB_RETURNS_NAN;
4460 Ordered = !Ordered;
4461 }
4462
4463 // ([if]cmp X, Y) ? X : Y
4464 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004465 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004466 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004467 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004468 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004469 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004470 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004471 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004472 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004473 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004474 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4475 case FCmpInst::FCMP_UGT:
4476 case FCmpInst::FCMP_UGE:
4477 case FCmpInst::FCMP_OGT:
4478 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4479 case FCmpInst::FCMP_ULT:
4480 case FCmpInst::FCMP_ULE:
4481 case FCmpInst::FCMP_OLT:
4482 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004483 }
4484 }
4485
Sanjay Patele372aec2016-10-27 15:26:10 +00004486 const APInt *C1;
4487 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004488 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4489 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4490
4491 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4492 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Craig Topper81d772c2017-11-08 19:38:45 +00004493 if (Pred == ICmpInst::ICMP_SGT &&
4494 (C1->isNullValue() || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004495 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004496 }
4497
4498 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4499 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Craig Topper81d772c2017-11-08 19:38:45 +00004500 if (Pred == ICmpInst::ICMP_SLT &&
4501 (C1->isNullValue() || C1->isOneValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004502 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004503 }
4504 }
James Molloy71b91c22015-05-11 14:42:20 +00004505 }
4506
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004507 if (CmpInst::isIntPredicate(Pred))
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004508 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004509
4510 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4511 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4512 // semantics than minNum. Be conservative in such case.
4513 if (NaNBehavior != SPNB_RETURNS_ANY ||
4514 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4515 !isKnownNonZero(CmpRHS)))
4516 return {SPF_UNKNOWN, SPNB_NA, false};
4517
4518 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004519}
James Molloy270ef8c2015-05-15 16:04:50 +00004520
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004521/// Helps to match a select pattern in case of a type mismatch.
4522///
4523/// The function processes the case when type of true and false values of a
4524/// select instruction differs from type of the cmp instruction operands because
Vedant Kumar1a8456d2018-03-02 18:57:02 +00004525/// of a cast instruction. The function checks if it is legal to move the cast
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004526/// operation after "select". If yes, it returns the new second value of
4527/// "select" (with the assumption that cast is moved):
4528/// 1. As operand of cast instruction when both values of "select" are same cast
4529/// instructions.
4530/// 2. As restored constant (by applying reverse cast operation) when the first
4531/// value of the "select" is a cast operation and the second value is a
4532/// constant.
4533/// NOTE: We return only the new second value because the first value could be
4534/// accessed as operand of cast instruction.
James Molloy569cea62015-09-02 17:25:25 +00004535static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4536 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004537 auto *Cast1 = dyn_cast<CastInst>(V1);
4538 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004539 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004540
Sanjay Patel14a4b812017-01-29 16:34:57 +00004541 *CastOp = Cast1->getOpcode();
4542 Type *SrcTy = Cast1->getSrcTy();
4543 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4544 // If V1 and V2 are both the same cast from the same type, look through V1.
4545 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4546 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004547 return nullptr;
4548 }
4549
Sanjay Patel14a4b812017-01-29 16:34:57 +00004550 auto *C = dyn_cast<Constant>(V2);
4551 if (!C)
4552 return nullptr;
4553
David Majnemerd2a074b2016-04-29 18:40:34 +00004554 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004555 switch (*CastOp) {
4556 case Instruction::ZExt:
4557 if (CmpI->isUnsigned())
4558 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4559 break;
4560 case Instruction::SExt:
4561 if (CmpI->isSigned())
4562 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4563 break;
4564 case Instruction::Trunc:
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004565 Constant *CmpConst;
Nikolai Bozhenov9723f122017-10-18 14:24:50 +00004566 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
4567 CmpConst->getType() == SrcTy) {
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004568 // Here we have the following case:
4569 //
4570 // %cond = cmp iN %x, CmpConst
4571 // %tr = trunc iN %x to iK
4572 // %narrowsel = select i1 %cond, iK %t, iK C
4573 //
4574 // We can always move trunc after select operation:
4575 //
4576 // %cond = cmp iN %x, CmpConst
4577 // %widesel = select i1 %cond, iN %x, iN CmpConst
4578 // %tr = trunc iN %widesel to iK
4579 //
4580 // Note that C could be extended in any way because we don't care about
4581 // upper bits after truncation. It can't be abs pattern, because it would
4582 // look like:
4583 //
4584 // select i1 %cond, x, -x.
4585 //
4586 // So only min/max pattern could be matched. Such match requires widened C
4587 // == CmpConst. That is why set widened C = CmpConst, condition trunc
4588 // CmpConst == C is checked below.
4589 CastedTo = CmpConst;
4590 } else {
4591 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4592 }
Sanjay Patel14a4b812017-01-29 16:34:57 +00004593 break;
4594 case Instruction::FPTrunc:
4595 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4596 break;
4597 case Instruction::FPExt:
4598 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4599 break;
4600 case Instruction::FPToUI:
4601 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4602 break;
4603 case Instruction::FPToSI:
4604 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4605 break;
4606 case Instruction::UIToFP:
4607 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4608 break;
4609 case Instruction::SIToFP:
4610 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4611 break;
4612 default:
4613 break;
4614 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004615
4616 if (!CastedTo)
4617 return nullptr;
4618
David Majnemerd2a074b2016-04-29 18:40:34 +00004619 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004620 Constant *CastedBack =
4621 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004622 if (CastedBack != C)
4623 return nullptr;
4624
4625 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004626}
4627
Sanjay Patele8dc0902016-05-23 17:57:54 +00004628SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004629 Instruction::CastOps *CastOp,
4630 unsigned Depth) {
4631 if (Depth >= MaxDepth)
4632 return {SPF_UNKNOWN, SPNB_NA, false};
4633
James Molloy270ef8c2015-05-15 16:04:50 +00004634 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004635 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004636
James Molloy134bec22015-08-11 09:12:57 +00004637 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4638 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004639
James Molloy134bec22015-08-11 09:12:57 +00004640 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004641 Value *CmpLHS = CmpI->getOperand(0);
4642 Value *CmpRHS = CmpI->getOperand(1);
4643 Value *TrueVal = SI->getTrueValue();
4644 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004645 FastMathFlags FMF;
4646 if (isa<FPMathOperator>(CmpI))
4647 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004648
4649 // Bail out early.
4650 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004651 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004652
4653 // Deal with type mismatches.
4654 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
Sanjay Patel9a399792017-12-26 15:09:19 +00004655 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
4656 // If this is a potential fmin/fmax with a cast to integer, then ignore
4657 // -0.0 because there is no corresponding integer value.
4658 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
4659 FMF.setNoSignedZeros();
James Molloy134bec22015-08-11 09:12:57 +00004660 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004661 cast<CastInst>(TrueVal)->getOperand(0), C,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004662 LHS, RHS, Depth);
Sanjay Patel9a399792017-12-26 15:09:19 +00004663 }
4664 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
4665 // If this is a potential fmin/fmax with a cast to integer, then ignore
4666 // -0.0 because there is no corresponding integer value.
4667 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
4668 FMF.setNoSignedZeros();
James Molloy134bec22015-08-11 09:12:57 +00004669 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004670 C, cast<CastInst>(FalseVal)->getOperand(0),
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004671 LHS, RHS, Depth);
Sanjay Patel9a399792017-12-26 15:09:19 +00004672 }
James Molloy270ef8c2015-05-15 16:04:50 +00004673 }
James Molloy134bec22015-08-11 09:12:57 +00004674 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004675 LHS, RHS, Depth);
James Molloy270ef8c2015-05-15 16:04:50 +00004676}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004677
Sanjay Patel7ed0bc22018-03-06 16:57:55 +00004678CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
4679 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
4680 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
4681 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
4682 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
4683 if (SPF == SPF_FMINNUM)
4684 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
4685 if (SPF == SPF_FMAXNUM)
4686 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
4687 llvm_unreachable("unhandled!");
4688}
4689
4690SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
4691 if (SPF == SPF_SMIN) return SPF_SMAX;
4692 if (SPF == SPF_UMIN) return SPF_UMAX;
4693 if (SPF == SPF_SMAX) return SPF_SMIN;
4694 if (SPF == SPF_UMAX) return SPF_UMIN;
4695 llvm_unreachable("unhandled!");
4696}
4697
4698CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
4699 return getMinMaxPred(getInverseMinMaxFlavor(SPF));
4700}
4701
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004702/// Return true if "icmp Pred LHS RHS" is always true.
Chad Rosiere42b44b2017-07-28 14:39:06 +00004703static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
4704 const Value *RHS, const DataLayout &DL,
4705 unsigned Depth) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004706 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004707 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4708 return true;
4709
4710 switch (Pred) {
4711 default:
4712 return false;
4713
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004714 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004715 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004716
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004717 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004718 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004719 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004720 return false;
4721 }
4722
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004723 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004724 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004725
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004726 // LHS u<= LHS +_{nuw} C for any C
4727 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004728 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004729
4730 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004731 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4732 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004733 const APInt *&CA, const APInt *&CB) {
4734 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4735 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4736 return true;
4737
4738 // If X & C == 0 then (X | C) == X +_{nuw} C
4739 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4740 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
Craig Topperb45eabc2017-04-26 16:39:58 +00004741 KnownBits Known(CA->getBitWidth());
Chad Rosiere42b44b2017-07-28 14:39:06 +00004742 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
4743 /*CxtI*/ nullptr, /*DT*/ nullptr);
Craig Topperb45eabc2017-04-26 16:39:58 +00004744 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
Sanjoy Das92568102015-11-10 23:56:20 +00004745 return true;
4746 }
4747
4748 return false;
4749 };
4750
Pete Cooper35b00d52016-08-13 01:05:32 +00004751 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004752 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004753 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4754 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004755
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004756 return false;
4757 }
4758 }
4759}
4760
4761/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004762/// ALHS ARHS" is true. Otherwise, return None.
4763static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004764isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
Chad Rosiere42b44b2017-07-28 14:39:06 +00004765 const Value *ARHS, const Value *BLHS, const Value *BRHS,
4766 const DataLayout &DL, unsigned Depth) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004767 switch (Pred) {
4768 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004769 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004770
4771 case CmpInst::ICMP_SLT:
4772 case CmpInst::ICMP_SLE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004773 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
4774 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004775 return true;
4776 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004777
4778 case CmpInst::ICMP_ULT:
4779 case CmpInst::ICMP_ULE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004780 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
4781 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004782 return true;
4783 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004784 }
4785}
4786
Chad Rosier226a7342016-05-05 17:41:19 +00004787/// Return true if the operands of the two compares match. IsSwappedOps is true
4788/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004789static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4790 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004791 bool &IsSwappedOps) {
4792
4793 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4794 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4795 return IsMatchingOps || IsSwappedOps;
4796}
4797
Chad Rosier41dd31f2016-04-20 19:15:26 +00004798/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4799/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4800/// BRHS" is false. Otherwise, return None if we can't infer anything.
4801static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004802 const Value *ALHS,
4803 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004804 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004805 const Value *BLHS,
4806 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004807 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004808 // Canonicalize the operands so they're matching.
4809 if (IsSwappedOps) {
4810 std::swap(BLHS, BRHS);
4811 BPred = ICmpInst::getSwappedPredicate(BPred);
4812 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004813 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004814 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004815 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004816 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004817
Chad Rosier41dd31f2016-04-20 19:15:26 +00004818 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004819}
4820
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004821/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4822/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4823/// C2" is false. Otherwise, return None if we can't infer anything.
4824static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004825isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4826 const ConstantInt *C1,
4827 CmpInst::Predicate BPred,
4828 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004829 assert(ALHS == BLHS && "LHS operands must match.");
4830 ConstantRange DomCR =
4831 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4832 ConstantRange CR =
4833 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4834 ConstantRange Intersection = DomCR.intersectWith(CR);
4835 ConstantRange Difference = DomCR.difference(CR);
4836 if (Intersection.isEmptySet())
4837 return false;
4838 if (Difference.isEmptySet())
4839 return true;
4840 return None;
4841}
4842
Chad Rosier2f498032017-07-28 18:47:43 +00004843/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4844/// false. Otherwise, return None if we can't infer anything.
4845static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
4846 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004847 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004848 unsigned Depth) {
4849 Value *ALHS = LHS->getOperand(0);
4850 Value *ARHS = LHS->getOperand(1);
Chad Rosiera72a9ff2017-07-06 20:00:25 +00004851 // The rest of the logic assumes the LHS condition is true. If that's not the
4852 // case, invert the predicate to make it so.
Chad Rosier2f498032017-07-28 18:47:43 +00004853 ICmpInst::Predicate APred =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004854 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
Chad Rosier2f498032017-07-28 18:47:43 +00004855
4856 Value *BLHS = RHS->getOperand(0);
4857 Value *BRHS = RHS->getOperand(1);
4858 ICmpInst::Predicate BPred = RHS->getPredicate();
Chad Rosiere2cbd132016-04-25 17:23:36 +00004859
Chad Rosier226a7342016-05-05 17:41:19 +00004860 // Can we infer anything when the two compares have matching operands?
4861 bool IsSwappedOps;
4862 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4863 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4864 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004865 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004866 // No amount of additional analysis will infer the second condition, so
4867 // early exit.
4868 return None;
4869 }
4870
4871 // Can we infer anything when the LHS operands match and the RHS operands are
4872 // constants (not necessarily matching)?
4873 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4874 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4875 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4876 cast<ConstantInt>(BRHS)))
4877 return Implication;
4878 // No amount of additional analysis will infer the second condition, so
4879 // early exit.
4880 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004881 }
4882
Chad Rosier41dd31f2016-04-20 19:15:26 +00004883 if (APred == BPred)
Chad Rosiere42b44b2017-07-28 14:39:06 +00004884 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
Chad Rosier41dd31f2016-04-20 19:15:26 +00004885 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004886}
Chad Rosier2f498032017-07-28 18:47:43 +00004887
Chad Rosierf73a10d2017-08-01 19:22:36 +00004888/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4889/// false. Otherwise, return None if we can't infer anything. We expect the
4890/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
4891static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
4892 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004893 const DataLayout &DL, bool LHSIsTrue,
Chad Rosierf73a10d2017-08-01 19:22:36 +00004894 unsigned Depth) {
4895 // The LHS must be an 'or' or an 'and' instruction.
4896 assert((LHS->getOpcode() == Instruction::And ||
4897 LHS->getOpcode() == Instruction::Or) &&
4898 "Expected LHS to be 'and' or 'or'.");
4899
Davide Italiano1a943a92017-08-09 16:06:54 +00004900 assert(Depth <= MaxDepth && "Hit recursion limit");
Chad Rosierf73a10d2017-08-01 19:22:36 +00004901
4902 // If the result of an 'or' is false, then we know both legs of the 'or' are
4903 // false. Similarly, if the result of an 'and' is true, then we know both
4904 // legs of the 'and' are true.
4905 Value *ALHS, *ARHS;
Chad Rosierdfd1de62017-08-01 20:18:54 +00004906 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
4907 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
Chad Rosierf73a10d2017-08-01 19:22:36 +00004908 // FIXME: Make this non-recursion.
4909 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004910 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004911 return Implication;
4912 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004913 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004914 return Implication;
4915 return None;
4916 }
4917 return None;
4918}
4919
Chad Rosier2f498032017-07-28 18:47:43 +00004920Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004921 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004922 unsigned Depth) {
Davide Italiano30e51942017-08-09 15:13:50 +00004923 // Bail out when we hit the limit.
4924 if (Depth == MaxDepth)
4925 return None;
4926
Chad Rosierf73a10d2017-08-01 19:22:36 +00004927 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
4928 // example.
Chad Rosier2f498032017-07-28 18:47:43 +00004929 if (LHS->getType() != RHS->getType())
4930 return None;
4931
4932 Type *OpTy = LHS->getType();
Chad Rosierf73a10d2017-08-01 19:22:36 +00004933 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
Chad Rosier2f498032017-07-28 18:47:43 +00004934
4935 // LHS ==> RHS by definition
4936 if (LHS == RHS)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004937 return LHSIsTrue;
Chad Rosier2f498032017-07-28 18:47:43 +00004938
Chad Rosierf73a10d2017-08-01 19:22:36 +00004939 // FIXME: Extending the code below to handle vectors.
Chad Rosier2f498032017-07-28 18:47:43 +00004940 if (OpTy->isVectorTy())
Chad Rosier2f498032017-07-28 18:47:43 +00004941 return None;
Chad Rosierf73a10d2017-08-01 19:22:36 +00004942
Chad Rosier2f498032017-07-28 18:47:43 +00004943 assert(OpTy->isIntegerTy(1) && "implied by above");
4944
Chad Rosier2f498032017-07-28 18:47:43 +00004945 // Both LHS and RHS are icmps.
Chad Rosierf73a10d2017-08-01 19:22:36 +00004946 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
4947 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
4948 if (LHSCmp && RHSCmp)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004949 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004950
Chad Rosierf73a10d2017-08-01 19:22:36 +00004951 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
4952 // an icmp. FIXME: Add support for and/or on the RHS.
4953 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
4954 if (LHSBO && RHSCmp) {
4955 if ((LHSBO->getOpcode() == Instruction::And ||
4956 LHSBO->getOpcode() == Instruction::Or))
Chad Rosierdfd1de62017-08-01 20:18:54 +00004957 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004958 }
Chad Rosierf73a10d2017-08-01 19:22:36 +00004959 return None;
Chad Rosier2f498032017-07-28 18:47:43 +00004960}