blob: 649df4c58782d4b155024d600462f862bb0aa02a [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Richard Smith32dbdf62014-07-31 04:25:36 +000078 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000132 incrementing counter, starting with 0). Note that basic blocks are
133 included in this numbering. For example, if the entry basic block is not
134 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000135
136It also shows a convention that we follow in this document. When
137demonstrating instructions, we will follow an instruction with a comment
138that defines the type and name of value produced.
139
140High Level Structure
141====================
142
143Module Structure
144----------------
145
146LLVM programs are composed of ``Module``'s, each of which is a
147translation unit of the input programs. Each module consists of
148functions, global variables, and symbol table entries. Modules may be
149combined together with the LLVM linker, which merges function (and
150global variable) definitions, resolves forward declarations, and merges
151symbol table entries. Here is an example of the "hello world" module:
152
153.. code-block:: llvm
154
Michael Liaoa7699082013-03-06 18:24:34 +0000155 ; Declare the string constant as a global constant.
156 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000157
Michael Liaoa7699082013-03-06 18:24:34 +0000158 ; External declaration of the puts function
159 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000160
161 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000162 define i32 @main() { ; i32()*
163 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000164 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
165
Michael Liaoa7699082013-03-06 18:24:34 +0000166 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000167 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000168 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000169 }
170
171 ; Named metadata
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000172 !0 = metadata !{i32 42, null, metadata !"string"}
173 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000174
175This example is made up of a :ref:`global variable <globalvars>` named
176"``.str``", an external declaration of the "``puts``" function, a
177:ref:`function definition <functionstructure>` for "``main``" and
178:ref:`named metadata <namedmetadatastructure>` "``foo``".
179
180In general, a module is made up of a list of global values (where both
181functions and global variables are global values). Global values are
182represented by a pointer to a memory location (in this case, a pointer
183to an array of char, and a pointer to a function), and have one of the
184following :ref:`linkage types <linkage>`.
185
186.. _linkage:
187
188Linkage Types
189-------------
190
191All Global Variables and Functions have one of the following types of
192linkage:
193
194``private``
195 Global values with "``private``" linkage are only directly
196 accessible by objects in the current module. In particular, linking
197 code into a module with an private global value may cause the
198 private to be renamed as necessary to avoid collisions. Because the
199 symbol is private to the module, all references can be updated. This
200 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000201``internal``
202 Similar to private, but the value shows as a local symbol
203 (``STB_LOCAL`` in the case of ELF) in the object file. This
204 corresponds to the notion of the '``static``' keyword in C.
205``available_externally``
206 Globals with "``available_externally``" linkage are never emitted
207 into the object file corresponding to the LLVM module. They exist to
208 allow inlining and other optimizations to take place given knowledge
209 of the definition of the global, which is known to be somewhere
210 outside the module. Globals with ``available_externally`` linkage
211 are allowed to be discarded at will, and are otherwise the same as
212 ``linkonce_odr``. This linkage type is only allowed on definitions,
213 not declarations.
214``linkonce``
215 Globals with "``linkonce``" linkage are merged with other globals of
216 the same name when linkage occurs. This can be used to implement
217 some forms of inline functions, templates, or other code which must
218 be generated in each translation unit that uses it, but where the
219 body may be overridden with a more definitive definition later.
220 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
221 that ``linkonce`` linkage does not actually allow the optimizer to
222 inline the body of this function into callers because it doesn't
223 know if this definition of the function is the definitive definition
224 within the program or whether it will be overridden by a stronger
225 definition. To enable inlining and other optimizations, use
226 "``linkonce_odr``" linkage.
227``weak``
228 "``weak``" linkage has the same merging semantics as ``linkonce``
229 linkage, except that unreferenced globals with ``weak`` linkage may
230 not be discarded. This is used for globals that are declared "weak"
231 in C source code.
232``common``
233 "``common``" linkage is most similar to "``weak``" linkage, but they
234 are used for tentative definitions in C, such as "``int X;``" at
235 global scope. Symbols with "``common``" linkage are merged in the
236 same way as ``weak symbols``, and they may not be deleted if
237 unreferenced. ``common`` symbols may not have an explicit section,
238 must have a zero initializer, and may not be marked
239 ':ref:`constant <globalvars>`'. Functions and aliases may not have
240 common linkage.
241
242.. _linkage_appending:
243
244``appending``
245 "``appending``" linkage may only be applied to global variables of
246 pointer to array type. When two global variables with appending
247 linkage are linked together, the two global arrays are appended
248 together. This is the LLVM, typesafe, equivalent of having the
249 system linker append together "sections" with identical names when
250 .o files are linked.
251``extern_weak``
252 The semantics of this linkage follow the ELF object file model: the
253 symbol is weak until linked, if not linked, the symbol becomes null
254 instead of being an undefined reference.
255``linkonce_odr``, ``weak_odr``
256 Some languages allow differing globals to be merged, such as two
257 functions with different semantics. Other languages, such as
258 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000259 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000260 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
261 global will only be merged with equivalent globals. These linkage
262 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000263``external``
264 If none of the above identifiers are used, the global is externally
265 visible, meaning that it participates in linkage and can be used to
266 resolve external symbol references.
267
Sean Silvab084af42012-12-07 10:36:55 +0000268It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000269other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000270
Sean Silvab084af42012-12-07 10:36:55 +0000271.. _callingconv:
272
273Calling Conventions
274-------------------
275
276LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
277:ref:`invokes <i_invoke>` can all have an optional calling convention
278specified for the call. The calling convention of any pair of dynamic
279caller/callee must match, or the behavior of the program is undefined.
280The following calling conventions are supported by LLVM, and more may be
281added in the future:
282
283"``ccc``" - The C calling convention
284 This calling convention (the default if no other calling convention
285 is specified) matches the target C calling conventions. This calling
286 convention supports varargs function calls and tolerates some
287 mismatch in the declared prototype and implemented declaration of
288 the function (as does normal C).
289"``fastcc``" - The fast calling convention
290 This calling convention attempts to make calls as fast as possible
291 (e.g. by passing things in registers). This calling convention
292 allows the target to use whatever tricks it wants to produce fast
293 code for the target, without having to conform to an externally
294 specified ABI (Application Binary Interface). `Tail calls can only
295 be optimized when this, the GHC or the HiPE convention is
296 used. <CodeGenerator.html#id80>`_ This calling convention does not
297 support varargs and requires the prototype of all callees to exactly
298 match the prototype of the function definition.
299"``coldcc``" - The cold calling convention
300 This calling convention attempts to make code in the caller as
301 efficient as possible under the assumption that the call is not
302 commonly executed. As such, these calls often preserve all registers
303 so that the call does not break any live ranges in the caller side.
304 This calling convention does not support varargs and requires the
305 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000306 function definition. Furthermore the inliner doesn't consider such function
307 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000308"``cc 10``" - GHC convention
309 This calling convention has been implemented specifically for use by
310 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
311 It passes everything in registers, going to extremes to achieve this
312 by disabling callee save registers. This calling convention should
313 not be used lightly but only for specific situations such as an
314 alternative to the *register pinning* performance technique often
315 used when implementing functional programming languages. At the
316 moment only X86 supports this convention and it has the following
317 limitations:
318
319 - On *X86-32* only supports up to 4 bit type parameters. No
320 floating point types are supported.
321 - On *X86-64* only supports up to 10 bit type parameters and 6
322 floating point parameters.
323
324 This calling convention supports `tail call
325 optimization <CodeGenerator.html#id80>`_ but requires both the
326 caller and callee are using it.
327"``cc 11``" - The HiPE calling convention
328 This calling convention has been implemented specifically for use by
329 the `High-Performance Erlang
330 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
331 native code compiler of the `Ericsson's Open Source Erlang/OTP
332 system <http://www.erlang.org/download.shtml>`_. It uses more
333 registers for argument passing than the ordinary C calling
334 convention and defines no callee-saved registers. The calling
335 convention properly supports `tail call
336 optimization <CodeGenerator.html#id80>`_ but requires that both the
337 caller and the callee use it. It uses a *register pinning*
338 mechanism, similar to GHC's convention, for keeping frequently
339 accessed runtime components pinned to specific hardware registers.
340 At the moment only X86 supports this convention (both 32 and 64
341 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000342"``webkit_jscc``" - WebKit's JavaScript calling convention
343 This calling convention has been implemented for `WebKit FTL JIT
344 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
345 stack right to left (as cdecl does), and returns a value in the
346 platform's customary return register.
347"``anyregcc``" - Dynamic calling convention for code patching
348 This is a special convention that supports patching an arbitrary code
349 sequence in place of a call site. This convention forces the call
350 arguments into registers but allows them to be dynamcially
351 allocated. This can currently only be used with calls to
352 llvm.experimental.patchpoint because only this intrinsic records
353 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000354"``preserve_mostcc``" - The `PreserveMost` calling convention
355 This calling convention attempts to make the code in the caller as little
356 intrusive as possible. This calling convention behaves identical to the `C`
357 calling convention on how arguments and return values are passed, but it
358 uses a different set of caller/callee-saved registers. This alleviates the
359 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000360 call in the caller. If the arguments are passed in callee-saved registers,
361 then they will be preserved by the callee across the call. This doesn't
362 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000363
364 - On X86-64 the callee preserves all general purpose registers, except for
365 R11. R11 can be used as a scratch register. Floating-point registers
366 (XMMs/YMMs) are not preserved and need to be saved by the caller.
367
368 The idea behind this convention is to support calls to runtime functions
369 that have a hot path and a cold path. The hot path is usually a small piece
370 of code that doesn't many registers. The cold path might need to call out to
371 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000372 registers, which haven't already been saved by the caller. The
373 `PreserveMost` calling convention is very similar to the `cold` calling
374 convention in terms of caller/callee-saved registers, but they are used for
375 different types of function calls. `coldcc` is for function calls that are
376 rarely executed, whereas `preserve_mostcc` function calls are intended to be
377 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
378 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000379
380 This calling convention will be used by a future version of the ObjectiveC
381 runtime and should therefore still be considered experimental at this time.
382 Although this convention was created to optimize certain runtime calls to
383 the ObjectiveC runtime, it is not limited to this runtime and might be used
384 by other runtimes in the future too. The current implementation only
385 supports X86-64, but the intention is to support more architectures in the
386 future.
387"``preserve_allcc``" - The `PreserveAll` calling convention
388 This calling convention attempts to make the code in the caller even less
389 intrusive than the `PreserveMost` calling convention. This calling
390 convention also behaves identical to the `C` calling convention on how
391 arguments and return values are passed, but it uses a different set of
392 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000393 recovering a large register set before and after the call in the caller. If
394 the arguments are passed in callee-saved registers, then they will be
395 preserved by the callee across the call. This doesn't apply for values
396 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000397
398 - On X86-64 the callee preserves all general purpose registers, except for
399 R11. R11 can be used as a scratch register. Furthermore it also preserves
400 all floating-point registers (XMMs/YMMs).
401
402 The idea behind this convention is to support calls to runtime functions
403 that don't need to call out to any other functions.
404
405 This calling convention, like the `PreserveMost` calling convention, will be
406 used by a future version of the ObjectiveC runtime and should be considered
407 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000408"``cc <n>``" - Numbered convention
409 Any calling convention may be specified by number, allowing
410 target-specific calling conventions to be used. Target specific
411 calling conventions start at 64.
412
413More calling conventions can be added/defined on an as-needed basis, to
414support Pascal conventions or any other well-known target-independent
415convention.
416
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000417.. _visibilitystyles:
418
Sean Silvab084af42012-12-07 10:36:55 +0000419Visibility Styles
420-----------------
421
422All Global Variables and Functions have one of the following visibility
423styles:
424
425"``default``" - Default style
426 On targets that use the ELF object file format, default visibility
427 means that the declaration is visible to other modules and, in
428 shared libraries, means that the declared entity may be overridden.
429 On Darwin, default visibility means that the declaration is visible
430 to other modules. Default visibility corresponds to "external
431 linkage" in the language.
432"``hidden``" - Hidden style
433 Two declarations of an object with hidden visibility refer to the
434 same object if they are in the same shared object. Usually, hidden
435 visibility indicates that the symbol will not be placed into the
436 dynamic symbol table, so no other module (executable or shared
437 library) can reference it directly.
438"``protected``" - Protected style
439 On ELF, protected visibility indicates that the symbol will be
440 placed in the dynamic symbol table, but that references within the
441 defining module will bind to the local symbol. That is, the symbol
442 cannot be overridden by another module.
443
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000444A symbol with ``internal`` or ``private`` linkage must have ``default``
445visibility.
446
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000447.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448
Nico Rieck7157bb72014-01-14 15:22:47 +0000449DLL Storage Classes
450-------------------
451
452All Global Variables, Functions and Aliases can have one of the following
453DLL storage class:
454
455``dllimport``
456 "``dllimport``" causes the compiler to reference a function or variable via
457 a global pointer to a pointer that is set up by the DLL exporting the
458 symbol. On Microsoft Windows targets, the pointer name is formed by
459 combining ``__imp_`` and the function or variable name.
460``dllexport``
461 "``dllexport``" causes the compiler to provide a global pointer to a pointer
462 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
463 Microsoft Windows targets, the pointer name is formed by combining
464 ``__imp_`` and the function or variable name. Since this storage class
465 exists for defining a dll interface, the compiler, assembler and linker know
466 it is externally referenced and must refrain from deleting the symbol.
467
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000468.. _tls_model:
469
470Thread Local Storage Models
471---------------------------
472
473A variable may be defined as ``thread_local``, which means that it will
474not be shared by threads (each thread will have a separated copy of the
475variable). Not all targets support thread-local variables. Optionally, a
476TLS model may be specified:
477
478``localdynamic``
479 For variables that are only used within the current shared library.
480``initialexec``
481 For variables in modules that will not be loaded dynamically.
482``localexec``
483 For variables defined in the executable and only used within it.
484
485If no explicit model is given, the "general dynamic" model is used.
486
487The models correspond to the ELF TLS models; see `ELF Handling For
488Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
489more information on under which circumstances the different models may
490be used. The target may choose a different TLS model if the specified
491model is not supported, or if a better choice of model can be made.
492
493A model can also be specified in a alias, but then it only governs how
494the alias is accessed. It will not have any effect in the aliasee.
495
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000496.. _namedtypes:
497
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000498Structure Types
499---------------
Sean Silvab084af42012-12-07 10:36:55 +0000500
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000501LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
502types <t_struct>`. Literal types are uniqued structurally, but identified types
503are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000504to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000505
506An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000507
508.. code-block:: llvm
509
510 %mytype = type { %mytype*, i32 }
511
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000512Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
513literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000514
515.. _globalvars:
516
517Global Variables
518----------------
519
520Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000521instead of run-time.
522
Bob Wilson85b24f22014-06-12 20:40:33 +0000523Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000524
525Global variables in other translation units can also be declared, in which
526case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000527
Bob Wilson85b24f22014-06-12 20:40:33 +0000528Either global variable definitions or declarations may have an explicit section
529to be placed in and may have an optional explicit alignment specified.
530
Michael Gottesman006039c2013-01-31 05:48:48 +0000531A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000532the contents of the variable will **never** be modified (enabling better
533optimization, allowing the global data to be placed in the read-only
534section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000535initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000536variable.
537
538LLVM explicitly allows *declarations* of global variables to be marked
539constant, even if the final definition of the global is not. This
540capability can be used to enable slightly better optimization of the
541program, but requires the language definition to guarantee that
542optimizations based on the 'constantness' are valid for the translation
543units that do not include the definition.
544
545As SSA values, global variables define pointer values that are in scope
546(i.e. they dominate) all basic blocks in the program. Global variables
547always define a pointer to their "content" type because they describe a
548region of memory, and all memory objects in LLVM are accessed through
549pointers.
550
551Global variables can be marked with ``unnamed_addr`` which indicates
552that the address is not significant, only the content. Constants marked
553like this can be merged with other constants if they have the same
554initializer. Note that a constant with significant address *can* be
555merged with a ``unnamed_addr`` constant, the result being a constant
556whose address is significant.
557
558A global variable may be declared to reside in a target-specific
559numbered address space. For targets that support them, address spaces
560may affect how optimizations are performed and/or what target
561instructions are used to access the variable. The default address space
562is zero. The address space qualifier must precede any other attributes.
563
564LLVM allows an explicit section to be specified for globals. If the
565target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000566Additionally, the global can placed in a comdat if the target has the necessary
567support.
Sean Silvab084af42012-12-07 10:36:55 +0000568
Michael Gottesmane743a302013-02-04 03:22:00 +0000569By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000570variables defined within the module are not modified from their
571initial values before the start of the global initializer. This is
572true even for variables potentially accessible from outside the
573module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000574``@llvm.used`` or dllexported variables. This assumption may be suppressed
575by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000576
Sean Silvab084af42012-12-07 10:36:55 +0000577An explicit alignment may be specified for a global, which must be a
578power of 2. If not present, or if the alignment is set to zero, the
579alignment of the global is set by the target to whatever it feels
580convenient. If an explicit alignment is specified, the global is forced
581to have exactly that alignment. Targets and optimizers are not allowed
582to over-align the global if the global has an assigned section. In this
583case, the extra alignment could be observable: for example, code could
584assume that the globals are densely packed in their section and try to
585iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000586iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000587
Nico Rieck7157bb72014-01-14 15:22:47 +0000588Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
589
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000590Variables and aliasaes can have a
591:ref:`Thread Local Storage Model <tls_model>`.
592
Nico Rieck7157bb72014-01-14 15:22:47 +0000593Syntax::
594
595 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000596 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000597 <global | constant> <Type> [<InitializerConstant>]
598 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000599
Sean Silvab084af42012-12-07 10:36:55 +0000600For example, the following defines a global in a numbered address space
601with an initializer, section, and alignment:
602
603.. code-block:: llvm
604
605 @G = addrspace(5) constant float 1.0, section "foo", align 4
606
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000607The following example just declares a global variable
608
609.. code-block:: llvm
610
611 @G = external global i32
612
Sean Silvab084af42012-12-07 10:36:55 +0000613The following example defines a thread-local global with the
614``initialexec`` TLS model:
615
616.. code-block:: llvm
617
618 @G = thread_local(initialexec) global i32 0, align 4
619
620.. _functionstructure:
621
622Functions
623---------
624
625LLVM function definitions consist of the "``define``" keyword, an
626optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000627style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
628an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000629an optional ``unnamed_addr`` attribute, a return type, an optional
630:ref:`parameter attribute <paramattrs>` for the return type, a function
631name, a (possibly empty) argument list (each with optional :ref:`parameter
632attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000633an optional section, an optional alignment,
634an optional :ref:`comdat <langref_comdats>`,
635an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000636curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000637
638LLVM function declarations consist of the "``declare``" keyword, an
639optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000640style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
641an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000642an optional ``unnamed_addr`` attribute, a return type, an optional
643:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000644name, a possibly empty list of arguments, an optional alignment, an optional
645:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000646
Bill Wendling6822ecb2013-10-27 05:09:12 +0000647A function definition contains a list of basic blocks, forming the CFG (Control
648Flow Graph) for the function. Each basic block may optionally start with a label
649(giving the basic block a symbol table entry), contains a list of instructions,
650and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
651function return). If an explicit label is not provided, a block is assigned an
652implicit numbered label, using the next value from the same counter as used for
653unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
654entry block does not have an explicit label, it will be assigned label "%0",
655then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000656
657The first basic block in a function is special in two ways: it is
658immediately executed on entrance to the function, and it is not allowed
659to have predecessor basic blocks (i.e. there can not be any branches to
660the entry block of a function). Because the block can have no
661predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
662
663LLVM allows an explicit section to be specified for functions. If the
664target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000665Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000666
667An explicit alignment may be specified for a function. If not present,
668or if the alignment is set to zero, the alignment of the function is set
669by the target to whatever it feels convenient. If an explicit alignment
670is specified, the function is forced to have at least that much
671alignment. All alignments must be a power of 2.
672
673If the ``unnamed_addr`` attribute is given, the address is know to not
674be significant and two identical functions can be merged.
675
676Syntax::
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000679 [cconv] [ret attrs]
680 <ResultType> @<FunctionName> ([argument list])
David Majnemerdad0a642014-06-27 18:19:56 +0000681 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>]
682 [align N] [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000683
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000684.. _langref_aliases:
685
Sean Silvab084af42012-12-07 10:36:55 +0000686Aliases
687-------
688
Rafael Espindola64c1e182014-06-03 02:41:57 +0000689Aliases, unlike function or variables, don't create any new data. They
690are just a new symbol and metadata for an existing position.
691
692Aliases have a name and an aliasee that is either a global value or a
693constant expression.
694
Nico Rieck7157bb72014-01-14 15:22:47 +0000695Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000696:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
697<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000698
699Syntax::
700
Rafael Espindola464fe022014-07-30 22:51:54 +0000701 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000702
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000703The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000704``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000705might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000706
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000707Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000708the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
709to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000710
Rafael Espindola64c1e182014-06-03 02:41:57 +0000711Since aliases are only a second name, some restrictions apply, of which
712some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000713
Rafael Espindola64c1e182014-06-03 02:41:57 +0000714* The expression defining the aliasee must be computable at assembly
715 time. Since it is just a name, no relocations can be used.
716
717* No alias in the expression can be weak as the possibility of the
718 intermediate alias being overridden cannot be represented in an
719 object file.
720
721* No global value in the expression can be a declaration, since that
722 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000723
David Majnemerdad0a642014-06-27 18:19:56 +0000724.. _langref_comdats:
725
726Comdats
727-------
728
729Comdat IR provides access to COFF and ELF object file COMDAT functionality.
730
Richard Smith32dbdf62014-07-31 04:25:36 +0000731Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000732specify this key will only end up in the final object file if the linker chooses
733that key over some other key. Aliases are placed in the same COMDAT that their
734aliasee computes to, if any.
735
736Comdats have a selection kind to provide input on how the linker should
737choose between keys in two different object files.
738
739Syntax::
740
741 $<Name> = comdat SelectionKind
742
743The selection kind must be one of the following:
744
745``any``
746 The linker may choose any COMDAT key, the choice is arbitrary.
747``exactmatch``
748 The linker may choose any COMDAT key but the sections must contain the
749 same data.
750``largest``
751 The linker will choose the section containing the largest COMDAT key.
752``noduplicates``
753 The linker requires that only section with this COMDAT key exist.
754``samesize``
755 The linker may choose any COMDAT key but the sections must contain the
756 same amount of data.
757
758Note that the Mach-O platform doesn't support COMDATs and ELF only supports
759``any`` as a selection kind.
760
761Here is an example of a COMDAT group where a function will only be selected if
762the COMDAT key's section is the largest:
763
764.. code-block:: llvm
765
766 $foo = comdat largest
767 @foo = global i32 2, comdat $foo
768
769 define void @bar() comdat $foo {
770 ret void
771 }
772
773In a COFF object file, this will create a COMDAT section with selection kind
774``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
775and another COMDAT section with selection kind
776``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
777section and contains the contents of the ``@baz`` symbol.
778
779There are some restrictions on the properties of the global object.
780It, or an alias to it, must have the same name as the COMDAT group when
781targeting COFF.
782The contents and size of this object may be used during link-time to determine
783which COMDAT groups get selected depending on the selection kind.
784Because the name of the object must match the name of the COMDAT group, the
785linkage of the global object must not be local; local symbols can get renamed
786if a collision occurs in the symbol table.
787
788The combined use of COMDATS and section attributes may yield surprising results.
789For example:
790
791.. code-block:: llvm
792
793 $foo = comdat any
794 $bar = comdat any
795 @g1 = global i32 42, section "sec", comdat $foo
796 @g2 = global i32 42, section "sec", comdat $bar
797
798From the object file perspective, this requires the creation of two sections
799with the same name. This is necessary because both globals belong to different
800COMDAT groups and COMDATs, at the object file level, are represented by
801sections.
802
803Note that certain IR constructs like global variables and functions may create
804COMDATs in the object file in addition to any which are specified using COMDAT
805IR. This arises, for example, when a global variable has linkonce_odr linkage.
806
Sean Silvab084af42012-12-07 10:36:55 +0000807.. _namedmetadatastructure:
808
809Named Metadata
810--------------
811
812Named metadata is a collection of metadata. :ref:`Metadata
813nodes <metadata>` (but not metadata strings) are the only valid
814operands for a named metadata.
815
816Syntax::
817
818 ; Some unnamed metadata nodes, which are referenced by the named metadata.
819 !0 = metadata !{metadata !"zero"}
820 !1 = metadata !{metadata !"one"}
821 !2 = metadata !{metadata !"two"}
822 ; A named metadata.
823 !name = !{!0, !1, !2}
824
825.. _paramattrs:
826
827Parameter Attributes
828--------------------
829
830The return type and each parameter of a function type may have a set of
831*parameter attributes* associated with them. Parameter attributes are
832used to communicate additional information about the result or
833parameters of a function. Parameter attributes are considered to be part
834of the function, not of the function type, so functions with different
835parameter attributes can have the same function type.
836
837Parameter attributes are simple keywords that follow the type specified.
838If multiple parameter attributes are needed, they are space separated.
839For example:
840
841.. code-block:: llvm
842
843 declare i32 @printf(i8* noalias nocapture, ...)
844 declare i32 @atoi(i8 zeroext)
845 declare signext i8 @returns_signed_char()
846
847Note that any attributes for the function result (``nounwind``,
848``readonly``) come immediately after the argument list.
849
850Currently, only the following parameter attributes are defined:
851
852``zeroext``
853 This indicates to the code generator that the parameter or return
854 value should be zero-extended to the extent required by the target's
855 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
856 the caller (for a parameter) or the callee (for a return value).
857``signext``
858 This indicates to the code generator that the parameter or return
859 value should be sign-extended to the extent required by the target's
860 ABI (which is usually 32-bits) by the caller (for a parameter) or
861 the callee (for a return value).
862``inreg``
863 This indicates that this parameter or return value should be treated
864 in a special target-dependent fashion during while emitting code for
865 a function call or return (usually, by putting it in a register as
866 opposed to memory, though some targets use it to distinguish between
867 two different kinds of registers). Use of this attribute is
868 target-specific.
869``byval``
870 This indicates that the pointer parameter should really be passed by
871 value to the function. The attribute implies that a hidden copy of
872 the pointee is made between the caller and the callee, so the callee
873 is unable to modify the value in the caller. This attribute is only
874 valid on LLVM pointer arguments. It is generally used to pass
875 structs and arrays by value, but is also valid on pointers to
876 scalars. The copy is considered to belong to the caller not the
877 callee (for example, ``readonly`` functions should not write to
878 ``byval`` parameters). This is not a valid attribute for return
879 values.
880
881 The byval attribute also supports specifying an alignment with the
882 align attribute. It indicates the alignment of the stack slot to
883 form and the known alignment of the pointer specified to the call
884 site. If the alignment is not specified, then the code generator
885 makes a target-specific assumption.
886
Reid Klecknera534a382013-12-19 02:14:12 +0000887.. _attr_inalloca:
888
889``inalloca``
890
Reid Kleckner60d3a832014-01-16 22:59:24 +0000891 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000892 address of outgoing stack arguments. An ``inalloca`` argument must
893 be a pointer to stack memory produced by an ``alloca`` instruction.
894 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000895 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000896 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000897
Reid Kleckner436c42e2014-01-17 23:58:17 +0000898 An argument allocation may be used by a call at most once because
899 the call may deallocate it. The ``inalloca`` attribute cannot be
900 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000901 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
902 ``inalloca`` attribute also disables LLVM's implicit lowering of
903 large aggregate return values, which means that frontend authors
904 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000905
Reid Kleckner60d3a832014-01-16 22:59:24 +0000906 When the call site is reached, the argument allocation must have
907 been the most recent stack allocation that is still live, or the
908 results are undefined. It is possible to allocate additional stack
909 space after an argument allocation and before its call site, but it
910 must be cleared off with :ref:`llvm.stackrestore
911 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000912
913 See :doc:`InAlloca` for more information on how to use this
914 attribute.
915
Sean Silvab084af42012-12-07 10:36:55 +0000916``sret``
917 This indicates that the pointer parameter specifies the address of a
918 structure that is the return value of the function in the source
919 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000920 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000921 not to trap and to be properly aligned. This may only be applied to
922 the first parameter. This is not a valid attribute for return
923 values.
Sean Silva1703e702014-04-08 21:06:22 +0000924
Hal Finkelccc70902014-07-22 16:58:55 +0000925``align <n>``
926 This indicates that the pointer value may be assumed by the optimizer to
927 have the specified alignment.
928
929 Note that this attribute has additional semantics when combined with the
930 ``byval`` attribute.
931
Sean Silva1703e702014-04-08 21:06:22 +0000932.. _noalias:
933
Sean Silvab084af42012-12-07 10:36:55 +0000934``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000935 This indicates that pointer values :ref:`based <pointeraliasing>` on
Richard Smith32dbdf62014-07-31 04:25:36 +0000936 the argument or return value do not alias pointer values that are
Sean Silvab084af42012-12-07 10:36:55 +0000937 not *based* on it, ignoring certain "irrelevant" dependencies. For a
938 call to the parent function, dependencies between memory references
939 from before or after the call and from those during the call are
940 "irrelevant" to the ``noalias`` keyword for the arguments and return
941 value used in that call. The caller shares the responsibility with
942 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000943 details, please see the discussion of the NoAlias response in :ref:`alias
944 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000945
946 Note that this definition of ``noalias`` is intentionally similar
947 to the definition of ``restrict`` in C99 for function arguments,
948 though it is slightly weaker.
949
950 For function return values, C99's ``restrict`` is not meaningful,
951 while LLVM's ``noalias`` is.
952``nocapture``
953 This indicates that the callee does not make any copies of the
954 pointer that outlive the callee itself. This is not a valid
955 attribute for return values.
956
957.. _nest:
958
959``nest``
960 This indicates that the pointer parameter can be excised using the
961 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000962 attribute for return values and can only be applied to one parameter.
963
964``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000965 This indicates that the function always returns the argument as its return
966 value. This is an optimization hint to the code generator when generating
967 the caller, allowing tail call optimization and omission of register saves
968 and restores in some cases; it is not checked or enforced when generating
969 the callee. The parameter and the function return type must be valid
970 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
971 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000972
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000973``nonnull``
974 This indicates that the parameter or return pointer is not null. This
975 attribute may only be applied to pointer typed parameters. This is not
976 checked or enforced by LLVM, the caller must ensure that the pointer
977 passed in is non-null, or the callee must ensure that the returned pointer
978 is non-null.
979
Hal Finkelb0407ba2014-07-18 15:51:28 +0000980``dereferenceable(<n>)``
981 This indicates that the parameter or return pointer is dereferenceable. This
982 attribute may only be applied to pointer typed parameters. A pointer that
983 is dereferenceable can be loaded from speculatively without a risk of
984 trapping. The number of bytes known to be dereferenceable must be provided
985 in parentheses. It is legal for the number of bytes to be less than the
986 size of the pointee type. The ``nonnull`` attribute does not imply
987 dereferenceability (consider a pointer to one element past the end of an
988 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
989 ``addrspace(0)`` (which is the default address space).
990
Sean Silvab084af42012-12-07 10:36:55 +0000991.. _gc:
992
993Garbage Collector Names
994-----------------------
995
996Each function may specify a garbage collector name, which is simply a
997string:
998
999.. code-block:: llvm
1000
1001 define void @f() gc "name" { ... }
1002
1003The compiler declares the supported values of *name*. Specifying a
Richard Smith32dbdf62014-07-31 04:25:36 +00001004collector will cause the compiler to alter its output in order to
Sean Silvab084af42012-12-07 10:36:55 +00001005support the named garbage collection algorithm.
1006
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001007.. _prefixdata:
1008
1009Prefix Data
1010-----------
1011
1012Prefix data is data associated with a function which the code generator
1013will emit immediately before the function body. The purpose of this feature
1014is to allow frontends to associate language-specific runtime metadata with
1015specific functions and make it available through the function pointer while
1016still allowing the function pointer to be called. To access the data for a
1017given function, a program may bitcast the function pointer to a pointer to
1018the constant's type. This implies that the IR symbol points to the start
1019of the prefix data.
1020
1021To maintain the semantics of ordinary function calls, the prefix data must
1022have a particular format. Specifically, it must begin with a sequence of
1023bytes which decode to a sequence of machine instructions, valid for the
1024module's target, which transfer control to the point immediately succeeding
1025the prefix data, without performing any other visible action. This allows
1026the inliner and other passes to reason about the semantics of the function
1027definition without needing to reason about the prefix data. Obviously this
1028makes the format of the prefix data highly target dependent.
1029
Peter Collingbourne213358a2013-09-23 20:14:21 +00001030Prefix data is laid out as if it were an initializer for a global variable
1031of the prefix data's type. No padding is automatically placed between the
1032prefix data and the function body. If padding is required, it must be part
1033of the prefix data.
1034
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001035A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
1036which encodes the ``nop`` instruction:
1037
1038.. code-block:: llvm
1039
1040 define void @f() prefix i8 144 { ... }
1041
1042Generally prefix data can be formed by encoding a relative branch instruction
1043which skips the metadata, as in this example of valid prefix data for the
1044x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1045
1046.. code-block:: llvm
1047
1048 %0 = type <{ i8, i8, i8* }>
1049
1050 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
1051
1052A function may have prefix data but no body. This has similar semantics
1053to the ``available_externally`` linkage in that the data may be used by the
1054optimizers but will not be emitted in the object file.
1055
Bill Wendling63b88192013-02-06 06:52:58 +00001056.. _attrgrp:
1057
1058Attribute Groups
1059----------------
1060
1061Attribute groups are groups of attributes that are referenced by objects within
1062the IR. They are important for keeping ``.ll`` files readable, because a lot of
1063functions will use the same set of attributes. In the degenerative case of a
1064``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1065group will capture the important command line flags used to build that file.
1066
1067An attribute group is a module-level object. To use an attribute group, an
1068object references the attribute group's ID (e.g. ``#37``). An object may refer
1069to more than one attribute group. In that situation, the attributes from the
1070different groups are merged.
1071
1072Here is an example of attribute groups for a function that should always be
1073inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1074
1075.. code-block:: llvm
1076
1077 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001078 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001079
1080 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001081 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001082
1083 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1084 define void @f() #0 #1 { ... }
1085
Sean Silvab084af42012-12-07 10:36:55 +00001086.. _fnattrs:
1087
1088Function Attributes
1089-------------------
1090
1091Function attributes are set to communicate additional information about
1092a function. Function attributes are considered to be part of the
1093function, not of the function type, so functions with different function
1094attributes can have the same function type.
1095
1096Function attributes are simple keywords that follow the type specified.
1097If multiple attributes are needed, they are space separated. For
1098example:
1099
1100.. code-block:: llvm
1101
1102 define void @f() noinline { ... }
1103 define void @f() alwaysinline { ... }
1104 define void @f() alwaysinline optsize { ... }
1105 define void @f() optsize { ... }
1106
Sean Silvab084af42012-12-07 10:36:55 +00001107``alignstack(<n>)``
1108 This attribute indicates that, when emitting the prologue and
1109 epilogue, the backend should forcibly align the stack pointer.
1110 Specify the desired alignment, which must be a power of two, in
1111 parentheses.
1112``alwaysinline``
1113 This attribute indicates that the inliner should attempt to inline
1114 this function into callers whenever possible, ignoring any active
1115 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001116``builtin``
1117 This indicates that the callee function at a call site should be
1118 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001119 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001120 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001121 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001122``cold``
1123 This attribute indicates that this function is rarely called. When
1124 computing edge weights, basic blocks post-dominated by a cold
1125 function call are also considered to be cold; and, thus, given low
1126 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001127``inlinehint``
1128 This attribute indicates that the source code contained a hint that
1129 inlining this function is desirable (such as the "inline" keyword in
1130 C/C++). It is just a hint; it imposes no requirements on the
1131 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001132``jumptable``
1133 This attribute indicates that the function should be added to a
1134 jump-instruction table at code-generation time, and that all address-taken
1135 references to this function should be replaced with a reference to the
1136 appropriate jump-instruction-table function pointer. Note that this creates
1137 a new pointer for the original function, which means that code that depends
1138 on function-pointer identity can break. So, any function annotated with
1139 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001140``minsize``
1141 This attribute suggests that optimization passes and code generator
1142 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001143 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001144 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001145``naked``
1146 This attribute disables prologue / epilogue emission for the
1147 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001148``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001149 This indicates that the callee function at a call site is not recognized as
1150 a built-in function. LLVM will retain the original call and not replace it
1151 with equivalent code based on the semantics of the built-in function, unless
1152 the call site uses the ``builtin`` attribute. This is valid at call sites
1153 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001154``noduplicate``
1155 This attribute indicates that calls to the function cannot be
1156 duplicated. A call to a ``noduplicate`` function may be moved
1157 within its parent function, but may not be duplicated within
1158 its parent function.
1159
1160 A function containing a ``noduplicate`` call may still
1161 be an inlining candidate, provided that the call is not
1162 duplicated by inlining. That implies that the function has
1163 internal linkage and only has one call site, so the original
1164 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001165``noimplicitfloat``
1166 This attributes disables implicit floating point instructions.
1167``noinline``
1168 This attribute indicates that the inliner should never inline this
1169 function in any situation. This attribute may not be used together
1170 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001171``nonlazybind``
1172 This attribute suppresses lazy symbol binding for the function. This
1173 may make calls to the function faster, at the cost of extra program
1174 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001175``noredzone``
1176 This attribute indicates that the code generator should not use a
1177 red zone, even if the target-specific ABI normally permits it.
1178``noreturn``
1179 This function attribute indicates that the function never returns
1180 normally. This produces undefined behavior at runtime if the
1181 function ever does dynamically return.
1182``nounwind``
1183 This function attribute indicates that the function never returns
1184 with an unwind or exceptional control flow. If the function does
1185 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001186``optnone``
1187 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001188 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001189 exception of interprocedural optimization passes.
1190 This attribute cannot be used together with the ``alwaysinline``
1191 attribute; this attribute is also incompatible
1192 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001193
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001194 This attribute requires the ``noinline`` attribute to be specified on
1195 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001196 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001197 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001198``optsize``
1199 This attribute suggests that optimization passes and code generator
1200 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001201 and otherwise do optimizations specifically to reduce code size as
1202 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001203``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001204 On a function, this attribute indicates that the function computes its
1205 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001206 without dereferencing any pointer arguments or otherwise accessing
1207 any mutable state (e.g. memory, control registers, etc) visible to
1208 caller functions. It does not write through any pointer arguments
1209 (including ``byval`` arguments) and never changes any state visible
1210 to callers. This means that it cannot unwind exceptions by calling
1211 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001212
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001213 On an argument, this attribute indicates that the function does not
1214 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001215 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001216``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001217 On a function, this attribute indicates that the function does not write
1218 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001219 modify any state (e.g. memory, control registers, etc) visible to
1220 caller functions. It may dereference pointer arguments and read
1221 state that may be set in the caller. A readonly function always
1222 returns the same value (or unwinds an exception identically) when
1223 called with the same set of arguments and global state. It cannot
1224 unwind an exception by calling the ``C++`` exception throwing
1225 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001226
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001227 On an argument, this attribute indicates that the function does not write
1228 through this pointer argument, even though it may write to the memory that
1229 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001230``returns_twice``
1231 This attribute indicates that this function can return twice. The C
1232 ``setjmp`` is an example of such a function. The compiler disables
1233 some optimizations (like tail calls) in the caller of these
1234 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001235``sanitize_address``
1236 This attribute indicates that AddressSanitizer checks
1237 (dynamic address safety analysis) are enabled for this function.
1238``sanitize_memory``
1239 This attribute indicates that MemorySanitizer checks (dynamic detection
1240 of accesses to uninitialized memory) are enabled for this function.
1241``sanitize_thread``
1242 This attribute indicates that ThreadSanitizer checks
1243 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001244``ssp``
1245 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001246 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001247 placed on the stack before the local variables that's checked upon
1248 return from the function to see if it has been overwritten. A
1249 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001250 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001251
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001252 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1253 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1254 - Calls to alloca() with variable sizes or constant sizes greater than
1255 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001256
Josh Magee24c7f062014-02-01 01:36:16 +00001257 Variables that are identified as requiring a protector will be arranged
1258 on the stack such that they are adjacent to the stack protector guard.
1259
Sean Silvab084af42012-12-07 10:36:55 +00001260 If a function that has an ``ssp`` attribute is inlined into a
1261 function that doesn't have an ``ssp`` attribute, then the resulting
1262 function will have an ``ssp`` attribute.
1263``sspreq``
1264 This attribute indicates that the function should *always* emit a
1265 stack smashing protector. This overrides the ``ssp`` function
1266 attribute.
1267
Josh Magee24c7f062014-02-01 01:36:16 +00001268 Variables that are identified as requiring a protector will be arranged
1269 on the stack such that they are adjacent to the stack protector guard.
1270 The specific layout rules are:
1271
1272 #. Large arrays and structures containing large arrays
1273 (``>= ssp-buffer-size``) are closest to the stack protector.
1274 #. Small arrays and structures containing small arrays
1275 (``< ssp-buffer-size``) are 2nd closest to the protector.
1276 #. Variables that have had their address taken are 3rd closest to the
1277 protector.
1278
Sean Silvab084af42012-12-07 10:36:55 +00001279 If a function that has an ``sspreq`` attribute is inlined into a
1280 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001281 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1282 an ``sspreq`` attribute.
1283``sspstrong``
1284 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001285 protector. This attribute causes a strong heuristic to be used when
1286 determining if a function needs stack protectors. The strong heuristic
1287 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001288
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001289 - Arrays of any size and type
1290 - Aggregates containing an array of any size and type.
1291 - Calls to alloca().
1292 - Local variables that have had their address taken.
1293
Josh Magee24c7f062014-02-01 01:36:16 +00001294 Variables that are identified as requiring a protector will be arranged
1295 on the stack such that they are adjacent to the stack protector guard.
1296 The specific layout rules are:
1297
1298 #. Large arrays and structures containing large arrays
1299 (``>= ssp-buffer-size``) are closest to the stack protector.
1300 #. Small arrays and structures containing small arrays
1301 (``< ssp-buffer-size``) are 2nd closest to the protector.
1302 #. Variables that have had their address taken are 3rd closest to the
1303 protector.
1304
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001305 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001306
1307 If a function that has an ``sspstrong`` attribute is inlined into a
1308 function that doesn't have an ``sspstrong`` attribute, then the
1309 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001310``uwtable``
1311 This attribute indicates that the ABI being targeted requires that
1312 an unwind table entry be produce for this function even if we can
1313 show that no exceptions passes by it. This is normally the case for
1314 the ELF x86-64 abi, but it can be disabled for some compilation
1315 units.
Sean Silvab084af42012-12-07 10:36:55 +00001316
1317.. _moduleasm:
1318
1319Module-Level Inline Assembly
1320----------------------------
1321
1322Modules may contain "module-level inline asm" blocks, which corresponds
1323to the GCC "file scope inline asm" blocks. These blocks are internally
1324concatenated by LLVM and treated as a single unit, but may be separated
1325in the ``.ll`` file if desired. The syntax is very simple:
1326
1327.. code-block:: llvm
1328
1329 module asm "inline asm code goes here"
1330 module asm "more can go here"
1331
1332The strings can contain any character by escaping non-printable
1333characters. The escape sequence used is simply "\\xx" where "xx" is the
1334two digit hex code for the number.
1335
1336The inline asm code is simply printed to the machine code .s file when
1337assembly code is generated.
1338
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001339.. _langref_datalayout:
1340
Sean Silvab084af42012-12-07 10:36:55 +00001341Data Layout
1342-----------
1343
1344A module may specify a target specific data layout string that specifies
1345how data is to be laid out in memory. The syntax for the data layout is
1346simply:
1347
1348.. code-block:: llvm
1349
1350 target datalayout = "layout specification"
1351
1352The *layout specification* consists of a list of specifications
1353separated by the minus sign character ('-'). Each specification starts
1354with a letter and may include other information after the letter to
1355define some aspect of the data layout. The specifications accepted are
1356as follows:
1357
1358``E``
1359 Specifies that the target lays out data in big-endian form. That is,
1360 the bits with the most significance have the lowest address
1361 location.
1362``e``
1363 Specifies that the target lays out data in little-endian form. That
1364 is, the bits with the least significance have the lowest address
1365 location.
1366``S<size>``
1367 Specifies the natural alignment of the stack in bits. Alignment
1368 promotion of stack variables is limited to the natural stack
1369 alignment to avoid dynamic stack realignment. The stack alignment
1370 must be a multiple of 8-bits. If omitted, the natural stack
1371 alignment defaults to "unspecified", which does not prevent any
1372 alignment promotions.
1373``p[n]:<size>:<abi>:<pref>``
1374 This specifies the *size* of a pointer and its ``<abi>`` and
1375 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001376 bits. The address space, ``n`` is optional, and if not specified,
1377 denotes the default address space 0. The value of ``n`` must be
1378 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001379``i<size>:<abi>:<pref>``
1380 This specifies the alignment for an integer type of a given bit
1381 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1382``v<size>:<abi>:<pref>``
1383 This specifies the alignment for a vector type of a given bit
1384 ``<size>``.
1385``f<size>:<abi>:<pref>``
1386 This specifies the alignment for a floating point type of a given bit
1387 ``<size>``. Only values of ``<size>`` that are supported by the target
1388 will work. 32 (float) and 64 (double) are supported on all targets; 80
1389 or 128 (different flavors of long double) are also supported on some
1390 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001391``a:<abi>:<pref>``
1392 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001393``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001394 If present, specifies that llvm names are mangled in the output. The
1395 options are
1396
1397 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1398 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1399 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1400 symbols get a ``_`` prefix.
1401 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1402 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001403``n<size1>:<size2>:<size3>...``
1404 This specifies a set of native integer widths for the target CPU in
1405 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1406 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1407 this set are considered to support most general arithmetic operations
1408 efficiently.
1409
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001410On every specification that takes a ``<abi>:<pref>``, specifying the
1411``<pref>`` alignment is optional. If omitted, the preceding ``:``
1412should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1413
Sean Silvab084af42012-12-07 10:36:55 +00001414When constructing the data layout for a given target, LLVM starts with a
1415default set of specifications which are then (possibly) overridden by
1416the specifications in the ``datalayout`` keyword. The default
1417specifications are given in this list:
1418
1419- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001420- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1421- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1422 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001423- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001424- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1425- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1426- ``i16:16:16`` - i16 is 16-bit aligned
1427- ``i32:32:32`` - i32 is 32-bit aligned
1428- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1429 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001430- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001431- ``f32:32:32`` - float is 32-bit aligned
1432- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001433- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001434- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1435- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001436- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001437
1438When LLVM is determining the alignment for a given type, it uses the
1439following rules:
1440
1441#. If the type sought is an exact match for one of the specifications,
1442 that specification is used.
1443#. If no match is found, and the type sought is an integer type, then
1444 the smallest integer type that is larger than the bitwidth of the
1445 sought type is used. If none of the specifications are larger than
1446 the bitwidth then the largest integer type is used. For example,
1447 given the default specifications above, the i7 type will use the
1448 alignment of i8 (next largest) while both i65 and i256 will use the
1449 alignment of i64 (largest specified).
1450#. If no match is found, and the type sought is a vector type, then the
1451 largest vector type that is smaller than the sought vector type will
1452 be used as a fall back. This happens because <128 x double> can be
1453 implemented in terms of 64 <2 x double>, for example.
1454
1455The function of the data layout string may not be what you expect.
1456Notably, this is not a specification from the frontend of what alignment
1457the code generator should use.
1458
1459Instead, if specified, the target data layout is required to match what
1460the ultimate *code generator* expects. This string is used by the
1461mid-level optimizers to improve code, and this only works if it matches
1462what the ultimate code generator uses. If you would like to generate IR
1463that does not embed this target-specific detail into the IR, then you
1464don't have to specify the string. This will disable some optimizations
1465that require precise layout information, but this also prevents those
1466optimizations from introducing target specificity into the IR.
1467
Bill Wendling5cc90842013-10-18 23:41:25 +00001468.. _langref_triple:
1469
1470Target Triple
1471-------------
1472
1473A module may specify a target triple string that describes the target
1474host. The syntax for the target triple is simply:
1475
1476.. code-block:: llvm
1477
1478 target triple = "x86_64-apple-macosx10.7.0"
1479
1480The *target triple* string consists of a series of identifiers delimited
1481by the minus sign character ('-'). The canonical forms are:
1482
1483::
1484
1485 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1486 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1487
1488This information is passed along to the backend so that it generates
1489code for the proper architecture. It's possible to override this on the
1490command line with the ``-mtriple`` command line option.
1491
Sean Silvab084af42012-12-07 10:36:55 +00001492.. _pointeraliasing:
1493
1494Pointer Aliasing Rules
1495----------------------
1496
1497Any memory access must be done through a pointer value associated with
1498an address range of the memory access, otherwise the behavior is
1499undefined. Pointer values are associated with address ranges according
1500to the following rules:
1501
1502- A pointer value is associated with the addresses associated with any
1503 value it is *based* on.
1504- An address of a global variable is associated with the address range
1505 of the variable's storage.
1506- The result value of an allocation instruction is associated with the
1507 address range of the allocated storage.
1508- A null pointer in the default address-space is associated with no
1509 address.
1510- An integer constant other than zero or a pointer value returned from
1511 a function not defined within LLVM may be associated with address
1512 ranges allocated through mechanisms other than those provided by
1513 LLVM. Such ranges shall not overlap with any ranges of addresses
1514 allocated by mechanisms provided by LLVM.
1515
1516A pointer value is *based* on another pointer value according to the
1517following rules:
1518
1519- A pointer value formed from a ``getelementptr`` operation is *based*
1520 on the first operand of the ``getelementptr``.
1521- The result value of a ``bitcast`` is *based* on the operand of the
1522 ``bitcast``.
1523- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1524 values that contribute (directly or indirectly) to the computation of
1525 the pointer's value.
1526- The "*based* on" relationship is transitive.
1527
1528Note that this definition of *"based"* is intentionally similar to the
1529definition of *"based"* in C99, though it is slightly weaker.
1530
1531LLVM IR does not associate types with memory. The result type of a
1532``load`` merely indicates the size and alignment of the memory from
1533which to load, as well as the interpretation of the value. The first
1534operand type of a ``store`` similarly only indicates the size and
1535alignment of the store.
1536
1537Consequently, type-based alias analysis, aka TBAA, aka
1538``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1539:ref:`Metadata <metadata>` may be used to encode additional information
1540which specialized optimization passes may use to implement type-based
1541alias analysis.
1542
1543.. _volatile:
1544
1545Volatile Memory Accesses
1546------------------------
1547
1548Certain memory accesses, such as :ref:`load <i_load>`'s,
1549:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1550marked ``volatile``. The optimizers must not change the number of
1551volatile operations or change their order of execution relative to other
1552volatile operations. The optimizers *may* change the order of volatile
1553operations relative to non-volatile operations. This is not Java's
1554"volatile" and has no cross-thread synchronization behavior.
1555
Andrew Trick89fc5a62013-01-30 21:19:35 +00001556IR-level volatile loads and stores cannot safely be optimized into
1557llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1558flagged volatile. Likewise, the backend should never split or merge
1559target-legal volatile load/store instructions.
1560
Andrew Trick7e6f9282013-01-31 00:49:39 +00001561.. admonition:: Rationale
1562
1563 Platforms may rely on volatile loads and stores of natively supported
1564 data width to be executed as single instruction. For example, in C
1565 this holds for an l-value of volatile primitive type with native
1566 hardware support, but not necessarily for aggregate types. The
1567 frontend upholds these expectations, which are intentionally
1568 unspecified in the IR. The rules above ensure that IR transformation
1569 do not violate the frontend's contract with the language.
1570
Sean Silvab084af42012-12-07 10:36:55 +00001571.. _memmodel:
1572
1573Memory Model for Concurrent Operations
1574--------------------------------------
1575
1576The LLVM IR does not define any way to start parallel threads of
1577execution or to register signal handlers. Nonetheless, there are
1578platform-specific ways to create them, and we define LLVM IR's behavior
1579in their presence. This model is inspired by the C++0x memory model.
1580
1581For a more informal introduction to this model, see the :doc:`Atomics`.
1582
1583We define a *happens-before* partial order as the least partial order
1584that
1585
1586- Is a superset of single-thread program order, and
1587- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1588 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1589 techniques, like pthread locks, thread creation, thread joining,
1590 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1591 Constraints <ordering>`).
1592
1593Note that program order does not introduce *happens-before* edges
1594between a thread and signals executing inside that thread.
1595
1596Every (defined) read operation (load instructions, memcpy, atomic
1597loads/read-modify-writes, etc.) R reads a series of bytes written by
1598(defined) write operations (store instructions, atomic
1599stores/read-modify-writes, memcpy, etc.). For the purposes of this
1600section, initialized globals are considered to have a write of the
1601initializer which is atomic and happens before any other read or write
1602of the memory in question. For each byte of a read R, R\ :sub:`byte`
1603may see any write to the same byte, except:
1604
1605- If write\ :sub:`1` happens before write\ :sub:`2`, and
1606 write\ :sub:`2` happens before R\ :sub:`byte`, then
1607 R\ :sub:`byte` does not see write\ :sub:`1`.
1608- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1609 R\ :sub:`byte` does not see write\ :sub:`3`.
1610
1611Given that definition, R\ :sub:`byte` is defined as follows:
1612
1613- If R is volatile, the result is target-dependent. (Volatile is
1614 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001615 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001616 like normal memory. It does not generally provide cross-thread
1617 synchronization.)
1618- Otherwise, if there is no write to the same byte that happens before
1619 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1620- Otherwise, if R\ :sub:`byte` may see exactly one write,
1621 R\ :sub:`byte` returns the value written by that write.
1622- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1623 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1624 Memory Ordering Constraints <ordering>` section for additional
1625 constraints on how the choice is made.
1626- Otherwise R\ :sub:`byte` returns ``undef``.
1627
1628R returns the value composed of the series of bytes it read. This
1629implies that some bytes within the value may be ``undef`` **without**
1630the entire value being ``undef``. Note that this only defines the
1631semantics of the operation; it doesn't mean that targets will emit more
1632than one instruction to read the series of bytes.
1633
1634Note that in cases where none of the atomic intrinsics are used, this
1635model places only one restriction on IR transformations on top of what
1636is required for single-threaded execution: introducing a store to a byte
1637which might not otherwise be stored is not allowed in general.
1638(Specifically, in the case where another thread might write to and read
1639from an address, introducing a store can change a load that may see
1640exactly one write into a load that may see multiple writes.)
1641
1642.. _ordering:
1643
1644Atomic Memory Ordering Constraints
1645----------------------------------
1646
1647Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1648:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1649:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001650ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001651the same address they *synchronize with*. These semantics are borrowed
1652from Java and C++0x, but are somewhat more colloquial. If these
1653descriptions aren't precise enough, check those specs (see spec
1654references in the :doc:`atomics guide <Atomics>`).
1655:ref:`fence <i_fence>` instructions treat these orderings somewhat
1656differently since they don't take an address. See that instruction's
1657documentation for details.
1658
1659For a simpler introduction to the ordering constraints, see the
1660:doc:`Atomics`.
1661
1662``unordered``
1663 The set of values that can be read is governed by the happens-before
1664 partial order. A value cannot be read unless some operation wrote
1665 it. This is intended to provide a guarantee strong enough to model
1666 Java's non-volatile shared variables. This ordering cannot be
1667 specified for read-modify-write operations; it is not strong enough
1668 to make them atomic in any interesting way.
1669``monotonic``
1670 In addition to the guarantees of ``unordered``, there is a single
1671 total order for modifications by ``monotonic`` operations on each
1672 address. All modification orders must be compatible with the
1673 happens-before order. There is no guarantee that the modification
1674 orders can be combined to a global total order for the whole program
1675 (and this often will not be possible). The read in an atomic
1676 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1677 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1678 order immediately before the value it writes. If one atomic read
1679 happens before another atomic read of the same address, the later
1680 read must see the same value or a later value in the address's
1681 modification order. This disallows reordering of ``monotonic`` (or
1682 stronger) operations on the same address. If an address is written
1683 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1684 read that address repeatedly, the other threads must eventually see
1685 the write. This corresponds to the C++0x/C1x
1686 ``memory_order_relaxed``.
1687``acquire``
1688 In addition to the guarantees of ``monotonic``, a
1689 *synchronizes-with* edge may be formed with a ``release`` operation.
1690 This is intended to model C++'s ``memory_order_acquire``.
1691``release``
1692 In addition to the guarantees of ``monotonic``, if this operation
1693 writes a value which is subsequently read by an ``acquire``
1694 operation, it *synchronizes-with* that operation. (This isn't a
1695 complete description; see the C++0x definition of a release
1696 sequence.) This corresponds to the C++0x/C1x
1697 ``memory_order_release``.
1698``acq_rel`` (acquire+release)
1699 Acts as both an ``acquire`` and ``release`` operation on its
1700 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1701``seq_cst`` (sequentially consistent)
1702 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001703 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001704 writes), there is a global total order on all
1705 sequentially-consistent operations on all addresses, which is
1706 consistent with the *happens-before* partial order and with the
1707 modification orders of all the affected addresses. Each
1708 sequentially-consistent read sees the last preceding write to the
1709 same address in this global order. This corresponds to the C++0x/C1x
1710 ``memory_order_seq_cst`` and Java volatile.
1711
1712.. _singlethread:
1713
1714If an atomic operation is marked ``singlethread``, it only *synchronizes
1715with* or participates in modification and seq\_cst total orderings with
1716other operations running in the same thread (for example, in signal
1717handlers).
1718
1719.. _fastmath:
1720
1721Fast-Math Flags
1722---------------
1723
1724LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1725:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1726:ref:`frem <i_frem>`) have the following flags that can set to enable
1727otherwise unsafe floating point operations
1728
1729``nnan``
1730 No NaNs - Allow optimizations to assume the arguments and result are not
1731 NaN. Such optimizations are required to retain defined behavior over
1732 NaNs, but the value of the result is undefined.
1733
1734``ninf``
1735 No Infs - Allow optimizations to assume the arguments and result are not
1736 +/-Inf. Such optimizations are required to retain defined behavior over
1737 +/-Inf, but the value of the result is undefined.
1738
1739``nsz``
1740 No Signed Zeros - Allow optimizations to treat the sign of a zero
1741 argument or result as insignificant.
1742
1743``arcp``
1744 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1745 argument rather than perform division.
1746
1747``fast``
1748 Fast - Allow algebraically equivalent transformations that may
1749 dramatically change results in floating point (e.g. reassociate). This
1750 flag implies all the others.
1751
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001752.. _uselistorder:
1753
1754Use-list Order Directives
1755-------------------------
1756
1757Use-list directives encode the in-memory order of each use-list, allowing the
1758order to be recreated. ``<order-indexes>`` is a comma-separated list of
1759indexes that are assigned to the referenced value's uses. The referenced
1760value's use-list is immediately sorted by these indexes.
1761
1762Use-list directives may appear at function scope or global scope. They are not
1763instructions, and have no effect on the semantics of the IR. When they're at
1764function scope, they must appear after the terminator of the final basic block.
1765
1766If basic blocks have their address taken via ``blockaddress()`` expressions,
1767``uselistorder_bb`` can be used to reorder their use-lists from outside their
1768function's scope.
1769
1770:Syntax:
1771
1772::
1773
1774 uselistorder <ty> <value>, { <order-indexes> }
1775 uselistorder_bb @function, %block { <order-indexes> }
1776
1777:Examples:
1778
1779::
1780
1781 ; At function scope.
1782 uselistorder i32 %arg1, { 1, 0, 2 }
1783 uselistorder label %bb, { 1, 0 }
1784
1785 ; At global scope.
1786 uselistorder i32* @global, { 1, 2, 0 }
1787 uselistorder i32 7, { 1, 0 }
1788 uselistorder i32 (i32) @bar, { 1, 0 }
1789 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1790
Sean Silvab084af42012-12-07 10:36:55 +00001791.. _typesystem:
1792
1793Type System
1794===========
1795
1796The LLVM type system is one of the most important features of the
1797intermediate representation. Being typed enables a number of
1798optimizations to be performed on the intermediate representation
1799directly, without having to do extra analyses on the side before the
1800transformation. A strong type system makes it easier to read the
1801generated code and enables novel analyses and transformations that are
1802not feasible to perform on normal three address code representations.
1803
Rafael Espindola08013342013-12-07 19:34:20 +00001804.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001805
Rafael Espindola08013342013-12-07 19:34:20 +00001806Void Type
1807---------
Sean Silvab084af42012-12-07 10:36:55 +00001808
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001809:Overview:
1810
Rafael Espindola08013342013-12-07 19:34:20 +00001811
1812The void type does not represent any value and has no size.
1813
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001814:Syntax:
1815
Rafael Espindola08013342013-12-07 19:34:20 +00001816
1817::
1818
1819 void
Sean Silvab084af42012-12-07 10:36:55 +00001820
1821
Rafael Espindola08013342013-12-07 19:34:20 +00001822.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001823
Rafael Espindola08013342013-12-07 19:34:20 +00001824Function Type
1825-------------
Sean Silvab084af42012-12-07 10:36:55 +00001826
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001827:Overview:
1828
Sean Silvab084af42012-12-07 10:36:55 +00001829
Rafael Espindola08013342013-12-07 19:34:20 +00001830The function type can be thought of as a function signature. It consists of a
1831return type and a list of formal parameter types. The return type of a function
1832type is a void type or first class type --- except for :ref:`label <t_label>`
1833and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001834
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001835:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001836
Rafael Espindola08013342013-12-07 19:34:20 +00001837::
Sean Silvab084af42012-12-07 10:36:55 +00001838
Rafael Espindola08013342013-12-07 19:34:20 +00001839 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001840
Rafael Espindola08013342013-12-07 19:34:20 +00001841...where '``<parameter list>``' is a comma-separated list of type
1842specifiers. Optionally, the parameter list may include a type ``...``, which
1843indicates that the function takes a variable number of arguments. Variable
1844argument functions can access their arguments with the :ref:`variable argument
1845handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1846except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001847
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001848:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001849
Rafael Espindola08013342013-12-07 19:34:20 +00001850+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1851| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1852+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1853| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1854+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1855| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1856+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1857| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1858+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1859
1860.. _t_firstclass:
1861
1862First Class Types
1863-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001864
1865The :ref:`first class <t_firstclass>` types are perhaps the most important.
1866Values of these types are the only ones which can be produced by
1867instructions.
1868
Rafael Espindola08013342013-12-07 19:34:20 +00001869.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001870
Rafael Espindola08013342013-12-07 19:34:20 +00001871Single Value Types
1872^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001873
Rafael Espindola08013342013-12-07 19:34:20 +00001874These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001875
1876.. _t_integer:
1877
1878Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001879""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001880
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001881:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001882
1883The integer type is a very simple type that simply specifies an
1884arbitrary bit width for the integer type desired. Any bit width from 1
1885bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1886
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001887:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001888
1889::
1890
1891 iN
1892
1893The number of bits the integer will occupy is specified by the ``N``
1894value.
1895
1896Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001897*********
Sean Silvab084af42012-12-07 10:36:55 +00001898
1899+----------------+------------------------------------------------+
1900| ``i1`` | a single-bit integer. |
1901+----------------+------------------------------------------------+
1902| ``i32`` | a 32-bit integer. |
1903+----------------+------------------------------------------------+
1904| ``i1942652`` | a really big integer of over 1 million bits. |
1905+----------------+------------------------------------------------+
1906
1907.. _t_floating:
1908
1909Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001910""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001911
1912.. list-table::
1913 :header-rows: 1
1914
1915 * - Type
1916 - Description
1917
1918 * - ``half``
1919 - 16-bit floating point value
1920
1921 * - ``float``
1922 - 32-bit floating point value
1923
1924 * - ``double``
1925 - 64-bit floating point value
1926
1927 * - ``fp128``
1928 - 128-bit floating point value (112-bit mantissa)
1929
1930 * - ``x86_fp80``
1931 - 80-bit floating point value (X87)
1932
1933 * - ``ppc_fp128``
1934 - 128-bit floating point value (two 64-bits)
1935
Reid Kleckner9a16d082014-03-05 02:41:37 +00001936X86_mmx Type
1937""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001938
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001939:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001940
Reid Kleckner9a16d082014-03-05 02:41:37 +00001941The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001942machine. The operations allowed on it are quite limited: parameters and
1943return values, load and store, and bitcast. User-specified MMX
1944instructions are represented as intrinsic or asm calls with arguments
1945and/or results of this type. There are no arrays, vectors or constants
1946of this type.
1947
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001948:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001949
1950::
1951
Reid Kleckner9a16d082014-03-05 02:41:37 +00001952 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001953
Sean Silvab084af42012-12-07 10:36:55 +00001954
Rafael Espindola08013342013-12-07 19:34:20 +00001955.. _t_pointer:
1956
1957Pointer Type
1958""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001959
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001960:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001961
Rafael Espindola08013342013-12-07 19:34:20 +00001962The pointer type is used to specify memory locations. Pointers are
1963commonly used to reference objects in memory.
1964
1965Pointer types may have an optional address space attribute defining the
1966numbered address space where the pointed-to object resides. The default
1967address space is number zero. The semantics of non-zero address spaces
1968are target-specific.
1969
1970Note that LLVM does not permit pointers to void (``void*``) nor does it
1971permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001972
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001973:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001974
1975::
1976
Rafael Espindola08013342013-12-07 19:34:20 +00001977 <type> *
1978
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001979:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001980
1981+-------------------------+--------------------------------------------------------------------------------------------------------------+
1982| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1983+-------------------------+--------------------------------------------------------------------------------------------------------------+
1984| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1985+-------------------------+--------------------------------------------------------------------------------------------------------------+
1986| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1987+-------------------------+--------------------------------------------------------------------------------------------------------------+
1988
1989.. _t_vector:
1990
1991Vector Type
1992"""""""""""
1993
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001994:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001995
1996A vector type is a simple derived type that represents a vector of
1997elements. Vector types are used when multiple primitive data are
1998operated in parallel using a single instruction (SIMD). A vector type
1999requires a size (number of elements) and an underlying primitive data
2000type. Vector types are considered :ref:`first class <t_firstclass>`.
2001
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002002:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002003
2004::
2005
2006 < <# elements> x <elementtype> >
2007
2008The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002009elementtype may be any integer, floating point or pointer type. Vectors
2010of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002011
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002012:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002013
2014+-------------------+--------------------------------------------------+
2015| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2016+-------------------+--------------------------------------------------+
2017| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2018+-------------------+--------------------------------------------------+
2019| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2020+-------------------+--------------------------------------------------+
2021| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2022+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002023
2024.. _t_label:
2025
2026Label Type
2027^^^^^^^^^^
2028
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002029:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002030
2031The label type represents code labels.
2032
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002033:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002034
2035::
2036
2037 label
2038
2039.. _t_metadata:
2040
2041Metadata Type
2042^^^^^^^^^^^^^
2043
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002044:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002045
2046The metadata type represents embedded metadata. No derived types may be
2047created from metadata except for :ref:`function <t_function>` arguments.
2048
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002049:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002050
2051::
2052
2053 metadata
2054
Sean Silvab084af42012-12-07 10:36:55 +00002055.. _t_aggregate:
2056
2057Aggregate Types
2058^^^^^^^^^^^^^^^
2059
2060Aggregate Types are a subset of derived types that can contain multiple
2061member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2062aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2063aggregate types.
2064
2065.. _t_array:
2066
2067Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002068""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002069
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002070:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002071
2072The array type is a very simple derived type that arranges elements
2073sequentially in memory. The array type requires a size (number of
2074elements) and an underlying data type.
2075
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002076:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002077
2078::
2079
2080 [<# elements> x <elementtype>]
2081
2082The number of elements is a constant integer value; ``elementtype`` may
2083be any type with a size.
2084
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002085:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002086
2087+------------------+--------------------------------------+
2088| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2089+------------------+--------------------------------------+
2090| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2091+------------------+--------------------------------------+
2092| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2093+------------------+--------------------------------------+
2094
2095Here are some examples of multidimensional arrays:
2096
2097+-----------------------------+----------------------------------------------------------+
2098| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2099+-----------------------------+----------------------------------------------------------+
2100| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2101+-----------------------------+----------------------------------------------------------+
2102| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2103+-----------------------------+----------------------------------------------------------+
2104
2105There is no restriction on indexing beyond the end of the array implied
2106by a static type (though there are restrictions on indexing beyond the
2107bounds of an allocated object in some cases). This means that
2108single-dimension 'variable sized array' addressing can be implemented in
2109LLVM with a zero length array type. An implementation of 'pascal style
2110arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2111example.
2112
Sean Silvab084af42012-12-07 10:36:55 +00002113.. _t_struct:
2114
2115Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002116""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002117
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002118:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002119
2120The structure type is used to represent a collection of data members
2121together in memory. The elements of a structure may be any type that has
2122a size.
2123
2124Structures in memory are accessed using '``load``' and '``store``' by
2125getting a pointer to a field with the '``getelementptr``' instruction.
2126Structures in registers are accessed using the '``extractvalue``' and
2127'``insertvalue``' instructions.
2128
2129Structures may optionally be "packed" structures, which indicate that
2130the alignment of the struct is one byte, and that there is no padding
2131between the elements. In non-packed structs, padding between field types
2132is inserted as defined by the DataLayout string in the module, which is
2133required to match what the underlying code generator expects.
2134
2135Structures can either be "literal" or "identified". A literal structure
2136is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2137identified types are always defined at the top level with a name.
2138Literal types are uniqued by their contents and can never be recursive
2139or opaque since there is no way to write one. Identified types can be
2140recursive, can be opaqued, and are never uniqued.
2141
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002142:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002143
2144::
2145
2146 %T1 = type { <type list> } ; Identified normal struct type
2147 %T2 = type <{ <type list> }> ; Identified packed struct type
2148
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002149:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002150
2151+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2152| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2153+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002154| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002155+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2156| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2157+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2158
2159.. _t_opaque:
2160
2161Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002162""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002163
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002164:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002165
2166Opaque structure types are used to represent named structure types that
2167do not have a body specified. This corresponds (for example) to the C
2168notion of a forward declared structure.
2169
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002170:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002171
2172::
2173
2174 %X = type opaque
2175 %52 = type opaque
2176
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002177:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002178
2179+--------------+-------------------+
2180| ``opaque`` | An opaque type. |
2181+--------------+-------------------+
2182
Sean Silva1703e702014-04-08 21:06:22 +00002183.. _constants:
2184
Sean Silvab084af42012-12-07 10:36:55 +00002185Constants
2186=========
2187
2188LLVM has several different basic types of constants. This section
2189describes them all and their syntax.
2190
2191Simple Constants
2192----------------
2193
2194**Boolean constants**
2195 The two strings '``true``' and '``false``' are both valid constants
2196 of the ``i1`` type.
2197**Integer constants**
2198 Standard integers (such as '4') are constants of the
2199 :ref:`integer <t_integer>` type. Negative numbers may be used with
2200 integer types.
2201**Floating point constants**
2202 Floating point constants use standard decimal notation (e.g.
2203 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2204 hexadecimal notation (see below). The assembler requires the exact
2205 decimal value of a floating-point constant. For example, the
2206 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2207 decimal in binary. Floating point constants must have a :ref:`floating
2208 point <t_floating>` type.
2209**Null pointer constants**
2210 The identifier '``null``' is recognized as a null pointer constant
2211 and must be of :ref:`pointer type <t_pointer>`.
2212
2213The one non-intuitive notation for constants is the hexadecimal form of
2214floating point constants. For example, the form
2215'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2216than) '``double 4.5e+15``'. The only time hexadecimal floating point
2217constants are required (and the only time that they are generated by the
2218disassembler) is when a floating point constant must be emitted but it
2219cannot be represented as a decimal floating point number in a reasonable
2220number of digits. For example, NaN's, infinities, and other special
2221values are represented in their IEEE hexadecimal format so that assembly
2222and disassembly do not cause any bits to change in the constants.
2223
2224When using the hexadecimal form, constants of types half, float, and
2225double are represented using the 16-digit form shown above (which
2226matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002227must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002228precision, respectively. Hexadecimal format is always used for long
2229double, and there are three forms of long double. The 80-bit format used
2230by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2231128-bit format used by PowerPC (two adjacent doubles) is represented by
2232``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002233represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2234will only work if they match the long double format on your target.
2235The IEEE 16-bit format (half precision) is represented by ``0xH``
2236followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2237(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002238
Reid Kleckner9a16d082014-03-05 02:41:37 +00002239There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002240
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002241.. _complexconstants:
2242
Sean Silvab084af42012-12-07 10:36:55 +00002243Complex Constants
2244-----------------
2245
2246Complex constants are a (potentially recursive) combination of simple
2247constants and smaller complex constants.
2248
2249**Structure constants**
2250 Structure constants are represented with notation similar to
2251 structure type definitions (a comma separated list of elements,
2252 surrounded by braces (``{}``)). For example:
2253 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2254 "``@G = external global i32``". Structure constants must have
2255 :ref:`structure type <t_struct>`, and the number and types of elements
2256 must match those specified by the type.
2257**Array constants**
2258 Array constants are represented with notation similar to array type
2259 definitions (a comma separated list of elements, surrounded by
2260 square brackets (``[]``)). For example:
2261 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2262 :ref:`array type <t_array>`, and the number and types of elements must
2263 match those specified by the type.
2264**Vector constants**
2265 Vector constants are represented with notation similar to vector
2266 type definitions (a comma separated list of elements, surrounded by
2267 less-than/greater-than's (``<>``)). For example:
2268 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2269 must have :ref:`vector type <t_vector>`, and the number and types of
2270 elements must match those specified by the type.
2271**Zero initialization**
2272 The string '``zeroinitializer``' can be used to zero initialize a
2273 value to zero of *any* type, including scalar and
2274 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2275 having to print large zero initializers (e.g. for large arrays) and
2276 is always exactly equivalent to using explicit zero initializers.
2277**Metadata node**
2278 A metadata node is a structure-like constant with :ref:`metadata
2279 type <t_metadata>`. For example:
2280 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2281 constants that are meant to be interpreted as part of the
2282 instruction stream, metadata is a place to attach additional
2283 information such as debug info.
2284
2285Global Variable and Function Addresses
2286--------------------------------------
2287
2288The addresses of :ref:`global variables <globalvars>` and
2289:ref:`functions <functionstructure>` are always implicitly valid
2290(link-time) constants. These constants are explicitly referenced when
2291the :ref:`identifier for the global <identifiers>` is used and always have
2292:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2293file:
2294
2295.. code-block:: llvm
2296
2297 @X = global i32 17
2298 @Y = global i32 42
2299 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2300
2301.. _undefvalues:
2302
2303Undefined Values
2304----------------
2305
2306The string '``undef``' can be used anywhere a constant is expected, and
2307indicates that the user of the value may receive an unspecified
2308bit-pattern. Undefined values may be of any type (other than '``label``'
2309or '``void``') and be used anywhere a constant is permitted.
2310
2311Undefined values are useful because they indicate to the compiler that
2312the program is well defined no matter what value is used. This gives the
2313compiler more freedom to optimize. Here are some examples of
2314(potentially surprising) transformations that are valid (in pseudo IR):
2315
2316.. code-block:: llvm
2317
2318 %A = add %X, undef
2319 %B = sub %X, undef
2320 %C = xor %X, undef
2321 Safe:
2322 %A = undef
2323 %B = undef
2324 %C = undef
2325
2326This is safe because all of the output bits are affected by the undef
2327bits. Any output bit can have a zero or one depending on the input bits.
2328
2329.. code-block:: llvm
2330
2331 %A = or %X, undef
2332 %B = and %X, undef
2333 Safe:
2334 %A = -1
2335 %B = 0
2336 Unsafe:
2337 %A = undef
2338 %B = undef
2339
2340These logical operations have bits that are not always affected by the
2341input. For example, if ``%X`` has a zero bit, then the output of the
2342'``and``' operation will always be a zero for that bit, no matter what
2343the corresponding bit from the '``undef``' is. As such, it is unsafe to
2344optimize or assume that the result of the '``and``' is '``undef``'.
2345However, it is safe to assume that all bits of the '``undef``' could be
23460, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2347all the bits of the '``undef``' operand to the '``or``' could be set,
2348allowing the '``or``' to be folded to -1.
2349
2350.. code-block:: llvm
2351
2352 %A = select undef, %X, %Y
2353 %B = select undef, 42, %Y
2354 %C = select %X, %Y, undef
2355 Safe:
2356 %A = %X (or %Y)
2357 %B = 42 (or %Y)
2358 %C = %Y
2359 Unsafe:
2360 %A = undef
2361 %B = undef
2362 %C = undef
2363
2364This set of examples shows that undefined '``select``' (and conditional
2365branch) conditions can go *either way*, but they have to come from one
2366of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2367both known to have a clear low bit, then ``%A`` would have to have a
2368cleared low bit. However, in the ``%C`` example, the optimizer is
2369allowed to assume that the '``undef``' operand could be the same as
2370``%Y``, allowing the whole '``select``' to be eliminated.
2371
2372.. code-block:: llvm
2373
2374 %A = xor undef, undef
2375
2376 %B = undef
2377 %C = xor %B, %B
2378
2379 %D = undef
2380 %E = icmp lt %D, 4
2381 %F = icmp gte %D, 4
2382
2383 Safe:
2384 %A = undef
2385 %B = undef
2386 %C = undef
2387 %D = undef
2388 %E = undef
2389 %F = undef
2390
2391This example points out that two '``undef``' operands are not
2392necessarily the same. This can be surprising to people (and also matches
2393C semantics) where they assume that "``X^X``" is always zero, even if
2394``X`` is undefined. This isn't true for a number of reasons, but the
2395short answer is that an '``undef``' "variable" can arbitrarily change
2396its value over its "live range". This is true because the variable
2397doesn't actually *have a live range*. Instead, the value is logically
2398read from arbitrary registers that happen to be around when needed, so
2399the value is not necessarily consistent over time. In fact, ``%A`` and
2400``%C`` need to have the same semantics or the core LLVM "replace all
2401uses with" concept would not hold.
2402
2403.. code-block:: llvm
2404
2405 %A = fdiv undef, %X
2406 %B = fdiv %X, undef
2407 Safe:
2408 %A = undef
2409 b: unreachable
2410
2411These examples show the crucial difference between an *undefined value*
2412and *undefined behavior*. An undefined value (like '``undef``') is
2413allowed to have an arbitrary bit-pattern. This means that the ``%A``
2414operation can be constant folded to '``undef``', because the '``undef``'
2415could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2416However, in the second example, we can make a more aggressive
2417assumption: because the ``undef`` is allowed to be an arbitrary value,
2418we are allowed to assume that it could be zero. Since a divide by zero
2419has *undefined behavior*, we are allowed to assume that the operation
2420does not execute at all. This allows us to delete the divide and all
2421code after it. Because the undefined operation "can't happen", the
2422optimizer can assume that it occurs in dead code.
2423
2424.. code-block:: llvm
2425
2426 a: store undef -> %X
2427 b: store %X -> undef
2428 Safe:
2429 a: <deleted>
2430 b: unreachable
2431
2432These examples reiterate the ``fdiv`` example: a store *of* an undefined
2433value can be assumed to not have any effect; we can assume that the
2434value is overwritten with bits that happen to match what was already
2435there. However, a store *to* an undefined location could clobber
2436arbitrary memory, therefore, it has undefined behavior.
2437
2438.. _poisonvalues:
2439
2440Poison Values
2441-------------
2442
2443Poison values are similar to :ref:`undef values <undefvalues>`, however
2444they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002445that cannot evoke side effects has nevertheless detected a condition
2446that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002447
2448There is currently no way of representing a poison value in the IR; they
2449only exist when produced by operations such as :ref:`add <i_add>` with
2450the ``nsw`` flag.
2451
2452Poison value behavior is defined in terms of value *dependence*:
2453
2454- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2455- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2456 their dynamic predecessor basic block.
2457- Function arguments depend on the corresponding actual argument values
2458 in the dynamic callers of their functions.
2459- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2460 instructions that dynamically transfer control back to them.
2461- :ref:`Invoke <i_invoke>` instructions depend on the
2462 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2463 call instructions that dynamically transfer control back to them.
2464- Non-volatile loads and stores depend on the most recent stores to all
2465 of the referenced memory addresses, following the order in the IR
2466 (including loads and stores implied by intrinsics such as
2467 :ref:`@llvm.memcpy <int_memcpy>`.)
2468- An instruction with externally visible side effects depends on the
2469 most recent preceding instruction with externally visible side
2470 effects, following the order in the IR. (This includes :ref:`volatile
2471 operations <volatile>`.)
2472- An instruction *control-depends* on a :ref:`terminator
2473 instruction <terminators>` if the terminator instruction has
2474 multiple successors and the instruction is always executed when
2475 control transfers to one of the successors, and may not be executed
2476 when control is transferred to another.
2477- Additionally, an instruction also *control-depends* on a terminator
2478 instruction if the set of instructions it otherwise depends on would
2479 be different if the terminator had transferred control to a different
2480 successor.
2481- Dependence is transitive.
2482
Richard Smith32dbdf62014-07-31 04:25:36 +00002483Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2484with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002485on a poison value has undefined behavior.
2486
2487Here are some examples:
2488
2489.. code-block:: llvm
2490
2491 entry:
2492 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2493 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2494 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2495 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2496
2497 store i32 %poison, i32* @g ; Poison value stored to memory.
2498 %poison2 = load i32* @g ; Poison value loaded back from memory.
2499
2500 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2501
2502 %narrowaddr = bitcast i32* @g to i16*
2503 %wideaddr = bitcast i32* @g to i64*
2504 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2505 %poison4 = load i64* %wideaddr ; Returns a poison value.
2506
2507 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2508 br i1 %cmp, label %true, label %end ; Branch to either destination.
2509
2510 true:
2511 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2512 ; it has undefined behavior.
2513 br label %end
2514
2515 end:
2516 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2517 ; Both edges into this PHI are
2518 ; control-dependent on %cmp, so this
2519 ; always results in a poison value.
2520
2521 store volatile i32 0, i32* @g ; This would depend on the store in %true
2522 ; if %cmp is true, or the store in %entry
2523 ; otherwise, so this is undefined behavior.
2524
2525 br i1 %cmp, label %second_true, label %second_end
2526 ; The same branch again, but this time the
2527 ; true block doesn't have side effects.
2528
2529 second_true:
2530 ; No side effects!
2531 ret void
2532
2533 second_end:
2534 store volatile i32 0, i32* @g ; This time, the instruction always depends
2535 ; on the store in %end. Also, it is
2536 ; control-equivalent to %end, so this is
2537 ; well-defined (ignoring earlier undefined
2538 ; behavior in this example).
2539
2540.. _blockaddress:
2541
2542Addresses of Basic Blocks
2543-------------------------
2544
2545``blockaddress(@function, %block)``
2546
2547The '``blockaddress``' constant computes the address of the specified
2548basic block in the specified function, and always has an ``i8*`` type.
2549Taking the address of the entry block is illegal.
2550
2551This value only has defined behavior when used as an operand to the
2552':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2553against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002554undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002555no label is equal to the null pointer. This may be passed around as an
2556opaque pointer sized value as long as the bits are not inspected. This
2557allows ``ptrtoint`` and arithmetic to be performed on these values so
2558long as the original value is reconstituted before the ``indirectbr``
2559instruction.
2560
2561Finally, some targets may provide defined semantics when using the value
2562as the operand to an inline assembly, but that is target specific.
2563
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002564.. _constantexprs:
2565
Sean Silvab084af42012-12-07 10:36:55 +00002566Constant Expressions
2567--------------------
2568
2569Constant expressions are used to allow expressions involving other
2570constants to be used as constants. Constant expressions may be of any
2571:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2572that does not have side effects (e.g. load and call are not supported).
2573The following is the syntax for constant expressions:
2574
2575``trunc (CST to TYPE)``
2576 Truncate a constant to another type. The bit size of CST must be
2577 larger than the bit size of TYPE. Both types must be integers.
2578``zext (CST to TYPE)``
2579 Zero extend a constant to another type. The bit size of CST must be
2580 smaller than the bit size of TYPE. Both types must be integers.
2581``sext (CST to TYPE)``
2582 Sign extend a constant to another type. The bit size of CST must be
2583 smaller than the bit size of TYPE. Both types must be integers.
2584``fptrunc (CST to TYPE)``
2585 Truncate a floating point constant to another floating point type.
2586 The size of CST must be larger than the size of TYPE. Both types
2587 must be floating point.
2588``fpext (CST to TYPE)``
2589 Floating point extend a constant to another type. The size of CST
2590 must be smaller or equal to the size of TYPE. Both types must be
2591 floating point.
2592``fptoui (CST to TYPE)``
2593 Convert a floating point constant to the corresponding unsigned
2594 integer constant. TYPE must be a scalar or vector integer type. CST
2595 must be of scalar or vector floating point type. Both CST and TYPE
2596 must be scalars, or vectors of the same number of elements. If the
2597 value won't fit in the integer type, the results are undefined.
2598``fptosi (CST to TYPE)``
2599 Convert a floating point constant to the corresponding signed
2600 integer constant. TYPE must be a scalar or vector integer type. CST
2601 must be of scalar or vector floating point type. Both CST and TYPE
2602 must be scalars, or vectors of the same number of elements. If the
2603 value won't fit in the integer type, the results are undefined.
2604``uitofp (CST to TYPE)``
2605 Convert an unsigned integer constant to the corresponding floating
2606 point constant. TYPE must be a scalar or vector floating point type.
2607 CST must be of scalar or vector integer type. Both CST and TYPE must
2608 be scalars, or vectors of the same number of elements. If the value
2609 won't fit in the floating point type, the results are undefined.
2610``sitofp (CST to TYPE)``
2611 Convert a signed integer constant to the corresponding floating
2612 point constant. TYPE must be a scalar or vector floating point type.
2613 CST must be of scalar or vector integer type. Both CST and TYPE must
2614 be scalars, or vectors of the same number of elements. If the value
2615 won't fit in the floating point type, the results are undefined.
2616``ptrtoint (CST to TYPE)``
2617 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002618 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002619 pointer type. The ``CST`` value is zero extended, truncated, or
2620 unchanged to make it fit in ``TYPE``.
2621``inttoptr (CST to TYPE)``
2622 Convert an integer constant to a pointer constant. TYPE must be a
2623 pointer type. CST must be of integer type. The CST value is zero
2624 extended, truncated, or unchanged to make it fit in a pointer size.
2625 This one is *really* dangerous!
2626``bitcast (CST to TYPE)``
2627 Convert a constant, CST, to another TYPE. The constraints of the
2628 operands are the same as those for the :ref:`bitcast
2629 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002630``addrspacecast (CST to TYPE)``
2631 Convert a constant pointer or constant vector of pointer, CST, to another
2632 TYPE in a different address space. The constraints of the operands are the
2633 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002634``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2635 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2636 constants. As with the :ref:`getelementptr <i_getelementptr>`
2637 instruction, the index list may have zero or more indexes, which are
2638 required to make sense for the type of "CSTPTR".
2639``select (COND, VAL1, VAL2)``
2640 Perform the :ref:`select operation <i_select>` on constants.
2641``icmp COND (VAL1, VAL2)``
2642 Performs the :ref:`icmp operation <i_icmp>` on constants.
2643``fcmp COND (VAL1, VAL2)``
2644 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2645``extractelement (VAL, IDX)``
2646 Perform the :ref:`extractelement operation <i_extractelement>` on
2647 constants.
2648``insertelement (VAL, ELT, IDX)``
2649 Perform the :ref:`insertelement operation <i_insertelement>` on
2650 constants.
2651``shufflevector (VEC1, VEC2, IDXMASK)``
2652 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2653 constants.
2654``extractvalue (VAL, IDX0, IDX1, ...)``
2655 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2656 constants. The index list is interpreted in a similar manner as
2657 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2658 least one index value must be specified.
2659``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2660 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2661 The index list is interpreted in a similar manner as indices in a
2662 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2663 value must be specified.
2664``OPCODE (LHS, RHS)``
2665 Perform the specified operation of the LHS and RHS constants. OPCODE
2666 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2667 binary <bitwiseops>` operations. The constraints on operands are
2668 the same as those for the corresponding instruction (e.g. no bitwise
2669 operations on floating point values are allowed).
2670
2671Other Values
2672============
2673
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002674.. _inlineasmexprs:
2675
Sean Silvab084af42012-12-07 10:36:55 +00002676Inline Assembler Expressions
2677----------------------------
2678
2679LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2680Inline Assembly <moduleasm>`) through the use of a special value. This
2681value represents the inline assembler as a string (containing the
2682instructions to emit), a list of operand constraints (stored as a
2683string), a flag that indicates whether or not the inline asm expression
2684has side effects, and a flag indicating whether the function containing
2685the asm needs to align its stack conservatively. An example inline
2686assembler expression is:
2687
2688.. code-block:: llvm
2689
2690 i32 (i32) asm "bswap $0", "=r,r"
2691
2692Inline assembler expressions may **only** be used as the callee operand
2693of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2694Thus, typically we have:
2695
2696.. code-block:: llvm
2697
2698 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2699
2700Inline asms with side effects not visible in the constraint list must be
2701marked as having side effects. This is done through the use of the
2702'``sideeffect``' keyword, like so:
2703
2704.. code-block:: llvm
2705
2706 call void asm sideeffect "eieio", ""()
2707
2708In some cases inline asms will contain code that will not work unless
2709the stack is aligned in some way, such as calls or SSE instructions on
2710x86, yet will not contain code that does that alignment within the asm.
2711The compiler should make conservative assumptions about what the asm
2712might contain and should generate its usual stack alignment code in the
2713prologue if the '``alignstack``' keyword is present:
2714
2715.. code-block:: llvm
2716
2717 call void asm alignstack "eieio", ""()
2718
2719Inline asms also support using non-standard assembly dialects. The
2720assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2721the inline asm is using the Intel dialect. Currently, ATT and Intel are
2722the only supported dialects. An example is:
2723
2724.. code-block:: llvm
2725
2726 call void asm inteldialect "eieio", ""()
2727
2728If multiple keywords appear the '``sideeffect``' keyword must come
2729first, the '``alignstack``' keyword second and the '``inteldialect``'
2730keyword last.
2731
2732Inline Asm Metadata
2733^^^^^^^^^^^^^^^^^^^
2734
2735The call instructions that wrap inline asm nodes may have a
2736"``!srcloc``" MDNode attached to it that contains a list of constant
2737integers. If present, the code generator will use the integer as the
2738location cookie value when report errors through the ``LLVMContext``
2739error reporting mechanisms. This allows a front-end to correlate backend
2740errors that occur with inline asm back to the source code that produced
2741it. For example:
2742
2743.. code-block:: llvm
2744
2745 call void asm sideeffect "something bad", ""(), !srcloc !42
2746 ...
2747 !42 = !{ i32 1234567 }
2748
2749It is up to the front-end to make sense of the magic numbers it places
2750in the IR. If the MDNode contains multiple constants, the code generator
2751will use the one that corresponds to the line of the asm that the error
2752occurs on.
2753
2754.. _metadata:
2755
2756Metadata Nodes and Metadata Strings
2757-----------------------------------
2758
2759LLVM IR allows metadata to be attached to instructions in the program
2760that can convey extra information about the code to the optimizers and
2761code generator. One example application of metadata is source-level
2762debug information. There are two metadata primitives: strings and nodes.
2763All metadata has the ``metadata`` type and is identified in syntax by a
2764preceding exclamation point ('``!``').
2765
2766A metadata string is a string surrounded by double quotes. It can
2767contain any character by escaping non-printable characters with
2768"``\xx``" where "``xx``" is the two digit hex code. For example:
2769"``!"test\00"``".
2770
2771Metadata nodes are represented with notation similar to structure
2772constants (a comma separated list of elements, surrounded by braces and
2773preceded by an exclamation point). Metadata nodes can have any values as
2774their operand. For example:
2775
2776.. code-block:: llvm
2777
2778 !{ metadata !"test\00", i32 10}
2779
2780A :ref:`named metadata <namedmetadatastructure>` is a collection of
2781metadata nodes, which can be looked up in the module symbol table. For
2782example:
2783
2784.. code-block:: llvm
2785
2786 !foo = metadata !{!4, !3}
2787
2788Metadata can be used as function arguments. Here ``llvm.dbg.value``
2789function is using two metadata arguments:
2790
2791.. code-block:: llvm
2792
2793 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2794
2795Metadata can be attached with an instruction. Here metadata ``!21`` is
2796attached to the ``add`` instruction using the ``!dbg`` identifier:
2797
2798.. code-block:: llvm
2799
2800 %indvar.next = add i64 %indvar, 1, !dbg !21
2801
2802More information about specific metadata nodes recognized by the
2803optimizers and code generator is found below.
2804
2805'``tbaa``' Metadata
2806^^^^^^^^^^^^^^^^^^^
2807
2808In LLVM IR, memory does not have types, so LLVM's own type system is not
2809suitable for doing TBAA. Instead, metadata is added to the IR to
2810describe a type system of a higher level language. This can be used to
2811implement typical C/C++ TBAA, but it can also be used to implement
2812custom alias analysis behavior for other languages.
2813
2814The current metadata format is very simple. TBAA metadata nodes have up
2815to three fields, e.g.:
2816
2817.. code-block:: llvm
2818
2819 !0 = metadata !{ metadata !"an example type tree" }
2820 !1 = metadata !{ metadata !"int", metadata !0 }
2821 !2 = metadata !{ metadata !"float", metadata !0 }
2822 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2823
2824The first field is an identity field. It can be any value, usually a
2825metadata string, which uniquely identifies the type. The most important
2826name in the tree is the name of the root node. Two trees with different
2827root node names are entirely disjoint, even if they have leaves with
2828common names.
2829
2830The second field identifies the type's parent node in the tree, or is
2831null or omitted for a root node. A type is considered to alias all of
2832its descendants and all of its ancestors in the tree. Also, a type is
2833considered to alias all types in other trees, so that bitcode produced
2834from multiple front-ends is handled conservatively.
2835
2836If the third field is present, it's an integer which if equal to 1
2837indicates that the type is "constant" (meaning
2838``pointsToConstantMemory`` should return true; see `other useful
2839AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2840
2841'``tbaa.struct``' Metadata
2842^^^^^^^^^^^^^^^^^^^^^^^^^^
2843
2844The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2845aggregate assignment operations in C and similar languages, however it
2846is defined to copy a contiguous region of memory, which is more than
2847strictly necessary for aggregate types which contain holes due to
2848padding. Also, it doesn't contain any TBAA information about the fields
2849of the aggregate.
2850
2851``!tbaa.struct`` metadata can describe which memory subregions in a
2852memcpy are padding and what the TBAA tags of the struct are.
2853
2854The current metadata format is very simple. ``!tbaa.struct`` metadata
2855nodes are a list of operands which are in conceptual groups of three.
2856For each group of three, the first operand gives the byte offset of a
2857field in bytes, the second gives its size in bytes, and the third gives
2858its tbaa tag. e.g.:
2859
2860.. code-block:: llvm
2861
2862 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2863
2864This describes a struct with two fields. The first is at offset 0 bytes
2865with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2866and has size 4 bytes and has tbaa tag !2.
2867
2868Note that the fields need not be contiguous. In this example, there is a
28694 byte gap between the two fields. This gap represents padding which
2870does not carry useful data and need not be preserved.
2871
Hal Finkel94146652014-07-24 14:25:39 +00002872'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00002873^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00002874
2875``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2876noalias memory-access sets. This means that some collection of memory access
2877instructions (loads, stores, memory-accessing calls, etc.) that carry
2878``noalias`` metadata can specifically be specified not to alias with some other
2879collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00002880Each type of metadata specifies a list of scopes where each scope has an id and
2881a domain. When evaluating an aliasing query, if for some some domain, the set
2882of scopes with that domain in one instruction's ``alias.scope`` list is a
2883subset of (or qual to) the set of scopes for that domain in another
2884instruction's ``noalias`` list, then the two memory accesses are assumed not to
2885alias.
Hal Finkel94146652014-07-24 14:25:39 +00002886
Hal Finkel029cde62014-07-25 15:50:02 +00002887The metadata identifying each domain is itself a list containing one or two
2888entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00002889string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00002890self-reference can be used to create globally unique domain names. A
2891descriptive string may optionally be provided as a second list entry.
2892
2893The metadata identifying each scope is also itself a list containing two or
2894three entries. The first entry is the name of the scope. Note that if the name
2895is a string then it can be combined accross functions and translation units. A
2896self-reference can be used to create globally unique scope names. A metadata
2897reference to the scope's domain is the second entry. A descriptive string may
2898optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00002899
2900For example,
2901
2902.. code-block:: llvm
2903
Hal Finkel029cde62014-07-25 15:50:02 +00002904 ; Two scope domains:
Hal Finkel94146652014-07-24 14:25:39 +00002905 !0 = metadata !{metadata !0}
Hal Finkel029cde62014-07-25 15:50:02 +00002906 !1 = metadata !{metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002907
Hal Finkel029cde62014-07-25 15:50:02 +00002908 ; Some scopes in these domains:
2909 !2 = metadata !{metadata !2, metadata !0}
2910 !3 = metadata !{metadata !3, metadata !0}
2911 !4 = metadata !{metadata !4, metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002912
Hal Finkel029cde62014-07-25 15:50:02 +00002913 ; Some scope lists:
2914 !5 = metadata !{metadata !4} ; A list containing only scope !4
2915 !6 = metadata !{metadata !4, metadata !3, metadata !2}
2916 !7 = metadata !{metadata !3}
Hal Finkel94146652014-07-24 14:25:39 +00002917
2918 ; These two instructions don't alias:
Hal Finkel029cde62014-07-25 15:50:02 +00002919 %0 = load float* %c, align 4, !alias.scope !5
2920 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00002921
Hal Finkel029cde62014-07-25 15:50:02 +00002922 ; These two instructions also don't alias (for domain !1, the set of scopes
2923 ; in the !alias.scope equals that in the !noalias list):
2924 %2 = load float* %c, align 4, !alias.scope !5
2925 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00002926
Hal Finkel029cde62014-07-25 15:50:02 +00002927 ; These two instructions don't alias (for domain !0, the set of scopes in
2928 ; the !noalias list is not a superset of, or equal to, the scopes in the
2929 ; !alias.scope list):
2930 %2 = load float* %c, align 4, !alias.scope !6
2931 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00002932
Sean Silvab084af42012-12-07 10:36:55 +00002933'``fpmath``' Metadata
2934^^^^^^^^^^^^^^^^^^^^^
2935
2936``fpmath`` metadata may be attached to any instruction of floating point
2937type. It can be used to express the maximum acceptable error in the
2938result of that instruction, in ULPs, thus potentially allowing the
2939compiler to use a more efficient but less accurate method of computing
2940it. ULP is defined as follows:
2941
2942 If ``x`` is a real number that lies between two finite consecutive
2943 floating-point numbers ``a`` and ``b``, without being equal to one
2944 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2945 distance between the two non-equal finite floating-point numbers
2946 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2947
2948The metadata node shall consist of a single positive floating point
2949number representing the maximum relative error, for example:
2950
2951.. code-block:: llvm
2952
2953 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2954
2955'``range``' Metadata
2956^^^^^^^^^^^^^^^^^^^^
2957
Jingyue Wu37fcb592014-06-19 16:50:16 +00002958``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2959integer types. It expresses the possible ranges the loaded value or the value
2960returned by the called function at this call site is in. The ranges are
2961represented with a flattened list of integers. The loaded value or the value
2962returned is known to be in the union of the ranges defined by each consecutive
2963pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00002964
2965- The type must match the type loaded by the instruction.
2966- The pair ``a,b`` represents the range ``[a,b)``.
2967- Both ``a`` and ``b`` are constants.
2968- The range is allowed to wrap.
2969- The range should not represent the full or empty set. That is,
2970 ``a!=b``.
2971
2972In addition, the pairs must be in signed order of the lower bound and
2973they must be non-contiguous.
2974
2975Examples:
2976
2977.. code-block:: llvm
2978
2979 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2980 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00002981 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
2982 %d = invoke i8 @bar() to label %cont
2983 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00002984 ...
2985 !0 = metadata !{ i8 0, i8 2 }
2986 !1 = metadata !{ i8 255, i8 2 }
2987 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2988 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2989
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002990'``llvm.loop``'
2991^^^^^^^^^^^^^^^
2992
2993It is sometimes useful to attach information to loop constructs. Currently,
2994loop metadata is implemented as metadata attached to the branch instruction
2995in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002996guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002997specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002998
2999The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003000itself to avoid merging it with any other identifier metadata, e.g.,
3001during module linkage or function inlining. That is, each loop should refer
3002to their own identification metadata even if they reside in separate functions.
3003The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003004constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003005
3006.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003007
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003008 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003009 !1 = metadata !{ metadata !1 }
3010
Mark Heffernan893752a2014-07-18 19:24:51 +00003011The loop identifier metadata can be used to specify additional
3012per-loop metadata. Any operands after the first operand can be treated
3013as user-defined metadata. For example the ``llvm.loop.unroll.count``
3014suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003015
Paul Redmond5fdf8362013-05-28 20:00:34 +00003016.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003017
Paul Redmond5fdf8362013-05-28 20:00:34 +00003018 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3019 ...
3020 !0 = metadata !{ metadata !0, metadata !1 }
Mark Heffernan9d20e422014-07-21 23:11:03 +00003021 !1 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003022
Mark Heffernan9d20e422014-07-21 23:11:03 +00003023'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3024^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003025
Mark Heffernan9d20e422014-07-21 23:11:03 +00003026Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3027used to control per-loop vectorization and interleaving parameters such as
3028vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003029conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003030``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3031optimization hints and the optimizer will only interleave and vectorize loops if
3032it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3033which contains information about loop-carried memory dependencies can be helpful
3034in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003035
Mark Heffernan9d20e422014-07-21 23:11:03 +00003036'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3038
Mark Heffernan9d20e422014-07-21 23:11:03 +00003039This metadata suggests an interleave count to the loop interleaver.
3040The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003041second operand is an integer specifying the interleave count. For
3042example:
3043
3044.. code-block:: llvm
3045
Mark Heffernan9d20e422014-07-21 23:11:03 +00003046 !0 = metadata !{ metadata !"llvm.loop.interleave.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003047
Mark Heffernan9d20e422014-07-21 23:11:03 +00003048Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3049multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3050then the interleave count will be determined automatically.
3051
3052'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003053^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003054
3055This metadata selectively enables or disables vectorization for the loop. The
3056first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3057is a bit. If the bit operand value is 1 vectorization is enabled. A value of
30580 disables vectorization:
3059
3060.. code-block:: llvm
3061
3062 !0 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 0 }
3063 !1 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 1 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003064
3065'``llvm.loop.vectorize.width``' Metadata
3066^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3067
3068This metadata sets the target width of the vectorizer. The first
3069operand is the string ``llvm.loop.vectorize.width`` and the second
3070operand is an integer specifying the width. For example:
3071
3072.. code-block:: llvm
3073
3074 !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 }
3075
3076Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3077vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
30780 or if the loop does not have this metadata the width will be
3079determined automatically.
3080
3081'``llvm.loop.unroll``'
3082^^^^^^^^^^^^^^^^^^^^^^
3083
3084Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3085optimization hints such as the unroll factor. ``llvm.loop.unroll``
3086metadata should be used in conjunction with ``llvm.loop`` loop
3087identification metadata. The ``llvm.loop.unroll`` metadata are only
3088optimization hints and the unrolling will only be performed if the
3089optimizer believes it is safe to do so.
3090
Mark Heffernan893752a2014-07-18 19:24:51 +00003091'``llvm.loop.unroll.count``' Metadata
3092^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3093
3094This metadata suggests an unroll factor to the loop unroller. The
3095first operand is the string ``llvm.loop.unroll.count`` and the second
3096operand is a positive integer specifying the unroll factor. For
3097example:
3098
3099.. code-block:: llvm
3100
3101 !0 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
3102
3103If the trip count of the loop is less than the unroll count the loop
3104will be partially unrolled.
3105
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003106'``llvm.loop.unroll.disable``' Metadata
3107^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3108
3109This metadata either disables loop unrolling. The metadata has a single operand
3110which is the string ``llvm.loop.unroll.disable``. For example:
3111
3112.. code-block:: llvm
3113
3114 !0 = metadata !{ metadata !"llvm.loop.unroll.disable" }
3115
3116'``llvm.loop.unroll.full``' Metadata
3117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3118
3119This metadata either suggests that the loop should be unrolled fully. The
3120metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3121For example:
3122
3123.. code-block:: llvm
3124
3125 !0 = metadata !{ metadata !"llvm.loop.unroll.full" }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003126
3127'``llvm.mem``'
3128^^^^^^^^^^^^^^^
3129
3130Metadata types used to annotate memory accesses with information helpful
3131for optimizations are prefixed with ``llvm.mem``.
3132
3133'``llvm.mem.parallel_loop_access``' Metadata
3134^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3135
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003136The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3137or metadata containing a list of loop identifiers for nested loops.
3138The metadata is attached to memory accessing instructions and denotes that
3139no loop carried memory dependence exist between it and other instructions denoted
3140with the same loop identifier.
3141
3142Precisely, given two instructions ``m1`` and ``m2`` that both have the
3143``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3144set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003145carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003146``L2``.
3147
3148As a special case, if all memory accessing instructions in a loop have
3149``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3150loop has no loop carried memory dependences and is considered to be a parallel
3151loop.
3152
3153Note that if not all memory access instructions have such metadata referring to
3154the loop, then the loop is considered not being trivially parallel. Additional
3155memory dependence analysis is required to make that determination. As a fail
3156safe mechanism, this causes loops that were originally parallel to be considered
3157sequential (if optimization passes that are unaware of the parallel semantics
3158insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003159
3160Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003161both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003162metadata types that refer to the same loop identifier metadata.
3163
3164.. code-block:: llvm
3165
3166 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003167 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003168 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003169 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003170 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003171 ...
3172 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003173
3174 for.end:
3175 ...
3176 !0 = metadata !{ metadata !0 }
3177
3178It is also possible to have nested parallel loops. In that case the
3179memory accesses refer to a list of loop identifier metadata nodes instead of
3180the loop identifier metadata node directly:
3181
3182.. code-block:: llvm
3183
3184 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003185 ...
3186 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3187 ...
3188 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003189
3190 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003191 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003192 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003193 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003194 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003195 ...
3196 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003197
3198 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003199 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003200 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003201 ...
3202 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003203
3204 outer.for.end: ; preds = %for.body
3205 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00003206 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
3207 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
3208 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003209
Sean Silvab084af42012-12-07 10:36:55 +00003210Module Flags Metadata
3211=====================
3212
3213Information about the module as a whole is difficult to convey to LLVM's
3214subsystems. The LLVM IR isn't sufficient to transmit this information.
3215The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003216this. These flags are in the form of key / value pairs --- much like a
3217dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003218look it up.
3219
3220The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3221Each triplet has the following form:
3222
3223- The first element is a *behavior* flag, which specifies the behavior
3224 when two (or more) modules are merged together, and it encounters two
3225 (or more) metadata with the same ID. The supported behaviors are
3226 described below.
3227- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003228 metadata. Each module may only have one flag entry for each unique ID (not
3229 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003230- The third element is the value of the flag.
3231
3232When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003233``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3234each unique metadata ID string, there will be exactly one entry in the merged
3235modules ``llvm.module.flags`` metadata table, and the value for that entry will
3236be determined by the merge behavior flag, as described below. The only exception
3237is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003238
3239The following behaviors are supported:
3240
3241.. list-table::
3242 :header-rows: 1
3243 :widths: 10 90
3244
3245 * - Value
3246 - Behavior
3247
3248 * - 1
3249 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003250 Emits an error if two values disagree, otherwise the resulting value
3251 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003252
3253 * - 2
3254 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003255 Emits a warning if two values disagree. The result value will be the
3256 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003257
3258 * - 3
3259 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003260 Adds a requirement that another module flag be present and have a
3261 specified value after linking is performed. The value must be a
3262 metadata pair, where the first element of the pair is the ID of the
3263 module flag to be restricted, and the second element of the pair is
3264 the value the module flag should be restricted to. This behavior can
3265 be used to restrict the allowable results (via triggering of an
3266 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003267
3268 * - 4
3269 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003270 Uses the specified value, regardless of the behavior or value of the
3271 other module. If both modules specify **Override**, but the values
3272 differ, an error will be emitted.
3273
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003274 * - 5
3275 - **Append**
3276 Appends the two values, which are required to be metadata nodes.
3277
3278 * - 6
3279 - **AppendUnique**
3280 Appends the two values, which are required to be metadata
3281 nodes. However, duplicate entries in the second list are dropped
3282 during the append operation.
3283
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003284It is an error for a particular unique flag ID to have multiple behaviors,
3285except in the case of **Require** (which adds restrictions on another metadata
3286value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003287
3288An example of module flags:
3289
3290.. code-block:: llvm
3291
3292 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3293 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3294 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3295 !3 = metadata !{ i32 3, metadata !"qux",
3296 metadata !{
3297 metadata !"foo", i32 1
3298 }
3299 }
3300 !llvm.module.flags = !{ !0, !1, !2, !3 }
3301
3302- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3303 if two or more ``!"foo"`` flags are seen is to emit an error if their
3304 values are not equal.
3305
3306- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3307 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003308 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003309
3310- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3311 behavior if two or more ``!"qux"`` flags are seen is to emit a
3312 warning if their values are not equal.
3313
3314- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3315
3316 ::
3317
3318 metadata !{ metadata !"foo", i32 1 }
3319
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003320 The behavior is to emit an error if the ``llvm.module.flags`` does not
3321 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3322 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003323
3324Objective-C Garbage Collection Module Flags Metadata
3325----------------------------------------------------
3326
3327On the Mach-O platform, Objective-C stores metadata about garbage
3328collection in a special section called "image info". The metadata
3329consists of a version number and a bitmask specifying what types of
3330garbage collection are supported (if any) by the file. If two or more
3331modules are linked together their garbage collection metadata needs to
3332be merged rather than appended together.
3333
3334The Objective-C garbage collection module flags metadata consists of the
3335following key-value pairs:
3336
3337.. list-table::
3338 :header-rows: 1
3339 :widths: 30 70
3340
3341 * - Key
3342 - Value
3343
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003344 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003345 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003346
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003347 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003348 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003349 always 0.
3350
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003351 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003352 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003353 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3354 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3355 Objective-C ABI version 2.
3356
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003357 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003358 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003359 not. Valid values are 0, for no garbage collection, and 2, for garbage
3360 collection supported.
3361
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003362 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003363 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003364 If present, its value must be 6. This flag requires that the
3365 ``Objective-C Garbage Collection`` flag have the value 2.
3366
3367Some important flag interactions:
3368
3369- If a module with ``Objective-C Garbage Collection`` set to 0 is
3370 merged with a module with ``Objective-C Garbage Collection`` set to
3371 2, then the resulting module has the
3372 ``Objective-C Garbage Collection`` flag set to 0.
3373- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3374 merged with a module with ``Objective-C GC Only`` set to 6.
3375
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003376Automatic Linker Flags Module Flags Metadata
3377--------------------------------------------
3378
3379Some targets support embedding flags to the linker inside individual object
3380files. Typically this is used in conjunction with language extensions which
3381allow source files to explicitly declare the libraries they depend on, and have
3382these automatically be transmitted to the linker via object files.
3383
3384These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003385using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003386to be ``AppendUnique``, and the value for the key is expected to be a metadata
3387node which should be a list of other metadata nodes, each of which should be a
3388list of metadata strings defining linker options.
3389
3390For example, the following metadata section specifies two separate sets of
3391linker options, presumably to link against ``libz`` and the ``Cocoa``
3392framework::
3393
Michael Liaoa7699082013-03-06 18:24:34 +00003394 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003395 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003396 metadata !{ metadata !"-lz" },
3397 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003398 !llvm.module.flags = !{ !0 }
3399
3400The metadata encoding as lists of lists of options, as opposed to a collapsed
3401list of options, is chosen so that the IR encoding can use multiple option
3402strings to specify e.g., a single library, while still having that specifier be
3403preserved as an atomic element that can be recognized by a target specific
3404assembly writer or object file emitter.
3405
3406Each individual option is required to be either a valid option for the target's
3407linker, or an option that is reserved by the target specific assembly writer or
3408object file emitter. No other aspect of these options is defined by the IR.
3409
Oliver Stannard5dc29342014-06-20 10:08:11 +00003410C type width Module Flags Metadata
3411----------------------------------
3412
3413The ARM backend emits a section into each generated object file describing the
3414options that it was compiled with (in a compiler-independent way) to prevent
3415linking incompatible objects, and to allow automatic library selection. Some
3416of these options are not visible at the IR level, namely wchar_t width and enum
3417width.
3418
3419To pass this information to the backend, these options are encoded in module
3420flags metadata, using the following key-value pairs:
3421
3422.. list-table::
3423 :header-rows: 1
3424 :widths: 30 70
3425
3426 * - Key
3427 - Value
3428
3429 * - short_wchar
3430 - * 0 --- sizeof(wchar_t) == 4
3431 * 1 --- sizeof(wchar_t) == 2
3432
3433 * - short_enum
3434 - * 0 --- Enums are at least as large as an ``int``.
3435 * 1 --- Enums are stored in the smallest integer type which can
3436 represent all of its values.
3437
3438For example, the following metadata section specifies that the module was
3439compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3440enum is the smallest type which can represent all of its values::
3441
3442 !llvm.module.flags = !{!0, !1}
3443 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1}
3444 !1 = metadata !{i32 1, metadata !"short_enum", i32 0}
3445
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003446.. _intrinsicglobalvariables:
3447
Sean Silvab084af42012-12-07 10:36:55 +00003448Intrinsic Global Variables
3449==========================
3450
3451LLVM has a number of "magic" global variables that contain data that
3452affect code generation or other IR semantics. These are documented here.
3453All globals of this sort should have a section specified as
3454"``llvm.metadata``". This section and all globals that start with
3455"``llvm.``" are reserved for use by LLVM.
3456
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003457.. _gv_llvmused:
3458
Sean Silvab084af42012-12-07 10:36:55 +00003459The '``llvm.used``' Global Variable
3460-----------------------------------
3461
Rafael Espindola74f2e462013-04-22 14:58:02 +00003462The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003463:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003464pointers to named global variables, functions and aliases which may optionally
3465have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003466use of it is:
3467
3468.. code-block:: llvm
3469
3470 @X = global i8 4
3471 @Y = global i32 123
3472
3473 @llvm.used = appending global [2 x i8*] [
3474 i8* @X,
3475 i8* bitcast (i32* @Y to i8*)
3476 ], section "llvm.metadata"
3477
Rafael Espindola74f2e462013-04-22 14:58:02 +00003478If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3479and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003480symbol that it cannot see (which is why they have to be named). For example, if
3481a variable has internal linkage and no references other than that from the
3482``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3483references from inline asms and other things the compiler cannot "see", and
3484corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003485
3486On some targets, the code generator must emit a directive to the
3487assembler or object file to prevent the assembler and linker from
3488molesting the symbol.
3489
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003490.. _gv_llvmcompilerused:
3491
Sean Silvab084af42012-12-07 10:36:55 +00003492The '``llvm.compiler.used``' Global Variable
3493--------------------------------------------
3494
3495The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3496directive, except that it only prevents the compiler from touching the
3497symbol. On targets that support it, this allows an intelligent linker to
3498optimize references to the symbol without being impeded as it would be
3499by ``@llvm.used``.
3500
3501This is a rare construct that should only be used in rare circumstances,
3502and should not be exposed to source languages.
3503
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003504.. _gv_llvmglobalctors:
3505
Sean Silvab084af42012-12-07 10:36:55 +00003506The '``llvm.global_ctors``' Global Variable
3507-------------------------------------------
3508
3509.. code-block:: llvm
3510
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003511 %0 = type { i32, void ()*, i8* }
3512 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003513
3514The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003515functions, priorities, and an optional associated global or function.
3516The functions referenced by this array will be called in ascending order
3517of priority (i.e. lowest first) when the module is loaded. The order of
3518functions with the same priority is not defined.
3519
3520If the third field is present, non-null, and points to a global variable
3521or function, the initializer function will only run if the associated
3522data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003523
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003524.. _llvmglobaldtors:
3525
Sean Silvab084af42012-12-07 10:36:55 +00003526The '``llvm.global_dtors``' Global Variable
3527-------------------------------------------
3528
3529.. code-block:: llvm
3530
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003531 %0 = type { i32, void ()*, i8* }
3532 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003533
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003534The ``@llvm.global_dtors`` array contains a list of destructor
3535functions, priorities, and an optional associated global or function.
3536The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003537order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003538order of functions with the same priority is not defined.
3539
3540If the third field is present, non-null, and points to a global variable
3541or function, the destructor function will only run if the associated
3542data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003543
3544Instruction Reference
3545=====================
3546
3547The LLVM instruction set consists of several different classifications
3548of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3549instructions <binaryops>`, :ref:`bitwise binary
3550instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3551:ref:`other instructions <otherops>`.
3552
3553.. _terminators:
3554
3555Terminator Instructions
3556-----------------------
3557
3558As mentioned :ref:`previously <functionstructure>`, every basic block in a
3559program ends with a "Terminator" instruction, which indicates which
3560block should be executed after the current block is finished. These
3561terminator instructions typically yield a '``void``' value: they produce
3562control flow, not values (the one exception being the
3563':ref:`invoke <i_invoke>`' instruction).
3564
3565The terminator instructions are: ':ref:`ret <i_ret>`',
3566':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3567':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3568':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3569
3570.. _i_ret:
3571
3572'``ret``' Instruction
3573^^^^^^^^^^^^^^^^^^^^^
3574
3575Syntax:
3576"""""""
3577
3578::
3579
3580 ret <type> <value> ; Return a value from a non-void function
3581 ret void ; Return from void function
3582
3583Overview:
3584"""""""""
3585
3586The '``ret``' instruction is used to return control flow (and optionally
3587a value) from a function back to the caller.
3588
3589There are two forms of the '``ret``' instruction: one that returns a
3590value and then causes control flow, and one that just causes control
3591flow to occur.
3592
3593Arguments:
3594""""""""""
3595
3596The '``ret``' instruction optionally accepts a single argument, the
3597return value. The type of the return value must be a ':ref:`first
3598class <t_firstclass>`' type.
3599
3600A function is not :ref:`well formed <wellformed>` if it it has a non-void
3601return type and contains a '``ret``' instruction with no return value or
3602a return value with a type that does not match its type, or if it has a
3603void return type and contains a '``ret``' instruction with a return
3604value.
3605
3606Semantics:
3607""""""""""
3608
3609When the '``ret``' instruction is executed, control flow returns back to
3610the calling function's context. If the caller is a
3611":ref:`call <i_call>`" instruction, execution continues at the
3612instruction after the call. If the caller was an
3613":ref:`invoke <i_invoke>`" instruction, execution continues at the
3614beginning of the "normal" destination block. If the instruction returns
3615a value, that value shall set the call or invoke instruction's return
3616value.
3617
3618Example:
3619""""""""
3620
3621.. code-block:: llvm
3622
3623 ret i32 5 ; Return an integer value of 5
3624 ret void ; Return from a void function
3625 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3626
3627.. _i_br:
3628
3629'``br``' Instruction
3630^^^^^^^^^^^^^^^^^^^^
3631
3632Syntax:
3633"""""""
3634
3635::
3636
3637 br i1 <cond>, label <iftrue>, label <iffalse>
3638 br label <dest> ; Unconditional branch
3639
3640Overview:
3641"""""""""
3642
3643The '``br``' instruction is used to cause control flow to transfer to a
3644different basic block in the current function. There are two forms of
3645this instruction, corresponding to a conditional branch and an
3646unconditional branch.
3647
3648Arguments:
3649""""""""""
3650
3651The conditional branch form of the '``br``' instruction takes a single
3652'``i1``' value and two '``label``' values. The unconditional form of the
3653'``br``' instruction takes a single '``label``' value as a target.
3654
3655Semantics:
3656""""""""""
3657
3658Upon execution of a conditional '``br``' instruction, the '``i1``'
3659argument is evaluated. If the value is ``true``, control flows to the
3660'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3661to the '``iffalse``' ``label`` argument.
3662
3663Example:
3664""""""""
3665
3666.. code-block:: llvm
3667
3668 Test:
3669 %cond = icmp eq i32 %a, %b
3670 br i1 %cond, label %IfEqual, label %IfUnequal
3671 IfEqual:
3672 ret i32 1
3673 IfUnequal:
3674 ret i32 0
3675
3676.. _i_switch:
3677
3678'``switch``' Instruction
3679^^^^^^^^^^^^^^^^^^^^^^^^
3680
3681Syntax:
3682"""""""
3683
3684::
3685
3686 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3687
3688Overview:
3689"""""""""
3690
3691The '``switch``' instruction is used to transfer control flow to one of
3692several different places. It is a generalization of the '``br``'
3693instruction, allowing a branch to occur to one of many possible
3694destinations.
3695
3696Arguments:
3697""""""""""
3698
3699The '``switch``' instruction uses three parameters: an integer
3700comparison value '``value``', a default '``label``' destination, and an
3701array of pairs of comparison value constants and '``label``'s. The table
3702is not allowed to contain duplicate constant entries.
3703
3704Semantics:
3705""""""""""
3706
3707The ``switch`` instruction specifies a table of values and destinations.
3708When the '``switch``' instruction is executed, this table is searched
3709for the given value. If the value is found, control flow is transferred
3710to the corresponding destination; otherwise, control flow is transferred
3711to the default destination.
3712
3713Implementation:
3714"""""""""""""""
3715
3716Depending on properties of the target machine and the particular
3717``switch`` instruction, this instruction may be code generated in
3718different ways. For example, it could be generated as a series of
3719chained conditional branches or with a lookup table.
3720
3721Example:
3722""""""""
3723
3724.. code-block:: llvm
3725
3726 ; Emulate a conditional br instruction
3727 %Val = zext i1 %value to i32
3728 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3729
3730 ; Emulate an unconditional br instruction
3731 switch i32 0, label %dest [ ]
3732
3733 ; Implement a jump table:
3734 switch i32 %val, label %otherwise [ i32 0, label %onzero
3735 i32 1, label %onone
3736 i32 2, label %ontwo ]
3737
3738.. _i_indirectbr:
3739
3740'``indirectbr``' Instruction
3741^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3742
3743Syntax:
3744"""""""
3745
3746::
3747
3748 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3749
3750Overview:
3751"""""""""
3752
3753The '``indirectbr``' instruction implements an indirect branch to a
3754label within the current function, whose address is specified by
3755"``address``". Address must be derived from a
3756:ref:`blockaddress <blockaddress>` constant.
3757
3758Arguments:
3759""""""""""
3760
3761The '``address``' argument is the address of the label to jump to. The
3762rest of the arguments indicate the full set of possible destinations
3763that the address may point to. Blocks are allowed to occur multiple
3764times in the destination list, though this isn't particularly useful.
3765
3766This destination list is required so that dataflow analysis has an
3767accurate understanding of the CFG.
3768
3769Semantics:
3770""""""""""
3771
3772Control transfers to the block specified in the address argument. All
3773possible destination blocks must be listed in the label list, otherwise
3774this instruction has undefined behavior. This implies that jumps to
3775labels defined in other functions have undefined behavior as well.
3776
3777Implementation:
3778"""""""""""""""
3779
3780This is typically implemented with a jump through a register.
3781
3782Example:
3783""""""""
3784
3785.. code-block:: llvm
3786
3787 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3788
3789.. _i_invoke:
3790
3791'``invoke``' Instruction
3792^^^^^^^^^^^^^^^^^^^^^^^^
3793
3794Syntax:
3795"""""""
3796
3797::
3798
3799 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3800 to label <normal label> unwind label <exception label>
3801
3802Overview:
3803"""""""""
3804
3805The '``invoke``' instruction causes control to transfer to a specified
3806function, with the possibility of control flow transfer to either the
3807'``normal``' label or the '``exception``' label. If the callee function
3808returns with the "``ret``" instruction, control flow will return to the
3809"normal" label. If the callee (or any indirect callees) returns via the
3810":ref:`resume <i_resume>`" instruction or other exception handling
3811mechanism, control is interrupted and continued at the dynamically
3812nearest "exception" label.
3813
3814The '``exception``' label is a `landing
3815pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3816'``exception``' label is required to have the
3817":ref:`landingpad <i_landingpad>`" instruction, which contains the
3818information about the behavior of the program after unwinding happens,
3819as its first non-PHI instruction. The restrictions on the
3820"``landingpad``" instruction's tightly couples it to the "``invoke``"
3821instruction, so that the important information contained within the
3822"``landingpad``" instruction can't be lost through normal code motion.
3823
3824Arguments:
3825""""""""""
3826
3827This instruction requires several arguments:
3828
3829#. The optional "cconv" marker indicates which :ref:`calling
3830 convention <callingconv>` the call should use. If none is
3831 specified, the call defaults to using C calling conventions.
3832#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3833 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3834 are valid here.
3835#. '``ptr to function ty``': shall be the signature of the pointer to
3836 function value being invoked. In most cases, this is a direct
3837 function invocation, but indirect ``invoke``'s are just as possible,
3838 branching off an arbitrary pointer to function value.
3839#. '``function ptr val``': An LLVM value containing a pointer to a
3840 function to be invoked.
3841#. '``function args``': argument list whose types match the function
3842 signature argument types and parameter attributes. All arguments must
3843 be of :ref:`first class <t_firstclass>` type. If the function signature
3844 indicates the function accepts a variable number of arguments, the
3845 extra arguments can be specified.
3846#. '``normal label``': the label reached when the called function
3847 executes a '``ret``' instruction.
3848#. '``exception label``': the label reached when a callee returns via
3849 the :ref:`resume <i_resume>` instruction or other exception handling
3850 mechanism.
3851#. The optional :ref:`function attributes <fnattrs>` list. Only
3852 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3853 attributes are valid here.
3854
3855Semantics:
3856""""""""""
3857
3858This instruction is designed to operate as a standard '``call``'
3859instruction in most regards. The primary difference is that it
3860establishes an association with a label, which is used by the runtime
3861library to unwind the stack.
3862
3863This instruction is used in languages with destructors to ensure that
3864proper cleanup is performed in the case of either a ``longjmp`` or a
3865thrown exception. Additionally, this is important for implementation of
3866'``catch``' clauses in high-level languages that support them.
3867
3868For the purposes of the SSA form, the definition of the value returned
3869by the '``invoke``' instruction is deemed to occur on the edge from the
3870current block to the "normal" label. If the callee unwinds then no
3871return value is available.
3872
3873Example:
3874""""""""
3875
3876.. code-block:: llvm
3877
3878 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003879 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003880 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003881 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003882
3883.. _i_resume:
3884
3885'``resume``' Instruction
3886^^^^^^^^^^^^^^^^^^^^^^^^
3887
3888Syntax:
3889"""""""
3890
3891::
3892
3893 resume <type> <value>
3894
3895Overview:
3896"""""""""
3897
3898The '``resume``' instruction is a terminator instruction that has no
3899successors.
3900
3901Arguments:
3902""""""""""
3903
3904The '``resume``' instruction requires one argument, which must have the
3905same type as the result of any '``landingpad``' instruction in the same
3906function.
3907
3908Semantics:
3909""""""""""
3910
3911The '``resume``' instruction resumes propagation of an existing
3912(in-flight) exception whose unwinding was interrupted with a
3913:ref:`landingpad <i_landingpad>` instruction.
3914
3915Example:
3916""""""""
3917
3918.. code-block:: llvm
3919
3920 resume { i8*, i32 } %exn
3921
3922.. _i_unreachable:
3923
3924'``unreachable``' Instruction
3925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3926
3927Syntax:
3928"""""""
3929
3930::
3931
3932 unreachable
3933
3934Overview:
3935"""""""""
3936
3937The '``unreachable``' instruction has no defined semantics. This
3938instruction is used to inform the optimizer that a particular portion of
3939the code is not reachable. This can be used to indicate that the code
3940after a no-return function cannot be reached, and other facts.
3941
3942Semantics:
3943""""""""""
3944
3945The '``unreachable``' instruction has no defined semantics.
3946
3947.. _binaryops:
3948
3949Binary Operations
3950-----------------
3951
3952Binary operators are used to do most of the computation in a program.
3953They require two operands of the same type, execute an operation on
3954them, and produce a single value. The operands might represent multiple
3955data, as is the case with the :ref:`vector <t_vector>` data type. The
3956result value has the same type as its operands.
3957
3958There are several different binary operators:
3959
3960.. _i_add:
3961
3962'``add``' Instruction
3963^^^^^^^^^^^^^^^^^^^^^
3964
3965Syntax:
3966"""""""
3967
3968::
3969
Tim Northover675a0962014-06-13 14:24:23 +00003970 <result> = add <ty> <op1>, <op2> ; yields ty:result
3971 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
3972 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
3973 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003974
3975Overview:
3976"""""""""
3977
3978The '``add``' instruction returns the sum of its two operands.
3979
3980Arguments:
3981""""""""""
3982
3983The two arguments to the '``add``' instruction must be
3984:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3985arguments must have identical types.
3986
3987Semantics:
3988""""""""""
3989
3990The value produced is the integer sum of the two operands.
3991
3992If the sum has unsigned overflow, the result returned is the
3993mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3994the result.
3995
3996Because LLVM integers use a two's complement representation, this
3997instruction is appropriate for both signed and unsigned integers.
3998
3999``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4000respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4001result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4002unsigned and/or signed overflow, respectively, occurs.
4003
4004Example:
4005""""""""
4006
4007.. code-block:: llvm
4008
Tim Northover675a0962014-06-13 14:24:23 +00004009 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004010
4011.. _i_fadd:
4012
4013'``fadd``' Instruction
4014^^^^^^^^^^^^^^^^^^^^^^
4015
4016Syntax:
4017"""""""
4018
4019::
4020
Tim Northover675a0962014-06-13 14:24:23 +00004021 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004022
4023Overview:
4024"""""""""
4025
4026The '``fadd``' instruction returns the sum of its two operands.
4027
4028Arguments:
4029""""""""""
4030
4031The two arguments to the '``fadd``' instruction must be :ref:`floating
4032point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4033Both arguments must have identical types.
4034
4035Semantics:
4036""""""""""
4037
4038The value produced is the floating point sum of the two operands. This
4039instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4040which are optimization hints to enable otherwise unsafe floating point
4041optimizations:
4042
4043Example:
4044""""""""
4045
4046.. code-block:: llvm
4047
Tim Northover675a0962014-06-13 14:24:23 +00004048 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004049
4050'``sub``' Instruction
4051^^^^^^^^^^^^^^^^^^^^^
4052
4053Syntax:
4054"""""""
4055
4056::
4057
Tim Northover675a0962014-06-13 14:24:23 +00004058 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4059 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4060 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4061 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004062
4063Overview:
4064"""""""""
4065
4066The '``sub``' instruction returns the difference of its two operands.
4067
4068Note that the '``sub``' instruction is used to represent the '``neg``'
4069instruction present in most other intermediate representations.
4070
4071Arguments:
4072""""""""""
4073
4074The two arguments to the '``sub``' instruction must be
4075:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4076arguments must have identical types.
4077
4078Semantics:
4079""""""""""
4080
4081The value produced is the integer difference of the two operands.
4082
4083If the difference has unsigned overflow, the result returned is the
4084mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4085the result.
4086
4087Because LLVM integers use a two's complement representation, this
4088instruction is appropriate for both signed and unsigned integers.
4089
4090``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4091respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4092result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4093unsigned and/or signed overflow, respectively, occurs.
4094
4095Example:
4096""""""""
4097
4098.. code-block:: llvm
4099
Tim Northover675a0962014-06-13 14:24:23 +00004100 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4101 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004102
4103.. _i_fsub:
4104
4105'``fsub``' Instruction
4106^^^^^^^^^^^^^^^^^^^^^^
4107
4108Syntax:
4109"""""""
4110
4111::
4112
Tim Northover675a0962014-06-13 14:24:23 +00004113 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004114
4115Overview:
4116"""""""""
4117
4118The '``fsub``' instruction returns the difference of its two operands.
4119
4120Note that the '``fsub``' instruction is used to represent the '``fneg``'
4121instruction present in most other intermediate representations.
4122
4123Arguments:
4124""""""""""
4125
4126The two arguments to the '``fsub``' instruction must be :ref:`floating
4127point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4128Both arguments must have identical types.
4129
4130Semantics:
4131""""""""""
4132
4133The value produced is the floating point difference of the two operands.
4134This instruction can also take any number of :ref:`fast-math
4135flags <fastmath>`, which are optimization hints to enable otherwise
4136unsafe floating point optimizations:
4137
4138Example:
4139""""""""
4140
4141.. code-block:: llvm
4142
Tim Northover675a0962014-06-13 14:24:23 +00004143 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4144 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004145
4146'``mul``' Instruction
4147^^^^^^^^^^^^^^^^^^^^^
4148
4149Syntax:
4150"""""""
4151
4152::
4153
Tim Northover675a0962014-06-13 14:24:23 +00004154 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4155 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4156 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4157 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004158
4159Overview:
4160"""""""""
4161
4162The '``mul``' instruction returns the product of its two operands.
4163
4164Arguments:
4165""""""""""
4166
4167The two arguments to the '``mul``' instruction must be
4168:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4169arguments must have identical types.
4170
4171Semantics:
4172""""""""""
4173
4174The value produced is the integer product of the two operands.
4175
4176If the result of the multiplication has unsigned overflow, the result
4177returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4178bit width of the result.
4179
4180Because LLVM integers use a two's complement representation, and the
4181result is the same width as the operands, this instruction returns the
4182correct result for both signed and unsigned integers. If a full product
4183(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4184sign-extended or zero-extended as appropriate to the width of the full
4185product.
4186
4187``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4188respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4189result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4190unsigned and/or signed overflow, respectively, occurs.
4191
4192Example:
4193""""""""
4194
4195.. code-block:: llvm
4196
Tim Northover675a0962014-06-13 14:24:23 +00004197 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004198
4199.. _i_fmul:
4200
4201'``fmul``' Instruction
4202^^^^^^^^^^^^^^^^^^^^^^
4203
4204Syntax:
4205"""""""
4206
4207::
4208
Tim Northover675a0962014-06-13 14:24:23 +00004209 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004210
4211Overview:
4212"""""""""
4213
4214The '``fmul``' instruction returns the product of its two operands.
4215
4216Arguments:
4217""""""""""
4218
4219The two arguments to the '``fmul``' instruction must be :ref:`floating
4220point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4221Both arguments must have identical types.
4222
4223Semantics:
4224""""""""""
4225
4226The value produced is the floating point product of the two operands.
4227This instruction can also take any number of :ref:`fast-math
4228flags <fastmath>`, which are optimization hints to enable otherwise
4229unsafe floating point optimizations:
4230
4231Example:
4232""""""""
4233
4234.. code-block:: llvm
4235
Tim Northover675a0962014-06-13 14:24:23 +00004236 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004237
4238'``udiv``' Instruction
4239^^^^^^^^^^^^^^^^^^^^^^
4240
4241Syntax:
4242"""""""
4243
4244::
4245
Tim Northover675a0962014-06-13 14:24:23 +00004246 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4247 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004248
4249Overview:
4250"""""""""
4251
4252The '``udiv``' instruction returns the quotient of its two operands.
4253
4254Arguments:
4255""""""""""
4256
4257The two arguments to the '``udiv``' instruction must be
4258:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4259arguments must have identical types.
4260
4261Semantics:
4262""""""""""
4263
4264The value produced is the unsigned integer quotient of the two operands.
4265
4266Note that unsigned integer division and signed integer division are
4267distinct operations; for signed integer division, use '``sdiv``'.
4268
4269Division by zero leads to undefined behavior.
4270
4271If the ``exact`` keyword is present, the result value of the ``udiv`` is
4272a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4273such, "((a udiv exact b) mul b) == a").
4274
4275Example:
4276""""""""
4277
4278.. code-block:: llvm
4279
Tim Northover675a0962014-06-13 14:24:23 +00004280 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004281
4282'``sdiv``' Instruction
4283^^^^^^^^^^^^^^^^^^^^^^
4284
4285Syntax:
4286"""""""
4287
4288::
4289
Tim Northover675a0962014-06-13 14:24:23 +00004290 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4291 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004292
4293Overview:
4294"""""""""
4295
4296The '``sdiv``' instruction returns the quotient of its two operands.
4297
4298Arguments:
4299""""""""""
4300
4301The two arguments to the '``sdiv``' instruction must be
4302:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4303arguments must have identical types.
4304
4305Semantics:
4306""""""""""
4307
4308The value produced is the signed integer quotient of the two operands
4309rounded towards zero.
4310
4311Note that signed integer division and unsigned integer division are
4312distinct operations; for unsigned integer division, use '``udiv``'.
4313
4314Division by zero leads to undefined behavior. Overflow also leads to
4315undefined behavior; this is a rare case, but can occur, for example, by
4316doing a 32-bit division of -2147483648 by -1.
4317
4318If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4319a :ref:`poison value <poisonvalues>` if the result would be rounded.
4320
4321Example:
4322""""""""
4323
4324.. code-block:: llvm
4325
Tim Northover675a0962014-06-13 14:24:23 +00004326 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004327
4328.. _i_fdiv:
4329
4330'``fdiv``' Instruction
4331^^^^^^^^^^^^^^^^^^^^^^
4332
4333Syntax:
4334"""""""
4335
4336::
4337
Tim Northover675a0962014-06-13 14:24:23 +00004338 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004339
4340Overview:
4341"""""""""
4342
4343The '``fdiv``' instruction returns the quotient of its two operands.
4344
4345Arguments:
4346""""""""""
4347
4348The two arguments to the '``fdiv``' instruction must be :ref:`floating
4349point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4350Both arguments must have identical types.
4351
4352Semantics:
4353""""""""""
4354
4355The value produced is the floating point quotient of the two operands.
4356This instruction can also take any number of :ref:`fast-math
4357flags <fastmath>`, which are optimization hints to enable otherwise
4358unsafe floating point optimizations:
4359
4360Example:
4361""""""""
4362
4363.. code-block:: llvm
4364
Tim Northover675a0962014-06-13 14:24:23 +00004365 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004366
4367'``urem``' Instruction
4368^^^^^^^^^^^^^^^^^^^^^^
4369
4370Syntax:
4371"""""""
4372
4373::
4374
Tim Northover675a0962014-06-13 14:24:23 +00004375 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004376
4377Overview:
4378"""""""""
4379
4380The '``urem``' instruction returns the remainder from the unsigned
4381division of its two arguments.
4382
4383Arguments:
4384""""""""""
4385
4386The two arguments to the '``urem``' instruction must be
4387:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4388arguments must have identical types.
4389
4390Semantics:
4391""""""""""
4392
4393This instruction returns the unsigned integer *remainder* of a division.
4394This instruction always performs an unsigned division to get the
4395remainder.
4396
4397Note that unsigned integer remainder and signed integer remainder are
4398distinct operations; for signed integer remainder, use '``srem``'.
4399
4400Taking the remainder of a division by zero leads to undefined behavior.
4401
4402Example:
4403""""""""
4404
4405.. code-block:: llvm
4406
Tim Northover675a0962014-06-13 14:24:23 +00004407 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004408
4409'``srem``' Instruction
4410^^^^^^^^^^^^^^^^^^^^^^
4411
4412Syntax:
4413"""""""
4414
4415::
4416
Tim Northover675a0962014-06-13 14:24:23 +00004417 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004418
4419Overview:
4420"""""""""
4421
4422The '``srem``' instruction returns the remainder from the signed
4423division of its two operands. This instruction can also take
4424:ref:`vector <t_vector>` versions of the values in which case the elements
4425must be integers.
4426
4427Arguments:
4428""""""""""
4429
4430The two arguments to the '``srem``' instruction must be
4431:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4432arguments must have identical types.
4433
4434Semantics:
4435""""""""""
4436
4437This instruction returns the *remainder* of a division (where the result
4438is either zero or has the same sign as the dividend, ``op1``), not the
4439*modulo* operator (where the result is either zero or has the same sign
4440as the divisor, ``op2``) of a value. For more information about the
4441difference, see `The Math
4442Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4443table of how this is implemented in various languages, please see
4444`Wikipedia: modulo
4445operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4446
4447Note that signed integer remainder and unsigned integer remainder are
4448distinct operations; for unsigned integer remainder, use '``urem``'.
4449
4450Taking the remainder of a division by zero leads to undefined behavior.
4451Overflow also leads to undefined behavior; this is a rare case, but can
4452occur, for example, by taking the remainder of a 32-bit division of
4453-2147483648 by -1. (The remainder doesn't actually overflow, but this
4454rule lets srem be implemented using instructions that return both the
4455result of the division and the remainder.)
4456
4457Example:
4458""""""""
4459
4460.. code-block:: llvm
4461
Tim Northover675a0962014-06-13 14:24:23 +00004462 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004463
4464.. _i_frem:
4465
4466'``frem``' Instruction
4467^^^^^^^^^^^^^^^^^^^^^^
4468
4469Syntax:
4470"""""""
4471
4472::
4473
Tim Northover675a0962014-06-13 14:24:23 +00004474 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004475
4476Overview:
4477"""""""""
4478
4479The '``frem``' instruction returns the remainder from the division of
4480its two operands.
4481
4482Arguments:
4483""""""""""
4484
4485The two arguments to the '``frem``' instruction must be :ref:`floating
4486point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4487Both arguments must have identical types.
4488
4489Semantics:
4490""""""""""
4491
4492This instruction returns the *remainder* of a division. The remainder
4493has the same sign as the dividend. This instruction can also take any
4494number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4495to enable otherwise unsafe floating point optimizations:
4496
4497Example:
4498""""""""
4499
4500.. code-block:: llvm
4501
Tim Northover675a0962014-06-13 14:24:23 +00004502 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004503
4504.. _bitwiseops:
4505
4506Bitwise Binary Operations
4507-------------------------
4508
4509Bitwise binary operators are used to do various forms of bit-twiddling
4510in a program. They are generally very efficient instructions and can
4511commonly be strength reduced from other instructions. They require two
4512operands of the same type, execute an operation on them, and produce a
4513single value. The resulting value is the same type as its operands.
4514
4515'``shl``' Instruction
4516^^^^^^^^^^^^^^^^^^^^^
4517
4518Syntax:
4519"""""""
4520
4521::
4522
Tim Northover675a0962014-06-13 14:24:23 +00004523 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4524 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4525 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4526 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004527
4528Overview:
4529"""""""""
4530
4531The '``shl``' instruction returns the first operand shifted to the left
4532a specified number of bits.
4533
4534Arguments:
4535""""""""""
4536
4537Both arguments to the '``shl``' instruction must be the same
4538:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4539'``op2``' is treated as an unsigned value.
4540
4541Semantics:
4542""""""""""
4543
4544The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4545where ``n`` is the width of the result. If ``op2`` is (statically or
4546dynamically) negative or equal to or larger than the number of bits in
4547``op1``, the result is undefined. If the arguments are vectors, each
4548vector element of ``op1`` is shifted by the corresponding shift amount
4549in ``op2``.
4550
4551If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4552value <poisonvalues>` if it shifts out any non-zero bits. If the
4553``nsw`` keyword is present, then the shift produces a :ref:`poison
4554value <poisonvalues>` if it shifts out any bits that disagree with the
4555resultant sign bit. As such, NUW/NSW have the same semantics as they
4556would if the shift were expressed as a mul instruction with the same
4557nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4558
4559Example:
4560""""""""
4561
4562.. code-block:: llvm
4563
Tim Northover675a0962014-06-13 14:24:23 +00004564 <result> = shl i32 4, %var ; yields i32: 4 << %var
4565 <result> = shl i32 4, 2 ; yields i32: 16
4566 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004567 <result> = shl i32 1, 32 ; undefined
4568 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4569
4570'``lshr``' Instruction
4571^^^^^^^^^^^^^^^^^^^^^^
4572
4573Syntax:
4574"""""""
4575
4576::
4577
Tim Northover675a0962014-06-13 14:24:23 +00004578 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4579 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004580
4581Overview:
4582"""""""""
4583
4584The '``lshr``' instruction (logical shift right) returns the first
4585operand shifted to the right a specified number of bits with zero fill.
4586
4587Arguments:
4588""""""""""
4589
4590Both arguments to the '``lshr``' instruction must be the same
4591:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4592'``op2``' is treated as an unsigned value.
4593
4594Semantics:
4595""""""""""
4596
4597This instruction always performs a logical shift right operation. The
4598most significant bits of the result will be filled with zero bits after
4599the shift. If ``op2`` is (statically or dynamically) equal to or larger
4600than the number of bits in ``op1``, the result is undefined. If the
4601arguments are vectors, each vector element of ``op1`` is shifted by the
4602corresponding shift amount in ``op2``.
4603
4604If the ``exact`` keyword is present, the result value of the ``lshr`` is
4605a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4606non-zero.
4607
4608Example:
4609""""""""
4610
4611.. code-block:: llvm
4612
Tim Northover675a0962014-06-13 14:24:23 +00004613 <result> = lshr i32 4, 1 ; yields i32:result = 2
4614 <result> = lshr i32 4, 2 ; yields i32:result = 1
4615 <result> = lshr i8 4, 3 ; yields i8:result = 0
4616 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004617 <result> = lshr i32 1, 32 ; undefined
4618 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4619
4620'``ashr``' Instruction
4621^^^^^^^^^^^^^^^^^^^^^^
4622
4623Syntax:
4624"""""""
4625
4626::
4627
Tim Northover675a0962014-06-13 14:24:23 +00004628 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4629 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004630
4631Overview:
4632"""""""""
4633
4634The '``ashr``' instruction (arithmetic shift right) returns the first
4635operand shifted to the right a specified number of bits with sign
4636extension.
4637
4638Arguments:
4639""""""""""
4640
4641Both arguments to the '``ashr``' instruction must be the same
4642:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4643'``op2``' is treated as an unsigned value.
4644
4645Semantics:
4646""""""""""
4647
4648This instruction always performs an arithmetic shift right operation,
4649The most significant bits of the result will be filled with the sign bit
4650of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4651than the number of bits in ``op1``, the result is undefined. If the
4652arguments are vectors, each vector element of ``op1`` is shifted by the
4653corresponding shift amount in ``op2``.
4654
4655If the ``exact`` keyword is present, the result value of the ``ashr`` is
4656a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4657non-zero.
4658
4659Example:
4660""""""""
4661
4662.. code-block:: llvm
4663
Tim Northover675a0962014-06-13 14:24:23 +00004664 <result> = ashr i32 4, 1 ; yields i32:result = 2
4665 <result> = ashr i32 4, 2 ; yields i32:result = 1
4666 <result> = ashr i8 4, 3 ; yields i8:result = 0
4667 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004668 <result> = ashr i32 1, 32 ; undefined
4669 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4670
4671'``and``' Instruction
4672^^^^^^^^^^^^^^^^^^^^^
4673
4674Syntax:
4675"""""""
4676
4677::
4678
Tim Northover675a0962014-06-13 14:24:23 +00004679 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004680
4681Overview:
4682"""""""""
4683
4684The '``and``' instruction returns the bitwise logical and of its two
4685operands.
4686
4687Arguments:
4688""""""""""
4689
4690The two arguments to the '``and``' instruction must be
4691:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4692arguments must have identical types.
4693
4694Semantics:
4695""""""""""
4696
4697The truth table used for the '``and``' instruction is:
4698
4699+-----+-----+-----+
4700| In0 | In1 | Out |
4701+-----+-----+-----+
4702| 0 | 0 | 0 |
4703+-----+-----+-----+
4704| 0 | 1 | 0 |
4705+-----+-----+-----+
4706| 1 | 0 | 0 |
4707+-----+-----+-----+
4708| 1 | 1 | 1 |
4709+-----+-----+-----+
4710
4711Example:
4712""""""""
4713
4714.. code-block:: llvm
4715
Tim Northover675a0962014-06-13 14:24:23 +00004716 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4717 <result> = and i32 15, 40 ; yields i32:result = 8
4718 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004719
4720'``or``' Instruction
4721^^^^^^^^^^^^^^^^^^^^
4722
4723Syntax:
4724"""""""
4725
4726::
4727
Tim Northover675a0962014-06-13 14:24:23 +00004728 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004729
4730Overview:
4731"""""""""
4732
4733The '``or``' instruction returns the bitwise logical inclusive or of its
4734two operands.
4735
4736Arguments:
4737""""""""""
4738
4739The two arguments to the '``or``' instruction must be
4740:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4741arguments must have identical types.
4742
4743Semantics:
4744""""""""""
4745
4746The truth table used for the '``or``' instruction is:
4747
4748+-----+-----+-----+
4749| In0 | In1 | Out |
4750+-----+-----+-----+
4751| 0 | 0 | 0 |
4752+-----+-----+-----+
4753| 0 | 1 | 1 |
4754+-----+-----+-----+
4755| 1 | 0 | 1 |
4756+-----+-----+-----+
4757| 1 | 1 | 1 |
4758+-----+-----+-----+
4759
4760Example:
4761""""""""
4762
4763::
4764
Tim Northover675a0962014-06-13 14:24:23 +00004765 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4766 <result> = or i32 15, 40 ; yields i32:result = 47
4767 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004768
4769'``xor``' Instruction
4770^^^^^^^^^^^^^^^^^^^^^
4771
4772Syntax:
4773"""""""
4774
4775::
4776
Tim Northover675a0962014-06-13 14:24:23 +00004777 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004778
4779Overview:
4780"""""""""
4781
4782The '``xor``' instruction returns the bitwise logical exclusive or of
4783its two operands. The ``xor`` is used to implement the "one's
4784complement" operation, which is the "~" operator in C.
4785
4786Arguments:
4787""""""""""
4788
4789The two arguments to the '``xor``' instruction must be
4790:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4791arguments must have identical types.
4792
4793Semantics:
4794""""""""""
4795
4796The truth table used for the '``xor``' instruction is:
4797
4798+-----+-----+-----+
4799| In0 | In1 | Out |
4800+-----+-----+-----+
4801| 0 | 0 | 0 |
4802+-----+-----+-----+
4803| 0 | 1 | 1 |
4804+-----+-----+-----+
4805| 1 | 0 | 1 |
4806+-----+-----+-----+
4807| 1 | 1 | 0 |
4808+-----+-----+-----+
4809
4810Example:
4811""""""""
4812
4813.. code-block:: llvm
4814
Tim Northover675a0962014-06-13 14:24:23 +00004815 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4816 <result> = xor i32 15, 40 ; yields i32:result = 39
4817 <result> = xor i32 4, 8 ; yields i32:result = 12
4818 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004819
4820Vector Operations
4821-----------------
4822
4823LLVM supports several instructions to represent vector operations in a
4824target-independent manner. These instructions cover the element-access
4825and vector-specific operations needed to process vectors effectively.
4826While LLVM does directly support these vector operations, many
4827sophisticated algorithms will want to use target-specific intrinsics to
4828take full advantage of a specific target.
4829
4830.. _i_extractelement:
4831
4832'``extractelement``' Instruction
4833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4834
4835Syntax:
4836"""""""
4837
4838::
4839
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004840 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004841
4842Overview:
4843"""""""""
4844
4845The '``extractelement``' instruction extracts a single scalar element
4846from a vector at a specified index.
4847
4848Arguments:
4849""""""""""
4850
4851The first operand of an '``extractelement``' instruction is a value of
4852:ref:`vector <t_vector>` type. The second operand is an index indicating
4853the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004854variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004855
4856Semantics:
4857""""""""""
4858
4859The result is a scalar of the same type as the element type of ``val``.
4860Its value is the value at position ``idx`` of ``val``. If ``idx``
4861exceeds the length of ``val``, the results are undefined.
4862
4863Example:
4864""""""""
4865
4866.. code-block:: llvm
4867
4868 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4869
4870.. _i_insertelement:
4871
4872'``insertelement``' Instruction
4873^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4874
4875Syntax:
4876"""""""
4877
4878::
4879
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004880 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004881
4882Overview:
4883"""""""""
4884
4885The '``insertelement``' instruction inserts a scalar element into a
4886vector at a specified index.
4887
4888Arguments:
4889""""""""""
4890
4891The first operand of an '``insertelement``' instruction is a value of
4892:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4893type must equal the element type of the first operand. The third operand
4894is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004895index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004896
4897Semantics:
4898""""""""""
4899
4900The result is a vector of the same type as ``val``. Its element values
4901are those of ``val`` except at position ``idx``, where it gets the value
4902``elt``. If ``idx`` exceeds the length of ``val``, the results are
4903undefined.
4904
4905Example:
4906""""""""
4907
4908.. code-block:: llvm
4909
4910 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4911
4912.. _i_shufflevector:
4913
4914'``shufflevector``' Instruction
4915^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4916
4917Syntax:
4918"""""""
4919
4920::
4921
4922 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4923
4924Overview:
4925"""""""""
4926
4927The '``shufflevector``' instruction constructs a permutation of elements
4928from two input vectors, returning a vector with the same element type as
4929the input and length that is the same as the shuffle mask.
4930
4931Arguments:
4932""""""""""
4933
4934The first two operands of a '``shufflevector``' instruction are vectors
4935with the same type. The third argument is a shuffle mask whose element
4936type is always 'i32'. The result of the instruction is a vector whose
4937length is the same as the shuffle mask and whose element type is the
4938same as the element type of the first two operands.
4939
4940The shuffle mask operand is required to be a constant vector with either
4941constant integer or undef values.
4942
4943Semantics:
4944""""""""""
4945
4946The elements of the two input vectors are numbered from left to right
4947across both of the vectors. The shuffle mask operand specifies, for each
4948element of the result vector, which element of the two input vectors the
4949result element gets. The element selector may be undef (meaning "don't
4950care") and the second operand may be undef if performing a shuffle from
4951only one vector.
4952
4953Example:
4954""""""""
4955
4956.. code-block:: llvm
4957
4958 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4959 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4960 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4961 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4962 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4963 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4964 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4965 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4966
4967Aggregate Operations
4968--------------------
4969
4970LLVM supports several instructions for working with
4971:ref:`aggregate <t_aggregate>` values.
4972
4973.. _i_extractvalue:
4974
4975'``extractvalue``' Instruction
4976^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4977
4978Syntax:
4979"""""""
4980
4981::
4982
4983 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4984
4985Overview:
4986"""""""""
4987
4988The '``extractvalue``' instruction extracts the value of a member field
4989from an :ref:`aggregate <t_aggregate>` value.
4990
4991Arguments:
4992""""""""""
4993
4994The first operand of an '``extractvalue``' instruction is a value of
4995:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4996constant indices to specify which value to extract in a similar manner
4997as indices in a '``getelementptr``' instruction.
4998
4999The major differences to ``getelementptr`` indexing are:
5000
5001- Since the value being indexed is not a pointer, the first index is
5002 omitted and assumed to be zero.
5003- At least one index must be specified.
5004- Not only struct indices but also array indices must be in bounds.
5005
5006Semantics:
5007""""""""""
5008
5009The result is the value at the position in the aggregate specified by
5010the index operands.
5011
5012Example:
5013""""""""
5014
5015.. code-block:: llvm
5016
5017 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5018
5019.. _i_insertvalue:
5020
5021'``insertvalue``' Instruction
5022^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5023
5024Syntax:
5025"""""""
5026
5027::
5028
5029 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5030
5031Overview:
5032"""""""""
5033
5034The '``insertvalue``' instruction inserts a value into a member field in
5035an :ref:`aggregate <t_aggregate>` value.
5036
5037Arguments:
5038""""""""""
5039
5040The first operand of an '``insertvalue``' instruction is a value of
5041:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5042a first-class value to insert. The following operands are constant
5043indices indicating the position at which to insert the value in a
5044similar manner as indices in a '``extractvalue``' instruction. The value
5045to insert must have the same type as the value identified by the
5046indices.
5047
5048Semantics:
5049""""""""""
5050
5051The result is an aggregate of the same type as ``val``. Its value is
5052that of ``val`` except that the value at the position specified by the
5053indices is that of ``elt``.
5054
5055Example:
5056""""""""
5057
5058.. code-block:: llvm
5059
5060 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5061 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
5062 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
5063
5064.. _memoryops:
5065
5066Memory Access and Addressing Operations
5067---------------------------------------
5068
5069A key design point of an SSA-based representation is how it represents
5070memory. In LLVM, no memory locations are in SSA form, which makes things
5071very simple. This section describes how to read, write, and allocate
5072memory in LLVM.
5073
5074.. _i_alloca:
5075
5076'``alloca``' Instruction
5077^^^^^^^^^^^^^^^^^^^^^^^^
5078
5079Syntax:
5080"""""""
5081
5082::
5083
Tim Northover675a0962014-06-13 14:24:23 +00005084 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005085
5086Overview:
5087"""""""""
5088
5089The '``alloca``' instruction allocates memory on the stack frame of the
5090currently executing function, to be automatically released when this
5091function returns to its caller. The object is always allocated in the
5092generic address space (address space zero).
5093
5094Arguments:
5095""""""""""
5096
5097The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5098bytes of memory on the runtime stack, returning a pointer of the
5099appropriate type to the program. If "NumElements" is specified, it is
5100the number of elements allocated, otherwise "NumElements" is defaulted
5101to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005102allocation is guaranteed to be aligned to at least that boundary. The
5103alignment may not be greater than ``1 << 29``. If not specified, or if
5104zero, the target can choose to align the allocation on any convenient
5105boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005106
5107'``type``' may be any sized type.
5108
5109Semantics:
5110""""""""""
5111
5112Memory is allocated; a pointer is returned. The operation is undefined
5113if there is insufficient stack space for the allocation. '``alloca``'d
5114memory is automatically released when the function returns. The
5115'``alloca``' instruction is commonly used to represent automatic
5116variables that must have an address available. When the function returns
5117(either with the ``ret`` or ``resume`` instructions), the memory is
5118reclaimed. Allocating zero bytes is legal, but the result is undefined.
5119The order in which memory is allocated (ie., which way the stack grows)
5120is not specified.
5121
5122Example:
5123""""""""
5124
5125.. code-block:: llvm
5126
Tim Northover675a0962014-06-13 14:24:23 +00005127 %ptr = alloca i32 ; yields i32*:ptr
5128 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5129 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5130 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005131
5132.. _i_load:
5133
5134'``load``' Instruction
5135^^^^^^^^^^^^^^^^^^^^^^
5136
5137Syntax:
5138"""""""
5139
5140::
5141
5142 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
5143 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5144 !<index> = !{ i32 1 }
5145
5146Overview:
5147"""""""""
5148
5149The '``load``' instruction is used to read from memory.
5150
5151Arguments:
5152""""""""""
5153
Eli Bendersky239a78b2013-04-17 20:17:08 +00005154The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005155from which to load. The pointer must point to a :ref:`first
5156class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5157then the optimizer is not allowed to modify the number or order of
5158execution of this ``load`` with other :ref:`volatile
5159operations <volatile>`.
5160
5161If the ``load`` is marked as ``atomic``, it takes an extra
5162:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5163``release`` and ``acq_rel`` orderings are not valid on ``load``
5164instructions. Atomic loads produce :ref:`defined <memmodel>` results
5165when they may see multiple atomic stores. The type of the pointee must
5166be an integer type whose bit width is a power of two greater than or
5167equal to eight and less than or equal to a target-specific size limit.
5168``align`` must be explicitly specified on atomic loads, and the load has
5169undefined behavior if the alignment is not set to a value which is at
5170least the size in bytes of the pointee. ``!nontemporal`` does not have
5171any defined semantics for atomic loads.
5172
5173The optional constant ``align`` argument specifies the alignment of the
5174operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005175or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005176alignment for the target. It is the responsibility of the code emitter
5177to ensure that the alignment information is correct. Overestimating the
5178alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005179may produce less efficient code. An alignment of 1 is always safe. The
5180maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005181
5182The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005183metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005184``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005185metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005186that this load is not expected to be reused in the cache. The code
5187generator may select special instructions to save cache bandwidth, such
5188as the ``MOVNT`` instruction on x86.
5189
5190The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005191metadata name ``<index>`` corresponding to a metadata node with no
5192entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00005193instruction tells the optimizer and code generator that this load
5194address points to memory which does not change value during program
5195execution. The optimizer may then move this load around, for example, by
5196hoisting it out of loops using loop invariant code motion.
5197
5198Semantics:
5199""""""""""
5200
5201The location of memory pointed to is loaded. If the value being loaded
5202is of scalar type then the number of bytes read does not exceed the
5203minimum number of bytes needed to hold all bits of the type. For
5204example, loading an ``i24`` reads at most three bytes. When loading a
5205value of a type like ``i20`` with a size that is not an integral number
5206of bytes, the result is undefined if the value was not originally
5207written using a store of the same type.
5208
5209Examples:
5210"""""""""
5211
5212.. code-block:: llvm
5213
Tim Northover675a0962014-06-13 14:24:23 +00005214 %ptr = alloca i32 ; yields i32*:ptr
5215 store i32 3, i32* %ptr ; yields void
5216 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005217
5218.. _i_store:
5219
5220'``store``' Instruction
5221^^^^^^^^^^^^^^^^^^^^^^^
5222
5223Syntax:
5224"""""""
5225
5226::
5227
Tim Northover675a0962014-06-13 14:24:23 +00005228 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5229 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005230
5231Overview:
5232"""""""""
5233
5234The '``store``' instruction is used to write to memory.
5235
5236Arguments:
5237""""""""""
5238
Eli Benderskyca380842013-04-17 17:17:20 +00005239There are two arguments to the ``store`` instruction: a value to store
5240and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005241operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005242the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005243then the optimizer is not allowed to modify the number or order of
5244execution of this ``store`` with other :ref:`volatile
5245operations <volatile>`.
5246
5247If the ``store`` is marked as ``atomic``, it takes an extra
5248:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5249``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5250instructions. Atomic loads produce :ref:`defined <memmodel>` results
5251when they may see multiple atomic stores. The type of the pointee must
5252be an integer type whose bit width is a power of two greater than or
5253equal to eight and less than or equal to a target-specific size limit.
5254``align`` must be explicitly specified on atomic stores, and the store
5255has undefined behavior if the alignment is not set to a value which is
5256at least the size in bytes of the pointee. ``!nontemporal`` does not
5257have any defined semantics for atomic stores.
5258
Eli Benderskyca380842013-04-17 17:17:20 +00005259The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005260operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005261or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005262alignment for the target. It is the responsibility of the code emitter
5263to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005264alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005265alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005266safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005267
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005268The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005269name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005270value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005271tells the optimizer and code generator that this load is not expected to
5272be reused in the cache. The code generator may select special
5273instructions to save cache bandwidth, such as the MOVNT instruction on
5274x86.
5275
5276Semantics:
5277""""""""""
5278
Eli Benderskyca380842013-04-17 17:17:20 +00005279The contents of memory are updated to contain ``<value>`` at the
5280location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005281of scalar type then the number of bytes written does not exceed the
5282minimum number of bytes needed to hold all bits of the type. For
5283example, storing an ``i24`` writes at most three bytes. When writing a
5284value of a type like ``i20`` with a size that is not an integral number
5285of bytes, it is unspecified what happens to the extra bits that do not
5286belong to the type, but they will typically be overwritten.
5287
5288Example:
5289""""""""
5290
5291.. code-block:: llvm
5292
Tim Northover675a0962014-06-13 14:24:23 +00005293 %ptr = alloca i32 ; yields i32*:ptr
5294 store i32 3, i32* %ptr ; yields void
5295 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005296
5297.. _i_fence:
5298
5299'``fence``' Instruction
5300^^^^^^^^^^^^^^^^^^^^^^^
5301
5302Syntax:
5303"""""""
5304
5305::
5306
Tim Northover675a0962014-06-13 14:24:23 +00005307 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005308
5309Overview:
5310"""""""""
5311
5312The '``fence``' instruction is used to introduce happens-before edges
5313between operations.
5314
5315Arguments:
5316""""""""""
5317
5318'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5319defines what *synchronizes-with* edges they add. They can only be given
5320``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5321
5322Semantics:
5323""""""""""
5324
5325A fence A which has (at least) ``release`` ordering semantics
5326*synchronizes with* a fence B with (at least) ``acquire`` ordering
5327semantics if and only if there exist atomic operations X and Y, both
5328operating on some atomic object M, such that A is sequenced before X, X
5329modifies M (either directly or through some side effect of a sequence
5330headed by X), Y is sequenced before B, and Y observes M. This provides a
5331*happens-before* dependency between A and B. Rather than an explicit
5332``fence``, one (but not both) of the atomic operations X or Y might
5333provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5334still *synchronize-with* the explicit ``fence`` and establish the
5335*happens-before* edge.
5336
5337A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5338``acquire`` and ``release`` semantics specified above, participates in
5339the global program order of other ``seq_cst`` operations and/or fences.
5340
5341The optional ":ref:`singlethread <singlethread>`" argument specifies
5342that the fence only synchronizes with other fences in the same thread.
5343(This is useful for interacting with signal handlers.)
5344
5345Example:
5346""""""""
5347
5348.. code-block:: llvm
5349
Tim Northover675a0962014-06-13 14:24:23 +00005350 fence acquire ; yields void
5351 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005352
5353.. _i_cmpxchg:
5354
5355'``cmpxchg``' Instruction
5356^^^^^^^^^^^^^^^^^^^^^^^^^
5357
5358Syntax:
5359"""""""
5360
5361::
5362
Tim Northover675a0962014-06-13 14:24:23 +00005363 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005364
5365Overview:
5366"""""""""
5367
5368The '``cmpxchg``' instruction is used to atomically modify memory. It
5369loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005370equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005371
5372Arguments:
5373""""""""""
5374
5375There are three arguments to the '``cmpxchg``' instruction: an address
5376to operate on, a value to compare to the value currently be at that
5377address, and a new value to place at that address if the compared values
5378are equal. The type of '<cmp>' must be an integer type whose bit width
5379is a power of two greater than or equal to eight and less than or equal
5380to a target-specific size limit. '<cmp>' and '<new>' must have the same
5381type, and the type of '<pointer>' must be a pointer to that type. If the
5382``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5383to modify the number or order of execution of this ``cmpxchg`` with
5384other :ref:`volatile operations <volatile>`.
5385
Tim Northovere94a5182014-03-11 10:48:52 +00005386The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005387``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5388must be at least ``monotonic``, the ordering constraint on failure must be no
5389stronger than that on success, and the failure ordering cannot be either
5390``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005391
5392The optional "``singlethread``" argument declares that the ``cmpxchg``
5393is only atomic with respect to code (usually signal handlers) running in
5394the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5395respect to all other code in the system.
5396
5397The pointer passed into cmpxchg must have alignment greater than or
5398equal to the size in memory of the operand.
5399
5400Semantics:
5401""""""""""
5402
Tim Northover420a2162014-06-13 14:24:07 +00005403The contents of memory at the location specified by the '``<pointer>``' operand
5404is read and compared to '``<cmp>``'; if the read value is the equal, the
5405'``<new>``' is written. The original value at the location is returned, together
5406with a flag indicating success (true) or failure (false).
5407
5408If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5409permitted: the operation may not write ``<new>`` even if the comparison
5410matched.
5411
5412If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5413if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005414
Tim Northovere94a5182014-03-11 10:48:52 +00005415A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5416identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5417load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005418
5419Example:
5420""""""""
5421
5422.. code-block:: llvm
5423
5424 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005425 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005426 br label %loop
5427
5428 loop:
5429 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5430 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005431 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005432 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5433 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005434 br i1 %success, label %done, label %loop
5435
5436 done:
5437 ...
5438
5439.. _i_atomicrmw:
5440
5441'``atomicrmw``' Instruction
5442^^^^^^^^^^^^^^^^^^^^^^^^^^^
5443
5444Syntax:
5445"""""""
5446
5447::
5448
Tim Northover675a0962014-06-13 14:24:23 +00005449 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005450
5451Overview:
5452"""""""""
5453
5454The '``atomicrmw``' instruction is used to atomically modify memory.
5455
5456Arguments:
5457""""""""""
5458
5459There are three arguments to the '``atomicrmw``' instruction: an
5460operation to apply, an address whose value to modify, an argument to the
5461operation. The operation must be one of the following keywords:
5462
5463- xchg
5464- add
5465- sub
5466- and
5467- nand
5468- or
5469- xor
5470- max
5471- min
5472- umax
5473- umin
5474
5475The type of '<value>' must be an integer type whose bit width is a power
5476of two greater than or equal to eight and less than or equal to a
5477target-specific size limit. The type of the '``<pointer>``' operand must
5478be a pointer to that type. If the ``atomicrmw`` is marked as
5479``volatile``, then the optimizer is not allowed to modify the number or
5480order of execution of this ``atomicrmw`` with other :ref:`volatile
5481operations <volatile>`.
5482
5483Semantics:
5484""""""""""
5485
5486The contents of memory at the location specified by the '``<pointer>``'
5487operand are atomically read, modified, and written back. The original
5488value at the location is returned. The modification is specified by the
5489operation argument:
5490
5491- xchg: ``*ptr = val``
5492- add: ``*ptr = *ptr + val``
5493- sub: ``*ptr = *ptr - val``
5494- and: ``*ptr = *ptr & val``
5495- nand: ``*ptr = ~(*ptr & val)``
5496- or: ``*ptr = *ptr | val``
5497- xor: ``*ptr = *ptr ^ val``
5498- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5499- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5500- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5501 comparison)
5502- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5503 comparison)
5504
5505Example:
5506""""""""
5507
5508.. code-block:: llvm
5509
Tim Northover675a0962014-06-13 14:24:23 +00005510 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005511
5512.. _i_getelementptr:
5513
5514'``getelementptr``' Instruction
5515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5516
5517Syntax:
5518"""""""
5519
5520::
5521
5522 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5523 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5524 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5525
5526Overview:
5527"""""""""
5528
5529The '``getelementptr``' instruction is used to get the address of a
5530subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5531address calculation only and does not access memory.
5532
5533Arguments:
5534""""""""""
5535
5536The first argument is always a pointer or a vector of pointers, and
5537forms the basis of the calculation. The remaining arguments are indices
5538that indicate which of the elements of the aggregate object are indexed.
5539The interpretation of each index is dependent on the type being indexed
5540into. The first index always indexes the pointer value given as the
5541first argument, the second index indexes a value of the type pointed to
5542(not necessarily the value directly pointed to, since the first index
5543can be non-zero), etc. The first type indexed into must be a pointer
5544value, subsequent types can be arrays, vectors, and structs. Note that
5545subsequent types being indexed into can never be pointers, since that
5546would require loading the pointer before continuing calculation.
5547
5548The type of each index argument depends on the type it is indexing into.
5549When indexing into a (optionally packed) structure, only ``i32`` integer
5550**constants** are allowed (when using a vector of indices they must all
5551be the **same** ``i32`` integer constant). When indexing into an array,
5552pointer or vector, integers of any width are allowed, and they are not
5553required to be constant. These integers are treated as signed values
5554where relevant.
5555
5556For example, let's consider a C code fragment and how it gets compiled
5557to LLVM:
5558
5559.. code-block:: c
5560
5561 struct RT {
5562 char A;
5563 int B[10][20];
5564 char C;
5565 };
5566 struct ST {
5567 int X;
5568 double Y;
5569 struct RT Z;
5570 };
5571
5572 int *foo(struct ST *s) {
5573 return &s[1].Z.B[5][13];
5574 }
5575
5576The LLVM code generated by Clang is:
5577
5578.. code-block:: llvm
5579
5580 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5581 %struct.ST = type { i32, double, %struct.RT }
5582
5583 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5584 entry:
5585 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5586 ret i32* %arrayidx
5587 }
5588
5589Semantics:
5590""""""""""
5591
5592In the example above, the first index is indexing into the
5593'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5594= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5595indexes into the third element of the structure, yielding a
5596'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5597structure. The third index indexes into the second element of the
5598structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5599dimensions of the array are subscripted into, yielding an '``i32``'
5600type. The '``getelementptr``' instruction returns a pointer to this
5601element, thus computing a value of '``i32*``' type.
5602
5603Note that it is perfectly legal to index partially through a structure,
5604returning a pointer to an inner element. Because of this, the LLVM code
5605for the given testcase is equivalent to:
5606
5607.. code-block:: llvm
5608
5609 define i32* @foo(%struct.ST* %s) {
5610 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5611 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5612 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5613 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5614 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5615 ret i32* %t5
5616 }
5617
5618If the ``inbounds`` keyword is present, the result value of the
5619``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5620pointer is not an *in bounds* address of an allocated object, or if any
5621of the addresses that would be formed by successive addition of the
5622offsets implied by the indices to the base address with infinitely
5623precise signed arithmetic are not an *in bounds* address of that
5624allocated object. The *in bounds* addresses for an allocated object are
5625all the addresses that point into the object, plus the address one byte
5626past the end. In cases where the base is a vector of pointers the
5627``inbounds`` keyword applies to each of the computations element-wise.
5628
5629If the ``inbounds`` keyword is not present, the offsets are added to the
5630base address with silently-wrapping two's complement arithmetic. If the
5631offsets have a different width from the pointer, they are sign-extended
5632or truncated to the width of the pointer. The result value of the
5633``getelementptr`` may be outside the object pointed to by the base
5634pointer. The result value may not necessarily be used to access memory
5635though, even if it happens to point into allocated storage. See the
5636:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5637information.
5638
5639The getelementptr instruction is often confusing. For some more insight
5640into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5641
5642Example:
5643""""""""
5644
5645.. code-block:: llvm
5646
5647 ; yields [12 x i8]*:aptr
5648 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5649 ; yields i8*:vptr
5650 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5651 ; yields i8*:eptr
5652 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5653 ; yields i32*:iptr
5654 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5655
5656In cases where the pointer argument is a vector of pointers, each index
5657must be a vector with the same number of elements. For example:
5658
5659.. code-block:: llvm
5660
5661 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5662
5663Conversion Operations
5664---------------------
5665
5666The instructions in this category are the conversion instructions
5667(casting) which all take a single operand and a type. They perform
5668various bit conversions on the operand.
5669
5670'``trunc .. to``' Instruction
5671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5672
5673Syntax:
5674"""""""
5675
5676::
5677
5678 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5679
5680Overview:
5681"""""""""
5682
5683The '``trunc``' instruction truncates its operand to the type ``ty2``.
5684
5685Arguments:
5686""""""""""
5687
5688The '``trunc``' instruction takes a value to trunc, and a type to trunc
5689it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5690of the same number of integers. The bit size of the ``value`` must be
5691larger than the bit size of the destination type, ``ty2``. Equal sized
5692types are not allowed.
5693
5694Semantics:
5695""""""""""
5696
5697The '``trunc``' instruction truncates the high order bits in ``value``
5698and converts the remaining bits to ``ty2``. Since the source size must
5699be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5700It will always truncate bits.
5701
5702Example:
5703""""""""
5704
5705.. code-block:: llvm
5706
5707 %X = trunc i32 257 to i8 ; yields i8:1
5708 %Y = trunc i32 123 to i1 ; yields i1:true
5709 %Z = trunc i32 122 to i1 ; yields i1:false
5710 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5711
5712'``zext .. to``' Instruction
5713^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5714
5715Syntax:
5716"""""""
5717
5718::
5719
5720 <result> = zext <ty> <value> to <ty2> ; yields ty2
5721
5722Overview:
5723"""""""""
5724
5725The '``zext``' instruction zero extends its operand to type ``ty2``.
5726
5727Arguments:
5728""""""""""
5729
5730The '``zext``' instruction takes a value to cast, and a type to cast it
5731to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5732the same number of integers. The bit size of the ``value`` must be
5733smaller than the bit size of the destination type, ``ty2``.
5734
5735Semantics:
5736""""""""""
5737
5738The ``zext`` fills the high order bits of the ``value`` with zero bits
5739until it reaches the size of the destination type, ``ty2``.
5740
5741When zero extending from i1, the result will always be either 0 or 1.
5742
5743Example:
5744""""""""
5745
5746.. code-block:: llvm
5747
5748 %X = zext i32 257 to i64 ; yields i64:257
5749 %Y = zext i1 true to i32 ; yields i32:1
5750 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5751
5752'``sext .. to``' Instruction
5753^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5754
5755Syntax:
5756"""""""
5757
5758::
5759
5760 <result> = sext <ty> <value> to <ty2> ; yields ty2
5761
5762Overview:
5763"""""""""
5764
5765The '``sext``' sign extends ``value`` to the type ``ty2``.
5766
5767Arguments:
5768""""""""""
5769
5770The '``sext``' instruction takes a value to cast, and a type to cast it
5771to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5772the same number of integers. The bit size of the ``value`` must be
5773smaller than the bit size of the destination type, ``ty2``.
5774
5775Semantics:
5776""""""""""
5777
5778The '``sext``' instruction performs a sign extension by copying the sign
5779bit (highest order bit) of the ``value`` until it reaches the bit size
5780of the type ``ty2``.
5781
5782When sign extending from i1, the extension always results in -1 or 0.
5783
5784Example:
5785""""""""
5786
5787.. code-block:: llvm
5788
5789 %X = sext i8 -1 to i16 ; yields i16 :65535
5790 %Y = sext i1 true to i32 ; yields i32:-1
5791 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5792
5793'``fptrunc .. to``' Instruction
5794^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5795
5796Syntax:
5797"""""""
5798
5799::
5800
5801 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5802
5803Overview:
5804"""""""""
5805
5806The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5807
5808Arguments:
5809""""""""""
5810
5811The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5812value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5813The size of ``value`` must be larger than the size of ``ty2``. This
5814implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5815
5816Semantics:
5817""""""""""
5818
5819The '``fptrunc``' instruction truncates a ``value`` from a larger
5820:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5821point <t_floating>` type. If the value cannot fit within the
5822destination type, ``ty2``, then the results are undefined.
5823
5824Example:
5825""""""""
5826
5827.. code-block:: llvm
5828
5829 %X = fptrunc double 123.0 to float ; yields float:123.0
5830 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5831
5832'``fpext .. to``' Instruction
5833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5834
5835Syntax:
5836"""""""
5837
5838::
5839
5840 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5841
5842Overview:
5843"""""""""
5844
5845The '``fpext``' extends a floating point ``value`` to a larger floating
5846point value.
5847
5848Arguments:
5849""""""""""
5850
5851The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5852``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5853to. The source type must be smaller than the destination type.
5854
5855Semantics:
5856""""""""""
5857
5858The '``fpext``' instruction extends the ``value`` from a smaller
5859:ref:`floating point <t_floating>` type to a larger :ref:`floating
5860point <t_floating>` type. The ``fpext`` cannot be used to make a
5861*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5862*no-op cast* for a floating point cast.
5863
5864Example:
5865""""""""
5866
5867.. code-block:: llvm
5868
5869 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5870 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5871
5872'``fptoui .. to``' Instruction
5873^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5874
5875Syntax:
5876"""""""
5877
5878::
5879
5880 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5881
5882Overview:
5883"""""""""
5884
5885The '``fptoui``' converts a floating point ``value`` to its unsigned
5886integer equivalent of type ``ty2``.
5887
5888Arguments:
5889""""""""""
5890
5891The '``fptoui``' instruction takes a value to cast, which must be a
5892scalar or vector :ref:`floating point <t_floating>` value, and a type to
5893cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5894``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5895type with the same number of elements as ``ty``
5896
5897Semantics:
5898""""""""""
5899
5900The '``fptoui``' instruction converts its :ref:`floating
5901point <t_floating>` operand into the nearest (rounding towards zero)
5902unsigned integer value. If the value cannot fit in ``ty2``, the results
5903are undefined.
5904
5905Example:
5906""""""""
5907
5908.. code-block:: llvm
5909
5910 %X = fptoui double 123.0 to i32 ; yields i32:123
5911 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5912 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5913
5914'``fptosi .. to``' Instruction
5915^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5916
5917Syntax:
5918"""""""
5919
5920::
5921
5922 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5923
5924Overview:
5925"""""""""
5926
5927The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5928``value`` to type ``ty2``.
5929
5930Arguments:
5931""""""""""
5932
5933The '``fptosi``' instruction takes a value to cast, which must be a
5934scalar or vector :ref:`floating point <t_floating>` value, and a type to
5935cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5936``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5937type with the same number of elements as ``ty``
5938
5939Semantics:
5940""""""""""
5941
5942The '``fptosi``' instruction converts its :ref:`floating
5943point <t_floating>` operand into the nearest (rounding towards zero)
5944signed integer value. If the value cannot fit in ``ty2``, the results
5945are undefined.
5946
5947Example:
5948""""""""
5949
5950.. code-block:: llvm
5951
5952 %X = fptosi double -123.0 to i32 ; yields i32:-123
5953 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5954 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5955
5956'``uitofp .. to``' Instruction
5957^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5958
5959Syntax:
5960"""""""
5961
5962::
5963
5964 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5965
5966Overview:
5967"""""""""
5968
5969The '``uitofp``' instruction regards ``value`` as an unsigned integer
5970and converts that value to the ``ty2`` type.
5971
5972Arguments:
5973""""""""""
5974
5975The '``uitofp``' instruction takes a value to cast, which must be a
5976scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5977``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5978``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5979type with the same number of elements as ``ty``
5980
5981Semantics:
5982""""""""""
5983
5984The '``uitofp``' instruction interprets its operand as an unsigned
5985integer quantity and converts it to the corresponding floating point
5986value. If the value cannot fit in the floating point value, the results
5987are undefined.
5988
5989Example:
5990""""""""
5991
5992.. code-block:: llvm
5993
5994 %X = uitofp i32 257 to float ; yields float:257.0
5995 %Y = uitofp i8 -1 to double ; yields double:255.0
5996
5997'``sitofp .. to``' Instruction
5998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5999
6000Syntax:
6001"""""""
6002
6003::
6004
6005 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6006
6007Overview:
6008"""""""""
6009
6010The '``sitofp``' instruction regards ``value`` as a signed integer and
6011converts that value to the ``ty2`` type.
6012
6013Arguments:
6014""""""""""
6015
6016The '``sitofp``' instruction takes a value to cast, which must be a
6017scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6018``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6019``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6020type with the same number of elements as ``ty``
6021
6022Semantics:
6023""""""""""
6024
6025The '``sitofp``' instruction interprets its operand as a signed integer
6026quantity and converts it to the corresponding floating point value. If
6027the value cannot fit in the floating point value, the results are
6028undefined.
6029
6030Example:
6031""""""""
6032
6033.. code-block:: llvm
6034
6035 %X = sitofp i32 257 to float ; yields float:257.0
6036 %Y = sitofp i8 -1 to double ; yields double:-1.0
6037
6038.. _i_ptrtoint:
6039
6040'``ptrtoint .. to``' Instruction
6041^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6042
6043Syntax:
6044"""""""
6045
6046::
6047
6048 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6049
6050Overview:
6051"""""""""
6052
6053The '``ptrtoint``' instruction converts the pointer or a vector of
6054pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6055
6056Arguments:
6057""""""""""
6058
6059The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6060a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6061type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6062a vector of integers type.
6063
6064Semantics:
6065""""""""""
6066
6067The '``ptrtoint``' instruction converts ``value`` to integer type
6068``ty2`` by interpreting the pointer value as an integer and either
6069truncating or zero extending that value to the size of the integer type.
6070If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6071``value`` is larger than ``ty2`` then a truncation is done. If they are
6072the same size, then nothing is done (*no-op cast*) other than a type
6073change.
6074
6075Example:
6076""""""""
6077
6078.. code-block:: llvm
6079
6080 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6081 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6082 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6083
6084.. _i_inttoptr:
6085
6086'``inttoptr .. to``' Instruction
6087^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6088
6089Syntax:
6090"""""""
6091
6092::
6093
6094 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6095
6096Overview:
6097"""""""""
6098
6099The '``inttoptr``' instruction converts an integer ``value`` to a
6100pointer type, ``ty2``.
6101
6102Arguments:
6103""""""""""
6104
6105The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6106cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6107type.
6108
6109Semantics:
6110""""""""""
6111
6112The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6113applying either a zero extension or a truncation depending on the size
6114of the integer ``value``. If ``value`` is larger than the size of a
6115pointer then a truncation is done. If ``value`` is smaller than the size
6116of a pointer then a zero extension is done. If they are the same size,
6117nothing is done (*no-op cast*).
6118
6119Example:
6120""""""""
6121
6122.. code-block:: llvm
6123
6124 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6125 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6126 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6127 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6128
6129.. _i_bitcast:
6130
6131'``bitcast .. to``' Instruction
6132^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6133
6134Syntax:
6135"""""""
6136
6137::
6138
6139 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6140
6141Overview:
6142"""""""""
6143
6144The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6145changing any bits.
6146
6147Arguments:
6148""""""""""
6149
6150The '``bitcast``' instruction takes a value to cast, which must be a
6151non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006152also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6153bit sizes of ``value`` and the destination type, ``ty2``, must be
6154identical. If the source type is a pointer, the destination type must
6155also be a pointer of the same size. This instruction supports bitwise
6156conversion of vectors to integers and to vectors of other types (as
6157long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006158
6159Semantics:
6160""""""""""
6161
Matt Arsenault24b49c42013-07-31 17:49:08 +00006162The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6163is always a *no-op cast* because no bits change with this
6164conversion. The conversion is done as if the ``value`` had been stored
6165to memory and read back as type ``ty2``. Pointer (or vector of
6166pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006167pointers) types with the same address space through this instruction.
6168To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6169or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006170
6171Example:
6172""""""""
6173
6174.. code-block:: llvm
6175
6176 %X = bitcast i8 255 to i8 ; yields i8 :-1
6177 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6178 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6179 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6180
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006181.. _i_addrspacecast:
6182
6183'``addrspacecast .. to``' Instruction
6184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6185
6186Syntax:
6187"""""""
6188
6189::
6190
6191 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6192
6193Overview:
6194"""""""""
6195
6196The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6197address space ``n`` to type ``pty2`` in address space ``m``.
6198
6199Arguments:
6200""""""""""
6201
6202The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6203to cast and a pointer type to cast it to, which must have a different
6204address space.
6205
6206Semantics:
6207""""""""""
6208
6209The '``addrspacecast``' instruction converts the pointer value
6210``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006211value modification, depending on the target and the address space
6212pair. Pointer conversions within the same address space must be
6213performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006214conversion is legal then both result and operand refer to the same memory
6215location.
6216
6217Example:
6218""""""""
6219
6220.. code-block:: llvm
6221
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006222 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6223 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6224 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006225
Sean Silvab084af42012-12-07 10:36:55 +00006226.. _otherops:
6227
6228Other Operations
6229----------------
6230
6231The instructions in this category are the "miscellaneous" instructions,
6232which defy better classification.
6233
6234.. _i_icmp:
6235
6236'``icmp``' Instruction
6237^^^^^^^^^^^^^^^^^^^^^^
6238
6239Syntax:
6240"""""""
6241
6242::
6243
Tim Northover675a0962014-06-13 14:24:23 +00006244 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006245
6246Overview:
6247"""""""""
6248
6249The '``icmp``' instruction returns a boolean value or a vector of
6250boolean values based on comparison of its two integer, integer vector,
6251pointer, or pointer vector operands.
6252
6253Arguments:
6254""""""""""
6255
6256The '``icmp``' instruction takes three operands. The first operand is
6257the condition code indicating the kind of comparison to perform. It is
6258not a value, just a keyword. The possible condition code are:
6259
6260#. ``eq``: equal
6261#. ``ne``: not equal
6262#. ``ugt``: unsigned greater than
6263#. ``uge``: unsigned greater or equal
6264#. ``ult``: unsigned less than
6265#. ``ule``: unsigned less or equal
6266#. ``sgt``: signed greater than
6267#. ``sge``: signed greater or equal
6268#. ``slt``: signed less than
6269#. ``sle``: signed less or equal
6270
6271The remaining two arguments must be :ref:`integer <t_integer>` or
6272:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6273must also be identical types.
6274
6275Semantics:
6276""""""""""
6277
6278The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6279code given as ``cond``. The comparison performed always yields either an
6280:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6281
6282#. ``eq``: yields ``true`` if the operands are equal, ``false``
6283 otherwise. No sign interpretation is necessary or performed.
6284#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6285 otherwise. No sign interpretation is necessary or performed.
6286#. ``ugt``: interprets the operands as unsigned values and yields
6287 ``true`` if ``op1`` is greater than ``op2``.
6288#. ``uge``: interprets the operands as unsigned values and yields
6289 ``true`` if ``op1`` is greater than or equal to ``op2``.
6290#. ``ult``: interprets the operands as unsigned values and yields
6291 ``true`` if ``op1`` is less than ``op2``.
6292#. ``ule``: interprets the operands as unsigned values and yields
6293 ``true`` if ``op1`` is less than or equal to ``op2``.
6294#. ``sgt``: interprets the operands as signed values and yields ``true``
6295 if ``op1`` is greater than ``op2``.
6296#. ``sge``: interprets the operands as signed values and yields ``true``
6297 if ``op1`` is greater than or equal to ``op2``.
6298#. ``slt``: interprets the operands as signed values and yields ``true``
6299 if ``op1`` is less than ``op2``.
6300#. ``sle``: interprets the operands as signed values and yields ``true``
6301 if ``op1`` is less than or equal to ``op2``.
6302
6303If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6304are compared as if they were integers.
6305
6306If the operands are integer vectors, then they are compared element by
6307element. The result is an ``i1`` vector with the same number of elements
6308as the values being compared. Otherwise, the result is an ``i1``.
6309
6310Example:
6311""""""""
6312
6313.. code-block:: llvm
6314
6315 <result> = icmp eq i32 4, 5 ; yields: result=false
6316 <result> = icmp ne float* %X, %X ; yields: result=false
6317 <result> = icmp ult i16 4, 5 ; yields: result=true
6318 <result> = icmp sgt i16 4, 5 ; yields: result=false
6319 <result> = icmp ule i16 -4, 5 ; yields: result=false
6320 <result> = icmp sge i16 4, 5 ; yields: result=false
6321
6322Note that the code generator does not yet support vector types with the
6323``icmp`` instruction.
6324
6325.. _i_fcmp:
6326
6327'``fcmp``' Instruction
6328^^^^^^^^^^^^^^^^^^^^^^
6329
6330Syntax:
6331"""""""
6332
6333::
6334
Tim Northover675a0962014-06-13 14:24:23 +00006335 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006336
6337Overview:
6338"""""""""
6339
6340The '``fcmp``' instruction returns a boolean value or vector of boolean
6341values based on comparison of its operands.
6342
6343If the operands are floating point scalars, then the result type is a
6344boolean (:ref:`i1 <t_integer>`).
6345
6346If the operands are floating point vectors, then the result type is a
6347vector of boolean with the same number of elements as the operands being
6348compared.
6349
6350Arguments:
6351""""""""""
6352
6353The '``fcmp``' instruction takes three operands. The first operand is
6354the condition code indicating the kind of comparison to perform. It is
6355not a value, just a keyword. The possible condition code are:
6356
6357#. ``false``: no comparison, always returns false
6358#. ``oeq``: ordered and equal
6359#. ``ogt``: ordered and greater than
6360#. ``oge``: ordered and greater than or equal
6361#. ``olt``: ordered and less than
6362#. ``ole``: ordered and less than or equal
6363#. ``one``: ordered and not equal
6364#. ``ord``: ordered (no nans)
6365#. ``ueq``: unordered or equal
6366#. ``ugt``: unordered or greater than
6367#. ``uge``: unordered or greater than or equal
6368#. ``ult``: unordered or less than
6369#. ``ule``: unordered or less than or equal
6370#. ``une``: unordered or not equal
6371#. ``uno``: unordered (either nans)
6372#. ``true``: no comparison, always returns true
6373
6374*Ordered* means that neither operand is a QNAN while *unordered* means
6375that either operand may be a QNAN.
6376
6377Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6378point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6379type. They must have identical types.
6380
6381Semantics:
6382""""""""""
6383
6384The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6385condition code given as ``cond``. If the operands are vectors, then the
6386vectors are compared element by element. Each comparison performed
6387always yields an :ref:`i1 <t_integer>` result, as follows:
6388
6389#. ``false``: always yields ``false``, regardless of operands.
6390#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6391 is equal to ``op2``.
6392#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6393 is greater than ``op2``.
6394#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6395 is greater than or equal to ``op2``.
6396#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6397 is less than ``op2``.
6398#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6399 is less than or equal to ``op2``.
6400#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6401 is not equal to ``op2``.
6402#. ``ord``: yields ``true`` if both operands are not a QNAN.
6403#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6404 equal to ``op2``.
6405#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6406 greater than ``op2``.
6407#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6408 greater than or equal to ``op2``.
6409#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6410 less than ``op2``.
6411#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6412 less than or equal to ``op2``.
6413#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6414 not equal to ``op2``.
6415#. ``uno``: yields ``true`` if either operand is a QNAN.
6416#. ``true``: always yields ``true``, regardless of operands.
6417
6418Example:
6419""""""""
6420
6421.. code-block:: llvm
6422
6423 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6424 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6425 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6426 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6427
6428Note that the code generator does not yet support vector types with the
6429``fcmp`` instruction.
6430
6431.. _i_phi:
6432
6433'``phi``' Instruction
6434^^^^^^^^^^^^^^^^^^^^^
6435
6436Syntax:
6437"""""""
6438
6439::
6440
6441 <result> = phi <ty> [ <val0>, <label0>], ...
6442
6443Overview:
6444"""""""""
6445
6446The '``phi``' instruction is used to implement the φ node in the SSA
6447graph representing the function.
6448
6449Arguments:
6450""""""""""
6451
6452The type of the incoming values is specified with the first type field.
6453After this, the '``phi``' instruction takes a list of pairs as
6454arguments, with one pair for each predecessor basic block of the current
6455block. Only values of :ref:`first class <t_firstclass>` type may be used as
6456the value arguments to the PHI node. Only labels may be used as the
6457label arguments.
6458
6459There must be no non-phi instructions between the start of a basic block
6460and the PHI instructions: i.e. PHI instructions must be first in a basic
6461block.
6462
6463For the purposes of the SSA form, the use of each incoming value is
6464deemed to occur on the edge from the corresponding predecessor block to
6465the current block (but after any definition of an '``invoke``'
6466instruction's return value on the same edge).
6467
6468Semantics:
6469""""""""""
6470
6471At runtime, the '``phi``' instruction logically takes on the value
6472specified by the pair corresponding to the predecessor basic block that
6473executed just prior to the current block.
6474
6475Example:
6476""""""""
6477
6478.. code-block:: llvm
6479
6480 Loop: ; Infinite loop that counts from 0 on up...
6481 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6482 %nextindvar = add i32 %indvar, 1
6483 br label %Loop
6484
6485.. _i_select:
6486
6487'``select``' Instruction
6488^^^^^^^^^^^^^^^^^^^^^^^^
6489
6490Syntax:
6491"""""""
6492
6493::
6494
6495 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6496
6497 selty is either i1 or {<N x i1>}
6498
6499Overview:
6500"""""""""
6501
6502The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006503condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006504
6505Arguments:
6506""""""""""
6507
6508The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6509values indicating the condition, and two values of the same :ref:`first
6510class <t_firstclass>` type. If the val1/val2 are vectors and the
6511condition is a scalar, then entire vectors are selected, not individual
6512elements.
6513
6514Semantics:
6515""""""""""
6516
6517If the condition is an i1 and it evaluates to 1, the instruction returns
6518the first value argument; otherwise, it returns the second value
6519argument.
6520
6521If the condition is a vector of i1, then the value arguments must be
6522vectors of the same size, and the selection is done element by element.
6523
6524Example:
6525""""""""
6526
6527.. code-block:: llvm
6528
6529 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6530
6531.. _i_call:
6532
6533'``call``' Instruction
6534^^^^^^^^^^^^^^^^^^^^^^
6535
6536Syntax:
6537"""""""
6538
6539::
6540
Reid Kleckner5772b772014-04-24 20:14:34 +00006541 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006542
6543Overview:
6544"""""""""
6545
6546The '``call``' instruction represents a simple function call.
6547
6548Arguments:
6549""""""""""
6550
6551This instruction requires several arguments:
6552
Reid Kleckner5772b772014-04-24 20:14:34 +00006553#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6554 should perform tail call optimization. The ``tail`` marker is a hint that
6555 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6556 means that the call must be tail call optimized in order for the program to
6557 be correct. The ``musttail`` marker provides these guarantees:
6558
6559 #. The call will not cause unbounded stack growth if it is part of a
6560 recursive cycle in the call graph.
6561 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6562 forwarded in place.
6563
6564 Both markers imply that the callee does not access allocas or varargs from
6565 the caller. Calls marked ``musttail`` must obey the following additional
6566 rules:
6567
6568 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6569 or a pointer bitcast followed by a ret instruction.
6570 - The ret instruction must return the (possibly bitcasted) value
6571 produced by the call or void.
6572 - The caller and callee prototypes must match. Pointer types of
6573 parameters or return types may differ in pointee type, but not
6574 in address space.
6575 - The calling conventions of the caller and callee must match.
6576 - All ABI-impacting function attributes, such as sret, byval, inreg,
6577 returned, and inalloca, must match.
6578
6579 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6580 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006581
6582 - Caller and callee both have the calling convention ``fastcc``.
6583 - The call is in tail position (ret immediately follows call and ret
6584 uses value of call or is void).
6585 - Option ``-tailcallopt`` is enabled, or
6586 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006587 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006588 met. <CodeGenerator.html#tailcallopt>`_
6589
6590#. The optional "cconv" marker indicates which :ref:`calling
6591 convention <callingconv>` the call should use. If none is
6592 specified, the call defaults to using C calling conventions. The
6593 calling convention of the call must match the calling convention of
6594 the target function, or else the behavior is undefined.
6595#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6596 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6597 are valid here.
6598#. '``ty``': the type of the call instruction itself which is also the
6599 type of the return value. Functions that return no value are marked
6600 ``void``.
6601#. '``fnty``': shall be the signature of the pointer to function value
6602 being invoked. The argument types must match the types implied by
6603 this signature. This type can be omitted if the function is not
6604 varargs and if the function type does not return a pointer to a
6605 function.
6606#. '``fnptrval``': An LLVM value containing a pointer to a function to
6607 be invoked. In most cases, this is a direct function invocation, but
6608 indirect ``call``'s are just as possible, calling an arbitrary pointer
6609 to function value.
6610#. '``function args``': argument list whose types match the function
6611 signature argument types and parameter attributes. All arguments must
6612 be of :ref:`first class <t_firstclass>` type. If the function signature
6613 indicates the function accepts a variable number of arguments, the
6614 extra arguments can be specified.
6615#. The optional :ref:`function attributes <fnattrs>` list. Only
6616 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6617 attributes are valid here.
6618
6619Semantics:
6620""""""""""
6621
6622The '``call``' instruction is used to cause control flow to transfer to
6623a specified function, with its incoming arguments bound to the specified
6624values. Upon a '``ret``' instruction in the called function, control
6625flow continues with the instruction after the function call, and the
6626return value of the function is bound to the result argument.
6627
6628Example:
6629""""""""
6630
6631.. code-block:: llvm
6632
6633 %retval = call i32 @test(i32 %argc)
6634 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6635 %X = tail call i32 @foo() ; yields i32
6636 %Y = tail call fastcc i32 @foo() ; yields i32
6637 call void %foo(i8 97 signext)
6638
6639 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006640 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006641 %gr = extractvalue %struct.A %r, 0 ; yields i32
6642 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6643 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6644 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6645
6646llvm treats calls to some functions with names and arguments that match
6647the standard C99 library as being the C99 library functions, and may
6648perform optimizations or generate code for them under that assumption.
6649This is something we'd like to change in the future to provide better
6650support for freestanding environments and non-C-based languages.
6651
6652.. _i_va_arg:
6653
6654'``va_arg``' Instruction
6655^^^^^^^^^^^^^^^^^^^^^^^^
6656
6657Syntax:
6658"""""""
6659
6660::
6661
6662 <resultval> = va_arg <va_list*> <arglist>, <argty>
6663
6664Overview:
6665"""""""""
6666
6667The '``va_arg``' instruction is used to access arguments passed through
6668the "variable argument" area of a function call. It is used to implement
6669the ``va_arg`` macro in C.
6670
6671Arguments:
6672""""""""""
6673
6674This instruction takes a ``va_list*`` value and the type of the
6675argument. It returns a value of the specified argument type and
6676increments the ``va_list`` to point to the next argument. The actual
6677type of ``va_list`` is target specific.
6678
6679Semantics:
6680""""""""""
6681
6682The '``va_arg``' instruction loads an argument of the specified type
6683from the specified ``va_list`` and causes the ``va_list`` to point to
6684the next argument. For more information, see the variable argument
6685handling :ref:`Intrinsic Functions <int_varargs>`.
6686
6687It is legal for this instruction to be called in a function which does
6688not take a variable number of arguments, for example, the ``vfprintf``
6689function.
6690
6691``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6692function <intrinsics>` because it takes a type as an argument.
6693
6694Example:
6695""""""""
6696
6697See the :ref:`variable argument processing <int_varargs>` section.
6698
6699Note that the code generator does not yet fully support va\_arg on many
6700targets. Also, it does not currently support va\_arg with aggregate
6701types on any target.
6702
6703.. _i_landingpad:
6704
6705'``landingpad``' Instruction
6706^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6707
6708Syntax:
6709"""""""
6710
6711::
6712
6713 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6714 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6715
6716 <clause> := catch <type> <value>
6717 <clause> := filter <array constant type> <array constant>
6718
6719Overview:
6720"""""""""
6721
6722The '``landingpad``' instruction is used by `LLVM's exception handling
6723system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006724is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006725code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6726defines values supplied by the personality function (``pers_fn``) upon
6727re-entry to the function. The ``resultval`` has the type ``resultty``.
6728
6729Arguments:
6730""""""""""
6731
6732This instruction takes a ``pers_fn`` value. This is the personality
6733function associated with the unwinding mechanism. The optional
6734``cleanup`` flag indicates that the landing pad block is a cleanup.
6735
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006736A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006737contains the global variable representing the "type" that may be caught
6738or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6739clause takes an array constant as its argument. Use
6740"``[0 x i8**] undef``" for a filter which cannot throw. The
6741'``landingpad``' instruction must contain *at least* one ``clause`` or
6742the ``cleanup`` flag.
6743
6744Semantics:
6745""""""""""
6746
6747The '``landingpad``' instruction defines the values which are set by the
6748personality function (``pers_fn``) upon re-entry to the function, and
6749therefore the "result type" of the ``landingpad`` instruction. As with
6750calling conventions, how the personality function results are
6751represented in LLVM IR is target specific.
6752
6753The clauses are applied in order from top to bottom. If two
6754``landingpad`` instructions are merged together through inlining, the
6755clauses from the calling function are appended to the list of clauses.
6756When the call stack is being unwound due to an exception being thrown,
6757the exception is compared against each ``clause`` in turn. If it doesn't
6758match any of the clauses, and the ``cleanup`` flag is not set, then
6759unwinding continues further up the call stack.
6760
6761The ``landingpad`` instruction has several restrictions:
6762
6763- A landing pad block is a basic block which is the unwind destination
6764 of an '``invoke``' instruction.
6765- A landing pad block must have a '``landingpad``' instruction as its
6766 first non-PHI instruction.
6767- There can be only one '``landingpad``' instruction within the landing
6768 pad block.
6769- A basic block that is not a landing pad block may not include a
6770 '``landingpad``' instruction.
6771- All '``landingpad``' instructions in a function must have the same
6772 personality function.
6773
6774Example:
6775""""""""
6776
6777.. code-block:: llvm
6778
6779 ;; A landing pad which can catch an integer.
6780 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6781 catch i8** @_ZTIi
6782 ;; A landing pad that is a cleanup.
6783 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6784 cleanup
6785 ;; A landing pad which can catch an integer and can only throw a double.
6786 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6787 catch i8** @_ZTIi
6788 filter [1 x i8**] [@_ZTId]
6789
6790.. _intrinsics:
6791
6792Intrinsic Functions
6793===================
6794
6795LLVM supports the notion of an "intrinsic function". These functions
6796have well known names and semantics and are required to follow certain
6797restrictions. Overall, these intrinsics represent an extension mechanism
6798for the LLVM language that does not require changing all of the
6799transformations in LLVM when adding to the language (or the bitcode
6800reader/writer, the parser, etc...).
6801
6802Intrinsic function names must all start with an "``llvm.``" prefix. This
6803prefix is reserved in LLVM for intrinsic names; thus, function names may
6804not begin with this prefix. Intrinsic functions must always be external
6805functions: you cannot define the body of intrinsic functions. Intrinsic
6806functions may only be used in call or invoke instructions: it is illegal
6807to take the address of an intrinsic function. Additionally, because
6808intrinsic functions are part of the LLVM language, it is required if any
6809are added that they be documented here.
6810
6811Some intrinsic functions can be overloaded, i.e., the intrinsic
6812represents a family of functions that perform the same operation but on
6813different data types. Because LLVM can represent over 8 million
6814different integer types, overloading is used commonly to allow an
6815intrinsic function to operate on any integer type. One or more of the
6816argument types or the result type can be overloaded to accept any
6817integer type. Argument types may also be defined as exactly matching a
6818previous argument's type or the result type. This allows an intrinsic
6819function which accepts multiple arguments, but needs all of them to be
6820of the same type, to only be overloaded with respect to a single
6821argument or the result.
6822
6823Overloaded intrinsics will have the names of its overloaded argument
6824types encoded into its function name, each preceded by a period. Only
6825those types which are overloaded result in a name suffix. Arguments
6826whose type is matched against another type do not. For example, the
6827``llvm.ctpop`` function can take an integer of any width and returns an
6828integer of exactly the same integer width. This leads to a family of
6829functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6830``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6831overloaded, and only one type suffix is required. Because the argument's
6832type is matched against the return type, it does not require its own
6833name suffix.
6834
6835To learn how to add an intrinsic function, please see the `Extending
6836LLVM Guide <ExtendingLLVM.html>`_.
6837
6838.. _int_varargs:
6839
6840Variable Argument Handling Intrinsics
6841-------------------------------------
6842
6843Variable argument support is defined in LLVM with the
6844:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6845functions. These functions are related to the similarly named macros
6846defined in the ``<stdarg.h>`` header file.
6847
6848All of these functions operate on arguments that use a target-specific
6849value type "``va_list``". The LLVM assembly language reference manual
6850does not define what this type is, so all transformations should be
6851prepared to handle these functions regardless of the type used.
6852
6853This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6854variable argument handling intrinsic functions are used.
6855
6856.. code-block:: llvm
6857
6858 define i32 @test(i32 %X, ...) {
6859 ; Initialize variable argument processing
6860 %ap = alloca i8*
6861 %ap2 = bitcast i8** %ap to i8*
6862 call void @llvm.va_start(i8* %ap2)
6863
6864 ; Read a single integer argument
6865 %tmp = va_arg i8** %ap, i32
6866
6867 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6868 %aq = alloca i8*
6869 %aq2 = bitcast i8** %aq to i8*
6870 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6871 call void @llvm.va_end(i8* %aq2)
6872
6873 ; Stop processing of arguments.
6874 call void @llvm.va_end(i8* %ap2)
6875 ret i32 %tmp
6876 }
6877
6878 declare void @llvm.va_start(i8*)
6879 declare void @llvm.va_copy(i8*, i8*)
6880 declare void @llvm.va_end(i8*)
6881
6882.. _int_va_start:
6883
6884'``llvm.va_start``' Intrinsic
6885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6886
6887Syntax:
6888"""""""
6889
6890::
6891
Nick Lewycky04f6de02013-09-11 22:04:52 +00006892 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006893
6894Overview:
6895"""""""""
6896
6897The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6898subsequent use by ``va_arg``.
6899
6900Arguments:
6901""""""""""
6902
6903The argument is a pointer to a ``va_list`` element to initialize.
6904
6905Semantics:
6906""""""""""
6907
6908The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6909available in C. In a target-dependent way, it initializes the
6910``va_list`` element to which the argument points, so that the next call
6911to ``va_arg`` will produce the first variable argument passed to the
6912function. Unlike the C ``va_start`` macro, this intrinsic does not need
6913to know the last argument of the function as the compiler can figure
6914that out.
6915
6916'``llvm.va_end``' Intrinsic
6917^^^^^^^^^^^^^^^^^^^^^^^^^^^
6918
6919Syntax:
6920"""""""
6921
6922::
6923
6924 declare void @llvm.va_end(i8* <arglist>)
6925
6926Overview:
6927"""""""""
6928
6929The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6930initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6931
6932Arguments:
6933""""""""""
6934
6935The argument is a pointer to a ``va_list`` to destroy.
6936
6937Semantics:
6938""""""""""
6939
6940The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6941available in C. In a target-dependent way, it destroys the ``va_list``
6942element to which the argument points. Calls to
6943:ref:`llvm.va_start <int_va_start>` and
6944:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6945``llvm.va_end``.
6946
6947.. _int_va_copy:
6948
6949'``llvm.va_copy``' Intrinsic
6950^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6951
6952Syntax:
6953"""""""
6954
6955::
6956
6957 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6958
6959Overview:
6960"""""""""
6961
6962The '``llvm.va_copy``' intrinsic copies the current argument position
6963from the source argument list to the destination argument list.
6964
6965Arguments:
6966""""""""""
6967
6968The first argument is a pointer to a ``va_list`` element to initialize.
6969The second argument is a pointer to a ``va_list`` element to copy from.
6970
6971Semantics:
6972""""""""""
6973
6974The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6975available in C. In a target-dependent way, it copies the source
6976``va_list`` element into the destination ``va_list`` element. This
6977intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6978arbitrarily complex and require, for example, memory allocation.
6979
6980Accurate Garbage Collection Intrinsics
6981--------------------------------------
6982
6983LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6984(GC) requires the implementation and generation of these intrinsics.
6985These intrinsics allow identification of :ref:`GC roots on the
6986stack <int_gcroot>`, as well as garbage collector implementations that
6987require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6988Front-ends for type-safe garbage collected languages should generate
6989these intrinsics to make use of the LLVM garbage collectors. For more
6990details, see `Accurate Garbage Collection with
6991LLVM <GarbageCollection.html>`_.
6992
6993The garbage collection intrinsics only operate on objects in the generic
6994address space (address space zero).
6995
6996.. _int_gcroot:
6997
6998'``llvm.gcroot``' Intrinsic
6999^^^^^^^^^^^^^^^^^^^^^^^^^^^
7000
7001Syntax:
7002"""""""
7003
7004::
7005
7006 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7007
7008Overview:
7009"""""""""
7010
7011The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7012the code generator, and allows some metadata to be associated with it.
7013
7014Arguments:
7015""""""""""
7016
7017The first argument specifies the address of a stack object that contains
7018the root pointer. The second pointer (which must be either a constant or
7019a global value address) contains the meta-data to be associated with the
7020root.
7021
7022Semantics:
7023""""""""""
7024
7025At runtime, a call to this intrinsic stores a null pointer into the
7026"ptrloc" location. At compile-time, the code generator generates
7027information to allow the runtime to find the pointer at GC safe points.
7028The '``llvm.gcroot``' intrinsic may only be used in a function which
7029:ref:`specifies a GC algorithm <gc>`.
7030
7031.. _int_gcread:
7032
7033'``llvm.gcread``' Intrinsic
7034^^^^^^^^^^^^^^^^^^^^^^^^^^^
7035
7036Syntax:
7037"""""""
7038
7039::
7040
7041 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7042
7043Overview:
7044"""""""""
7045
7046The '``llvm.gcread``' intrinsic identifies reads of references from heap
7047locations, allowing garbage collector implementations that require read
7048barriers.
7049
7050Arguments:
7051""""""""""
7052
7053The second argument is the address to read from, which should be an
7054address allocated from the garbage collector. The first object is a
7055pointer to the start of the referenced object, if needed by the language
7056runtime (otherwise null).
7057
7058Semantics:
7059""""""""""
7060
7061The '``llvm.gcread``' intrinsic has the same semantics as a load
7062instruction, but may be replaced with substantially more complex code by
7063the garbage collector runtime, as needed. The '``llvm.gcread``'
7064intrinsic may only be used in a function which :ref:`specifies a GC
7065algorithm <gc>`.
7066
7067.. _int_gcwrite:
7068
7069'``llvm.gcwrite``' Intrinsic
7070^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7071
7072Syntax:
7073"""""""
7074
7075::
7076
7077 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7078
7079Overview:
7080"""""""""
7081
7082The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7083locations, allowing garbage collector implementations that require write
7084barriers (such as generational or reference counting collectors).
7085
7086Arguments:
7087""""""""""
7088
7089The first argument is the reference to store, the second is the start of
7090the object to store it to, and the third is the address of the field of
7091Obj to store to. If the runtime does not require a pointer to the
7092object, Obj may be null.
7093
7094Semantics:
7095""""""""""
7096
7097The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7098instruction, but may be replaced with substantially more complex code by
7099the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7100intrinsic may only be used in a function which :ref:`specifies a GC
7101algorithm <gc>`.
7102
7103Code Generator Intrinsics
7104-------------------------
7105
7106These intrinsics are provided by LLVM to expose special features that
7107may only be implemented with code generator support.
7108
7109'``llvm.returnaddress``' Intrinsic
7110^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7111
7112Syntax:
7113"""""""
7114
7115::
7116
7117 declare i8 *@llvm.returnaddress(i32 <level>)
7118
7119Overview:
7120"""""""""
7121
7122The '``llvm.returnaddress``' intrinsic attempts to compute a
7123target-specific value indicating the return address of the current
7124function or one of its callers.
7125
7126Arguments:
7127""""""""""
7128
7129The argument to this intrinsic indicates which function to return the
7130address for. Zero indicates the calling function, one indicates its
7131caller, etc. The argument is **required** to be a constant integer
7132value.
7133
7134Semantics:
7135""""""""""
7136
7137The '``llvm.returnaddress``' intrinsic either returns a pointer
7138indicating the return address of the specified call frame, or zero if it
7139cannot be identified. The value returned by this intrinsic is likely to
7140be incorrect or 0 for arguments other than zero, so it should only be
7141used for debugging purposes.
7142
7143Note that calling this intrinsic does not prevent function inlining or
7144other aggressive transformations, so the value returned may not be that
7145of the obvious source-language caller.
7146
7147'``llvm.frameaddress``' Intrinsic
7148^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7149
7150Syntax:
7151"""""""
7152
7153::
7154
7155 declare i8* @llvm.frameaddress(i32 <level>)
7156
7157Overview:
7158"""""""""
7159
7160The '``llvm.frameaddress``' intrinsic attempts to return the
7161target-specific frame pointer value for the specified stack frame.
7162
7163Arguments:
7164""""""""""
7165
7166The argument to this intrinsic indicates which function to return the
7167frame pointer for. Zero indicates the calling function, one indicates
7168its caller, etc. The argument is **required** to be a constant integer
7169value.
7170
7171Semantics:
7172""""""""""
7173
7174The '``llvm.frameaddress``' intrinsic either returns a pointer
7175indicating the frame address of the specified call frame, or zero if it
7176cannot be identified. The value returned by this intrinsic is likely to
7177be incorrect or 0 for arguments other than zero, so it should only be
7178used for debugging purposes.
7179
7180Note that calling this intrinsic does not prevent function inlining or
7181other aggressive transformations, so the value returned may not be that
7182of the obvious source-language caller.
7183
Renato Golinc7aea402014-05-06 16:51:25 +00007184.. _int_read_register:
7185.. _int_write_register:
7186
7187'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7189
7190Syntax:
7191"""""""
7192
7193::
7194
7195 declare i32 @llvm.read_register.i32(metadata)
7196 declare i64 @llvm.read_register.i64(metadata)
7197 declare void @llvm.write_register.i32(metadata, i32 @value)
7198 declare void @llvm.write_register.i64(metadata, i64 @value)
7199 !0 = metadata !{metadata !"sp\00"}
7200
7201Overview:
7202"""""""""
7203
7204The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7205provides access to the named register. The register must be valid on
7206the architecture being compiled to. The type needs to be compatible
7207with the register being read.
7208
7209Semantics:
7210""""""""""
7211
7212The '``llvm.read_register``' intrinsic returns the current value of the
7213register, where possible. The '``llvm.write_register``' intrinsic sets
7214the current value of the register, where possible.
7215
7216This is useful to implement named register global variables that need
7217to always be mapped to a specific register, as is common practice on
7218bare-metal programs including OS kernels.
7219
7220The compiler doesn't check for register availability or use of the used
7221register in surrounding code, including inline assembly. Because of that,
7222allocatable registers are not supported.
7223
7224Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007225architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007226work is needed to support other registers and even more so, allocatable
7227registers.
7228
Sean Silvab084af42012-12-07 10:36:55 +00007229.. _int_stacksave:
7230
7231'``llvm.stacksave``' Intrinsic
7232^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7233
7234Syntax:
7235"""""""
7236
7237::
7238
7239 declare i8* @llvm.stacksave()
7240
7241Overview:
7242"""""""""
7243
7244The '``llvm.stacksave``' intrinsic is used to remember the current state
7245of the function stack, for use with
7246:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7247implementing language features like scoped automatic variable sized
7248arrays in C99.
7249
7250Semantics:
7251""""""""""
7252
7253This intrinsic returns a opaque pointer value that can be passed to
7254:ref:`llvm.stackrestore <int_stackrestore>`. When an
7255``llvm.stackrestore`` intrinsic is executed with a value saved from
7256``llvm.stacksave``, it effectively restores the state of the stack to
7257the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7258practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7259were allocated after the ``llvm.stacksave`` was executed.
7260
7261.. _int_stackrestore:
7262
7263'``llvm.stackrestore``' Intrinsic
7264^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7265
7266Syntax:
7267"""""""
7268
7269::
7270
7271 declare void @llvm.stackrestore(i8* %ptr)
7272
7273Overview:
7274"""""""""
7275
7276The '``llvm.stackrestore``' intrinsic is used to restore the state of
7277the function stack to the state it was in when the corresponding
7278:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7279useful for implementing language features like scoped automatic variable
7280sized arrays in C99.
7281
7282Semantics:
7283""""""""""
7284
7285See the description for :ref:`llvm.stacksave <int_stacksave>`.
7286
7287'``llvm.prefetch``' Intrinsic
7288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7289
7290Syntax:
7291"""""""
7292
7293::
7294
7295 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7296
7297Overview:
7298"""""""""
7299
7300The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7301insert a prefetch instruction if supported; otherwise, it is a noop.
7302Prefetches have no effect on the behavior of the program but can change
7303its performance characteristics.
7304
7305Arguments:
7306""""""""""
7307
7308``address`` is the address to be prefetched, ``rw`` is the specifier
7309determining if the fetch should be for a read (0) or write (1), and
7310``locality`` is a temporal locality specifier ranging from (0) - no
7311locality, to (3) - extremely local keep in cache. The ``cache type``
7312specifies whether the prefetch is performed on the data (1) or
7313instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7314arguments must be constant integers.
7315
7316Semantics:
7317""""""""""
7318
7319This intrinsic does not modify the behavior of the program. In
7320particular, prefetches cannot trap and do not produce a value. On
7321targets that support this intrinsic, the prefetch can provide hints to
7322the processor cache for better performance.
7323
7324'``llvm.pcmarker``' Intrinsic
7325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7326
7327Syntax:
7328"""""""
7329
7330::
7331
7332 declare void @llvm.pcmarker(i32 <id>)
7333
7334Overview:
7335"""""""""
7336
7337The '``llvm.pcmarker``' intrinsic is a method to export a Program
7338Counter (PC) in a region of code to simulators and other tools. The
7339method is target specific, but it is expected that the marker will use
7340exported symbols to transmit the PC of the marker. The marker makes no
7341guarantees that it will remain with any specific instruction after
7342optimizations. It is possible that the presence of a marker will inhibit
7343optimizations. The intended use is to be inserted after optimizations to
7344allow correlations of simulation runs.
7345
7346Arguments:
7347""""""""""
7348
7349``id`` is a numerical id identifying the marker.
7350
7351Semantics:
7352""""""""""
7353
7354This intrinsic does not modify the behavior of the program. Backends
7355that do not support this intrinsic may ignore it.
7356
7357'``llvm.readcyclecounter``' Intrinsic
7358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7359
7360Syntax:
7361"""""""
7362
7363::
7364
7365 declare i64 @llvm.readcyclecounter()
7366
7367Overview:
7368"""""""""
7369
7370The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7371counter register (or similar low latency, high accuracy clocks) on those
7372targets that support it. On X86, it should map to RDTSC. On Alpha, it
7373should map to RPCC. As the backing counters overflow quickly (on the
7374order of 9 seconds on alpha), this should only be used for small
7375timings.
7376
7377Semantics:
7378""""""""""
7379
7380When directly supported, reading the cycle counter should not modify any
7381memory. Implementations are allowed to either return a application
7382specific value or a system wide value. On backends without support, this
7383is lowered to a constant 0.
7384
Tim Northoverbc933082013-05-23 19:11:20 +00007385Note that runtime support may be conditional on the privilege-level code is
7386running at and the host platform.
7387
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007388'``llvm.clear_cache``' Intrinsic
7389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7390
7391Syntax:
7392"""""""
7393
7394::
7395
7396 declare void @llvm.clear_cache(i8*, i8*)
7397
7398Overview:
7399"""""""""
7400
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007401The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7402in the specified range to the execution unit of the processor. On
7403targets with non-unified instruction and data cache, the implementation
7404flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007405
7406Semantics:
7407""""""""""
7408
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007409On platforms with coherent instruction and data caches (e.g. x86), this
7410intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007411cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007412instructions or a system call, if cache flushing requires special
7413privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007414
Sean Silvad02bf3e2014-04-07 22:29:53 +00007415The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007416time library.
Renato Golin93010e62014-03-26 14:01:32 +00007417
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007418This instrinsic does *not* empty the instruction pipeline. Modifications
7419of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007420
Sean Silvab084af42012-12-07 10:36:55 +00007421Standard C Library Intrinsics
7422-----------------------------
7423
7424LLVM provides intrinsics for a few important standard C library
7425functions. These intrinsics allow source-language front-ends to pass
7426information about the alignment of the pointer arguments to the code
7427generator, providing opportunity for more efficient code generation.
7428
7429.. _int_memcpy:
7430
7431'``llvm.memcpy``' Intrinsic
7432^^^^^^^^^^^^^^^^^^^^^^^^^^^
7433
7434Syntax:
7435"""""""
7436
7437This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7438integer bit width and for different address spaces. Not all targets
7439support all bit widths however.
7440
7441::
7442
7443 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7444 i32 <len>, i32 <align>, i1 <isvolatile>)
7445 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7446 i64 <len>, i32 <align>, i1 <isvolatile>)
7447
7448Overview:
7449"""""""""
7450
7451The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7452source location to the destination location.
7453
7454Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7455intrinsics do not return a value, takes extra alignment/isvolatile
7456arguments and the pointers can be in specified address spaces.
7457
7458Arguments:
7459""""""""""
7460
7461The first argument is a pointer to the destination, the second is a
7462pointer to the source. The third argument is an integer argument
7463specifying the number of bytes to copy, the fourth argument is the
7464alignment of the source and destination locations, and the fifth is a
7465boolean indicating a volatile access.
7466
7467If the call to this intrinsic has an alignment value that is not 0 or 1,
7468then the caller guarantees that both the source and destination pointers
7469are aligned to that boundary.
7470
7471If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7472a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7473very cleanly specified and it is unwise to depend on it.
7474
7475Semantics:
7476""""""""""
7477
7478The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7479source location to the destination location, which are not allowed to
7480overlap. It copies "len" bytes of memory over. If the argument is known
7481to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007482argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007483
7484'``llvm.memmove``' Intrinsic
7485^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7486
7487Syntax:
7488"""""""
7489
7490This is an overloaded intrinsic. You can use llvm.memmove on any integer
7491bit width and for different address space. Not all targets support all
7492bit widths however.
7493
7494::
7495
7496 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7497 i32 <len>, i32 <align>, i1 <isvolatile>)
7498 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7499 i64 <len>, i32 <align>, i1 <isvolatile>)
7500
7501Overview:
7502"""""""""
7503
7504The '``llvm.memmove.*``' intrinsics move a block of memory from the
7505source location to the destination location. It is similar to the
7506'``llvm.memcpy``' intrinsic but allows the two memory locations to
7507overlap.
7508
7509Note that, unlike the standard libc function, the ``llvm.memmove.*``
7510intrinsics do not return a value, takes extra alignment/isvolatile
7511arguments and the pointers can be in specified address spaces.
7512
7513Arguments:
7514""""""""""
7515
7516The first argument is a pointer to the destination, the second is a
7517pointer to the source. The third argument is an integer argument
7518specifying the number of bytes to copy, the fourth argument is the
7519alignment of the source and destination locations, and the fifth is a
7520boolean indicating a volatile access.
7521
7522If the call to this intrinsic has an alignment value that is not 0 or 1,
7523then the caller guarantees that the source and destination pointers are
7524aligned to that boundary.
7525
7526If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7527is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7528not very cleanly specified and it is unwise to depend on it.
7529
7530Semantics:
7531""""""""""
7532
7533The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7534source location to the destination location, which may overlap. It
7535copies "len" bytes of memory over. If the argument is known to be
7536aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007537otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007538
7539'``llvm.memset.*``' Intrinsics
7540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7541
7542Syntax:
7543"""""""
7544
7545This is an overloaded intrinsic. You can use llvm.memset on any integer
7546bit width and for different address spaces. However, not all targets
7547support all bit widths.
7548
7549::
7550
7551 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7552 i32 <len>, i32 <align>, i1 <isvolatile>)
7553 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7554 i64 <len>, i32 <align>, i1 <isvolatile>)
7555
7556Overview:
7557"""""""""
7558
7559The '``llvm.memset.*``' intrinsics fill a block of memory with a
7560particular byte value.
7561
7562Note that, unlike the standard libc function, the ``llvm.memset``
7563intrinsic does not return a value and takes extra alignment/volatile
7564arguments. Also, the destination can be in an arbitrary address space.
7565
7566Arguments:
7567""""""""""
7568
7569The first argument is a pointer to the destination to fill, the second
7570is the byte value with which to fill it, the third argument is an
7571integer argument specifying the number of bytes to fill, and the fourth
7572argument is the known alignment of the destination location.
7573
7574If the call to this intrinsic has an alignment value that is not 0 or 1,
7575then the caller guarantees that the destination pointer is aligned to
7576that boundary.
7577
7578If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7579a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7580very cleanly specified and it is unwise to depend on it.
7581
7582Semantics:
7583""""""""""
7584
7585The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7586at the destination location. If the argument is known to be aligned to
7587some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007588it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007589
7590'``llvm.sqrt.*``' Intrinsic
7591^^^^^^^^^^^^^^^^^^^^^^^^^^^
7592
7593Syntax:
7594"""""""
7595
7596This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7597floating point or vector of floating point type. Not all targets support
7598all types however.
7599
7600::
7601
7602 declare float @llvm.sqrt.f32(float %Val)
7603 declare double @llvm.sqrt.f64(double %Val)
7604 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7605 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7606 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7607
7608Overview:
7609"""""""""
7610
7611The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7612returning the same value as the libm '``sqrt``' functions would. Unlike
7613``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7614negative numbers other than -0.0 (which allows for better optimization,
7615because there is no need to worry about errno being set).
7616``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7617
7618Arguments:
7619""""""""""
7620
7621The argument and return value are floating point numbers of the same
7622type.
7623
7624Semantics:
7625""""""""""
7626
7627This function returns the sqrt of the specified operand if it is a
7628nonnegative floating point number.
7629
7630'``llvm.powi.*``' Intrinsic
7631^^^^^^^^^^^^^^^^^^^^^^^^^^^
7632
7633Syntax:
7634"""""""
7635
7636This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7637floating point or vector of floating point type. Not all targets support
7638all types however.
7639
7640::
7641
7642 declare float @llvm.powi.f32(float %Val, i32 %power)
7643 declare double @llvm.powi.f64(double %Val, i32 %power)
7644 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7645 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7646 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7647
7648Overview:
7649"""""""""
7650
7651The '``llvm.powi.*``' intrinsics return the first operand raised to the
7652specified (positive or negative) power. The order of evaluation of
7653multiplications is not defined. When a vector of floating point type is
7654used, the second argument remains a scalar integer value.
7655
7656Arguments:
7657""""""""""
7658
7659The second argument is an integer power, and the first is a value to
7660raise to that power.
7661
7662Semantics:
7663""""""""""
7664
7665This function returns the first value raised to the second power with an
7666unspecified sequence of rounding operations.
7667
7668'``llvm.sin.*``' Intrinsic
7669^^^^^^^^^^^^^^^^^^^^^^^^^^
7670
7671Syntax:
7672"""""""
7673
7674This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7675floating point or vector of floating point type. Not all targets support
7676all types however.
7677
7678::
7679
7680 declare float @llvm.sin.f32(float %Val)
7681 declare double @llvm.sin.f64(double %Val)
7682 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7683 declare fp128 @llvm.sin.f128(fp128 %Val)
7684 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7685
7686Overview:
7687"""""""""
7688
7689The '``llvm.sin.*``' intrinsics return the sine of the operand.
7690
7691Arguments:
7692""""""""""
7693
7694The argument and return value are floating point numbers of the same
7695type.
7696
7697Semantics:
7698""""""""""
7699
7700This function returns the sine of the specified operand, returning the
7701same values as the libm ``sin`` functions would, and handles error
7702conditions in the same way.
7703
7704'``llvm.cos.*``' Intrinsic
7705^^^^^^^^^^^^^^^^^^^^^^^^^^
7706
7707Syntax:
7708"""""""
7709
7710This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7711floating point or vector of floating point type. Not all targets support
7712all types however.
7713
7714::
7715
7716 declare float @llvm.cos.f32(float %Val)
7717 declare double @llvm.cos.f64(double %Val)
7718 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7719 declare fp128 @llvm.cos.f128(fp128 %Val)
7720 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7721
7722Overview:
7723"""""""""
7724
7725The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7726
7727Arguments:
7728""""""""""
7729
7730The argument and return value are floating point numbers of the same
7731type.
7732
7733Semantics:
7734""""""""""
7735
7736This function returns the cosine of the specified operand, returning the
7737same values as the libm ``cos`` functions would, and handles error
7738conditions in the same way.
7739
7740'``llvm.pow.*``' Intrinsic
7741^^^^^^^^^^^^^^^^^^^^^^^^^^
7742
7743Syntax:
7744"""""""
7745
7746This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7747floating point or vector of floating point type. Not all targets support
7748all types however.
7749
7750::
7751
7752 declare float @llvm.pow.f32(float %Val, float %Power)
7753 declare double @llvm.pow.f64(double %Val, double %Power)
7754 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7755 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7756 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7757
7758Overview:
7759"""""""""
7760
7761The '``llvm.pow.*``' intrinsics return the first operand raised to the
7762specified (positive or negative) power.
7763
7764Arguments:
7765""""""""""
7766
7767The second argument is a floating point power, and the first is a value
7768to raise to that power.
7769
7770Semantics:
7771""""""""""
7772
7773This function returns the first value raised to the second power,
7774returning the same values as the libm ``pow`` functions would, and
7775handles error conditions in the same way.
7776
7777'``llvm.exp.*``' Intrinsic
7778^^^^^^^^^^^^^^^^^^^^^^^^^^
7779
7780Syntax:
7781"""""""
7782
7783This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7784floating point or vector of floating point type. Not all targets support
7785all types however.
7786
7787::
7788
7789 declare float @llvm.exp.f32(float %Val)
7790 declare double @llvm.exp.f64(double %Val)
7791 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7792 declare fp128 @llvm.exp.f128(fp128 %Val)
7793 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7794
7795Overview:
7796"""""""""
7797
7798The '``llvm.exp.*``' intrinsics perform the exp function.
7799
7800Arguments:
7801""""""""""
7802
7803The argument and return value are floating point numbers of the same
7804type.
7805
7806Semantics:
7807""""""""""
7808
7809This function returns the same values as the libm ``exp`` functions
7810would, and handles error conditions in the same way.
7811
7812'``llvm.exp2.*``' Intrinsic
7813^^^^^^^^^^^^^^^^^^^^^^^^^^^
7814
7815Syntax:
7816"""""""
7817
7818This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7819floating point or vector of floating point type. Not all targets support
7820all types however.
7821
7822::
7823
7824 declare float @llvm.exp2.f32(float %Val)
7825 declare double @llvm.exp2.f64(double %Val)
7826 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7827 declare fp128 @llvm.exp2.f128(fp128 %Val)
7828 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7829
7830Overview:
7831"""""""""
7832
7833The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7834
7835Arguments:
7836""""""""""
7837
7838The argument and return value are floating point numbers of the same
7839type.
7840
7841Semantics:
7842""""""""""
7843
7844This function returns the same values as the libm ``exp2`` functions
7845would, and handles error conditions in the same way.
7846
7847'``llvm.log.*``' Intrinsic
7848^^^^^^^^^^^^^^^^^^^^^^^^^^
7849
7850Syntax:
7851"""""""
7852
7853This is an overloaded intrinsic. You can use ``llvm.log`` on any
7854floating point or vector of floating point type. Not all targets support
7855all types however.
7856
7857::
7858
7859 declare float @llvm.log.f32(float %Val)
7860 declare double @llvm.log.f64(double %Val)
7861 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7862 declare fp128 @llvm.log.f128(fp128 %Val)
7863 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7864
7865Overview:
7866"""""""""
7867
7868The '``llvm.log.*``' intrinsics perform the log function.
7869
7870Arguments:
7871""""""""""
7872
7873The argument and return value are floating point numbers of the same
7874type.
7875
7876Semantics:
7877""""""""""
7878
7879This function returns the same values as the libm ``log`` functions
7880would, and handles error conditions in the same way.
7881
7882'``llvm.log10.*``' Intrinsic
7883^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7884
7885Syntax:
7886"""""""
7887
7888This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7889floating point or vector of floating point type. Not all targets support
7890all types however.
7891
7892::
7893
7894 declare float @llvm.log10.f32(float %Val)
7895 declare double @llvm.log10.f64(double %Val)
7896 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7897 declare fp128 @llvm.log10.f128(fp128 %Val)
7898 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7899
7900Overview:
7901"""""""""
7902
7903The '``llvm.log10.*``' intrinsics perform the log10 function.
7904
7905Arguments:
7906""""""""""
7907
7908The argument and return value are floating point numbers of the same
7909type.
7910
7911Semantics:
7912""""""""""
7913
7914This function returns the same values as the libm ``log10`` functions
7915would, and handles error conditions in the same way.
7916
7917'``llvm.log2.*``' Intrinsic
7918^^^^^^^^^^^^^^^^^^^^^^^^^^^
7919
7920Syntax:
7921"""""""
7922
7923This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7924floating point or vector of floating point type. Not all targets support
7925all types however.
7926
7927::
7928
7929 declare float @llvm.log2.f32(float %Val)
7930 declare double @llvm.log2.f64(double %Val)
7931 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7932 declare fp128 @llvm.log2.f128(fp128 %Val)
7933 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7934
7935Overview:
7936"""""""""
7937
7938The '``llvm.log2.*``' intrinsics perform the log2 function.
7939
7940Arguments:
7941""""""""""
7942
7943The argument and return value are floating point numbers of the same
7944type.
7945
7946Semantics:
7947""""""""""
7948
7949This function returns the same values as the libm ``log2`` functions
7950would, and handles error conditions in the same way.
7951
7952'``llvm.fma.*``' Intrinsic
7953^^^^^^^^^^^^^^^^^^^^^^^^^^
7954
7955Syntax:
7956"""""""
7957
7958This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7959floating point or vector of floating point type. Not all targets support
7960all types however.
7961
7962::
7963
7964 declare float @llvm.fma.f32(float %a, float %b, float %c)
7965 declare double @llvm.fma.f64(double %a, double %b, double %c)
7966 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7967 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7968 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7969
7970Overview:
7971"""""""""
7972
7973The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7974operation.
7975
7976Arguments:
7977""""""""""
7978
7979The argument and return value are floating point numbers of the same
7980type.
7981
7982Semantics:
7983""""""""""
7984
7985This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007986would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007987
7988'``llvm.fabs.*``' Intrinsic
7989^^^^^^^^^^^^^^^^^^^^^^^^^^^
7990
7991Syntax:
7992"""""""
7993
7994This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7995floating point or vector of floating point type. Not all targets support
7996all types however.
7997
7998::
7999
8000 declare float @llvm.fabs.f32(float %Val)
8001 declare double @llvm.fabs.f64(double %Val)
8002 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
8003 declare fp128 @llvm.fabs.f128(fp128 %Val)
8004 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
8005
8006Overview:
8007"""""""""
8008
8009The '``llvm.fabs.*``' intrinsics return the absolute value of the
8010operand.
8011
8012Arguments:
8013""""""""""
8014
8015The argument and return value are floating point numbers of the same
8016type.
8017
8018Semantics:
8019""""""""""
8020
8021This function returns the same values as the libm ``fabs`` functions
8022would, and handles error conditions in the same way.
8023
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008024'``llvm.copysign.*``' Intrinsic
8025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8026
8027Syntax:
8028"""""""
8029
8030This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8031floating point or vector of floating point type. Not all targets support
8032all types however.
8033
8034::
8035
8036 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8037 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8038 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8039 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8040 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8041
8042Overview:
8043"""""""""
8044
8045The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8046first operand and the sign of the second operand.
8047
8048Arguments:
8049""""""""""
8050
8051The arguments and return value are floating point numbers of the same
8052type.
8053
8054Semantics:
8055""""""""""
8056
8057This function returns the same values as the libm ``copysign``
8058functions would, and handles error conditions in the same way.
8059
Sean Silvab084af42012-12-07 10:36:55 +00008060'``llvm.floor.*``' Intrinsic
8061^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8062
8063Syntax:
8064"""""""
8065
8066This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8067floating point or vector of floating point type. Not all targets support
8068all types however.
8069
8070::
8071
8072 declare float @llvm.floor.f32(float %Val)
8073 declare double @llvm.floor.f64(double %Val)
8074 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8075 declare fp128 @llvm.floor.f128(fp128 %Val)
8076 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8077
8078Overview:
8079"""""""""
8080
8081The '``llvm.floor.*``' intrinsics return the floor of the operand.
8082
8083Arguments:
8084""""""""""
8085
8086The argument and return value are floating point numbers of the same
8087type.
8088
8089Semantics:
8090""""""""""
8091
8092This function returns the same values as the libm ``floor`` functions
8093would, and handles error conditions in the same way.
8094
8095'``llvm.ceil.*``' Intrinsic
8096^^^^^^^^^^^^^^^^^^^^^^^^^^^
8097
8098Syntax:
8099"""""""
8100
8101This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8102floating point or vector of floating point type. Not all targets support
8103all types however.
8104
8105::
8106
8107 declare float @llvm.ceil.f32(float %Val)
8108 declare double @llvm.ceil.f64(double %Val)
8109 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8110 declare fp128 @llvm.ceil.f128(fp128 %Val)
8111 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8112
8113Overview:
8114"""""""""
8115
8116The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8117
8118Arguments:
8119""""""""""
8120
8121The argument and return value are floating point numbers of the same
8122type.
8123
8124Semantics:
8125""""""""""
8126
8127This function returns the same values as the libm ``ceil`` functions
8128would, and handles error conditions in the same way.
8129
8130'``llvm.trunc.*``' Intrinsic
8131^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8132
8133Syntax:
8134"""""""
8135
8136This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8137floating point or vector of floating point type. Not all targets support
8138all types however.
8139
8140::
8141
8142 declare float @llvm.trunc.f32(float %Val)
8143 declare double @llvm.trunc.f64(double %Val)
8144 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8145 declare fp128 @llvm.trunc.f128(fp128 %Val)
8146 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8147
8148Overview:
8149"""""""""
8150
8151The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8152nearest integer not larger in magnitude than the operand.
8153
8154Arguments:
8155""""""""""
8156
8157The argument and return value are floating point numbers of the same
8158type.
8159
8160Semantics:
8161""""""""""
8162
8163This function returns the same values as the libm ``trunc`` functions
8164would, and handles error conditions in the same way.
8165
8166'``llvm.rint.*``' Intrinsic
8167^^^^^^^^^^^^^^^^^^^^^^^^^^^
8168
8169Syntax:
8170"""""""
8171
8172This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8173floating point or vector of floating point type. Not all targets support
8174all types however.
8175
8176::
8177
8178 declare float @llvm.rint.f32(float %Val)
8179 declare double @llvm.rint.f64(double %Val)
8180 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8181 declare fp128 @llvm.rint.f128(fp128 %Val)
8182 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8183
8184Overview:
8185"""""""""
8186
8187The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8188nearest integer. It may raise an inexact floating-point exception if the
8189operand isn't an integer.
8190
8191Arguments:
8192""""""""""
8193
8194The argument and return value are floating point numbers of the same
8195type.
8196
8197Semantics:
8198""""""""""
8199
8200This function returns the same values as the libm ``rint`` functions
8201would, and handles error conditions in the same way.
8202
8203'``llvm.nearbyint.*``' Intrinsic
8204^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8205
8206Syntax:
8207"""""""
8208
8209This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8210floating point or vector of floating point type. Not all targets support
8211all types however.
8212
8213::
8214
8215 declare float @llvm.nearbyint.f32(float %Val)
8216 declare double @llvm.nearbyint.f64(double %Val)
8217 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8218 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8219 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8220
8221Overview:
8222"""""""""
8223
8224The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8225nearest integer.
8226
8227Arguments:
8228""""""""""
8229
8230The argument and return value are floating point numbers of the same
8231type.
8232
8233Semantics:
8234""""""""""
8235
8236This function returns the same values as the libm ``nearbyint``
8237functions would, and handles error conditions in the same way.
8238
Hal Finkel171817e2013-08-07 22:49:12 +00008239'``llvm.round.*``' Intrinsic
8240^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8241
8242Syntax:
8243"""""""
8244
8245This is an overloaded intrinsic. You can use ``llvm.round`` on any
8246floating point or vector of floating point type. Not all targets support
8247all types however.
8248
8249::
8250
8251 declare float @llvm.round.f32(float %Val)
8252 declare double @llvm.round.f64(double %Val)
8253 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8254 declare fp128 @llvm.round.f128(fp128 %Val)
8255 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8256
8257Overview:
8258"""""""""
8259
8260The '``llvm.round.*``' intrinsics returns the operand rounded to the
8261nearest integer.
8262
8263Arguments:
8264""""""""""
8265
8266The argument and return value are floating point numbers of the same
8267type.
8268
8269Semantics:
8270""""""""""
8271
8272This function returns the same values as the libm ``round``
8273functions would, and handles error conditions in the same way.
8274
Sean Silvab084af42012-12-07 10:36:55 +00008275Bit Manipulation Intrinsics
8276---------------------------
8277
8278LLVM provides intrinsics for a few important bit manipulation
8279operations. These allow efficient code generation for some algorithms.
8280
8281'``llvm.bswap.*``' Intrinsics
8282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8283
8284Syntax:
8285"""""""
8286
8287This is an overloaded intrinsic function. You can use bswap on any
8288integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8289
8290::
8291
8292 declare i16 @llvm.bswap.i16(i16 <id>)
8293 declare i32 @llvm.bswap.i32(i32 <id>)
8294 declare i64 @llvm.bswap.i64(i64 <id>)
8295
8296Overview:
8297"""""""""
8298
8299The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8300values with an even number of bytes (positive multiple of 16 bits).
8301These are useful for performing operations on data that is not in the
8302target's native byte order.
8303
8304Semantics:
8305""""""""""
8306
8307The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8308and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8309intrinsic returns an i32 value that has the four bytes of the input i32
8310swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8311returned i32 will have its bytes in 3, 2, 1, 0 order. The
8312``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8313concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8314respectively).
8315
8316'``llvm.ctpop.*``' Intrinsic
8317^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8318
8319Syntax:
8320"""""""
8321
8322This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8323bit width, or on any vector with integer elements. Not all targets
8324support all bit widths or vector types, however.
8325
8326::
8327
8328 declare i8 @llvm.ctpop.i8(i8 <src>)
8329 declare i16 @llvm.ctpop.i16(i16 <src>)
8330 declare i32 @llvm.ctpop.i32(i32 <src>)
8331 declare i64 @llvm.ctpop.i64(i64 <src>)
8332 declare i256 @llvm.ctpop.i256(i256 <src>)
8333 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8334
8335Overview:
8336"""""""""
8337
8338The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8339in a value.
8340
8341Arguments:
8342""""""""""
8343
8344The only argument is the value to be counted. The argument may be of any
8345integer type, or a vector with integer elements. The return type must
8346match the argument type.
8347
8348Semantics:
8349""""""""""
8350
8351The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8352each element of a vector.
8353
8354'``llvm.ctlz.*``' Intrinsic
8355^^^^^^^^^^^^^^^^^^^^^^^^^^^
8356
8357Syntax:
8358"""""""
8359
8360This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8361integer bit width, or any vector whose elements are integers. Not all
8362targets support all bit widths or vector types, however.
8363
8364::
8365
8366 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8367 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8368 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8369 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8370 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8371 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8372
8373Overview:
8374"""""""""
8375
8376The '``llvm.ctlz``' family of intrinsic functions counts the number of
8377leading zeros in a variable.
8378
8379Arguments:
8380""""""""""
8381
8382The first argument is the value to be counted. This argument may be of
8383any integer type, or a vectory with integer element type. The return
8384type must match the first argument type.
8385
8386The second argument must be a constant and is a flag to indicate whether
8387the intrinsic should ensure that a zero as the first argument produces a
8388defined result. Historically some architectures did not provide a
8389defined result for zero values as efficiently, and many algorithms are
8390now predicated on avoiding zero-value inputs.
8391
8392Semantics:
8393""""""""""
8394
8395The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8396zeros in a variable, or within each element of the vector. If
8397``src == 0`` then the result is the size in bits of the type of ``src``
8398if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8399``llvm.ctlz(i32 2) = 30``.
8400
8401'``llvm.cttz.*``' Intrinsic
8402^^^^^^^^^^^^^^^^^^^^^^^^^^^
8403
8404Syntax:
8405"""""""
8406
8407This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8408integer bit width, or any vector of integer elements. Not all targets
8409support all bit widths or vector types, however.
8410
8411::
8412
8413 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8414 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8415 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8416 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8417 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8418 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8419
8420Overview:
8421"""""""""
8422
8423The '``llvm.cttz``' family of intrinsic functions counts the number of
8424trailing zeros.
8425
8426Arguments:
8427""""""""""
8428
8429The first argument is the value to be counted. This argument may be of
8430any integer type, or a vectory with integer element type. The return
8431type must match the first argument type.
8432
8433The second argument must be a constant and is a flag to indicate whether
8434the intrinsic should ensure that a zero as the first argument produces a
8435defined result. Historically some architectures did not provide a
8436defined result for zero values as efficiently, and many algorithms are
8437now predicated on avoiding zero-value inputs.
8438
8439Semantics:
8440""""""""""
8441
8442The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8443zeros in a variable, or within each element of a vector. If ``src == 0``
8444then the result is the size in bits of the type of ``src`` if
8445``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8446``llvm.cttz(2) = 1``.
8447
8448Arithmetic with Overflow Intrinsics
8449-----------------------------------
8450
8451LLVM provides intrinsics for some arithmetic with overflow operations.
8452
8453'``llvm.sadd.with.overflow.*``' Intrinsics
8454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8455
8456Syntax:
8457"""""""
8458
8459This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8460on any integer bit width.
8461
8462::
8463
8464 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8465 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8466 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8467
8468Overview:
8469"""""""""
8470
8471The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8472a signed addition of the two arguments, and indicate whether an overflow
8473occurred during the signed summation.
8474
8475Arguments:
8476""""""""""
8477
8478The arguments (%a and %b) and the first element of the result structure
8479may be of integer types of any bit width, but they must have the same
8480bit width. The second element of the result structure must be of type
8481``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8482addition.
8483
8484Semantics:
8485""""""""""
8486
8487The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008488a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008489first element of which is the signed summation, and the second element
8490of which is a bit specifying if the signed summation resulted in an
8491overflow.
8492
8493Examples:
8494"""""""""
8495
8496.. code-block:: llvm
8497
8498 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8499 %sum = extractvalue {i32, i1} %res, 0
8500 %obit = extractvalue {i32, i1} %res, 1
8501 br i1 %obit, label %overflow, label %normal
8502
8503'``llvm.uadd.with.overflow.*``' Intrinsics
8504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8505
8506Syntax:
8507"""""""
8508
8509This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8510on any integer bit width.
8511
8512::
8513
8514 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8515 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8516 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8517
8518Overview:
8519"""""""""
8520
8521The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8522an unsigned addition of the two arguments, and indicate whether a carry
8523occurred during the unsigned summation.
8524
8525Arguments:
8526""""""""""
8527
8528The arguments (%a and %b) and the first element of the result structure
8529may be of integer types of any bit width, but they must have the same
8530bit width. The second element of the result structure must be of type
8531``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8532addition.
8533
8534Semantics:
8535""""""""""
8536
8537The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008538an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008539first element of which is the sum, and the second element of which is a
8540bit specifying if the unsigned summation resulted in a carry.
8541
8542Examples:
8543"""""""""
8544
8545.. code-block:: llvm
8546
8547 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8548 %sum = extractvalue {i32, i1} %res, 0
8549 %obit = extractvalue {i32, i1} %res, 1
8550 br i1 %obit, label %carry, label %normal
8551
8552'``llvm.ssub.with.overflow.*``' Intrinsics
8553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8554
8555Syntax:
8556"""""""
8557
8558This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8559on any integer bit width.
8560
8561::
8562
8563 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8564 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8565 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8566
8567Overview:
8568"""""""""
8569
8570The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8571a signed subtraction of the two arguments, and indicate whether an
8572overflow occurred during the signed subtraction.
8573
8574Arguments:
8575""""""""""
8576
8577The arguments (%a and %b) and the first element of the result structure
8578may be of integer types of any bit width, but they must have the same
8579bit width. The second element of the result structure must be of type
8580``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8581subtraction.
8582
8583Semantics:
8584""""""""""
8585
8586The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008587a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008588first element of which is the subtraction, and the second element of
8589which is a bit specifying if the signed subtraction resulted in an
8590overflow.
8591
8592Examples:
8593"""""""""
8594
8595.. code-block:: llvm
8596
8597 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8598 %sum = extractvalue {i32, i1} %res, 0
8599 %obit = extractvalue {i32, i1} %res, 1
8600 br i1 %obit, label %overflow, label %normal
8601
8602'``llvm.usub.with.overflow.*``' Intrinsics
8603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8604
8605Syntax:
8606"""""""
8607
8608This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8609on any integer bit width.
8610
8611::
8612
8613 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8614 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8615 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8616
8617Overview:
8618"""""""""
8619
8620The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8621an unsigned subtraction of the two arguments, and indicate whether an
8622overflow occurred during the unsigned subtraction.
8623
8624Arguments:
8625""""""""""
8626
8627The arguments (%a and %b) and the first element of the result structure
8628may be of integer types of any bit width, but they must have the same
8629bit width. The second element of the result structure must be of type
8630``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8631subtraction.
8632
8633Semantics:
8634""""""""""
8635
8636The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008637an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008638the first element of which is the subtraction, and the second element of
8639which is a bit specifying if the unsigned subtraction resulted in an
8640overflow.
8641
8642Examples:
8643"""""""""
8644
8645.. code-block:: llvm
8646
8647 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8648 %sum = extractvalue {i32, i1} %res, 0
8649 %obit = extractvalue {i32, i1} %res, 1
8650 br i1 %obit, label %overflow, label %normal
8651
8652'``llvm.smul.with.overflow.*``' Intrinsics
8653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8654
8655Syntax:
8656"""""""
8657
8658This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8659on any integer bit width.
8660
8661::
8662
8663 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8664 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8665 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8666
8667Overview:
8668"""""""""
8669
8670The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8671a signed multiplication of the two arguments, and indicate whether an
8672overflow occurred during the signed multiplication.
8673
8674Arguments:
8675""""""""""
8676
8677The arguments (%a and %b) and the first element of the result structure
8678may be of integer types of any bit width, but they must have the same
8679bit width. The second element of the result structure must be of type
8680``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8681multiplication.
8682
8683Semantics:
8684""""""""""
8685
8686The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008687a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008688the first element of which is the multiplication, and the second element
8689of which is a bit specifying if the signed multiplication resulted in an
8690overflow.
8691
8692Examples:
8693"""""""""
8694
8695.. code-block:: llvm
8696
8697 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8698 %sum = extractvalue {i32, i1} %res, 0
8699 %obit = extractvalue {i32, i1} %res, 1
8700 br i1 %obit, label %overflow, label %normal
8701
8702'``llvm.umul.with.overflow.*``' Intrinsics
8703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8704
8705Syntax:
8706"""""""
8707
8708This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8709on any integer bit width.
8710
8711::
8712
8713 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8714 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8715 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8716
8717Overview:
8718"""""""""
8719
8720The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8721a unsigned multiplication of the two arguments, and indicate whether an
8722overflow occurred during the unsigned multiplication.
8723
8724Arguments:
8725""""""""""
8726
8727The arguments (%a and %b) and the first element of the result structure
8728may be of integer types of any bit width, but they must have the same
8729bit width. The second element of the result structure must be of type
8730``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8731multiplication.
8732
8733Semantics:
8734""""""""""
8735
8736The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008737an unsigned multiplication of the two arguments. They return a structure ---
8738the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008739element of which is a bit specifying if the unsigned multiplication
8740resulted in an overflow.
8741
8742Examples:
8743"""""""""
8744
8745.. code-block:: llvm
8746
8747 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8748 %sum = extractvalue {i32, i1} %res, 0
8749 %obit = extractvalue {i32, i1} %res, 1
8750 br i1 %obit, label %overflow, label %normal
8751
8752Specialised Arithmetic Intrinsics
8753---------------------------------
8754
8755'``llvm.fmuladd.*``' Intrinsic
8756^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8757
8758Syntax:
8759"""""""
8760
8761::
8762
8763 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8764 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8765
8766Overview:
8767"""""""""
8768
8769The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008770expressions that can be fused if the code generator determines that (a) the
8771target instruction set has support for a fused operation, and (b) that the
8772fused operation is more efficient than the equivalent, separate pair of mul
8773and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008774
8775Arguments:
8776""""""""""
8777
8778The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8779multiplicands, a and b, and an addend c.
8780
8781Semantics:
8782""""""""""
8783
8784The expression:
8785
8786::
8787
8788 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8789
8790is equivalent to the expression a \* b + c, except that rounding will
8791not be performed between the multiplication and addition steps if the
8792code generator fuses the operations. Fusion is not guaranteed, even if
8793the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008794corresponding llvm.fma.\* intrinsic function should be used
8795instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008796
8797Examples:
8798"""""""""
8799
8800.. code-block:: llvm
8801
Tim Northover675a0962014-06-13 14:24:23 +00008802 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00008803
8804Half Precision Floating Point Intrinsics
8805----------------------------------------
8806
8807For most target platforms, half precision floating point is a
8808storage-only format. This means that it is a dense encoding (in memory)
8809but does not support computation in the format.
8810
8811This means that code must first load the half-precision floating point
8812value as an i16, then convert it to float with
8813:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8814then be performed on the float value (including extending to double
8815etc). To store the value back to memory, it is first converted to float
8816if needed, then converted to i16 with
8817:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8818i16 value.
8819
8820.. _int_convert_to_fp16:
8821
8822'``llvm.convert.to.fp16``' Intrinsic
8823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8824
8825Syntax:
8826"""""""
8827
8828::
8829
Tim Northoverfd7e4242014-07-17 10:51:23 +00008830 declare i16 @llvm.convert.to.fp16.f32(float %a)
8831 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00008832
8833Overview:
8834"""""""""
8835
Tim Northoverfd7e4242014-07-17 10:51:23 +00008836The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8837conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00008838
8839Arguments:
8840""""""""""
8841
8842The intrinsic function contains single argument - the value to be
8843converted.
8844
8845Semantics:
8846""""""""""
8847
Tim Northoverfd7e4242014-07-17 10:51:23 +00008848The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8849conventional floating point format to half precision floating point format. The
8850return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00008851
8852Examples:
8853"""""""""
8854
8855.. code-block:: llvm
8856
Tim Northoverfd7e4242014-07-17 10:51:23 +00008857 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00008858 store i16 %res, i16* @x, align 2
8859
8860.. _int_convert_from_fp16:
8861
8862'``llvm.convert.from.fp16``' Intrinsic
8863^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8864
8865Syntax:
8866"""""""
8867
8868::
8869
Tim Northoverfd7e4242014-07-17 10:51:23 +00008870 declare float @llvm.convert.from.fp16.f32(i16 %a)
8871 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008872
8873Overview:
8874"""""""""
8875
8876The '``llvm.convert.from.fp16``' intrinsic function performs a
8877conversion from half precision floating point format to single precision
8878floating point format.
8879
8880Arguments:
8881""""""""""
8882
8883The intrinsic function contains single argument - the value to be
8884converted.
8885
8886Semantics:
8887""""""""""
8888
8889The '``llvm.convert.from.fp16``' intrinsic function performs a
8890conversion from half single precision floating point format to single
8891precision floating point format. The input half-float value is
8892represented by an ``i16`` value.
8893
8894Examples:
8895"""""""""
8896
8897.. code-block:: llvm
8898
8899 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00008900 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008901
8902Debugger Intrinsics
8903-------------------
8904
8905The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8906prefix), are described in the `LLVM Source Level
8907Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8908document.
8909
8910Exception Handling Intrinsics
8911-----------------------------
8912
8913The LLVM exception handling intrinsics (which all start with
8914``llvm.eh.`` prefix), are described in the `LLVM Exception
8915Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8916
8917.. _int_trampoline:
8918
8919Trampoline Intrinsics
8920---------------------
8921
8922These intrinsics make it possible to excise one parameter, marked with
8923the :ref:`nest <nest>` attribute, from a function. The result is a
8924callable function pointer lacking the nest parameter - the caller does
8925not need to provide a value for it. Instead, the value to use is stored
8926in advance in a "trampoline", a block of memory usually allocated on the
8927stack, which also contains code to splice the nest value into the
8928argument list. This is used to implement the GCC nested function address
8929extension.
8930
8931For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8932then the resulting function pointer has signature ``i32 (i32, i32)*``.
8933It can be created as follows:
8934
8935.. code-block:: llvm
8936
8937 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8938 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8939 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8940 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8941 %fp = bitcast i8* %p to i32 (i32, i32)*
8942
8943The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8944``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8945
8946.. _int_it:
8947
8948'``llvm.init.trampoline``' Intrinsic
8949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8950
8951Syntax:
8952"""""""
8953
8954::
8955
8956 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8957
8958Overview:
8959"""""""""
8960
8961This fills the memory pointed to by ``tramp`` with executable code,
8962turning it into a trampoline.
8963
8964Arguments:
8965""""""""""
8966
8967The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8968pointers. The ``tramp`` argument must point to a sufficiently large and
8969sufficiently aligned block of memory; this memory is written to by the
8970intrinsic. Note that the size and the alignment are target-specific -
8971LLVM currently provides no portable way of determining them, so a
8972front-end that generates this intrinsic needs to have some
8973target-specific knowledge. The ``func`` argument must hold a function
8974bitcast to an ``i8*``.
8975
8976Semantics:
8977""""""""""
8978
8979The block of memory pointed to by ``tramp`` is filled with target
8980dependent code, turning it into a function. Then ``tramp`` needs to be
8981passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8982be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8983function's signature is the same as that of ``func`` with any arguments
8984marked with the ``nest`` attribute removed. At most one such ``nest``
8985argument is allowed, and it must be of pointer type. Calling the new
8986function is equivalent to calling ``func`` with the same argument list,
8987but with ``nval`` used for the missing ``nest`` argument. If, after
8988calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8989modified, then the effect of any later call to the returned function
8990pointer is undefined.
8991
8992.. _int_at:
8993
8994'``llvm.adjust.trampoline``' Intrinsic
8995^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8996
8997Syntax:
8998"""""""
8999
9000::
9001
9002 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9003
9004Overview:
9005"""""""""
9006
9007This performs any required machine-specific adjustment to the address of
9008a trampoline (passed as ``tramp``).
9009
9010Arguments:
9011""""""""""
9012
9013``tramp`` must point to a block of memory which already has trampoline
9014code filled in by a previous call to
9015:ref:`llvm.init.trampoline <int_it>`.
9016
9017Semantics:
9018""""""""""
9019
9020On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009021different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009022intrinsic returns the executable address corresponding to ``tramp``
9023after performing the required machine specific adjustments. The pointer
9024returned can then be :ref:`bitcast and executed <int_trampoline>`.
9025
9026Memory Use Markers
9027------------------
9028
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009029This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00009030memory objects and ranges where variables are immutable.
9031
Reid Klecknera534a382013-12-19 02:14:12 +00009032.. _int_lifestart:
9033
Sean Silvab084af42012-12-07 10:36:55 +00009034'``llvm.lifetime.start``' Intrinsic
9035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9036
9037Syntax:
9038"""""""
9039
9040::
9041
9042 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9043
9044Overview:
9045"""""""""
9046
9047The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9048object's lifetime.
9049
9050Arguments:
9051""""""""""
9052
9053The first argument is a constant integer representing the size of the
9054object, or -1 if it is variable sized. The second argument is a pointer
9055to the object.
9056
9057Semantics:
9058""""""""""
9059
9060This intrinsic indicates that before this point in the code, the value
9061of the memory pointed to by ``ptr`` is dead. This means that it is known
9062to never be used and has an undefined value. A load from the pointer
9063that precedes this intrinsic can be replaced with ``'undef'``.
9064
Reid Klecknera534a382013-12-19 02:14:12 +00009065.. _int_lifeend:
9066
Sean Silvab084af42012-12-07 10:36:55 +00009067'``llvm.lifetime.end``' Intrinsic
9068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9069
9070Syntax:
9071"""""""
9072
9073::
9074
9075 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9076
9077Overview:
9078"""""""""
9079
9080The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9081object's lifetime.
9082
9083Arguments:
9084""""""""""
9085
9086The first argument is a constant integer representing the size of the
9087object, or -1 if it is variable sized. The second argument is a pointer
9088to the object.
9089
9090Semantics:
9091""""""""""
9092
9093This intrinsic indicates that after this point in the code, the value of
9094the memory pointed to by ``ptr`` is dead. This means that it is known to
9095never be used and has an undefined value. Any stores into the memory
9096object following this intrinsic may be removed as dead.
9097
9098'``llvm.invariant.start``' Intrinsic
9099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9100
9101Syntax:
9102"""""""
9103
9104::
9105
9106 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9107
9108Overview:
9109"""""""""
9110
9111The '``llvm.invariant.start``' intrinsic specifies that the contents of
9112a memory object will not change.
9113
9114Arguments:
9115""""""""""
9116
9117The first argument is a constant integer representing the size of the
9118object, or -1 if it is variable sized. The second argument is a pointer
9119to the object.
9120
9121Semantics:
9122""""""""""
9123
9124This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9125the return value, the referenced memory location is constant and
9126unchanging.
9127
9128'``llvm.invariant.end``' Intrinsic
9129^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9130
9131Syntax:
9132"""""""
9133
9134::
9135
9136 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9137
9138Overview:
9139"""""""""
9140
9141The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9142memory object are mutable.
9143
9144Arguments:
9145""""""""""
9146
9147The first argument is the matching ``llvm.invariant.start`` intrinsic.
9148The second argument is a constant integer representing the size of the
9149object, or -1 if it is variable sized and the third argument is a
9150pointer to the object.
9151
9152Semantics:
9153""""""""""
9154
9155This intrinsic indicates that the memory is mutable again.
9156
9157General Intrinsics
9158------------------
9159
9160This class of intrinsics is designed to be generic and has no specific
9161purpose.
9162
9163'``llvm.var.annotation``' Intrinsic
9164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9165
9166Syntax:
9167"""""""
9168
9169::
9170
9171 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9172
9173Overview:
9174"""""""""
9175
9176The '``llvm.var.annotation``' intrinsic.
9177
9178Arguments:
9179""""""""""
9180
9181The first argument is a pointer to a value, the second is a pointer to a
9182global string, the third is a pointer to a global string which is the
9183source file name, and the last argument is the line number.
9184
9185Semantics:
9186""""""""""
9187
9188This intrinsic allows annotation of local variables with arbitrary
9189strings. This can be useful for special purpose optimizations that want
9190to look for these annotations. These have no other defined use; they are
9191ignored by code generation and optimization.
9192
Michael Gottesman88d18832013-03-26 00:34:27 +00009193'``llvm.ptr.annotation.*``' Intrinsic
9194^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9195
9196Syntax:
9197"""""""
9198
9199This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9200pointer to an integer of any width. *NOTE* you must specify an address space for
9201the pointer. The identifier for the default address space is the integer
9202'``0``'.
9203
9204::
9205
9206 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9207 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9208 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9209 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9210 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9211
9212Overview:
9213"""""""""
9214
9215The '``llvm.ptr.annotation``' intrinsic.
9216
9217Arguments:
9218""""""""""
9219
9220The first argument is a pointer to an integer value of arbitrary bitwidth
9221(result of some expression), the second is a pointer to a global string, the
9222third is a pointer to a global string which is the source file name, and the
9223last argument is the line number. It returns the value of the first argument.
9224
9225Semantics:
9226""""""""""
9227
9228This intrinsic allows annotation of a pointer to an integer with arbitrary
9229strings. This can be useful for special purpose optimizations that want to look
9230for these annotations. These have no other defined use; they are ignored by code
9231generation and optimization.
9232
Sean Silvab084af42012-12-07 10:36:55 +00009233'``llvm.annotation.*``' Intrinsic
9234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9235
9236Syntax:
9237"""""""
9238
9239This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9240any integer bit width.
9241
9242::
9243
9244 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9245 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9246 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9247 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9248 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9249
9250Overview:
9251"""""""""
9252
9253The '``llvm.annotation``' intrinsic.
9254
9255Arguments:
9256""""""""""
9257
9258The first argument is an integer value (result of some expression), the
9259second is a pointer to a global string, the third is a pointer to a
9260global string which is the source file name, and the last argument is
9261the line number. It returns the value of the first argument.
9262
9263Semantics:
9264""""""""""
9265
9266This intrinsic allows annotations to be put on arbitrary expressions
9267with arbitrary strings. This can be useful for special purpose
9268optimizations that want to look for these annotations. These have no
9269other defined use; they are ignored by code generation and optimization.
9270
9271'``llvm.trap``' Intrinsic
9272^^^^^^^^^^^^^^^^^^^^^^^^^
9273
9274Syntax:
9275"""""""
9276
9277::
9278
9279 declare void @llvm.trap() noreturn nounwind
9280
9281Overview:
9282"""""""""
9283
9284The '``llvm.trap``' intrinsic.
9285
9286Arguments:
9287""""""""""
9288
9289None.
9290
9291Semantics:
9292""""""""""
9293
9294This intrinsic is lowered to the target dependent trap instruction. If
9295the target does not have a trap instruction, this intrinsic will be
9296lowered to a call of the ``abort()`` function.
9297
9298'``llvm.debugtrap``' Intrinsic
9299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9300
9301Syntax:
9302"""""""
9303
9304::
9305
9306 declare void @llvm.debugtrap() nounwind
9307
9308Overview:
9309"""""""""
9310
9311The '``llvm.debugtrap``' intrinsic.
9312
9313Arguments:
9314""""""""""
9315
9316None.
9317
9318Semantics:
9319""""""""""
9320
9321This intrinsic is lowered to code which is intended to cause an
9322execution trap with the intention of requesting the attention of a
9323debugger.
9324
9325'``llvm.stackprotector``' Intrinsic
9326^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9327
9328Syntax:
9329"""""""
9330
9331::
9332
9333 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9334
9335Overview:
9336"""""""""
9337
9338The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9339onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9340is placed on the stack before local variables.
9341
9342Arguments:
9343""""""""""
9344
9345The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9346The first argument is the value loaded from the stack guard
9347``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9348enough space to hold the value of the guard.
9349
9350Semantics:
9351""""""""""
9352
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009353This intrinsic causes the prologue/epilogue inserter to force the position of
9354the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9355to ensure that if a local variable on the stack is overwritten, it will destroy
9356the value of the guard. When the function exits, the guard on the stack is
9357checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9358different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9359calling the ``__stack_chk_fail()`` function.
9360
9361'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009362^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009363
9364Syntax:
9365"""""""
9366
9367::
9368
9369 declare void @llvm.stackprotectorcheck(i8** <guard>)
9370
9371Overview:
9372"""""""""
9373
9374The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009375created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009376``__stack_chk_fail()`` function.
9377
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009378Arguments:
9379""""""""""
9380
9381The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9382the variable ``@__stack_chk_guard``.
9383
9384Semantics:
9385""""""""""
9386
9387This intrinsic is provided to perform the stack protector check by comparing
9388``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9389values do not match call the ``__stack_chk_fail()`` function.
9390
9391The reason to provide this as an IR level intrinsic instead of implementing it
9392via other IR operations is that in order to perform this operation at the IR
9393level without an intrinsic, one would need to create additional basic blocks to
9394handle the success/failure cases. This makes it difficult to stop the stack
9395protector check from disrupting sibling tail calls in Codegen. With this
9396intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009397codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009398
Sean Silvab084af42012-12-07 10:36:55 +00009399'``llvm.objectsize``' Intrinsic
9400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9401
9402Syntax:
9403"""""""
9404
9405::
9406
9407 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9408 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9409
9410Overview:
9411"""""""""
9412
9413The ``llvm.objectsize`` intrinsic is designed to provide information to
9414the optimizers to determine at compile time whether a) an operation
9415(like memcpy) will overflow a buffer that corresponds to an object, or
9416b) that a runtime check for overflow isn't necessary. An object in this
9417context means an allocation of a specific class, structure, array, or
9418other object.
9419
9420Arguments:
9421""""""""""
9422
9423The ``llvm.objectsize`` intrinsic takes two arguments. The first
9424argument is a pointer to or into the ``object``. The second argument is
9425a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9426or -1 (if false) when the object size is unknown. The second argument
9427only accepts constants.
9428
9429Semantics:
9430""""""""""
9431
9432The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9433the size of the object concerned. If the size cannot be determined at
9434compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9435on the ``min`` argument).
9436
9437'``llvm.expect``' Intrinsic
9438^^^^^^^^^^^^^^^^^^^^^^^^^^^
9439
9440Syntax:
9441"""""""
9442
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009443This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9444integer bit width.
9445
Sean Silvab084af42012-12-07 10:36:55 +00009446::
9447
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009448 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009449 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9450 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9451
9452Overview:
9453"""""""""
9454
9455The ``llvm.expect`` intrinsic provides information about expected (the
9456most probable) value of ``val``, which can be used by optimizers.
9457
9458Arguments:
9459""""""""""
9460
9461The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9462a value. The second argument is an expected value, this needs to be a
9463constant value, variables are not allowed.
9464
9465Semantics:
9466""""""""""
9467
9468This intrinsic is lowered to the ``val``.
9469
Hal Finkel93046912014-07-25 21:13:35 +00009470'``llvm.assume``' Intrinsic
9471^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9472
9473Syntax:
9474"""""""
9475
9476::
9477
9478 declare void @llvm.assume(i1 %cond)
9479
9480Overview:
9481"""""""""
9482
9483The ``llvm.assume`` allows the optimizer to assume that the provided
9484condition is true. This information can then be used in simplifying other parts
9485of the code.
9486
9487Arguments:
9488""""""""""
9489
9490The condition which the optimizer may assume is always true.
9491
9492Semantics:
9493""""""""""
9494
9495The intrinsic allows the optimizer to assume that the provided condition is
9496always true whenever the control flow reaches the intrinsic call. No code is
9497generated for this intrinsic, and instructions that contribute only to the
9498provided condition are not used for code generation. If the condition is
9499violated during execution, the behavior is undefined.
9500
9501Please note that optimizer might limit the transformations performed on values
9502used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9503only used to form the intrinsic's input argument. This might prove undesirable
9504if the extra information provided by the ``llvm.assume`` intrinsic does cause
9505sufficient overall improvement in code quality. For this reason,
9506``llvm.assume`` should not be used to document basic mathematical invariants
9507that the optimizer can otherwise deduce or facts that are of little use to the
9508optimizer.
9509
Sean Silvab084af42012-12-07 10:36:55 +00009510'``llvm.donothing``' Intrinsic
9511^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9512
9513Syntax:
9514"""""""
9515
9516::
9517
9518 declare void @llvm.donothing() nounwind readnone
9519
9520Overview:
9521"""""""""
9522
9523The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9524only intrinsic that can be called with an invoke instruction.
9525
9526Arguments:
9527""""""""""
9528
9529None.
9530
9531Semantics:
9532""""""""""
9533
9534This intrinsic does nothing, and it's removed by optimizers and ignored
9535by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009536
9537Stack Map Intrinsics
9538--------------------
9539
9540LLVM provides experimental intrinsics to support runtime patching
9541mechanisms commonly desired in dynamic language JITs. These intrinsics
9542are described in :doc:`StackMaps`.