blob: 20f9813c01a9761f2ace0a32b1378109f19eaa14 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000132 incrementing counter, starting with 0). Note that basic blocks are
133 included in this numbering. For example, if the entry basic block is not
134 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000135
136It also shows a convention that we follow in this document. When
137demonstrating instructions, we will follow an instruction with a comment
138that defines the type and name of value produced.
139
140High Level Structure
141====================
142
143Module Structure
144----------------
145
146LLVM programs are composed of ``Module``'s, each of which is a
147translation unit of the input programs. Each module consists of
148functions, global variables, and symbol table entries. Modules may be
149combined together with the LLVM linker, which merges function (and
150global variable) definitions, resolves forward declarations, and merges
151symbol table entries. Here is an example of the "hello world" module:
152
153.. code-block:: llvm
154
Michael Liaoa7699082013-03-06 18:24:34 +0000155 ; Declare the string constant as a global constant.
156 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000157
Michael Liaoa7699082013-03-06 18:24:34 +0000158 ; External declaration of the puts function
159 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000160
161 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000162 define i32 @main() { ; i32()*
163 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000164 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
165
Michael Liaoa7699082013-03-06 18:24:34 +0000166 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000167 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000168 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000169 }
170
171 ; Named metadata
172 !1 = metadata !{i32 42}
173 !foo = !{!1, null}
174
175This example is made up of a :ref:`global variable <globalvars>` named
176"``.str``", an external declaration of the "``puts``" function, a
177:ref:`function definition <functionstructure>` for "``main``" and
178:ref:`named metadata <namedmetadatastructure>` "``foo``".
179
180In general, a module is made up of a list of global values (where both
181functions and global variables are global values). Global values are
182represented by a pointer to a memory location (in this case, a pointer
183to an array of char, and a pointer to a function), and have one of the
184following :ref:`linkage types <linkage>`.
185
186.. _linkage:
187
188Linkage Types
189-------------
190
191All Global Variables and Functions have one of the following types of
192linkage:
193
194``private``
195 Global values with "``private``" linkage are only directly
196 accessible by objects in the current module. In particular, linking
197 code into a module with an private global value may cause the
198 private to be renamed as necessary to avoid collisions. Because the
199 symbol is private to the module, all references can be updated. This
200 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000201``internal``
202 Similar to private, but the value shows as a local symbol
203 (``STB_LOCAL`` in the case of ELF) in the object file. This
204 corresponds to the notion of the '``static``' keyword in C.
205``available_externally``
206 Globals with "``available_externally``" linkage are never emitted
207 into the object file corresponding to the LLVM module. They exist to
208 allow inlining and other optimizations to take place given knowledge
209 of the definition of the global, which is known to be somewhere
210 outside the module. Globals with ``available_externally`` linkage
211 are allowed to be discarded at will, and are otherwise the same as
212 ``linkonce_odr``. This linkage type is only allowed on definitions,
213 not declarations.
214``linkonce``
215 Globals with "``linkonce``" linkage are merged with other globals of
216 the same name when linkage occurs. This can be used to implement
217 some forms of inline functions, templates, or other code which must
218 be generated in each translation unit that uses it, but where the
219 body may be overridden with a more definitive definition later.
220 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
221 that ``linkonce`` linkage does not actually allow the optimizer to
222 inline the body of this function into callers because it doesn't
223 know if this definition of the function is the definitive definition
224 within the program or whether it will be overridden by a stronger
225 definition. To enable inlining and other optimizations, use
226 "``linkonce_odr``" linkage.
227``weak``
228 "``weak``" linkage has the same merging semantics as ``linkonce``
229 linkage, except that unreferenced globals with ``weak`` linkage may
230 not be discarded. This is used for globals that are declared "weak"
231 in C source code.
232``common``
233 "``common``" linkage is most similar to "``weak``" linkage, but they
234 are used for tentative definitions in C, such as "``int X;``" at
235 global scope. Symbols with "``common``" linkage are merged in the
236 same way as ``weak symbols``, and they may not be deleted if
237 unreferenced. ``common`` symbols may not have an explicit section,
238 must have a zero initializer, and may not be marked
239 ':ref:`constant <globalvars>`'. Functions and aliases may not have
240 common linkage.
241
242.. _linkage_appending:
243
244``appending``
245 "``appending``" linkage may only be applied to global variables of
246 pointer to array type. When two global variables with appending
247 linkage are linked together, the two global arrays are appended
248 together. This is the LLVM, typesafe, equivalent of having the
249 system linker append together "sections" with identical names when
250 .o files are linked.
251``extern_weak``
252 The semantics of this linkage follow the ELF object file model: the
253 symbol is weak until linked, if not linked, the symbol becomes null
254 instead of being an undefined reference.
255``linkonce_odr``, ``weak_odr``
256 Some languages allow differing globals to be merged, such as two
257 functions with different semantics. Other languages, such as
258 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000259 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000260 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
261 global will only be merged with equivalent globals. These linkage
262 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000263``external``
264 If none of the above identifiers are used, the global is externally
265 visible, meaning that it participates in linkage and can be used to
266 resolve external symbol references.
267
Sean Silvab084af42012-12-07 10:36:55 +0000268It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000269other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000270
Sean Silvab084af42012-12-07 10:36:55 +0000271.. _callingconv:
272
273Calling Conventions
274-------------------
275
276LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
277:ref:`invokes <i_invoke>` can all have an optional calling convention
278specified for the call. The calling convention of any pair of dynamic
279caller/callee must match, or the behavior of the program is undefined.
280The following calling conventions are supported by LLVM, and more may be
281added in the future:
282
283"``ccc``" - The C calling convention
284 This calling convention (the default if no other calling convention
285 is specified) matches the target C calling conventions. This calling
286 convention supports varargs function calls and tolerates some
287 mismatch in the declared prototype and implemented declaration of
288 the function (as does normal C).
289"``fastcc``" - The fast calling convention
290 This calling convention attempts to make calls as fast as possible
291 (e.g. by passing things in registers). This calling convention
292 allows the target to use whatever tricks it wants to produce fast
293 code for the target, without having to conform to an externally
294 specified ABI (Application Binary Interface). `Tail calls can only
295 be optimized when this, the GHC or the HiPE convention is
296 used. <CodeGenerator.html#id80>`_ This calling convention does not
297 support varargs and requires the prototype of all callees to exactly
298 match the prototype of the function definition.
299"``coldcc``" - The cold calling convention
300 This calling convention attempts to make code in the caller as
301 efficient as possible under the assumption that the call is not
302 commonly executed. As such, these calls often preserve all registers
303 so that the call does not break any live ranges in the caller side.
304 This calling convention does not support varargs and requires the
305 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000306 function definition. Furthermore the inliner doesn't consider such function
307 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000308"``cc 10``" - GHC convention
309 This calling convention has been implemented specifically for use by
310 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
311 It passes everything in registers, going to extremes to achieve this
312 by disabling callee save registers. This calling convention should
313 not be used lightly but only for specific situations such as an
314 alternative to the *register pinning* performance technique often
315 used when implementing functional programming languages. At the
316 moment only X86 supports this convention and it has the following
317 limitations:
318
319 - On *X86-32* only supports up to 4 bit type parameters. No
320 floating point types are supported.
321 - On *X86-64* only supports up to 10 bit type parameters and 6
322 floating point parameters.
323
324 This calling convention supports `tail call
325 optimization <CodeGenerator.html#id80>`_ but requires both the
326 caller and callee are using it.
327"``cc 11``" - The HiPE calling convention
328 This calling convention has been implemented specifically for use by
329 the `High-Performance Erlang
330 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
331 native code compiler of the `Ericsson's Open Source Erlang/OTP
332 system <http://www.erlang.org/download.shtml>`_. It uses more
333 registers for argument passing than the ordinary C calling
334 convention and defines no callee-saved registers. The calling
335 convention properly supports `tail call
336 optimization <CodeGenerator.html#id80>`_ but requires that both the
337 caller and the callee use it. It uses a *register pinning*
338 mechanism, similar to GHC's convention, for keeping frequently
339 accessed runtime components pinned to specific hardware registers.
340 At the moment only X86 supports this convention (both 32 and 64
341 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000342"``webkit_jscc``" - WebKit's JavaScript calling convention
343 This calling convention has been implemented for `WebKit FTL JIT
344 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
345 stack right to left (as cdecl does), and returns a value in the
346 platform's customary return register.
347"``anyregcc``" - Dynamic calling convention for code patching
348 This is a special convention that supports patching an arbitrary code
349 sequence in place of a call site. This convention forces the call
350 arguments into registers but allows them to be dynamcially
351 allocated. This can currently only be used with calls to
352 llvm.experimental.patchpoint because only this intrinsic records
353 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000354"``preserve_mostcc``" - The `PreserveMost` calling convention
355 This calling convention attempts to make the code in the caller as little
356 intrusive as possible. This calling convention behaves identical to the `C`
357 calling convention on how arguments and return values are passed, but it
358 uses a different set of caller/callee-saved registers. This alleviates the
359 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000360 call in the caller. If the arguments are passed in callee-saved registers,
361 then they will be preserved by the callee across the call. This doesn't
362 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000363
364 - On X86-64 the callee preserves all general purpose registers, except for
365 R11. R11 can be used as a scratch register. Floating-point registers
366 (XMMs/YMMs) are not preserved and need to be saved by the caller.
367
368 The idea behind this convention is to support calls to runtime functions
369 that have a hot path and a cold path. The hot path is usually a small piece
370 of code that doesn't many registers. The cold path might need to call out to
371 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000372 registers, which haven't already been saved by the caller. The
373 `PreserveMost` calling convention is very similar to the `cold` calling
374 convention in terms of caller/callee-saved registers, but they are used for
375 different types of function calls. `coldcc` is for function calls that are
376 rarely executed, whereas `preserve_mostcc` function calls are intended to be
377 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
378 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000379
380 This calling convention will be used by a future version of the ObjectiveC
381 runtime and should therefore still be considered experimental at this time.
382 Although this convention was created to optimize certain runtime calls to
383 the ObjectiveC runtime, it is not limited to this runtime and might be used
384 by other runtimes in the future too. The current implementation only
385 supports X86-64, but the intention is to support more architectures in the
386 future.
387"``preserve_allcc``" - The `PreserveAll` calling convention
388 This calling convention attempts to make the code in the caller even less
389 intrusive than the `PreserveMost` calling convention. This calling
390 convention also behaves identical to the `C` calling convention on how
391 arguments and return values are passed, but it uses a different set of
392 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000393 recovering a large register set before and after the call in the caller. If
394 the arguments are passed in callee-saved registers, then they will be
395 preserved by the callee across the call. This doesn't apply for values
396 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000397
398 - On X86-64 the callee preserves all general purpose registers, except for
399 R11. R11 can be used as a scratch register. Furthermore it also preserves
400 all floating-point registers (XMMs/YMMs).
401
402 The idea behind this convention is to support calls to runtime functions
403 that don't need to call out to any other functions.
404
405 This calling convention, like the `PreserveMost` calling convention, will be
406 used by a future version of the ObjectiveC runtime and should be considered
407 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000408"``cc <n>``" - Numbered convention
409 Any calling convention may be specified by number, allowing
410 target-specific calling conventions to be used. Target specific
411 calling conventions start at 64.
412
413More calling conventions can be added/defined on an as-needed basis, to
414support Pascal conventions or any other well-known target-independent
415convention.
416
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000417.. _visibilitystyles:
418
Sean Silvab084af42012-12-07 10:36:55 +0000419Visibility Styles
420-----------------
421
422All Global Variables and Functions have one of the following visibility
423styles:
424
425"``default``" - Default style
426 On targets that use the ELF object file format, default visibility
427 means that the declaration is visible to other modules and, in
428 shared libraries, means that the declared entity may be overridden.
429 On Darwin, default visibility means that the declaration is visible
430 to other modules. Default visibility corresponds to "external
431 linkage" in the language.
432"``hidden``" - Hidden style
433 Two declarations of an object with hidden visibility refer to the
434 same object if they are in the same shared object. Usually, hidden
435 visibility indicates that the symbol will not be placed into the
436 dynamic symbol table, so no other module (executable or shared
437 library) can reference it directly.
438"``protected``" - Protected style
439 On ELF, protected visibility indicates that the symbol will be
440 placed in the dynamic symbol table, but that references within the
441 defining module will bind to the local symbol. That is, the symbol
442 cannot be overridden by another module.
443
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000444A symbol with ``internal`` or ``private`` linkage must have ``default``
445visibility.
446
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000447.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448
Nico Rieck7157bb72014-01-14 15:22:47 +0000449DLL Storage Classes
450-------------------
451
452All Global Variables, Functions and Aliases can have one of the following
453DLL storage class:
454
455``dllimport``
456 "``dllimport``" causes the compiler to reference a function or variable via
457 a global pointer to a pointer that is set up by the DLL exporting the
458 symbol. On Microsoft Windows targets, the pointer name is formed by
459 combining ``__imp_`` and the function or variable name.
460``dllexport``
461 "``dllexport``" causes the compiler to provide a global pointer to a pointer
462 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
463 Microsoft Windows targets, the pointer name is formed by combining
464 ``__imp_`` and the function or variable name. Since this storage class
465 exists for defining a dll interface, the compiler, assembler and linker know
466 it is externally referenced and must refrain from deleting the symbol.
467
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000468.. _tls_model:
469
470Thread Local Storage Models
471---------------------------
472
473A variable may be defined as ``thread_local``, which means that it will
474not be shared by threads (each thread will have a separated copy of the
475variable). Not all targets support thread-local variables. Optionally, a
476TLS model may be specified:
477
478``localdynamic``
479 For variables that are only used within the current shared library.
480``initialexec``
481 For variables in modules that will not be loaded dynamically.
482``localexec``
483 For variables defined in the executable and only used within it.
484
485If no explicit model is given, the "general dynamic" model is used.
486
487The models correspond to the ELF TLS models; see `ELF Handling For
488Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
489more information on under which circumstances the different models may
490be used. The target may choose a different TLS model if the specified
491model is not supported, or if a better choice of model can be made.
492
493A model can also be specified in a alias, but then it only governs how
494the alias is accessed. It will not have any effect in the aliasee.
495
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000496.. _namedtypes:
497
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000498Structure Types
499---------------
Sean Silvab084af42012-12-07 10:36:55 +0000500
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000501LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
502types <t_struct>`. Literal types are uniqued structurally, but identified types
503are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
504to forward declare a type which is not yet available.
505
506An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000507
508.. code-block:: llvm
509
510 %mytype = type { %mytype*, i32 }
511
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000512Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
513literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000514
515.. _globalvars:
516
517Global Variables
518----------------
519
520Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000521instead of run-time.
522
Bob Wilson85b24f22014-06-12 20:40:33 +0000523Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000524
525Global variables in other translation units can also be declared, in which
526case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000527
Bob Wilson85b24f22014-06-12 20:40:33 +0000528Either global variable definitions or declarations may have an explicit section
529to be placed in and may have an optional explicit alignment specified.
530
Michael Gottesman006039c2013-01-31 05:48:48 +0000531A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000532the contents of the variable will **never** be modified (enabling better
533optimization, allowing the global data to be placed in the read-only
534section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000535initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000536variable.
537
538LLVM explicitly allows *declarations* of global variables to be marked
539constant, even if the final definition of the global is not. This
540capability can be used to enable slightly better optimization of the
541program, but requires the language definition to guarantee that
542optimizations based on the 'constantness' are valid for the translation
543units that do not include the definition.
544
545As SSA values, global variables define pointer values that are in scope
546(i.e. they dominate) all basic blocks in the program. Global variables
547always define a pointer to their "content" type because they describe a
548region of memory, and all memory objects in LLVM are accessed through
549pointers.
550
551Global variables can be marked with ``unnamed_addr`` which indicates
552that the address is not significant, only the content. Constants marked
553like this can be merged with other constants if they have the same
554initializer. Note that a constant with significant address *can* be
555merged with a ``unnamed_addr`` constant, the result being a constant
556whose address is significant.
557
558A global variable may be declared to reside in a target-specific
559numbered address space. For targets that support them, address spaces
560may affect how optimizations are performed and/or what target
561instructions are used to access the variable. The default address space
562is zero. The address space qualifier must precede any other attributes.
563
564LLVM allows an explicit section to be specified for globals. If the
565target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000566Additionally, the global can placed in a comdat if the target has the necessary
567support.
Sean Silvab084af42012-12-07 10:36:55 +0000568
Michael Gottesmane743a302013-02-04 03:22:00 +0000569By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000570variables defined within the module are not modified from their
571initial values before the start of the global initializer. This is
572true even for variables potentially accessible from outside the
573module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000574``@llvm.used`` or dllexported variables. This assumption may be suppressed
575by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000576
Sean Silvab084af42012-12-07 10:36:55 +0000577An explicit alignment may be specified for a global, which must be a
578power of 2. If not present, or if the alignment is set to zero, the
579alignment of the global is set by the target to whatever it feels
580convenient. If an explicit alignment is specified, the global is forced
581to have exactly that alignment. Targets and optimizers are not allowed
582to over-align the global if the global has an assigned section. In this
583case, the extra alignment could be observable: for example, code could
584assume that the globals are densely packed in their section and try to
585iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000586iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000587
Nico Rieck7157bb72014-01-14 15:22:47 +0000588Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
589
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000590Variables and aliasaes can have a
591:ref:`Thread Local Storage Model <tls_model>`.
592
Nico Rieck7157bb72014-01-14 15:22:47 +0000593Syntax::
594
595 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000596 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000597 <global | constant> <Type> [<InitializerConstant>]
598 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000599
Sean Silvab084af42012-12-07 10:36:55 +0000600For example, the following defines a global in a numbered address space
601with an initializer, section, and alignment:
602
603.. code-block:: llvm
604
605 @G = addrspace(5) constant float 1.0, section "foo", align 4
606
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000607The following example just declares a global variable
608
609.. code-block:: llvm
610
611 @G = external global i32
612
Sean Silvab084af42012-12-07 10:36:55 +0000613The following example defines a thread-local global with the
614``initialexec`` TLS model:
615
616.. code-block:: llvm
617
618 @G = thread_local(initialexec) global i32 0, align 4
619
620.. _functionstructure:
621
622Functions
623---------
624
625LLVM function definitions consist of the "``define``" keyword, an
626optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000627style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
628an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000629an optional ``unnamed_addr`` attribute, a return type, an optional
630:ref:`parameter attribute <paramattrs>` for the return type, a function
631name, a (possibly empty) argument list (each with optional :ref:`parameter
632attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000633an optional section, an optional alignment,
634an optional :ref:`comdat <langref_comdats>`,
635an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000636curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000637
638LLVM function declarations consist of the "``declare``" keyword, an
639optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000640style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
641an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000642an optional ``unnamed_addr`` attribute, a return type, an optional
643:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000644name, a possibly empty list of arguments, an optional alignment, an optional
645:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000646
Bill Wendling6822ecb2013-10-27 05:09:12 +0000647A function definition contains a list of basic blocks, forming the CFG (Control
648Flow Graph) for the function. Each basic block may optionally start with a label
649(giving the basic block a symbol table entry), contains a list of instructions,
650and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
651function return). If an explicit label is not provided, a block is assigned an
652implicit numbered label, using the next value from the same counter as used for
653unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
654entry block does not have an explicit label, it will be assigned label "%0",
655then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000656
657The first basic block in a function is special in two ways: it is
658immediately executed on entrance to the function, and it is not allowed
659to have predecessor basic blocks (i.e. there can not be any branches to
660the entry block of a function). Because the block can have no
661predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
662
663LLVM allows an explicit section to be specified for functions. If the
664target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000665Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000666
667An explicit alignment may be specified for a function. If not present,
668or if the alignment is set to zero, the alignment of the function is set
669by the target to whatever it feels convenient. If an explicit alignment
670is specified, the function is forced to have at least that much
671alignment. All alignments must be a power of 2.
672
673If the ``unnamed_addr`` attribute is given, the address is know to not
674be significant and two identical functions can be merged.
675
676Syntax::
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000679 [cconv] [ret attrs]
680 <ResultType> @<FunctionName> ([argument list])
David Majnemerdad0a642014-06-27 18:19:56 +0000681 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>]
682 [align N] [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000683
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000684.. _langref_aliases:
685
Sean Silvab084af42012-12-07 10:36:55 +0000686Aliases
687-------
688
Rafael Espindola64c1e182014-06-03 02:41:57 +0000689Aliases, unlike function or variables, don't create any new data. They
690are just a new symbol and metadata for an existing position.
691
692Aliases have a name and an aliasee that is either a global value or a
693constant expression.
694
Nico Rieck7157bb72014-01-14 15:22:47 +0000695Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000696:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
697<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000698
699Syntax::
700
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000701 @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000702
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000703The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000704``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000705might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000706
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000707Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000708the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
709to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000710
Rafael Espindola64c1e182014-06-03 02:41:57 +0000711Since aliases are only a second name, some restrictions apply, of which
712some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000713
Rafael Espindola64c1e182014-06-03 02:41:57 +0000714* The expression defining the aliasee must be computable at assembly
715 time. Since it is just a name, no relocations can be used.
716
717* No alias in the expression can be weak as the possibility of the
718 intermediate alias being overridden cannot be represented in an
719 object file.
720
721* No global value in the expression can be a declaration, since that
722 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000723
David Majnemerdad0a642014-06-27 18:19:56 +0000724.. _langref_comdats:
725
726Comdats
727-------
728
729Comdat IR provides access to COFF and ELF object file COMDAT functionality.
730
731Comdats have a name which represents the COMDAT key. All global objects which
732specify this key will only end up in the final object file if the linker chooses
733that key over some other key. Aliases are placed in the same COMDAT that their
734aliasee computes to, if any.
735
736Comdats have a selection kind to provide input on how the linker should
737choose between keys in two different object files.
738
739Syntax::
740
741 $<Name> = comdat SelectionKind
742
743The selection kind must be one of the following:
744
745``any``
746 The linker may choose any COMDAT key, the choice is arbitrary.
747``exactmatch``
748 The linker may choose any COMDAT key but the sections must contain the
749 same data.
750``largest``
751 The linker will choose the section containing the largest COMDAT key.
752``noduplicates``
753 The linker requires that only section with this COMDAT key exist.
754``samesize``
755 The linker may choose any COMDAT key but the sections must contain the
756 same amount of data.
757
758Note that the Mach-O platform doesn't support COMDATs and ELF only supports
759``any`` as a selection kind.
760
761Here is an example of a COMDAT group where a function will only be selected if
762the COMDAT key's section is the largest:
763
764.. code-block:: llvm
765
766 $foo = comdat largest
767 @foo = global i32 2, comdat $foo
768
769 define void @bar() comdat $foo {
770 ret void
771 }
772
773In a COFF object file, this will create a COMDAT section with selection kind
774``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
775and another COMDAT section with selection kind
776``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
777section and contains the contents of the ``@baz`` symbol.
778
779There are some restrictions on the properties of the global object.
780It, or an alias to it, must have the same name as the COMDAT group when
781targeting COFF.
782The contents and size of this object may be used during link-time to determine
783which COMDAT groups get selected depending on the selection kind.
784Because the name of the object must match the name of the COMDAT group, the
785linkage of the global object must not be local; local symbols can get renamed
786if a collision occurs in the symbol table.
787
788The combined use of COMDATS and section attributes may yield surprising results.
789For example:
790
791.. code-block:: llvm
792
793 $foo = comdat any
794 $bar = comdat any
795 @g1 = global i32 42, section "sec", comdat $foo
796 @g2 = global i32 42, section "sec", comdat $bar
797
798From the object file perspective, this requires the creation of two sections
799with the same name. This is necessary because both globals belong to different
800COMDAT groups and COMDATs, at the object file level, are represented by
801sections.
802
803Note that certain IR constructs like global variables and functions may create
804COMDATs in the object file in addition to any which are specified using COMDAT
805IR. This arises, for example, when a global variable has linkonce_odr linkage.
806
Sean Silvab084af42012-12-07 10:36:55 +0000807.. _namedmetadatastructure:
808
809Named Metadata
810--------------
811
812Named metadata is a collection of metadata. :ref:`Metadata
813nodes <metadata>` (but not metadata strings) are the only valid
814operands for a named metadata.
815
816Syntax::
817
818 ; Some unnamed metadata nodes, which are referenced by the named metadata.
819 !0 = metadata !{metadata !"zero"}
820 !1 = metadata !{metadata !"one"}
821 !2 = metadata !{metadata !"two"}
822 ; A named metadata.
823 !name = !{!0, !1, !2}
824
825.. _paramattrs:
826
827Parameter Attributes
828--------------------
829
830The return type and each parameter of a function type may have a set of
831*parameter attributes* associated with them. Parameter attributes are
832used to communicate additional information about the result or
833parameters of a function. Parameter attributes are considered to be part
834of the function, not of the function type, so functions with different
835parameter attributes can have the same function type.
836
837Parameter attributes are simple keywords that follow the type specified.
838If multiple parameter attributes are needed, they are space separated.
839For example:
840
841.. code-block:: llvm
842
843 declare i32 @printf(i8* noalias nocapture, ...)
844 declare i32 @atoi(i8 zeroext)
845 declare signext i8 @returns_signed_char()
846
847Note that any attributes for the function result (``nounwind``,
848``readonly``) come immediately after the argument list.
849
850Currently, only the following parameter attributes are defined:
851
852``zeroext``
853 This indicates to the code generator that the parameter or return
854 value should be zero-extended to the extent required by the target's
855 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
856 the caller (for a parameter) or the callee (for a return value).
857``signext``
858 This indicates to the code generator that the parameter or return
859 value should be sign-extended to the extent required by the target's
860 ABI (which is usually 32-bits) by the caller (for a parameter) or
861 the callee (for a return value).
862``inreg``
863 This indicates that this parameter or return value should be treated
864 in a special target-dependent fashion during while emitting code for
865 a function call or return (usually, by putting it in a register as
866 opposed to memory, though some targets use it to distinguish between
867 two different kinds of registers). Use of this attribute is
868 target-specific.
869``byval``
870 This indicates that the pointer parameter should really be passed by
871 value to the function. The attribute implies that a hidden copy of
872 the pointee is made between the caller and the callee, so the callee
873 is unable to modify the value in the caller. This attribute is only
874 valid on LLVM pointer arguments. It is generally used to pass
875 structs and arrays by value, but is also valid on pointers to
876 scalars. The copy is considered to belong to the caller not the
877 callee (for example, ``readonly`` functions should not write to
878 ``byval`` parameters). This is not a valid attribute for return
879 values.
880
881 The byval attribute also supports specifying an alignment with the
882 align attribute. It indicates the alignment of the stack slot to
883 form and the known alignment of the pointer specified to the call
884 site. If the alignment is not specified, then the code generator
885 makes a target-specific assumption.
886
Reid Klecknera534a382013-12-19 02:14:12 +0000887.. _attr_inalloca:
888
889``inalloca``
890
Reid Kleckner60d3a832014-01-16 22:59:24 +0000891 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000892 address of outgoing stack arguments. An ``inalloca`` argument must
893 be a pointer to stack memory produced by an ``alloca`` instruction.
894 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000895 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000896 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000897
Reid Kleckner436c42e2014-01-17 23:58:17 +0000898 An argument allocation may be used by a call at most once because
899 the call may deallocate it. The ``inalloca`` attribute cannot be
900 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000901 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
902 ``inalloca`` attribute also disables LLVM's implicit lowering of
903 large aggregate return values, which means that frontend authors
904 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000905
Reid Kleckner60d3a832014-01-16 22:59:24 +0000906 When the call site is reached, the argument allocation must have
907 been the most recent stack allocation that is still live, or the
908 results are undefined. It is possible to allocate additional stack
909 space after an argument allocation and before its call site, but it
910 must be cleared off with :ref:`llvm.stackrestore
911 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000912
913 See :doc:`InAlloca` for more information on how to use this
914 attribute.
915
Sean Silvab084af42012-12-07 10:36:55 +0000916``sret``
917 This indicates that the pointer parameter specifies the address of a
918 structure that is the return value of the function in the source
919 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000920 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000921 not to trap and to be properly aligned. This may only be applied to
922 the first parameter. This is not a valid attribute for return
923 values.
Sean Silva1703e702014-04-08 21:06:22 +0000924
Hal Finkelccc70902014-07-22 16:58:55 +0000925``align <n>``
926 This indicates that the pointer value may be assumed by the optimizer to
927 have the specified alignment.
928
929 Note that this attribute has additional semantics when combined with the
930 ``byval`` attribute.
931
Sean Silva1703e702014-04-08 21:06:22 +0000932.. _noalias:
933
Sean Silvab084af42012-12-07 10:36:55 +0000934``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000935 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000936 the argument or return value do not alias pointer values which are
937 not *based* on it, ignoring certain "irrelevant" dependencies. For a
938 call to the parent function, dependencies between memory references
939 from before or after the call and from those during the call are
940 "irrelevant" to the ``noalias`` keyword for the arguments and return
941 value used in that call. The caller shares the responsibility with
942 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000943 details, please see the discussion of the NoAlias response in :ref:`alias
944 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000945
946 Note that this definition of ``noalias`` is intentionally similar
947 to the definition of ``restrict`` in C99 for function arguments,
948 though it is slightly weaker.
949
950 For function return values, C99's ``restrict`` is not meaningful,
951 while LLVM's ``noalias`` is.
952``nocapture``
953 This indicates that the callee does not make any copies of the
954 pointer that outlive the callee itself. This is not a valid
955 attribute for return values.
956
957.. _nest:
958
959``nest``
960 This indicates that the pointer parameter can be excised using the
961 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000962 attribute for return values and can only be applied to one parameter.
963
964``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000965 This indicates that the function always returns the argument as its return
966 value. This is an optimization hint to the code generator when generating
967 the caller, allowing tail call optimization and omission of register saves
968 and restores in some cases; it is not checked or enforced when generating
969 the callee. The parameter and the function return type must be valid
970 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
971 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000972
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000973``nonnull``
974 This indicates that the parameter or return pointer is not null. This
975 attribute may only be applied to pointer typed parameters. This is not
976 checked or enforced by LLVM, the caller must ensure that the pointer
977 passed in is non-null, or the callee must ensure that the returned pointer
978 is non-null.
979
Hal Finkelb0407ba2014-07-18 15:51:28 +0000980``dereferenceable(<n>)``
981 This indicates that the parameter or return pointer is dereferenceable. This
982 attribute may only be applied to pointer typed parameters. A pointer that
983 is dereferenceable can be loaded from speculatively without a risk of
984 trapping. The number of bytes known to be dereferenceable must be provided
985 in parentheses. It is legal for the number of bytes to be less than the
986 size of the pointee type. The ``nonnull`` attribute does not imply
987 dereferenceability (consider a pointer to one element past the end of an
988 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
989 ``addrspace(0)`` (which is the default address space).
990
Sean Silvab084af42012-12-07 10:36:55 +0000991.. _gc:
992
993Garbage Collector Names
994-----------------------
995
996Each function may specify a garbage collector name, which is simply a
997string:
998
999.. code-block:: llvm
1000
1001 define void @f() gc "name" { ... }
1002
1003The compiler declares the supported values of *name*. Specifying a
1004collector which will cause the compiler to alter its output in order to
1005support the named garbage collection algorithm.
1006
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001007.. _prefixdata:
1008
1009Prefix Data
1010-----------
1011
1012Prefix data is data associated with a function which the code generator
1013will emit immediately before the function body. The purpose of this feature
1014is to allow frontends to associate language-specific runtime metadata with
1015specific functions and make it available through the function pointer while
1016still allowing the function pointer to be called. To access the data for a
1017given function, a program may bitcast the function pointer to a pointer to
1018the constant's type. This implies that the IR symbol points to the start
1019of the prefix data.
1020
1021To maintain the semantics of ordinary function calls, the prefix data must
1022have a particular format. Specifically, it must begin with a sequence of
1023bytes which decode to a sequence of machine instructions, valid for the
1024module's target, which transfer control to the point immediately succeeding
1025the prefix data, without performing any other visible action. This allows
1026the inliner and other passes to reason about the semantics of the function
1027definition without needing to reason about the prefix data. Obviously this
1028makes the format of the prefix data highly target dependent.
1029
Peter Collingbourne213358a2013-09-23 20:14:21 +00001030Prefix data is laid out as if it were an initializer for a global variable
1031of the prefix data's type. No padding is automatically placed between the
1032prefix data and the function body. If padding is required, it must be part
1033of the prefix data.
1034
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001035A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
1036which encodes the ``nop`` instruction:
1037
1038.. code-block:: llvm
1039
1040 define void @f() prefix i8 144 { ... }
1041
1042Generally prefix data can be formed by encoding a relative branch instruction
1043which skips the metadata, as in this example of valid prefix data for the
1044x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1045
1046.. code-block:: llvm
1047
1048 %0 = type <{ i8, i8, i8* }>
1049
1050 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
1051
1052A function may have prefix data but no body. This has similar semantics
1053to the ``available_externally`` linkage in that the data may be used by the
1054optimizers but will not be emitted in the object file.
1055
Bill Wendling63b88192013-02-06 06:52:58 +00001056.. _attrgrp:
1057
1058Attribute Groups
1059----------------
1060
1061Attribute groups are groups of attributes that are referenced by objects within
1062the IR. They are important for keeping ``.ll`` files readable, because a lot of
1063functions will use the same set of attributes. In the degenerative case of a
1064``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1065group will capture the important command line flags used to build that file.
1066
1067An attribute group is a module-level object. To use an attribute group, an
1068object references the attribute group's ID (e.g. ``#37``). An object may refer
1069to more than one attribute group. In that situation, the attributes from the
1070different groups are merged.
1071
1072Here is an example of attribute groups for a function that should always be
1073inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1074
1075.. code-block:: llvm
1076
1077 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001078 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001079
1080 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001081 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001082
1083 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1084 define void @f() #0 #1 { ... }
1085
Sean Silvab084af42012-12-07 10:36:55 +00001086.. _fnattrs:
1087
1088Function Attributes
1089-------------------
1090
1091Function attributes are set to communicate additional information about
1092a function. Function attributes are considered to be part of the
1093function, not of the function type, so functions with different function
1094attributes can have the same function type.
1095
1096Function attributes are simple keywords that follow the type specified.
1097If multiple attributes are needed, they are space separated. For
1098example:
1099
1100.. code-block:: llvm
1101
1102 define void @f() noinline { ... }
1103 define void @f() alwaysinline { ... }
1104 define void @f() alwaysinline optsize { ... }
1105 define void @f() optsize { ... }
1106
Sean Silvab084af42012-12-07 10:36:55 +00001107``alignstack(<n>)``
1108 This attribute indicates that, when emitting the prologue and
1109 epilogue, the backend should forcibly align the stack pointer.
1110 Specify the desired alignment, which must be a power of two, in
1111 parentheses.
1112``alwaysinline``
1113 This attribute indicates that the inliner should attempt to inline
1114 this function into callers whenever possible, ignoring any active
1115 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001116``builtin``
1117 This indicates that the callee function at a call site should be
1118 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001119 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +00001120 direct calls to functions which are declared with the ``nobuiltin``
1121 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001122``cold``
1123 This attribute indicates that this function is rarely called. When
1124 computing edge weights, basic blocks post-dominated by a cold
1125 function call are also considered to be cold; and, thus, given low
1126 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001127``inlinehint``
1128 This attribute indicates that the source code contained a hint that
1129 inlining this function is desirable (such as the "inline" keyword in
1130 C/C++). It is just a hint; it imposes no requirements on the
1131 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001132``jumptable``
1133 This attribute indicates that the function should be added to a
1134 jump-instruction table at code-generation time, and that all address-taken
1135 references to this function should be replaced with a reference to the
1136 appropriate jump-instruction-table function pointer. Note that this creates
1137 a new pointer for the original function, which means that code that depends
1138 on function-pointer identity can break. So, any function annotated with
1139 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001140``minsize``
1141 This attribute suggests that optimization passes and code generator
1142 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001143 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001144 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001145``naked``
1146 This attribute disables prologue / epilogue emission for the
1147 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001148``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001149 This indicates that the callee function at a call site is not recognized as
1150 a built-in function. LLVM will retain the original call and not replace it
1151 with equivalent code based on the semantics of the built-in function, unless
1152 the call site uses the ``builtin`` attribute. This is valid at call sites
1153 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001154``noduplicate``
1155 This attribute indicates that calls to the function cannot be
1156 duplicated. A call to a ``noduplicate`` function may be moved
1157 within its parent function, but may not be duplicated within
1158 its parent function.
1159
1160 A function containing a ``noduplicate`` call may still
1161 be an inlining candidate, provided that the call is not
1162 duplicated by inlining. That implies that the function has
1163 internal linkage and only has one call site, so the original
1164 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001165``noimplicitfloat``
1166 This attributes disables implicit floating point instructions.
1167``noinline``
1168 This attribute indicates that the inliner should never inline this
1169 function in any situation. This attribute may not be used together
1170 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001171``nonlazybind``
1172 This attribute suppresses lazy symbol binding for the function. This
1173 may make calls to the function faster, at the cost of extra program
1174 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001175``noredzone``
1176 This attribute indicates that the code generator should not use a
1177 red zone, even if the target-specific ABI normally permits it.
1178``noreturn``
1179 This function attribute indicates that the function never returns
1180 normally. This produces undefined behavior at runtime if the
1181 function ever does dynamically return.
1182``nounwind``
1183 This function attribute indicates that the function never returns
1184 with an unwind or exceptional control flow. If the function does
1185 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001186``optnone``
1187 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001188 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001189 exception of interprocedural optimization passes.
1190 This attribute cannot be used together with the ``alwaysinline``
1191 attribute; this attribute is also incompatible
1192 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001193
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001194 This attribute requires the ``noinline`` attribute to be specified on
1195 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001196 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001197 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001198``optsize``
1199 This attribute suggests that optimization passes and code generator
1200 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001201 and otherwise do optimizations specifically to reduce code size as
1202 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001203``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001204 On a function, this attribute indicates that the function computes its
1205 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001206 without dereferencing any pointer arguments or otherwise accessing
1207 any mutable state (e.g. memory, control registers, etc) visible to
1208 caller functions. It does not write through any pointer arguments
1209 (including ``byval`` arguments) and never changes any state visible
1210 to callers. This means that it cannot unwind exceptions by calling
1211 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001212
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001213 On an argument, this attribute indicates that the function does not
1214 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001215 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001216``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001217 On a function, this attribute indicates that the function does not write
1218 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001219 modify any state (e.g. memory, control registers, etc) visible to
1220 caller functions. It may dereference pointer arguments and read
1221 state that may be set in the caller. A readonly function always
1222 returns the same value (or unwinds an exception identically) when
1223 called with the same set of arguments and global state. It cannot
1224 unwind an exception by calling the ``C++`` exception throwing
1225 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001226
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001227 On an argument, this attribute indicates that the function does not write
1228 through this pointer argument, even though it may write to the memory that
1229 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001230``returns_twice``
1231 This attribute indicates that this function can return twice. The C
1232 ``setjmp`` is an example of such a function. The compiler disables
1233 some optimizations (like tail calls) in the caller of these
1234 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001235``sanitize_address``
1236 This attribute indicates that AddressSanitizer checks
1237 (dynamic address safety analysis) are enabled for this function.
1238``sanitize_memory``
1239 This attribute indicates that MemorySanitizer checks (dynamic detection
1240 of accesses to uninitialized memory) are enabled for this function.
1241``sanitize_thread``
1242 This attribute indicates that ThreadSanitizer checks
1243 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001244``ssp``
1245 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001246 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001247 placed on the stack before the local variables that's checked upon
1248 return from the function to see if it has been overwritten. A
1249 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001250 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001251
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001252 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1253 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1254 - Calls to alloca() with variable sizes or constant sizes greater than
1255 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001256
Josh Magee24c7f062014-02-01 01:36:16 +00001257 Variables that are identified as requiring a protector will be arranged
1258 on the stack such that they are adjacent to the stack protector guard.
1259
Sean Silvab084af42012-12-07 10:36:55 +00001260 If a function that has an ``ssp`` attribute is inlined into a
1261 function that doesn't have an ``ssp`` attribute, then the resulting
1262 function will have an ``ssp`` attribute.
1263``sspreq``
1264 This attribute indicates that the function should *always* emit a
1265 stack smashing protector. This overrides the ``ssp`` function
1266 attribute.
1267
Josh Magee24c7f062014-02-01 01:36:16 +00001268 Variables that are identified as requiring a protector will be arranged
1269 on the stack such that they are adjacent to the stack protector guard.
1270 The specific layout rules are:
1271
1272 #. Large arrays and structures containing large arrays
1273 (``>= ssp-buffer-size``) are closest to the stack protector.
1274 #. Small arrays and structures containing small arrays
1275 (``< ssp-buffer-size``) are 2nd closest to the protector.
1276 #. Variables that have had their address taken are 3rd closest to the
1277 protector.
1278
Sean Silvab084af42012-12-07 10:36:55 +00001279 If a function that has an ``sspreq`` attribute is inlined into a
1280 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001281 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1282 an ``sspreq`` attribute.
1283``sspstrong``
1284 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001285 protector. This attribute causes a strong heuristic to be used when
1286 determining if a function needs stack protectors. The strong heuristic
1287 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001288
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001289 - Arrays of any size and type
1290 - Aggregates containing an array of any size and type.
1291 - Calls to alloca().
1292 - Local variables that have had their address taken.
1293
Josh Magee24c7f062014-02-01 01:36:16 +00001294 Variables that are identified as requiring a protector will be arranged
1295 on the stack such that they are adjacent to the stack protector guard.
1296 The specific layout rules are:
1297
1298 #. Large arrays and structures containing large arrays
1299 (``>= ssp-buffer-size``) are closest to the stack protector.
1300 #. Small arrays and structures containing small arrays
1301 (``< ssp-buffer-size``) are 2nd closest to the protector.
1302 #. Variables that have had their address taken are 3rd closest to the
1303 protector.
1304
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001305 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001306
1307 If a function that has an ``sspstrong`` attribute is inlined into a
1308 function that doesn't have an ``sspstrong`` attribute, then the
1309 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001310``uwtable``
1311 This attribute indicates that the ABI being targeted requires that
1312 an unwind table entry be produce for this function even if we can
1313 show that no exceptions passes by it. This is normally the case for
1314 the ELF x86-64 abi, but it can be disabled for some compilation
1315 units.
Sean Silvab084af42012-12-07 10:36:55 +00001316
1317.. _moduleasm:
1318
1319Module-Level Inline Assembly
1320----------------------------
1321
1322Modules may contain "module-level inline asm" blocks, which corresponds
1323to the GCC "file scope inline asm" blocks. These blocks are internally
1324concatenated by LLVM and treated as a single unit, but may be separated
1325in the ``.ll`` file if desired. The syntax is very simple:
1326
1327.. code-block:: llvm
1328
1329 module asm "inline asm code goes here"
1330 module asm "more can go here"
1331
1332The strings can contain any character by escaping non-printable
1333characters. The escape sequence used is simply "\\xx" where "xx" is the
1334two digit hex code for the number.
1335
1336The inline asm code is simply printed to the machine code .s file when
1337assembly code is generated.
1338
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001339.. _langref_datalayout:
1340
Sean Silvab084af42012-12-07 10:36:55 +00001341Data Layout
1342-----------
1343
1344A module may specify a target specific data layout string that specifies
1345how data is to be laid out in memory. The syntax for the data layout is
1346simply:
1347
1348.. code-block:: llvm
1349
1350 target datalayout = "layout specification"
1351
1352The *layout specification* consists of a list of specifications
1353separated by the minus sign character ('-'). Each specification starts
1354with a letter and may include other information after the letter to
1355define some aspect of the data layout. The specifications accepted are
1356as follows:
1357
1358``E``
1359 Specifies that the target lays out data in big-endian form. That is,
1360 the bits with the most significance have the lowest address
1361 location.
1362``e``
1363 Specifies that the target lays out data in little-endian form. That
1364 is, the bits with the least significance have the lowest address
1365 location.
1366``S<size>``
1367 Specifies the natural alignment of the stack in bits. Alignment
1368 promotion of stack variables is limited to the natural stack
1369 alignment to avoid dynamic stack realignment. The stack alignment
1370 must be a multiple of 8-bits. If omitted, the natural stack
1371 alignment defaults to "unspecified", which does not prevent any
1372 alignment promotions.
1373``p[n]:<size>:<abi>:<pref>``
1374 This specifies the *size* of a pointer and its ``<abi>`` and
1375 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001376 bits. The address space, ``n`` is optional, and if not specified,
1377 denotes the default address space 0. The value of ``n`` must be
1378 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001379``i<size>:<abi>:<pref>``
1380 This specifies the alignment for an integer type of a given bit
1381 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1382``v<size>:<abi>:<pref>``
1383 This specifies the alignment for a vector type of a given bit
1384 ``<size>``.
1385``f<size>:<abi>:<pref>``
1386 This specifies the alignment for a floating point type of a given bit
1387 ``<size>``. Only values of ``<size>`` that are supported by the target
1388 will work. 32 (float) and 64 (double) are supported on all targets; 80
1389 or 128 (different flavors of long double) are also supported on some
1390 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001391``a:<abi>:<pref>``
1392 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001393``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001394 If present, specifies that llvm names are mangled in the output. The
1395 options are
1396
1397 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1398 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1399 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1400 symbols get a ``_`` prefix.
1401 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1402 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001403``n<size1>:<size2>:<size3>...``
1404 This specifies a set of native integer widths for the target CPU in
1405 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1406 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1407 this set are considered to support most general arithmetic operations
1408 efficiently.
1409
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001410On every specification that takes a ``<abi>:<pref>``, specifying the
1411``<pref>`` alignment is optional. If omitted, the preceding ``:``
1412should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1413
Sean Silvab084af42012-12-07 10:36:55 +00001414When constructing the data layout for a given target, LLVM starts with a
1415default set of specifications which are then (possibly) overridden by
1416the specifications in the ``datalayout`` keyword. The default
1417specifications are given in this list:
1418
1419- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001420- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1421- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1422 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001423- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001424- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1425- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1426- ``i16:16:16`` - i16 is 16-bit aligned
1427- ``i32:32:32`` - i32 is 32-bit aligned
1428- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1429 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001430- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001431- ``f32:32:32`` - float is 32-bit aligned
1432- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001433- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001434- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1435- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001436- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001437
1438When LLVM is determining the alignment for a given type, it uses the
1439following rules:
1440
1441#. If the type sought is an exact match for one of the specifications,
1442 that specification is used.
1443#. If no match is found, and the type sought is an integer type, then
1444 the smallest integer type that is larger than the bitwidth of the
1445 sought type is used. If none of the specifications are larger than
1446 the bitwidth then the largest integer type is used. For example,
1447 given the default specifications above, the i7 type will use the
1448 alignment of i8 (next largest) while both i65 and i256 will use the
1449 alignment of i64 (largest specified).
1450#. If no match is found, and the type sought is a vector type, then the
1451 largest vector type that is smaller than the sought vector type will
1452 be used as a fall back. This happens because <128 x double> can be
1453 implemented in terms of 64 <2 x double>, for example.
1454
1455The function of the data layout string may not be what you expect.
1456Notably, this is not a specification from the frontend of what alignment
1457the code generator should use.
1458
1459Instead, if specified, the target data layout is required to match what
1460the ultimate *code generator* expects. This string is used by the
1461mid-level optimizers to improve code, and this only works if it matches
1462what the ultimate code generator uses. If you would like to generate IR
1463that does not embed this target-specific detail into the IR, then you
1464don't have to specify the string. This will disable some optimizations
1465that require precise layout information, but this also prevents those
1466optimizations from introducing target specificity into the IR.
1467
Bill Wendling5cc90842013-10-18 23:41:25 +00001468.. _langref_triple:
1469
1470Target Triple
1471-------------
1472
1473A module may specify a target triple string that describes the target
1474host. The syntax for the target triple is simply:
1475
1476.. code-block:: llvm
1477
1478 target triple = "x86_64-apple-macosx10.7.0"
1479
1480The *target triple* string consists of a series of identifiers delimited
1481by the minus sign character ('-'). The canonical forms are:
1482
1483::
1484
1485 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1486 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1487
1488This information is passed along to the backend so that it generates
1489code for the proper architecture. It's possible to override this on the
1490command line with the ``-mtriple`` command line option.
1491
Sean Silvab084af42012-12-07 10:36:55 +00001492.. _pointeraliasing:
1493
1494Pointer Aliasing Rules
1495----------------------
1496
1497Any memory access must be done through a pointer value associated with
1498an address range of the memory access, otherwise the behavior is
1499undefined. Pointer values are associated with address ranges according
1500to the following rules:
1501
1502- A pointer value is associated with the addresses associated with any
1503 value it is *based* on.
1504- An address of a global variable is associated with the address range
1505 of the variable's storage.
1506- The result value of an allocation instruction is associated with the
1507 address range of the allocated storage.
1508- A null pointer in the default address-space is associated with no
1509 address.
1510- An integer constant other than zero or a pointer value returned from
1511 a function not defined within LLVM may be associated with address
1512 ranges allocated through mechanisms other than those provided by
1513 LLVM. Such ranges shall not overlap with any ranges of addresses
1514 allocated by mechanisms provided by LLVM.
1515
1516A pointer value is *based* on another pointer value according to the
1517following rules:
1518
1519- A pointer value formed from a ``getelementptr`` operation is *based*
1520 on the first operand of the ``getelementptr``.
1521- The result value of a ``bitcast`` is *based* on the operand of the
1522 ``bitcast``.
1523- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1524 values that contribute (directly or indirectly) to the computation of
1525 the pointer's value.
1526- The "*based* on" relationship is transitive.
1527
1528Note that this definition of *"based"* is intentionally similar to the
1529definition of *"based"* in C99, though it is slightly weaker.
1530
1531LLVM IR does not associate types with memory. The result type of a
1532``load`` merely indicates the size and alignment of the memory from
1533which to load, as well as the interpretation of the value. The first
1534operand type of a ``store`` similarly only indicates the size and
1535alignment of the store.
1536
1537Consequently, type-based alias analysis, aka TBAA, aka
1538``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1539:ref:`Metadata <metadata>` may be used to encode additional information
1540which specialized optimization passes may use to implement type-based
1541alias analysis.
1542
1543.. _volatile:
1544
1545Volatile Memory Accesses
1546------------------------
1547
1548Certain memory accesses, such as :ref:`load <i_load>`'s,
1549:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1550marked ``volatile``. The optimizers must not change the number of
1551volatile operations or change their order of execution relative to other
1552volatile operations. The optimizers *may* change the order of volatile
1553operations relative to non-volatile operations. This is not Java's
1554"volatile" and has no cross-thread synchronization behavior.
1555
Andrew Trick89fc5a62013-01-30 21:19:35 +00001556IR-level volatile loads and stores cannot safely be optimized into
1557llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1558flagged volatile. Likewise, the backend should never split or merge
1559target-legal volatile load/store instructions.
1560
Andrew Trick7e6f9282013-01-31 00:49:39 +00001561.. admonition:: Rationale
1562
1563 Platforms may rely on volatile loads and stores of natively supported
1564 data width to be executed as single instruction. For example, in C
1565 this holds for an l-value of volatile primitive type with native
1566 hardware support, but not necessarily for aggregate types. The
1567 frontend upholds these expectations, which are intentionally
1568 unspecified in the IR. The rules above ensure that IR transformation
1569 do not violate the frontend's contract with the language.
1570
Sean Silvab084af42012-12-07 10:36:55 +00001571.. _memmodel:
1572
1573Memory Model for Concurrent Operations
1574--------------------------------------
1575
1576The LLVM IR does not define any way to start parallel threads of
1577execution or to register signal handlers. Nonetheless, there are
1578platform-specific ways to create them, and we define LLVM IR's behavior
1579in their presence. This model is inspired by the C++0x memory model.
1580
1581For a more informal introduction to this model, see the :doc:`Atomics`.
1582
1583We define a *happens-before* partial order as the least partial order
1584that
1585
1586- Is a superset of single-thread program order, and
1587- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1588 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1589 techniques, like pthread locks, thread creation, thread joining,
1590 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1591 Constraints <ordering>`).
1592
1593Note that program order does not introduce *happens-before* edges
1594between a thread and signals executing inside that thread.
1595
1596Every (defined) read operation (load instructions, memcpy, atomic
1597loads/read-modify-writes, etc.) R reads a series of bytes written by
1598(defined) write operations (store instructions, atomic
1599stores/read-modify-writes, memcpy, etc.). For the purposes of this
1600section, initialized globals are considered to have a write of the
1601initializer which is atomic and happens before any other read or write
1602of the memory in question. For each byte of a read R, R\ :sub:`byte`
1603may see any write to the same byte, except:
1604
1605- If write\ :sub:`1` happens before write\ :sub:`2`, and
1606 write\ :sub:`2` happens before R\ :sub:`byte`, then
1607 R\ :sub:`byte` does not see write\ :sub:`1`.
1608- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1609 R\ :sub:`byte` does not see write\ :sub:`3`.
1610
1611Given that definition, R\ :sub:`byte` is defined as follows:
1612
1613- If R is volatile, the result is target-dependent. (Volatile is
1614 supposed to give guarantees which can support ``sig_atomic_t`` in
1615 C/C++, and may be used for accesses to addresses which do not behave
1616 like normal memory. It does not generally provide cross-thread
1617 synchronization.)
1618- Otherwise, if there is no write to the same byte that happens before
1619 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1620- Otherwise, if R\ :sub:`byte` may see exactly one write,
1621 R\ :sub:`byte` returns the value written by that write.
1622- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1623 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1624 Memory Ordering Constraints <ordering>` section for additional
1625 constraints on how the choice is made.
1626- Otherwise R\ :sub:`byte` returns ``undef``.
1627
1628R returns the value composed of the series of bytes it read. This
1629implies that some bytes within the value may be ``undef`` **without**
1630the entire value being ``undef``. Note that this only defines the
1631semantics of the operation; it doesn't mean that targets will emit more
1632than one instruction to read the series of bytes.
1633
1634Note that in cases where none of the atomic intrinsics are used, this
1635model places only one restriction on IR transformations on top of what
1636is required for single-threaded execution: introducing a store to a byte
1637which might not otherwise be stored is not allowed in general.
1638(Specifically, in the case where another thread might write to and read
1639from an address, introducing a store can change a load that may see
1640exactly one write into a load that may see multiple writes.)
1641
1642.. _ordering:
1643
1644Atomic Memory Ordering Constraints
1645----------------------------------
1646
1647Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1648:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1649:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001650ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001651the same address they *synchronize with*. These semantics are borrowed
1652from Java and C++0x, but are somewhat more colloquial. If these
1653descriptions aren't precise enough, check those specs (see spec
1654references in the :doc:`atomics guide <Atomics>`).
1655:ref:`fence <i_fence>` instructions treat these orderings somewhat
1656differently since they don't take an address. See that instruction's
1657documentation for details.
1658
1659For a simpler introduction to the ordering constraints, see the
1660:doc:`Atomics`.
1661
1662``unordered``
1663 The set of values that can be read is governed by the happens-before
1664 partial order. A value cannot be read unless some operation wrote
1665 it. This is intended to provide a guarantee strong enough to model
1666 Java's non-volatile shared variables. This ordering cannot be
1667 specified for read-modify-write operations; it is not strong enough
1668 to make them atomic in any interesting way.
1669``monotonic``
1670 In addition to the guarantees of ``unordered``, there is a single
1671 total order for modifications by ``monotonic`` operations on each
1672 address. All modification orders must be compatible with the
1673 happens-before order. There is no guarantee that the modification
1674 orders can be combined to a global total order for the whole program
1675 (and this often will not be possible). The read in an atomic
1676 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1677 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1678 order immediately before the value it writes. If one atomic read
1679 happens before another atomic read of the same address, the later
1680 read must see the same value or a later value in the address's
1681 modification order. This disallows reordering of ``monotonic`` (or
1682 stronger) operations on the same address. If an address is written
1683 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1684 read that address repeatedly, the other threads must eventually see
1685 the write. This corresponds to the C++0x/C1x
1686 ``memory_order_relaxed``.
1687``acquire``
1688 In addition to the guarantees of ``monotonic``, a
1689 *synchronizes-with* edge may be formed with a ``release`` operation.
1690 This is intended to model C++'s ``memory_order_acquire``.
1691``release``
1692 In addition to the guarantees of ``monotonic``, if this operation
1693 writes a value which is subsequently read by an ``acquire``
1694 operation, it *synchronizes-with* that operation. (This isn't a
1695 complete description; see the C++0x definition of a release
1696 sequence.) This corresponds to the C++0x/C1x
1697 ``memory_order_release``.
1698``acq_rel`` (acquire+release)
1699 Acts as both an ``acquire`` and ``release`` operation on its
1700 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1701``seq_cst`` (sequentially consistent)
1702 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1703 operation which only reads, ``release`` for an operation which only
1704 writes), there is a global total order on all
1705 sequentially-consistent operations on all addresses, which is
1706 consistent with the *happens-before* partial order and with the
1707 modification orders of all the affected addresses. Each
1708 sequentially-consistent read sees the last preceding write to the
1709 same address in this global order. This corresponds to the C++0x/C1x
1710 ``memory_order_seq_cst`` and Java volatile.
1711
1712.. _singlethread:
1713
1714If an atomic operation is marked ``singlethread``, it only *synchronizes
1715with* or participates in modification and seq\_cst total orderings with
1716other operations running in the same thread (for example, in signal
1717handlers).
1718
1719.. _fastmath:
1720
1721Fast-Math Flags
1722---------------
1723
1724LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1725:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1726:ref:`frem <i_frem>`) have the following flags that can set to enable
1727otherwise unsafe floating point operations
1728
1729``nnan``
1730 No NaNs - Allow optimizations to assume the arguments and result are not
1731 NaN. Such optimizations are required to retain defined behavior over
1732 NaNs, but the value of the result is undefined.
1733
1734``ninf``
1735 No Infs - Allow optimizations to assume the arguments and result are not
1736 +/-Inf. Such optimizations are required to retain defined behavior over
1737 +/-Inf, but the value of the result is undefined.
1738
1739``nsz``
1740 No Signed Zeros - Allow optimizations to treat the sign of a zero
1741 argument or result as insignificant.
1742
1743``arcp``
1744 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1745 argument rather than perform division.
1746
1747``fast``
1748 Fast - Allow algebraically equivalent transformations that may
1749 dramatically change results in floating point (e.g. reassociate). This
1750 flag implies all the others.
1751
1752.. _typesystem:
1753
1754Type System
1755===========
1756
1757The LLVM type system is one of the most important features of the
1758intermediate representation. Being typed enables a number of
1759optimizations to be performed on the intermediate representation
1760directly, without having to do extra analyses on the side before the
1761transformation. A strong type system makes it easier to read the
1762generated code and enables novel analyses and transformations that are
1763not feasible to perform on normal three address code representations.
1764
Rafael Espindola08013342013-12-07 19:34:20 +00001765.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001766
Rafael Espindola08013342013-12-07 19:34:20 +00001767Void Type
1768---------
Sean Silvab084af42012-12-07 10:36:55 +00001769
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001770:Overview:
1771
Rafael Espindola08013342013-12-07 19:34:20 +00001772
1773The void type does not represent any value and has no size.
1774
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001775:Syntax:
1776
Rafael Espindola08013342013-12-07 19:34:20 +00001777
1778::
1779
1780 void
Sean Silvab084af42012-12-07 10:36:55 +00001781
1782
Rafael Espindola08013342013-12-07 19:34:20 +00001783.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001784
Rafael Espindola08013342013-12-07 19:34:20 +00001785Function Type
1786-------------
Sean Silvab084af42012-12-07 10:36:55 +00001787
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001788:Overview:
1789
Sean Silvab084af42012-12-07 10:36:55 +00001790
Rafael Espindola08013342013-12-07 19:34:20 +00001791The function type can be thought of as a function signature. It consists of a
1792return type and a list of formal parameter types. The return type of a function
1793type is a void type or first class type --- except for :ref:`label <t_label>`
1794and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001795
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001796:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001797
Rafael Espindola08013342013-12-07 19:34:20 +00001798::
Sean Silvab084af42012-12-07 10:36:55 +00001799
Rafael Espindola08013342013-12-07 19:34:20 +00001800 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001801
Rafael Espindola08013342013-12-07 19:34:20 +00001802...where '``<parameter list>``' is a comma-separated list of type
1803specifiers. Optionally, the parameter list may include a type ``...``, which
1804indicates that the function takes a variable number of arguments. Variable
1805argument functions can access their arguments with the :ref:`variable argument
1806handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1807except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001808
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001809:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001810
Rafael Espindola08013342013-12-07 19:34:20 +00001811+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1812| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1813+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1814| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1815+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1816| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1817+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1818| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1819+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1820
1821.. _t_firstclass:
1822
1823First Class Types
1824-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001825
1826The :ref:`first class <t_firstclass>` types are perhaps the most important.
1827Values of these types are the only ones which can be produced by
1828instructions.
1829
Rafael Espindola08013342013-12-07 19:34:20 +00001830.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001831
Rafael Espindola08013342013-12-07 19:34:20 +00001832Single Value Types
1833^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001834
Rafael Espindola08013342013-12-07 19:34:20 +00001835These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001836
1837.. _t_integer:
1838
1839Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001840""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001841
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001842:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001843
1844The integer type is a very simple type that simply specifies an
1845arbitrary bit width for the integer type desired. Any bit width from 1
1846bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1847
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001848:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001849
1850::
1851
1852 iN
1853
1854The number of bits the integer will occupy is specified by the ``N``
1855value.
1856
1857Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001858*********
Sean Silvab084af42012-12-07 10:36:55 +00001859
1860+----------------+------------------------------------------------+
1861| ``i1`` | a single-bit integer. |
1862+----------------+------------------------------------------------+
1863| ``i32`` | a 32-bit integer. |
1864+----------------+------------------------------------------------+
1865| ``i1942652`` | a really big integer of over 1 million bits. |
1866+----------------+------------------------------------------------+
1867
1868.. _t_floating:
1869
1870Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001871""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001872
1873.. list-table::
1874 :header-rows: 1
1875
1876 * - Type
1877 - Description
1878
1879 * - ``half``
1880 - 16-bit floating point value
1881
1882 * - ``float``
1883 - 32-bit floating point value
1884
1885 * - ``double``
1886 - 64-bit floating point value
1887
1888 * - ``fp128``
1889 - 128-bit floating point value (112-bit mantissa)
1890
1891 * - ``x86_fp80``
1892 - 80-bit floating point value (X87)
1893
1894 * - ``ppc_fp128``
1895 - 128-bit floating point value (two 64-bits)
1896
Reid Kleckner9a16d082014-03-05 02:41:37 +00001897X86_mmx Type
1898""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001899
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001900:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001901
Reid Kleckner9a16d082014-03-05 02:41:37 +00001902The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001903machine. The operations allowed on it are quite limited: parameters and
1904return values, load and store, and bitcast. User-specified MMX
1905instructions are represented as intrinsic or asm calls with arguments
1906and/or results of this type. There are no arrays, vectors or constants
1907of this type.
1908
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001909:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001910
1911::
1912
Reid Kleckner9a16d082014-03-05 02:41:37 +00001913 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001914
Sean Silvab084af42012-12-07 10:36:55 +00001915
Rafael Espindola08013342013-12-07 19:34:20 +00001916.. _t_pointer:
1917
1918Pointer Type
1919""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001920
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001921:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001922
Rafael Espindola08013342013-12-07 19:34:20 +00001923The pointer type is used to specify memory locations. Pointers are
1924commonly used to reference objects in memory.
1925
1926Pointer types may have an optional address space attribute defining the
1927numbered address space where the pointed-to object resides. The default
1928address space is number zero. The semantics of non-zero address spaces
1929are target-specific.
1930
1931Note that LLVM does not permit pointers to void (``void*``) nor does it
1932permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001933
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001934:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001935
1936::
1937
Rafael Espindola08013342013-12-07 19:34:20 +00001938 <type> *
1939
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001940:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001941
1942+-------------------------+--------------------------------------------------------------------------------------------------------------+
1943| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1944+-------------------------+--------------------------------------------------------------------------------------------------------------+
1945| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1946+-------------------------+--------------------------------------------------------------------------------------------------------------+
1947| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1948+-------------------------+--------------------------------------------------------------------------------------------------------------+
1949
1950.. _t_vector:
1951
1952Vector Type
1953"""""""""""
1954
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001955:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001956
1957A vector type is a simple derived type that represents a vector of
1958elements. Vector types are used when multiple primitive data are
1959operated in parallel using a single instruction (SIMD). A vector type
1960requires a size (number of elements) and an underlying primitive data
1961type. Vector types are considered :ref:`first class <t_firstclass>`.
1962
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001963:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001964
1965::
1966
1967 < <# elements> x <elementtype> >
1968
1969The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00001970elementtype may be any integer, floating point or pointer type. Vectors
1971of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00001972
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001973:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001974
1975+-------------------+--------------------------------------------------+
1976| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1977+-------------------+--------------------------------------------------+
1978| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1979+-------------------+--------------------------------------------------+
1980| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1981+-------------------+--------------------------------------------------+
1982| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1983+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001984
1985.. _t_label:
1986
1987Label Type
1988^^^^^^^^^^
1989
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001990:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001991
1992The label type represents code labels.
1993
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001994:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001995
1996::
1997
1998 label
1999
2000.. _t_metadata:
2001
2002Metadata Type
2003^^^^^^^^^^^^^
2004
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002005:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002006
2007The metadata type represents embedded metadata. No derived types may be
2008created from metadata except for :ref:`function <t_function>` arguments.
2009
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002010:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002011
2012::
2013
2014 metadata
2015
Sean Silvab084af42012-12-07 10:36:55 +00002016.. _t_aggregate:
2017
2018Aggregate Types
2019^^^^^^^^^^^^^^^
2020
2021Aggregate Types are a subset of derived types that can contain multiple
2022member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2023aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2024aggregate types.
2025
2026.. _t_array:
2027
2028Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002029""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002030
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002031:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002032
2033The array type is a very simple derived type that arranges elements
2034sequentially in memory. The array type requires a size (number of
2035elements) and an underlying data type.
2036
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002037:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002038
2039::
2040
2041 [<# elements> x <elementtype>]
2042
2043The number of elements is a constant integer value; ``elementtype`` may
2044be any type with a size.
2045
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002046:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002047
2048+------------------+--------------------------------------+
2049| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2050+------------------+--------------------------------------+
2051| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2052+------------------+--------------------------------------+
2053| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2054+------------------+--------------------------------------+
2055
2056Here are some examples of multidimensional arrays:
2057
2058+-----------------------------+----------------------------------------------------------+
2059| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2060+-----------------------------+----------------------------------------------------------+
2061| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2062+-----------------------------+----------------------------------------------------------+
2063| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2064+-----------------------------+----------------------------------------------------------+
2065
2066There is no restriction on indexing beyond the end of the array implied
2067by a static type (though there are restrictions on indexing beyond the
2068bounds of an allocated object in some cases). This means that
2069single-dimension 'variable sized array' addressing can be implemented in
2070LLVM with a zero length array type. An implementation of 'pascal style
2071arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2072example.
2073
Sean Silvab084af42012-12-07 10:36:55 +00002074.. _t_struct:
2075
2076Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002077""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002078
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002079:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002080
2081The structure type is used to represent a collection of data members
2082together in memory. The elements of a structure may be any type that has
2083a size.
2084
2085Structures in memory are accessed using '``load``' and '``store``' by
2086getting a pointer to a field with the '``getelementptr``' instruction.
2087Structures in registers are accessed using the '``extractvalue``' and
2088'``insertvalue``' instructions.
2089
2090Structures may optionally be "packed" structures, which indicate that
2091the alignment of the struct is one byte, and that there is no padding
2092between the elements. In non-packed structs, padding between field types
2093is inserted as defined by the DataLayout string in the module, which is
2094required to match what the underlying code generator expects.
2095
2096Structures can either be "literal" or "identified". A literal structure
2097is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2098identified types are always defined at the top level with a name.
2099Literal types are uniqued by their contents and can never be recursive
2100or opaque since there is no way to write one. Identified types can be
2101recursive, can be opaqued, and are never uniqued.
2102
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002103:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002104
2105::
2106
2107 %T1 = type { <type list> } ; Identified normal struct type
2108 %T2 = type <{ <type list> }> ; Identified packed struct type
2109
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002110:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002111
2112+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2113| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2114+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002115| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002116+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2117| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2118+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2119
2120.. _t_opaque:
2121
2122Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002123""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002124
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002125:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002126
2127Opaque structure types are used to represent named structure types that
2128do not have a body specified. This corresponds (for example) to the C
2129notion of a forward declared structure.
2130
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002131:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002132
2133::
2134
2135 %X = type opaque
2136 %52 = type opaque
2137
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002138:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002139
2140+--------------+-------------------+
2141| ``opaque`` | An opaque type. |
2142+--------------+-------------------+
2143
Sean Silva1703e702014-04-08 21:06:22 +00002144.. _constants:
2145
Sean Silvab084af42012-12-07 10:36:55 +00002146Constants
2147=========
2148
2149LLVM has several different basic types of constants. This section
2150describes them all and their syntax.
2151
2152Simple Constants
2153----------------
2154
2155**Boolean constants**
2156 The two strings '``true``' and '``false``' are both valid constants
2157 of the ``i1`` type.
2158**Integer constants**
2159 Standard integers (such as '4') are constants of the
2160 :ref:`integer <t_integer>` type. Negative numbers may be used with
2161 integer types.
2162**Floating point constants**
2163 Floating point constants use standard decimal notation (e.g.
2164 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2165 hexadecimal notation (see below). The assembler requires the exact
2166 decimal value of a floating-point constant. For example, the
2167 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2168 decimal in binary. Floating point constants must have a :ref:`floating
2169 point <t_floating>` type.
2170**Null pointer constants**
2171 The identifier '``null``' is recognized as a null pointer constant
2172 and must be of :ref:`pointer type <t_pointer>`.
2173
2174The one non-intuitive notation for constants is the hexadecimal form of
2175floating point constants. For example, the form
2176'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2177than) '``double 4.5e+15``'. The only time hexadecimal floating point
2178constants are required (and the only time that they are generated by the
2179disassembler) is when a floating point constant must be emitted but it
2180cannot be represented as a decimal floating point number in a reasonable
2181number of digits. For example, NaN's, infinities, and other special
2182values are represented in their IEEE hexadecimal format so that assembly
2183and disassembly do not cause any bits to change in the constants.
2184
2185When using the hexadecimal form, constants of types half, float, and
2186double are represented using the 16-digit form shown above (which
2187matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002188must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002189precision, respectively. Hexadecimal format is always used for long
2190double, and there are three forms of long double. The 80-bit format used
2191by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2192128-bit format used by PowerPC (two adjacent doubles) is represented by
2193``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002194represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2195will only work if they match the long double format on your target.
2196The IEEE 16-bit format (half precision) is represented by ``0xH``
2197followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2198(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002199
Reid Kleckner9a16d082014-03-05 02:41:37 +00002200There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002201
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002202.. _complexconstants:
2203
Sean Silvab084af42012-12-07 10:36:55 +00002204Complex Constants
2205-----------------
2206
2207Complex constants are a (potentially recursive) combination of simple
2208constants and smaller complex constants.
2209
2210**Structure constants**
2211 Structure constants are represented with notation similar to
2212 structure type definitions (a comma separated list of elements,
2213 surrounded by braces (``{}``)). For example:
2214 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2215 "``@G = external global i32``". Structure constants must have
2216 :ref:`structure type <t_struct>`, and the number and types of elements
2217 must match those specified by the type.
2218**Array constants**
2219 Array constants are represented with notation similar to array type
2220 definitions (a comma separated list of elements, surrounded by
2221 square brackets (``[]``)). For example:
2222 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2223 :ref:`array type <t_array>`, and the number and types of elements must
2224 match those specified by the type.
2225**Vector constants**
2226 Vector constants are represented with notation similar to vector
2227 type definitions (a comma separated list of elements, surrounded by
2228 less-than/greater-than's (``<>``)). For example:
2229 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2230 must have :ref:`vector type <t_vector>`, and the number and types of
2231 elements must match those specified by the type.
2232**Zero initialization**
2233 The string '``zeroinitializer``' can be used to zero initialize a
2234 value to zero of *any* type, including scalar and
2235 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2236 having to print large zero initializers (e.g. for large arrays) and
2237 is always exactly equivalent to using explicit zero initializers.
2238**Metadata node**
2239 A metadata node is a structure-like constant with :ref:`metadata
2240 type <t_metadata>`. For example:
2241 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2242 constants that are meant to be interpreted as part of the
2243 instruction stream, metadata is a place to attach additional
2244 information such as debug info.
2245
2246Global Variable and Function Addresses
2247--------------------------------------
2248
2249The addresses of :ref:`global variables <globalvars>` and
2250:ref:`functions <functionstructure>` are always implicitly valid
2251(link-time) constants. These constants are explicitly referenced when
2252the :ref:`identifier for the global <identifiers>` is used and always have
2253:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2254file:
2255
2256.. code-block:: llvm
2257
2258 @X = global i32 17
2259 @Y = global i32 42
2260 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2261
2262.. _undefvalues:
2263
2264Undefined Values
2265----------------
2266
2267The string '``undef``' can be used anywhere a constant is expected, and
2268indicates that the user of the value may receive an unspecified
2269bit-pattern. Undefined values may be of any type (other than '``label``'
2270or '``void``') and be used anywhere a constant is permitted.
2271
2272Undefined values are useful because they indicate to the compiler that
2273the program is well defined no matter what value is used. This gives the
2274compiler more freedom to optimize. Here are some examples of
2275(potentially surprising) transformations that are valid (in pseudo IR):
2276
2277.. code-block:: llvm
2278
2279 %A = add %X, undef
2280 %B = sub %X, undef
2281 %C = xor %X, undef
2282 Safe:
2283 %A = undef
2284 %B = undef
2285 %C = undef
2286
2287This is safe because all of the output bits are affected by the undef
2288bits. Any output bit can have a zero or one depending on the input bits.
2289
2290.. code-block:: llvm
2291
2292 %A = or %X, undef
2293 %B = and %X, undef
2294 Safe:
2295 %A = -1
2296 %B = 0
2297 Unsafe:
2298 %A = undef
2299 %B = undef
2300
2301These logical operations have bits that are not always affected by the
2302input. For example, if ``%X`` has a zero bit, then the output of the
2303'``and``' operation will always be a zero for that bit, no matter what
2304the corresponding bit from the '``undef``' is. As such, it is unsafe to
2305optimize or assume that the result of the '``and``' is '``undef``'.
2306However, it is safe to assume that all bits of the '``undef``' could be
23070, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2308all the bits of the '``undef``' operand to the '``or``' could be set,
2309allowing the '``or``' to be folded to -1.
2310
2311.. code-block:: llvm
2312
2313 %A = select undef, %X, %Y
2314 %B = select undef, 42, %Y
2315 %C = select %X, %Y, undef
2316 Safe:
2317 %A = %X (or %Y)
2318 %B = 42 (or %Y)
2319 %C = %Y
2320 Unsafe:
2321 %A = undef
2322 %B = undef
2323 %C = undef
2324
2325This set of examples shows that undefined '``select``' (and conditional
2326branch) conditions can go *either way*, but they have to come from one
2327of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2328both known to have a clear low bit, then ``%A`` would have to have a
2329cleared low bit. However, in the ``%C`` example, the optimizer is
2330allowed to assume that the '``undef``' operand could be the same as
2331``%Y``, allowing the whole '``select``' to be eliminated.
2332
2333.. code-block:: llvm
2334
2335 %A = xor undef, undef
2336
2337 %B = undef
2338 %C = xor %B, %B
2339
2340 %D = undef
2341 %E = icmp lt %D, 4
2342 %F = icmp gte %D, 4
2343
2344 Safe:
2345 %A = undef
2346 %B = undef
2347 %C = undef
2348 %D = undef
2349 %E = undef
2350 %F = undef
2351
2352This example points out that two '``undef``' operands are not
2353necessarily the same. This can be surprising to people (and also matches
2354C semantics) where they assume that "``X^X``" is always zero, even if
2355``X`` is undefined. This isn't true for a number of reasons, but the
2356short answer is that an '``undef``' "variable" can arbitrarily change
2357its value over its "live range". This is true because the variable
2358doesn't actually *have a live range*. Instead, the value is logically
2359read from arbitrary registers that happen to be around when needed, so
2360the value is not necessarily consistent over time. In fact, ``%A`` and
2361``%C`` need to have the same semantics or the core LLVM "replace all
2362uses with" concept would not hold.
2363
2364.. code-block:: llvm
2365
2366 %A = fdiv undef, %X
2367 %B = fdiv %X, undef
2368 Safe:
2369 %A = undef
2370 b: unreachable
2371
2372These examples show the crucial difference between an *undefined value*
2373and *undefined behavior*. An undefined value (like '``undef``') is
2374allowed to have an arbitrary bit-pattern. This means that the ``%A``
2375operation can be constant folded to '``undef``', because the '``undef``'
2376could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2377However, in the second example, we can make a more aggressive
2378assumption: because the ``undef`` is allowed to be an arbitrary value,
2379we are allowed to assume that it could be zero. Since a divide by zero
2380has *undefined behavior*, we are allowed to assume that the operation
2381does not execute at all. This allows us to delete the divide and all
2382code after it. Because the undefined operation "can't happen", the
2383optimizer can assume that it occurs in dead code.
2384
2385.. code-block:: llvm
2386
2387 a: store undef -> %X
2388 b: store %X -> undef
2389 Safe:
2390 a: <deleted>
2391 b: unreachable
2392
2393These examples reiterate the ``fdiv`` example: a store *of* an undefined
2394value can be assumed to not have any effect; we can assume that the
2395value is overwritten with bits that happen to match what was already
2396there. However, a store *to* an undefined location could clobber
2397arbitrary memory, therefore, it has undefined behavior.
2398
2399.. _poisonvalues:
2400
2401Poison Values
2402-------------
2403
2404Poison values are similar to :ref:`undef values <undefvalues>`, however
2405they also represent the fact that an instruction or constant expression
2406which cannot evoke side effects has nevertheless detected a condition
2407which results in undefined behavior.
2408
2409There is currently no way of representing a poison value in the IR; they
2410only exist when produced by operations such as :ref:`add <i_add>` with
2411the ``nsw`` flag.
2412
2413Poison value behavior is defined in terms of value *dependence*:
2414
2415- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2416- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2417 their dynamic predecessor basic block.
2418- Function arguments depend on the corresponding actual argument values
2419 in the dynamic callers of their functions.
2420- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2421 instructions that dynamically transfer control back to them.
2422- :ref:`Invoke <i_invoke>` instructions depend on the
2423 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2424 call instructions that dynamically transfer control back to them.
2425- Non-volatile loads and stores depend on the most recent stores to all
2426 of the referenced memory addresses, following the order in the IR
2427 (including loads and stores implied by intrinsics such as
2428 :ref:`@llvm.memcpy <int_memcpy>`.)
2429- An instruction with externally visible side effects depends on the
2430 most recent preceding instruction with externally visible side
2431 effects, following the order in the IR. (This includes :ref:`volatile
2432 operations <volatile>`.)
2433- An instruction *control-depends* on a :ref:`terminator
2434 instruction <terminators>` if the terminator instruction has
2435 multiple successors and the instruction is always executed when
2436 control transfers to one of the successors, and may not be executed
2437 when control is transferred to another.
2438- Additionally, an instruction also *control-depends* on a terminator
2439 instruction if the set of instructions it otherwise depends on would
2440 be different if the terminator had transferred control to a different
2441 successor.
2442- Dependence is transitive.
2443
2444Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2445with the additional affect that any instruction which has a *dependence*
2446on a poison value has undefined behavior.
2447
2448Here are some examples:
2449
2450.. code-block:: llvm
2451
2452 entry:
2453 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2454 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2455 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2456 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2457
2458 store i32 %poison, i32* @g ; Poison value stored to memory.
2459 %poison2 = load i32* @g ; Poison value loaded back from memory.
2460
2461 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2462
2463 %narrowaddr = bitcast i32* @g to i16*
2464 %wideaddr = bitcast i32* @g to i64*
2465 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2466 %poison4 = load i64* %wideaddr ; Returns a poison value.
2467
2468 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2469 br i1 %cmp, label %true, label %end ; Branch to either destination.
2470
2471 true:
2472 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2473 ; it has undefined behavior.
2474 br label %end
2475
2476 end:
2477 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2478 ; Both edges into this PHI are
2479 ; control-dependent on %cmp, so this
2480 ; always results in a poison value.
2481
2482 store volatile i32 0, i32* @g ; This would depend on the store in %true
2483 ; if %cmp is true, or the store in %entry
2484 ; otherwise, so this is undefined behavior.
2485
2486 br i1 %cmp, label %second_true, label %second_end
2487 ; The same branch again, but this time the
2488 ; true block doesn't have side effects.
2489
2490 second_true:
2491 ; No side effects!
2492 ret void
2493
2494 second_end:
2495 store volatile i32 0, i32* @g ; This time, the instruction always depends
2496 ; on the store in %end. Also, it is
2497 ; control-equivalent to %end, so this is
2498 ; well-defined (ignoring earlier undefined
2499 ; behavior in this example).
2500
2501.. _blockaddress:
2502
2503Addresses of Basic Blocks
2504-------------------------
2505
2506``blockaddress(@function, %block)``
2507
2508The '``blockaddress``' constant computes the address of the specified
2509basic block in the specified function, and always has an ``i8*`` type.
2510Taking the address of the entry block is illegal.
2511
2512This value only has defined behavior when used as an operand to the
2513':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2514against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002515undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002516no label is equal to the null pointer. This may be passed around as an
2517opaque pointer sized value as long as the bits are not inspected. This
2518allows ``ptrtoint`` and arithmetic to be performed on these values so
2519long as the original value is reconstituted before the ``indirectbr``
2520instruction.
2521
2522Finally, some targets may provide defined semantics when using the value
2523as the operand to an inline assembly, but that is target specific.
2524
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002525.. _constantexprs:
2526
Sean Silvab084af42012-12-07 10:36:55 +00002527Constant Expressions
2528--------------------
2529
2530Constant expressions are used to allow expressions involving other
2531constants to be used as constants. Constant expressions may be of any
2532:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2533that does not have side effects (e.g. load and call are not supported).
2534The following is the syntax for constant expressions:
2535
2536``trunc (CST to TYPE)``
2537 Truncate a constant to another type. The bit size of CST must be
2538 larger than the bit size of TYPE. Both types must be integers.
2539``zext (CST to TYPE)``
2540 Zero extend a constant to another type. The bit size of CST must be
2541 smaller than the bit size of TYPE. Both types must be integers.
2542``sext (CST to TYPE)``
2543 Sign extend a constant to another type. The bit size of CST must be
2544 smaller than the bit size of TYPE. Both types must be integers.
2545``fptrunc (CST to TYPE)``
2546 Truncate a floating point constant to another floating point type.
2547 The size of CST must be larger than the size of TYPE. Both types
2548 must be floating point.
2549``fpext (CST to TYPE)``
2550 Floating point extend a constant to another type. The size of CST
2551 must be smaller or equal to the size of TYPE. Both types must be
2552 floating point.
2553``fptoui (CST to TYPE)``
2554 Convert a floating point constant to the corresponding unsigned
2555 integer constant. TYPE must be a scalar or vector integer type. CST
2556 must be of scalar or vector floating point type. Both CST and TYPE
2557 must be scalars, or vectors of the same number of elements. If the
2558 value won't fit in the integer type, the results are undefined.
2559``fptosi (CST to TYPE)``
2560 Convert a floating point constant to the corresponding signed
2561 integer constant. TYPE must be a scalar or vector integer type. CST
2562 must be of scalar or vector floating point type. Both CST and TYPE
2563 must be scalars, or vectors of the same number of elements. If the
2564 value won't fit in the integer type, the results are undefined.
2565``uitofp (CST to TYPE)``
2566 Convert an unsigned integer constant to the corresponding floating
2567 point constant. TYPE must be a scalar or vector floating point type.
2568 CST must be of scalar or vector integer type. Both CST and TYPE must
2569 be scalars, or vectors of the same number of elements. If the value
2570 won't fit in the floating point type, the results are undefined.
2571``sitofp (CST to TYPE)``
2572 Convert a signed integer constant to the corresponding floating
2573 point constant. TYPE must be a scalar or vector floating point type.
2574 CST must be of scalar or vector integer type. Both CST and TYPE must
2575 be scalars, or vectors of the same number of elements. If the value
2576 won't fit in the floating point type, the results are undefined.
2577``ptrtoint (CST to TYPE)``
2578 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002579 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002580 pointer type. The ``CST`` value is zero extended, truncated, or
2581 unchanged to make it fit in ``TYPE``.
2582``inttoptr (CST to TYPE)``
2583 Convert an integer constant to a pointer constant. TYPE must be a
2584 pointer type. CST must be of integer type. The CST value is zero
2585 extended, truncated, or unchanged to make it fit in a pointer size.
2586 This one is *really* dangerous!
2587``bitcast (CST to TYPE)``
2588 Convert a constant, CST, to another TYPE. The constraints of the
2589 operands are the same as those for the :ref:`bitcast
2590 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002591``addrspacecast (CST to TYPE)``
2592 Convert a constant pointer or constant vector of pointer, CST, to another
2593 TYPE in a different address space. The constraints of the operands are the
2594 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002595``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2596 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2597 constants. As with the :ref:`getelementptr <i_getelementptr>`
2598 instruction, the index list may have zero or more indexes, which are
2599 required to make sense for the type of "CSTPTR".
2600``select (COND, VAL1, VAL2)``
2601 Perform the :ref:`select operation <i_select>` on constants.
2602``icmp COND (VAL1, VAL2)``
2603 Performs the :ref:`icmp operation <i_icmp>` on constants.
2604``fcmp COND (VAL1, VAL2)``
2605 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2606``extractelement (VAL, IDX)``
2607 Perform the :ref:`extractelement operation <i_extractelement>` on
2608 constants.
2609``insertelement (VAL, ELT, IDX)``
2610 Perform the :ref:`insertelement operation <i_insertelement>` on
2611 constants.
2612``shufflevector (VEC1, VEC2, IDXMASK)``
2613 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2614 constants.
2615``extractvalue (VAL, IDX0, IDX1, ...)``
2616 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2617 constants. The index list is interpreted in a similar manner as
2618 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2619 least one index value must be specified.
2620``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2621 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2622 The index list is interpreted in a similar manner as indices in a
2623 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2624 value must be specified.
2625``OPCODE (LHS, RHS)``
2626 Perform the specified operation of the LHS and RHS constants. OPCODE
2627 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2628 binary <bitwiseops>` operations. The constraints on operands are
2629 the same as those for the corresponding instruction (e.g. no bitwise
2630 operations on floating point values are allowed).
2631
2632Other Values
2633============
2634
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002635.. _inlineasmexprs:
2636
Sean Silvab084af42012-12-07 10:36:55 +00002637Inline Assembler Expressions
2638----------------------------
2639
2640LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2641Inline Assembly <moduleasm>`) through the use of a special value. This
2642value represents the inline assembler as a string (containing the
2643instructions to emit), a list of operand constraints (stored as a
2644string), a flag that indicates whether or not the inline asm expression
2645has side effects, and a flag indicating whether the function containing
2646the asm needs to align its stack conservatively. An example inline
2647assembler expression is:
2648
2649.. code-block:: llvm
2650
2651 i32 (i32) asm "bswap $0", "=r,r"
2652
2653Inline assembler expressions may **only** be used as the callee operand
2654of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2655Thus, typically we have:
2656
2657.. code-block:: llvm
2658
2659 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2660
2661Inline asms with side effects not visible in the constraint list must be
2662marked as having side effects. This is done through the use of the
2663'``sideeffect``' keyword, like so:
2664
2665.. code-block:: llvm
2666
2667 call void asm sideeffect "eieio", ""()
2668
2669In some cases inline asms will contain code that will not work unless
2670the stack is aligned in some way, such as calls or SSE instructions on
2671x86, yet will not contain code that does that alignment within the asm.
2672The compiler should make conservative assumptions about what the asm
2673might contain and should generate its usual stack alignment code in the
2674prologue if the '``alignstack``' keyword is present:
2675
2676.. code-block:: llvm
2677
2678 call void asm alignstack "eieio", ""()
2679
2680Inline asms also support using non-standard assembly dialects. The
2681assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2682the inline asm is using the Intel dialect. Currently, ATT and Intel are
2683the only supported dialects. An example is:
2684
2685.. code-block:: llvm
2686
2687 call void asm inteldialect "eieio", ""()
2688
2689If multiple keywords appear the '``sideeffect``' keyword must come
2690first, the '``alignstack``' keyword second and the '``inteldialect``'
2691keyword last.
2692
2693Inline Asm Metadata
2694^^^^^^^^^^^^^^^^^^^
2695
2696The call instructions that wrap inline asm nodes may have a
2697"``!srcloc``" MDNode attached to it that contains a list of constant
2698integers. If present, the code generator will use the integer as the
2699location cookie value when report errors through the ``LLVMContext``
2700error reporting mechanisms. This allows a front-end to correlate backend
2701errors that occur with inline asm back to the source code that produced
2702it. For example:
2703
2704.. code-block:: llvm
2705
2706 call void asm sideeffect "something bad", ""(), !srcloc !42
2707 ...
2708 !42 = !{ i32 1234567 }
2709
2710It is up to the front-end to make sense of the magic numbers it places
2711in the IR. If the MDNode contains multiple constants, the code generator
2712will use the one that corresponds to the line of the asm that the error
2713occurs on.
2714
2715.. _metadata:
2716
2717Metadata Nodes and Metadata Strings
2718-----------------------------------
2719
2720LLVM IR allows metadata to be attached to instructions in the program
2721that can convey extra information about the code to the optimizers and
2722code generator. One example application of metadata is source-level
2723debug information. There are two metadata primitives: strings and nodes.
2724All metadata has the ``metadata`` type and is identified in syntax by a
2725preceding exclamation point ('``!``').
2726
2727A metadata string is a string surrounded by double quotes. It can
2728contain any character by escaping non-printable characters with
2729"``\xx``" where "``xx``" is the two digit hex code. For example:
2730"``!"test\00"``".
2731
2732Metadata nodes are represented with notation similar to structure
2733constants (a comma separated list of elements, surrounded by braces and
2734preceded by an exclamation point). Metadata nodes can have any values as
2735their operand. For example:
2736
2737.. code-block:: llvm
2738
2739 !{ metadata !"test\00", i32 10}
2740
2741A :ref:`named metadata <namedmetadatastructure>` is a collection of
2742metadata nodes, which can be looked up in the module symbol table. For
2743example:
2744
2745.. code-block:: llvm
2746
2747 !foo = metadata !{!4, !3}
2748
2749Metadata can be used as function arguments. Here ``llvm.dbg.value``
2750function is using two metadata arguments:
2751
2752.. code-block:: llvm
2753
2754 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2755
2756Metadata can be attached with an instruction. Here metadata ``!21`` is
2757attached to the ``add`` instruction using the ``!dbg`` identifier:
2758
2759.. code-block:: llvm
2760
2761 %indvar.next = add i64 %indvar, 1, !dbg !21
2762
2763More information about specific metadata nodes recognized by the
2764optimizers and code generator is found below.
2765
2766'``tbaa``' Metadata
2767^^^^^^^^^^^^^^^^^^^
2768
2769In LLVM IR, memory does not have types, so LLVM's own type system is not
2770suitable for doing TBAA. Instead, metadata is added to the IR to
2771describe a type system of a higher level language. This can be used to
2772implement typical C/C++ TBAA, but it can also be used to implement
2773custom alias analysis behavior for other languages.
2774
2775The current metadata format is very simple. TBAA metadata nodes have up
2776to three fields, e.g.:
2777
2778.. code-block:: llvm
2779
2780 !0 = metadata !{ metadata !"an example type tree" }
2781 !1 = metadata !{ metadata !"int", metadata !0 }
2782 !2 = metadata !{ metadata !"float", metadata !0 }
2783 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2784
2785The first field is an identity field. It can be any value, usually a
2786metadata string, which uniquely identifies the type. The most important
2787name in the tree is the name of the root node. Two trees with different
2788root node names are entirely disjoint, even if they have leaves with
2789common names.
2790
2791The second field identifies the type's parent node in the tree, or is
2792null or omitted for a root node. A type is considered to alias all of
2793its descendants and all of its ancestors in the tree. Also, a type is
2794considered to alias all types in other trees, so that bitcode produced
2795from multiple front-ends is handled conservatively.
2796
2797If the third field is present, it's an integer which if equal to 1
2798indicates that the type is "constant" (meaning
2799``pointsToConstantMemory`` should return true; see `other useful
2800AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2801
2802'``tbaa.struct``' Metadata
2803^^^^^^^^^^^^^^^^^^^^^^^^^^
2804
2805The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2806aggregate assignment operations in C and similar languages, however it
2807is defined to copy a contiguous region of memory, which is more than
2808strictly necessary for aggregate types which contain holes due to
2809padding. Also, it doesn't contain any TBAA information about the fields
2810of the aggregate.
2811
2812``!tbaa.struct`` metadata can describe which memory subregions in a
2813memcpy are padding and what the TBAA tags of the struct are.
2814
2815The current metadata format is very simple. ``!tbaa.struct`` metadata
2816nodes are a list of operands which are in conceptual groups of three.
2817For each group of three, the first operand gives the byte offset of a
2818field in bytes, the second gives its size in bytes, and the third gives
2819its tbaa tag. e.g.:
2820
2821.. code-block:: llvm
2822
2823 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2824
2825This describes a struct with two fields. The first is at offset 0 bytes
2826with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2827and has size 4 bytes and has tbaa tag !2.
2828
2829Note that the fields need not be contiguous. In this example, there is a
28304 byte gap between the two fields. This gap represents padding which
2831does not carry useful data and need not be preserved.
2832
Hal Finkel94146652014-07-24 14:25:39 +00002833'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00002834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00002835
2836``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2837noalias memory-access sets. This means that some collection of memory access
2838instructions (loads, stores, memory-accessing calls, etc.) that carry
2839``noalias`` metadata can specifically be specified not to alias with some other
2840collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00002841Each type of metadata specifies a list of scopes where each scope has an id and
2842a domain. When evaluating an aliasing query, if for some some domain, the set
2843of scopes with that domain in one instruction's ``alias.scope`` list is a
2844subset of (or qual to) the set of scopes for that domain in another
2845instruction's ``noalias`` list, then the two memory accesses are assumed not to
2846alias.
Hal Finkel94146652014-07-24 14:25:39 +00002847
Hal Finkel029cde62014-07-25 15:50:02 +00002848The metadata identifying each domain is itself a list containing one or two
2849entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00002850string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00002851self-reference can be used to create globally unique domain names. A
2852descriptive string may optionally be provided as a second list entry.
2853
2854The metadata identifying each scope is also itself a list containing two or
2855three entries. The first entry is the name of the scope. Note that if the name
2856is a string then it can be combined accross functions and translation units. A
2857self-reference can be used to create globally unique scope names. A metadata
2858reference to the scope's domain is the second entry. A descriptive string may
2859optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00002860
2861For example,
2862
2863.. code-block:: llvm
2864
Hal Finkel029cde62014-07-25 15:50:02 +00002865 ; Two scope domains:
Hal Finkel94146652014-07-24 14:25:39 +00002866 !0 = metadata !{metadata !0}
Hal Finkel029cde62014-07-25 15:50:02 +00002867 !1 = metadata !{metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002868
Hal Finkel029cde62014-07-25 15:50:02 +00002869 ; Some scopes in these domains:
2870 !2 = metadata !{metadata !2, metadata !0}
2871 !3 = metadata !{metadata !3, metadata !0}
2872 !4 = metadata !{metadata !4, metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002873
Hal Finkel029cde62014-07-25 15:50:02 +00002874 ; Some scope lists:
2875 !5 = metadata !{metadata !4} ; A list containing only scope !4
2876 !6 = metadata !{metadata !4, metadata !3, metadata !2}
2877 !7 = metadata !{metadata !3}
Hal Finkel94146652014-07-24 14:25:39 +00002878
2879 ; These two instructions don't alias:
Hal Finkel029cde62014-07-25 15:50:02 +00002880 %0 = load float* %c, align 4, !alias.scope !5
2881 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00002882
Hal Finkel029cde62014-07-25 15:50:02 +00002883 ; These two instructions also don't alias (for domain !1, the set of scopes
2884 ; in the !alias.scope equals that in the !noalias list):
2885 %2 = load float* %c, align 4, !alias.scope !5
2886 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00002887
Hal Finkel029cde62014-07-25 15:50:02 +00002888 ; These two instructions don't alias (for domain !0, the set of scopes in
2889 ; the !noalias list is not a superset of, or equal to, the scopes in the
2890 ; !alias.scope list):
2891 %2 = load float* %c, align 4, !alias.scope !6
2892 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00002893
Sean Silvab084af42012-12-07 10:36:55 +00002894'``fpmath``' Metadata
2895^^^^^^^^^^^^^^^^^^^^^
2896
2897``fpmath`` metadata may be attached to any instruction of floating point
2898type. It can be used to express the maximum acceptable error in the
2899result of that instruction, in ULPs, thus potentially allowing the
2900compiler to use a more efficient but less accurate method of computing
2901it. ULP is defined as follows:
2902
2903 If ``x`` is a real number that lies between two finite consecutive
2904 floating-point numbers ``a`` and ``b``, without being equal to one
2905 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2906 distance between the two non-equal finite floating-point numbers
2907 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2908
2909The metadata node shall consist of a single positive floating point
2910number representing the maximum relative error, for example:
2911
2912.. code-block:: llvm
2913
2914 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2915
2916'``range``' Metadata
2917^^^^^^^^^^^^^^^^^^^^
2918
Jingyue Wu37fcb592014-06-19 16:50:16 +00002919``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2920integer types. It expresses the possible ranges the loaded value or the value
2921returned by the called function at this call site is in. The ranges are
2922represented with a flattened list of integers. The loaded value or the value
2923returned is known to be in the union of the ranges defined by each consecutive
2924pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00002925
2926- The type must match the type loaded by the instruction.
2927- The pair ``a,b`` represents the range ``[a,b)``.
2928- Both ``a`` and ``b`` are constants.
2929- The range is allowed to wrap.
2930- The range should not represent the full or empty set. That is,
2931 ``a!=b``.
2932
2933In addition, the pairs must be in signed order of the lower bound and
2934they must be non-contiguous.
2935
2936Examples:
2937
2938.. code-block:: llvm
2939
2940 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2941 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00002942 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
2943 %d = invoke i8 @bar() to label %cont
2944 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00002945 ...
2946 !0 = metadata !{ i8 0, i8 2 }
2947 !1 = metadata !{ i8 255, i8 2 }
2948 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2949 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2950
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002951'``llvm.loop``'
2952^^^^^^^^^^^^^^^
2953
2954It is sometimes useful to attach information to loop constructs. Currently,
2955loop metadata is implemented as metadata attached to the branch instruction
2956in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002957guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002958specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002959
2960The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002961itself to avoid merging it with any other identifier metadata, e.g.,
2962during module linkage or function inlining. That is, each loop should refer
2963to their own identification metadata even if they reside in separate functions.
2964The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002965constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002966
2967.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002968
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002969 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002970 !1 = metadata !{ metadata !1 }
2971
Mark Heffernan893752a2014-07-18 19:24:51 +00002972The loop identifier metadata can be used to specify additional
2973per-loop metadata. Any operands after the first operand can be treated
2974as user-defined metadata. For example the ``llvm.loop.unroll.count``
2975suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002976
Paul Redmond5fdf8362013-05-28 20:00:34 +00002977.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002978
Paul Redmond5fdf8362013-05-28 20:00:34 +00002979 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2980 ...
2981 !0 = metadata !{ metadata !0, metadata !1 }
Mark Heffernan9d20e422014-07-21 23:11:03 +00002982 !1 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00002983
Mark Heffernan9d20e422014-07-21 23:11:03 +00002984'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
2985^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00002986
Mark Heffernan9d20e422014-07-21 23:11:03 +00002987Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
2988used to control per-loop vectorization and interleaving parameters such as
2989vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00002990conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00002991``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
2992optimization hints and the optimizer will only interleave and vectorize loops if
2993it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
2994which contains information about loop-carried memory dependencies can be helpful
2995in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00002996
Mark Heffernan9d20e422014-07-21 23:11:03 +00002997'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00002998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2999
Mark Heffernan9d20e422014-07-21 23:11:03 +00003000This metadata suggests an interleave count to the loop interleaver.
3001The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003002second operand is an integer specifying the interleave count. For
3003example:
3004
3005.. code-block:: llvm
3006
Mark Heffernan9d20e422014-07-21 23:11:03 +00003007 !0 = metadata !{ metadata !"llvm.loop.interleave.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003008
Mark Heffernan9d20e422014-07-21 23:11:03 +00003009Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3010multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3011then the interleave count will be determined automatically.
3012
3013'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003015
3016This metadata selectively enables or disables vectorization for the loop. The
3017first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3018is a bit. If the bit operand value is 1 vectorization is enabled. A value of
30190 disables vectorization:
3020
3021.. code-block:: llvm
3022
3023 !0 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 0 }
3024 !1 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 1 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003025
3026'``llvm.loop.vectorize.width``' Metadata
3027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3028
3029This metadata sets the target width of the vectorizer. The first
3030operand is the string ``llvm.loop.vectorize.width`` and the second
3031operand is an integer specifying the width. For example:
3032
3033.. code-block:: llvm
3034
3035 !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 }
3036
3037Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3038vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
30390 or if the loop does not have this metadata the width will be
3040determined automatically.
3041
3042'``llvm.loop.unroll``'
3043^^^^^^^^^^^^^^^^^^^^^^
3044
3045Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3046optimization hints such as the unroll factor. ``llvm.loop.unroll``
3047metadata should be used in conjunction with ``llvm.loop`` loop
3048identification metadata. The ``llvm.loop.unroll`` metadata are only
3049optimization hints and the unrolling will only be performed if the
3050optimizer believes it is safe to do so.
3051
Mark Heffernan893752a2014-07-18 19:24:51 +00003052'``llvm.loop.unroll.count``' Metadata
3053^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3054
3055This metadata suggests an unroll factor to the loop unroller. The
3056first operand is the string ``llvm.loop.unroll.count`` and the second
3057operand is a positive integer specifying the unroll factor. For
3058example:
3059
3060.. code-block:: llvm
3061
3062 !0 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
3063
3064If the trip count of the loop is less than the unroll count the loop
3065will be partially unrolled.
3066
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003067'``llvm.loop.unroll.disable``' Metadata
3068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3069
3070This metadata either disables loop unrolling. The metadata has a single operand
3071which is the string ``llvm.loop.unroll.disable``. For example:
3072
3073.. code-block:: llvm
3074
3075 !0 = metadata !{ metadata !"llvm.loop.unroll.disable" }
3076
3077'``llvm.loop.unroll.full``' Metadata
3078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3079
3080This metadata either suggests that the loop should be unrolled fully. The
3081metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3082For example:
3083
3084.. code-block:: llvm
3085
3086 !0 = metadata !{ metadata !"llvm.loop.unroll.full" }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003087
3088'``llvm.mem``'
3089^^^^^^^^^^^^^^^
3090
3091Metadata types used to annotate memory accesses with information helpful
3092for optimizations are prefixed with ``llvm.mem``.
3093
3094'``llvm.mem.parallel_loop_access``' Metadata
3095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3096
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003097The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3098or metadata containing a list of loop identifiers for nested loops.
3099The metadata is attached to memory accessing instructions and denotes that
3100no loop carried memory dependence exist between it and other instructions denoted
3101with the same loop identifier.
3102
3103Precisely, given two instructions ``m1`` and ``m2`` that both have the
3104``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3105set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003106carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003107``L2``.
3108
3109As a special case, if all memory accessing instructions in a loop have
3110``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3111loop has no loop carried memory dependences and is considered to be a parallel
3112loop.
3113
3114Note that if not all memory access instructions have such metadata referring to
3115the loop, then the loop is considered not being trivially parallel. Additional
3116memory dependence analysis is required to make that determination. As a fail
3117safe mechanism, this causes loops that were originally parallel to be considered
3118sequential (if optimization passes that are unaware of the parallel semantics
3119insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003120
3121Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003122both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003123metadata types that refer to the same loop identifier metadata.
3124
3125.. code-block:: llvm
3126
3127 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003128 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003129 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003130 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003131 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003132 ...
3133 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003134
3135 for.end:
3136 ...
3137 !0 = metadata !{ metadata !0 }
3138
3139It is also possible to have nested parallel loops. In that case the
3140memory accesses refer to a list of loop identifier metadata nodes instead of
3141the loop identifier metadata node directly:
3142
3143.. code-block:: llvm
3144
3145 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003146 ...
3147 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3148 ...
3149 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003150
3151 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003152 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003153 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003154 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003155 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003156 ...
3157 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003158
3159 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003160 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003161 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003162 ...
3163 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003164
3165 outer.for.end: ; preds = %for.body
3166 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00003167 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
3168 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
3169 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003170
Sean Silvab084af42012-12-07 10:36:55 +00003171Module Flags Metadata
3172=====================
3173
3174Information about the module as a whole is difficult to convey to LLVM's
3175subsystems. The LLVM IR isn't sufficient to transmit this information.
3176The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003177this. These flags are in the form of key / value pairs --- much like a
3178dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003179look it up.
3180
3181The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3182Each triplet has the following form:
3183
3184- The first element is a *behavior* flag, which specifies the behavior
3185 when two (or more) modules are merged together, and it encounters two
3186 (or more) metadata with the same ID. The supported behaviors are
3187 described below.
3188- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003189 metadata. Each module may only have one flag entry for each unique ID (not
3190 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003191- The third element is the value of the flag.
3192
3193When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003194``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3195each unique metadata ID string, there will be exactly one entry in the merged
3196modules ``llvm.module.flags`` metadata table, and the value for that entry will
3197be determined by the merge behavior flag, as described below. The only exception
3198is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003199
3200The following behaviors are supported:
3201
3202.. list-table::
3203 :header-rows: 1
3204 :widths: 10 90
3205
3206 * - Value
3207 - Behavior
3208
3209 * - 1
3210 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003211 Emits an error if two values disagree, otherwise the resulting value
3212 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003213
3214 * - 2
3215 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003216 Emits a warning if two values disagree. The result value will be the
3217 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003218
3219 * - 3
3220 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003221 Adds a requirement that another module flag be present and have a
3222 specified value after linking is performed. The value must be a
3223 metadata pair, where the first element of the pair is the ID of the
3224 module flag to be restricted, and the second element of the pair is
3225 the value the module flag should be restricted to. This behavior can
3226 be used to restrict the allowable results (via triggering of an
3227 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003228
3229 * - 4
3230 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003231 Uses the specified value, regardless of the behavior or value of the
3232 other module. If both modules specify **Override**, but the values
3233 differ, an error will be emitted.
3234
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003235 * - 5
3236 - **Append**
3237 Appends the two values, which are required to be metadata nodes.
3238
3239 * - 6
3240 - **AppendUnique**
3241 Appends the two values, which are required to be metadata
3242 nodes. However, duplicate entries in the second list are dropped
3243 during the append operation.
3244
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003245It is an error for a particular unique flag ID to have multiple behaviors,
3246except in the case of **Require** (which adds restrictions on another metadata
3247value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003248
3249An example of module flags:
3250
3251.. code-block:: llvm
3252
3253 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3254 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3255 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3256 !3 = metadata !{ i32 3, metadata !"qux",
3257 metadata !{
3258 metadata !"foo", i32 1
3259 }
3260 }
3261 !llvm.module.flags = !{ !0, !1, !2, !3 }
3262
3263- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3264 if two or more ``!"foo"`` flags are seen is to emit an error if their
3265 values are not equal.
3266
3267- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3268 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003269 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003270
3271- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3272 behavior if two or more ``!"qux"`` flags are seen is to emit a
3273 warning if their values are not equal.
3274
3275- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3276
3277 ::
3278
3279 metadata !{ metadata !"foo", i32 1 }
3280
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003281 The behavior is to emit an error if the ``llvm.module.flags`` does not
3282 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3283 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003284
3285Objective-C Garbage Collection Module Flags Metadata
3286----------------------------------------------------
3287
3288On the Mach-O platform, Objective-C stores metadata about garbage
3289collection in a special section called "image info". The metadata
3290consists of a version number and a bitmask specifying what types of
3291garbage collection are supported (if any) by the file. If two or more
3292modules are linked together their garbage collection metadata needs to
3293be merged rather than appended together.
3294
3295The Objective-C garbage collection module flags metadata consists of the
3296following key-value pairs:
3297
3298.. list-table::
3299 :header-rows: 1
3300 :widths: 30 70
3301
3302 * - Key
3303 - Value
3304
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003305 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003306 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003307
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003308 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003309 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003310 always 0.
3311
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003312 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003313 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003314 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3315 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3316 Objective-C ABI version 2.
3317
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003318 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003319 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003320 not. Valid values are 0, for no garbage collection, and 2, for garbage
3321 collection supported.
3322
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003323 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003324 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003325 If present, its value must be 6. This flag requires that the
3326 ``Objective-C Garbage Collection`` flag have the value 2.
3327
3328Some important flag interactions:
3329
3330- If a module with ``Objective-C Garbage Collection`` set to 0 is
3331 merged with a module with ``Objective-C Garbage Collection`` set to
3332 2, then the resulting module has the
3333 ``Objective-C Garbage Collection`` flag set to 0.
3334- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3335 merged with a module with ``Objective-C GC Only`` set to 6.
3336
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003337Automatic Linker Flags Module Flags Metadata
3338--------------------------------------------
3339
3340Some targets support embedding flags to the linker inside individual object
3341files. Typically this is used in conjunction with language extensions which
3342allow source files to explicitly declare the libraries they depend on, and have
3343these automatically be transmitted to the linker via object files.
3344
3345These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003346using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003347to be ``AppendUnique``, and the value for the key is expected to be a metadata
3348node which should be a list of other metadata nodes, each of which should be a
3349list of metadata strings defining linker options.
3350
3351For example, the following metadata section specifies two separate sets of
3352linker options, presumably to link against ``libz`` and the ``Cocoa``
3353framework::
3354
Michael Liaoa7699082013-03-06 18:24:34 +00003355 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003356 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003357 metadata !{ metadata !"-lz" },
3358 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003359 !llvm.module.flags = !{ !0 }
3360
3361The metadata encoding as lists of lists of options, as opposed to a collapsed
3362list of options, is chosen so that the IR encoding can use multiple option
3363strings to specify e.g., a single library, while still having that specifier be
3364preserved as an atomic element that can be recognized by a target specific
3365assembly writer or object file emitter.
3366
3367Each individual option is required to be either a valid option for the target's
3368linker, or an option that is reserved by the target specific assembly writer or
3369object file emitter. No other aspect of these options is defined by the IR.
3370
Oliver Stannard5dc29342014-06-20 10:08:11 +00003371C type width Module Flags Metadata
3372----------------------------------
3373
3374The ARM backend emits a section into each generated object file describing the
3375options that it was compiled with (in a compiler-independent way) to prevent
3376linking incompatible objects, and to allow automatic library selection. Some
3377of these options are not visible at the IR level, namely wchar_t width and enum
3378width.
3379
3380To pass this information to the backend, these options are encoded in module
3381flags metadata, using the following key-value pairs:
3382
3383.. list-table::
3384 :header-rows: 1
3385 :widths: 30 70
3386
3387 * - Key
3388 - Value
3389
3390 * - short_wchar
3391 - * 0 --- sizeof(wchar_t) == 4
3392 * 1 --- sizeof(wchar_t) == 2
3393
3394 * - short_enum
3395 - * 0 --- Enums are at least as large as an ``int``.
3396 * 1 --- Enums are stored in the smallest integer type which can
3397 represent all of its values.
3398
3399For example, the following metadata section specifies that the module was
3400compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3401enum is the smallest type which can represent all of its values::
3402
3403 !llvm.module.flags = !{!0, !1}
3404 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1}
3405 !1 = metadata !{i32 1, metadata !"short_enum", i32 0}
3406
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003407.. _intrinsicglobalvariables:
3408
Sean Silvab084af42012-12-07 10:36:55 +00003409Intrinsic Global Variables
3410==========================
3411
3412LLVM has a number of "magic" global variables that contain data that
3413affect code generation or other IR semantics. These are documented here.
3414All globals of this sort should have a section specified as
3415"``llvm.metadata``". This section and all globals that start with
3416"``llvm.``" are reserved for use by LLVM.
3417
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003418.. _gv_llvmused:
3419
Sean Silvab084af42012-12-07 10:36:55 +00003420The '``llvm.used``' Global Variable
3421-----------------------------------
3422
Rafael Espindola74f2e462013-04-22 14:58:02 +00003423The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003424:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003425pointers to named global variables, functions and aliases which may optionally
3426have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003427use of it is:
3428
3429.. code-block:: llvm
3430
3431 @X = global i8 4
3432 @Y = global i32 123
3433
3434 @llvm.used = appending global [2 x i8*] [
3435 i8* @X,
3436 i8* bitcast (i32* @Y to i8*)
3437 ], section "llvm.metadata"
3438
Rafael Espindola74f2e462013-04-22 14:58:02 +00003439If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3440and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003441symbol that it cannot see (which is why they have to be named). For example, if
3442a variable has internal linkage and no references other than that from the
3443``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3444references from inline asms and other things the compiler cannot "see", and
3445corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003446
3447On some targets, the code generator must emit a directive to the
3448assembler or object file to prevent the assembler and linker from
3449molesting the symbol.
3450
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003451.. _gv_llvmcompilerused:
3452
Sean Silvab084af42012-12-07 10:36:55 +00003453The '``llvm.compiler.used``' Global Variable
3454--------------------------------------------
3455
3456The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3457directive, except that it only prevents the compiler from touching the
3458symbol. On targets that support it, this allows an intelligent linker to
3459optimize references to the symbol without being impeded as it would be
3460by ``@llvm.used``.
3461
3462This is a rare construct that should only be used in rare circumstances,
3463and should not be exposed to source languages.
3464
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003465.. _gv_llvmglobalctors:
3466
Sean Silvab084af42012-12-07 10:36:55 +00003467The '``llvm.global_ctors``' Global Variable
3468-------------------------------------------
3469
3470.. code-block:: llvm
3471
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003472 %0 = type { i32, void ()*, i8* }
3473 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003474
3475The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003476functions, priorities, and an optional associated global or function.
3477The functions referenced by this array will be called in ascending order
3478of priority (i.e. lowest first) when the module is loaded. The order of
3479functions with the same priority is not defined.
3480
3481If the third field is present, non-null, and points to a global variable
3482or function, the initializer function will only run if the associated
3483data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003484
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003485.. _llvmglobaldtors:
3486
Sean Silvab084af42012-12-07 10:36:55 +00003487The '``llvm.global_dtors``' Global Variable
3488-------------------------------------------
3489
3490.. code-block:: llvm
3491
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003492 %0 = type { i32, void ()*, i8* }
3493 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003494
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003495The ``@llvm.global_dtors`` array contains a list of destructor
3496functions, priorities, and an optional associated global or function.
3497The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003498order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003499order of functions with the same priority is not defined.
3500
3501If the third field is present, non-null, and points to a global variable
3502or function, the destructor function will only run if the associated
3503data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003504
3505Instruction Reference
3506=====================
3507
3508The LLVM instruction set consists of several different classifications
3509of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3510instructions <binaryops>`, :ref:`bitwise binary
3511instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3512:ref:`other instructions <otherops>`.
3513
3514.. _terminators:
3515
3516Terminator Instructions
3517-----------------------
3518
3519As mentioned :ref:`previously <functionstructure>`, every basic block in a
3520program ends with a "Terminator" instruction, which indicates which
3521block should be executed after the current block is finished. These
3522terminator instructions typically yield a '``void``' value: they produce
3523control flow, not values (the one exception being the
3524':ref:`invoke <i_invoke>`' instruction).
3525
3526The terminator instructions are: ':ref:`ret <i_ret>`',
3527':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3528':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3529':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3530
3531.. _i_ret:
3532
3533'``ret``' Instruction
3534^^^^^^^^^^^^^^^^^^^^^
3535
3536Syntax:
3537"""""""
3538
3539::
3540
3541 ret <type> <value> ; Return a value from a non-void function
3542 ret void ; Return from void function
3543
3544Overview:
3545"""""""""
3546
3547The '``ret``' instruction is used to return control flow (and optionally
3548a value) from a function back to the caller.
3549
3550There are two forms of the '``ret``' instruction: one that returns a
3551value and then causes control flow, and one that just causes control
3552flow to occur.
3553
3554Arguments:
3555""""""""""
3556
3557The '``ret``' instruction optionally accepts a single argument, the
3558return value. The type of the return value must be a ':ref:`first
3559class <t_firstclass>`' type.
3560
3561A function is not :ref:`well formed <wellformed>` if it it has a non-void
3562return type and contains a '``ret``' instruction with no return value or
3563a return value with a type that does not match its type, or if it has a
3564void return type and contains a '``ret``' instruction with a return
3565value.
3566
3567Semantics:
3568""""""""""
3569
3570When the '``ret``' instruction is executed, control flow returns back to
3571the calling function's context. If the caller is a
3572":ref:`call <i_call>`" instruction, execution continues at the
3573instruction after the call. If the caller was an
3574":ref:`invoke <i_invoke>`" instruction, execution continues at the
3575beginning of the "normal" destination block. If the instruction returns
3576a value, that value shall set the call or invoke instruction's return
3577value.
3578
3579Example:
3580""""""""
3581
3582.. code-block:: llvm
3583
3584 ret i32 5 ; Return an integer value of 5
3585 ret void ; Return from a void function
3586 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3587
3588.. _i_br:
3589
3590'``br``' Instruction
3591^^^^^^^^^^^^^^^^^^^^
3592
3593Syntax:
3594"""""""
3595
3596::
3597
3598 br i1 <cond>, label <iftrue>, label <iffalse>
3599 br label <dest> ; Unconditional branch
3600
3601Overview:
3602"""""""""
3603
3604The '``br``' instruction is used to cause control flow to transfer to a
3605different basic block in the current function. There are two forms of
3606this instruction, corresponding to a conditional branch and an
3607unconditional branch.
3608
3609Arguments:
3610""""""""""
3611
3612The conditional branch form of the '``br``' instruction takes a single
3613'``i1``' value and two '``label``' values. The unconditional form of the
3614'``br``' instruction takes a single '``label``' value as a target.
3615
3616Semantics:
3617""""""""""
3618
3619Upon execution of a conditional '``br``' instruction, the '``i1``'
3620argument is evaluated. If the value is ``true``, control flows to the
3621'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3622to the '``iffalse``' ``label`` argument.
3623
3624Example:
3625""""""""
3626
3627.. code-block:: llvm
3628
3629 Test:
3630 %cond = icmp eq i32 %a, %b
3631 br i1 %cond, label %IfEqual, label %IfUnequal
3632 IfEqual:
3633 ret i32 1
3634 IfUnequal:
3635 ret i32 0
3636
3637.. _i_switch:
3638
3639'``switch``' Instruction
3640^^^^^^^^^^^^^^^^^^^^^^^^
3641
3642Syntax:
3643"""""""
3644
3645::
3646
3647 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3648
3649Overview:
3650"""""""""
3651
3652The '``switch``' instruction is used to transfer control flow to one of
3653several different places. It is a generalization of the '``br``'
3654instruction, allowing a branch to occur to one of many possible
3655destinations.
3656
3657Arguments:
3658""""""""""
3659
3660The '``switch``' instruction uses three parameters: an integer
3661comparison value '``value``', a default '``label``' destination, and an
3662array of pairs of comparison value constants and '``label``'s. The table
3663is not allowed to contain duplicate constant entries.
3664
3665Semantics:
3666""""""""""
3667
3668The ``switch`` instruction specifies a table of values and destinations.
3669When the '``switch``' instruction is executed, this table is searched
3670for the given value. If the value is found, control flow is transferred
3671to the corresponding destination; otherwise, control flow is transferred
3672to the default destination.
3673
3674Implementation:
3675"""""""""""""""
3676
3677Depending on properties of the target machine and the particular
3678``switch`` instruction, this instruction may be code generated in
3679different ways. For example, it could be generated as a series of
3680chained conditional branches or with a lookup table.
3681
3682Example:
3683""""""""
3684
3685.. code-block:: llvm
3686
3687 ; Emulate a conditional br instruction
3688 %Val = zext i1 %value to i32
3689 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3690
3691 ; Emulate an unconditional br instruction
3692 switch i32 0, label %dest [ ]
3693
3694 ; Implement a jump table:
3695 switch i32 %val, label %otherwise [ i32 0, label %onzero
3696 i32 1, label %onone
3697 i32 2, label %ontwo ]
3698
3699.. _i_indirectbr:
3700
3701'``indirectbr``' Instruction
3702^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3703
3704Syntax:
3705"""""""
3706
3707::
3708
3709 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3710
3711Overview:
3712"""""""""
3713
3714The '``indirectbr``' instruction implements an indirect branch to a
3715label within the current function, whose address is specified by
3716"``address``". Address must be derived from a
3717:ref:`blockaddress <blockaddress>` constant.
3718
3719Arguments:
3720""""""""""
3721
3722The '``address``' argument is the address of the label to jump to. The
3723rest of the arguments indicate the full set of possible destinations
3724that the address may point to. Blocks are allowed to occur multiple
3725times in the destination list, though this isn't particularly useful.
3726
3727This destination list is required so that dataflow analysis has an
3728accurate understanding of the CFG.
3729
3730Semantics:
3731""""""""""
3732
3733Control transfers to the block specified in the address argument. All
3734possible destination blocks must be listed in the label list, otherwise
3735this instruction has undefined behavior. This implies that jumps to
3736labels defined in other functions have undefined behavior as well.
3737
3738Implementation:
3739"""""""""""""""
3740
3741This is typically implemented with a jump through a register.
3742
3743Example:
3744""""""""
3745
3746.. code-block:: llvm
3747
3748 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3749
3750.. _i_invoke:
3751
3752'``invoke``' Instruction
3753^^^^^^^^^^^^^^^^^^^^^^^^
3754
3755Syntax:
3756"""""""
3757
3758::
3759
3760 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3761 to label <normal label> unwind label <exception label>
3762
3763Overview:
3764"""""""""
3765
3766The '``invoke``' instruction causes control to transfer to a specified
3767function, with the possibility of control flow transfer to either the
3768'``normal``' label or the '``exception``' label. If the callee function
3769returns with the "``ret``" instruction, control flow will return to the
3770"normal" label. If the callee (or any indirect callees) returns via the
3771":ref:`resume <i_resume>`" instruction or other exception handling
3772mechanism, control is interrupted and continued at the dynamically
3773nearest "exception" label.
3774
3775The '``exception``' label is a `landing
3776pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3777'``exception``' label is required to have the
3778":ref:`landingpad <i_landingpad>`" instruction, which contains the
3779information about the behavior of the program after unwinding happens,
3780as its first non-PHI instruction. The restrictions on the
3781"``landingpad``" instruction's tightly couples it to the "``invoke``"
3782instruction, so that the important information contained within the
3783"``landingpad``" instruction can't be lost through normal code motion.
3784
3785Arguments:
3786""""""""""
3787
3788This instruction requires several arguments:
3789
3790#. The optional "cconv" marker indicates which :ref:`calling
3791 convention <callingconv>` the call should use. If none is
3792 specified, the call defaults to using C calling conventions.
3793#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3794 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3795 are valid here.
3796#. '``ptr to function ty``': shall be the signature of the pointer to
3797 function value being invoked. In most cases, this is a direct
3798 function invocation, but indirect ``invoke``'s are just as possible,
3799 branching off an arbitrary pointer to function value.
3800#. '``function ptr val``': An LLVM value containing a pointer to a
3801 function to be invoked.
3802#. '``function args``': argument list whose types match the function
3803 signature argument types and parameter attributes. All arguments must
3804 be of :ref:`first class <t_firstclass>` type. If the function signature
3805 indicates the function accepts a variable number of arguments, the
3806 extra arguments can be specified.
3807#. '``normal label``': the label reached when the called function
3808 executes a '``ret``' instruction.
3809#. '``exception label``': the label reached when a callee returns via
3810 the :ref:`resume <i_resume>` instruction or other exception handling
3811 mechanism.
3812#. The optional :ref:`function attributes <fnattrs>` list. Only
3813 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3814 attributes are valid here.
3815
3816Semantics:
3817""""""""""
3818
3819This instruction is designed to operate as a standard '``call``'
3820instruction in most regards. The primary difference is that it
3821establishes an association with a label, which is used by the runtime
3822library to unwind the stack.
3823
3824This instruction is used in languages with destructors to ensure that
3825proper cleanup is performed in the case of either a ``longjmp`` or a
3826thrown exception. Additionally, this is important for implementation of
3827'``catch``' clauses in high-level languages that support them.
3828
3829For the purposes of the SSA form, the definition of the value returned
3830by the '``invoke``' instruction is deemed to occur on the edge from the
3831current block to the "normal" label. If the callee unwinds then no
3832return value is available.
3833
3834Example:
3835""""""""
3836
3837.. code-block:: llvm
3838
3839 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003840 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003841 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003842 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003843
3844.. _i_resume:
3845
3846'``resume``' Instruction
3847^^^^^^^^^^^^^^^^^^^^^^^^
3848
3849Syntax:
3850"""""""
3851
3852::
3853
3854 resume <type> <value>
3855
3856Overview:
3857"""""""""
3858
3859The '``resume``' instruction is a terminator instruction that has no
3860successors.
3861
3862Arguments:
3863""""""""""
3864
3865The '``resume``' instruction requires one argument, which must have the
3866same type as the result of any '``landingpad``' instruction in the same
3867function.
3868
3869Semantics:
3870""""""""""
3871
3872The '``resume``' instruction resumes propagation of an existing
3873(in-flight) exception whose unwinding was interrupted with a
3874:ref:`landingpad <i_landingpad>` instruction.
3875
3876Example:
3877""""""""
3878
3879.. code-block:: llvm
3880
3881 resume { i8*, i32 } %exn
3882
3883.. _i_unreachable:
3884
3885'``unreachable``' Instruction
3886^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3887
3888Syntax:
3889"""""""
3890
3891::
3892
3893 unreachable
3894
3895Overview:
3896"""""""""
3897
3898The '``unreachable``' instruction has no defined semantics. This
3899instruction is used to inform the optimizer that a particular portion of
3900the code is not reachable. This can be used to indicate that the code
3901after a no-return function cannot be reached, and other facts.
3902
3903Semantics:
3904""""""""""
3905
3906The '``unreachable``' instruction has no defined semantics.
3907
3908.. _binaryops:
3909
3910Binary Operations
3911-----------------
3912
3913Binary operators are used to do most of the computation in a program.
3914They require two operands of the same type, execute an operation on
3915them, and produce a single value. The operands might represent multiple
3916data, as is the case with the :ref:`vector <t_vector>` data type. The
3917result value has the same type as its operands.
3918
3919There are several different binary operators:
3920
3921.. _i_add:
3922
3923'``add``' Instruction
3924^^^^^^^^^^^^^^^^^^^^^
3925
3926Syntax:
3927"""""""
3928
3929::
3930
Tim Northover675a0962014-06-13 14:24:23 +00003931 <result> = add <ty> <op1>, <op2> ; yields ty:result
3932 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
3933 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
3934 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003935
3936Overview:
3937"""""""""
3938
3939The '``add``' instruction returns the sum of its two operands.
3940
3941Arguments:
3942""""""""""
3943
3944The two arguments to the '``add``' instruction must be
3945:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3946arguments must have identical types.
3947
3948Semantics:
3949""""""""""
3950
3951The value produced is the integer sum of the two operands.
3952
3953If the sum has unsigned overflow, the result returned is the
3954mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3955the result.
3956
3957Because LLVM integers use a two's complement representation, this
3958instruction is appropriate for both signed and unsigned integers.
3959
3960``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3961respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3962result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3963unsigned and/or signed overflow, respectively, occurs.
3964
3965Example:
3966""""""""
3967
3968.. code-block:: llvm
3969
Tim Northover675a0962014-06-13 14:24:23 +00003970 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00003971
3972.. _i_fadd:
3973
3974'``fadd``' Instruction
3975^^^^^^^^^^^^^^^^^^^^^^
3976
3977Syntax:
3978"""""""
3979
3980::
3981
Tim Northover675a0962014-06-13 14:24:23 +00003982 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003983
3984Overview:
3985"""""""""
3986
3987The '``fadd``' instruction returns the sum of its two operands.
3988
3989Arguments:
3990""""""""""
3991
3992The two arguments to the '``fadd``' instruction must be :ref:`floating
3993point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3994Both arguments must have identical types.
3995
3996Semantics:
3997""""""""""
3998
3999The value produced is the floating point sum of the two operands. This
4000instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4001which are optimization hints to enable otherwise unsafe floating point
4002optimizations:
4003
4004Example:
4005""""""""
4006
4007.. code-block:: llvm
4008
Tim Northover675a0962014-06-13 14:24:23 +00004009 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004010
4011'``sub``' Instruction
4012^^^^^^^^^^^^^^^^^^^^^
4013
4014Syntax:
4015"""""""
4016
4017::
4018
Tim Northover675a0962014-06-13 14:24:23 +00004019 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4020 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4021 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4022 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004023
4024Overview:
4025"""""""""
4026
4027The '``sub``' instruction returns the difference of its two operands.
4028
4029Note that the '``sub``' instruction is used to represent the '``neg``'
4030instruction present in most other intermediate representations.
4031
4032Arguments:
4033""""""""""
4034
4035The two arguments to the '``sub``' instruction must be
4036:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4037arguments must have identical types.
4038
4039Semantics:
4040""""""""""
4041
4042The value produced is the integer difference of the two operands.
4043
4044If the difference has unsigned overflow, the result returned is the
4045mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4046the result.
4047
4048Because LLVM integers use a two's complement representation, this
4049instruction is appropriate for both signed and unsigned integers.
4050
4051``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4052respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4053result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4054unsigned and/or signed overflow, respectively, occurs.
4055
4056Example:
4057""""""""
4058
4059.. code-block:: llvm
4060
Tim Northover675a0962014-06-13 14:24:23 +00004061 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4062 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004063
4064.. _i_fsub:
4065
4066'``fsub``' Instruction
4067^^^^^^^^^^^^^^^^^^^^^^
4068
4069Syntax:
4070"""""""
4071
4072::
4073
Tim Northover675a0962014-06-13 14:24:23 +00004074 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004075
4076Overview:
4077"""""""""
4078
4079The '``fsub``' instruction returns the difference of its two operands.
4080
4081Note that the '``fsub``' instruction is used to represent the '``fneg``'
4082instruction present in most other intermediate representations.
4083
4084Arguments:
4085""""""""""
4086
4087The two arguments to the '``fsub``' instruction must be :ref:`floating
4088point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4089Both arguments must have identical types.
4090
4091Semantics:
4092""""""""""
4093
4094The value produced is the floating point difference of the two operands.
4095This instruction can also take any number of :ref:`fast-math
4096flags <fastmath>`, which are optimization hints to enable otherwise
4097unsafe floating point optimizations:
4098
4099Example:
4100""""""""
4101
4102.. code-block:: llvm
4103
Tim Northover675a0962014-06-13 14:24:23 +00004104 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4105 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004106
4107'``mul``' Instruction
4108^^^^^^^^^^^^^^^^^^^^^
4109
4110Syntax:
4111"""""""
4112
4113::
4114
Tim Northover675a0962014-06-13 14:24:23 +00004115 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4116 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4117 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4118 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004119
4120Overview:
4121"""""""""
4122
4123The '``mul``' instruction returns the product of its two operands.
4124
4125Arguments:
4126""""""""""
4127
4128The two arguments to the '``mul``' instruction must be
4129:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4130arguments must have identical types.
4131
4132Semantics:
4133""""""""""
4134
4135The value produced is the integer product of the two operands.
4136
4137If the result of the multiplication has unsigned overflow, the result
4138returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4139bit width of the result.
4140
4141Because LLVM integers use a two's complement representation, and the
4142result is the same width as the operands, this instruction returns the
4143correct result for both signed and unsigned integers. If a full product
4144(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4145sign-extended or zero-extended as appropriate to the width of the full
4146product.
4147
4148``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4149respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4150result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4151unsigned and/or signed overflow, respectively, occurs.
4152
4153Example:
4154""""""""
4155
4156.. code-block:: llvm
4157
Tim Northover675a0962014-06-13 14:24:23 +00004158 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004159
4160.. _i_fmul:
4161
4162'``fmul``' Instruction
4163^^^^^^^^^^^^^^^^^^^^^^
4164
4165Syntax:
4166"""""""
4167
4168::
4169
Tim Northover675a0962014-06-13 14:24:23 +00004170 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004171
4172Overview:
4173"""""""""
4174
4175The '``fmul``' instruction returns the product of its two operands.
4176
4177Arguments:
4178""""""""""
4179
4180The two arguments to the '``fmul``' instruction must be :ref:`floating
4181point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4182Both arguments must have identical types.
4183
4184Semantics:
4185""""""""""
4186
4187The value produced is the floating point product of the two operands.
4188This instruction can also take any number of :ref:`fast-math
4189flags <fastmath>`, which are optimization hints to enable otherwise
4190unsafe floating point optimizations:
4191
4192Example:
4193""""""""
4194
4195.. code-block:: llvm
4196
Tim Northover675a0962014-06-13 14:24:23 +00004197 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004198
4199'``udiv``' Instruction
4200^^^^^^^^^^^^^^^^^^^^^^
4201
4202Syntax:
4203"""""""
4204
4205::
4206
Tim Northover675a0962014-06-13 14:24:23 +00004207 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4208 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004209
4210Overview:
4211"""""""""
4212
4213The '``udiv``' instruction returns the quotient of its two operands.
4214
4215Arguments:
4216""""""""""
4217
4218The two arguments to the '``udiv``' instruction must be
4219:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4220arguments must have identical types.
4221
4222Semantics:
4223""""""""""
4224
4225The value produced is the unsigned integer quotient of the two operands.
4226
4227Note that unsigned integer division and signed integer division are
4228distinct operations; for signed integer division, use '``sdiv``'.
4229
4230Division by zero leads to undefined behavior.
4231
4232If the ``exact`` keyword is present, the result value of the ``udiv`` is
4233a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4234such, "((a udiv exact b) mul b) == a").
4235
4236Example:
4237""""""""
4238
4239.. code-block:: llvm
4240
Tim Northover675a0962014-06-13 14:24:23 +00004241 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004242
4243'``sdiv``' Instruction
4244^^^^^^^^^^^^^^^^^^^^^^
4245
4246Syntax:
4247"""""""
4248
4249::
4250
Tim Northover675a0962014-06-13 14:24:23 +00004251 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4252 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004253
4254Overview:
4255"""""""""
4256
4257The '``sdiv``' instruction returns the quotient of its two operands.
4258
4259Arguments:
4260""""""""""
4261
4262The two arguments to the '``sdiv``' instruction must be
4263:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4264arguments must have identical types.
4265
4266Semantics:
4267""""""""""
4268
4269The value produced is the signed integer quotient of the two operands
4270rounded towards zero.
4271
4272Note that signed integer division and unsigned integer division are
4273distinct operations; for unsigned integer division, use '``udiv``'.
4274
4275Division by zero leads to undefined behavior. Overflow also leads to
4276undefined behavior; this is a rare case, but can occur, for example, by
4277doing a 32-bit division of -2147483648 by -1.
4278
4279If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4280a :ref:`poison value <poisonvalues>` if the result would be rounded.
4281
4282Example:
4283""""""""
4284
4285.. code-block:: llvm
4286
Tim Northover675a0962014-06-13 14:24:23 +00004287 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004288
4289.. _i_fdiv:
4290
4291'``fdiv``' Instruction
4292^^^^^^^^^^^^^^^^^^^^^^
4293
4294Syntax:
4295"""""""
4296
4297::
4298
Tim Northover675a0962014-06-13 14:24:23 +00004299 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004300
4301Overview:
4302"""""""""
4303
4304The '``fdiv``' instruction returns the quotient of its two operands.
4305
4306Arguments:
4307""""""""""
4308
4309The two arguments to the '``fdiv``' instruction must be :ref:`floating
4310point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4311Both arguments must have identical types.
4312
4313Semantics:
4314""""""""""
4315
4316The value produced is the floating point quotient of the two operands.
4317This instruction can also take any number of :ref:`fast-math
4318flags <fastmath>`, which are optimization hints to enable otherwise
4319unsafe floating point optimizations:
4320
4321Example:
4322""""""""
4323
4324.. code-block:: llvm
4325
Tim Northover675a0962014-06-13 14:24:23 +00004326 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004327
4328'``urem``' Instruction
4329^^^^^^^^^^^^^^^^^^^^^^
4330
4331Syntax:
4332"""""""
4333
4334::
4335
Tim Northover675a0962014-06-13 14:24:23 +00004336 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004337
4338Overview:
4339"""""""""
4340
4341The '``urem``' instruction returns the remainder from the unsigned
4342division of its two arguments.
4343
4344Arguments:
4345""""""""""
4346
4347The two arguments to the '``urem``' instruction must be
4348:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4349arguments must have identical types.
4350
4351Semantics:
4352""""""""""
4353
4354This instruction returns the unsigned integer *remainder* of a division.
4355This instruction always performs an unsigned division to get the
4356remainder.
4357
4358Note that unsigned integer remainder and signed integer remainder are
4359distinct operations; for signed integer remainder, use '``srem``'.
4360
4361Taking the remainder of a division by zero leads to undefined behavior.
4362
4363Example:
4364""""""""
4365
4366.. code-block:: llvm
4367
Tim Northover675a0962014-06-13 14:24:23 +00004368 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004369
4370'``srem``' Instruction
4371^^^^^^^^^^^^^^^^^^^^^^
4372
4373Syntax:
4374"""""""
4375
4376::
4377
Tim Northover675a0962014-06-13 14:24:23 +00004378 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004379
4380Overview:
4381"""""""""
4382
4383The '``srem``' instruction returns the remainder from the signed
4384division of its two operands. This instruction can also take
4385:ref:`vector <t_vector>` versions of the values in which case the elements
4386must be integers.
4387
4388Arguments:
4389""""""""""
4390
4391The two arguments to the '``srem``' instruction must be
4392:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4393arguments must have identical types.
4394
4395Semantics:
4396""""""""""
4397
4398This instruction returns the *remainder* of a division (where the result
4399is either zero or has the same sign as the dividend, ``op1``), not the
4400*modulo* operator (where the result is either zero or has the same sign
4401as the divisor, ``op2``) of a value. For more information about the
4402difference, see `The Math
4403Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4404table of how this is implemented in various languages, please see
4405`Wikipedia: modulo
4406operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4407
4408Note that signed integer remainder and unsigned integer remainder are
4409distinct operations; for unsigned integer remainder, use '``urem``'.
4410
4411Taking the remainder of a division by zero leads to undefined behavior.
4412Overflow also leads to undefined behavior; this is a rare case, but can
4413occur, for example, by taking the remainder of a 32-bit division of
4414-2147483648 by -1. (The remainder doesn't actually overflow, but this
4415rule lets srem be implemented using instructions that return both the
4416result of the division and the remainder.)
4417
4418Example:
4419""""""""
4420
4421.. code-block:: llvm
4422
Tim Northover675a0962014-06-13 14:24:23 +00004423 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004424
4425.. _i_frem:
4426
4427'``frem``' Instruction
4428^^^^^^^^^^^^^^^^^^^^^^
4429
4430Syntax:
4431"""""""
4432
4433::
4434
Tim Northover675a0962014-06-13 14:24:23 +00004435 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004436
4437Overview:
4438"""""""""
4439
4440The '``frem``' instruction returns the remainder from the division of
4441its two operands.
4442
4443Arguments:
4444""""""""""
4445
4446The two arguments to the '``frem``' instruction must be :ref:`floating
4447point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4448Both arguments must have identical types.
4449
4450Semantics:
4451""""""""""
4452
4453This instruction returns the *remainder* of a division. The remainder
4454has the same sign as the dividend. This instruction can also take any
4455number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4456to enable otherwise unsafe floating point optimizations:
4457
4458Example:
4459""""""""
4460
4461.. code-block:: llvm
4462
Tim Northover675a0962014-06-13 14:24:23 +00004463 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004464
4465.. _bitwiseops:
4466
4467Bitwise Binary Operations
4468-------------------------
4469
4470Bitwise binary operators are used to do various forms of bit-twiddling
4471in a program. They are generally very efficient instructions and can
4472commonly be strength reduced from other instructions. They require two
4473operands of the same type, execute an operation on them, and produce a
4474single value. The resulting value is the same type as its operands.
4475
4476'``shl``' Instruction
4477^^^^^^^^^^^^^^^^^^^^^
4478
4479Syntax:
4480"""""""
4481
4482::
4483
Tim Northover675a0962014-06-13 14:24:23 +00004484 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4485 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4486 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4487 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004488
4489Overview:
4490"""""""""
4491
4492The '``shl``' instruction returns the first operand shifted to the left
4493a specified number of bits.
4494
4495Arguments:
4496""""""""""
4497
4498Both arguments to the '``shl``' instruction must be the same
4499:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4500'``op2``' is treated as an unsigned value.
4501
4502Semantics:
4503""""""""""
4504
4505The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4506where ``n`` is the width of the result. If ``op2`` is (statically or
4507dynamically) negative or equal to or larger than the number of bits in
4508``op1``, the result is undefined. If the arguments are vectors, each
4509vector element of ``op1`` is shifted by the corresponding shift amount
4510in ``op2``.
4511
4512If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4513value <poisonvalues>` if it shifts out any non-zero bits. If the
4514``nsw`` keyword is present, then the shift produces a :ref:`poison
4515value <poisonvalues>` if it shifts out any bits that disagree with the
4516resultant sign bit. As such, NUW/NSW have the same semantics as they
4517would if the shift were expressed as a mul instruction with the same
4518nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4519
4520Example:
4521""""""""
4522
4523.. code-block:: llvm
4524
Tim Northover675a0962014-06-13 14:24:23 +00004525 <result> = shl i32 4, %var ; yields i32: 4 << %var
4526 <result> = shl i32 4, 2 ; yields i32: 16
4527 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004528 <result> = shl i32 1, 32 ; undefined
4529 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4530
4531'``lshr``' Instruction
4532^^^^^^^^^^^^^^^^^^^^^^
4533
4534Syntax:
4535"""""""
4536
4537::
4538
Tim Northover675a0962014-06-13 14:24:23 +00004539 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4540 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004541
4542Overview:
4543"""""""""
4544
4545The '``lshr``' instruction (logical shift right) returns the first
4546operand shifted to the right a specified number of bits with zero fill.
4547
4548Arguments:
4549""""""""""
4550
4551Both arguments to the '``lshr``' instruction must be the same
4552:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4553'``op2``' is treated as an unsigned value.
4554
4555Semantics:
4556""""""""""
4557
4558This instruction always performs a logical shift right operation. The
4559most significant bits of the result will be filled with zero bits after
4560the shift. If ``op2`` is (statically or dynamically) equal to or larger
4561than the number of bits in ``op1``, the result is undefined. If the
4562arguments are vectors, each vector element of ``op1`` is shifted by the
4563corresponding shift amount in ``op2``.
4564
4565If the ``exact`` keyword is present, the result value of the ``lshr`` is
4566a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4567non-zero.
4568
4569Example:
4570""""""""
4571
4572.. code-block:: llvm
4573
Tim Northover675a0962014-06-13 14:24:23 +00004574 <result> = lshr i32 4, 1 ; yields i32:result = 2
4575 <result> = lshr i32 4, 2 ; yields i32:result = 1
4576 <result> = lshr i8 4, 3 ; yields i8:result = 0
4577 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004578 <result> = lshr i32 1, 32 ; undefined
4579 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4580
4581'``ashr``' Instruction
4582^^^^^^^^^^^^^^^^^^^^^^
4583
4584Syntax:
4585"""""""
4586
4587::
4588
Tim Northover675a0962014-06-13 14:24:23 +00004589 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4590 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004591
4592Overview:
4593"""""""""
4594
4595The '``ashr``' instruction (arithmetic shift right) returns the first
4596operand shifted to the right a specified number of bits with sign
4597extension.
4598
4599Arguments:
4600""""""""""
4601
4602Both arguments to the '``ashr``' instruction must be the same
4603:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4604'``op2``' is treated as an unsigned value.
4605
4606Semantics:
4607""""""""""
4608
4609This instruction always performs an arithmetic shift right operation,
4610The most significant bits of the result will be filled with the sign bit
4611of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4612than the number of bits in ``op1``, the result is undefined. If the
4613arguments are vectors, each vector element of ``op1`` is shifted by the
4614corresponding shift amount in ``op2``.
4615
4616If the ``exact`` keyword is present, the result value of the ``ashr`` is
4617a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4618non-zero.
4619
4620Example:
4621""""""""
4622
4623.. code-block:: llvm
4624
Tim Northover675a0962014-06-13 14:24:23 +00004625 <result> = ashr i32 4, 1 ; yields i32:result = 2
4626 <result> = ashr i32 4, 2 ; yields i32:result = 1
4627 <result> = ashr i8 4, 3 ; yields i8:result = 0
4628 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004629 <result> = ashr i32 1, 32 ; undefined
4630 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4631
4632'``and``' Instruction
4633^^^^^^^^^^^^^^^^^^^^^
4634
4635Syntax:
4636"""""""
4637
4638::
4639
Tim Northover675a0962014-06-13 14:24:23 +00004640 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004641
4642Overview:
4643"""""""""
4644
4645The '``and``' instruction returns the bitwise logical and of its two
4646operands.
4647
4648Arguments:
4649""""""""""
4650
4651The two arguments to the '``and``' instruction must be
4652:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4653arguments must have identical types.
4654
4655Semantics:
4656""""""""""
4657
4658The truth table used for the '``and``' instruction is:
4659
4660+-----+-----+-----+
4661| In0 | In1 | Out |
4662+-----+-----+-----+
4663| 0 | 0 | 0 |
4664+-----+-----+-----+
4665| 0 | 1 | 0 |
4666+-----+-----+-----+
4667| 1 | 0 | 0 |
4668+-----+-----+-----+
4669| 1 | 1 | 1 |
4670+-----+-----+-----+
4671
4672Example:
4673""""""""
4674
4675.. code-block:: llvm
4676
Tim Northover675a0962014-06-13 14:24:23 +00004677 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4678 <result> = and i32 15, 40 ; yields i32:result = 8
4679 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004680
4681'``or``' Instruction
4682^^^^^^^^^^^^^^^^^^^^
4683
4684Syntax:
4685"""""""
4686
4687::
4688
Tim Northover675a0962014-06-13 14:24:23 +00004689 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004690
4691Overview:
4692"""""""""
4693
4694The '``or``' instruction returns the bitwise logical inclusive or of its
4695two operands.
4696
4697Arguments:
4698""""""""""
4699
4700The two arguments to the '``or``' instruction must be
4701:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4702arguments must have identical types.
4703
4704Semantics:
4705""""""""""
4706
4707The truth table used for the '``or``' instruction is:
4708
4709+-----+-----+-----+
4710| In0 | In1 | Out |
4711+-----+-----+-----+
4712| 0 | 0 | 0 |
4713+-----+-----+-----+
4714| 0 | 1 | 1 |
4715+-----+-----+-----+
4716| 1 | 0 | 1 |
4717+-----+-----+-----+
4718| 1 | 1 | 1 |
4719+-----+-----+-----+
4720
4721Example:
4722""""""""
4723
4724::
4725
Tim Northover675a0962014-06-13 14:24:23 +00004726 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4727 <result> = or i32 15, 40 ; yields i32:result = 47
4728 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004729
4730'``xor``' Instruction
4731^^^^^^^^^^^^^^^^^^^^^
4732
4733Syntax:
4734"""""""
4735
4736::
4737
Tim Northover675a0962014-06-13 14:24:23 +00004738 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004739
4740Overview:
4741"""""""""
4742
4743The '``xor``' instruction returns the bitwise logical exclusive or of
4744its two operands. The ``xor`` is used to implement the "one's
4745complement" operation, which is the "~" operator in C.
4746
4747Arguments:
4748""""""""""
4749
4750The two arguments to the '``xor``' instruction must be
4751:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4752arguments must have identical types.
4753
4754Semantics:
4755""""""""""
4756
4757The truth table used for the '``xor``' instruction is:
4758
4759+-----+-----+-----+
4760| In0 | In1 | Out |
4761+-----+-----+-----+
4762| 0 | 0 | 0 |
4763+-----+-----+-----+
4764| 0 | 1 | 1 |
4765+-----+-----+-----+
4766| 1 | 0 | 1 |
4767+-----+-----+-----+
4768| 1 | 1 | 0 |
4769+-----+-----+-----+
4770
4771Example:
4772""""""""
4773
4774.. code-block:: llvm
4775
Tim Northover675a0962014-06-13 14:24:23 +00004776 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4777 <result> = xor i32 15, 40 ; yields i32:result = 39
4778 <result> = xor i32 4, 8 ; yields i32:result = 12
4779 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004780
4781Vector Operations
4782-----------------
4783
4784LLVM supports several instructions to represent vector operations in a
4785target-independent manner. These instructions cover the element-access
4786and vector-specific operations needed to process vectors effectively.
4787While LLVM does directly support these vector operations, many
4788sophisticated algorithms will want to use target-specific intrinsics to
4789take full advantage of a specific target.
4790
4791.. _i_extractelement:
4792
4793'``extractelement``' Instruction
4794^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4795
4796Syntax:
4797"""""""
4798
4799::
4800
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004801 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004802
4803Overview:
4804"""""""""
4805
4806The '``extractelement``' instruction extracts a single scalar element
4807from a vector at a specified index.
4808
4809Arguments:
4810""""""""""
4811
4812The first operand of an '``extractelement``' instruction is a value of
4813:ref:`vector <t_vector>` type. The second operand is an index indicating
4814the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004815variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004816
4817Semantics:
4818""""""""""
4819
4820The result is a scalar of the same type as the element type of ``val``.
4821Its value is the value at position ``idx`` of ``val``. If ``idx``
4822exceeds the length of ``val``, the results are undefined.
4823
4824Example:
4825""""""""
4826
4827.. code-block:: llvm
4828
4829 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4830
4831.. _i_insertelement:
4832
4833'``insertelement``' Instruction
4834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4835
4836Syntax:
4837"""""""
4838
4839::
4840
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004841 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004842
4843Overview:
4844"""""""""
4845
4846The '``insertelement``' instruction inserts a scalar element into a
4847vector at a specified index.
4848
4849Arguments:
4850""""""""""
4851
4852The first operand of an '``insertelement``' instruction is a value of
4853:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4854type must equal the element type of the first operand. The third operand
4855is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004856index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004857
4858Semantics:
4859""""""""""
4860
4861The result is a vector of the same type as ``val``. Its element values
4862are those of ``val`` except at position ``idx``, where it gets the value
4863``elt``. If ``idx`` exceeds the length of ``val``, the results are
4864undefined.
4865
4866Example:
4867""""""""
4868
4869.. code-block:: llvm
4870
4871 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4872
4873.. _i_shufflevector:
4874
4875'``shufflevector``' Instruction
4876^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4877
4878Syntax:
4879"""""""
4880
4881::
4882
4883 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4884
4885Overview:
4886"""""""""
4887
4888The '``shufflevector``' instruction constructs a permutation of elements
4889from two input vectors, returning a vector with the same element type as
4890the input and length that is the same as the shuffle mask.
4891
4892Arguments:
4893""""""""""
4894
4895The first two operands of a '``shufflevector``' instruction are vectors
4896with the same type. The third argument is a shuffle mask whose element
4897type is always 'i32'. The result of the instruction is a vector whose
4898length is the same as the shuffle mask and whose element type is the
4899same as the element type of the first two operands.
4900
4901The shuffle mask operand is required to be a constant vector with either
4902constant integer or undef values.
4903
4904Semantics:
4905""""""""""
4906
4907The elements of the two input vectors are numbered from left to right
4908across both of the vectors. The shuffle mask operand specifies, for each
4909element of the result vector, which element of the two input vectors the
4910result element gets. The element selector may be undef (meaning "don't
4911care") and the second operand may be undef if performing a shuffle from
4912only one vector.
4913
4914Example:
4915""""""""
4916
4917.. code-block:: llvm
4918
4919 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4920 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4921 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4922 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4923 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4924 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4925 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4926 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4927
4928Aggregate Operations
4929--------------------
4930
4931LLVM supports several instructions for working with
4932:ref:`aggregate <t_aggregate>` values.
4933
4934.. _i_extractvalue:
4935
4936'``extractvalue``' Instruction
4937^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4938
4939Syntax:
4940"""""""
4941
4942::
4943
4944 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4945
4946Overview:
4947"""""""""
4948
4949The '``extractvalue``' instruction extracts the value of a member field
4950from an :ref:`aggregate <t_aggregate>` value.
4951
4952Arguments:
4953""""""""""
4954
4955The first operand of an '``extractvalue``' instruction is a value of
4956:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4957constant indices to specify which value to extract in a similar manner
4958as indices in a '``getelementptr``' instruction.
4959
4960The major differences to ``getelementptr`` indexing are:
4961
4962- Since the value being indexed is not a pointer, the first index is
4963 omitted and assumed to be zero.
4964- At least one index must be specified.
4965- Not only struct indices but also array indices must be in bounds.
4966
4967Semantics:
4968""""""""""
4969
4970The result is the value at the position in the aggregate specified by
4971the index operands.
4972
4973Example:
4974""""""""
4975
4976.. code-block:: llvm
4977
4978 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4979
4980.. _i_insertvalue:
4981
4982'``insertvalue``' Instruction
4983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4984
4985Syntax:
4986"""""""
4987
4988::
4989
4990 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4991
4992Overview:
4993"""""""""
4994
4995The '``insertvalue``' instruction inserts a value into a member field in
4996an :ref:`aggregate <t_aggregate>` value.
4997
4998Arguments:
4999""""""""""
5000
5001The first operand of an '``insertvalue``' instruction is a value of
5002:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5003a first-class value to insert. The following operands are constant
5004indices indicating the position at which to insert the value in a
5005similar manner as indices in a '``extractvalue``' instruction. The value
5006to insert must have the same type as the value identified by the
5007indices.
5008
5009Semantics:
5010""""""""""
5011
5012The result is an aggregate of the same type as ``val``. Its value is
5013that of ``val`` except that the value at the position specified by the
5014indices is that of ``elt``.
5015
5016Example:
5017""""""""
5018
5019.. code-block:: llvm
5020
5021 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5022 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
5023 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
5024
5025.. _memoryops:
5026
5027Memory Access and Addressing Operations
5028---------------------------------------
5029
5030A key design point of an SSA-based representation is how it represents
5031memory. In LLVM, no memory locations are in SSA form, which makes things
5032very simple. This section describes how to read, write, and allocate
5033memory in LLVM.
5034
5035.. _i_alloca:
5036
5037'``alloca``' Instruction
5038^^^^^^^^^^^^^^^^^^^^^^^^
5039
5040Syntax:
5041"""""""
5042
5043::
5044
Tim Northover675a0962014-06-13 14:24:23 +00005045 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005046
5047Overview:
5048"""""""""
5049
5050The '``alloca``' instruction allocates memory on the stack frame of the
5051currently executing function, to be automatically released when this
5052function returns to its caller. The object is always allocated in the
5053generic address space (address space zero).
5054
5055Arguments:
5056""""""""""
5057
5058The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5059bytes of memory on the runtime stack, returning a pointer of the
5060appropriate type to the program. If "NumElements" is specified, it is
5061the number of elements allocated, otherwise "NumElements" is defaulted
5062to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005063allocation is guaranteed to be aligned to at least that boundary. The
5064alignment may not be greater than ``1 << 29``. If not specified, or if
5065zero, the target can choose to align the allocation on any convenient
5066boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005067
5068'``type``' may be any sized type.
5069
5070Semantics:
5071""""""""""
5072
5073Memory is allocated; a pointer is returned. The operation is undefined
5074if there is insufficient stack space for the allocation. '``alloca``'d
5075memory is automatically released when the function returns. The
5076'``alloca``' instruction is commonly used to represent automatic
5077variables that must have an address available. When the function returns
5078(either with the ``ret`` or ``resume`` instructions), the memory is
5079reclaimed. Allocating zero bytes is legal, but the result is undefined.
5080The order in which memory is allocated (ie., which way the stack grows)
5081is not specified.
5082
5083Example:
5084""""""""
5085
5086.. code-block:: llvm
5087
Tim Northover675a0962014-06-13 14:24:23 +00005088 %ptr = alloca i32 ; yields i32*:ptr
5089 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5090 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5091 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005092
5093.. _i_load:
5094
5095'``load``' Instruction
5096^^^^^^^^^^^^^^^^^^^^^^
5097
5098Syntax:
5099"""""""
5100
5101::
5102
5103 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
5104 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5105 !<index> = !{ i32 1 }
5106
5107Overview:
5108"""""""""
5109
5110The '``load``' instruction is used to read from memory.
5111
5112Arguments:
5113""""""""""
5114
Eli Bendersky239a78b2013-04-17 20:17:08 +00005115The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005116from which to load. The pointer must point to a :ref:`first
5117class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5118then the optimizer is not allowed to modify the number or order of
5119execution of this ``load`` with other :ref:`volatile
5120operations <volatile>`.
5121
5122If the ``load`` is marked as ``atomic``, it takes an extra
5123:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5124``release`` and ``acq_rel`` orderings are not valid on ``load``
5125instructions. Atomic loads produce :ref:`defined <memmodel>` results
5126when they may see multiple atomic stores. The type of the pointee must
5127be an integer type whose bit width is a power of two greater than or
5128equal to eight and less than or equal to a target-specific size limit.
5129``align`` must be explicitly specified on atomic loads, and the load has
5130undefined behavior if the alignment is not set to a value which is at
5131least the size in bytes of the pointee. ``!nontemporal`` does not have
5132any defined semantics for atomic loads.
5133
5134The optional constant ``align`` argument specifies the alignment of the
5135operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005136or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005137alignment for the target. It is the responsibility of the code emitter
5138to ensure that the alignment information is correct. Overestimating the
5139alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005140may produce less efficient code. An alignment of 1 is always safe. The
5141maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005142
5143The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005144metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005145``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005146metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005147that this load is not expected to be reused in the cache. The code
5148generator may select special instructions to save cache bandwidth, such
5149as the ``MOVNT`` instruction on x86.
5150
5151The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005152metadata name ``<index>`` corresponding to a metadata node with no
5153entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00005154instruction tells the optimizer and code generator that this load
5155address points to memory which does not change value during program
5156execution. The optimizer may then move this load around, for example, by
5157hoisting it out of loops using loop invariant code motion.
5158
5159Semantics:
5160""""""""""
5161
5162The location of memory pointed to is loaded. If the value being loaded
5163is of scalar type then the number of bytes read does not exceed the
5164minimum number of bytes needed to hold all bits of the type. For
5165example, loading an ``i24`` reads at most three bytes. When loading a
5166value of a type like ``i20`` with a size that is not an integral number
5167of bytes, the result is undefined if the value was not originally
5168written using a store of the same type.
5169
5170Examples:
5171"""""""""
5172
5173.. code-block:: llvm
5174
Tim Northover675a0962014-06-13 14:24:23 +00005175 %ptr = alloca i32 ; yields i32*:ptr
5176 store i32 3, i32* %ptr ; yields void
5177 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005178
5179.. _i_store:
5180
5181'``store``' Instruction
5182^^^^^^^^^^^^^^^^^^^^^^^
5183
5184Syntax:
5185"""""""
5186
5187::
5188
Tim Northover675a0962014-06-13 14:24:23 +00005189 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5190 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005191
5192Overview:
5193"""""""""
5194
5195The '``store``' instruction is used to write to memory.
5196
5197Arguments:
5198""""""""""
5199
Eli Benderskyca380842013-04-17 17:17:20 +00005200There are two arguments to the ``store`` instruction: a value to store
5201and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005202operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005203the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005204then the optimizer is not allowed to modify the number or order of
5205execution of this ``store`` with other :ref:`volatile
5206operations <volatile>`.
5207
5208If the ``store`` is marked as ``atomic``, it takes an extra
5209:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5210``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5211instructions. Atomic loads produce :ref:`defined <memmodel>` results
5212when they may see multiple atomic stores. The type of the pointee must
5213be an integer type whose bit width is a power of two greater than or
5214equal to eight and less than or equal to a target-specific size limit.
5215``align`` must be explicitly specified on atomic stores, and the store
5216has undefined behavior if the alignment is not set to a value which is
5217at least the size in bytes of the pointee. ``!nontemporal`` does not
5218have any defined semantics for atomic stores.
5219
Eli Benderskyca380842013-04-17 17:17:20 +00005220The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005221operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005222or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005223alignment for the target. It is the responsibility of the code emitter
5224to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005225alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005226alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005227safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005228
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005229The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005230name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005231value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005232tells the optimizer and code generator that this load is not expected to
5233be reused in the cache. The code generator may select special
5234instructions to save cache bandwidth, such as the MOVNT instruction on
5235x86.
5236
5237Semantics:
5238""""""""""
5239
Eli Benderskyca380842013-04-17 17:17:20 +00005240The contents of memory are updated to contain ``<value>`` at the
5241location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005242of scalar type then the number of bytes written does not exceed the
5243minimum number of bytes needed to hold all bits of the type. For
5244example, storing an ``i24`` writes at most three bytes. When writing a
5245value of a type like ``i20`` with a size that is not an integral number
5246of bytes, it is unspecified what happens to the extra bits that do not
5247belong to the type, but they will typically be overwritten.
5248
5249Example:
5250""""""""
5251
5252.. code-block:: llvm
5253
Tim Northover675a0962014-06-13 14:24:23 +00005254 %ptr = alloca i32 ; yields i32*:ptr
5255 store i32 3, i32* %ptr ; yields void
5256 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005257
5258.. _i_fence:
5259
5260'``fence``' Instruction
5261^^^^^^^^^^^^^^^^^^^^^^^
5262
5263Syntax:
5264"""""""
5265
5266::
5267
Tim Northover675a0962014-06-13 14:24:23 +00005268 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005269
5270Overview:
5271"""""""""
5272
5273The '``fence``' instruction is used to introduce happens-before edges
5274between operations.
5275
5276Arguments:
5277""""""""""
5278
5279'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5280defines what *synchronizes-with* edges they add. They can only be given
5281``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5282
5283Semantics:
5284""""""""""
5285
5286A fence A which has (at least) ``release`` ordering semantics
5287*synchronizes with* a fence B with (at least) ``acquire`` ordering
5288semantics if and only if there exist atomic operations X and Y, both
5289operating on some atomic object M, such that A is sequenced before X, X
5290modifies M (either directly or through some side effect of a sequence
5291headed by X), Y is sequenced before B, and Y observes M. This provides a
5292*happens-before* dependency between A and B. Rather than an explicit
5293``fence``, one (but not both) of the atomic operations X or Y might
5294provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5295still *synchronize-with* the explicit ``fence`` and establish the
5296*happens-before* edge.
5297
5298A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5299``acquire`` and ``release`` semantics specified above, participates in
5300the global program order of other ``seq_cst`` operations and/or fences.
5301
5302The optional ":ref:`singlethread <singlethread>`" argument specifies
5303that the fence only synchronizes with other fences in the same thread.
5304(This is useful for interacting with signal handlers.)
5305
5306Example:
5307""""""""
5308
5309.. code-block:: llvm
5310
Tim Northover675a0962014-06-13 14:24:23 +00005311 fence acquire ; yields void
5312 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005313
5314.. _i_cmpxchg:
5315
5316'``cmpxchg``' Instruction
5317^^^^^^^^^^^^^^^^^^^^^^^^^
5318
5319Syntax:
5320"""""""
5321
5322::
5323
Tim Northover675a0962014-06-13 14:24:23 +00005324 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005325
5326Overview:
5327"""""""""
5328
5329The '``cmpxchg``' instruction is used to atomically modify memory. It
5330loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005331equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005332
5333Arguments:
5334""""""""""
5335
5336There are three arguments to the '``cmpxchg``' instruction: an address
5337to operate on, a value to compare to the value currently be at that
5338address, and a new value to place at that address if the compared values
5339are equal. The type of '<cmp>' must be an integer type whose bit width
5340is a power of two greater than or equal to eight and less than or equal
5341to a target-specific size limit. '<cmp>' and '<new>' must have the same
5342type, and the type of '<pointer>' must be a pointer to that type. If the
5343``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5344to modify the number or order of execution of this ``cmpxchg`` with
5345other :ref:`volatile operations <volatile>`.
5346
Tim Northovere94a5182014-03-11 10:48:52 +00005347The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005348``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5349must be at least ``monotonic``, the ordering constraint on failure must be no
5350stronger than that on success, and the failure ordering cannot be either
5351``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005352
5353The optional "``singlethread``" argument declares that the ``cmpxchg``
5354is only atomic with respect to code (usually signal handlers) running in
5355the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5356respect to all other code in the system.
5357
5358The pointer passed into cmpxchg must have alignment greater than or
5359equal to the size in memory of the operand.
5360
5361Semantics:
5362""""""""""
5363
Tim Northover420a2162014-06-13 14:24:07 +00005364The contents of memory at the location specified by the '``<pointer>``' operand
5365is read and compared to '``<cmp>``'; if the read value is the equal, the
5366'``<new>``' is written. The original value at the location is returned, together
5367with a flag indicating success (true) or failure (false).
5368
5369If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5370permitted: the operation may not write ``<new>`` even if the comparison
5371matched.
5372
5373If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5374if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005375
Tim Northovere94a5182014-03-11 10:48:52 +00005376A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5377identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5378load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005379
5380Example:
5381""""""""
5382
5383.. code-block:: llvm
5384
5385 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005386 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005387 br label %loop
5388
5389 loop:
5390 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5391 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005392 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005393 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5394 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005395 br i1 %success, label %done, label %loop
5396
5397 done:
5398 ...
5399
5400.. _i_atomicrmw:
5401
5402'``atomicrmw``' Instruction
5403^^^^^^^^^^^^^^^^^^^^^^^^^^^
5404
5405Syntax:
5406"""""""
5407
5408::
5409
Tim Northover675a0962014-06-13 14:24:23 +00005410 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005411
5412Overview:
5413"""""""""
5414
5415The '``atomicrmw``' instruction is used to atomically modify memory.
5416
5417Arguments:
5418""""""""""
5419
5420There are three arguments to the '``atomicrmw``' instruction: an
5421operation to apply, an address whose value to modify, an argument to the
5422operation. The operation must be one of the following keywords:
5423
5424- xchg
5425- add
5426- sub
5427- and
5428- nand
5429- or
5430- xor
5431- max
5432- min
5433- umax
5434- umin
5435
5436The type of '<value>' must be an integer type whose bit width is a power
5437of two greater than or equal to eight and less than or equal to a
5438target-specific size limit. The type of the '``<pointer>``' operand must
5439be a pointer to that type. If the ``atomicrmw`` is marked as
5440``volatile``, then the optimizer is not allowed to modify the number or
5441order of execution of this ``atomicrmw`` with other :ref:`volatile
5442operations <volatile>`.
5443
5444Semantics:
5445""""""""""
5446
5447The contents of memory at the location specified by the '``<pointer>``'
5448operand are atomically read, modified, and written back. The original
5449value at the location is returned. The modification is specified by the
5450operation argument:
5451
5452- xchg: ``*ptr = val``
5453- add: ``*ptr = *ptr + val``
5454- sub: ``*ptr = *ptr - val``
5455- and: ``*ptr = *ptr & val``
5456- nand: ``*ptr = ~(*ptr & val)``
5457- or: ``*ptr = *ptr | val``
5458- xor: ``*ptr = *ptr ^ val``
5459- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5460- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5461- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5462 comparison)
5463- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5464 comparison)
5465
5466Example:
5467""""""""
5468
5469.. code-block:: llvm
5470
Tim Northover675a0962014-06-13 14:24:23 +00005471 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005472
5473.. _i_getelementptr:
5474
5475'``getelementptr``' Instruction
5476^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5477
5478Syntax:
5479"""""""
5480
5481::
5482
5483 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5484 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5485 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5486
5487Overview:
5488"""""""""
5489
5490The '``getelementptr``' instruction is used to get the address of a
5491subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5492address calculation only and does not access memory.
5493
5494Arguments:
5495""""""""""
5496
5497The first argument is always a pointer or a vector of pointers, and
5498forms the basis of the calculation. The remaining arguments are indices
5499that indicate which of the elements of the aggregate object are indexed.
5500The interpretation of each index is dependent on the type being indexed
5501into. The first index always indexes the pointer value given as the
5502first argument, the second index indexes a value of the type pointed to
5503(not necessarily the value directly pointed to, since the first index
5504can be non-zero), etc. The first type indexed into must be a pointer
5505value, subsequent types can be arrays, vectors, and structs. Note that
5506subsequent types being indexed into can never be pointers, since that
5507would require loading the pointer before continuing calculation.
5508
5509The type of each index argument depends on the type it is indexing into.
5510When indexing into a (optionally packed) structure, only ``i32`` integer
5511**constants** are allowed (when using a vector of indices they must all
5512be the **same** ``i32`` integer constant). When indexing into an array,
5513pointer or vector, integers of any width are allowed, and they are not
5514required to be constant. These integers are treated as signed values
5515where relevant.
5516
5517For example, let's consider a C code fragment and how it gets compiled
5518to LLVM:
5519
5520.. code-block:: c
5521
5522 struct RT {
5523 char A;
5524 int B[10][20];
5525 char C;
5526 };
5527 struct ST {
5528 int X;
5529 double Y;
5530 struct RT Z;
5531 };
5532
5533 int *foo(struct ST *s) {
5534 return &s[1].Z.B[5][13];
5535 }
5536
5537The LLVM code generated by Clang is:
5538
5539.. code-block:: llvm
5540
5541 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5542 %struct.ST = type { i32, double, %struct.RT }
5543
5544 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5545 entry:
5546 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5547 ret i32* %arrayidx
5548 }
5549
5550Semantics:
5551""""""""""
5552
5553In the example above, the first index is indexing into the
5554'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5555= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5556indexes into the third element of the structure, yielding a
5557'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5558structure. The third index indexes into the second element of the
5559structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5560dimensions of the array are subscripted into, yielding an '``i32``'
5561type. The '``getelementptr``' instruction returns a pointer to this
5562element, thus computing a value of '``i32*``' type.
5563
5564Note that it is perfectly legal to index partially through a structure,
5565returning a pointer to an inner element. Because of this, the LLVM code
5566for the given testcase is equivalent to:
5567
5568.. code-block:: llvm
5569
5570 define i32* @foo(%struct.ST* %s) {
5571 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5572 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5573 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5574 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5575 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5576 ret i32* %t5
5577 }
5578
5579If the ``inbounds`` keyword is present, the result value of the
5580``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5581pointer is not an *in bounds* address of an allocated object, or if any
5582of the addresses that would be formed by successive addition of the
5583offsets implied by the indices to the base address with infinitely
5584precise signed arithmetic are not an *in bounds* address of that
5585allocated object. The *in bounds* addresses for an allocated object are
5586all the addresses that point into the object, plus the address one byte
5587past the end. In cases where the base is a vector of pointers the
5588``inbounds`` keyword applies to each of the computations element-wise.
5589
5590If the ``inbounds`` keyword is not present, the offsets are added to the
5591base address with silently-wrapping two's complement arithmetic. If the
5592offsets have a different width from the pointer, they are sign-extended
5593or truncated to the width of the pointer. The result value of the
5594``getelementptr`` may be outside the object pointed to by the base
5595pointer. The result value may not necessarily be used to access memory
5596though, even if it happens to point into allocated storage. See the
5597:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5598information.
5599
5600The getelementptr instruction is often confusing. For some more insight
5601into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5602
5603Example:
5604""""""""
5605
5606.. code-block:: llvm
5607
5608 ; yields [12 x i8]*:aptr
5609 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5610 ; yields i8*:vptr
5611 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5612 ; yields i8*:eptr
5613 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5614 ; yields i32*:iptr
5615 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5616
5617In cases where the pointer argument is a vector of pointers, each index
5618must be a vector with the same number of elements. For example:
5619
5620.. code-block:: llvm
5621
5622 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5623
5624Conversion Operations
5625---------------------
5626
5627The instructions in this category are the conversion instructions
5628(casting) which all take a single operand and a type. They perform
5629various bit conversions on the operand.
5630
5631'``trunc .. to``' Instruction
5632^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5633
5634Syntax:
5635"""""""
5636
5637::
5638
5639 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5640
5641Overview:
5642"""""""""
5643
5644The '``trunc``' instruction truncates its operand to the type ``ty2``.
5645
5646Arguments:
5647""""""""""
5648
5649The '``trunc``' instruction takes a value to trunc, and a type to trunc
5650it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5651of the same number of integers. The bit size of the ``value`` must be
5652larger than the bit size of the destination type, ``ty2``. Equal sized
5653types are not allowed.
5654
5655Semantics:
5656""""""""""
5657
5658The '``trunc``' instruction truncates the high order bits in ``value``
5659and converts the remaining bits to ``ty2``. Since the source size must
5660be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5661It will always truncate bits.
5662
5663Example:
5664""""""""
5665
5666.. code-block:: llvm
5667
5668 %X = trunc i32 257 to i8 ; yields i8:1
5669 %Y = trunc i32 123 to i1 ; yields i1:true
5670 %Z = trunc i32 122 to i1 ; yields i1:false
5671 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5672
5673'``zext .. to``' Instruction
5674^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5675
5676Syntax:
5677"""""""
5678
5679::
5680
5681 <result> = zext <ty> <value> to <ty2> ; yields ty2
5682
5683Overview:
5684"""""""""
5685
5686The '``zext``' instruction zero extends its operand to type ``ty2``.
5687
5688Arguments:
5689""""""""""
5690
5691The '``zext``' instruction takes a value to cast, and a type to cast it
5692to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5693the same number of integers. The bit size of the ``value`` must be
5694smaller than the bit size of the destination type, ``ty2``.
5695
5696Semantics:
5697""""""""""
5698
5699The ``zext`` fills the high order bits of the ``value`` with zero bits
5700until it reaches the size of the destination type, ``ty2``.
5701
5702When zero extending from i1, the result will always be either 0 or 1.
5703
5704Example:
5705""""""""
5706
5707.. code-block:: llvm
5708
5709 %X = zext i32 257 to i64 ; yields i64:257
5710 %Y = zext i1 true to i32 ; yields i32:1
5711 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5712
5713'``sext .. to``' Instruction
5714^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5715
5716Syntax:
5717"""""""
5718
5719::
5720
5721 <result> = sext <ty> <value> to <ty2> ; yields ty2
5722
5723Overview:
5724"""""""""
5725
5726The '``sext``' sign extends ``value`` to the type ``ty2``.
5727
5728Arguments:
5729""""""""""
5730
5731The '``sext``' instruction takes a value to cast, and a type to cast it
5732to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5733the same number of integers. The bit size of the ``value`` must be
5734smaller than the bit size of the destination type, ``ty2``.
5735
5736Semantics:
5737""""""""""
5738
5739The '``sext``' instruction performs a sign extension by copying the sign
5740bit (highest order bit) of the ``value`` until it reaches the bit size
5741of the type ``ty2``.
5742
5743When sign extending from i1, the extension always results in -1 or 0.
5744
5745Example:
5746""""""""
5747
5748.. code-block:: llvm
5749
5750 %X = sext i8 -1 to i16 ; yields i16 :65535
5751 %Y = sext i1 true to i32 ; yields i32:-1
5752 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5753
5754'``fptrunc .. to``' Instruction
5755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5756
5757Syntax:
5758"""""""
5759
5760::
5761
5762 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5763
5764Overview:
5765"""""""""
5766
5767The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5768
5769Arguments:
5770""""""""""
5771
5772The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5773value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5774The size of ``value`` must be larger than the size of ``ty2``. This
5775implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5776
5777Semantics:
5778""""""""""
5779
5780The '``fptrunc``' instruction truncates a ``value`` from a larger
5781:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5782point <t_floating>` type. If the value cannot fit within the
5783destination type, ``ty2``, then the results are undefined.
5784
5785Example:
5786""""""""
5787
5788.. code-block:: llvm
5789
5790 %X = fptrunc double 123.0 to float ; yields float:123.0
5791 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5792
5793'``fpext .. to``' Instruction
5794^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5795
5796Syntax:
5797"""""""
5798
5799::
5800
5801 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5802
5803Overview:
5804"""""""""
5805
5806The '``fpext``' extends a floating point ``value`` to a larger floating
5807point value.
5808
5809Arguments:
5810""""""""""
5811
5812The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5813``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5814to. The source type must be smaller than the destination type.
5815
5816Semantics:
5817""""""""""
5818
5819The '``fpext``' instruction extends the ``value`` from a smaller
5820:ref:`floating point <t_floating>` type to a larger :ref:`floating
5821point <t_floating>` type. The ``fpext`` cannot be used to make a
5822*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5823*no-op cast* for a floating point cast.
5824
5825Example:
5826""""""""
5827
5828.. code-block:: llvm
5829
5830 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5831 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5832
5833'``fptoui .. to``' Instruction
5834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5835
5836Syntax:
5837"""""""
5838
5839::
5840
5841 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5842
5843Overview:
5844"""""""""
5845
5846The '``fptoui``' converts a floating point ``value`` to its unsigned
5847integer equivalent of type ``ty2``.
5848
5849Arguments:
5850""""""""""
5851
5852The '``fptoui``' instruction takes a value to cast, which must be a
5853scalar or vector :ref:`floating point <t_floating>` value, and a type to
5854cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5855``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5856type with the same number of elements as ``ty``
5857
5858Semantics:
5859""""""""""
5860
5861The '``fptoui``' instruction converts its :ref:`floating
5862point <t_floating>` operand into the nearest (rounding towards zero)
5863unsigned integer value. If the value cannot fit in ``ty2``, the results
5864are undefined.
5865
5866Example:
5867""""""""
5868
5869.. code-block:: llvm
5870
5871 %X = fptoui double 123.0 to i32 ; yields i32:123
5872 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5873 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5874
5875'``fptosi .. to``' Instruction
5876^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5877
5878Syntax:
5879"""""""
5880
5881::
5882
5883 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5884
5885Overview:
5886"""""""""
5887
5888The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5889``value`` to type ``ty2``.
5890
5891Arguments:
5892""""""""""
5893
5894The '``fptosi``' instruction takes a value to cast, which must be a
5895scalar or vector :ref:`floating point <t_floating>` value, and a type to
5896cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5897``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5898type with the same number of elements as ``ty``
5899
5900Semantics:
5901""""""""""
5902
5903The '``fptosi``' instruction converts its :ref:`floating
5904point <t_floating>` operand into the nearest (rounding towards zero)
5905signed integer value. If the value cannot fit in ``ty2``, the results
5906are undefined.
5907
5908Example:
5909""""""""
5910
5911.. code-block:: llvm
5912
5913 %X = fptosi double -123.0 to i32 ; yields i32:-123
5914 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5915 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5916
5917'``uitofp .. to``' Instruction
5918^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5919
5920Syntax:
5921"""""""
5922
5923::
5924
5925 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5926
5927Overview:
5928"""""""""
5929
5930The '``uitofp``' instruction regards ``value`` as an unsigned integer
5931and converts that value to the ``ty2`` type.
5932
5933Arguments:
5934""""""""""
5935
5936The '``uitofp``' instruction takes a value to cast, which must be a
5937scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5938``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5939``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5940type with the same number of elements as ``ty``
5941
5942Semantics:
5943""""""""""
5944
5945The '``uitofp``' instruction interprets its operand as an unsigned
5946integer quantity and converts it to the corresponding floating point
5947value. If the value cannot fit in the floating point value, the results
5948are undefined.
5949
5950Example:
5951""""""""
5952
5953.. code-block:: llvm
5954
5955 %X = uitofp i32 257 to float ; yields float:257.0
5956 %Y = uitofp i8 -1 to double ; yields double:255.0
5957
5958'``sitofp .. to``' Instruction
5959^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5960
5961Syntax:
5962"""""""
5963
5964::
5965
5966 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5967
5968Overview:
5969"""""""""
5970
5971The '``sitofp``' instruction regards ``value`` as a signed integer and
5972converts that value to the ``ty2`` type.
5973
5974Arguments:
5975""""""""""
5976
5977The '``sitofp``' instruction takes a value to cast, which must be a
5978scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5979``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5980``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5981type with the same number of elements as ``ty``
5982
5983Semantics:
5984""""""""""
5985
5986The '``sitofp``' instruction interprets its operand as a signed integer
5987quantity and converts it to the corresponding floating point value. If
5988the value cannot fit in the floating point value, the results are
5989undefined.
5990
5991Example:
5992""""""""
5993
5994.. code-block:: llvm
5995
5996 %X = sitofp i32 257 to float ; yields float:257.0
5997 %Y = sitofp i8 -1 to double ; yields double:-1.0
5998
5999.. _i_ptrtoint:
6000
6001'``ptrtoint .. to``' Instruction
6002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6003
6004Syntax:
6005"""""""
6006
6007::
6008
6009 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6010
6011Overview:
6012"""""""""
6013
6014The '``ptrtoint``' instruction converts the pointer or a vector of
6015pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6016
6017Arguments:
6018""""""""""
6019
6020The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6021a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6022type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6023a vector of integers type.
6024
6025Semantics:
6026""""""""""
6027
6028The '``ptrtoint``' instruction converts ``value`` to integer type
6029``ty2`` by interpreting the pointer value as an integer and either
6030truncating or zero extending that value to the size of the integer type.
6031If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6032``value`` is larger than ``ty2`` then a truncation is done. If they are
6033the same size, then nothing is done (*no-op cast*) other than a type
6034change.
6035
6036Example:
6037""""""""
6038
6039.. code-block:: llvm
6040
6041 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6042 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6043 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6044
6045.. _i_inttoptr:
6046
6047'``inttoptr .. to``' Instruction
6048^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6049
6050Syntax:
6051"""""""
6052
6053::
6054
6055 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6056
6057Overview:
6058"""""""""
6059
6060The '``inttoptr``' instruction converts an integer ``value`` to a
6061pointer type, ``ty2``.
6062
6063Arguments:
6064""""""""""
6065
6066The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6067cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6068type.
6069
6070Semantics:
6071""""""""""
6072
6073The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6074applying either a zero extension or a truncation depending on the size
6075of the integer ``value``. If ``value`` is larger than the size of a
6076pointer then a truncation is done. If ``value`` is smaller than the size
6077of a pointer then a zero extension is done. If they are the same size,
6078nothing is done (*no-op cast*).
6079
6080Example:
6081""""""""
6082
6083.. code-block:: llvm
6084
6085 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6086 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6087 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6088 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6089
6090.. _i_bitcast:
6091
6092'``bitcast .. to``' Instruction
6093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6094
6095Syntax:
6096"""""""
6097
6098::
6099
6100 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6101
6102Overview:
6103"""""""""
6104
6105The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6106changing any bits.
6107
6108Arguments:
6109""""""""""
6110
6111The '``bitcast``' instruction takes a value to cast, which must be a
6112non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006113also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6114bit sizes of ``value`` and the destination type, ``ty2``, must be
6115identical. If the source type is a pointer, the destination type must
6116also be a pointer of the same size. This instruction supports bitwise
6117conversion of vectors to integers and to vectors of other types (as
6118long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006119
6120Semantics:
6121""""""""""
6122
Matt Arsenault24b49c42013-07-31 17:49:08 +00006123The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6124is always a *no-op cast* because no bits change with this
6125conversion. The conversion is done as if the ``value`` had been stored
6126to memory and read back as type ``ty2``. Pointer (or vector of
6127pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006128pointers) types with the same address space through this instruction.
6129To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6130or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006131
6132Example:
6133""""""""
6134
6135.. code-block:: llvm
6136
6137 %X = bitcast i8 255 to i8 ; yields i8 :-1
6138 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6139 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6140 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6141
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006142.. _i_addrspacecast:
6143
6144'``addrspacecast .. to``' Instruction
6145^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6146
6147Syntax:
6148"""""""
6149
6150::
6151
6152 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6153
6154Overview:
6155"""""""""
6156
6157The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6158address space ``n`` to type ``pty2`` in address space ``m``.
6159
6160Arguments:
6161""""""""""
6162
6163The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6164to cast and a pointer type to cast it to, which must have a different
6165address space.
6166
6167Semantics:
6168""""""""""
6169
6170The '``addrspacecast``' instruction converts the pointer value
6171``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006172value modification, depending on the target and the address space
6173pair. Pointer conversions within the same address space must be
6174performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006175conversion is legal then both result and operand refer to the same memory
6176location.
6177
6178Example:
6179""""""""
6180
6181.. code-block:: llvm
6182
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006183 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6184 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6185 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006186
Sean Silvab084af42012-12-07 10:36:55 +00006187.. _otherops:
6188
6189Other Operations
6190----------------
6191
6192The instructions in this category are the "miscellaneous" instructions,
6193which defy better classification.
6194
6195.. _i_icmp:
6196
6197'``icmp``' Instruction
6198^^^^^^^^^^^^^^^^^^^^^^
6199
6200Syntax:
6201"""""""
6202
6203::
6204
Tim Northover675a0962014-06-13 14:24:23 +00006205 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006206
6207Overview:
6208"""""""""
6209
6210The '``icmp``' instruction returns a boolean value or a vector of
6211boolean values based on comparison of its two integer, integer vector,
6212pointer, or pointer vector operands.
6213
6214Arguments:
6215""""""""""
6216
6217The '``icmp``' instruction takes three operands. The first operand is
6218the condition code indicating the kind of comparison to perform. It is
6219not a value, just a keyword. The possible condition code are:
6220
6221#. ``eq``: equal
6222#. ``ne``: not equal
6223#. ``ugt``: unsigned greater than
6224#. ``uge``: unsigned greater or equal
6225#. ``ult``: unsigned less than
6226#. ``ule``: unsigned less or equal
6227#. ``sgt``: signed greater than
6228#. ``sge``: signed greater or equal
6229#. ``slt``: signed less than
6230#. ``sle``: signed less or equal
6231
6232The remaining two arguments must be :ref:`integer <t_integer>` or
6233:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6234must also be identical types.
6235
6236Semantics:
6237""""""""""
6238
6239The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6240code given as ``cond``. The comparison performed always yields either an
6241:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6242
6243#. ``eq``: yields ``true`` if the operands are equal, ``false``
6244 otherwise. No sign interpretation is necessary or performed.
6245#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6246 otherwise. No sign interpretation is necessary or performed.
6247#. ``ugt``: interprets the operands as unsigned values and yields
6248 ``true`` if ``op1`` is greater than ``op2``.
6249#. ``uge``: interprets the operands as unsigned values and yields
6250 ``true`` if ``op1`` is greater than or equal to ``op2``.
6251#. ``ult``: interprets the operands as unsigned values and yields
6252 ``true`` if ``op1`` is less than ``op2``.
6253#. ``ule``: interprets the operands as unsigned values and yields
6254 ``true`` if ``op1`` is less than or equal to ``op2``.
6255#. ``sgt``: interprets the operands as signed values and yields ``true``
6256 if ``op1`` is greater than ``op2``.
6257#. ``sge``: interprets the operands as signed values and yields ``true``
6258 if ``op1`` is greater than or equal to ``op2``.
6259#. ``slt``: interprets the operands as signed values and yields ``true``
6260 if ``op1`` is less than ``op2``.
6261#. ``sle``: interprets the operands as signed values and yields ``true``
6262 if ``op1`` is less than or equal to ``op2``.
6263
6264If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6265are compared as if they were integers.
6266
6267If the operands are integer vectors, then they are compared element by
6268element. The result is an ``i1`` vector with the same number of elements
6269as the values being compared. Otherwise, the result is an ``i1``.
6270
6271Example:
6272""""""""
6273
6274.. code-block:: llvm
6275
6276 <result> = icmp eq i32 4, 5 ; yields: result=false
6277 <result> = icmp ne float* %X, %X ; yields: result=false
6278 <result> = icmp ult i16 4, 5 ; yields: result=true
6279 <result> = icmp sgt i16 4, 5 ; yields: result=false
6280 <result> = icmp ule i16 -4, 5 ; yields: result=false
6281 <result> = icmp sge i16 4, 5 ; yields: result=false
6282
6283Note that the code generator does not yet support vector types with the
6284``icmp`` instruction.
6285
6286.. _i_fcmp:
6287
6288'``fcmp``' Instruction
6289^^^^^^^^^^^^^^^^^^^^^^
6290
6291Syntax:
6292"""""""
6293
6294::
6295
Tim Northover675a0962014-06-13 14:24:23 +00006296 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006297
6298Overview:
6299"""""""""
6300
6301The '``fcmp``' instruction returns a boolean value or vector of boolean
6302values based on comparison of its operands.
6303
6304If the operands are floating point scalars, then the result type is a
6305boolean (:ref:`i1 <t_integer>`).
6306
6307If the operands are floating point vectors, then the result type is a
6308vector of boolean with the same number of elements as the operands being
6309compared.
6310
6311Arguments:
6312""""""""""
6313
6314The '``fcmp``' instruction takes three operands. The first operand is
6315the condition code indicating the kind of comparison to perform. It is
6316not a value, just a keyword. The possible condition code are:
6317
6318#. ``false``: no comparison, always returns false
6319#. ``oeq``: ordered and equal
6320#. ``ogt``: ordered and greater than
6321#. ``oge``: ordered and greater than or equal
6322#. ``olt``: ordered and less than
6323#. ``ole``: ordered and less than or equal
6324#. ``one``: ordered and not equal
6325#. ``ord``: ordered (no nans)
6326#. ``ueq``: unordered or equal
6327#. ``ugt``: unordered or greater than
6328#. ``uge``: unordered or greater than or equal
6329#. ``ult``: unordered or less than
6330#. ``ule``: unordered or less than or equal
6331#. ``une``: unordered or not equal
6332#. ``uno``: unordered (either nans)
6333#. ``true``: no comparison, always returns true
6334
6335*Ordered* means that neither operand is a QNAN while *unordered* means
6336that either operand may be a QNAN.
6337
6338Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6339point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6340type. They must have identical types.
6341
6342Semantics:
6343""""""""""
6344
6345The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6346condition code given as ``cond``. If the operands are vectors, then the
6347vectors are compared element by element. Each comparison performed
6348always yields an :ref:`i1 <t_integer>` result, as follows:
6349
6350#. ``false``: always yields ``false``, regardless of operands.
6351#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6352 is equal to ``op2``.
6353#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6354 is greater than ``op2``.
6355#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6356 is greater than or equal to ``op2``.
6357#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6358 is less than ``op2``.
6359#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6360 is less than or equal to ``op2``.
6361#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6362 is not equal to ``op2``.
6363#. ``ord``: yields ``true`` if both operands are not a QNAN.
6364#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6365 equal to ``op2``.
6366#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6367 greater than ``op2``.
6368#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6369 greater than or equal to ``op2``.
6370#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6371 less than ``op2``.
6372#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6373 less than or equal to ``op2``.
6374#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6375 not equal to ``op2``.
6376#. ``uno``: yields ``true`` if either operand is a QNAN.
6377#. ``true``: always yields ``true``, regardless of operands.
6378
6379Example:
6380""""""""
6381
6382.. code-block:: llvm
6383
6384 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6385 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6386 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6387 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6388
6389Note that the code generator does not yet support vector types with the
6390``fcmp`` instruction.
6391
6392.. _i_phi:
6393
6394'``phi``' Instruction
6395^^^^^^^^^^^^^^^^^^^^^
6396
6397Syntax:
6398"""""""
6399
6400::
6401
6402 <result> = phi <ty> [ <val0>, <label0>], ...
6403
6404Overview:
6405"""""""""
6406
6407The '``phi``' instruction is used to implement the φ node in the SSA
6408graph representing the function.
6409
6410Arguments:
6411""""""""""
6412
6413The type of the incoming values is specified with the first type field.
6414After this, the '``phi``' instruction takes a list of pairs as
6415arguments, with one pair for each predecessor basic block of the current
6416block. Only values of :ref:`first class <t_firstclass>` type may be used as
6417the value arguments to the PHI node. Only labels may be used as the
6418label arguments.
6419
6420There must be no non-phi instructions between the start of a basic block
6421and the PHI instructions: i.e. PHI instructions must be first in a basic
6422block.
6423
6424For the purposes of the SSA form, the use of each incoming value is
6425deemed to occur on the edge from the corresponding predecessor block to
6426the current block (but after any definition of an '``invoke``'
6427instruction's return value on the same edge).
6428
6429Semantics:
6430""""""""""
6431
6432At runtime, the '``phi``' instruction logically takes on the value
6433specified by the pair corresponding to the predecessor basic block that
6434executed just prior to the current block.
6435
6436Example:
6437""""""""
6438
6439.. code-block:: llvm
6440
6441 Loop: ; Infinite loop that counts from 0 on up...
6442 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6443 %nextindvar = add i32 %indvar, 1
6444 br label %Loop
6445
6446.. _i_select:
6447
6448'``select``' Instruction
6449^^^^^^^^^^^^^^^^^^^^^^^^
6450
6451Syntax:
6452"""""""
6453
6454::
6455
6456 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6457
6458 selty is either i1 or {<N x i1>}
6459
6460Overview:
6461"""""""""
6462
6463The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006464condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006465
6466Arguments:
6467""""""""""
6468
6469The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6470values indicating the condition, and two values of the same :ref:`first
6471class <t_firstclass>` type. If the val1/val2 are vectors and the
6472condition is a scalar, then entire vectors are selected, not individual
6473elements.
6474
6475Semantics:
6476""""""""""
6477
6478If the condition is an i1 and it evaluates to 1, the instruction returns
6479the first value argument; otherwise, it returns the second value
6480argument.
6481
6482If the condition is a vector of i1, then the value arguments must be
6483vectors of the same size, and the selection is done element by element.
6484
6485Example:
6486""""""""
6487
6488.. code-block:: llvm
6489
6490 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6491
6492.. _i_call:
6493
6494'``call``' Instruction
6495^^^^^^^^^^^^^^^^^^^^^^
6496
6497Syntax:
6498"""""""
6499
6500::
6501
Reid Kleckner5772b772014-04-24 20:14:34 +00006502 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006503
6504Overview:
6505"""""""""
6506
6507The '``call``' instruction represents a simple function call.
6508
6509Arguments:
6510""""""""""
6511
6512This instruction requires several arguments:
6513
Reid Kleckner5772b772014-04-24 20:14:34 +00006514#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6515 should perform tail call optimization. The ``tail`` marker is a hint that
6516 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6517 means that the call must be tail call optimized in order for the program to
6518 be correct. The ``musttail`` marker provides these guarantees:
6519
6520 #. The call will not cause unbounded stack growth if it is part of a
6521 recursive cycle in the call graph.
6522 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6523 forwarded in place.
6524
6525 Both markers imply that the callee does not access allocas or varargs from
6526 the caller. Calls marked ``musttail`` must obey the following additional
6527 rules:
6528
6529 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6530 or a pointer bitcast followed by a ret instruction.
6531 - The ret instruction must return the (possibly bitcasted) value
6532 produced by the call or void.
6533 - The caller and callee prototypes must match. Pointer types of
6534 parameters or return types may differ in pointee type, but not
6535 in address space.
6536 - The calling conventions of the caller and callee must match.
6537 - All ABI-impacting function attributes, such as sret, byval, inreg,
6538 returned, and inalloca, must match.
6539
6540 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6541 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006542
6543 - Caller and callee both have the calling convention ``fastcc``.
6544 - The call is in tail position (ret immediately follows call and ret
6545 uses value of call or is void).
6546 - Option ``-tailcallopt`` is enabled, or
6547 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006548 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006549 met. <CodeGenerator.html#tailcallopt>`_
6550
6551#. The optional "cconv" marker indicates which :ref:`calling
6552 convention <callingconv>` the call should use. If none is
6553 specified, the call defaults to using C calling conventions. The
6554 calling convention of the call must match the calling convention of
6555 the target function, or else the behavior is undefined.
6556#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6557 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6558 are valid here.
6559#. '``ty``': the type of the call instruction itself which is also the
6560 type of the return value. Functions that return no value are marked
6561 ``void``.
6562#. '``fnty``': shall be the signature of the pointer to function value
6563 being invoked. The argument types must match the types implied by
6564 this signature. This type can be omitted if the function is not
6565 varargs and if the function type does not return a pointer to a
6566 function.
6567#. '``fnptrval``': An LLVM value containing a pointer to a function to
6568 be invoked. In most cases, this is a direct function invocation, but
6569 indirect ``call``'s are just as possible, calling an arbitrary pointer
6570 to function value.
6571#. '``function args``': argument list whose types match the function
6572 signature argument types and parameter attributes. All arguments must
6573 be of :ref:`first class <t_firstclass>` type. If the function signature
6574 indicates the function accepts a variable number of arguments, the
6575 extra arguments can be specified.
6576#. The optional :ref:`function attributes <fnattrs>` list. Only
6577 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6578 attributes are valid here.
6579
6580Semantics:
6581""""""""""
6582
6583The '``call``' instruction is used to cause control flow to transfer to
6584a specified function, with its incoming arguments bound to the specified
6585values. Upon a '``ret``' instruction in the called function, control
6586flow continues with the instruction after the function call, and the
6587return value of the function is bound to the result argument.
6588
6589Example:
6590""""""""
6591
6592.. code-block:: llvm
6593
6594 %retval = call i32 @test(i32 %argc)
6595 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6596 %X = tail call i32 @foo() ; yields i32
6597 %Y = tail call fastcc i32 @foo() ; yields i32
6598 call void %foo(i8 97 signext)
6599
6600 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006601 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006602 %gr = extractvalue %struct.A %r, 0 ; yields i32
6603 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6604 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6605 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6606
6607llvm treats calls to some functions with names and arguments that match
6608the standard C99 library as being the C99 library functions, and may
6609perform optimizations or generate code for them under that assumption.
6610This is something we'd like to change in the future to provide better
6611support for freestanding environments and non-C-based languages.
6612
6613.. _i_va_arg:
6614
6615'``va_arg``' Instruction
6616^^^^^^^^^^^^^^^^^^^^^^^^
6617
6618Syntax:
6619"""""""
6620
6621::
6622
6623 <resultval> = va_arg <va_list*> <arglist>, <argty>
6624
6625Overview:
6626"""""""""
6627
6628The '``va_arg``' instruction is used to access arguments passed through
6629the "variable argument" area of a function call. It is used to implement
6630the ``va_arg`` macro in C.
6631
6632Arguments:
6633""""""""""
6634
6635This instruction takes a ``va_list*`` value and the type of the
6636argument. It returns a value of the specified argument type and
6637increments the ``va_list`` to point to the next argument. The actual
6638type of ``va_list`` is target specific.
6639
6640Semantics:
6641""""""""""
6642
6643The '``va_arg``' instruction loads an argument of the specified type
6644from the specified ``va_list`` and causes the ``va_list`` to point to
6645the next argument. For more information, see the variable argument
6646handling :ref:`Intrinsic Functions <int_varargs>`.
6647
6648It is legal for this instruction to be called in a function which does
6649not take a variable number of arguments, for example, the ``vfprintf``
6650function.
6651
6652``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6653function <intrinsics>` because it takes a type as an argument.
6654
6655Example:
6656""""""""
6657
6658See the :ref:`variable argument processing <int_varargs>` section.
6659
6660Note that the code generator does not yet fully support va\_arg on many
6661targets. Also, it does not currently support va\_arg with aggregate
6662types on any target.
6663
6664.. _i_landingpad:
6665
6666'``landingpad``' Instruction
6667^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6668
6669Syntax:
6670"""""""
6671
6672::
6673
6674 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6675 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6676
6677 <clause> := catch <type> <value>
6678 <clause> := filter <array constant type> <array constant>
6679
6680Overview:
6681"""""""""
6682
6683The '``landingpad``' instruction is used by `LLVM's exception handling
6684system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006685is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006686code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6687defines values supplied by the personality function (``pers_fn``) upon
6688re-entry to the function. The ``resultval`` has the type ``resultty``.
6689
6690Arguments:
6691""""""""""
6692
6693This instruction takes a ``pers_fn`` value. This is the personality
6694function associated with the unwinding mechanism. The optional
6695``cleanup`` flag indicates that the landing pad block is a cleanup.
6696
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006697A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006698contains the global variable representing the "type" that may be caught
6699or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6700clause takes an array constant as its argument. Use
6701"``[0 x i8**] undef``" for a filter which cannot throw. The
6702'``landingpad``' instruction must contain *at least* one ``clause`` or
6703the ``cleanup`` flag.
6704
6705Semantics:
6706""""""""""
6707
6708The '``landingpad``' instruction defines the values which are set by the
6709personality function (``pers_fn``) upon re-entry to the function, and
6710therefore the "result type" of the ``landingpad`` instruction. As with
6711calling conventions, how the personality function results are
6712represented in LLVM IR is target specific.
6713
6714The clauses are applied in order from top to bottom. If two
6715``landingpad`` instructions are merged together through inlining, the
6716clauses from the calling function are appended to the list of clauses.
6717When the call stack is being unwound due to an exception being thrown,
6718the exception is compared against each ``clause`` in turn. If it doesn't
6719match any of the clauses, and the ``cleanup`` flag is not set, then
6720unwinding continues further up the call stack.
6721
6722The ``landingpad`` instruction has several restrictions:
6723
6724- A landing pad block is a basic block which is the unwind destination
6725 of an '``invoke``' instruction.
6726- A landing pad block must have a '``landingpad``' instruction as its
6727 first non-PHI instruction.
6728- There can be only one '``landingpad``' instruction within the landing
6729 pad block.
6730- A basic block that is not a landing pad block may not include a
6731 '``landingpad``' instruction.
6732- All '``landingpad``' instructions in a function must have the same
6733 personality function.
6734
6735Example:
6736""""""""
6737
6738.. code-block:: llvm
6739
6740 ;; A landing pad which can catch an integer.
6741 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6742 catch i8** @_ZTIi
6743 ;; A landing pad that is a cleanup.
6744 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6745 cleanup
6746 ;; A landing pad which can catch an integer and can only throw a double.
6747 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6748 catch i8** @_ZTIi
6749 filter [1 x i8**] [@_ZTId]
6750
6751.. _intrinsics:
6752
6753Intrinsic Functions
6754===================
6755
6756LLVM supports the notion of an "intrinsic function". These functions
6757have well known names and semantics and are required to follow certain
6758restrictions. Overall, these intrinsics represent an extension mechanism
6759for the LLVM language that does not require changing all of the
6760transformations in LLVM when adding to the language (or the bitcode
6761reader/writer, the parser, etc...).
6762
6763Intrinsic function names must all start with an "``llvm.``" prefix. This
6764prefix is reserved in LLVM for intrinsic names; thus, function names may
6765not begin with this prefix. Intrinsic functions must always be external
6766functions: you cannot define the body of intrinsic functions. Intrinsic
6767functions may only be used in call or invoke instructions: it is illegal
6768to take the address of an intrinsic function. Additionally, because
6769intrinsic functions are part of the LLVM language, it is required if any
6770are added that they be documented here.
6771
6772Some intrinsic functions can be overloaded, i.e., the intrinsic
6773represents a family of functions that perform the same operation but on
6774different data types. Because LLVM can represent over 8 million
6775different integer types, overloading is used commonly to allow an
6776intrinsic function to operate on any integer type. One or more of the
6777argument types or the result type can be overloaded to accept any
6778integer type. Argument types may also be defined as exactly matching a
6779previous argument's type or the result type. This allows an intrinsic
6780function which accepts multiple arguments, but needs all of them to be
6781of the same type, to only be overloaded with respect to a single
6782argument or the result.
6783
6784Overloaded intrinsics will have the names of its overloaded argument
6785types encoded into its function name, each preceded by a period. Only
6786those types which are overloaded result in a name suffix. Arguments
6787whose type is matched against another type do not. For example, the
6788``llvm.ctpop`` function can take an integer of any width and returns an
6789integer of exactly the same integer width. This leads to a family of
6790functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6791``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6792overloaded, and only one type suffix is required. Because the argument's
6793type is matched against the return type, it does not require its own
6794name suffix.
6795
6796To learn how to add an intrinsic function, please see the `Extending
6797LLVM Guide <ExtendingLLVM.html>`_.
6798
6799.. _int_varargs:
6800
6801Variable Argument Handling Intrinsics
6802-------------------------------------
6803
6804Variable argument support is defined in LLVM with the
6805:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6806functions. These functions are related to the similarly named macros
6807defined in the ``<stdarg.h>`` header file.
6808
6809All of these functions operate on arguments that use a target-specific
6810value type "``va_list``". The LLVM assembly language reference manual
6811does not define what this type is, so all transformations should be
6812prepared to handle these functions regardless of the type used.
6813
6814This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6815variable argument handling intrinsic functions are used.
6816
6817.. code-block:: llvm
6818
6819 define i32 @test(i32 %X, ...) {
6820 ; Initialize variable argument processing
6821 %ap = alloca i8*
6822 %ap2 = bitcast i8** %ap to i8*
6823 call void @llvm.va_start(i8* %ap2)
6824
6825 ; Read a single integer argument
6826 %tmp = va_arg i8** %ap, i32
6827
6828 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6829 %aq = alloca i8*
6830 %aq2 = bitcast i8** %aq to i8*
6831 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6832 call void @llvm.va_end(i8* %aq2)
6833
6834 ; Stop processing of arguments.
6835 call void @llvm.va_end(i8* %ap2)
6836 ret i32 %tmp
6837 }
6838
6839 declare void @llvm.va_start(i8*)
6840 declare void @llvm.va_copy(i8*, i8*)
6841 declare void @llvm.va_end(i8*)
6842
6843.. _int_va_start:
6844
6845'``llvm.va_start``' Intrinsic
6846^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6847
6848Syntax:
6849"""""""
6850
6851::
6852
Nick Lewycky04f6de02013-09-11 22:04:52 +00006853 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006854
6855Overview:
6856"""""""""
6857
6858The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6859subsequent use by ``va_arg``.
6860
6861Arguments:
6862""""""""""
6863
6864The argument is a pointer to a ``va_list`` element to initialize.
6865
6866Semantics:
6867""""""""""
6868
6869The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6870available in C. In a target-dependent way, it initializes the
6871``va_list`` element to which the argument points, so that the next call
6872to ``va_arg`` will produce the first variable argument passed to the
6873function. Unlike the C ``va_start`` macro, this intrinsic does not need
6874to know the last argument of the function as the compiler can figure
6875that out.
6876
6877'``llvm.va_end``' Intrinsic
6878^^^^^^^^^^^^^^^^^^^^^^^^^^^
6879
6880Syntax:
6881"""""""
6882
6883::
6884
6885 declare void @llvm.va_end(i8* <arglist>)
6886
6887Overview:
6888"""""""""
6889
6890The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6891initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6892
6893Arguments:
6894""""""""""
6895
6896The argument is a pointer to a ``va_list`` to destroy.
6897
6898Semantics:
6899""""""""""
6900
6901The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6902available in C. In a target-dependent way, it destroys the ``va_list``
6903element to which the argument points. Calls to
6904:ref:`llvm.va_start <int_va_start>` and
6905:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6906``llvm.va_end``.
6907
6908.. _int_va_copy:
6909
6910'``llvm.va_copy``' Intrinsic
6911^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6912
6913Syntax:
6914"""""""
6915
6916::
6917
6918 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6919
6920Overview:
6921"""""""""
6922
6923The '``llvm.va_copy``' intrinsic copies the current argument position
6924from the source argument list to the destination argument list.
6925
6926Arguments:
6927""""""""""
6928
6929The first argument is a pointer to a ``va_list`` element to initialize.
6930The second argument is a pointer to a ``va_list`` element to copy from.
6931
6932Semantics:
6933""""""""""
6934
6935The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6936available in C. In a target-dependent way, it copies the source
6937``va_list`` element into the destination ``va_list`` element. This
6938intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6939arbitrarily complex and require, for example, memory allocation.
6940
6941Accurate Garbage Collection Intrinsics
6942--------------------------------------
6943
6944LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6945(GC) requires the implementation and generation of these intrinsics.
6946These intrinsics allow identification of :ref:`GC roots on the
6947stack <int_gcroot>`, as well as garbage collector implementations that
6948require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6949Front-ends for type-safe garbage collected languages should generate
6950these intrinsics to make use of the LLVM garbage collectors. For more
6951details, see `Accurate Garbage Collection with
6952LLVM <GarbageCollection.html>`_.
6953
6954The garbage collection intrinsics only operate on objects in the generic
6955address space (address space zero).
6956
6957.. _int_gcroot:
6958
6959'``llvm.gcroot``' Intrinsic
6960^^^^^^^^^^^^^^^^^^^^^^^^^^^
6961
6962Syntax:
6963"""""""
6964
6965::
6966
6967 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6968
6969Overview:
6970"""""""""
6971
6972The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6973the code generator, and allows some metadata to be associated with it.
6974
6975Arguments:
6976""""""""""
6977
6978The first argument specifies the address of a stack object that contains
6979the root pointer. The second pointer (which must be either a constant or
6980a global value address) contains the meta-data to be associated with the
6981root.
6982
6983Semantics:
6984""""""""""
6985
6986At runtime, a call to this intrinsic stores a null pointer into the
6987"ptrloc" location. At compile-time, the code generator generates
6988information to allow the runtime to find the pointer at GC safe points.
6989The '``llvm.gcroot``' intrinsic may only be used in a function which
6990:ref:`specifies a GC algorithm <gc>`.
6991
6992.. _int_gcread:
6993
6994'``llvm.gcread``' Intrinsic
6995^^^^^^^^^^^^^^^^^^^^^^^^^^^
6996
6997Syntax:
6998"""""""
6999
7000::
7001
7002 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7003
7004Overview:
7005"""""""""
7006
7007The '``llvm.gcread``' intrinsic identifies reads of references from heap
7008locations, allowing garbage collector implementations that require read
7009barriers.
7010
7011Arguments:
7012""""""""""
7013
7014The second argument is the address to read from, which should be an
7015address allocated from the garbage collector. The first object is a
7016pointer to the start of the referenced object, if needed by the language
7017runtime (otherwise null).
7018
7019Semantics:
7020""""""""""
7021
7022The '``llvm.gcread``' intrinsic has the same semantics as a load
7023instruction, but may be replaced with substantially more complex code by
7024the garbage collector runtime, as needed. The '``llvm.gcread``'
7025intrinsic may only be used in a function which :ref:`specifies a GC
7026algorithm <gc>`.
7027
7028.. _int_gcwrite:
7029
7030'``llvm.gcwrite``' Intrinsic
7031^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7032
7033Syntax:
7034"""""""
7035
7036::
7037
7038 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7039
7040Overview:
7041"""""""""
7042
7043The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7044locations, allowing garbage collector implementations that require write
7045barriers (such as generational or reference counting collectors).
7046
7047Arguments:
7048""""""""""
7049
7050The first argument is the reference to store, the second is the start of
7051the object to store it to, and the third is the address of the field of
7052Obj to store to. If the runtime does not require a pointer to the
7053object, Obj may be null.
7054
7055Semantics:
7056""""""""""
7057
7058The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7059instruction, but may be replaced with substantially more complex code by
7060the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7061intrinsic may only be used in a function which :ref:`specifies a GC
7062algorithm <gc>`.
7063
7064Code Generator Intrinsics
7065-------------------------
7066
7067These intrinsics are provided by LLVM to expose special features that
7068may only be implemented with code generator support.
7069
7070'``llvm.returnaddress``' Intrinsic
7071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7072
7073Syntax:
7074"""""""
7075
7076::
7077
7078 declare i8 *@llvm.returnaddress(i32 <level>)
7079
7080Overview:
7081"""""""""
7082
7083The '``llvm.returnaddress``' intrinsic attempts to compute a
7084target-specific value indicating the return address of the current
7085function or one of its callers.
7086
7087Arguments:
7088""""""""""
7089
7090The argument to this intrinsic indicates which function to return the
7091address for. Zero indicates the calling function, one indicates its
7092caller, etc. The argument is **required** to be a constant integer
7093value.
7094
7095Semantics:
7096""""""""""
7097
7098The '``llvm.returnaddress``' intrinsic either returns a pointer
7099indicating the return address of the specified call frame, or zero if it
7100cannot be identified. The value returned by this intrinsic is likely to
7101be incorrect or 0 for arguments other than zero, so it should only be
7102used for debugging purposes.
7103
7104Note that calling this intrinsic does not prevent function inlining or
7105other aggressive transformations, so the value returned may not be that
7106of the obvious source-language caller.
7107
7108'``llvm.frameaddress``' Intrinsic
7109^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7110
7111Syntax:
7112"""""""
7113
7114::
7115
7116 declare i8* @llvm.frameaddress(i32 <level>)
7117
7118Overview:
7119"""""""""
7120
7121The '``llvm.frameaddress``' intrinsic attempts to return the
7122target-specific frame pointer value for the specified stack frame.
7123
7124Arguments:
7125""""""""""
7126
7127The argument to this intrinsic indicates which function to return the
7128frame pointer for. Zero indicates the calling function, one indicates
7129its caller, etc. The argument is **required** to be a constant integer
7130value.
7131
7132Semantics:
7133""""""""""
7134
7135The '``llvm.frameaddress``' intrinsic either returns a pointer
7136indicating the frame address of the specified call frame, or zero if it
7137cannot be identified. The value returned by this intrinsic is likely to
7138be incorrect or 0 for arguments other than zero, so it should only be
7139used for debugging purposes.
7140
7141Note that calling this intrinsic does not prevent function inlining or
7142other aggressive transformations, so the value returned may not be that
7143of the obvious source-language caller.
7144
Renato Golinc7aea402014-05-06 16:51:25 +00007145.. _int_read_register:
7146.. _int_write_register:
7147
7148'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7150
7151Syntax:
7152"""""""
7153
7154::
7155
7156 declare i32 @llvm.read_register.i32(metadata)
7157 declare i64 @llvm.read_register.i64(metadata)
7158 declare void @llvm.write_register.i32(metadata, i32 @value)
7159 declare void @llvm.write_register.i64(metadata, i64 @value)
7160 !0 = metadata !{metadata !"sp\00"}
7161
7162Overview:
7163"""""""""
7164
7165The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7166provides access to the named register. The register must be valid on
7167the architecture being compiled to. The type needs to be compatible
7168with the register being read.
7169
7170Semantics:
7171""""""""""
7172
7173The '``llvm.read_register``' intrinsic returns the current value of the
7174register, where possible. The '``llvm.write_register``' intrinsic sets
7175the current value of the register, where possible.
7176
7177This is useful to implement named register global variables that need
7178to always be mapped to a specific register, as is common practice on
7179bare-metal programs including OS kernels.
7180
7181The compiler doesn't check for register availability or use of the used
7182register in surrounding code, including inline assembly. Because of that,
7183allocatable registers are not supported.
7184
7185Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007186architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007187work is needed to support other registers and even more so, allocatable
7188registers.
7189
Sean Silvab084af42012-12-07 10:36:55 +00007190.. _int_stacksave:
7191
7192'``llvm.stacksave``' Intrinsic
7193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7194
7195Syntax:
7196"""""""
7197
7198::
7199
7200 declare i8* @llvm.stacksave()
7201
7202Overview:
7203"""""""""
7204
7205The '``llvm.stacksave``' intrinsic is used to remember the current state
7206of the function stack, for use with
7207:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7208implementing language features like scoped automatic variable sized
7209arrays in C99.
7210
7211Semantics:
7212""""""""""
7213
7214This intrinsic returns a opaque pointer value that can be passed to
7215:ref:`llvm.stackrestore <int_stackrestore>`. When an
7216``llvm.stackrestore`` intrinsic is executed with a value saved from
7217``llvm.stacksave``, it effectively restores the state of the stack to
7218the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7219practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7220were allocated after the ``llvm.stacksave`` was executed.
7221
7222.. _int_stackrestore:
7223
7224'``llvm.stackrestore``' Intrinsic
7225^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7226
7227Syntax:
7228"""""""
7229
7230::
7231
7232 declare void @llvm.stackrestore(i8* %ptr)
7233
7234Overview:
7235"""""""""
7236
7237The '``llvm.stackrestore``' intrinsic is used to restore the state of
7238the function stack to the state it was in when the corresponding
7239:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7240useful for implementing language features like scoped automatic variable
7241sized arrays in C99.
7242
7243Semantics:
7244""""""""""
7245
7246See the description for :ref:`llvm.stacksave <int_stacksave>`.
7247
7248'``llvm.prefetch``' Intrinsic
7249^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7250
7251Syntax:
7252"""""""
7253
7254::
7255
7256 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7257
7258Overview:
7259"""""""""
7260
7261The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7262insert a prefetch instruction if supported; otherwise, it is a noop.
7263Prefetches have no effect on the behavior of the program but can change
7264its performance characteristics.
7265
7266Arguments:
7267""""""""""
7268
7269``address`` is the address to be prefetched, ``rw`` is the specifier
7270determining if the fetch should be for a read (0) or write (1), and
7271``locality`` is a temporal locality specifier ranging from (0) - no
7272locality, to (3) - extremely local keep in cache. The ``cache type``
7273specifies whether the prefetch is performed on the data (1) or
7274instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7275arguments must be constant integers.
7276
7277Semantics:
7278""""""""""
7279
7280This intrinsic does not modify the behavior of the program. In
7281particular, prefetches cannot trap and do not produce a value. On
7282targets that support this intrinsic, the prefetch can provide hints to
7283the processor cache for better performance.
7284
7285'``llvm.pcmarker``' Intrinsic
7286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7287
7288Syntax:
7289"""""""
7290
7291::
7292
7293 declare void @llvm.pcmarker(i32 <id>)
7294
7295Overview:
7296"""""""""
7297
7298The '``llvm.pcmarker``' intrinsic is a method to export a Program
7299Counter (PC) in a region of code to simulators and other tools. The
7300method is target specific, but it is expected that the marker will use
7301exported symbols to transmit the PC of the marker. The marker makes no
7302guarantees that it will remain with any specific instruction after
7303optimizations. It is possible that the presence of a marker will inhibit
7304optimizations. The intended use is to be inserted after optimizations to
7305allow correlations of simulation runs.
7306
7307Arguments:
7308""""""""""
7309
7310``id`` is a numerical id identifying the marker.
7311
7312Semantics:
7313""""""""""
7314
7315This intrinsic does not modify the behavior of the program. Backends
7316that do not support this intrinsic may ignore it.
7317
7318'``llvm.readcyclecounter``' Intrinsic
7319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7320
7321Syntax:
7322"""""""
7323
7324::
7325
7326 declare i64 @llvm.readcyclecounter()
7327
7328Overview:
7329"""""""""
7330
7331The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7332counter register (or similar low latency, high accuracy clocks) on those
7333targets that support it. On X86, it should map to RDTSC. On Alpha, it
7334should map to RPCC. As the backing counters overflow quickly (on the
7335order of 9 seconds on alpha), this should only be used for small
7336timings.
7337
7338Semantics:
7339""""""""""
7340
7341When directly supported, reading the cycle counter should not modify any
7342memory. Implementations are allowed to either return a application
7343specific value or a system wide value. On backends without support, this
7344is lowered to a constant 0.
7345
Tim Northoverbc933082013-05-23 19:11:20 +00007346Note that runtime support may be conditional on the privilege-level code is
7347running at and the host platform.
7348
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007349'``llvm.clear_cache``' Intrinsic
7350^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7351
7352Syntax:
7353"""""""
7354
7355::
7356
7357 declare void @llvm.clear_cache(i8*, i8*)
7358
7359Overview:
7360"""""""""
7361
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007362The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7363in the specified range to the execution unit of the processor. On
7364targets with non-unified instruction and data cache, the implementation
7365flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007366
7367Semantics:
7368""""""""""
7369
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007370On platforms with coherent instruction and data caches (e.g. x86), this
7371intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007372cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007373instructions or a system call, if cache flushing requires special
7374privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007375
Sean Silvad02bf3e2014-04-07 22:29:53 +00007376The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007377time library.
Renato Golin93010e62014-03-26 14:01:32 +00007378
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007379This instrinsic does *not* empty the instruction pipeline. Modifications
7380of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007381
Sean Silvab084af42012-12-07 10:36:55 +00007382Standard C Library Intrinsics
7383-----------------------------
7384
7385LLVM provides intrinsics for a few important standard C library
7386functions. These intrinsics allow source-language front-ends to pass
7387information about the alignment of the pointer arguments to the code
7388generator, providing opportunity for more efficient code generation.
7389
7390.. _int_memcpy:
7391
7392'``llvm.memcpy``' Intrinsic
7393^^^^^^^^^^^^^^^^^^^^^^^^^^^
7394
7395Syntax:
7396"""""""
7397
7398This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7399integer bit width and for different address spaces. Not all targets
7400support all bit widths however.
7401
7402::
7403
7404 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7405 i32 <len>, i32 <align>, i1 <isvolatile>)
7406 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7407 i64 <len>, i32 <align>, i1 <isvolatile>)
7408
7409Overview:
7410"""""""""
7411
7412The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7413source location to the destination location.
7414
7415Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7416intrinsics do not return a value, takes extra alignment/isvolatile
7417arguments and the pointers can be in specified address spaces.
7418
7419Arguments:
7420""""""""""
7421
7422The first argument is a pointer to the destination, the second is a
7423pointer to the source. The third argument is an integer argument
7424specifying the number of bytes to copy, the fourth argument is the
7425alignment of the source and destination locations, and the fifth is a
7426boolean indicating a volatile access.
7427
7428If the call to this intrinsic has an alignment value that is not 0 or 1,
7429then the caller guarantees that both the source and destination pointers
7430are aligned to that boundary.
7431
7432If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7433a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7434very cleanly specified and it is unwise to depend on it.
7435
7436Semantics:
7437""""""""""
7438
7439The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7440source location to the destination location, which are not allowed to
7441overlap. It copies "len" bytes of memory over. If the argument is known
7442to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007443argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007444
7445'``llvm.memmove``' Intrinsic
7446^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7447
7448Syntax:
7449"""""""
7450
7451This is an overloaded intrinsic. You can use llvm.memmove on any integer
7452bit width and for different address space. Not all targets support all
7453bit widths however.
7454
7455::
7456
7457 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7458 i32 <len>, i32 <align>, i1 <isvolatile>)
7459 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7460 i64 <len>, i32 <align>, i1 <isvolatile>)
7461
7462Overview:
7463"""""""""
7464
7465The '``llvm.memmove.*``' intrinsics move a block of memory from the
7466source location to the destination location. It is similar to the
7467'``llvm.memcpy``' intrinsic but allows the two memory locations to
7468overlap.
7469
7470Note that, unlike the standard libc function, the ``llvm.memmove.*``
7471intrinsics do not return a value, takes extra alignment/isvolatile
7472arguments and the pointers can be in specified address spaces.
7473
7474Arguments:
7475""""""""""
7476
7477The first argument is a pointer to the destination, the second is a
7478pointer to the source. The third argument is an integer argument
7479specifying the number of bytes to copy, the fourth argument is the
7480alignment of the source and destination locations, and the fifth is a
7481boolean indicating a volatile access.
7482
7483If the call to this intrinsic has an alignment value that is not 0 or 1,
7484then the caller guarantees that the source and destination pointers are
7485aligned to that boundary.
7486
7487If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7488is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7489not very cleanly specified and it is unwise to depend on it.
7490
7491Semantics:
7492""""""""""
7493
7494The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7495source location to the destination location, which may overlap. It
7496copies "len" bytes of memory over. If the argument is known to be
7497aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007498otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007499
7500'``llvm.memset.*``' Intrinsics
7501^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7502
7503Syntax:
7504"""""""
7505
7506This is an overloaded intrinsic. You can use llvm.memset on any integer
7507bit width and for different address spaces. However, not all targets
7508support all bit widths.
7509
7510::
7511
7512 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7513 i32 <len>, i32 <align>, i1 <isvolatile>)
7514 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7515 i64 <len>, i32 <align>, i1 <isvolatile>)
7516
7517Overview:
7518"""""""""
7519
7520The '``llvm.memset.*``' intrinsics fill a block of memory with a
7521particular byte value.
7522
7523Note that, unlike the standard libc function, the ``llvm.memset``
7524intrinsic does not return a value and takes extra alignment/volatile
7525arguments. Also, the destination can be in an arbitrary address space.
7526
7527Arguments:
7528""""""""""
7529
7530The first argument is a pointer to the destination to fill, the second
7531is the byte value with which to fill it, the third argument is an
7532integer argument specifying the number of bytes to fill, and the fourth
7533argument is the known alignment of the destination location.
7534
7535If the call to this intrinsic has an alignment value that is not 0 or 1,
7536then the caller guarantees that the destination pointer is aligned to
7537that boundary.
7538
7539If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7540a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7541very cleanly specified and it is unwise to depend on it.
7542
7543Semantics:
7544""""""""""
7545
7546The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7547at the destination location. If the argument is known to be aligned to
7548some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007549it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007550
7551'``llvm.sqrt.*``' Intrinsic
7552^^^^^^^^^^^^^^^^^^^^^^^^^^^
7553
7554Syntax:
7555"""""""
7556
7557This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7558floating point or vector of floating point type. Not all targets support
7559all types however.
7560
7561::
7562
7563 declare float @llvm.sqrt.f32(float %Val)
7564 declare double @llvm.sqrt.f64(double %Val)
7565 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7566 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7567 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7568
7569Overview:
7570"""""""""
7571
7572The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7573returning the same value as the libm '``sqrt``' functions would. Unlike
7574``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7575negative numbers other than -0.0 (which allows for better optimization,
7576because there is no need to worry about errno being set).
7577``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7578
7579Arguments:
7580""""""""""
7581
7582The argument and return value are floating point numbers of the same
7583type.
7584
7585Semantics:
7586""""""""""
7587
7588This function returns the sqrt of the specified operand if it is a
7589nonnegative floating point number.
7590
7591'``llvm.powi.*``' Intrinsic
7592^^^^^^^^^^^^^^^^^^^^^^^^^^^
7593
7594Syntax:
7595"""""""
7596
7597This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7598floating point or vector of floating point type. Not all targets support
7599all types however.
7600
7601::
7602
7603 declare float @llvm.powi.f32(float %Val, i32 %power)
7604 declare double @llvm.powi.f64(double %Val, i32 %power)
7605 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7606 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7607 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7608
7609Overview:
7610"""""""""
7611
7612The '``llvm.powi.*``' intrinsics return the first operand raised to the
7613specified (positive or negative) power. The order of evaluation of
7614multiplications is not defined. When a vector of floating point type is
7615used, the second argument remains a scalar integer value.
7616
7617Arguments:
7618""""""""""
7619
7620The second argument is an integer power, and the first is a value to
7621raise to that power.
7622
7623Semantics:
7624""""""""""
7625
7626This function returns the first value raised to the second power with an
7627unspecified sequence of rounding operations.
7628
7629'``llvm.sin.*``' Intrinsic
7630^^^^^^^^^^^^^^^^^^^^^^^^^^
7631
7632Syntax:
7633"""""""
7634
7635This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7636floating point or vector of floating point type. Not all targets support
7637all types however.
7638
7639::
7640
7641 declare float @llvm.sin.f32(float %Val)
7642 declare double @llvm.sin.f64(double %Val)
7643 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7644 declare fp128 @llvm.sin.f128(fp128 %Val)
7645 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7646
7647Overview:
7648"""""""""
7649
7650The '``llvm.sin.*``' intrinsics return the sine of the operand.
7651
7652Arguments:
7653""""""""""
7654
7655The argument and return value are floating point numbers of the same
7656type.
7657
7658Semantics:
7659""""""""""
7660
7661This function returns the sine of the specified operand, returning the
7662same values as the libm ``sin`` functions would, and handles error
7663conditions in the same way.
7664
7665'``llvm.cos.*``' Intrinsic
7666^^^^^^^^^^^^^^^^^^^^^^^^^^
7667
7668Syntax:
7669"""""""
7670
7671This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7672floating point or vector of floating point type. Not all targets support
7673all types however.
7674
7675::
7676
7677 declare float @llvm.cos.f32(float %Val)
7678 declare double @llvm.cos.f64(double %Val)
7679 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7680 declare fp128 @llvm.cos.f128(fp128 %Val)
7681 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7682
7683Overview:
7684"""""""""
7685
7686The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7687
7688Arguments:
7689""""""""""
7690
7691The argument and return value are floating point numbers of the same
7692type.
7693
7694Semantics:
7695""""""""""
7696
7697This function returns the cosine of the specified operand, returning the
7698same values as the libm ``cos`` functions would, and handles error
7699conditions in the same way.
7700
7701'``llvm.pow.*``' Intrinsic
7702^^^^^^^^^^^^^^^^^^^^^^^^^^
7703
7704Syntax:
7705"""""""
7706
7707This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7708floating point or vector of floating point type. Not all targets support
7709all types however.
7710
7711::
7712
7713 declare float @llvm.pow.f32(float %Val, float %Power)
7714 declare double @llvm.pow.f64(double %Val, double %Power)
7715 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7716 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7717 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7718
7719Overview:
7720"""""""""
7721
7722The '``llvm.pow.*``' intrinsics return the first operand raised to the
7723specified (positive or negative) power.
7724
7725Arguments:
7726""""""""""
7727
7728The second argument is a floating point power, and the first is a value
7729to raise to that power.
7730
7731Semantics:
7732""""""""""
7733
7734This function returns the first value raised to the second power,
7735returning the same values as the libm ``pow`` functions would, and
7736handles error conditions in the same way.
7737
7738'``llvm.exp.*``' Intrinsic
7739^^^^^^^^^^^^^^^^^^^^^^^^^^
7740
7741Syntax:
7742"""""""
7743
7744This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7745floating point or vector of floating point type. Not all targets support
7746all types however.
7747
7748::
7749
7750 declare float @llvm.exp.f32(float %Val)
7751 declare double @llvm.exp.f64(double %Val)
7752 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7753 declare fp128 @llvm.exp.f128(fp128 %Val)
7754 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7755
7756Overview:
7757"""""""""
7758
7759The '``llvm.exp.*``' intrinsics perform the exp function.
7760
7761Arguments:
7762""""""""""
7763
7764The argument and return value are floating point numbers of the same
7765type.
7766
7767Semantics:
7768""""""""""
7769
7770This function returns the same values as the libm ``exp`` functions
7771would, and handles error conditions in the same way.
7772
7773'``llvm.exp2.*``' Intrinsic
7774^^^^^^^^^^^^^^^^^^^^^^^^^^^
7775
7776Syntax:
7777"""""""
7778
7779This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7780floating point or vector of floating point type. Not all targets support
7781all types however.
7782
7783::
7784
7785 declare float @llvm.exp2.f32(float %Val)
7786 declare double @llvm.exp2.f64(double %Val)
7787 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7788 declare fp128 @llvm.exp2.f128(fp128 %Val)
7789 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7790
7791Overview:
7792"""""""""
7793
7794The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7795
7796Arguments:
7797""""""""""
7798
7799The argument and return value are floating point numbers of the same
7800type.
7801
7802Semantics:
7803""""""""""
7804
7805This function returns the same values as the libm ``exp2`` functions
7806would, and handles error conditions in the same way.
7807
7808'``llvm.log.*``' Intrinsic
7809^^^^^^^^^^^^^^^^^^^^^^^^^^
7810
7811Syntax:
7812"""""""
7813
7814This is an overloaded intrinsic. You can use ``llvm.log`` on any
7815floating point or vector of floating point type. Not all targets support
7816all types however.
7817
7818::
7819
7820 declare float @llvm.log.f32(float %Val)
7821 declare double @llvm.log.f64(double %Val)
7822 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7823 declare fp128 @llvm.log.f128(fp128 %Val)
7824 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7825
7826Overview:
7827"""""""""
7828
7829The '``llvm.log.*``' intrinsics perform the log function.
7830
7831Arguments:
7832""""""""""
7833
7834The argument and return value are floating point numbers of the same
7835type.
7836
7837Semantics:
7838""""""""""
7839
7840This function returns the same values as the libm ``log`` functions
7841would, and handles error conditions in the same way.
7842
7843'``llvm.log10.*``' Intrinsic
7844^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7845
7846Syntax:
7847"""""""
7848
7849This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7850floating point or vector of floating point type. Not all targets support
7851all types however.
7852
7853::
7854
7855 declare float @llvm.log10.f32(float %Val)
7856 declare double @llvm.log10.f64(double %Val)
7857 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7858 declare fp128 @llvm.log10.f128(fp128 %Val)
7859 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7860
7861Overview:
7862"""""""""
7863
7864The '``llvm.log10.*``' intrinsics perform the log10 function.
7865
7866Arguments:
7867""""""""""
7868
7869The argument and return value are floating point numbers of the same
7870type.
7871
7872Semantics:
7873""""""""""
7874
7875This function returns the same values as the libm ``log10`` functions
7876would, and handles error conditions in the same way.
7877
7878'``llvm.log2.*``' Intrinsic
7879^^^^^^^^^^^^^^^^^^^^^^^^^^^
7880
7881Syntax:
7882"""""""
7883
7884This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7885floating point or vector of floating point type. Not all targets support
7886all types however.
7887
7888::
7889
7890 declare float @llvm.log2.f32(float %Val)
7891 declare double @llvm.log2.f64(double %Val)
7892 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7893 declare fp128 @llvm.log2.f128(fp128 %Val)
7894 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7895
7896Overview:
7897"""""""""
7898
7899The '``llvm.log2.*``' intrinsics perform the log2 function.
7900
7901Arguments:
7902""""""""""
7903
7904The argument and return value are floating point numbers of the same
7905type.
7906
7907Semantics:
7908""""""""""
7909
7910This function returns the same values as the libm ``log2`` functions
7911would, and handles error conditions in the same way.
7912
7913'``llvm.fma.*``' Intrinsic
7914^^^^^^^^^^^^^^^^^^^^^^^^^^
7915
7916Syntax:
7917"""""""
7918
7919This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7920floating point or vector of floating point type. Not all targets support
7921all types however.
7922
7923::
7924
7925 declare float @llvm.fma.f32(float %a, float %b, float %c)
7926 declare double @llvm.fma.f64(double %a, double %b, double %c)
7927 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7928 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7929 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7930
7931Overview:
7932"""""""""
7933
7934The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7935operation.
7936
7937Arguments:
7938""""""""""
7939
7940The argument and return value are floating point numbers of the same
7941type.
7942
7943Semantics:
7944""""""""""
7945
7946This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007947would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007948
7949'``llvm.fabs.*``' Intrinsic
7950^^^^^^^^^^^^^^^^^^^^^^^^^^^
7951
7952Syntax:
7953"""""""
7954
7955This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7956floating point or vector of floating point type. Not all targets support
7957all types however.
7958
7959::
7960
7961 declare float @llvm.fabs.f32(float %Val)
7962 declare double @llvm.fabs.f64(double %Val)
7963 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7964 declare fp128 @llvm.fabs.f128(fp128 %Val)
7965 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7966
7967Overview:
7968"""""""""
7969
7970The '``llvm.fabs.*``' intrinsics return the absolute value of the
7971operand.
7972
7973Arguments:
7974""""""""""
7975
7976The argument and return value are floating point numbers of the same
7977type.
7978
7979Semantics:
7980""""""""""
7981
7982This function returns the same values as the libm ``fabs`` functions
7983would, and handles error conditions in the same way.
7984
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007985'``llvm.copysign.*``' Intrinsic
7986^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7987
7988Syntax:
7989"""""""
7990
7991This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7992floating point or vector of floating point type. Not all targets support
7993all types however.
7994
7995::
7996
7997 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7998 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7999 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8000 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8001 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8002
8003Overview:
8004"""""""""
8005
8006The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8007first operand and the sign of the second operand.
8008
8009Arguments:
8010""""""""""
8011
8012The arguments and return value are floating point numbers of the same
8013type.
8014
8015Semantics:
8016""""""""""
8017
8018This function returns the same values as the libm ``copysign``
8019functions would, and handles error conditions in the same way.
8020
Sean Silvab084af42012-12-07 10:36:55 +00008021'``llvm.floor.*``' Intrinsic
8022^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8023
8024Syntax:
8025"""""""
8026
8027This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8028floating point or vector of floating point type. Not all targets support
8029all types however.
8030
8031::
8032
8033 declare float @llvm.floor.f32(float %Val)
8034 declare double @llvm.floor.f64(double %Val)
8035 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8036 declare fp128 @llvm.floor.f128(fp128 %Val)
8037 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8038
8039Overview:
8040"""""""""
8041
8042The '``llvm.floor.*``' intrinsics return the floor of the operand.
8043
8044Arguments:
8045""""""""""
8046
8047The argument and return value are floating point numbers of the same
8048type.
8049
8050Semantics:
8051""""""""""
8052
8053This function returns the same values as the libm ``floor`` functions
8054would, and handles error conditions in the same way.
8055
8056'``llvm.ceil.*``' Intrinsic
8057^^^^^^^^^^^^^^^^^^^^^^^^^^^
8058
8059Syntax:
8060"""""""
8061
8062This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8063floating point or vector of floating point type. Not all targets support
8064all types however.
8065
8066::
8067
8068 declare float @llvm.ceil.f32(float %Val)
8069 declare double @llvm.ceil.f64(double %Val)
8070 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8071 declare fp128 @llvm.ceil.f128(fp128 %Val)
8072 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8073
8074Overview:
8075"""""""""
8076
8077The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8078
8079Arguments:
8080""""""""""
8081
8082The argument and return value are floating point numbers of the same
8083type.
8084
8085Semantics:
8086""""""""""
8087
8088This function returns the same values as the libm ``ceil`` functions
8089would, and handles error conditions in the same way.
8090
8091'``llvm.trunc.*``' Intrinsic
8092^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8093
8094Syntax:
8095"""""""
8096
8097This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8098floating point or vector of floating point type. Not all targets support
8099all types however.
8100
8101::
8102
8103 declare float @llvm.trunc.f32(float %Val)
8104 declare double @llvm.trunc.f64(double %Val)
8105 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8106 declare fp128 @llvm.trunc.f128(fp128 %Val)
8107 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8108
8109Overview:
8110"""""""""
8111
8112The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8113nearest integer not larger in magnitude than the operand.
8114
8115Arguments:
8116""""""""""
8117
8118The argument and return value are floating point numbers of the same
8119type.
8120
8121Semantics:
8122""""""""""
8123
8124This function returns the same values as the libm ``trunc`` functions
8125would, and handles error conditions in the same way.
8126
8127'``llvm.rint.*``' Intrinsic
8128^^^^^^^^^^^^^^^^^^^^^^^^^^^
8129
8130Syntax:
8131"""""""
8132
8133This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8134floating point or vector of floating point type. Not all targets support
8135all types however.
8136
8137::
8138
8139 declare float @llvm.rint.f32(float %Val)
8140 declare double @llvm.rint.f64(double %Val)
8141 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8142 declare fp128 @llvm.rint.f128(fp128 %Val)
8143 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8144
8145Overview:
8146"""""""""
8147
8148The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8149nearest integer. It may raise an inexact floating-point exception if the
8150operand isn't an integer.
8151
8152Arguments:
8153""""""""""
8154
8155The argument and return value are floating point numbers of the same
8156type.
8157
8158Semantics:
8159""""""""""
8160
8161This function returns the same values as the libm ``rint`` functions
8162would, and handles error conditions in the same way.
8163
8164'``llvm.nearbyint.*``' Intrinsic
8165^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8166
8167Syntax:
8168"""""""
8169
8170This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8171floating point or vector of floating point type. Not all targets support
8172all types however.
8173
8174::
8175
8176 declare float @llvm.nearbyint.f32(float %Val)
8177 declare double @llvm.nearbyint.f64(double %Val)
8178 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8179 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8180 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8181
8182Overview:
8183"""""""""
8184
8185The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8186nearest integer.
8187
8188Arguments:
8189""""""""""
8190
8191The argument and return value are floating point numbers of the same
8192type.
8193
8194Semantics:
8195""""""""""
8196
8197This function returns the same values as the libm ``nearbyint``
8198functions would, and handles error conditions in the same way.
8199
Hal Finkel171817e2013-08-07 22:49:12 +00008200'``llvm.round.*``' Intrinsic
8201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8202
8203Syntax:
8204"""""""
8205
8206This is an overloaded intrinsic. You can use ``llvm.round`` on any
8207floating point or vector of floating point type. Not all targets support
8208all types however.
8209
8210::
8211
8212 declare float @llvm.round.f32(float %Val)
8213 declare double @llvm.round.f64(double %Val)
8214 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8215 declare fp128 @llvm.round.f128(fp128 %Val)
8216 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8217
8218Overview:
8219"""""""""
8220
8221The '``llvm.round.*``' intrinsics returns the operand rounded to the
8222nearest integer.
8223
8224Arguments:
8225""""""""""
8226
8227The argument and return value are floating point numbers of the same
8228type.
8229
8230Semantics:
8231""""""""""
8232
8233This function returns the same values as the libm ``round``
8234functions would, and handles error conditions in the same way.
8235
Sean Silvab084af42012-12-07 10:36:55 +00008236Bit Manipulation Intrinsics
8237---------------------------
8238
8239LLVM provides intrinsics for a few important bit manipulation
8240operations. These allow efficient code generation for some algorithms.
8241
8242'``llvm.bswap.*``' Intrinsics
8243^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8244
8245Syntax:
8246"""""""
8247
8248This is an overloaded intrinsic function. You can use bswap on any
8249integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8250
8251::
8252
8253 declare i16 @llvm.bswap.i16(i16 <id>)
8254 declare i32 @llvm.bswap.i32(i32 <id>)
8255 declare i64 @llvm.bswap.i64(i64 <id>)
8256
8257Overview:
8258"""""""""
8259
8260The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8261values with an even number of bytes (positive multiple of 16 bits).
8262These are useful for performing operations on data that is not in the
8263target's native byte order.
8264
8265Semantics:
8266""""""""""
8267
8268The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8269and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8270intrinsic returns an i32 value that has the four bytes of the input i32
8271swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8272returned i32 will have its bytes in 3, 2, 1, 0 order. The
8273``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8274concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8275respectively).
8276
8277'``llvm.ctpop.*``' Intrinsic
8278^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8279
8280Syntax:
8281"""""""
8282
8283This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8284bit width, or on any vector with integer elements. Not all targets
8285support all bit widths or vector types, however.
8286
8287::
8288
8289 declare i8 @llvm.ctpop.i8(i8 <src>)
8290 declare i16 @llvm.ctpop.i16(i16 <src>)
8291 declare i32 @llvm.ctpop.i32(i32 <src>)
8292 declare i64 @llvm.ctpop.i64(i64 <src>)
8293 declare i256 @llvm.ctpop.i256(i256 <src>)
8294 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8295
8296Overview:
8297"""""""""
8298
8299The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8300in a value.
8301
8302Arguments:
8303""""""""""
8304
8305The only argument is the value to be counted. The argument may be of any
8306integer type, or a vector with integer elements. The return type must
8307match the argument type.
8308
8309Semantics:
8310""""""""""
8311
8312The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8313each element of a vector.
8314
8315'``llvm.ctlz.*``' Intrinsic
8316^^^^^^^^^^^^^^^^^^^^^^^^^^^
8317
8318Syntax:
8319"""""""
8320
8321This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8322integer bit width, or any vector whose elements are integers. Not all
8323targets support all bit widths or vector types, however.
8324
8325::
8326
8327 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8328 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8329 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8330 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8331 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8332 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8333
8334Overview:
8335"""""""""
8336
8337The '``llvm.ctlz``' family of intrinsic functions counts the number of
8338leading zeros in a variable.
8339
8340Arguments:
8341""""""""""
8342
8343The first argument is the value to be counted. This argument may be of
8344any integer type, or a vectory with integer element type. The return
8345type must match the first argument type.
8346
8347The second argument must be a constant and is a flag to indicate whether
8348the intrinsic should ensure that a zero as the first argument produces a
8349defined result. Historically some architectures did not provide a
8350defined result for zero values as efficiently, and many algorithms are
8351now predicated on avoiding zero-value inputs.
8352
8353Semantics:
8354""""""""""
8355
8356The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8357zeros in a variable, or within each element of the vector. If
8358``src == 0`` then the result is the size in bits of the type of ``src``
8359if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8360``llvm.ctlz(i32 2) = 30``.
8361
8362'``llvm.cttz.*``' Intrinsic
8363^^^^^^^^^^^^^^^^^^^^^^^^^^^
8364
8365Syntax:
8366"""""""
8367
8368This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8369integer bit width, or any vector of integer elements. Not all targets
8370support all bit widths or vector types, however.
8371
8372::
8373
8374 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8375 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8376 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8377 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8378 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8379 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8380
8381Overview:
8382"""""""""
8383
8384The '``llvm.cttz``' family of intrinsic functions counts the number of
8385trailing zeros.
8386
8387Arguments:
8388""""""""""
8389
8390The first argument is the value to be counted. This argument may be of
8391any integer type, or a vectory with integer element type. The return
8392type must match the first argument type.
8393
8394The second argument must be a constant and is a flag to indicate whether
8395the intrinsic should ensure that a zero as the first argument produces a
8396defined result. Historically some architectures did not provide a
8397defined result for zero values as efficiently, and many algorithms are
8398now predicated on avoiding zero-value inputs.
8399
8400Semantics:
8401""""""""""
8402
8403The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8404zeros in a variable, or within each element of a vector. If ``src == 0``
8405then the result is the size in bits of the type of ``src`` if
8406``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8407``llvm.cttz(2) = 1``.
8408
8409Arithmetic with Overflow Intrinsics
8410-----------------------------------
8411
8412LLVM provides intrinsics for some arithmetic with overflow operations.
8413
8414'``llvm.sadd.with.overflow.*``' Intrinsics
8415^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8416
8417Syntax:
8418"""""""
8419
8420This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8421on any integer bit width.
8422
8423::
8424
8425 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8426 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8427 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8428
8429Overview:
8430"""""""""
8431
8432The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8433a signed addition of the two arguments, and indicate whether an overflow
8434occurred during the signed summation.
8435
8436Arguments:
8437""""""""""
8438
8439The arguments (%a and %b) and the first element of the result structure
8440may be of integer types of any bit width, but they must have the same
8441bit width. The second element of the result structure must be of type
8442``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8443addition.
8444
8445Semantics:
8446""""""""""
8447
8448The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008449a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008450first element of which is the signed summation, and the second element
8451of which is a bit specifying if the signed summation resulted in an
8452overflow.
8453
8454Examples:
8455"""""""""
8456
8457.. code-block:: llvm
8458
8459 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8460 %sum = extractvalue {i32, i1} %res, 0
8461 %obit = extractvalue {i32, i1} %res, 1
8462 br i1 %obit, label %overflow, label %normal
8463
8464'``llvm.uadd.with.overflow.*``' Intrinsics
8465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8466
8467Syntax:
8468"""""""
8469
8470This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8471on any integer bit width.
8472
8473::
8474
8475 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8476 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8477 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8478
8479Overview:
8480"""""""""
8481
8482The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8483an unsigned addition of the two arguments, and indicate whether a carry
8484occurred during the unsigned summation.
8485
8486Arguments:
8487""""""""""
8488
8489The arguments (%a and %b) and the first element of the result structure
8490may be of integer types of any bit width, but they must have the same
8491bit width. The second element of the result structure must be of type
8492``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8493addition.
8494
8495Semantics:
8496""""""""""
8497
8498The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008499an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008500first element of which is the sum, and the second element of which is a
8501bit specifying if the unsigned summation resulted in a carry.
8502
8503Examples:
8504"""""""""
8505
8506.. code-block:: llvm
8507
8508 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8509 %sum = extractvalue {i32, i1} %res, 0
8510 %obit = extractvalue {i32, i1} %res, 1
8511 br i1 %obit, label %carry, label %normal
8512
8513'``llvm.ssub.with.overflow.*``' Intrinsics
8514^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8515
8516Syntax:
8517"""""""
8518
8519This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8520on any integer bit width.
8521
8522::
8523
8524 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8525 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8526 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8527
8528Overview:
8529"""""""""
8530
8531The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8532a signed subtraction of the two arguments, and indicate whether an
8533overflow occurred during the signed subtraction.
8534
8535Arguments:
8536""""""""""
8537
8538The arguments (%a and %b) and the first element of the result structure
8539may be of integer types of any bit width, but they must have the same
8540bit width. The second element of the result structure must be of type
8541``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8542subtraction.
8543
8544Semantics:
8545""""""""""
8546
8547The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008548a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008549first element of which is the subtraction, and the second element of
8550which is a bit specifying if the signed subtraction resulted in an
8551overflow.
8552
8553Examples:
8554"""""""""
8555
8556.. code-block:: llvm
8557
8558 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8559 %sum = extractvalue {i32, i1} %res, 0
8560 %obit = extractvalue {i32, i1} %res, 1
8561 br i1 %obit, label %overflow, label %normal
8562
8563'``llvm.usub.with.overflow.*``' Intrinsics
8564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8565
8566Syntax:
8567"""""""
8568
8569This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8570on any integer bit width.
8571
8572::
8573
8574 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8575 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8576 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8577
8578Overview:
8579"""""""""
8580
8581The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8582an unsigned subtraction of the two arguments, and indicate whether an
8583overflow occurred during the unsigned subtraction.
8584
8585Arguments:
8586""""""""""
8587
8588The arguments (%a and %b) and the first element of the result structure
8589may be of integer types of any bit width, but they must have the same
8590bit width. The second element of the result structure must be of type
8591``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8592subtraction.
8593
8594Semantics:
8595""""""""""
8596
8597The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008598an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008599the first element of which is the subtraction, and the second element of
8600which is a bit specifying if the unsigned subtraction resulted in an
8601overflow.
8602
8603Examples:
8604"""""""""
8605
8606.. code-block:: llvm
8607
8608 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8609 %sum = extractvalue {i32, i1} %res, 0
8610 %obit = extractvalue {i32, i1} %res, 1
8611 br i1 %obit, label %overflow, label %normal
8612
8613'``llvm.smul.with.overflow.*``' Intrinsics
8614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8615
8616Syntax:
8617"""""""
8618
8619This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8620on any integer bit width.
8621
8622::
8623
8624 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8625 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8626 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8627
8628Overview:
8629"""""""""
8630
8631The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8632a signed multiplication of the two arguments, and indicate whether an
8633overflow occurred during the signed multiplication.
8634
8635Arguments:
8636""""""""""
8637
8638The arguments (%a and %b) and the first element of the result structure
8639may be of integer types of any bit width, but they must have the same
8640bit width. The second element of the result structure must be of type
8641``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8642multiplication.
8643
8644Semantics:
8645""""""""""
8646
8647The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008648a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008649the first element of which is the multiplication, and the second element
8650of which is a bit specifying if the signed multiplication resulted in an
8651overflow.
8652
8653Examples:
8654"""""""""
8655
8656.. code-block:: llvm
8657
8658 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8659 %sum = extractvalue {i32, i1} %res, 0
8660 %obit = extractvalue {i32, i1} %res, 1
8661 br i1 %obit, label %overflow, label %normal
8662
8663'``llvm.umul.with.overflow.*``' Intrinsics
8664^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8665
8666Syntax:
8667"""""""
8668
8669This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8670on any integer bit width.
8671
8672::
8673
8674 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8675 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8676 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8677
8678Overview:
8679"""""""""
8680
8681The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8682a unsigned multiplication of the two arguments, and indicate whether an
8683overflow occurred during the unsigned multiplication.
8684
8685Arguments:
8686""""""""""
8687
8688The arguments (%a and %b) and the first element of the result structure
8689may be of integer types of any bit width, but they must have the same
8690bit width. The second element of the result structure must be of type
8691``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8692multiplication.
8693
8694Semantics:
8695""""""""""
8696
8697The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008698an unsigned multiplication of the two arguments. They return a structure ---
8699the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008700element of which is a bit specifying if the unsigned multiplication
8701resulted in an overflow.
8702
8703Examples:
8704"""""""""
8705
8706.. code-block:: llvm
8707
8708 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8709 %sum = extractvalue {i32, i1} %res, 0
8710 %obit = extractvalue {i32, i1} %res, 1
8711 br i1 %obit, label %overflow, label %normal
8712
8713Specialised Arithmetic Intrinsics
8714---------------------------------
8715
8716'``llvm.fmuladd.*``' Intrinsic
8717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8718
8719Syntax:
8720"""""""
8721
8722::
8723
8724 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8725 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8726
8727Overview:
8728"""""""""
8729
8730The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008731expressions that can be fused if the code generator determines that (a) the
8732target instruction set has support for a fused operation, and (b) that the
8733fused operation is more efficient than the equivalent, separate pair of mul
8734and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008735
8736Arguments:
8737""""""""""
8738
8739The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8740multiplicands, a and b, and an addend c.
8741
8742Semantics:
8743""""""""""
8744
8745The expression:
8746
8747::
8748
8749 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8750
8751is equivalent to the expression a \* b + c, except that rounding will
8752not be performed between the multiplication and addition steps if the
8753code generator fuses the operations. Fusion is not guaranteed, even if
8754the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008755corresponding llvm.fma.\* intrinsic function should be used
8756instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008757
8758Examples:
8759"""""""""
8760
8761.. code-block:: llvm
8762
Tim Northover675a0962014-06-13 14:24:23 +00008763 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00008764
8765Half Precision Floating Point Intrinsics
8766----------------------------------------
8767
8768For most target platforms, half precision floating point is a
8769storage-only format. This means that it is a dense encoding (in memory)
8770but does not support computation in the format.
8771
8772This means that code must first load the half-precision floating point
8773value as an i16, then convert it to float with
8774:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8775then be performed on the float value (including extending to double
8776etc). To store the value back to memory, it is first converted to float
8777if needed, then converted to i16 with
8778:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8779i16 value.
8780
8781.. _int_convert_to_fp16:
8782
8783'``llvm.convert.to.fp16``' Intrinsic
8784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8785
8786Syntax:
8787"""""""
8788
8789::
8790
Tim Northoverfd7e4242014-07-17 10:51:23 +00008791 declare i16 @llvm.convert.to.fp16.f32(float %a)
8792 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00008793
8794Overview:
8795"""""""""
8796
Tim Northoverfd7e4242014-07-17 10:51:23 +00008797The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8798conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00008799
8800Arguments:
8801""""""""""
8802
8803The intrinsic function contains single argument - the value to be
8804converted.
8805
8806Semantics:
8807""""""""""
8808
Tim Northoverfd7e4242014-07-17 10:51:23 +00008809The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8810conventional floating point format to half precision floating point format. The
8811return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00008812
8813Examples:
8814"""""""""
8815
8816.. code-block:: llvm
8817
Tim Northoverfd7e4242014-07-17 10:51:23 +00008818 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00008819 store i16 %res, i16* @x, align 2
8820
8821.. _int_convert_from_fp16:
8822
8823'``llvm.convert.from.fp16``' Intrinsic
8824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8825
8826Syntax:
8827"""""""
8828
8829::
8830
Tim Northoverfd7e4242014-07-17 10:51:23 +00008831 declare float @llvm.convert.from.fp16.f32(i16 %a)
8832 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008833
8834Overview:
8835"""""""""
8836
8837The '``llvm.convert.from.fp16``' intrinsic function performs a
8838conversion from half precision floating point format to single precision
8839floating point format.
8840
8841Arguments:
8842""""""""""
8843
8844The intrinsic function contains single argument - the value to be
8845converted.
8846
8847Semantics:
8848""""""""""
8849
8850The '``llvm.convert.from.fp16``' intrinsic function performs a
8851conversion from half single precision floating point format to single
8852precision floating point format. The input half-float value is
8853represented by an ``i16`` value.
8854
8855Examples:
8856"""""""""
8857
8858.. code-block:: llvm
8859
8860 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00008861 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008862
8863Debugger Intrinsics
8864-------------------
8865
8866The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8867prefix), are described in the `LLVM Source Level
8868Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8869document.
8870
8871Exception Handling Intrinsics
8872-----------------------------
8873
8874The LLVM exception handling intrinsics (which all start with
8875``llvm.eh.`` prefix), are described in the `LLVM Exception
8876Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8877
8878.. _int_trampoline:
8879
8880Trampoline Intrinsics
8881---------------------
8882
8883These intrinsics make it possible to excise one parameter, marked with
8884the :ref:`nest <nest>` attribute, from a function. The result is a
8885callable function pointer lacking the nest parameter - the caller does
8886not need to provide a value for it. Instead, the value to use is stored
8887in advance in a "trampoline", a block of memory usually allocated on the
8888stack, which also contains code to splice the nest value into the
8889argument list. This is used to implement the GCC nested function address
8890extension.
8891
8892For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8893then the resulting function pointer has signature ``i32 (i32, i32)*``.
8894It can be created as follows:
8895
8896.. code-block:: llvm
8897
8898 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8899 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8900 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8901 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8902 %fp = bitcast i8* %p to i32 (i32, i32)*
8903
8904The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8905``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8906
8907.. _int_it:
8908
8909'``llvm.init.trampoline``' Intrinsic
8910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8911
8912Syntax:
8913"""""""
8914
8915::
8916
8917 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8918
8919Overview:
8920"""""""""
8921
8922This fills the memory pointed to by ``tramp`` with executable code,
8923turning it into a trampoline.
8924
8925Arguments:
8926""""""""""
8927
8928The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8929pointers. The ``tramp`` argument must point to a sufficiently large and
8930sufficiently aligned block of memory; this memory is written to by the
8931intrinsic. Note that the size and the alignment are target-specific -
8932LLVM currently provides no portable way of determining them, so a
8933front-end that generates this intrinsic needs to have some
8934target-specific knowledge. The ``func`` argument must hold a function
8935bitcast to an ``i8*``.
8936
8937Semantics:
8938""""""""""
8939
8940The block of memory pointed to by ``tramp`` is filled with target
8941dependent code, turning it into a function. Then ``tramp`` needs to be
8942passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8943be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8944function's signature is the same as that of ``func`` with any arguments
8945marked with the ``nest`` attribute removed. At most one such ``nest``
8946argument is allowed, and it must be of pointer type. Calling the new
8947function is equivalent to calling ``func`` with the same argument list,
8948but with ``nval`` used for the missing ``nest`` argument. If, after
8949calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8950modified, then the effect of any later call to the returned function
8951pointer is undefined.
8952
8953.. _int_at:
8954
8955'``llvm.adjust.trampoline``' Intrinsic
8956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8957
8958Syntax:
8959"""""""
8960
8961::
8962
8963 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8964
8965Overview:
8966"""""""""
8967
8968This performs any required machine-specific adjustment to the address of
8969a trampoline (passed as ``tramp``).
8970
8971Arguments:
8972""""""""""
8973
8974``tramp`` must point to a block of memory which already has trampoline
8975code filled in by a previous call to
8976:ref:`llvm.init.trampoline <int_it>`.
8977
8978Semantics:
8979""""""""""
8980
8981On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00008982different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00008983intrinsic returns the executable address corresponding to ``tramp``
8984after performing the required machine specific adjustments. The pointer
8985returned can then be :ref:`bitcast and executed <int_trampoline>`.
8986
8987Memory Use Markers
8988------------------
8989
Sanjay Patel69bf48e2014-07-04 19:40:43 +00008990This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00008991memory objects and ranges where variables are immutable.
8992
Reid Klecknera534a382013-12-19 02:14:12 +00008993.. _int_lifestart:
8994
Sean Silvab084af42012-12-07 10:36:55 +00008995'``llvm.lifetime.start``' Intrinsic
8996^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8997
8998Syntax:
8999"""""""
9000
9001::
9002
9003 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9004
9005Overview:
9006"""""""""
9007
9008The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9009object's lifetime.
9010
9011Arguments:
9012""""""""""
9013
9014The first argument is a constant integer representing the size of the
9015object, or -1 if it is variable sized. The second argument is a pointer
9016to the object.
9017
9018Semantics:
9019""""""""""
9020
9021This intrinsic indicates that before this point in the code, the value
9022of the memory pointed to by ``ptr`` is dead. This means that it is known
9023to never be used and has an undefined value. A load from the pointer
9024that precedes this intrinsic can be replaced with ``'undef'``.
9025
Reid Klecknera534a382013-12-19 02:14:12 +00009026.. _int_lifeend:
9027
Sean Silvab084af42012-12-07 10:36:55 +00009028'``llvm.lifetime.end``' Intrinsic
9029^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9030
9031Syntax:
9032"""""""
9033
9034::
9035
9036 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9037
9038Overview:
9039"""""""""
9040
9041The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9042object's lifetime.
9043
9044Arguments:
9045""""""""""
9046
9047The first argument is a constant integer representing the size of the
9048object, or -1 if it is variable sized. The second argument is a pointer
9049to the object.
9050
9051Semantics:
9052""""""""""
9053
9054This intrinsic indicates that after this point in the code, the value of
9055the memory pointed to by ``ptr`` is dead. This means that it is known to
9056never be used and has an undefined value. Any stores into the memory
9057object following this intrinsic may be removed as dead.
9058
9059'``llvm.invariant.start``' Intrinsic
9060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9061
9062Syntax:
9063"""""""
9064
9065::
9066
9067 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9068
9069Overview:
9070"""""""""
9071
9072The '``llvm.invariant.start``' intrinsic specifies that the contents of
9073a memory object will not change.
9074
9075Arguments:
9076""""""""""
9077
9078The first argument is a constant integer representing the size of the
9079object, or -1 if it is variable sized. The second argument is a pointer
9080to the object.
9081
9082Semantics:
9083""""""""""
9084
9085This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9086the return value, the referenced memory location is constant and
9087unchanging.
9088
9089'``llvm.invariant.end``' Intrinsic
9090^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9091
9092Syntax:
9093"""""""
9094
9095::
9096
9097 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9098
9099Overview:
9100"""""""""
9101
9102The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9103memory object are mutable.
9104
9105Arguments:
9106""""""""""
9107
9108The first argument is the matching ``llvm.invariant.start`` intrinsic.
9109The second argument is a constant integer representing the size of the
9110object, or -1 if it is variable sized and the third argument is a
9111pointer to the object.
9112
9113Semantics:
9114""""""""""
9115
9116This intrinsic indicates that the memory is mutable again.
9117
9118General Intrinsics
9119------------------
9120
9121This class of intrinsics is designed to be generic and has no specific
9122purpose.
9123
9124'``llvm.var.annotation``' Intrinsic
9125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9126
9127Syntax:
9128"""""""
9129
9130::
9131
9132 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9133
9134Overview:
9135"""""""""
9136
9137The '``llvm.var.annotation``' intrinsic.
9138
9139Arguments:
9140""""""""""
9141
9142The first argument is a pointer to a value, the second is a pointer to a
9143global string, the third is a pointer to a global string which is the
9144source file name, and the last argument is the line number.
9145
9146Semantics:
9147""""""""""
9148
9149This intrinsic allows annotation of local variables with arbitrary
9150strings. This can be useful for special purpose optimizations that want
9151to look for these annotations. These have no other defined use; they are
9152ignored by code generation and optimization.
9153
Michael Gottesman88d18832013-03-26 00:34:27 +00009154'``llvm.ptr.annotation.*``' Intrinsic
9155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9156
9157Syntax:
9158"""""""
9159
9160This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9161pointer to an integer of any width. *NOTE* you must specify an address space for
9162the pointer. The identifier for the default address space is the integer
9163'``0``'.
9164
9165::
9166
9167 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9168 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9169 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9170 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9171 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9172
9173Overview:
9174"""""""""
9175
9176The '``llvm.ptr.annotation``' intrinsic.
9177
9178Arguments:
9179""""""""""
9180
9181The first argument is a pointer to an integer value of arbitrary bitwidth
9182(result of some expression), the second is a pointer to a global string, the
9183third is a pointer to a global string which is the source file name, and the
9184last argument is the line number. It returns the value of the first argument.
9185
9186Semantics:
9187""""""""""
9188
9189This intrinsic allows annotation of a pointer to an integer with arbitrary
9190strings. This can be useful for special purpose optimizations that want to look
9191for these annotations. These have no other defined use; they are ignored by code
9192generation and optimization.
9193
Sean Silvab084af42012-12-07 10:36:55 +00009194'``llvm.annotation.*``' Intrinsic
9195^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9196
9197Syntax:
9198"""""""
9199
9200This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9201any integer bit width.
9202
9203::
9204
9205 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9206 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9207 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9208 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9209 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9210
9211Overview:
9212"""""""""
9213
9214The '``llvm.annotation``' intrinsic.
9215
9216Arguments:
9217""""""""""
9218
9219The first argument is an integer value (result of some expression), the
9220second is a pointer to a global string, the third is a pointer to a
9221global string which is the source file name, and the last argument is
9222the line number. It returns the value of the first argument.
9223
9224Semantics:
9225""""""""""
9226
9227This intrinsic allows annotations to be put on arbitrary expressions
9228with arbitrary strings. This can be useful for special purpose
9229optimizations that want to look for these annotations. These have no
9230other defined use; they are ignored by code generation and optimization.
9231
9232'``llvm.trap``' Intrinsic
9233^^^^^^^^^^^^^^^^^^^^^^^^^
9234
9235Syntax:
9236"""""""
9237
9238::
9239
9240 declare void @llvm.trap() noreturn nounwind
9241
9242Overview:
9243"""""""""
9244
9245The '``llvm.trap``' intrinsic.
9246
9247Arguments:
9248""""""""""
9249
9250None.
9251
9252Semantics:
9253""""""""""
9254
9255This intrinsic is lowered to the target dependent trap instruction. If
9256the target does not have a trap instruction, this intrinsic will be
9257lowered to a call of the ``abort()`` function.
9258
9259'``llvm.debugtrap``' Intrinsic
9260^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9261
9262Syntax:
9263"""""""
9264
9265::
9266
9267 declare void @llvm.debugtrap() nounwind
9268
9269Overview:
9270"""""""""
9271
9272The '``llvm.debugtrap``' intrinsic.
9273
9274Arguments:
9275""""""""""
9276
9277None.
9278
9279Semantics:
9280""""""""""
9281
9282This intrinsic is lowered to code which is intended to cause an
9283execution trap with the intention of requesting the attention of a
9284debugger.
9285
9286'``llvm.stackprotector``' Intrinsic
9287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9288
9289Syntax:
9290"""""""
9291
9292::
9293
9294 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9295
9296Overview:
9297"""""""""
9298
9299The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9300onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9301is placed on the stack before local variables.
9302
9303Arguments:
9304""""""""""
9305
9306The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9307The first argument is the value loaded from the stack guard
9308``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9309enough space to hold the value of the guard.
9310
9311Semantics:
9312""""""""""
9313
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009314This intrinsic causes the prologue/epilogue inserter to force the position of
9315the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9316to ensure that if a local variable on the stack is overwritten, it will destroy
9317the value of the guard. When the function exits, the guard on the stack is
9318checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9319different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9320calling the ``__stack_chk_fail()`` function.
9321
9322'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009323^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009324
9325Syntax:
9326"""""""
9327
9328::
9329
9330 declare void @llvm.stackprotectorcheck(i8** <guard>)
9331
9332Overview:
9333"""""""""
9334
9335The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009336created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009337``__stack_chk_fail()`` function.
9338
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009339Arguments:
9340""""""""""
9341
9342The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9343the variable ``@__stack_chk_guard``.
9344
9345Semantics:
9346""""""""""
9347
9348This intrinsic is provided to perform the stack protector check by comparing
9349``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9350values do not match call the ``__stack_chk_fail()`` function.
9351
9352The reason to provide this as an IR level intrinsic instead of implementing it
9353via other IR operations is that in order to perform this operation at the IR
9354level without an intrinsic, one would need to create additional basic blocks to
9355handle the success/failure cases. This makes it difficult to stop the stack
9356protector check from disrupting sibling tail calls in Codegen. With this
9357intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009358codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009359
Sean Silvab084af42012-12-07 10:36:55 +00009360'``llvm.objectsize``' Intrinsic
9361^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9362
9363Syntax:
9364"""""""
9365
9366::
9367
9368 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9369 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9370
9371Overview:
9372"""""""""
9373
9374The ``llvm.objectsize`` intrinsic is designed to provide information to
9375the optimizers to determine at compile time whether a) an operation
9376(like memcpy) will overflow a buffer that corresponds to an object, or
9377b) that a runtime check for overflow isn't necessary. An object in this
9378context means an allocation of a specific class, structure, array, or
9379other object.
9380
9381Arguments:
9382""""""""""
9383
9384The ``llvm.objectsize`` intrinsic takes two arguments. The first
9385argument is a pointer to or into the ``object``. The second argument is
9386a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9387or -1 (if false) when the object size is unknown. The second argument
9388only accepts constants.
9389
9390Semantics:
9391""""""""""
9392
9393The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9394the size of the object concerned. If the size cannot be determined at
9395compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9396on the ``min`` argument).
9397
9398'``llvm.expect``' Intrinsic
9399^^^^^^^^^^^^^^^^^^^^^^^^^^^
9400
9401Syntax:
9402"""""""
9403
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009404This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9405integer bit width.
9406
Sean Silvab084af42012-12-07 10:36:55 +00009407::
9408
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009409 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009410 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9411 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9412
9413Overview:
9414"""""""""
9415
9416The ``llvm.expect`` intrinsic provides information about expected (the
9417most probable) value of ``val``, which can be used by optimizers.
9418
9419Arguments:
9420""""""""""
9421
9422The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9423a value. The second argument is an expected value, this needs to be a
9424constant value, variables are not allowed.
9425
9426Semantics:
9427""""""""""
9428
9429This intrinsic is lowered to the ``val``.
9430
Hal Finkel93046912014-07-25 21:13:35 +00009431'``llvm.assume``' Intrinsic
9432^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9433
9434Syntax:
9435"""""""
9436
9437::
9438
9439 declare void @llvm.assume(i1 %cond)
9440
9441Overview:
9442"""""""""
9443
9444The ``llvm.assume`` allows the optimizer to assume that the provided
9445condition is true. This information can then be used in simplifying other parts
9446of the code.
9447
9448Arguments:
9449""""""""""
9450
9451The condition which the optimizer may assume is always true.
9452
9453Semantics:
9454""""""""""
9455
9456The intrinsic allows the optimizer to assume that the provided condition is
9457always true whenever the control flow reaches the intrinsic call. No code is
9458generated for this intrinsic, and instructions that contribute only to the
9459provided condition are not used for code generation. If the condition is
9460violated during execution, the behavior is undefined.
9461
9462Please note that optimizer might limit the transformations performed on values
9463used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9464only used to form the intrinsic's input argument. This might prove undesirable
9465if the extra information provided by the ``llvm.assume`` intrinsic does cause
9466sufficient overall improvement in code quality. For this reason,
9467``llvm.assume`` should not be used to document basic mathematical invariants
9468that the optimizer can otherwise deduce or facts that are of little use to the
9469optimizer.
9470
Sean Silvab084af42012-12-07 10:36:55 +00009471'``llvm.donothing``' Intrinsic
9472^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9473
9474Syntax:
9475"""""""
9476
9477::
9478
9479 declare void @llvm.donothing() nounwind readnone
9480
9481Overview:
9482"""""""""
9483
9484The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9485only intrinsic that can be called with an invoke instruction.
9486
9487Arguments:
9488""""""""""
9489
9490None.
9491
9492Semantics:
9493""""""""""
9494
9495This intrinsic does nothing, and it's removed by optimizers and ignored
9496by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009497
9498Stack Map Intrinsics
9499--------------------
9500
9501LLVM provides experimental intrinsics to support runtime patching
9502mechanisms commonly desired in dynamic language JITs. These intrinsics
9503are described in :doc:`StackMaps`.