blob: 0aaabec5c1f7d84a4a755c959e4c7382f5737948 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Chris Lattner965c7692008-06-02 01:18:21 +00006//
7//===----------------------------------------------------------------------===//
8//
9// This file contains routines that help analyze properties that chains of
10// computations have.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000015#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/None.h"
James Molloy493e57d2015-10-26 14:10:46 +000019#include "llvm/ADT/Optional.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000020#include "llvm/ADT/STLExtras.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000021#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000022#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/Analysis/AliasAnalysis.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000027#include "llvm/Analysis/AssumptionCache.h"
Max Kazantsev3c284bd2018-08-30 03:39:16 +000028#include "llvm/Analysis/GuardUtils.h"
Dan Gohman949ab782010-12-15 20:10:26 +000029#include "llvm/Analysis/InstructionSimplify.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000030#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000031#include "llvm/Analysis/LoopInfo.h"
Adam Nemet0965da22017-10-09 23:19:02 +000032#include "llvm/Analysis/OptimizationRemarkEmitter.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000033#include "llvm/Analysis/TargetLibraryInfo.h"
34#include "llvm/IR/Argument.h"
35#include "llvm/IR/Attributes.h"
36#include "llvm/IR/BasicBlock.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000037#include "llvm/IR/CallSite.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000038#include "llvm/IR/Constant.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000039#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000040#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
Matthias Braun50ec0b52017-05-19 22:37:09 +000042#include "llvm/IR/DerivedTypes.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000043#include "llvm/IR/DiagnosticInfo.h"
Hal Finkel60db0582014-09-07 18:57:58 +000044#include "llvm/IR/Dominators.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000045#include "llvm/IR/Function.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000046#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000047#include "llvm/IR/GlobalAlias.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000048#include "llvm/IR/GlobalValue.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000049#include "llvm/IR/GlobalVariable.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000050#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000052#include "llvm/IR/Instructions.h"
53#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000054#include "llvm/IR/Intrinsics.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000055#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/Metadata.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000057#include "llvm/IR/Module.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000058#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000059#include "llvm/IR/PatternMatch.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000060#include "llvm/IR/Type.h"
61#include "llvm/IR/User.h"
62#include "llvm/IR/Value.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/ErrorHandling.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000067#include "llvm/Support/KnownBits.h"
Chris Lattner965c7692008-06-02 01:18:21 +000068#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000069#include <algorithm>
70#include <array>
Eugene Zelenko75075ef2017-09-01 21:37:29 +000071#include <cassert>
72#include <cstdint>
73#include <iterator>
Fangrui Songf78650a2018-07-30 19:41:25 +000074#include <utility>
Eugene Zelenko75075ef2017-09-01 21:37:29 +000075
Chris Lattner965c7692008-06-02 01:18:21 +000076using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000077using namespace llvm::PatternMatch;
78
79const unsigned MaxDepth = 6;
80
Philip Reames1c292272015-03-10 22:43:20 +000081// Controls the number of uses of the value searched for possible
82// dominating comparisons.
83static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000084 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000085
Craig Topper6b3940a2017-05-03 22:25:19 +000086/// Returns the bitwidth of the given scalar or pointer type. For vector types,
87/// returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000088static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000089 if (unsigned BitWidth = Ty->getScalarSizeInBits())
90 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000091
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000092 return DL.getIndexTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000093}
Chris Lattner965c7692008-06-02 01:18:21 +000094
Benjamin Kramercfd8d902014-09-12 08:56:53 +000095namespace {
Eugene Zelenko75075ef2017-09-01 21:37:29 +000096
Hal Finkel60db0582014-09-07 18:57:58 +000097// Simplifying using an assume can only be done in a particular control-flow
98// context (the context instruction provides that context). If an assume and
99// the context instruction are not in the same block then the DT helps in
100// figuring out if we can use it.
101struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000102 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000103 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +0000104 const Instruction *CxtI;
105 const DominatorTree *DT;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000106
Sanjay Patel54656ca2017-02-06 18:26:06 +0000107 // Unlike the other analyses, this may be a nullptr because not all clients
108 // provide it currently.
109 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +0000110
Matthias Braun37e5d792016-01-28 06:29:33 +0000111 /// Set of assumptions that should be excluded from further queries.
112 /// This is because of the potential for mutual recursion to cause
113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
114 /// classic case of this is assume(x = y), which will attempt to determine
115 /// bits in x from bits in y, which will attempt to determine bits in y from
116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
Craig Topper6e11a052017-05-08 16:22:48 +0000117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
118 /// (all of which can call computeKnownBits), and so on.
Li Huang755f75f2016-10-15 19:00:04 +0000119 std::array<const Value *, MaxDepth> Excluded;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000120
Florian Hahn19f9e322018-08-17 14:39:04 +0000121 /// If true, it is safe to use metadata during simplification.
122 InstrInfoQuery IIQ;
123
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000124 unsigned NumExcluded = 0;
Matthias Braun37e5d792016-01-28 06:29:33 +0000125
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000126 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Florian Hahn19f9e322018-08-17 14:39:04 +0000127 const DominatorTree *DT, bool UseInstrInfo,
128 OptimizationRemarkEmitter *ORE = nullptr)
129 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000130
131 Query(const Query &Q, const Value *NewExcl)
Florian Hahn19f9e322018-08-17 14:39:04 +0000132 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
Sanjay Patel54656ca2017-02-06 18:26:06 +0000133 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000134 Excluded = Q.Excluded;
135 Excluded[NumExcluded++] = NewExcl;
136 assert(NumExcluded <= Excluded.size());
137 }
138
139 bool isExcluded(const Value *Value) const {
140 if (NumExcluded == 0)
141 return false;
142 auto End = Excluded.begin() + NumExcluded;
143 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000144 }
145};
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000146
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000147} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000148
Sanjay Patel547e9752014-11-04 16:09:50 +0000149// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000150// the preferred context instruction (if any).
151static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
152 // If we've been provided with a context instruction, then use that (provided
153 // it has been inserted).
154 if (CxtI && CxtI->getParent())
155 return CxtI;
156
157 // If the value is really an already-inserted instruction, then use that.
158 CxtI = dyn_cast<Instruction>(V);
159 if (CxtI && CxtI->getParent())
160 return CxtI;
161
162 return nullptr;
163}
164
Craig Topperb45eabc2017-04-26 16:39:58 +0000165static void computeKnownBits(const Value *V, KnownBits &Known,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000166 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000167
Craig Topperb45eabc2017-04-26 16:39:58 +0000168void llvm::computeKnownBits(const Value *V, KnownBits &Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000169 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000170 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000171 const DominatorTree *DT,
Florian Hahn19f9e322018-08-17 14:39:04 +0000172 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000173 ::computeKnownBits(V, Known, Depth,
Florian Hahn19f9e322018-08-17 14:39:04 +0000174 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000175}
176
Craig Topper6e11a052017-05-08 16:22:48 +0000177static KnownBits computeKnownBits(const Value *V, unsigned Depth,
178 const Query &Q);
179
180KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
181 unsigned Depth, AssumptionCache *AC,
182 const Instruction *CxtI,
Craig Toppera2025ea2017-05-24 16:53:03 +0000183 const DominatorTree *DT,
Florian Hahn19f9e322018-08-17 14:39:04 +0000184 OptimizationRemarkEmitter *ORE,
185 bool UseInstrInfo) {
186 return ::computeKnownBits(
187 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
Craig Topper6e11a052017-05-08 16:22:48 +0000188}
189
Pete Cooper35b00d52016-08-13 01:05:32 +0000190bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
Florian Hahn19f9e322018-08-17 14:39:04 +0000191 const DataLayout &DL, AssumptionCache *AC,
192 const Instruction *CxtI, const DominatorTree *DT,
193 bool UseInstrInfo) {
Jingyue Wuca321902015-05-14 23:53:19 +0000194 assert(LHS->getType() == RHS->getType() &&
195 "LHS and RHS should have the same type");
196 assert(LHS->getType()->isIntOrIntVectorTy() &&
197 "LHS and RHS should be integers");
Roman Lebedev620b3da2018-04-15 18:59:33 +0000198 // Look for an inverted mask: (X & ~M) op (Y & M).
199 Value *M;
200 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
201 match(RHS, m_c_And(m_Specific(M), m_Value())))
202 return true;
203 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
204 match(LHS, m_c_And(m_Specific(M), m_Value())))
205 return true;
Jingyue Wuca321902015-05-14 23:53:19 +0000206 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
Craig Topperb45eabc2017-04-26 16:39:58 +0000207 KnownBits LHSKnown(IT->getBitWidth());
208 KnownBits RHSKnown(IT->getBitWidth());
Florian Hahn19f9e322018-08-17 14:39:04 +0000209 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
210 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
Craig Topperb45eabc2017-04-26 16:39:58 +0000211 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
Jingyue Wuca321902015-05-14 23:53:19 +0000212}
213
Zaara Syeda3a7578c2017-05-31 17:12:38 +0000214bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
215 for (const User *U : CxtI->users()) {
216 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
217 if (IC->isEquality())
218 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
219 if (C->isNullValue())
220 continue;
221 return false;
222 }
223 return true;
224}
225
Pete Cooper35b00d52016-08-13 01:05:32 +0000226static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000227 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000228
Pete Cooper35b00d52016-08-13 01:05:32 +0000229bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
Florian Hahn19f9e322018-08-17 14:39:04 +0000230 bool OrZero, unsigned Depth,
231 AssumptionCache *AC, const Instruction *CxtI,
232 const DominatorTree *DT, bool UseInstrInfo) {
233 return ::isKnownToBeAPowerOfTwo(
234 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000235}
236
Pete Cooper35b00d52016-08-13 01:05:32 +0000237static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000238
Pete Cooper35b00d52016-08-13 01:05:32 +0000239bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000240 AssumptionCache *AC, const Instruction *CxtI,
Florian Hahn19f9e322018-08-17 14:39:04 +0000241 const DominatorTree *DT, bool UseInstrInfo) {
242 return ::isKnownNonZero(V, Depth,
243 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000244}
245
Pete Cooper35b00d52016-08-13 01:05:32 +0000246bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Florian Hahn19f9e322018-08-17 14:39:04 +0000247 unsigned Depth, AssumptionCache *AC,
248 const Instruction *CxtI, const DominatorTree *DT,
249 bool UseInstrInfo) {
250 KnownBits Known =
251 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
Craig Topper6e11a052017-05-08 16:22:48 +0000252 return Known.isNonNegative();
Jingyue Wu10fcea52015-08-20 18:27:04 +0000253}
254
Pete Cooper35b00d52016-08-13 01:05:32 +0000255bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000256 AssumptionCache *AC, const Instruction *CxtI,
Florian Hahn19f9e322018-08-17 14:39:04 +0000257 const DominatorTree *DT, bool UseInstrInfo) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000258 if (auto *CI = dyn_cast<ConstantInt>(V))
259 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000260
Philip Reames8f12eba2016-03-09 21:31:47 +0000261 // TODO: We'd doing two recursive queries here. We should factor this such
262 // that only a single query is needed.
Florian Hahn19f9e322018-08-17 14:39:04 +0000263 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
264 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
Philip Reames8f12eba2016-03-09 21:31:47 +0000265}
266
Pete Cooper35b00d52016-08-13 01:05:32 +0000267bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000268 AssumptionCache *AC, const Instruction *CxtI,
Florian Hahn19f9e322018-08-17 14:39:04 +0000269 const DominatorTree *DT, bool UseInstrInfo) {
270 KnownBits Known =
271 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
Craig Topper6e11a052017-05-08 16:22:48 +0000272 return Known.isNegative();
Nick Lewycky762f8a82016-04-21 00:53:14 +0000273}
274
Pete Cooper35b00d52016-08-13 01:05:32 +0000275static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000276
Pete Cooper35b00d52016-08-13 01:05:32 +0000277bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Florian Hahn19f9e322018-08-17 14:39:04 +0000278 const DataLayout &DL, AssumptionCache *AC,
279 const Instruction *CxtI, const DominatorTree *DT,
280 bool UseInstrInfo) {
281 return ::isKnownNonEqual(V1, V2,
282 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
283 UseInstrInfo, /*ORE=*/nullptr));
James Molloy1d88d6f2015-10-22 13:18:42 +0000284}
285
Pete Cooper35b00d52016-08-13 01:05:32 +0000286static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000287 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000288
Pete Cooper35b00d52016-08-13 01:05:32 +0000289bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
Florian Hahn19f9e322018-08-17 14:39:04 +0000290 const DataLayout &DL, unsigned Depth,
291 AssumptionCache *AC, const Instruction *CxtI,
292 const DominatorTree *DT, bool UseInstrInfo) {
293 return ::MaskedValueIsZero(
294 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000295}
296
Pete Cooper35b00d52016-08-13 01:05:32 +0000297static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
298 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000299
Pete Cooper35b00d52016-08-13 01:05:32 +0000300unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000301 unsigned Depth, AssumptionCache *AC,
302 const Instruction *CxtI,
Florian Hahn19f9e322018-08-17 14:39:04 +0000303 const DominatorTree *DT, bool UseInstrInfo) {
304 return ::ComputeNumSignBits(
305 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
Hal Finkel60db0582014-09-07 18:57:58 +0000306}
307
Craig Topper8fbb74b2017-03-24 22:12:10 +0000308static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
309 bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000310 KnownBits &KnownOut, KnownBits &Known2,
Craig Topper8fbb74b2017-03-24 22:12:10 +0000311 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000312 unsigned BitWidth = KnownOut.getBitWidth();
Craig Topper8fbb74b2017-03-24 22:12:10 +0000313
314 // If an initial sequence of bits in the result is not needed, the
315 // corresponding bits in the operands are not needed.
Craig Topperb45eabc2017-04-26 16:39:58 +0000316 KnownBits LHSKnown(BitWidth);
317 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
318 computeKnownBits(Op1, Known2, Depth + 1, Q);
Craig Topper8fbb74b2017-03-24 22:12:10 +0000319
Craig Topperb498a232017-08-08 16:29:35 +0000320 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000321}
322
Pete Cooper35b00d52016-08-13 01:05:32 +0000323static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000324 KnownBits &Known, KnownBits &Known2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000325 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000326 unsigned BitWidth = Known.getBitWidth();
327 computeKnownBits(Op1, Known, Depth + 1, Q);
328 computeKnownBits(Op0, Known2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000329
330 bool isKnownNegative = false;
331 bool isKnownNonNegative = false;
332 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000333 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000334 if (Op0 == Op1) {
335 // The product of a number with itself is non-negative.
336 isKnownNonNegative = true;
337 } else {
Craig Topperca48af32017-04-29 16:43:11 +0000338 bool isKnownNonNegativeOp1 = Known.isNonNegative();
339 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
340 bool isKnownNegativeOp1 = Known.isNegative();
341 bool isKnownNegativeOp0 = Known2.isNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000342 // The product of two numbers with the same sign is non-negative.
343 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
344 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
345 // The product of a negative number and a non-negative number is either
346 // negative or zero.
347 if (!isKnownNonNegative)
348 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000349 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000350 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000351 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000352 }
353 }
354
Simon Dardis70dbd5f2017-12-09 23:25:57 +0000355 assert(!Known.hasConflict() && !Known2.hasConflict());
356 // Compute a conservative estimate for high known-0 bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000357 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
358 Known2.countMinLeadingZeros(),
Nick Lewyckyfa306072012-03-18 23:28:48 +0000359 BitWidth) - BitWidth;
Nick Lewyckyfa306072012-03-18 23:28:48 +0000360 LeadZ = std::min(LeadZ, BitWidth);
Simon Dardis70dbd5f2017-12-09 23:25:57 +0000361
362 // The result of the bottom bits of an integer multiply can be
363 // inferred by looking at the bottom bits of both operands and
364 // multiplying them together.
365 // We can infer at least the minimum number of known trailing bits
366 // of both operands. Depending on number of trailing zeros, we can
367 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
368 // a and b are divisible by m and n respectively.
369 // We then calculate how many of those bits are inferrable and set
370 // the output. For example, the i8 mul:
371 // a = XXXX1100 (12)
372 // b = XXXX1110 (14)
373 // We know the bottom 3 bits are zero since the first can be divided by
374 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
375 // Applying the multiplication to the trimmed arguments gets:
376 // XX11 (3)
377 // X111 (7)
378 // -------
379 // XX11
380 // XX11
381 // XX11
382 // XX11
383 // -------
384 // XXXXX01
385 // Which allows us to infer the 2 LSBs. Since we're multiplying the result
386 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
387 // The proof for this can be described as:
388 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
389 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
390 // umin(countTrailingZeros(C2), C6) +
391 // umin(C5 - umin(countTrailingZeros(C1), C5),
392 // C6 - umin(countTrailingZeros(C2), C6)))) - 1)
393 // %aa = shl i8 %a, C5
394 // %bb = shl i8 %b, C6
395 // %aaa = or i8 %aa, C1
396 // %bbb = or i8 %bb, C2
397 // %mul = mul i8 %aaa, %bbb
398 // %mask = and i8 %mul, C7
399 // =>
400 // %mask = i8 ((C1*C2)&C7)
401 // Where C5, C6 describe the known bits of %a, %b
402 // C1, C2 describe the known bottom bits of %a, %b.
403 // C7 describes the mask of the known bits of the result.
404 APInt Bottom0 = Known.One;
405 APInt Bottom1 = Known2.One;
406
407 // How many times we'd be able to divide each argument by 2 (shr by 1).
408 // This gives us the number of trailing zeros on the multiplication result.
409 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
410 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
411 unsigned TrailZero0 = Known.countMinTrailingZeros();
412 unsigned TrailZero1 = Known2.countMinTrailingZeros();
413 unsigned TrailZ = TrailZero0 + TrailZero1;
414
415 // Figure out the fewest known-bits operand.
416 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
417 TrailBitsKnown1 - TrailZero1);
418 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
419
420 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
421 Bottom1.getLoBits(TrailBitsKnown1);
422
Craig Topperf0aeee02017-05-05 17:36:09 +0000423 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000424 Known.Zero.setHighBits(LeadZ);
Simon Dardis70dbd5f2017-12-09 23:25:57 +0000425 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
426 Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000427
428 // Only make use of no-wrap flags if we failed to compute the sign bit
429 // directly. This matters if the multiplication always overflows, in
430 // which case we prefer to follow the result of the direct computation,
431 // though as the program is invoking undefined behaviour we can choose
432 // whatever we like here.
Craig Topperca48af32017-04-29 16:43:11 +0000433 if (isKnownNonNegative && !Known.isNegative())
434 Known.makeNonNegative();
435 else if (isKnownNegative && !Known.isNonNegative())
436 Known.makeNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000437}
438
Jingyue Wu37fcb592014-06-19 16:50:16 +0000439void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Craig Topperf42b23f2017-04-28 06:28:56 +0000440 KnownBits &Known) {
441 unsigned BitWidth = Known.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000442 unsigned NumRanges = Ranges.getNumOperands() / 2;
443 assert(NumRanges >= 1);
444
Craig Topperf42b23f2017-04-28 06:28:56 +0000445 Known.Zero.setAllBits();
446 Known.One.setAllBits();
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000447
Rafael Espindola53190532012-03-30 15:52:11 +0000448 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000449 ConstantInt *Lower =
450 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
451 ConstantInt *Upper =
452 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000453 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000454
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000455 // The first CommonPrefixBits of all values in Range are equal.
456 unsigned CommonPrefixBits =
457 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
458
459 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Craig Topperf42b23f2017-04-28 06:28:56 +0000460 Known.One &= Range.getUnsignedMax() & Mask;
461 Known.Zero &= ~Range.getUnsignedMax() & Mask;
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000462 }
Rafael Espindola53190532012-03-30 15:52:11 +0000463}
Jay Foad5a29c362014-05-15 12:12:55 +0000464
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000465static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000466 SmallVector<const Value *, 16> WorkSet(1, I);
467 SmallPtrSet<const Value *, 32> Visited;
468 SmallPtrSet<const Value *, 16> EphValues;
469
Hal Finkelf2199b22015-10-23 20:37:08 +0000470 // The instruction defining an assumption's condition itself is always
471 // considered ephemeral to that assumption (even if it has other
472 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000473 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000474 return true;
475
Hal Finkel60db0582014-09-07 18:57:58 +0000476 while (!WorkSet.empty()) {
477 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000478 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000479 continue;
480
481 // If all uses of this value are ephemeral, then so is this value.
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000482 if (llvm::all_of(V->users(), [&](const User *U) {
483 return EphValues.count(U);
484 })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000485 if (V == E)
486 return true;
487
Hal Finkelb03dd4b2017-08-14 17:11:43 +0000488 if (V == I || isSafeToSpeculativelyExecute(V)) {
489 EphValues.insert(V);
490 if (const User *U = dyn_cast<User>(V))
491 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
492 J != JE; ++J)
493 WorkSet.push_back(*J);
494 }
Hal Finkel60db0582014-09-07 18:57:58 +0000495 }
496 }
497
498 return false;
499}
500
501// Is this an intrinsic that cannot be speculated but also cannot trap?
Haicheng Wua4461512017-12-15 14:34:41 +0000502bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
Hal Finkel60db0582014-09-07 18:57:58 +0000503 if (const CallInst *CI = dyn_cast<CallInst>(I))
504 if (Function *F = CI->getCalledFunction())
505 switch (F->getIntrinsicID()) {
506 default: break;
507 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
508 case Intrinsic::assume:
Dan Gohman2c74fe92017-11-08 21:59:51 +0000509 case Intrinsic::sideeffect:
Hal Finkel60db0582014-09-07 18:57:58 +0000510 case Intrinsic::dbg_declare:
511 case Intrinsic::dbg_value:
Shiva Chen2c864552018-05-09 02:40:45 +0000512 case Intrinsic::dbg_label:
Hal Finkel60db0582014-09-07 18:57:58 +0000513 case Intrinsic::invariant_start:
514 case Intrinsic::invariant_end:
515 case Intrinsic::lifetime_start:
516 case Intrinsic::lifetime_end:
517 case Intrinsic::objectsize:
518 case Intrinsic::ptr_annotation:
519 case Intrinsic::var_annotation:
520 return true;
521 }
522
523 return false;
524}
525
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000526bool llvm::isValidAssumeForContext(const Instruction *Inv,
527 const Instruction *CxtI,
528 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000529 // There are two restrictions on the use of an assume:
530 // 1. The assume must dominate the context (or the control flow must
531 // reach the assume whenever it reaches the context).
532 // 2. The context must not be in the assume's set of ephemeral values
533 // (otherwise we will use the assume to prove that the condition
534 // feeding the assume is trivially true, thus causing the removal of
535 // the assume).
536
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000537 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000538 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000539 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000540 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
541 // We don't have a DT, but this trivially dominates.
542 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000543 }
544
Pete Cooper54a02552016-08-12 01:00:15 +0000545 // With or without a DT, the only remaining case we will check is if the
546 // instructions are in the same BB. Give up if that is not the case.
547 if (Inv->getParent() != CxtI->getParent())
548 return false;
549
Vedant Kumard3196742018-02-28 19:08:52 +0000550 // If we have a dom tree, then we now know that the assume doesn't dominate
Pete Cooper54a02552016-08-12 01:00:15 +0000551 // the other instruction. If we don't have a dom tree then we can check if
552 // the assume is first in the BB.
553 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000554 // Search forward from the assume until we reach the context (or the end
555 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000556 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000557 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000558 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000559 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000560 }
561
Pete Cooper54a02552016-08-12 01:00:15 +0000562 // The context comes first, but they're both in the same block. Make sure
563 // there is nothing in between that might interrupt the control flow.
564 for (BasicBlock::const_iterator I =
565 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
566 I != IE; ++I)
567 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
568 return false;
569
570 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000571}
572
Craig Topperb45eabc2017-04-26 16:39:58 +0000573static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
574 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000575 // Use of assumptions is context-sensitive. If we don't have a context, we
576 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000577 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000578 return;
579
Craig Topperb45eabc2017-04-26 16:39:58 +0000580 unsigned BitWidth = Known.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000581
Hal Finkel8a9a7832017-01-11 13:24:24 +0000582 // Note that the patterns below need to be kept in sync with the code
583 // in AssumptionCache::updateAffectedValues.
584
585 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000586 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000587 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000588 CallInst *I = cast<CallInst>(AssumeVH);
589 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
590 "Got assumption for the wrong function!");
591 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000592 continue;
593
Vedant Kumard3196742018-02-28 19:08:52 +0000594 // Warning: This loop can end up being somewhat performance sensitive.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000595 // We're running this loop for once for each value queried resulting in a
596 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000597
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000598 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
599 "must be an assume intrinsic");
600
601 Value *Arg = I->getArgOperand(0);
602
603 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000604 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000605 Known.setAllOnes();
Hal Finkel60db0582014-09-07 18:57:58 +0000606 return;
607 }
Sanjay Patel96669962017-01-17 18:15:49 +0000608 if (match(Arg, m_Not(m_Specific(V))) &&
609 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
610 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000611 Known.setAllZero();
Sanjay Patel96669962017-01-17 18:15:49 +0000612 return;
613 }
Hal Finkel60db0582014-09-07 18:57:58 +0000614
David Majnemer9b609752014-12-12 23:59:29 +0000615 // The remaining tests are all recursive, so bail out if we hit the limit.
616 if (Depth == MaxDepth)
617 continue;
618
Hal Finkel60db0582014-09-07 18:57:58 +0000619 Value *A, *B;
620 auto m_V = m_CombineOr(m_Specific(V),
621 m_CombineOr(m_PtrToInt(m_Specific(V)),
622 m_BitCast(m_Specific(V))));
623
624 CmpInst::Predicate Pred;
Igor Laevskycec8f472017-12-05 12:18:15 +0000625 uint64_t C;
Hal Finkel60db0582014-09-07 18:57:58 +0000626 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000627 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000628 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000629 KnownBits RHSKnown(BitWidth);
630 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
631 Known.Zero |= RHSKnown.Zero;
632 Known.One |= RHSKnown.One;
Hal Finkel60db0582014-09-07 18:57:58 +0000633 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000634 } else if (match(Arg,
635 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000636 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000637 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000638 KnownBits RHSKnown(BitWidth);
639 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
640 KnownBits MaskKnown(BitWidth);
641 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000642
643 // For those bits in the mask that are known to be one, we can propagate
644 // known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000645 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
646 Known.One |= RHSKnown.One & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000647 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000648 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
649 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000650 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000651 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000652 KnownBits RHSKnown(BitWidth);
653 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
654 KnownBits MaskKnown(BitWidth);
655 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000656
657 // For those bits in the mask that are known to be one, we can propagate
658 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000659 Known.Zero |= RHSKnown.One & MaskKnown.One;
660 Known.One |= RHSKnown.Zero & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000661 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000662 } else if (match(Arg,
663 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000664 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000665 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000666 KnownBits RHSKnown(BitWidth);
667 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
668 KnownBits BKnown(BitWidth);
669 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000670
671 // For those bits in B that are known to be zero, we can propagate known
672 // bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000673 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
674 Known.One |= RHSKnown.One & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000675 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000676 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
677 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000678 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000679 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000680 KnownBits RHSKnown(BitWidth);
681 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
682 KnownBits BKnown(BitWidth);
683 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000684
685 // For those bits in B that are known to be zero, we can propagate
686 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000687 Known.Zero |= RHSKnown.One & BKnown.Zero;
688 Known.One |= RHSKnown.Zero & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000689 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000690 } else if (match(Arg,
691 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000692 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000694 KnownBits RHSKnown(BitWidth);
695 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
696 KnownBits BKnown(BitWidth);
697 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000698
699 // For those bits in B that are known to be zero, we can propagate known
700 // bits from the RHS to V. For those bits in B that are known to be one,
701 // we can propagate inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000702 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
703 Known.One |= RHSKnown.One & BKnown.Zero;
704 Known.Zero |= RHSKnown.One & BKnown.One;
705 Known.One |= RHSKnown.Zero & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000706 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000707 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
708 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000709 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000710 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000711 KnownBits RHSKnown(BitWidth);
712 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
713 KnownBits BKnown(BitWidth);
714 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000715
716 // For those bits in B that are known to be zero, we can propagate
717 // inverted known bits from the RHS to V. For those bits in B that are
718 // known to be one, we can propagate known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000719 Known.Zero |= RHSKnown.One & BKnown.Zero;
720 Known.One |= RHSKnown.Zero & BKnown.Zero;
721 Known.Zero |= RHSKnown.Zero & BKnown.One;
722 Known.One |= RHSKnown.One & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000723 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000724 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
725 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000726 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000727 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
728 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000729 KnownBits RHSKnown(BitWidth);
730 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000731 // For those bits in RHS that are known, we can propagate them to known
732 // bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000733 RHSKnown.Zero.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000734 Known.Zero |= RHSKnown.Zero;
Igor Laevskycec8f472017-12-05 12:18:15 +0000735 RHSKnown.One.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000736 Known.One |= RHSKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000737 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000738 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
739 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000740 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000741 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
742 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000743 KnownBits RHSKnown(BitWidth);
744 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000745 // For those bits in RHS that are known, we can propagate them inverted
746 // to known bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000747 RHSKnown.One.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000748 Known.Zero |= RHSKnown.One;
Igor Laevskycec8f472017-12-05 12:18:15 +0000749 RHSKnown.Zero.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000750 Known.One |= RHSKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000751 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000752 } else if (match(Arg,
Craig Topper7b66ffe2017-06-24 06:24:04 +0000753 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000754 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000755 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000756 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
757 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000758 KnownBits RHSKnown(BitWidth);
759 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000760 // For those bits in RHS that are known, we can propagate them to known
761 // bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000762 Known.Zero |= RHSKnown.Zero << C;
763 Known.One |= RHSKnown.One << C;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000764 // assume(~(v >> c) = a)
Craig Topper7b66ffe2017-06-24 06:24:04 +0000765 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000766 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000767 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000768 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
769 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000770 KnownBits RHSKnown(BitWidth);
771 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000772 // For those bits in RHS that are known, we can propagate them inverted
773 // to known bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000774 Known.Zero |= RHSKnown.One << C;
775 Known.One |= RHSKnown.Zero << C;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000776 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000777 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000778 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000779 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000780 KnownBits RHSKnown(BitWidth);
781 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000782
Craig Topperca48af32017-04-29 16:43:11 +0000783 if (RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000784 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000785 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000786 }
787 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000788 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000789 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000790 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000791 KnownBits RHSKnown(BitWidth);
792 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000793
Craig Topperf0aeee02017-05-05 17:36:09 +0000794 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000795 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000796 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000797 }
798 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000799 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000800 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000801 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000802 KnownBits RHSKnown(BitWidth);
803 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000804
Craig Topperca48af32017-04-29 16:43:11 +0000805 if (RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000806 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000807 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000808 }
809 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000810 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000811 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000812 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000813 KnownBits RHSKnown(BitWidth);
814 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000815
Craig Topperf0aeee02017-05-05 17:36:09 +0000816 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000817 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000818 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000819 }
820 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000821 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000822 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000823 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000824 KnownBits RHSKnown(BitWidth);
825 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000826
827 // Whatever high bits in c are zero are known to be zero.
Craig Topper8df66c62017-05-12 17:20:30 +0000828 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
829 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000830 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000831 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000832 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000833 KnownBits RHSKnown(BitWidth);
834 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000835
Sanjay Patela60aec12018-02-08 14:52:40 +0000836 // If the RHS is known zero, then this assumption must be wrong (nothing
837 // is unsigned less than zero). Signal a conflict and get out of here.
838 if (RHSKnown.isZero()) {
839 Known.Zero.setAllBits();
840 Known.One.setAllBits();
841 break;
842 }
843
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000844 // Whatever high bits in c are zero are known to be zero (if c is a power
845 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000846 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper8df66c62017-05-12 17:20:30 +0000847 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000848 else
Craig Topper8df66c62017-05-12 17:20:30 +0000849 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
Hal Finkel60db0582014-09-07 18:57:58 +0000850 }
851 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000852
853 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000854 // have a logical fallacy. It's possible that the assumption is not reachable,
855 // so this isn't a real bug. On the other hand, the program may have undefined
856 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
857 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topperb45eabc2017-04-26 16:39:58 +0000858 if (Known.Zero.intersects(Known.One)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000859 Known.resetAll();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000860
Vivek Pandya95906582017-10-11 17:12:59 +0000861 if (Q.ORE)
862 Q.ORE->emit([&]() {
863 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
864 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
865 CxtI)
866 << "Detected conflicting code assumptions. Program may "
867 "have undefined behavior, or compiler may have "
868 "internal error.";
869 });
Sanjay Patel25f6d712017-02-01 15:41:32 +0000870 }
Hal Finkel60db0582014-09-07 18:57:58 +0000871}
872
Sanjay Patelb7d12382017-10-16 14:46:37 +0000873/// Compute known bits from a shift operator, including those with a
874/// non-constant shift amount. Known is the output of this function. Known2 is a
875/// pre-allocated temporary with the same bit width as Known. KZF and KOF are
Vedant Kumard3196742018-02-28 19:08:52 +0000876/// operator-specific functions that, given the known-zero or known-one bits
Sanjay Patelb7d12382017-10-16 14:46:37 +0000877/// respectively, and a shift amount, compute the implied known-zero or
878/// known-one bits of the shift operator's result respectively for that shift
879/// amount. The results from calling KZF and KOF are conservatively combined for
880/// all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000881static void computeKnownBitsFromShiftOperator(
Craig Topperb45eabc2017-04-26 16:39:58 +0000882 const Operator *I, KnownBits &Known, KnownBits &Known2,
883 unsigned Depth, const Query &Q,
Sam McCalld0d43e62017-12-04 12:51:49 +0000884 function_ref<APInt(const APInt &, unsigned)> KZF,
885 function_ref<APInt(const APInt &, unsigned)> KOF) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000886 unsigned BitWidth = Known.getBitWidth();
Hal Finkelf2199b22015-10-23 20:37:08 +0000887
888 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
889 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
890
Craig Topperb45eabc2017-04-26 16:39:58 +0000891 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Sam McCalld0d43e62017-12-04 12:51:49 +0000892 Known.Zero = KZF(Known.Zero, ShiftAmt);
893 Known.One = KOF(Known.One, ShiftAmt);
Sanjay Patele272be72017-10-12 17:31:46 +0000894 // If the known bits conflict, this must be an overflowing left shift, so
895 // the shift result is poison. We can return anything we want. Choose 0 for
896 // the best folding opportunity.
897 if (Known.hasConflict())
898 Known.setAllZero();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000899
Hal Finkelf2199b22015-10-23 20:37:08 +0000900 return;
901 }
902
Craig Topperb45eabc2017-04-26 16:39:58 +0000903 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000904
Sanjay Patele272be72017-10-12 17:31:46 +0000905 // If the shift amount could be greater than or equal to the bit-width of the
906 // LHS, the value could be poison, but bail out because the check below is
907 // expensive. TODO: Should we just carry on?
Craig Topperb45eabc2017-04-26 16:39:58 +0000908 if ((~Known.Zero).uge(BitWidth)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000909 Known.resetAll();
Oliver Stannard06204112017-03-14 10:13:17 +0000910 return;
911 }
912
Craig Topperb45eabc2017-04-26 16:39:58 +0000913 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
Hal Finkelf2199b22015-10-23 20:37:08 +0000914 // BitWidth > 64 and any upper bits are known, we'll end up returning the
915 // limit value (which implies all bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000916 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
917 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
Hal Finkelf2199b22015-10-23 20:37:08 +0000918
919 // It would be more-clearly correct to use the two temporaries for this
920 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Craig Topperf0aeee02017-05-05 17:36:09 +0000921 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000922
James Molloy493e57d2015-10-26 14:10:46 +0000923 // If we know the shifter operand is nonzero, we can sometimes infer more
924 // known bits. However this is expensive to compute, so be lazy about it and
925 // only compute it when absolutely necessary.
926 Optional<bool> ShifterOperandIsNonZero;
927
Hal Finkelf2199b22015-10-23 20:37:08 +0000928 // Early exit if we can't constrain any well-defined shift amount.
Craig Topperf93b7b12017-06-14 17:04:59 +0000929 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
930 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
Sanjay Patelb7d12382017-10-16 14:46:37 +0000931 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000932 if (!*ShifterOperandIsNonZero)
933 return;
934 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000935
Craig Topperb45eabc2017-04-26 16:39:58 +0000936 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000937
Craig Topperb45eabc2017-04-26 16:39:58 +0000938 Known.Zero.setAllBits();
939 Known.One.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000940 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
941 // Combine the shifted known input bits only for those shift amounts
942 // compatible with its known constraints.
943 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
944 continue;
945 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
946 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000947 // If we know the shifter is nonzero, we may be able to infer more known
948 // bits. This check is sunk down as far as possible to avoid the expensive
949 // call to isKnownNonZero if the cheaper checks above fail.
950 if (ShiftAmt == 0) {
951 if (!ShifterOperandIsNonZero.hasValue())
952 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000953 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000954 if (*ShifterOperandIsNonZero)
955 continue;
956 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000957
Sam McCalld0d43e62017-12-04 12:51:49 +0000958 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
959 Known.One &= KOF(Known2.One, ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +0000960 }
961
Sanjay Patele272be72017-10-12 17:31:46 +0000962 // If the known bits conflict, the result is poison. Return a 0 and hope the
963 // caller can further optimize that.
964 if (Known.hasConflict())
965 Known.setAllZero();
Hal Finkelf2199b22015-10-23 20:37:08 +0000966}
967
Craig Topperb45eabc2017-04-26 16:39:58 +0000968static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
969 unsigned Depth, const Query &Q) {
970 unsigned BitWidth = Known.getBitWidth();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000971
Craig Topperb45eabc2017-04-26 16:39:58 +0000972 KnownBits Known2(Known);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000973 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000974 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000975 case Instruction::Load:
Florian Hahn19f9e322018-08-17 14:39:04 +0000976 if (MDNode *MD =
977 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +0000978 computeKnownBitsFromRangeMetadata(*MD, Known);
Jay Foad5a29c362014-05-15 12:12:55 +0000979 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000980 case Instruction::And: {
981 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000982 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
983 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000984
Chris Lattner965c7692008-06-02 01:18:21 +0000985 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000986 Known.One &= Known2.One;
Chris Lattner965c7692008-06-02 01:18:21 +0000987 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000988 Known.Zero |= Known2.Zero;
Philip Reames2d858742015-11-10 18:46:14 +0000989
990 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
991 // here we handle the more general case of adding any odd number by
992 // matching the form add(x, add(x, y)) where y is odd.
993 // TODO: This could be generalized to clearing any bit set in y where the
994 // following bit is known to be unset in y.
Roman Lebedev6959b8e2018-04-27 21:23:20 +0000995 Value *X = nullptr, *Y = nullptr;
Craig Topperb45eabc2017-04-26 16:39:58 +0000996 if (!Known.Zero[0] && !Known.One[0] &&
Roman Lebedev6959b8e2018-04-27 21:23:20 +0000997 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000998 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000999 computeKnownBits(Y, Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001000 if (Known2.countMinTrailingOnes() > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001001 Known.Zero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +00001002 }
Jay Foad5a29c362014-05-15 12:12:55 +00001003 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001004 }
Eugene Zelenko75075ef2017-09-01 21:37:29 +00001005 case Instruction::Or:
Craig Topperb45eabc2017-04-26 16:39:58 +00001006 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1007 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001008
Chris Lattner965c7692008-06-02 01:18:21 +00001009 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001010 Known.Zero &= Known2.Zero;
Chris Lattner965c7692008-06-02 01:18:21 +00001011 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001012 Known.One |= Known2.One;
Jay Foad5a29c362014-05-15 12:12:55 +00001013 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001014 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001015 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1016 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001017
Chris Lattner965c7692008-06-02 01:18:21 +00001018 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001019 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
Chris Lattner965c7692008-06-02 01:18:21 +00001020 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001021 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1022 Known.Zero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +00001023 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001024 }
1025 case Instruction::Mul: {
Florian Hahn19f9e322018-08-17 14:39:04 +00001026 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
Craig Topperb45eabc2017-04-26 16:39:58 +00001027 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1028 Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001029 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001030 }
1031 case Instruction::UDiv: {
1032 // For the purposes of computing leading zeros we can conservatively
1033 // treat a udiv as a logical right shift by the power of 2 known to
1034 // be less than the denominator.
Craig Topperb45eabc2017-04-26 16:39:58 +00001035 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001036 unsigned LeadZ = Known2.countMinLeadingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001037
Craig Topperf0aeee02017-05-05 17:36:09 +00001038 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001039 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001040 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1041 if (RHSMaxLeadingZeros != BitWidth)
1042 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Chris Lattner965c7692008-06-02 01:18:21 +00001043
Craig Topperb45eabc2017-04-26 16:39:58 +00001044 Known.Zero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +00001045 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001046 }
David Majnemera19d0f22016-08-06 08:16:00 +00001047 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +00001048 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +00001049 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1050 if (SelectPatternResult::isMinOrMax(SPF)) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001051 computeKnownBits(RHS, Known, Depth + 1, Q);
1052 computeKnownBits(LHS, Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +00001053 } else {
Craig Topperb45eabc2017-04-26 16:39:58 +00001054 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1055 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +00001056 }
1057
1058 unsigned MaxHighOnes = 0;
1059 unsigned MaxHighZeros = 0;
1060 if (SPF == SPF_SMAX) {
1061 // If both sides are negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +00001062 if (Known.isNegative() && Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001063 // We can derive a lower bound on the result by taking the max of the
1064 // leading one bits.
Craig Topper8df66c62017-05-12 17:20:30 +00001065 MaxHighOnes =
1066 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001067 // If either side is non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +00001068 else if (Known.isNonNegative() || Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001069 MaxHighZeros = 1;
1070 } else if (SPF == SPF_SMIN) {
1071 // If both sides are non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +00001072 if (Known.isNonNegative() && Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001073 // We can derive an upper bound on the result by taking the max of the
1074 // leading zero bits.
Craig Topper8df66c62017-05-12 17:20:30 +00001075 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1076 Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001077 // If either side is negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +00001078 else if (Known.isNegative() || Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001079 MaxHighOnes = 1;
1080 } else if (SPF == SPF_UMAX) {
1081 // We can derive a lower bound on the result by taking the max of the
1082 // leading one bits.
1083 MaxHighOnes =
Craig Topper8df66c62017-05-12 17:20:30 +00001084 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001085 } else if (SPF == SPF_UMIN) {
1086 // We can derive an upper bound on the result by taking the max of the
1087 // leading zero bits.
1088 MaxHighZeros =
Craig Topper8df66c62017-05-12 17:20:30 +00001089 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topper8f77dca2018-05-25 19:18:09 +00001090 } else if (SPF == SPF_ABS) {
1091 // RHS from matchSelectPattern returns the negation part of abs pattern.
1092 // If the negate has an NSW flag we can assume the sign bit of the result
1093 // will be 0 because that makes abs(INT_MIN) undefined.
Florian Hahn19f9e322018-08-17 14:39:04 +00001094 if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
Craig Topper8f77dca2018-05-25 19:18:09 +00001095 MaxHighZeros = 1;
David Majnemera19d0f22016-08-06 08:16:00 +00001096 }
1097
Chris Lattner965c7692008-06-02 01:18:21 +00001098 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001099 Known.One &= Known2.One;
1100 Known.Zero &= Known2.Zero;
David Majnemera19d0f22016-08-06 08:16:00 +00001101 if (MaxHighOnes > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001102 Known.One.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001103 if (MaxHighZeros > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001104 Known.Zero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001105 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001106 }
Chris Lattner965c7692008-06-02 01:18:21 +00001107 case Instruction::FPTrunc:
1108 case Instruction::FPExt:
1109 case Instruction::FPToUI:
1110 case Instruction::FPToSI:
1111 case Instruction::SIToFP:
1112 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001113 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001114 case Instruction::PtrToInt:
1115 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001116 // Fall through and handle them the same as zext/trunc.
1117 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001118 case Instruction::ZExt:
1119 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001120 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001121
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001122 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001123 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1124 // which fall through here.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001125 Type *ScalarTy = SrcTy->getScalarType();
1126 SrcBitWidth = ScalarTy->isPointerTy() ?
1127 Q.DL.getIndexTypeSizeInBits(ScalarTy) :
1128 Q.DL.getTypeSizeInBits(ScalarTy);
Nadav Rotem15198e92012-10-26 17:17:05 +00001129
1130 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Craig Topperd938fd12017-05-03 22:07:25 +00001131 Known = Known.zextOrTrunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001132 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Craig Topperd938fd12017-05-03 22:07:25 +00001133 Known = Known.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001134 // Any top bits are known to be zero.
1135 if (BitWidth > SrcBitWidth)
Craig Topperb45eabc2017-04-26 16:39:58 +00001136 Known.Zero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001137 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001138 }
1139 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001140 Type *SrcTy = I->getOperand(0)->getType();
Vedant Kumarb3091da2018-07-06 20:17:42 +00001141 if (SrcTy->isIntOrPtrTy() &&
Chris Lattneredb84072009-07-02 16:04:08 +00001142 // TODO: For now, not handling conversions like:
1143 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001144 !I->getType()->isVectorTy()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001145 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001146 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001147 }
1148 break;
1149 }
1150 case Instruction::SExt: {
1151 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001152 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001153
Craig Topperd938fd12017-05-03 22:07:25 +00001154 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001155 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001156 // If the sign bit of the input is known set or clear, then we know the
1157 // top bits of the result.
Craig Topperd938fd12017-05-03 22:07:25 +00001158 Known = Known.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001159 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001160 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001161 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001162 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Florian Hahn19f9e322018-08-17 14:39:04 +00001163 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
Sam McCalld0d43e62017-12-04 12:51:49 +00001164 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1165 APInt KZResult = KnownZero << ShiftAmt;
1166 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001167 // If this shift has "nsw" keyword, then the result is either a poison
1168 // value or has the same sign bit as the first operand.
Sam McCalld0d43e62017-12-04 12:51:49 +00001169 if (NSW && KnownZero.isSignBitSet())
1170 KZResult.setSignBit();
1171 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001172 };
1173
Sam McCalld0d43e62017-12-04 12:51:49 +00001174 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1175 APInt KOResult = KnownOne << ShiftAmt;
1176 if (NSW && KnownOne.isSignBitSet())
1177 KOResult.setSignBit();
1178 return KOResult;
1179 };
1180
1181 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001182 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001183 }
1184 case Instruction::LShr: {
Sanjay Patelb7d12382017-10-16 14:46:37 +00001185 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Sam McCalld0d43e62017-12-04 12:51:49 +00001186 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1187 APInt KZResult = KnownZero.lshr(ShiftAmt);
1188 // High bits known zero.
1189 KZResult.setHighBits(ShiftAmt);
1190 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001191 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001192
Sam McCalld0d43e62017-12-04 12:51:49 +00001193 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1194 return KnownOne.lshr(ShiftAmt);
1195 };
1196
1197 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001198 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001199 }
1200 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001201 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Sam McCalld0d43e62017-12-04 12:51:49 +00001202 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1203 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001204 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001205
Sam McCalld0d43e62017-12-04 12:51:49 +00001206 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1207 return KnownOne.ashr(ShiftAmt);
1208 };
1209
1210 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001211 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001212 }
Chris Lattner965c7692008-06-02 01:18:21 +00001213 case Instruction::Sub: {
Florian Hahn19f9e322018-08-17 14:39:04 +00001214 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
Jay Foada0653a32014-05-14 21:14:37 +00001215 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001216 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001217 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001218 }
Chris Lattner965c7692008-06-02 01:18:21 +00001219 case Instruction::Add: {
Florian Hahn19f9e322018-08-17 14:39:04 +00001220 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
Jay Foada0653a32014-05-14 21:14:37 +00001221 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001222 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001223 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001224 }
1225 case Instruction::SRem:
1226 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001227 APInt RA = Rem->getValue().abs();
1228 if (RA.isPowerOf2()) {
1229 APInt LowBits = RA - 1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001230 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001231
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001232 // The low bits of the first operand are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +00001233 Known.Zero = Known2.Zero & LowBits;
1234 Known.One = Known2.One & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001235
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001236 // If the first operand is non-negative or has all low bits zero, then
1237 // the upper bits are all zero.
Craig Topperca48af32017-04-29 16:43:11 +00001238 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +00001239 Known.Zero |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001240
1241 // If the first operand is negative and not all low bits are zero, then
1242 // the upper bits are all one.
Craig Topperca48af32017-04-29 16:43:11 +00001243 if (Known2.isNegative() && LowBits.intersects(Known2.One))
Craig Topperb45eabc2017-04-26 16:39:58 +00001244 Known.One |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001245
Craig Topperb45eabc2017-04-26 16:39:58 +00001246 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001247 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001248 }
1249 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001250
1251 // The sign bit is the LHS's sign bit, except when the result of the
1252 // remainder is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +00001253 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topperda886c62017-04-16 21:46:12 +00001254 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +00001255 if (Known2.isNonNegative())
1256 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +00001257
Chris Lattner965c7692008-06-02 01:18:21 +00001258 break;
1259 case Instruction::URem: {
1260 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001261 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001262 if (RA.isPowerOf2()) {
1263 APInt LowBits = (RA - 1);
Craig Topperb45eabc2017-04-26 16:39:58 +00001264 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1265 Known.Zero |= ~LowBits;
1266 Known.One &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001267 break;
1268 }
1269 }
1270
1271 // Since the result is less than or equal to either operand, any leading
1272 // zero bits in either operand must also exist in the result.
Craig Topperb45eabc2017-04-26 16:39:58 +00001273 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1274 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001275
Craig Topper8df66c62017-05-12 17:20:30 +00001276 unsigned Leaders =
1277 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topperf0aeee02017-05-05 17:36:09 +00001278 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001279 Known.Zero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001280 break;
1281 }
1282
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001283 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001284 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001285 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001286 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001287 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001288
Chris Lattner965c7692008-06-02 01:18:21 +00001289 if (Align > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001290 Known.Zero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001291 break;
1292 }
1293 case Instruction::GetElementPtr: {
1294 // Analyze all of the subscripts of this getelementptr instruction
1295 // to determine if we can prove known low zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001296 KnownBits LocalKnown(BitWidth);
1297 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001298 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001299
1300 gep_type_iterator GTI = gep_type_begin(I);
1301 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1302 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001303 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001304 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001305
1306 // Handle case when index is vector zeroinitializer
1307 Constant *CIndex = cast<Constant>(Index);
1308 if (CIndex->isZeroValue())
1309 continue;
1310
1311 if (CIndex->getType()->isVectorTy())
1312 Index = CIndex->getSplatValue();
1313
Chris Lattner965c7692008-06-02 01:18:21 +00001314 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001315 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001316 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001317 TrailZ = std::min<unsigned>(TrailZ,
1318 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001319 } else {
1320 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001321 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001322 if (!IndexedTy->isSized()) {
1323 TrailZ = 0;
1324 break;
1325 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001326 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001327 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Craig Topperb45eabc2017-04-26 16:39:58 +00001328 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1329 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001330 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001331 unsigned(countTrailingZeros(TypeSize) +
Craig Topper8df66c62017-05-12 17:20:30 +00001332 LocalKnown.countMinTrailingZeros()));
Chris Lattner965c7692008-06-02 01:18:21 +00001333 }
1334 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001335
Craig Topperb45eabc2017-04-26 16:39:58 +00001336 Known.Zero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001337 break;
1338 }
1339 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001340 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001341 // Handle the case of a simple two-predecessor recurrence PHI.
1342 // There's a lot more that could theoretically be done here, but
1343 // this is sufficient to catch some interesting cases.
1344 if (P->getNumIncomingValues() == 2) {
1345 for (unsigned i = 0; i != 2; ++i) {
1346 Value *L = P->getIncomingValue(i);
1347 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001348 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001349 if (!LU)
1350 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001351 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001352 // Check for operations that have the property that if
1353 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001354 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001355 if (Opcode == Instruction::Add ||
1356 Opcode == Instruction::Sub ||
1357 Opcode == Instruction::And ||
1358 Opcode == Instruction::Or ||
1359 Opcode == Instruction::Mul) {
1360 Value *LL = LU->getOperand(0);
1361 Value *LR = LU->getOperand(1);
1362 // Find a recurrence.
1363 if (LL == I)
1364 L = LR;
1365 else if (LR == I)
1366 L = LL;
1367 else
1368 break;
1369 // Ok, we have a PHI of the form L op= R. Check for low
1370 // zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001371 computeKnownBits(R, Known2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001372
1373 // We need to take the minimum number of known bits
Craig Topperb45eabc2017-04-26 16:39:58 +00001374 KnownBits Known3(Known);
1375 computeKnownBits(L, Known3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001376
Craig Topper8df66c62017-05-12 17:20:30 +00001377 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1378 Known3.countMinTrailingZeros()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001379
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001380 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
Florian Hahn19f9e322018-08-17 14:39:04 +00001381 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001382 // If initial value of recurrence is nonnegative, and we are adding
1383 // a nonnegative number with nsw, the result can only be nonnegative
1384 // or poison value regardless of the number of times we execute the
1385 // add in phi recurrence. If initial value is negative and we are
1386 // adding a negative number with nsw, the result can only be
1387 // negative or poison value. Similar arguments apply to sub and mul.
1388 //
1389 // (add non-negative, non-negative) --> non-negative
1390 // (add negative, negative) --> negative
1391 if (Opcode == Instruction::Add) {
Craig Topperca48af32017-04-29 16:43:11 +00001392 if (Known2.isNonNegative() && Known3.isNonNegative())
1393 Known.makeNonNegative();
1394 else if (Known2.isNegative() && Known3.isNegative())
1395 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001396 }
1397
1398 // (sub nsw non-negative, negative) --> non-negative
1399 // (sub nsw negative, non-negative) --> negative
1400 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperca48af32017-04-29 16:43:11 +00001401 if (Known2.isNonNegative() && Known3.isNegative())
1402 Known.makeNonNegative();
1403 else if (Known2.isNegative() && Known3.isNonNegative())
1404 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001405 }
1406
1407 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperca48af32017-04-29 16:43:11 +00001408 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1409 Known3.isNonNegative())
1410 Known.makeNonNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001411 }
1412
Chris Lattner965c7692008-06-02 01:18:21 +00001413 break;
1414 }
1415 }
1416 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001417
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001418 // Unreachable blocks may have zero-operand PHI nodes.
1419 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001420 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001421
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001422 // Otherwise take the unions of the known bit sets of the operands,
1423 // taking conservative care to avoid excessive recursion.
Craig Topperb45eabc2017-04-26 16:39:58 +00001424 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001425 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001426 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001427 break;
1428
Craig Topperb45eabc2017-04-26 16:39:58 +00001429 Known.Zero.setAllBits();
1430 Known.One.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001431 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001432 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001433 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001434
Craig Topperb45eabc2017-04-26 16:39:58 +00001435 Known2 = KnownBits(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001436 // Recurse, but cap the recursion to one level, because we don't
1437 // want to waste time spinning around in loops.
Craig Topperb45eabc2017-04-26 16:39:58 +00001438 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1439 Known.Zero &= Known2.Zero;
1440 Known.One &= Known2.One;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001441 // If all bits have been ruled out, there's no need to check
1442 // more operands.
Craig Topperb45eabc2017-04-26 16:39:58 +00001443 if (!Known.Zero && !Known.One)
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001444 break;
1445 }
1446 }
Chris Lattner965c7692008-06-02 01:18:21 +00001447 break;
1448 }
1449 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001450 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001451 // If range metadata is attached to this call, set known bits from that,
1452 // and then intersect with known bits based on other properties of the
1453 // function.
Florian Hahn19f9e322018-08-17 14:39:04 +00001454 if (MDNode *MD =
1455 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +00001456 computeKnownBitsFromRangeMetadata(*MD, Known);
Pete Cooper35b00d52016-08-13 01:05:32 +00001457 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001458 computeKnownBits(RV, Known2, Depth + 1, Q);
1459 Known.Zero |= Known2.Zero;
1460 Known.One |= Known2.One;
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001461 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001462 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001463 switch (II->getIntrinsicID()) {
1464 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001465 case Intrinsic::bitreverse:
Craig Topperb45eabc2017-04-26 16:39:58 +00001466 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1467 Known.Zero |= Known2.Zero.reverseBits();
1468 Known.One |= Known2.One.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001469 break;
Philip Reames675418e2015-10-06 20:20:45 +00001470 case Intrinsic::bswap:
Craig Topperb45eabc2017-04-26 16:39:58 +00001471 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1472 Known.Zero |= Known2.Zero.byteSwap();
1473 Known.One |= Known2.One.byteSwap();
Philip Reames675418e2015-10-06 20:20:45 +00001474 break;
Craig Topper868813f2017-05-08 17:22:34 +00001475 case Intrinsic::ctlz: {
1476 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1477 // If we have a known 1, its position is our upper bound.
1478 unsigned PossibleLZ = Known2.One.countLeadingZeros();
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001479 // If this call is undefined for 0, the result will be less than 2^n.
1480 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
Craig Topper868813f2017-05-08 17:22:34 +00001481 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1482 unsigned LowBits = Log2_32(PossibleLZ)+1;
1483 Known.Zero.setBitsFrom(LowBits);
1484 break;
1485 }
1486 case Intrinsic::cttz: {
1487 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1488 // If we have a known 1, its position is our upper bound.
1489 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1490 // If this call is undefined for 0, the result will be less than 2^n.
1491 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1492 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1493 unsigned LowBits = Log2_32(PossibleTZ)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001494 Known.Zero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001495 break;
1496 }
1497 case Intrinsic::ctpop: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001498 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001499 // We can bound the space the count needs. Also, bits known to be zero
1500 // can't contribute to the population.
Craig Topper8df66c62017-05-12 17:20:30 +00001501 unsigned BitsPossiblySet = Known2.countMaxPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001502 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001503 Known.Zero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001504 // TODO: we could bound KnownOne using the lower bound on the number
1505 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001506 break;
1507 }
Nikita Popov687b92c2018-12-02 14:14:11 +00001508 case Intrinsic::fshr:
1509 case Intrinsic::fshl: {
1510 const APInt *SA;
1511 if (!match(I->getOperand(2), m_APInt(SA)))
1512 break;
1513
1514 // Normalize to funnel shift left.
1515 uint64_t ShiftAmt = SA->urem(BitWidth);
1516 if (II->getIntrinsicID() == Intrinsic::fshr)
1517 ShiftAmt = BitWidth - ShiftAmt;
1518
1519 KnownBits Known3(Known);
1520 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1521 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1522
1523 Known.Zero =
1524 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1525 Known.One =
1526 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1527 break;
1528 }
Chad Rosierb3628842011-05-26 23:13:19 +00001529 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +00001530 Known.Zero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001531 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001532 }
1533 }
1534 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001535 case Instruction::ExtractElement:
1536 // Look through extract element. At the moment we keep this simple and skip
1537 // tracking the specific element. But at least we might find information
1538 // valid for all elements of the vector (for example if vector is sign
1539 // extended, shifted, etc).
Craig Topperb45eabc2017-04-26 16:39:58 +00001540 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Bjorn Pettersson39616032016-10-06 09:56:21 +00001541 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001542 case Instruction::ExtractValue:
1543 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001544 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001545 if (EVI->getNumIndices() != 1) break;
1546 if (EVI->getIndices()[0] == 0) {
1547 switch (II->getIntrinsicID()) {
1548 default: break;
1549 case Intrinsic::uadd_with_overflow:
1550 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001551 computeKnownBitsAddSub(true, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001552 II->getArgOperand(1), false, Known, Known2,
1553 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001554 break;
1555 case Intrinsic::usub_with_overflow:
1556 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001557 computeKnownBitsAddSub(false, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001558 II->getArgOperand(1), false, Known, Known2,
1559 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001560 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001561 case Intrinsic::umul_with_overflow:
1562 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001563 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Craig Topperb45eabc2017-04-26 16:39:58 +00001564 Known, Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001565 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001566 }
1567 }
1568 }
Chris Lattner965c7692008-06-02 01:18:21 +00001569 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001570}
1571
1572/// Determine which bits of V are known to be either zero or one and return
Craig Topper6e11a052017-05-08 16:22:48 +00001573/// them.
1574KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1575 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1576 computeKnownBits(V, Known, Depth, Q);
1577 return Known;
1578}
1579
1580/// Determine which bits of V are known to be either zero or one and return
Craig Topperb45eabc2017-04-26 16:39:58 +00001581/// them in the Known bit set.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001582///
1583/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1584/// we cannot optimize based on the assumption that it is zero without changing
1585/// it to be an explicit zero. If we don't change it to zero, other code could
1586/// optimized based on the contradictory assumption that it is non-zero.
1587/// Because instcombine aggressively folds operations with undef args anyway,
1588/// this won't lose us code quality.
1589///
1590/// This function is defined on values with integer type, values with pointer
1591/// type, and vectors of integers. In the case
1592/// where V is a vector, known zero, and known one values are the
1593/// same width as the vector element, and the bit is set only if it is true
1594/// for all of the elements in the vector.
Craig Topperb45eabc2017-04-26 16:39:58 +00001595void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1596 const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001597 assert(V && "No Value?");
1598 assert(Depth <= MaxDepth && "Limit Search Depth");
Craig Topperb45eabc2017-04-26 16:39:58 +00001599 unsigned BitWidth = Known.getBitWidth();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001600
Craig Topperfde47232017-07-09 07:04:03 +00001601 assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
Craig Topper95d23472017-07-09 07:04:00 +00001602 V->getType()->isPtrOrPtrVectorTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001603 "Not integer or pointer type!");
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001604
1605 Type *ScalarTy = V->getType()->getScalarType();
1606 unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
1607 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
1608 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001609 (void)BitWidth;
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001610 (void)ExpectedWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001611
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001612 const APInt *C;
1613 if (match(V, m_APInt(C))) {
1614 // We know all of the bits for a scalar constant or a splat vector constant!
Craig Topperb45eabc2017-04-26 16:39:58 +00001615 Known.One = *C;
1616 Known.Zero = ~Known.One;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001617 return;
1618 }
1619 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001620 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001621 Known.setAllZero();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001622 return;
1623 }
1624 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001625 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001626 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001627 // We know that CDS must be a vector of integers. Take the intersection of
1628 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001629 Known.Zero.setAllBits(); Known.One.setAllBits();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001630 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Craig Topperb98ee582017-10-21 16:35:39 +00001631 APInt Elt = CDS->getElementAsAPInt(i);
Craig Topperb45eabc2017-04-26 16:39:58 +00001632 Known.Zero &= ~Elt;
1633 Known.One &= Elt;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001634 }
1635 return;
1636 }
1637
Pete Cooper35b00d52016-08-13 01:05:32 +00001638 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001639 // We know that CV must be a vector of integers. Take the intersection of
1640 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001641 Known.Zero.setAllBits(); Known.One.setAllBits();
David Majnemer3918cdd2016-05-04 06:13:33 +00001642 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1643 Constant *Element = CV->getAggregateElement(i);
1644 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1645 if (!ElementCI) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001646 Known.resetAll();
David Majnemer3918cdd2016-05-04 06:13:33 +00001647 return;
1648 }
Craig Topperb98ee582017-10-21 16:35:39 +00001649 const APInt &Elt = ElementCI->getValue();
Craig Topperb45eabc2017-04-26 16:39:58 +00001650 Known.Zero &= ~Elt;
1651 Known.One &= Elt;
David Majnemer3918cdd2016-05-04 06:13:33 +00001652 }
1653 return;
1654 }
1655
Jingyue Wu12b0c282015-06-15 05:46:29 +00001656 // Start out not knowing anything.
Craig Topperf0aeee02017-05-05 17:36:09 +00001657 Known.resetAll();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001658
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001659 // We can't imply anything about undefs.
1660 if (isa<UndefValue>(V))
1661 return;
1662
1663 // There's no point in looking through other users of ConstantData for
1664 // assumptions. Confirm that we've handled them all.
1665 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1666
Jingyue Wu12b0c282015-06-15 05:46:29 +00001667 // Limit search depth.
1668 // All recursive calls that increase depth must come after this.
1669 if (Depth == MaxDepth)
1670 return;
1671
1672 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1673 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001674 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001675 if (!GA->isInterposable())
Craig Topperb45eabc2017-04-26 16:39:58 +00001676 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001677 return;
1678 }
1679
Pete Cooper35b00d52016-08-13 01:05:32 +00001680 if (const Operator *I = dyn_cast<Operator>(V))
Craig Topperb45eabc2017-04-26 16:39:58 +00001681 computeKnownBitsFromOperator(I, Known, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001682
Craig Topperb45eabc2017-04-26 16:39:58 +00001683 // Aligned pointers have trailing zeros - refine Known.Zero set
Artur Pilipenko029d8532015-09-30 11:55:45 +00001684 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001685 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001686 if (Align)
Craig Topperb45eabc2017-04-26 16:39:58 +00001687 Known.Zero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001688 }
1689
Craig Topperb45eabc2017-04-26 16:39:58 +00001690 // computeKnownBitsFromAssume strictly refines Known.
1691 // Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001692
1693 // Check whether a nearby assume intrinsic can determine some known bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001694 computeKnownBitsFromAssume(V, Known, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001695
Craig Topperb45eabc2017-04-26 16:39:58 +00001696 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001697}
1698
Sanjay Patelaee84212014-11-04 16:27:42 +00001699/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001700/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001701/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001702/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001703bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001704 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00001705 assert(Depth <= MaxDepth && "Limit Search Depth");
1706
Simon Pilgrim9f2ae7e2018-02-06 18:39:23 +00001707 // Attempt to match against constants.
1708 if (OrZero && match(V, m_Power2OrZero()))
1709 return true;
1710 if (match(V, m_Power2()))
1711 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001712
1713 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1714 // it is shifted off the end then the result is undefined.
1715 if (match(V, m_Shl(m_One(), m_Value())))
1716 return true;
1717
Craig Topperbcfd2d12017-04-20 16:56:25 +00001718 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1719 // the bottom. If it is shifted off the bottom then the result is undefined.
1720 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001721 return true;
1722
1723 // The remaining tests are all recursive, so bail out if we hit the limit.
1724 if (Depth++ == MaxDepth)
1725 return false;
1726
Craig Topper9f008862014-04-15 04:59:12 +00001727 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001728 // A shift left or a logical shift right of a power of two is a power of two
1729 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001730 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001731 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001732 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001733
Pete Cooper35b00d52016-08-13 01:05:32 +00001734 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001735 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001736
Pete Cooper35b00d52016-08-13 01:05:32 +00001737 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001738 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1739 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001740
Duncan Sandsba286d72011-10-26 20:55:21 +00001741 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1742 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001743 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1744 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001745 return true;
1746 // X & (-X) is always a power of two or zero.
1747 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1748 return true;
1749 return false;
1750 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001751
David Majnemerb7d54092013-07-30 21:01:36 +00001752 // Adding a power-of-two or zero to the same power-of-two or zero yields
1753 // either the original power-of-two, a larger power-of-two or zero.
1754 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001755 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
Florian Hahn19f9e322018-08-17 14:39:04 +00001756 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1757 Q.IIQ.hasNoSignedWrap(VOBO)) {
David Majnemerb7d54092013-07-30 21:01:36 +00001758 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1759 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001760 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001761 return true;
1762 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1763 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001764 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001765 return true;
1766
1767 unsigned BitWidth = V->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00001768 KnownBits LHSBits(BitWidth);
1769 computeKnownBits(X, LHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001770
Craig Topperb45eabc2017-04-26 16:39:58 +00001771 KnownBits RHSBits(BitWidth);
1772 computeKnownBits(Y, RHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001773 // If i8 V is a power of two or zero:
1774 // ZeroBits: 1 1 1 0 1 1 1 1
1775 // ~ZeroBits: 0 0 0 1 0 0 0 0
Craig Topperb45eabc2017-04-26 16:39:58 +00001776 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
David Majnemerb7d54092013-07-30 21:01:36 +00001777 // If OrZero isn't set, we cannot give back a zero result.
1778 // Make sure either the LHS or RHS has a bit set.
Craig Topperb45eabc2017-04-26 16:39:58 +00001779 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
David Majnemerb7d54092013-07-30 21:01:36 +00001780 return true;
1781 }
1782 }
David Majnemerbeab5672013-05-18 19:30:37 +00001783
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001784 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001785 // is a power of two only if the first operand is a power of two and not
1786 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001787 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1788 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001789 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001790 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001791 }
1792
Duncan Sandsd3951082011-01-25 09:38:29 +00001793 return false;
1794}
1795
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001796/// Test whether a GEP's result is known to be non-null.
Chandler Carruth80d3e562012-12-07 02:08:58 +00001797///
1798/// Uses properties inherent in a GEP to try to determine whether it is known
1799/// to be non-null.
1800///
1801/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001802static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001803 const Query &Q) {
Manoj Gupta77eeac32018-07-09 22:27:23 +00001804 const Function *F = nullptr;
1805 if (const Instruction *I = dyn_cast<Instruction>(GEP))
1806 F = I->getFunction();
1807
1808 if (!GEP->isInBounds() ||
1809 NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001810 return false;
1811
1812 // FIXME: Support vector-GEPs.
1813 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1814
1815 // If the base pointer is non-null, we cannot walk to a null address with an
1816 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001817 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001818 return true;
1819
Chandler Carruth80d3e562012-12-07 02:08:58 +00001820 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1821 // If so, then the GEP cannot produce a null pointer, as doing so would
1822 // inherently violate the inbounds contract within address space zero.
1823 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1824 GTI != GTE; ++GTI) {
1825 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001826 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001827 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1828 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001829 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001830 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1831 if (ElementOffset > 0)
1832 return true;
1833 continue;
1834 }
1835
1836 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001837 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001838 continue;
1839
1840 // Fast path the constant operand case both for efficiency and so we don't
1841 // increment Depth when just zipping down an all-constant GEP.
1842 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1843 if (!OpC->isZero())
1844 return true;
1845 continue;
1846 }
1847
1848 // We post-increment Depth here because while isKnownNonZero increments it
1849 // as well, when we pop back up that increment won't persist. We don't want
1850 // to recurse 10k times just because we have 10k GEP operands. We don't
1851 // bail completely out because we want to handle constant GEPs regardless
1852 // of depth.
1853 if (Depth++ >= MaxDepth)
1854 continue;
1855
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001856 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001857 return true;
1858 }
1859
1860 return false;
1861}
1862
Nuno Lopes404f1062017-09-09 18:23:11 +00001863static bool isKnownNonNullFromDominatingCondition(const Value *V,
1864 const Instruction *CtxI,
1865 const DominatorTree *DT) {
1866 assert(V->getType()->isPointerTy() && "V must be pointer type");
1867 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1868
1869 if (!CtxI || !DT)
1870 return false;
1871
1872 unsigned NumUsesExplored = 0;
1873 for (auto *U : V->users()) {
1874 // Avoid massive lists
1875 if (NumUsesExplored >= DomConditionsMaxUses)
1876 break;
1877 NumUsesExplored++;
1878
1879 // If the value is used as an argument to a call or invoke, then argument
1880 // attributes may provide an answer about null-ness.
1881 if (auto CS = ImmutableCallSite(U))
1882 if (auto *CalledFunc = CS.getCalledFunction())
1883 for (const Argument &Arg : CalledFunc->args())
1884 if (CS.getArgOperand(Arg.getArgNo()) == V &&
1885 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1886 return true;
1887
1888 // Consider only compare instructions uniquely controlling a branch
1889 CmpInst::Predicate Pred;
1890 if (!match(const_cast<User *>(U),
1891 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1892 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1893 continue;
1894
Max Kazantsev2dbbd642018-08-06 11:14:18 +00001895 SmallVector<const User *, 4> WorkList;
1896 SmallPtrSet<const User *, 4> Visited;
Nuno Lopes404f1062017-09-09 18:23:11 +00001897 for (auto *CmpU : U->users()) {
Max Kazantsev2dbbd642018-08-06 11:14:18 +00001898 assert(WorkList.empty() && "Should be!");
1899 if (Visited.insert(CmpU).second)
1900 WorkList.push_back(CmpU);
Nuno Lopes404f1062017-09-09 18:23:11 +00001901
Max Kazantsev2dbbd642018-08-06 11:14:18 +00001902 while (!WorkList.empty()) {
1903 auto *Curr = WorkList.pop_back_val();
1904
1905 // If a user is an AND, add all its users to the work list. We only
1906 // propagate "pred != null" condition through AND because it is only
1907 // correct to assume that all conditions of AND are met in true branch.
1908 // TODO: Support similar logic of OR and EQ predicate?
1909 if (Pred == ICmpInst::ICMP_NE)
1910 if (auto *BO = dyn_cast<BinaryOperator>(Curr))
1911 if (BO->getOpcode() == Instruction::And) {
1912 for (auto *BOU : BO->users())
1913 if (Visited.insert(BOU).second)
1914 WorkList.push_back(BOU);
1915 continue;
1916 }
1917
1918 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
1919 assert(BI->isConditional() && "uses a comparison!");
1920
1921 BasicBlock *NonNullSuccessor =
1922 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1923 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1924 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1925 return true;
Max Kazantsev3c284bd2018-08-30 03:39:16 +00001926 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
Max Kazantsev2dbbd642018-08-06 11:14:18 +00001927 DT->dominates(cast<Instruction>(Curr), CtxI)) {
Nuno Lopes404f1062017-09-09 18:23:11 +00001928 return true;
Max Kazantsev2dbbd642018-08-06 11:14:18 +00001929 }
Nuno Lopes404f1062017-09-09 18:23:11 +00001930 }
1931 }
1932 }
1933
1934 return false;
1935}
1936
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001937/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1938/// ensure that the value it's attached to is never Value? 'RangeType' is
1939/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001940static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001941 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1942 assert(NumRanges >= 1);
1943 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001944 ConstantInt *Lower =
1945 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1946 ConstantInt *Upper =
1947 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001948 ConstantRange Range(Lower->getValue(), Upper->getValue());
1949 if (Range.contains(Value))
1950 return false;
1951 }
1952 return true;
1953}
1954
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001955/// Return true if the given value is known to be non-zero when defined. For
1956/// vectors, return true if every element is known to be non-zero when
1957/// defined. For pointers, if the context instruction and dominator tree are
1958/// specified, perform context-sensitive analysis and return true if the
1959/// pointer couldn't possibly be null at the specified instruction.
1960/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001961bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001962 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001963 if (C->isNullValue())
1964 return false;
1965 if (isa<ConstantInt>(C))
1966 // Must be non-zero due to null test above.
1967 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001968
1969 // For constant vectors, check that all elements are undefined or known
1970 // non-zero to determine that the whole vector is known non-zero.
1971 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1972 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1973 Constant *Elt = C->getAggregateElement(i);
1974 if (!Elt || Elt->isNullValue())
1975 return false;
1976 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1977 return false;
1978 }
1979 return true;
1980 }
1981
Nuno Lopes404f1062017-09-09 18:23:11 +00001982 // A global variable in address space 0 is non null unless extern weak
1983 // or an absolute symbol reference. Other address spaces may have null as a
1984 // valid address for a global, so we can't assume anything.
1985 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1986 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1987 GV->getType()->getAddressSpace() == 0)
1988 return true;
1989 } else
1990 return false;
Duncan Sandsd3951082011-01-25 09:38:29 +00001991 }
1992
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001993 if (auto *I = dyn_cast<Instruction>(V)) {
Florian Hahn19f9e322018-08-17 14:39:04 +00001994 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001995 // If the possible ranges don't contain zero, then the value is
1996 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001997 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001998 const APInt ZeroValue(Ty->getBitWidth(), 0);
1999 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2000 return true;
2001 }
2002 }
2003 }
2004
Karl-Johan Karlssonebaaa2d2018-05-30 15:56:46 +00002005 // Some of the tests below are recursive, so bail out if we hit the limit.
2006 if (Depth++ >= MaxDepth)
2007 return false;
2008
Nuno Lopes404f1062017-09-09 18:23:11 +00002009 // Check for pointer simplifications.
2010 if (V->getType()->isPointerTy()) {
2011 // Alloca never returns null, malloc might.
2012 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2013 return true;
2014
2015 // A byval, inalloca, or nonnull argument is never null.
2016 if (const Argument *A = dyn_cast<Argument>(V))
2017 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
2018 return true;
2019
2020 // A Load tagged with nonnull metadata is never null.
2021 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Florian Hahn19f9e322018-08-17 14:39:04 +00002022 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
Nuno Lopes404f1062017-09-09 18:23:11 +00002023 return true;
2024
Chandler Carruth363ac682019-01-07 05:42:51 +00002025 if (const auto *Call = dyn_cast<CallBase>(V)) {
2026 if (Call->isReturnNonNull())
Nuno Lopes404f1062017-09-09 18:23:11 +00002027 return true;
Chandler Carruth363ac682019-01-07 05:42:51 +00002028 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call))
Karl-Johan Karlssonebaaa2d2018-05-30 15:56:46 +00002029 return isKnownNonZero(RP, Depth, Q);
Piotr Padlewski5642a422018-05-18 23:54:33 +00002030 }
Nuno Lopes404f1062017-09-09 18:23:11 +00002031 }
2032
Duncan Sandsd3951082011-01-25 09:38:29 +00002033
Nuno Lopes404f1062017-09-09 18:23:11 +00002034 // Check for recursive pointer simplifications.
Chandler Carruth80d3e562012-12-07 02:08:58 +00002035 if (V->getType()->isPointerTy()) {
Nuno Lopes404f1062017-09-09 18:23:11 +00002036 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002037 return true;
Nuno Lopes404f1062017-09-09 18:23:11 +00002038
Pete Cooper35b00d52016-08-13 01:05:32 +00002039 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002040 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00002041 return true;
2042 }
2043
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002044 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00002045
2046 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00002047 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00002048 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002049 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002050
2051 // ext X != 0 if X != 0.
2052 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002053 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002054
Duncan Sands2e9e4f12011-01-29 13:27:00 +00002055 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00002056 // if the lowest bit is shifted off the end.
Craig Topper6b3940a2017-05-03 22:25:19 +00002057 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002058 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002059 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Florian Hahn19f9e322018-08-17 14:39:04 +00002060 if (Q.IIQ.hasNoUnsignedWrap(BO))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002061 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002062
Craig Topperb45eabc2017-04-26 16:39:58 +00002063 KnownBits Known(BitWidth);
2064 computeKnownBits(X, Known, Depth, Q);
2065 if (Known.One[0])
Duncan Sandsd3951082011-01-25 09:38:29 +00002066 return true;
2067 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00002068 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00002069 // defined if the sign bit is shifted off the end.
2070 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002071 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002072 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002073 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002074 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002075
Craig Topper6e11a052017-05-08 16:22:48 +00002076 KnownBits Known = computeKnownBits(X, Depth, Q);
2077 if (Known.isNegative())
Duncan Sandsd3951082011-01-25 09:38:29 +00002078 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00002079
2080 // If the shifter operand is a constant, and all of the bits shifted
2081 // out are known to be zero, and X is known non-zero then at least one
2082 // non-zero bit must remain.
2083 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
James Molloyb6be1eb2015-09-24 16:06:32 +00002084 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2085 // Is there a known one in the portion not shifted out?
Craig Topper8df66c62017-05-12 17:20:30 +00002086 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
James Molloyb6be1eb2015-09-24 16:06:32 +00002087 return true;
2088 // Are all the bits to be shifted out known zero?
NAKAMURA Takumi76bab1f2017-07-11 02:31:51 +00002089 if (Known.countMinTrailingZeros() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002090 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00002091 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002092 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002093 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00002094 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002095 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002096 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002097 // X + Y.
2098 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Craig Topper6e11a052017-05-08 16:22:48 +00002099 KnownBits XKnown = computeKnownBits(X, Depth, Q);
2100 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002101
2102 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002103 // zero unless both X and Y are zero.
Craig Topper6e11a052017-05-08 16:22:48 +00002104 if (XKnown.isNonNegative() && YKnown.isNonNegative())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002105 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002106 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00002107
2108 // If X and Y are both negative (as signed values) then their sum is not
2109 // zero unless both X and Y equal INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00002110 if (XKnown.isNegative() && YKnown.isNegative()) {
Duncan Sandsd3951082011-01-25 09:38:29 +00002111 APInt Mask = APInt::getSignedMaxValue(BitWidth);
2112 // The sign bit of X is set. If some other bit is set then X is not equal
2113 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00002114 if (XKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00002115 return true;
2116 // The sign bit of Y is set. If some other bit is set then Y is not equal
2117 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00002118 if (YKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00002119 return true;
2120 }
2121
2122 // The sum of a non-negative number and a power of two is not zero.
Craig Topper6e11a052017-05-08 16:22:48 +00002123 if (XKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002124 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002125 return true;
Craig Topper6e11a052017-05-08 16:22:48 +00002126 if (YKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002127 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002128 return true;
2129 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00002130 // X * Y.
2131 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00002132 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00002133 // If X and Y are non-zero then so is X * Y as long as the multiplication
2134 // does not overflow.
Florian Hahn19f9e322018-08-17 14:39:04 +00002135 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002136 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00002137 return true;
2138 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002139 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00002140 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002141 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2142 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002143 return true;
2144 }
James Molloy897048b2015-09-29 14:08:45 +00002145 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00002146 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00002147 // Try and detect a recurrence that monotonically increases from a
2148 // starting value, as these are common as induction variables.
2149 if (PN->getNumIncomingValues() == 2) {
2150 Value *Start = PN->getIncomingValue(0);
2151 Value *Induction = PN->getIncomingValue(1);
2152 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2153 std::swap(Start, Induction);
2154 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2155 if (!C->isZero() && !C->isNegative()) {
2156 ConstantInt *X;
Florian Hahn19f9e322018-08-17 14:39:04 +00002157 if (Q.IIQ.UseInstrInfo &&
2158 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
James Molloy897048b2015-09-29 14:08:45 +00002159 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2160 !X->isNegative())
2161 return true;
2162 }
2163 }
2164 }
Jun Bum Limca832662016-02-01 17:03:07 +00002165 // Check if all incoming values are non-zero constant.
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002166 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
Craig Topper79ab6432017-07-06 18:39:47 +00002167 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
Jun Bum Limca832662016-02-01 17:03:07 +00002168 });
2169 if (AllNonZeroConstants)
2170 return true;
James Molloy897048b2015-09-29 14:08:45 +00002171 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002172
Craig Topperb45eabc2017-04-26 16:39:58 +00002173 KnownBits Known(BitWidth);
2174 computeKnownBits(V, Known, Depth, Q);
2175 return Known.One != 0;
Duncan Sandsd3951082011-01-25 09:38:29 +00002176}
2177
James Molloy1d88d6f2015-10-22 13:18:42 +00002178/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00002179static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2180 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00002181 if (!BO || BO->getOpcode() != Instruction::Add)
2182 return false;
2183 Value *Op = nullptr;
2184 if (V2 == BO->getOperand(0))
2185 Op = BO->getOperand(1);
2186 else if (V2 == BO->getOperand(1))
2187 Op = BO->getOperand(0);
2188 else
2189 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002190 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002191}
2192
2193/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002194static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
Craig Topper3002d5b2017-06-06 07:13:15 +00002195 if (V1 == V2)
James Molloy1d88d6f2015-10-22 13:18:42 +00002196 return false;
2197 if (V1->getType() != V2->getType())
2198 // We can't look through casts yet.
2199 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002200 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002201 return true;
2202
Craig Topper3002d5b2017-06-06 07:13:15 +00002203 if (V1->getType()->isIntOrIntVectorTy()) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002204 // Are any known bits in V1 contradictory to known bits in V2? If V1
2205 // has a known zero where V2 has a known one, they must not be equal.
Craig Topper8e662f72017-06-06 07:13:11 +00002206 KnownBits Known1 = computeKnownBits(V1, 0, Q);
2207 KnownBits Known2 = computeKnownBits(V2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002208
Craig Topper8365df82017-06-06 07:13:09 +00002209 if (Known1.Zero.intersects(Known2.One) ||
2210 Known2.Zero.intersects(Known1.One))
James Molloy1d88d6f2015-10-22 13:18:42 +00002211 return true;
2212 }
2213 return false;
2214}
2215
Sanjay Patelaee84212014-11-04 16:27:42 +00002216/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2217/// simplify operations downstream. Mask is known to be zero for bits that V
2218/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002219///
2220/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002221/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002222/// where V is a vector, the mask, known zero, and known one values are the
2223/// same width as the vector element, and the bit is set only if it is true
2224/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002225bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002226 const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002227 KnownBits Known(Mask.getBitWidth());
2228 computeKnownBits(V, Known, Depth, Q);
2229 return Mask.isSubsetOf(Known.Zero);
Chris Lattner965c7692008-06-02 01:18:21 +00002230}
2231
Craig Topperbec15b62018-08-22 23:27:50 +00002232// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2233// Returns the input and lower/upper bounds.
2234static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2235 const APInt *&CLow, const APInt *&CHigh) {
Craig Topper15f86922018-08-23 17:15:02 +00002236 assert(isa<Operator>(Select) &&
2237 cast<Operator>(Select)->getOpcode() == Instruction::Select &&
Craig Topperdfa176e2018-08-23 17:45:53 +00002238 "Input should be a Select!");
Craig Topperbec15b62018-08-22 23:27:50 +00002239
2240 const Value *LHS, *RHS, *LHS2, *RHS2;
2241 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2242 if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2243 return false;
2244
2245 if (!match(RHS, m_APInt(CLow)))
2246 return false;
2247
2248 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2249 if (getInverseMinMaxFlavor(SPF) != SPF2)
2250 return false;
2251
2252 if (!match(RHS2, m_APInt(CHigh)))
2253 return false;
2254
2255 if (SPF == SPF_SMIN)
2256 std::swap(CLow, CHigh);
2257
2258 In = LHS2;
2259 return CLow->sle(*CHigh);
2260}
2261
Sanjay Patela06d9892016-06-22 19:20:59 +00002262/// For vector constants, loop over the elements and find the constant with the
2263/// minimum number of sign bits. Return 0 if the value is not a vector constant
2264/// or if any element was not analyzed; otherwise, return the count for the
2265/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002266static unsigned computeNumSignBitsVectorConstant(const Value *V,
2267 unsigned TyBits) {
2268 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002269 if (!CV || !CV->getType()->isVectorTy())
2270 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002271
Sanjay Patela06d9892016-06-22 19:20:59 +00002272 unsigned MinSignBits = TyBits;
2273 unsigned NumElts = CV->getType()->getVectorNumElements();
2274 for (unsigned i = 0; i != NumElts; ++i) {
2275 // If we find a non-ConstantInt, bail out.
2276 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2277 if (!Elt)
2278 return 0;
2279
Craig Topper8e8b6ef2017-10-21 16:35:41 +00002280 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
Sanjay Patela06d9892016-06-22 19:20:59 +00002281 }
2282
2283 return MinSignBits;
2284}
Chris Lattner965c7692008-06-02 01:18:21 +00002285
Sanjoy Das39a684d2017-02-25 20:30:45 +00002286static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2287 const Query &Q);
2288
2289static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2290 const Query &Q) {
2291 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2292 assert(Result > 0 && "At least one sign bit needs to be present!");
2293 return Result;
2294}
2295
Sanjay Patelaee84212014-11-04 16:27:42 +00002296/// Return the number of times the sign bit of the register is replicated into
2297/// the other bits. We know that at least 1 bit is always equal to the sign bit
2298/// (itself), but other cases can give us information. For example, immediately
2299/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002300/// other, so we return 3. For vectors, return the number of sign bits for the
Vedant Kumard3196742018-02-28 19:08:52 +00002301/// vector element with the minimum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002302static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2303 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00002304 assert(Depth <= MaxDepth && "Limit Search Depth");
Sanjoy Das39a684d2017-02-25 20:30:45 +00002305
2306 // We return the minimum number of sign bits that are guaranteed to be present
2307 // in V, so for undef we have to conservatively return 1. We don't have the
2308 // same behavior for poison though -- that's a FIXME today.
2309
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002310 Type *ScalarTy = V->getType()->getScalarType();
2311 unsigned TyBits = ScalarTy->isPointerTy() ?
2312 Q.DL.getIndexTypeSizeInBits(ScalarTy) :
2313 Q.DL.getTypeSizeInBits(ScalarTy);
2314
Chris Lattner965c7692008-06-02 01:18:21 +00002315 unsigned Tmp, Tmp2;
2316 unsigned FirstAnswer = 1;
2317
Jay Foada0653a32014-05-14 21:14:37 +00002318 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002319 // below.
2320
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002321 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002322 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002323
Pete Cooper35b00d52016-08-13 01:05:32 +00002324 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002325 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002326 default: break;
2327 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002328 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002329 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002330
Nadav Rotemc99a3872015-03-06 00:23:58 +00002331 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002332 const APInt *Denominator;
2333 // sdiv X, C -> adds log(C) sign bits.
2334 if (match(U->getOperand(1), m_APInt(Denominator))) {
2335
2336 // Ignore non-positive denominator.
2337 if (!Denominator->isStrictlyPositive())
2338 break;
2339
2340 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002341 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002342
2343 // Add floor(log(C)) bits to the numerator bits.
2344 return std::min(TyBits, NumBits + Denominator->logBase2());
2345 }
2346 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002347 }
2348
2349 case Instruction::SRem: {
2350 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002351 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2352 // positive constant. This let us put a lower bound on the number of sign
2353 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002354 if (match(U->getOperand(1), m_APInt(Denominator))) {
2355
2356 // Ignore non-positive denominator.
2357 if (!Denominator->isStrictlyPositive())
2358 break;
2359
2360 // Calculate the incoming numerator bits. SRem by a positive constant
2361 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002362 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002363 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002364
2365 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002366 // denominator. Given that the denominator is positive, there are two
2367 // cases:
2368 //
2369 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2370 // (1 << ceilLogBase2(C)).
2371 //
2372 // 2. the numerator is negative. Then the result range is (-C,0] and
2373 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2374 //
2375 // Thus a lower bound on the number of sign bits is `TyBits -
2376 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002377
Sanjoy Dase561fee2015-03-25 22:33:53 +00002378 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002379 return std::max(NumrBits, ResBits);
2380 }
2381 break;
2382 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002383
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002384 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002385 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002386 // ashr X, C -> adds C sign bits. Vectors too.
2387 const APInt *ShAmt;
2388 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Simon Pilgrim67207262018-01-01 22:44:59 +00002389 if (ShAmt->uge(TyBits))
Sanjoy Das39a684d2017-02-25 20:30:45 +00002390 break; // Bad shift.
Simon Pilgrim67207262018-01-01 22:44:59 +00002391 unsigned ShAmtLimited = ShAmt->getZExtValue();
Sanjoy Das39a684d2017-02-25 20:30:45 +00002392 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002393 if (Tmp > TyBits) Tmp = TyBits;
2394 }
2395 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002396 }
2397 case Instruction::Shl: {
2398 const APInt *ShAmt;
2399 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002400 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002401 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Simon Pilgrim67207262018-01-01 22:44:59 +00002402 if (ShAmt->uge(TyBits) || // Bad shift.
2403 ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002404 Tmp2 = ShAmt->getZExtValue();
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002405 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002406 }
2407 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002408 }
Chris Lattner965c7692008-06-02 01:18:21 +00002409 case Instruction::And:
2410 case Instruction::Or:
2411 case Instruction::Xor: // NOT is handled here.
2412 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002413 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002414 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002415 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002416 FirstAnswer = std::min(Tmp, Tmp2);
2417 // We computed what we know about the sign bits as our first
2418 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002419 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002420 }
2421 break;
2422
Craig Topperbec15b62018-08-22 23:27:50 +00002423 case Instruction::Select: {
2424 // If we have a clamp pattern, we know that the number of sign bits will be
2425 // the minimum of the clamp min/max range.
2426 const Value *X;
2427 const APInt *CLow, *CHigh;
2428 if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2429 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2430
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002431 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002432 if (Tmp == 1) break;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002433 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002434 return std::min(Tmp, Tmp2);
Craig Topperbec15b62018-08-22 23:27:50 +00002435 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002436
Chris Lattner965c7692008-06-02 01:18:21 +00002437 case Instruction::Add:
2438 // Add can have at most one carry bit. Thus we know that the output
2439 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002440 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002441 if (Tmp == 1) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002442
Chris Lattner965c7692008-06-02 01:18:21 +00002443 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002444 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002445 if (CRHS->isAllOnesValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002446 KnownBits Known(TyBits);
2447 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002448
Chris Lattner965c7692008-06-02 01:18:21 +00002449 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2450 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002451 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002452 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002453
Chris Lattner965c7692008-06-02 01:18:21 +00002454 // If we are subtracting one from a positive number, there is no carry
2455 // out of the result.
Craig Topperca48af32017-04-29 16:43:11 +00002456 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002457 return Tmp;
2458 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002459
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002460 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002461 if (Tmp2 == 1) break;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002462 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002463
Chris Lattner965c7692008-06-02 01:18:21 +00002464 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002465 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002466 if (Tmp2 == 1) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002467
Chris Lattner965c7692008-06-02 01:18:21 +00002468 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002469 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002470 if (CLHS->isNullValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002471 KnownBits Known(TyBits);
2472 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002473 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2474 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002475 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002476 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002477
Chris Lattner965c7692008-06-02 01:18:21 +00002478 // If the input is known to be positive (the sign bit is known clear),
2479 // the output of the NEG has the same number of sign bits as the input.
Craig Topperca48af32017-04-29 16:43:11 +00002480 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002481 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002482
Chris Lattner965c7692008-06-02 01:18:21 +00002483 // Otherwise, we treat this like a SUB.
2484 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002485
Chris Lattner965c7692008-06-02 01:18:21 +00002486 // Sub can have at most one carry bit. Thus we know that the output
2487 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002488 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002489 if (Tmp == 1) break;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002490 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002491
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002492 case Instruction::Mul: {
2493 // The output of the Mul can be at most twice the valid bits in the inputs.
2494 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002495 if (SignBitsOp0 == 1) break;
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002496 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002497 if (SignBitsOp1 == 1) break;
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002498 unsigned OutValidBits =
2499 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2500 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2501 }
2502
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002503 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002504 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002505 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002506 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002507 if (NumIncomingValues > 4) break;
2508 // Unreachable blocks may have zero-operand PHI nodes.
2509 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002510
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002511 // Take the minimum of all incoming values. This can't infinitely loop
2512 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002513 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002514 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002515 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002516 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002517 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002518 }
2519 return Tmp;
2520 }
2521
Chris Lattner965c7692008-06-02 01:18:21 +00002522 case Instruction::Trunc:
2523 // FIXME: it's tricky to do anything useful for this, but it is an important
2524 // case for targets like X86.
2525 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002526
2527 case Instruction::ExtractElement:
2528 // Look through extract element. At the moment we keep this simple and skip
2529 // tracking the specific element. But at least we might find information
2530 // valid for all elements of the vector (for example if vector is sign
2531 // extended, shifted, etc).
2532 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Sanjay Patelcc9e4012018-10-26 21:05:14 +00002533
Sanjay Patela68096c2018-11-02 15:51:47 +00002534 case Instruction::ShuffleVector: {
Sanjay Patelcac28b42018-11-03 13:18:55 +00002535 // TODO: This is copied almost directly from the SelectionDAG version of
2536 // ComputeNumSignBits. It would be better if we could share common
2537 // code. If not, make sure that changes are translated to the DAG.
2538
2539 // Collect the minimum number of sign bits that are shared by every vector
2540 // element referenced by the shuffle.
2541 auto *Shuf = cast<ShuffleVectorInst>(U);
2542 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements();
2543 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements();
2544 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2545 for (int i = 0; i != NumMaskElts; ++i) {
2546 int M = Shuf->getMaskValue(i);
2547 assert(M < NumElts * 2 && "Invalid shuffle mask constant");
2548 // For undef elements, we don't know anything about the common state of
2549 // the shuffle result.
2550 if (M == -1)
2551 return 1;
2552 if (M < NumElts)
2553 DemandedLHS.setBit(M % NumElts);
2554 else
2555 DemandedRHS.setBit(M % NumElts);
2556 }
2557 Tmp = std::numeric_limits<unsigned>::max();
2558 if (!!DemandedLHS)
2559 Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q);
2560 if (!!DemandedRHS) {
2561 Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q);
2562 Tmp = std::min(Tmp, Tmp2);
2563 }
2564 // If we don't know anything, early out and try computeKnownBits fall-back.
2565 if (Tmp == 1)
Sanjay Patelcc9e4012018-10-26 21:05:14 +00002566 break;
Sanjay Patelcac28b42018-11-03 13:18:55 +00002567 assert(Tmp <= V->getType()->getScalarSizeInBits() &&
2568 "Failed to determine minimum sign bits");
2569 return Tmp;
Chris Lattner965c7692008-06-02 01:18:21 +00002570 }
Sanjay Patela68096c2018-11-02 15:51:47 +00002571 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002572
Chris Lattner965c7692008-06-02 01:18:21 +00002573 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2574 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002575
2576 // If we can examine all elements of a vector constant successfully, we're
2577 // done (we can't do any better than that). If not, keep trying.
2578 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2579 return VecSignBits;
2580
Craig Topperb45eabc2017-04-26 16:39:58 +00002581 KnownBits Known(TyBits);
2582 computeKnownBits(V, Known, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002583
Sanjay Patele0536212016-06-23 17:41:59 +00002584 // If we know that the sign bit is either zero or one, determine the number of
2585 // identical bits in the top of the input value.
Craig Topper8df66c62017-05-12 17:20:30 +00002586 return std::max(FirstAnswer, Known.countMinSignBits());
Chris Lattner965c7692008-06-02 01:18:21 +00002587}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002588
Sanjay Patelaee84212014-11-04 16:27:42 +00002589/// This function computes the integer multiple of Base that equals V.
2590/// If successful, it returns true and returns the multiple in
2591/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002592/// through SExt instructions only if LookThroughSExt is true.
2593bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002594 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002595 const unsigned MaxDepth = 6;
2596
Dan Gohman6a976bb2009-11-18 00:58:27 +00002597 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002598 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002599 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002600
Chris Lattner229907c2011-07-18 04:54:35 +00002601 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002602
Dan Gohman6a976bb2009-11-18 00:58:27 +00002603 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002604
2605 if (Base == 0)
2606 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002607
Victor Hernandez47444882009-11-10 08:28:35 +00002608 if (Base == 1) {
2609 Multiple = V;
2610 return true;
2611 }
2612
2613 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2614 Constant *BaseVal = ConstantInt::get(T, Base);
2615 if (CO && CO == BaseVal) {
2616 // Multiple is 1.
2617 Multiple = ConstantInt::get(T, 1);
2618 return true;
2619 }
2620
2621 if (CI && CI->getZExtValue() % Base == 0) {
2622 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002623 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002624 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002625
Victor Hernandez47444882009-11-10 08:28:35 +00002626 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002627
Victor Hernandez47444882009-11-10 08:28:35 +00002628 Operator *I = dyn_cast<Operator>(V);
2629 if (!I) return false;
2630
2631 switch (I->getOpcode()) {
2632 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002633 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002634 if (!LookThroughSExt) return false;
2635 // otherwise fall through to ZExt
Galina Kistanova244621f2017-05-31 22:16:24 +00002636 LLVM_FALLTHROUGH;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002637 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002638 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2639 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002640 case Instruction::Shl:
2641 case Instruction::Mul: {
2642 Value *Op0 = I->getOperand(0);
2643 Value *Op1 = I->getOperand(1);
2644
2645 if (I->getOpcode() == Instruction::Shl) {
2646 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2647 if (!Op1CI) return false;
2648 // Turn Op0 << Op1 into Op0 * 2^Op1
2649 APInt Op1Int = Op1CI->getValue();
2650 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002651 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002652 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002653 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002654 }
2655
Craig Topper9f008862014-04-15 04:59:12 +00002656 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002657 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2658 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2659 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002660 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002661 MulC->getType()->getPrimitiveSizeInBits())
2662 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002663 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002664 MulC->getType()->getPrimitiveSizeInBits())
2665 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002666
Chris Lattner72d283c2010-09-05 17:20:46 +00002667 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2668 Multiple = ConstantExpr::getMul(MulC, Op1C);
2669 return true;
2670 }
Victor Hernandez47444882009-11-10 08:28:35 +00002671
2672 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2673 if (Mul0CI->getValue() == 1) {
2674 // V == Base * Op1, so return Op1
2675 Multiple = Op1;
2676 return true;
2677 }
2678 }
2679
Craig Topper9f008862014-04-15 04:59:12 +00002680 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002681 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2682 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2683 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002684 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002685 MulC->getType()->getPrimitiveSizeInBits())
2686 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002687 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002688 MulC->getType()->getPrimitiveSizeInBits())
2689 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002690
Chris Lattner72d283c2010-09-05 17:20:46 +00002691 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2692 Multiple = ConstantExpr::getMul(MulC, Op0C);
2693 return true;
2694 }
Victor Hernandez47444882009-11-10 08:28:35 +00002695
2696 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2697 if (Mul1CI->getValue() == 1) {
2698 // V == Base * Op0, so return Op0
2699 Multiple = Op0;
2700 return true;
2701 }
2702 }
Victor Hernandez47444882009-11-10 08:28:35 +00002703 }
2704 }
2705
2706 // We could not determine if V is a multiple of Base.
2707 return false;
2708}
2709
David Majnemerb4b27232016-04-19 19:10:21 +00002710Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2711 const TargetLibraryInfo *TLI) {
2712 const Function *F = ICS.getCalledFunction();
2713 if (!F)
2714 return Intrinsic::not_intrinsic;
2715
2716 if (F->isIntrinsic())
2717 return F->getIntrinsicID();
2718
2719 if (!TLI)
2720 return Intrinsic::not_intrinsic;
2721
David L. Jonesd21529f2017-01-23 23:16:46 +00002722 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002723 // We're going to make assumptions on the semantics of the functions, check
2724 // that the target knows that it's available in this environment and it does
2725 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002726 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2727 return Intrinsic::not_intrinsic;
2728
2729 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002730 return Intrinsic::not_intrinsic;
2731
2732 // Otherwise check if we have a call to a function that can be turned into a
2733 // vector intrinsic.
2734 switch (Func) {
2735 default:
2736 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002737 case LibFunc_sin:
2738 case LibFunc_sinf:
2739 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002740 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002741 case LibFunc_cos:
2742 case LibFunc_cosf:
2743 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002744 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002745 case LibFunc_exp:
2746 case LibFunc_expf:
2747 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002748 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002749 case LibFunc_exp2:
2750 case LibFunc_exp2f:
2751 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002752 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002753 case LibFunc_log:
2754 case LibFunc_logf:
2755 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002756 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002757 case LibFunc_log10:
2758 case LibFunc_log10f:
2759 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002760 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002761 case LibFunc_log2:
2762 case LibFunc_log2f:
2763 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002764 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002765 case LibFunc_fabs:
2766 case LibFunc_fabsf:
2767 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002768 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002769 case LibFunc_fmin:
2770 case LibFunc_fminf:
2771 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002772 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002773 case LibFunc_fmax:
2774 case LibFunc_fmaxf:
2775 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002776 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002777 case LibFunc_copysign:
2778 case LibFunc_copysignf:
2779 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002780 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002781 case LibFunc_floor:
2782 case LibFunc_floorf:
2783 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002784 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002785 case LibFunc_ceil:
2786 case LibFunc_ceilf:
2787 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002788 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002789 case LibFunc_trunc:
2790 case LibFunc_truncf:
2791 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002792 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002793 case LibFunc_rint:
2794 case LibFunc_rintf:
2795 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002796 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002797 case LibFunc_nearbyint:
2798 case LibFunc_nearbyintf:
2799 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002800 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002801 case LibFunc_round:
2802 case LibFunc_roundf:
2803 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002804 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002805 case LibFunc_pow:
2806 case LibFunc_powf:
2807 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002808 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002809 case LibFunc_sqrt:
2810 case LibFunc_sqrtf:
2811 case LibFunc_sqrtl:
Sanjay Patel86d24f12017-11-06 22:40:09 +00002812 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002813 }
2814
2815 return Intrinsic::not_intrinsic;
2816}
2817
Sanjay Patelaee84212014-11-04 16:27:42 +00002818/// Return true if we can prove that the specified FP value is never equal to
2819/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002820///
2821/// NOTE: this function will need to be revisited when we support non-default
2822/// rounding modes!
David Majnemer3ee5f342016-04-13 06:55:52 +00002823bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2824 unsigned Depth) {
Sanjay Patel20df88a2017-11-13 17:56:23 +00002825 if (auto *CFP = dyn_cast<ConstantFP>(V))
Chris Lattnera12a6de2008-06-02 01:29:46 +00002826 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002827
Sanjay Patel20df88a2017-11-13 17:56:23 +00002828 // Limit search depth.
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002829 if (Depth == MaxDepth)
Sanjay Patel20df88a2017-11-13 17:56:23 +00002830 return false;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002831
Sanjay Patel20df88a2017-11-13 17:56:23 +00002832 auto *Op = dyn_cast<Operator>(V);
2833 if (!Op)
2834 return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002835
Sanjay Patel20df88a2017-11-13 17:56:23 +00002836 // Check if the nsz fast-math flag is set.
2837 if (auto *FPO = dyn_cast<FPMathOperator>(Op))
Michael Ilseman0f128372012-12-06 00:07:09 +00002838 if (FPO->hasNoSignedZeros())
2839 return true;
2840
Sanjay Patel9e3d8f42017-11-13 17:40:47 +00002841 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
Sanjay Patel93e64dd2018-03-25 21:16:33 +00002842 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
Sanjay Patel9e3d8f42017-11-13 17:40:47 +00002843 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002844
Chris Lattnera12a6de2008-06-02 01:29:46 +00002845 // sitofp and uitofp turn into +0.0 for zero.
Sanjay Patel20df88a2017-11-13 17:56:23 +00002846 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
Chris Lattnera12a6de2008-06-02 01:29:46 +00002847 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002848
Sanjay Patel20df88a2017-11-13 17:56:23 +00002849 if (auto *Call = dyn_cast<CallInst>(Op)) {
2850 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002851 switch (IID) {
2852 default:
2853 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002854 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002855 case Intrinsic::sqrt:
Matt Arsenault56b31d82018-08-06 15:16:26 +00002856 case Intrinsic::canonicalize:
Sanjay Patel20df88a2017-11-13 17:56:23 +00002857 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002858 // fabs(x) != -0.0
2859 case Intrinsic::fabs:
2860 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002861 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002862 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002863
Chris Lattnera12a6de2008-06-02 01:29:46 +00002864 return false;
2865}
2866
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002867/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2868/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2869/// bit despite comparing equal.
2870static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2871 const TargetLibraryInfo *TLI,
2872 bool SignBitOnly,
2873 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002874 // TODO: This function does not do the right thing when SignBitOnly is true
2875 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2876 // which flips the sign bits of NaNs. See
2877 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2878
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002879 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2880 return !CFP->getValueAPF().isNegative() ||
2881 (!SignBitOnly && CFP->getValueAPF().isZero());
2882 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002883
Craig Topper69c89722018-02-26 22:33:17 +00002884 // Handle vector of constants.
2885 if (auto *CV = dyn_cast<Constant>(V)) {
2886 if (CV->getType()->isVectorTy()) {
2887 unsigned NumElts = CV->getType()->getVectorNumElements();
2888 for (unsigned i = 0; i != NumElts; ++i) {
2889 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
2890 if (!CFP)
2891 return false;
2892 if (CFP->getValueAPF().isNegative() &&
2893 (SignBitOnly || !CFP->getValueAPF().isZero()))
2894 return false;
2895 }
2896
2897 // All non-negative ConstantFPs.
2898 return true;
2899 }
2900 }
2901
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002902 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002903 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002904
2905 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002906 if (!I)
2907 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002908
2909 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002910 default:
2911 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002912 // Unsigned integers are always nonnegative.
2913 case Instruction::UIToFP:
2914 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002915 case Instruction::FMul:
2916 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002917 if (I->getOperand(0) == I->getOperand(1) &&
2918 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002919 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002920
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002921 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002922 case Instruction::FAdd:
2923 case Instruction::FDiv:
2924 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002925 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2926 Depth + 1) &&
2927 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2928 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002929 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002930 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2931 Depth + 1) &&
2932 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2933 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002934 case Instruction::FPExt:
2935 case Instruction::FPTrunc:
2936 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002937 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2938 Depth + 1);
Craig Topper30199102018-02-27 19:53:45 +00002939 case Instruction::ExtractElement:
2940 // Look through extract element. At the moment we keep this simple and skip
2941 // tracking the specific element. But at least we might find information
2942 // valid for all elements of the vector.
2943 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2944 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002945 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002946 const auto *CI = cast<CallInst>(I);
2947 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002948 switch (IID) {
2949 default:
2950 break;
2951 case Intrinsic::maxnum:
Matt Arsenaultd54b7f02018-08-09 22:40:08 +00002952 return (isKnownNeverNaN(I->getOperand(0), TLI) &&
Sanjay Patelf9a0d592018-08-02 13:46:20 +00002953 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
2954 SignBitOnly, Depth + 1)) ||
Matt Arsenaultd54b7f02018-08-09 22:40:08 +00002955 (isKnownNeverNaN(I->getOperand(1), TLI) &&
Sanjay Patelf9a0d592018-08-02 13:46:20 +00002956 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
2957 SignBitOnly, Depth + 1));
2958
Thomas Livelyc3392502018-10-19 19:01:26 +00002959 case Intrinsic::maximum:
2960 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2961 Depth + 1) ||
2962 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2963 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002964 case Intrinsic::minnum:
Thomas Livelyc3392502018-10-19 19:01:26 +00002965 case Intrinsic::minimum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002966 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2967 Depth + 1) &&
2968 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2969 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002970 case Intrinsic::exp:
2971 case Intrinsic::exp2:
2972 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002973 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002974
2975 case Intrinsic::sqrt:
2976 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2977 if (!SignBitOnly)
2978 return true;
2979 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2980 CannotBeNegativeZero(CI->getOperand(0), TLI));
2981
David Majnemer3ee5f342016-04-13 06:55:52 +00002982 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002983 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002984 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002985 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002986 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002987 }
Justin Lebar322c1272017-01-27 00:58:34 +00002988 // TODO: This is not correct. Given that exp is an integer, here are the
2989 // ways that pow can return a negative value:
2990 //
2991 // pow(x, exp) --> negative if exp is odd and x is negative.
2992 // pow(-0, exp) --> -inf if exp is negative odd.
2993 // pow(-0, exp) --> -0 if exp is positive odd.
2994 // pow(-inf, exp) --> -0 if exp is negative odd.
2995 // pow(-inf, exp) --> -inf if exp is positive odd.
2996 //
2997 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2998 // but we must return false if x == -0. Unfortunately we do not currently
2999 // have a way of expressing this constraint. See details in
3000 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00003001 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3002 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00003003
David Majnemer3ee5f342016-04-13 06:55:52 +00003004 case Intrinsic::fma:
3005 case Intrinsic::fmuladd:
3006 // x*x+y is non-negative if y is non-negative.
3007 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00003008 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3009 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3010 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00003011 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00003012 break;
3013 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003014 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00003015}
3016
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00003017bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3018 const TargetLibraryInfo *TLI) {
3019 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3020}
3021
3022bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3023 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3024}
3025
Matt Arsenaultd54b7f02018-08-09 22:40:08 +00003026bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3027 unsigned Depth) {
Sanjay Patel6840c5f2017-09-05 23:13:13 +00003028 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3029
3030 // If we're told that NaNs won't happen, assume they won't.
3031 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3032 if (FPMathOp->hasNoNaNs())
3033 return true;
3034
Sanjay Patel6840c5f2017-09-05 23:13:13 +00003035 // Handle scalar constants.
3036 if (auto *CFP = dyn_cast<ConstantFP>(V))
3037 return !CFP->isNaN();
3038
Matt Arsenaultd54b7f02018-08-09 22:40:08 +00003039 if (Depth == MaxDepth)
3040 return false;
3041
Matt Arsenault450fcc72018-08-20 16:51:00 +00003042 if (auto *Inst = dyn_cast<Instruction>(V)) {
3043 switch (Inst->getOpcode()) {
3044 case Instruction::FAdd:
3045 case Instruction::FMul:
3046 case Instruction::FSub:
3047 case Instruction::FDiv:
3048 case Instruction::FRem: {
3049 // TODO: Need isKnownNeverInfinity
3050 return false;
3051 }
3052 case Instruction::Select: {
3053 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3054 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3055 }
3056 case Instruction::SIToFP:
3057 case Instruction::UIToFP:
3058 return true;
3059 case Instruction::FPTrunc:
3060 case Instruction::FPExt:
3061 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3062 default:
3063 break;
3064 }
3065 }
3066
Matt Arsenaultd54b7f02018-08-09 22:40:08 +00003067 if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3068 switch (II->getIntrinsicID()) {
3069 case Intrinsic::canonicalize:
3070 case Intrinsic::fabs:
3071 case Intrinsic::copysign:
Matt Arsenault450fcc72018-08-20 16:51:00 +00003072 case Intrinsic::exp:
3073 case Intrinsic::exp2:
3074 case Intrinsic::floor:
3075 case Intrinsic::ceil:
3076 case Intrinsic::trunc:
3077 case Intrinsic::rint:
3078 case Intrinsic::nearbyint:
3079 case Intrinsic::round:
Matt Arsenaultd54b7f02018-08-09 22:40:08 +00003080 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3081 case Intrinsic::sqrt:
3082 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3083 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3084 default:
3085 return false;
3086 }
3087 }
3088
Sanjay Patel6840c5f2017-09-05 23:13:13 +00003089 // Bail out for constant expressions, but try to handle vector constants.
3090 if (!V->getType()->isVectorTy() || !isa<Constant>(V))
3091 return false;
3092
3093 // For vectors, verify that each element is not NaN.
3094 unsigned NumElts = V->getType()->getVectorNumElements();
3095 for (unsigned i = 0; i != NumElts; ++i) {
3096 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3097 if (!Elt)
3098 return false;
3099 if (isa<UndefValue>(Elt))
3100 continue;
3101 auto *CElt = dyn_cast<ConstantFP>(Elt);
3102 if (!CElt || CElt->isNaN())
3103 return false;
3104 }
3105 // All elements were confirmed not-NaN or undefined.
3106 return true;
3107}
3108
Chris Lattner9cb10352010-12-26 20:15:01 +00003109Value *llvm::isBytewiseValue(Value *V) {
JF Bastien73d8e4e2018-09-21 05:17:42 +00003110
Chris Lattner9cb10352010-12-26 20:15:01 +00003111 // All byte-wide stores are splatable, even of arbitrary variables.
JF Bastien73d8e4e2018-09-21 05:17:42 +00003112 if (V->getType()->isIntegerTy(8))
3113 return V;
3114
3115 LLVMContext &Ctx = V->getContext();
3116
3117 // Undef don't care.
3118 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3119 if (isa<UndefValue>(V))
3120 return UndefInt8;
3121
3122 Constant *C = dyn_cast<Constant>(V);
3123 if (!C) {
3124 // Conceptually, we could handle things like:
3125 // %a = zext i8 %X to i16
3126 // %b = shl i16 %a, 8
3127 // %c = or i16 %a, %b
3128 // but until there is an example that actually needs this, it doesn't seem
3129 // worth worrying about.
3130 return nullptr;
3131 }
Chris Lattneracf6b072011-02-19 19:35:49 +00003132
3133 // Handle 'null' ConstantArrayZero etc.
JF Bastien73d8e4e2018-09-21 05:17:42 +00003134 if (C->isNullValue())
3135 return Constant::getNullValue(Type::getInt8Ty(Ctx));
Craig Topper1bef2c82012-12-22 19:15:35 +00003136
JF Bastien73d8e4e2018-09-21 05:17:42 +00003137 // Constant floating-point values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00003138 // corresponding integer value is "byteable". An important case is 0.0.
JF Bastien73d8e4e2018-09-21 05:17:42 +00003139 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3140 Type *Ty = nullptr;
3141 if (CFP->getType()->isHalfTy())
3142 Ty = Type::getInt16Ty(Ctx);
3143 else if (CFP->getType()->isFloatTy())
3144 Ty = Type::getInt32Ty(Ctx);
3145 else if (CFP->getType()->isDoubleTy())
3146 Ty = Type::getInt64Ty(Ctx);
Chris Lattner9cb10352010-12-26 20:15:01 +00003147 // Don't handle long double formats, which have strange constraints.
JF Bastien73d8e4e2018-09-21 05:17:42 +00003148 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty)) : nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00003149 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003150
Benjamin Kramer17d90152015-02-07 19:29:02 +00003151 // We can handle constant integers that are multiple of 8 bits.
JF Bastien73d8e4e2018-09-21 05:17:42 +00003152 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00003153 if (CI->getBitWidth() % 8 == 0) {
3154 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Benjamin Kramerb4b51502015-03-25 16:49:59 +00003155 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00003156 return nullptr;
JF Bastien73d8e4e2018-09-21 05:17:42 +00003157 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00003158 }
3159 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003160
JF Bastien73d8e4e2018-09-21 05:17:42 +00003161 auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3162 if (LHS == RHS)
3163 return LHS;
3164 if (!LHS || !RHS)
Craig Topper9f008862014-04-15 04:59:12 +00003165 return nullptr;
JF Bastien73d8e4e2018-09-21 05:17:42 +00003166 if (LHS == UndefInt8)
3167 return RHS;
3168 if (RHS == UndefInt8)
3169 return LHS;
3170 return nullptr;
3171 };
Craig Topper1bef2c82012-12-22 19:15:35 +00003172
JF Bastien73d8e4e2018-09-21 05:17:42 +00003173 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3174 Value *Val = UndefInt8;
3175 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3176 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I)))))
Craig Topper9f008862014-04-15 04:59:12 +00003177 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00003178 return Val;
3179 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00003180
JF Bastien73d8e4e2018-09-21 05:17:42 +00003181 if (isa<ConstantVector>(C)) {
3182 Constant *Splat = cast<ConstantVector>(C)->getSplatValue();
3183 return Splat ? isBytewiseValue(Splat) : nullptr;
3184 }
3185
3186 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
3187 Value *Val = UndefInt8;
3188 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3189 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I)))))
3190 return nullptr;
3191 return Val;
3192 }
3193
3194 // Don't try to handle the handful of other constants.
Craig Topper9f008862014-04-15 04:59:12 +00003195 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00003196}
3197
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003198// This is the recursive version of BuildSubAggregate. It takes a few different
3199// arguments. Idxs is the index within the nested struct From that we are
3200// looking at now (which is of type IndexedType). IdxSkip is the number of
3201// indices from Idxs that should be left out when inserting into the resulting
3202// struct. To is the result struct built so far, new insertvalue instructions
3203// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00003204static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00003205 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00003206 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00003207 Instruction *InsertBefore) {
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003208 StructType *STy = dyn_cast<StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003209 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003210 // Save the original To argument so we can modify it
3211 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003212 // General case, the type indexed by Idxs is a struct
3213 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3214 // Process each struct element recursively
3215 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003216 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003217 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003218 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003219 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003220 if (!To) {
3221 // Couldn't find any inserted value for this index? Cleanup
3222 while (PrevTo != OrigTo) {
3223 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3224 PrevTo = Del->getAggregateOperand();
3225 Del->eraseFromParent();
3226 }
3227 // Stop processing elements
3228 break;
3229 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003230 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00003231 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003232 if (To)
3233 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003234 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003235 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3236 // the struct's elements had a value that was inserted directly. In the latter
3237 // case, perhaps we can't determine each of the subelements individually, but
3238 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00003239
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003240 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00003241 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003242
3243 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00003244 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003245
Vedant Kumard3196742018-02-28 19:08:52 +00003246 // Insert the value in the new (sub) aggregate
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003247 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3248 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003249}
3250
3251// This helper takes a nested struct and extracts a part of it (which is again a
3252// struct) into a new value. For example, given the struct:
3253// { a, { b, { c, d }, e } }
3254// and the indices "1, 1" this returns
3255// { c, d }.
3256//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003257// It does this by inserting an insertvalue for each element in the resulting
3258// struct, as opposed to just inserting a single struct. This will only work if
3259// each of the elements of the substruct are known (ie, inserted into From by an
3260// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003261//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003262// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00003263static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00003264 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00003265 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00003266 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00003267 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00003268 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00003269 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003270 unsigned IdxSkip = Idxs.size();
3271
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003272 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003273}
3274
Vedant Kumard3196742018-02-28 19:08:52 +00003275/// Given an aggregate and a sequence of indices, see if the scalar value
3276/// indexed is already around as a register, for example if it was inserted
3277/// directly into the aggregate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003278///
3279/// If InsertBefore is not null, this function will duplicate (modified)
3280/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00003281Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3282 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003283 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003284 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00003285 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003286 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003287 // We have indices, so V should have an indexable type.
3288 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3289 "Not looking at a struct or array?");
3290 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3291 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00003292
Chris Lattner67058832012-01-25 06:48:06 +00003293 if (Constant *C = dyn_cast<Constant>(V)) {
3294 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00003295 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00003296 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3297 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003298
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003299 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003300 // Loop the indices for the insertvalue instruction in parallel with the
3301 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00003302 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003303 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3304 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00003305 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003306 // We can't handle this without inserting insertvalues
3307 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00003308 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003309
3310 // The requested index identifies a part of a nested aggregate. Handle
3311 // this specially. For example,
3312 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3313 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3314 // %C = extractvalue {i32, { i32, i32 } } %B, 1
3315 // This can be changed into
3316 // %A = insertvalue {i32, i32 } undef, i32 10, 0
3317 // %C = insertvalue {i32, i32 } %A, i32 11, 1
3318 // which allows the unused 0,0 element from the nested struct to be
3319 // removed.
3320 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3321 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00003322 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003323
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003324 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00003325 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003326 // looking for, then.
3327 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00003328 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003329 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003330 }
3331 // If we end up here, the indices of the insertvalue match with those
3332 // requested (though possibly only partially). Now we recursively look at
3333 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00003334 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00003335 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003336 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003337 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003338
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003339 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00003340 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003341 // something else, we can extract from that something else directly instead.
3342 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00003343
3344 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00003345 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003346 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00003347 SmallVector<unsigned, 5> Idxs;
3348 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003349 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00003350 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00003351
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003352 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00003353 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003354
Craig Topper1bef2c82012-12-22 19:15:35 +00003355 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003356 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00003357
Jay Foad57aa6362011-07-13 10:26:04 +00003358 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003359 }
3360 // Otherwise, we don't know (such as, extracting from a function return value
3361 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00003362 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003363}
Evan Chengda3db112008-06-30 07:31:25 +00003364
Sanjay Patelaee84212014-11-04 16:27:42 +00003365/// Analyze the specified pointer to see if it can be expressed as a base
3366/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00003367Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003368 const DataLayout &DL) {
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00003369 unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00003370 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00003371
3372 // We walk up the defs but use a visited set to handle unreachable code. In
3373 // that case, we stop after accumulating the cycle once (not that it
3374 // matters).
3375 SmallPtrSet<Value *, 16> Visited;
3376 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003377 if (Ptr->getType()->isVectorTy())
3378 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00003379
Nuno Lopes368c4d02012-12-31 20:48:35 +00003380 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00003381 // If one of the values we have visited is an addrspacecast, then
3382 // the pointer type of this GEP may be different from the type
3383 // of the Ptr parameter which was passed to this function. This
3384 // means when we construct GEPOffset, we need to use the size
3385 // of GEP's pointer type rather than the size of the original
3386 // pointer type.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00003387 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003388 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3389 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003390
Florian Hahn79024052019-01-04 14:53:22 +00003391 APInt OrigByteOffset(ByteOffset);
3392 ByteOffset += GEPOffset.sextOrTrunc(ByteOffset.getBitWidth());
3393 if (ByteOffset.getMinSignedBits() > 64) {
3394 // Stop traversal if the pointer offset wouldn't fit into int64_t
3395 // (this should be removed if Offset is updated to an APInt)
3396 ByteOffset = OrigByteOffset;
3397 break;
3398 }
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003399
Nuno Lopes368c4d02012-12-31 20:48:35 +00003400 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00003401 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3402 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003403 Ptr = cast<Operator>(Ptr)->getOperand(0);
3404 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003405 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00003406 break;
3407 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00003408 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003409 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00003410 }
3411 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00003412 Offset = ByteOffset.getSExtValue();
3413 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00003414}
3415
Matthias Braun50ec0b52017-05-19 22:37:09 +00003416bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3417 unsigned CharSize) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003418 // Make sure the GEP has exactly three arguments.
3419 if (GEP->getNumOperands() != 3)
3420 return false;
3421
Matthias Braun50ec0b52017-05-19 22:37:09 +00003422 // Make sure the index-ee is a pointer to array of \p CharSize integers.
3423 // CharSize.
David L Kreitzer752c1442016-04-13 14:31:06 +00003424 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Matthias Braun50ec0b52017-05-19 22:37:09 +00003425 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
David L Kreitzer752c1442016-04-13 14:31:06 +00003426 return false;
3427
3428 // Check to make sure that the first operand of the GEP is an integer and
3429 // has value 0 so that we are sure we're indexing into the initializer.
3430 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3431 if (!FirstIdx || !FirstIdx->isZero())
3432 return false;
3433
3434 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003435}
Chris Lattnere28618d2010-11-30 22:25:26 +00003436
Matthias Braun50ec0b52017-05-19 22:37:09 +00003437bool llvm::getConstantDataArrayInfo(const Value *V,
3438 ConstantDataArraySlice &Slice,
3439 unsigned ElementSize, uint64_t Offset) {
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003440 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00003441
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003442 // Look through bitcast instructions and geps.
3443 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00003444
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003445 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003446 // offset.
3447 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003448 // The GEP operator should be based on a pointer to string constant, and is
3449 // indexing into the string constant.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003450 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003451 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003452
Evan Chengda3db112008-06-30 07:31:25 +00003453 // If the second index isn't a ConstantInt, then this is a variable index
3454 // into the array. If this occurs, we can't say anything meaningful about
3455 // the string.
3456 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003457 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003458 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003459 else
3460 return false;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003461 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3462 StartIdx + Offset);
Evan Chengda3db112008-06-30 07:31:25 +00003463 }
Nick Lewycky46209882011-10-20 00:34:35 +00003464
Evan Chengda3db112008-06-30 07:31:25 +00003465 // The GEP instruction, constant or instruction, must reference a global
3466 // variable that is a constant and is initialized. The referenced constant
3467 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003468 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003469 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003470 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003471
Matthias Braun50ec0b52017-05-19 22:37:09 +00003472 const ConstantDataArray *Array;
3473 ArrayType *ArrayTy;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003474 if (GV->getInitializer()->isNullValue()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003475 Type *GVTy = GV->getValueType();
3476 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
Sanjay Patel2ad88f82017-06-12 22:34:37 +00003477 // A zeroinitializer for the array; there is no ConstantDataArray.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003478 Array = nullptr;
3479 } else {
3480 const DataLayout &DL = GV->getParent()->getDataLayout();
3481 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3482 uint64_t Length = SizeInBytes / (ElementSize / 8);
3483 if (Length <= Offset)
3484 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003485
Matthias Braun50ec0b52017-05-19 22:37:09 +00003486 Slice.Array = nullptr;
3487 Slice.Offset = 0;
3488 Slice.Length = Length - Offset;
3489 return true;
3490 }
3491 } else {
3492 // This must be a ConstantDataArray.
3493 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3494 if (!Array)
3495 return false;
3496 ArrayTy = Array->getType();
3497 }
3498 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003499 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003500
Matthias Braun50ec0b52017-05-19 22:37:09 +00003501 uint64_t NumElts = ArrayTy->getArrayNumElements();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003502 if (Offset > NumElts)
3503 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003504
Matthias Braun50ec0b52017-05-19 22:37:09 +00003505 Slice.Array = Array;
3506 Slice.Offset = Offset;
3507 Slice.Length = NumElts - Offset;
3508 return true;
3509}
3510
3511/// This function computes the length of a null-terminated C string pointed to
3512/// by V. If successful, it returns true and returns the string in Str.
3513/// If unsuccessful, it returns false.
3514bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3515 uint64_t Offset, bool TrimAtNul) {
3516 ConstantDataArraySlice Slice;
3517 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3518 return false;
3519
3520 if (Slice.Array == nullptr) {
3521 if (TrimAtNul) {
3522 Str = StringRef();
3523 return true;
3524 }
3525 if (Slice.Length == 1) {
3526 Str = StringRef("", 1);
3527 return true;
3528 }
Sanjay Patelfef83e82017-06-09 14:21:18 +00003529 // We cannot instantiate a StringRef as we do not have an appropriate string
Matthias Braun50ec0b52017-05-19 22:37:09 +00003530 // of 0s at hand.
3531 return false;
3532 }
3533
3534 // Start out with the entire array in the StringRef.
3535 Str = Slice.Array->getAsString();
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003536 // Skip over 'offset' bytes.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003537 Str = Str.substr(Slice.Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003538
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003539 if (TrimAtNul) {
3540 // Trim off the \0 and anything after it. If the array is not nul
3541 // terminated, we just return the whole end of string. The client may know
3542 // some other way that the string is length-bound.
3543 Str = Str.substr(0, Str.find('\0'));
3544 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003545 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003546}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003547
3548// These next two are very similar to the above, but also look through PHI
3549// nodes.
3550// TODO: See if we can integrate these two together.
3551
Sanjay Patelaee84212014-11-04 16:27:42 +00003552/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003553/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003554static uint64_t GetStringLengthH(const Value *V,
Matthias Braun50ec0b52017-05-19 22:37:09 +00003555 SmallPtrSetImpl<const PHINode*> &PHIs,
3556 unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003557 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003558 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003559
3560 // If this is a PHI node, there are two cases: either we have already seen it
3561 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003562 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003563 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003564 return ~0ULL; // already in the set.
3565
3566 // If it was new, see if all the input strings are the same length.
3567 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003568 for (Value *IncValue : PN->incoming_values()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003569 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003570 if (Len == 0) return 0; // Unknown length -> unknown.
3571
3572 if (Len == ~0ULL) continue;
3573
3574 if (Len != LenSoFar && LenSoFar != ~0ULL)
3575 return 0; // Disagree -> unknown.
3576 LenSoFar = Len;
3577 }
3578
3579 // Success, all agree.
3580 return LenSoFar;
3581 }
3582
3583 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003584 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003585 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003586 if (Len1 == 0) return 0;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003587 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003588 if (Len2 == 0) return 0;
3589 if (Len1 == ~0ULL) return Len2;
3590 if (Len2 == ~0ULL) return Len1;
3591 if (Len1 != Len2) return 0;
3592 return Len1;
3593 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003594
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003595 // Otherwise, see if we can read the string.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003596 ConstantDataArraySlice Slice;
3597 if (!getConstantDataArrayInfo(V, Slice, CharSize))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003598 return 0;
3599
Matthias Braun50ec0b52017-05-19 22:37:09 +00003600 if (Slice.Array == nullptr)
3601 return 1;
3602
3603 // Search for nul characters
3604 unsigned NullIndex = 0;
3605 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3606 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3607 break;
3608 }
3609
3610 return NullIndex + 1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003611}
3612
Sanjay Patelaee84212014-11-04 16:27:42 +00003613/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003614/// the specified pointer, return 'len+1'. If we can't, return 0.
David Bolvansky1f343fa2018-05-22 20:27:36 +00003615uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
David Bolvansky41f4b642018-05-22 15:41:23 +00003616 if (!V->getType()->isPointerTy())
3617 return 0;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003618
Pete Cooper35b00d52016-08-13 01:05:32 +00003619 SmallPtrSet<const PHINode*, 32> PHIs;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003620 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003621 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3622 // an empty string as a length.
3623 return Len == ~0ULL ? 1 : Len;
3624}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003625
Chandler Carruth363ac682019-01-07 05:42:51 +00003626const Value *llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call) {
3627 assert(Call &&
3628 "getArgumentAliasingToReturnedPointer only works on nonnull calls");
3629 if (const Value *RV = Call->getReturnedArgOperand())
Piotr Padlewskid6f73462018-05-23 09:16:44 +00003630 return RV;
3631 // This can be used only as a aliasing property.
Chandler Carruth363ac682019-01-07 05:42:51 +00003632 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call))
3633 return Call->getArgOperand(0);
Piotr Padlewskid6f73462018-05-23 09:16:44 +00003634 return nullptr;
3635}
3636
3637bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
Chandler Carruth363ac682019-01-07 05:42:51 +00003638 const CallBase *Call) {
3639 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
3640 Call->getIntrinsicID() == Intrinsic::strip_invariant_group;
Piotr Padlewskid6f73462018-05-23 09:16:44 +00003641}
3642
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00003643/// \p PN defines a loop-variant pointer to an object. Check if the
Adam Nemete2b885c2015-04-23 20:09:20 +00003644/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003645static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3646 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003647 // Find the loop-defined value.
3648 Loop *L = LI->getLoopFor(PN->getParent());
3649 if (PN->getNumIncomingValues() != 2)
3650 return true;
3651
3652 // Find the value from previous iteration.
3653 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3654 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3655 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3656 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3657 return true;
3658
3659 // If a new pointer is loaded in the loop, the pointer references a different
3660 // object in every iteration. E.g.:
3661 // for (i)
3662 // int *p = a[i];
3663 // ...
3664 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3665 if (!L->isLoopInvariant(Load->getPointerOperand()))
3666 return false;
3667 return true;
3668}
3669
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003670Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3671 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003672 if (!V->getType()->isPointerTy())
3673 return V;
3674 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3675 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3676 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003677 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3678 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003679 V = cast<Operator>(V)->getOperand(0);
3680 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003681 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003682 return V;
3683 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003684 } else if (isa<AllocaInst>(V)) {
3685 // An alloca can't be further simplified.
3686 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003687 } else {
Chandler Carruth363ac682019-01-07 05:42:51 +00003688 if (auto *Call = dyn_cast<CallBase>(V)) {
Piotr Padlewski5b3db452018-07-02 04:49:30 +00003689 // CaptureTracking can know about special capturing properties of some
3690 // intrinsics like launder.invariant.group, that can't be expressed with
3691 // the attributes, but have properties like returning aliasing pointer.
3692 // Because some analysis may assume that nocaptured pointer is not
3693 // returned from some special intrinsic (because function would have to
3694 // be marked with returns attribute), it is crucial to use this function
3695 // because it should be in sync with CaptureTracking. Not using it may
3696 // cause weird miscompilations where 2 aliasing pointers are assumed to
3697 // noalias.
Chandler Carruth363ac682019-01-07 05:42:51 +00003698 if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) {
Piotr Padlewskid6f73462018-05-23 09:16:44 +00003699 V = RP;
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003700 continue;
3701 }
Piotr Padlewskid6f73462018-05-23 09:16:44 +00003702 }
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003703
Dan Gohman05b18f12010-12-15 20:49:55 +00003704 // See if InstructionSimplify knows any relevant tricks.
3705 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003706 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Daniel Berlin4d0fe642017-04-28 19:55:38 +00003707 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003708 V = Simplified;
3709 continue;
3710 }
3711
Dan Gohmana4fcd242010-12-15 20:02:24 +00003712 return V;
3713 }
3714 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3715 }
3716 return V;
3717}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003718
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003719void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003720 const DataLayout &DL, LoopInfo *LI,
3721 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003722 SmallPtrSet<Value *, 4> Visited;
3723 SmallVector<Value *, 4> Worklist;
3724 Worklist.push_back(V);
3725 do {
3726 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003727 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003728
David Blaikie70573dc2014-11-19 07:49:26 +00003729 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003730 continue;
3731
3732 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3733 Worklist.push_back(SI->getTrueValue());
3734 Worklist.push_back(SI->getFalseValue());
3735 continue;
3736 }
3737
3738 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003739 // If this PHI changes the underlying object in every iteration of the
3740 // loop, don't look through it. Consider:
3741 // int **A;
3742 // for (i) {
3743 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3744 // Curr = A[i];
3745 // *Prev, *Curr;
3746 //
3747 // Prev is tracking Curr one iteration behind so they refer to different
3748 // underlying objects.
3749 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3750 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003751 for (Value *IncValue : PN->incoming_values())
3752 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003753 continue;
3754 }
3755
3756 Objects.push_back(P);
3757 } while (!Worklist.empty());
3758}
3759
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003760/// This is the function that does the work of looking through basic
3761/// ptrtoint+arithmetic+inttoptr sequences.
3762static const Value *getUnderlyingObjectFromInt(const Value *V) {
3763 do {
3764 if (const Operator *U = dyn_cast<Operator>(V)) {
3765 // If we find a ptrtoint, we can transfer control back to the
3766 // regular getUnderlyingObjectFromInt.
3767 if (U->getOpcode() == Instruction::PtrToInt)
3768 return U->getOperand(0);
3769 // If we find an add of a constant, a multiplied value, or a phi, it's
3770 // likely that the other operand will lead us to the base
3771 // object. We don't have to worry about the case where the
3772 // object address is somehow being computed by the multiply,
3773 // because our callers only care when the result is an
3774 // identifiable object.
3775 if (U->getOpcode() != Instruction::Add ||
3776 (!isa<ConstantInt>(U->getOperand(1)) &&
3777 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3778 !isa<PHINode>(U->getOperand(1))))
3779 return V;
3780 V = U->getOperand(0);
3781 } else {
3782 return V;
3783 }
3784 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3785 } while (true);
3786}
3787
3788/// This is a wrapper around GetUnderlyingObjects and adds support for basic
3789/// ptrtoint+arithmetic+inttoptr sequences.
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003790/// It returns false if unidentified object is found in GetUnderlyingObjects.
3791bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003792 SmallVectorImpl<Value *> &Objects,
3793 const DataLayout &DL) {
3794 SmallPtrSet<const Value *, 16> Visited;
3795 SmallVector<const Value *, 4> Working(1, V);
3796 do {
3797 V = Working.pop_back_val();
3798
3799 SmallVector<Value *, 4> Objs;
3800 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3801
3802 for (Value *V : Objs) {
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003803 if (!Visited.insert(V).second)
3804 continue;
3805 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3806 const Value *O =
3807 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3808 if (O->getType()->isPointerTy()) {
3809 Working.push_back(O);
3810 continue;
3811 }
3812 }
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003813 // If GetUnderlyingObjects fails to find an identifiable object,
3814 // getUnderlyingObjectsForCodeGen also fails for safety.
3815 if (!isIdentifiedObject(V)) {
3816 Objects.clear();
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003817 return false;
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003818 }
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003819 Objects.push_back(const_cast<Value *>(V));
3820 }
3821 } while (!Working.empty());
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003822 return true;
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003823}
3824
Sanjay Patelaee84212014-11-04 16:27:42 +00003825/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003826bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003827 for (const User *U : V->users()) {
3828 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003829 if (!II) return false;
3830
Vedant Kumarb264d692018-12-21 21:49:40 +00003831 if (!II->isLifetimeStartOrEnd())
Nick Lewycky3e334a42011-06-27 04:20:45 +00003832 return false;
3833 }
3834 return true;
3835}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003836
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003837bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3838 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003839 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003840 const Operator *Inst = dyn_cast<Operator>(V);
3841 if (!Inst)
3842 return false;
3843
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003844 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3845 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3846 if (C->canTrap())
3847 return false;
3848
3849 switch (Inst->getOpcode()) {
3850 default:
3851 return true;
3852 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003853 case Instruction::URem: {
3854 // x / y is undefined if y == 0.
3855 const APInt *V;
3856 if (match(Inst->getOperand(1), m_APInt(V)))
3857 return *V != 0;
3858 return false;
3859 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003860 case Instruction::SDiv:
3861 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003862 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003863 const APInt *Numerator, *Denominator;
3864 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3865 return false;
3866 // We cannot hoist this division if the denominator is 0.
3867 if (*Denominator == 0)
3868 return false;
3869 // It's safe to hoist if the denominator is not 0 or -1.
3870 if (*Denominator != -1)
3871 return true;
3872 // At this point we know that the denominator is -1. It is safe to hoist as
3873 // long we know that the numerator is not INT_MIN.
3874 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3875 return !Numerator->isMinSignedValue();
3876 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003877 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003878 }
3879 case Instruction::Load: {
3880 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003881 if (!LI->isUnordered() ||
3882 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003883 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003884 // Speculative load may load data from dirty regions.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00003885 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3886 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003887 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003888 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003889 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3890 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003891 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003892 case Instruction::Call: {
Matt Arsenaultcf5e7fe2017-04-28 21:13:09 +00003893 auto *CI = cast<const CallInst>(Inst);
3894 const Function *Callee = CI->getCalledFunction();
David Majnemer0a92f862015-08-28 21:13:39 +00003895
Matt Arsenault6a288c12017-05-03 02:26:10 +00003896 // The called function could have undefined behavior or side-effects, even
3897 // if marked readnone nounwind.
3898 return Callee && Callee->isSpeculatable();
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003899 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003900 case Instruction::VAArg:
3901 case Instruction::Alloca:
3902 case Instruction::Invoke:
3903 case Instruction::PHI:
3904 case Instruction::Store:
3905 case Instruction::Ret:
3906 case Instruction::Br:
3907 case Instruction::IndirectBr:
3908 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003909 case Instruction::Unreachable:
3910 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003911 case Instruction::AtomicRMW:
3912 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003913 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003914 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003915 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003916 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003917 case Instruction::CatchRet:
3918 case Instruction::CleanupPad:
3919 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003920 return false; // Misc instructions which have effects
3921 }
3922}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003923
Quentin Colombet6443cce2015-08-06 18:44:34 +00003924bool llvm::mayBeMemoryDependent(const Instruction &I) {
3925 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3926}
3927
Florian Hahn19f9e322018-08-17 14:39:04 +00003928OverflowResult llvm::computeOverflowForUnsignedMul(
3929 const Value *LHS, const Value *RHS, const DataLayout &DL,
3930 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
3931 bool UseInstrInfo) {
David Majnemer491331a2015-01-02 07:29:43 +00003932 // Multiplying n * m significant bits yields a result of n + m significant
3933 // bits. If the total number of significant bits does not exceed the
3934 // result bit width (minus 1), there is no overflow.
3935 // This means if we have enough leading zero bits in the operands
3936 // we can guarantee that the result does not overflow.
3937 // Ref: "Hacker's Delight" by Henry Warren
3938 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00003939 KnownBits LHSKnown(BitWidth);
3940 KnownBits RHSKnown(BitWidth);
Florian Hahn19f9e322018-08-17 14:39:04 +00003941 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3942 UseInstrInfo);
3943 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3944 UseInstrInfo);
David Majnemer491331a2015-01-02 07:29:43 +00003945 // Note that underestimating the number of zero bits gives a more
3946 // conservative answer.
Craig Topper8df66c62017-05-12 17:20:30 +00003947 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3948 RHSKnown.countMinLeadingZeros();
David Majnemer491331a2015-01-02 07:29:43 +00003949 // First handle the easy case: if we have enough zero bits there's
3950 // definitely no overflow.
3951 if (ZeroBits >= BitWidth)
3952 return OverflowResult::NeverOverflows;
3953
3954 // Get the largest possible values for each operand.
Craig Topperb45eabc2017-04-26 16:39:58 +00003955 APInt LHSMax = ~LHSKnown.Zero;
3956 APInt RHSMax = ~RHSKnown.Zero;
David Majnemer491331a2015-01-02 07:29:43 +00003957
3958 // We know the multiply operation doesn't overflow if the maximum values for
3959 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003960 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003961 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003962 if (!MaxOverflow)
3963 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003964
David Majnemerc8a576b2015-01-02 07:29:47 +00003965 // We know it always overflows if multiplying the smallest possible values for
3966 // the operands also results in overflow.
3967 bool MinOverflow;
Craig Topperb45eabc2017-04-26 16:39:58 +00003968 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003969 if (MinOverflow)
3970 return OverflowResult::AlwaysOverflows;
3971
3972 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003973}
David Majnemer5310c1e2015-01-07 00:39:50 +00003974
Florian Hahn19f9e322018-08-17 14:39:04 +00003975OverflowResult
3976llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
3977 const DataLayout &DL, AssumptionCache *AC,
3978 const Instruction *CxtI,
3979 const DominatorTree *DT, bool UseInstrInfo) {
Omer Paparo Bivasfbb83de2018-05-10 19:46:19 +00003980 // Multiplying n * m significant bits yields a result of n + m significant
3981 // bits. If the total number of significant bits does not exceed the
3982 // result bit width (minus 1), there is no overflow.
3983 // This means if we have enough leading sign bits in the operands
3984 // we can guarantee that the result does not overflow.
3985 // Ref: "Hacker's Delight" by Henry Warren
3986 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3987
3988 // Note that underestimating the number of sign bits gives a more
3989 // conservative answer.
3990 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
3991 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
3992
3993 // First handle the easy case: if we have enough sign bits there's
3994 // definitely no overflow.
3995 if (SignBits > BitWidth + 1)
3996 return OverflowResult::NeverOverflows;
3997
3998 // There are two ambiguous cases where there can be no overflow:
3999 // SignBits == BitWidth + 1 and
4000 // SignBits == BitWidth
4001 // The second case is difficult to check, therefore we only handle the
4002 // first case.
4003 if (SignBits == BitWidth + 1) {
4004 // It overflows only when both arguments are negative and the true
4005 // product is exactly the minimum negative number.
4006 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4007 // For simplicity we just check if at least one side is not negative.
Florian Hahn19f9e322018-08-17 14:39:04 +00004008 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4009 nullptr, UseInstrInfo);
4010 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4011 nullptr, UseInstrInfo);
Omer Paparo Bivasfbb83de2018-05-10 19:46:19 +00004012 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4013 return OverflowResult::NeverOverflows;
4014 }
4015 return OverflowResult::MayOverflow;
4016}
4017
Florian Hahn19f9e322018-08-17 14:39:04 +00004018OverflowResult llvm::computeOverflowForUnsignedAdd(
4019 const Value *LHS, const Value *RHS, const DataLayout &DL,
4020 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4021 bool UseInstrInfo) {
4022 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4023 nullptr, UseInstrInfo);
Craig Topper6e11a052017-05-08 16:22:48 +00004024 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
Florian Hahn19f9e322018-08-17 14:39:04 +00004025 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4026 nullptr, UseInstrInfo);
David Majnemer5310c1e2015-01-07 00:39:50 +00004027
Craig Topper6e11a052017-05-08 16:22:48 +00004028 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00004029 // The sign bit is set in both cases: this MUST overflow.
David Majnemer5310c1e2015-01-07 00:39:50 +00004030 return OverflowResult::AlwaysOverflows;
4031 }
4032
Craig Topper6e11a052017-05-08 16:22:48 +00004033 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00004034 // The sign bit is clear in both cases: this CANNOT overflow.
David Majnemer5310c1e2015-01-07 00:39:50 +00004035 return OverflowResult::NeverOverflows;
4036 }
4037 }
4038
4039 return OverflowResult::MayOverflow;
4040}
James Molloy71b91c22015-05-11 14:42:20 +00004041
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00004042/// Return true if we can prove that adding the two values of the
Craig Topperbb973722017-05-15 02:44:08 +00004043/// knownbits will not overflow.
4044/// Otherwise return false.
4045static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
4046 const KnownBits &RHSKnown) {
4047 // Addition of two 2's complement numbers having opposite signs will never
4048 // overflow.
4049 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
4050 (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
4051 return true;
4052
4053 // If either of the values is known to be non-negative, adding them can only
4054 // overflow if the second is also non-negative, so we can assume that.
Fangrui Songf78650a2018-07-30 19:41:25 +00004055 // Two non-negative numbers will only overflow if there is a carry to the
Craig Topperbb973722017-05-15 02:44:08 +00004056 // sign bit, so we can check if even when the values are as big as possible
4057 // there is no overflow to the sign bit.
4058 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
4059 APInt MaxLHS = ~LHSKnown.Zero;
4060 MaxLHS.clearSignBit();
4061 APInt MaxRHS = ~RHSKnown.Zero;
4062 MaxRHS.clearSignBit();
4063 APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
4064 return Result.isSignBitClear();
4065 }
4066
4067 // If either of the values is known to be negative, adding them can only
4068 // overflow if the second is also negative, so we can assume that.
4069 // Two negative number will only overflow if there is no carry to the sign
4070 // bit, so we can check if even when the values are as small as possible
4071 // there is overflow to the sign bit.
4072 if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
4073 APInt MinLHS = LHSKnown.One;
4074 MinLHS.clearSignBit();
4075 APInt MinRHS = RHSKnown.One;
4076 MinRHS.clearSignBit();
4077 APInt Result = std::move(MinLHS) + std::move(MinRHS);
4078 return Result.isSignBitSet();
4079 }
4080
4081 // If we reached here it means that we know nothing about the sign bits.
Fangrui Songf78650a2018-07-30 19:41:25 +00004082 // In this case we can't know if there will be an overflow, since by
Craig Topperbb973722017-05-15 02:44:08 +00004083 // changing the sign bits any two values can be made to overflow.
4084 return false;
4085}
4086
Pete Cooper35b00d52016-08-13 01:05:32 +00004087static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4088 const Value *RHS,
4089 const AddOperator *Add,
4090 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004091 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00004092 const Instruction *CxtI,
4093 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00004094 if (Add && Add->hasNoSignedWrap()) {
4095 return OverflowResult::NeverOverflows;
4096 }
4097
Craig Topperbb973722017-05-15 02:44:08 +00004098 // If LHS and RHS each have at least two sign bits, the addition will look
4099 // like
4100 //
4101 // XX..... +
4102 // YY.....
4103 //
4104 // If the carry into the most significant position is 0, X and Y can't both
4105 // be 1 and therefore the carry out of the addition is also 0.
4106 //
4107 // If the carry into the most significant position is 1, X and Y can't both
4108 // be 0 and therefore the carry out of the addition is also 1.
4109 //
4110 // Since the carry into the most significant position is always equal to
4111 // the carry out of the addition, there is no signed overflow.
4112 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4113 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4114 return OverflowResult::NeverOverflows;
4115
Craig Topper6e11a052017-05-08 16:22:48 +00004116 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
4117 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00004118
Craig Topperbb973722017-05-15 02:44:08 +00004119 if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
Jingyue Wu10fcea52015-08-20 18:27:04 +00004120 return OverflowResult::NeverOverflows;
Jingyue Wu10fcea52015-08-20 18:27:04 +00004121
4122 // The remaining code needs Add to be available. Early returns if not so.
4123 if (!Add)
4124 return OverflowResult::MayOverflow;
4125
4126 // If the sign of Add is the same as at least one of the operands, this add
4127 // CANNOT overflow. This is particularly useful when the sum is
4128 // @llvm.assume'ed non-negative rather than proved so from analyzing its
4129 // operands.
4130 bool LHSOrRHSKnownNonNegative =
Craig Topper6e11a052017-05-08 16:22:48 +00004131 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
Fangrui Songf78650a2018-07-30 19:41:25 +00004132 bool LHSOrRHSKnownNegative =
Craig Topperbb973722017-05-15 02:44:08 +00004133 (LHSKnown.isNegative() || RHSKnown.isNegative());
Jingyue Wu10fcea52015-08-20 18:27:04 +00004134 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
Craig Topper6e11a052017-05-08 16:22:48 +00004135 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
4136 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4137 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00004138 return OverflowResult::NeverOverflows;
4139 }
4140 }
4141
4142 return OverflowResult::MayOverflow;
4143}
4144
Omer Paparo Bivasfbb83de2018-05-10 19:46:19 +00004145OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4146 const Value *RHS,
4147 const DataLayout &DL,
4148 AssumptionCache *AC,
4149 const Instruction *CxtI,
4150 const DominatorTree *DT) {
Omer Paparo Bivasfbb83de2018-05-10 19:46:19 +00004151 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
Nikita Popovcf596a82018-11-28 16:37:04 +00004152 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
4153 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
4154
4155 // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
4156 if (LHSKnown.isNegative() && RHSKnown.isNonNegative())
4157 return OverflowResult::NeverOverflows;
4158
4159 // If the LHS is non-negative and the RHS negative, we always wrap.
4160 if (LHSKnown.isNonNegative() && RHSKnown.isNegative())
4161 return OverflowResult::AlwaysOverflows;
4162 }
Omer Paparo Bivasfbb83de2018-05-10 19:46:19 +00004163
4164 return OverflowResult::MayOverflow;
4165}
4166
4167OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4168 const Value *RHS,
4169 const DataLayout &DL,
4170 AssumptionCache *AC,
4171 const Instruction *CxtI,
4172 const DominatorTree *DT) {
4173 // If LHS and RHS each have at least two sign bits, the subtraction
4174 // cannot overflow.
4175 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4176 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4177 return OverflowResult::NeverOverflows;
4178
4179 KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT);
4180
4181 KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT);
4182
4183 // Subtraction of two 2's complement numbers having identical signs will
4184 // never overflow.
4185 if ((LHSKnown.isNegative() && RHSKnown.isNegative()) ||
4186 (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()))
4187 return OverflowResult::NeverOverflows;
4188
4189 // TODO: implement logic similar to checkRippleForAdd
4190 return OverflowResult::MayOverflow;
4191}
4192
Pete Cooper35b00d52016-08-13 01:05:32 +00004193bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
4194 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004195#ifndef NDEBUG
4196 auto IID = II->getIntrinsicID();
4197 assert((IID == Intrinsic::sadd_with_overflow ||
4198 IID == Intrinsic::uadd_with_overflow ||
4199 IID == Intrinsic::ssub_with_overflow ||
4200 IID == Intrinsic::usub_with_overflow ||
4201 IID == Intrinsic::smul_with_overflow ||
4202 IID == Intrinsic::umul_with_overflow) &&
4203 "Not an overflow intrinsic!");
4204#endif
4205
Pete Cooper35b00d52016-08-13 01:05:32 +00004206 SmallVector<const BranchInst *, 2> GuardingBranches;
4207 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004208
Pete Cooper35b00d52016-08-13 01:05:32 +00004209 for (const User *U : II->users()) {
4210 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004211 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4212
4213 if (EVI->getIndices()[0] == 0)
4214 Results.push_back(EVI);
4215 else {
4216 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4217
Pete Cooper35b00d52016-08-13 01:05:32 +00004218 for (const auto *U : EVI->users())
4219 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004220 assert(B->isConditional() && "How else is it using an i1?");
4221 GuardingBranches.push_back(B);
4222 }
4223 }
4224 } else {
4225 // We are using the aggregate directly in a way we don't want to analyze
4226 // here (storing it to a global, say).
4227 return false;
4228 }
4229 }
4230
Pete Cooper35b00d52016-08-13 01:05:32 +00004231 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004232 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4233 if (!NoWrapEdge.isSingleEdge())
4234 return false;
4235
4236 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00004237 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004238 // If the extractvalue itself is not executed on overflow, the we don't
4239 // need to check each use separately, since domination is transitive.
4240 if (DT.dominates(NoWrapEdge, Result->getParent()))
4241 continue;
4242
4243 for (auto &RU : Result->uses())
4244 if (!DT.dominates(NoWrapEdge, RU))
4245 return false;
4246 }
4247
4248 return true;
4249 };
4250
Eugene Zelenko75075ef2017-09-01 21:37:29 +00004251 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004252}
4253
4254
Pete Cooper35b00d52016-08-13 01:05:32 +00004255OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00004256 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004257 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00004258 const Instruction *CxtI,
4259 const DominatorTree *DT) {
4260 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004261 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00004262}
4263
Pete Cooper35b00d52016-08-13 01:05:32 +00004264OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4265 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00004266 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004267 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00004268 const Instruction *CxtI,
4269 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004270 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00004271}
4272
Jingyue Wu42f1d672015-07-28 18:22:40 +00004273bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00004274 // A memory operation returns normally if it isn't volatile. A volatile
4275 // operation is allowed to trap.
4276 //
4277 // An atomic operation isn't guaranteed to return in a reasonable amount of
4278 // time because it's possible for another thread to interfere with it for an
4279 // arbitrary length of time, but programs aren't allowed to rely on that.
4280 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
4281 return !LI->isVolatile();
4282 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
4283 return !SI->isVolatile();
4284 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
4285 return !CXI->isVolatile();
4286 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
4287 return !RMWI->isVolatile();
4288 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
4289 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00004290
Eli Friedmanf1da33e2016-06-11 21:48:25 +00004291 // If there is no successor, then execution can't transfer to it.
4292 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4293 return !CRI->unwindsToCaller();
4294 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4295 return !CatchSwitch->unwindsToCaller();
4296 if (isa<ResumeInst>(I))
4297 return false;
4298 if (isa<ReturnInst>(I))
4299 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00004300 if (isa<UnreachableInst>(I))
4301 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00004302
Eli Friedmanf1da33e2016-06-11 21:48:25 +00004303 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00004304 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00004305 // Call sites that throw have implicit non-local control flow.
4306 if (!CS.doesNotThrow())
4307 return false;
4308
4309 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4310 // etc. and thus not return. However, LLVM already assumes that
4311 //
4312 // - Thread exiting actions are modeled as writes to memory invisible to
4313 // the program.
4314 //
4315 // - Loops that don't have side effects (side effects are volatile/atomic
4316 // stores and IO) always terminate (see http://llvm.org/PR965).
4317 // Furthermore IO itself is also modeled as writes to memory invisible to
4318 // the program.
4319 //
4320 // We rely on those assumptions here, and use the memory effects of the call
4321 // target as a proxy for checking that it always returns.
4322
4323 // FIXME: This isn't aggressive enough; a call which only writes to a global
4324 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00004325 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
Dan Gohman2c74fe92017-11-08 21:59:51 +00004326 match(I, m_Intrinsic<Intrinsic::assume>()) ||
4327 match(I, m_Intrinsic<Intrinsic::sideeffect>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00004328 }
4329
4330 // Other instructions return normally.
4331 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004332}
4333
Philip Reamesfbffd122018-03-08 21:25:30 +00004334bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4335 // TODO: This is slightly consdervative for invoke instruction since exiting
4336 // via an exception *is* normal control for them.
4337 for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4338 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4339 return false;
4340 return true;
4341}
4342
Jingyue Wu42f1d672015-07-28 18:22:40 +00004343bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4344 const Loop *L) {
4345 // The loop header is guaranteed to be executed for every iteration.
4346 //
4347 // FIXME: Relax this constraint to cover all basic blocks that are
4348 // guaranteed to be executed at every iteration.
4349 if (I->getParent() != L->getHeader()) return false;
4350
4351 for (const Instruction &LI : *L->getHeader()) {
4352 if (&LI == I) return true;
4353 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4354 }
4355 llvm_unreachable("Instruction not contained in its own parent basic block.");
4356}
4357
4358bool llvm::propagatesFullPoison(const Instruction *I) {
4359 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004360 case Instruction::Add:
4361 case Instruction::Sub:
4362 case Instruction::Xor:
4363 case Instruction::Trunc:
4364 case Instruction::BitCast:
4365 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00004366 case Instruction::Mul:
4367 case Instruction::Shl:
4368 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004369 // These operations all propagate poison unconditionally. Note that poison
4370 // is not any particular value, so xor or subtraction of poison with
4371 // itself still yields poison, not zero.
4372 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004373
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004374 case Instruction::AShr:
4375 case Instruction::SExt:
4376 // For these operations, one bit of the input is replicated across
4377 // multiple output bits. A replicated poison bit is still poison.
4378 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004379
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004380 case Instruction::ICmp:
4381 // Comparing poison with any value yields poison. This is why, for
4382 // instance, x s< (x +nsw 1) can be folded to true.
4383 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00004384
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004385 default:
4386 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004387 }
4388}
4389
4390const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
4391 switch (I->getOpcode()) {
4392 case Instruction::Store:
4393 return cast<StoreInst>(I)->getPointerOperand();
4394
4395 case Instruction::Load:
4396 return cast<LoadInst>(I)->getPointerOperand();
4397
4398 case Instruction::AtomicCmpXchg:
4399 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4400
4401 case Instruction::AtomicRMW:
4402 return cast<AtomicRMWInst>(I)->getPointerOperand();
4403
4404 case Instruction::UDiv:
4405 case Instruction::SDiv:
4406 case Instruction::URem:
4407 case Instruction::SRem:
4408 return I->getOperand(1);
4409
4410 default:
4411 return nullptr;
4412 }
4413}
4414
Sanjoy Das08989c72017-04-30 19:41:19 +00004415bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004416 // We currently only look for uses of poison values within the same basic
4417 // block, as that makes it easier to guarantee that the uses will be
4418 // executed given that PoisonI is executed.
4419 //
4420 // FIXME: Expand this to consider uses beyond the same basic block. To do
4421 // this, look out for the distinction between post-dominance and strong
4422 // post-dominance.
4423 const BasicBlock *BB = PoisonI->getParent();
4424
4425 // Set of instructions that we have proved will yield poison if PoisonI
4426 // does.
4427 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004428 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004429 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004430 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004431
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004432 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00004433
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004434 unsigned Iter = 0;
4435 while (Iter++ < MaxDepth) {
4436 for (auto &I : make_range(Begin, End)) {
4437 if (&I != PoisonI) {
4438 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
4439 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
4440 return true;
4441 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4442 return false;
4443 }
4444
4445 // Mark poison that propagates from I through uses of I.
4446 if (YieldsPoison.count(&I)) {
4447 for (const User *User : I.users()) {
4448 const Instruction *UserI = cast<Instruction>(User);
4449 if (propagatesFullPoison(UserI))
4450 YieldsPoison.insert(User);
4451 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004452 }
4453 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004454
4455 if (auto *NextBB = BB->getSingleSuccessor()) {
4456 if (Visited.insert(NextBB).second) {
4457 BB = NextBB;
4458 Begin = BB->getFirstNonPHI()->getIterator();
4459 End = BB->end();
4460 continue;
4461 }
4462 }
4463
4464 break;
Eugene Zelenko75075ef2017-09-01 21:37:29 +00004465 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004466 return false;
4467}
4468
Pete Cooper35b00d52016-08-13 01:05:32 +00004469static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00004470 if (FMF.noNaNs())
4471 return true;
4472
4473 if (auto *C = dyn_cast<ConstantFP>(V))
4474 return !C->isNaN();
Thomas Livelyd47b5c72018-09-28 21:36:43 +00004475
4476 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4477 if (!C->getElementType()->isFloatingPointTy())
4478 return false;
4479 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4480 if (C->getElementAsAPFloat(I).isNaN())
4481 return false;
4482 }
4483 return true;
4484 }
4485
James Molloy134bec22015-08-11 09:12:57 +00004486 return false;
4487}
4488
Pete Cooper35b00d52016-08-13 01:05:32 +00004489static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00004490 if (auto *C = dyn_cast<ConstantFP>(V))
4491 return !C->isZero();
Thomas Livelyd47b5c72018-09-28 21:36:43 +00004492
4493 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4494 if (!C->getElementType()->isFloatingPointTy())
4495 return false;
4496 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4497 if (C->getElementAsAPFloat(I).isZero())
4498 return false;
4499 }
4500 return true;
4501 }
4502
James Molloy134bec22015-08-11 09:12:57 +00004503 return false;
4504}
4505
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004506/// Match clamp pattern for float types without care about NaNs or signed zeros.
4507/// Given non-min/max outer cmp/select from the clamp pattern this
4508/// function recognizes if it can be substitued by a "canonical" min/max
4509/// pattern.
4510static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4511 Value *CmpLHS, Value *CmpRHS,
4512 Value *TrueVal, Value *FalseVal,
4513 Value *&LHS, Value *&RHS) {
4514 // Try to match
4515 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4516 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4517 // and return description of the outer Max/Min.
4518
4519 // First, check if select has inverse order:
4520 if (CmpRHS == FalseVal) {
4521 std::swap(TrueVal, FalseVal);
4522 Pred = CmpInst::getInversePredicate(Pred);
4523 }
4524
4525 // Assume success now. If there's no match, callers should not use these anyway.
4526 LHS = TrueVal;
4527 RHS = FalseVal;
4528
4529 const APFloat *FC1;
4530 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4531 return {SPF_UNKNOWN, SPNB_NA, false};
4532
4533 const APFloat *FC2;
4534 switch (Pred) {
4535 case CmpInst::FCMP_OLT:
4536 case CmpInst::FCMP_OLE:
4537 case CmpInst::FCMP_ULT:
4538 case CmpInst::FCMP_ULE:
4539 if (match(FalseVal,
4540 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4541 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4542 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4543 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4544 break;
4545 case CmpInst::FCMP_OGT:
4546 case CmpInst::FCMP_OGE:
4547 case CmpInst::FCMP_UGT:
4548 case CmpInst::FCMP_UGE:
4549 if (match(FalseVal,
4550 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4551 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4552 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4553 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4554 break;
4555 default:
4556 break;
4557 }
4558
4559 return {SPF_UNKNOWN, SPNB_NA, false};
4560}
4561
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004562/// Recognize variations of:
4563/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4564static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4565 Value *CmpLHS, Value *CmpRHS,
4566 Value *TrueVal, Value *FalseVal) {
4567 // Swap the select operands and predicate to match the patterns below.
4568 if (CmpRHS != TrueVal) {
4569 Pred = ICmpInst::getSwappedPredicate(Pred);
4570 std::swap(TrueVal, FalseVal);
4571 }
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004572 const APInt *C1;
4573 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4574 const APInt *C2;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004575 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4576 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004577 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004578 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004579
4580 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4581 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004582 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004583 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004584
4585 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4586 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004587 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004588 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004589
4590 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4591 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004592 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004593 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004594 }
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004595 return {SPF_UNKNOWN, SPNB_NA, false};
4596}
4597
Sanjay Patel78114302018-01-02 20:56:45 +00004598/// Recognize variations of:
4599/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4600static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4601 Value *CmpLHS, Value *CmpRHS,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004602 Value *TVal, Value *FVal,
4603 unsigned Depth) {
Sanjay Patel78114302018-01-02 20:56:45 +00004604 // TODO: Allow FP min/max with nnan/nsz.
4605 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
4606
4607 Value *A, *B;
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004608 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
Sanjay Patel78114302018-01-02 20:56:45 +00004609 if (!SelectPatternResult::isMinOrMax(L.Flavor))
4610 return {SPF_UNKNOWN, SPNB_NA, false};
4611
4612 Value *C, *D;
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004613 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
Sanjay Patel78114302018-01-02 20:56:45 +00004614 if (L.Flavor != R.Flavor)
4615 return {SPF_UNKNOWN, SPNB_NA, false};
4616
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004617 // We have something like: x Pred y ? min(a, b) : min(c, d).
4618 // Try to match the compare to the min/max operations of the select operands.
4619 // First, make sure we have the right compare predicate.
Sanjay Patel78114302018-01-02 20:56:45 +00004620 switch (L.Flavor) {
4621 case SPF_SMIN:
4622 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4623 Pred = ICmpInst::getSwappedPredicate(Pred);
4624 std::swap(CmpLHS, CmpRHS);
4625 }
4626 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4627 break;
4628 return {SPF_UNKNOWN, SPNB_NA, false};
4629 case SPF_SMAX:
4630 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4631 Pred = ICmpInst::getSwappedPredicate(Pred);
4632 std::swap(CmpLHS, CmpRHS);
4633 }
4634 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4635 break;
4636 return {SPF_UNKNOWN, SPNB_NA, false};
4637 case SPF_UMIN:
4638 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4639 Pred = ICmpInst::getSwappedPredicate(Pred);
4640 std::swap(CmpLHS, CmpRHS);
4641 }
4642 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4643 break;
4644 return {SPF_UNKNOWN, SPNB_NA, false};
4645 case SPF_UMAX:
4646 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4647 Pred = ICmpInst::getSwappedPredicate(Pred);
4648 std::swap(CmpLHS, CmpRHS);
4649 }
4650 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4651 break;
4652 return {SPF_UNKNOWN, SPNB_NA, false};
4653 default:
Sanjay Patel7dfe96a2018-01-08 18:31:13 +00004654 return {SPF_UNKNOWN, SPNB_NA, false};
Sanjay Patel78114302018-01-02 20:56:45 +00004655 }
4656
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004657 // If there is a common operand in the already matched min/max and the other
4658 // min/max operands match the compare operands (either directly or inverted),
4659 // then this is min/max of the same flavor.
4660
Sanjay Patel78114302018-01-02 20:56:45 +00004661 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004662 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4663 if (D == B) {
4664 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4665 match(A, m_Not(m_Specific(CmpRHS)))))
4666 return {L.Flavor, SPNB_NA, false};
4667 }
Sanjay Patel78114302018-01-02 20:56:45 +00004668 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004669 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4670 if (C == B) {
4671 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4672 match(A, m_Not(m_Specific(CmpRHS)))))
4673 return {L.Flavor, SPNB_NA, false};
4674 }
Sanjay Patel78114302018-01-02 20:56:45 +00004675 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004676 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4677 if (D == A) {
4678 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4679 match(B, m_Not(m_Specific(CmpRHS)))))
4680 return {L.Flavor, SPNB_NA, false};
4681 }
Sanjay Patel78114302018-01-02 20:56:45 +00004682 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004683 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4684 if (C == A) {
4685 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4686 match(B, m_Not(m_Specific(CmpRHS)))))
4687 return {L.Flavor, SPNB_NA, false};
4688 }
Sanjay Patel78114302018-01-02 20:56:45 +00004689
4690 return {SPF_UNKNOWN, SPNB_NA, false};
4691}
4692
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004693/// Match non-obvious integer minimum and maximum sequences.
4694static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4695 Value *CmpLHS, Value *CmpRHS,
4696 Value *TrueVal, Value *FalseVal,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004697 Value *&LHS, Value *&RHS,
4698 unsigned Depth) {
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004699 // Assume success. If there's no match, callers should not use these anyway.
4700 LHS = TrueVal;
4701 RHS = FalseVal;
4702
4703 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4704 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4705 return SPR;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004706
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004707 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
Sanjay Patel78114302018-01-02 20:56:45 +00004708 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4709 return SPR;
Fangrui Songf78650a2018-07-30 19:41:25 +00004710
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004711 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
Sanjay Patel819f0962016-11-13 19:30:19 +00004712 return {SPF_UNKNOWN, SPNB_NA, false};
4713
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004714 // Z = X -nsw Y
4715 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4716 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4717 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004718 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004719 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004720
4721 // Z = X -nsw Y
4722 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4723 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4724 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004725 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004726 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004727
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004728 const APInt *C1;
Sanjay Patel819f0962016-11-13 19:30:19 +00004729 if (!match(CmpRHS, m_APInt(C1)))
4730 return {SPF_UNKNOWN, SPNB_NA, false};
4731
4732 // An unsigned min/max can be written with a signed compare.
4733 const APInt *C2;
4734 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4735 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4736 // Is the sign bit set?
4737 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4738 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Craig Topper81d772c2017-11-08 19:38:45 +00004739 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4740 C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004741 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004742
4743 // Is the sign bit clear?
4744 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4745 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004746 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4747 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004748 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004749 }
4750
4751 // Look through 'not' ops to find disguised signed min/max.
4752 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4753 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4754 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004755 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004756 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004757
4758 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4759 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4760 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004761 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004762 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004763
4764 return {SPF_UNKNOWN, SPNB_NA, false};
4765}
4766
Chen Zheng69bb0642018-07-21 12:27:54 +00004767bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
Chen Zhengfdf13ef2018-07-12 03:06:04 +00004768 assert(X && Y && "Invalid operand");
4769
Chen Zheng69bb0642018-07-21 12:27:54 +00004770 // X = sub (0, Y) || X = sub nsw (0, Y)
4771 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
4772 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
Chen Zhengfdf13ef2018-07-12 03:06:04 +00004773 return true;
4774
Chen Zheng69bb0642018-07-21 12:27:54 +00004775 // Y = sub (0, X) || Y = sub nsw (0, X)
4776 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
4777 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
Chen Zhengfdf13ef2018-07-12 03:06:04 +00004778 return true;
4779
Chen Zheng69bb0642018-07-21 12:27:54 +00004780 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
Chen Zhengfdf13ef2018-07-12 03:06:04 +00004781 Value *A, *B;
Chen Zheng69bb0642018-07-21 12:27:54 +00004782 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
4783 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
4784 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
4785 match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
Chen Zhengfdf13ef2018-07-12 03:06:04 +00004786}
4787
James Molloy134bec22015-08-11 09:12:57 +00004788static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4789 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004790 Value *CmpLHS, Value *CmpRHS,
4791 Value *TrueVal, Value *FalseVal,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004792 Value *&LHS, Value *&RHS,
4793 unsigned Depth) {
Sanjay Patele7c94ef2018-11-04 14:28:48 +00004794 if (CmpInst::isFPPredicate(Pred)) {
4795 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
4796 // 0.0 operand, set the compare's 0.0 operands to that same value for the
4797 // purpose of identifying min/max. Disregard vector constants with undefined
4798 // elements because those can not be back-propagated for analysis.
4799 Value *OutputZeroVal = nullptr;
4800 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
4801 !cast<Constant>(TrueVal)->containsUndefElement())
4802 OutputZeroVal = TrueVal;
4803 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
4804 !cast<Constant>(FalseVal)->containsUndefElement())
4805 OutputZeroVal = FalseVal;
4806
4807 if (OutputZeroVal) {
4808 if (match(CmpLHS, m_AnyZeroFP()))
4809 CmpLHS = OutputZeroVal;
4810 if (match(CmpRHS, m_AnyZeroFP()))
4811 CmpRHS = OutputZeroVal;
4812 }
4813 }
4814
James Molloy71b91c22015-05-11 14:42:20 +00004815 LHS = CmpLHS;
4816 RHS = CmpRHS;
4817
Sanjay Patel9a399792017-12-26 15:09:19 +00004818 // Signed zero may return inconsistent results between implementations.
4819 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4820 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4821 // Therefore, we behave conservatively and only proceed if at least one of the
4822 // operands is known to not be zero or if we don't care about signed zero.
James Molloy134bec22015-08-11 09:12:57 +00004823 switch (Pred) {
4824 default: break;
Sanjay Patel9a399792017-12-26 15:09:19 +00004825 // FIXME: Include OGT/OLT/UGT/ULT.
James Molloy134bec22015-08-11 09:12:57 +00004826 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4827 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4828 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4829 !isKnownNonZero(CmpRHS))
4830 return {SPF_UNKNOWN, SPNB_NA, false};
4831 }
4832
4833 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4834 bool Ordered = false;
4835
4836 // When given one NaN and one non-NaN input:
4837 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4838 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4839 // ordered comparison fails), which could be NaN or non-NaN.
4840 // so here we discover exactly what NaN behavior is required/accepted.
4841 if (CmpInst::isFPPredicate(Pred)) {
4842 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4843 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4844
4845 if (LHSSafe && RHSSafe) {
4846 // Both operands are known non-NaN.
4847 NaNBehavior = SPNB_RETURNS_ANY;
4848 } else if (CmpInst::isOrdered(Pred)) {
4849 // An ordered comparison will return false when given a NaN, so it
4850 // returns the RHS.
4851 Ordered = true;
4852 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004853 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004854 NaNBehavior = SPNB_RETURNS_NAN;
4855 else if (RHSSafe)
4856 NaNBehavior = SPNB_RETURNS_OTHER;
4857 else
4858 // Completely unsafe.
4859 return {SPF_UNKNOWN, SPNB_NA, false};
4860 } else {
4861 Ordered = false;
4862 // An unordered comparison will return true when given a NaN, so it
4863 // returns the LHS.
4864 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004865 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004866 NaNBehavior = SPNB_RETURNS_OTHER;
4867 else if (RHSSafe)
4868 NaNBehavior = SPNB_RETURNS_NAN;
4869 else
4870 // Completely unsafe.
4871 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004872 }
4873 }
4874
James Molloy71b91c22015-05-11 14:42:20 +00004875 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004876 std::swap(CmpLHS, CmpRHS);
4877 Pred = CmpInst::getSwappedPredicate(Pred);
4878 if (NaNBehavior == SPNB_RETURNS_NAN)
4879 NaNBehavior = SPNB_RETURNS_OTHER;
4880 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4881 NaNBehavior = SPNB_RETURNS_NAN;
4882 Ordered = !Ordered;
4883 }
4884
4885 // ([if]cmp X, Y) ? X : Y
4886 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004887 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004888 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004889 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004890 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004891 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004892 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004893 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004894 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004895 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004896 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4897 case FCmpInst::FCMP_UGT:
4898 case FCmpInst::FCMP_UGE:
4899 case FCmpInst::FCMP_OGT:
4900 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4901 case FCmpInst::FCMP_ULT:
4902 case FCmpInst::FCMP_ULE:
4903 case FCmpInst::FCMP_OLT:
4904 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004905 }
4906 }
Fangrui Songf78650a2018-07-30 19:41:25 +00004907
Chen Zhengccc84222018-07-16 02:23:00 +00004908 if (isKnownNegation(TrueVal, FalseVal)) {
4909 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
4910 // match against either LHS or sext(LHS).
4911 auto MaybeSExtCmpLHS =
4912 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
4913 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
4914 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
4915 if (match(TrueVal, MaybeSExtCmpLHS)) {
4916 // Set the return values. If the compare uses the negated value (-X >s 0),
4917 // swap the return values because the negated value is always 'RHS'.
Sanjay Patel284ba0c2018-07-02 14:43:40 +00004918 LHS = TrueVal;
4919 RHS = FalseVal;
Chen Zhengccc84222018-07-16 02:23:00 +00004920 if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
4921 std::swap(LHS, RHS);
4922
4923 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
4924 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
4925 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4926 return {SPF_ABS, SPNB_NA, false};
4927
4928 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
4929 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
4930 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4931 return {SPF_NABS, SPNB_NA, false};
4932 }
4933 else if (match(FalseVal, MaybeSExtCmpLHS)) {
4934 // Set the return values. If the compare uses the negated value (-X >s 0),
4935 // swap the return values because the negated value is always 'RHS'.
Sanjay Patel284ba0c2018-07-02 14:43:40 +00004936 LHS = FalseVal;
4937 RHS = TrueVal;
Chen Zhengccc84222018-07-16 02:23:00 +00004938 if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
4939 std::swap(LHS, RHS);
4940
4941 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
4942 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
4943 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4944 return {SPF_NABS, SPNB_NA, false};
4945
4946 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
4947 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
4948 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4949 return {SPF_ABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004950 }
James Molloy71b91c22015-05-11 14:42:20 +00004951 }
4952
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004953 if (CmpInst::isIntPredicate(Pred))
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004954 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004955
4956 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4957 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4958 // semantics than minNum. Be conservative in such case.
4959 if (NaNBehavior != SPNB_RETURNS_ANY ||
4960 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4961 !isKnownNonZero(CmpRHS)))
4962 return {SPF_UNKNOWN, SPNB_NA, false};
4963
4964 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004965}
James Molloy270ef8c2015-05-15 16:04:50 +00004966
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004967/// Helps to match a select pattern in case of a type mismatch.
4968///
4969/// The function processes the case when type of true and false values of a
4970/// select instruction differs from type of the cmp instruction operands because
Vedant Kumar1a8456d2018-03-02 18:57:02 +00004971/// of a cast instruction. The function checks if it is legal to move the cast
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004972/// operation after "select". If yes, it returns the new second value of
4973/// "select" (with the assumption that cast is moved):
4974/// 1. As operand of cast instruction when both values of "select" are same cast
4975/// instructions.
4976/// 2. As restored constant (by applying reverse cast operation) when the first
4977/// value of the "select" is a cast operation and the second value is a
4978/// constant.
4979/// NOTE: We return only the new second value because the first value could be
4980/// accessed as operand of cast instruction.
James Molloy569cea62015-09-02 17:25:25 +00004981static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4982 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004983 auto *Cast1 = dyn_cast<CastInst>(V1);
4984 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004985 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004986
Sanjay Patel14a4b812017-01-29 16:34:57 +00004987 *CastOp = Cast1->getOpcode();
4988 Type *SrcTy = Cast1->getSrcTy();
4989 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4990 // If V1 and V2 are both the same cast from the same type, look through V1.
4991 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4992 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004993 return nullptr;
4994 }
4995
Sanjay Patel14a4b812017-01-29 16:34:57 +00004996 auto *C = dyn_cast<Constant>(V2);
4997 if (!C)
4998 return nullptr;
4999
David Majnemerd2a074b2016-04-29 18:40:34 +00005000 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00005001 switch (*CastOp) {
5002 case Instruction::ZExt:
5003 if (CmpI->isUnsigned())
5004 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5005 break;
5006 case Instruction::SExt:
5007 if (CmpI->isSigned())
5008 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5009 break;
5010 case Instruction::Trunc:
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00005011 Constant *CmpConst;
Nikolai Bozhenov9723f122017-10-18 14:24:50 +00005012 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5013 CmpConst->getType() == SrcTy) {
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00005014 // Here we have the following case:
5015 //
5016 // %cond = cmp iN %x, CmpConst
5017 // %tr = trunc iN %x to iK
5018 // %narrowsel = select i1 %cond, iK %t, iK C
5019 //
5020 // We can always move trunc after select operation:
5021 //
5022 // %cond = cmp iN %x, CmpConst
5023 // %widesel = select i1 %cond, iN %x, iN CmpConst
5024 // %tr = trunc iN %widesel to iK
5025 //
5026 // Note that C could be extended in any way because we don't care about
5027 // upper bits after truncation. It can't be abs pattern, because it would
5028 // look like:
5029 //
5030 // select i1 %cond, x, -x.
5031 //
5032 // So only min/max pattern could be matched. Such match requires widened C
5033 // == CmpConst. That is why set widened C = CmpConst, condition trunc
5034 // CmpConst == C is checked below.
5035 CastedTo = CmpConst;
5036 } else {
5037 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5038 }
Sanjay Patel14a4b812017-01-29 16:34:57 +00005039 break;
5040 case Instruction::FPTrunc:
5041 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5042 break;
5043 case Instruction::FPExt:
5044 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5045 break;
5046 case Instruction::FPToUI:
5047 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5048 break;
5049 case Instruction::FPToSI:
5050 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5051 break;
5052 case Instruction::UIToFP:
5053 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5054 break;
5055 case Instruction::SIToFP:
5056 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5057 break;
5058 default:
5059 break;
5060 }
David Majnemerd2a074b2016-04-29 18:40:34 +00005061
5062 if (!CastedTo)
5063 return nullptr;
5064
David Majnemerd2a074b2016-04-29 18:40:34 +00005065 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00005066 Constant *CastedBack =
5067 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00005068 if (CastedBack != C)
5069 return nullptr;
5070
5071 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00005072}
5073
Sanjay Patele8dc0902016-05-23 17:57:54 +00005074SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00005075 Instruction::CastOps *CastOp,
5076 unsigned Depth) {
5077 if (Depth >= MaxDepth)
5078 return {SPF_UNKNOWN, SPNB_NA, false};
5079
James Molloy270ef8c2015-05-15 16:04:50 +00005080 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00005081 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00005082
James Molloy134bec22015-08-11 09:12:57 +00005083 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5084 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00005085
James Molloy134bec22015-08-11 09:12:57 +00005086 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00005087 Value *CmpLHS = CmpI->getOperand(0);
5088 Value *CmpRHS = CmpI->getOperand(1);
5089 Value *TrueVal = SI->getTrueValue();
5090 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00005091 FastMathFlags FMF;
5092 if (isa<FPMathOperator>(CmpI))
5093 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00005094
5095 // Bail out early.
5096 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00005097 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00005098
5099 // Deal with type mismatches.
5100 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
Sanjay Patel9a399792017-12-26 15:09:19 +00005101 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5102 // If this is a potential fmin/fmax with a cast to integer, then ignore
5103 // -0.0 because there is no corresponding integer value.
5104 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5105 FMF.setNoSignedZeros();
James Molloy134bec22015-08-11 09:12:57 +00005106 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00005107 cast<CastInst>(TrueVal)->getOperand(0), C,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00005108 LHS, RHS, Depth);
Sanjay Patel9a399792017-12-26 15:09:19 +00005109 }
5110 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5111 // If this is a potential fmin/fmax with a cast to integer, then ignore
5112 // -0.0 because there is no corresponding integer value.
5113 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5114 FMF.setNoSignedZeros();
James Molloy134bec22015-08-11 09:12:57 +00005115 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00005116 C, cast<CastInst>(FalseVal)->getOperand(0),
Sanjay Patel1d91ec32018-01-24 15:20:37 +00005117 LHS, RHS, Depth);
Sanjay Patel9a399792017-12-26 15:09:19 +00005118 }
James Molloy270ef8c2015-05-15 16:04:50 +00005119 }
James Molloy134bec22015-08-11 09:12:57 +00005120 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00005121 LHS, RHS, Depth);
James Molloy270ef8c2015-05-15 16:04:50 +00005122}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00005123
Sanjay Patel7ed0bc22018-03-06 16:57:55 +00005124CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5125 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5126 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5127 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5128 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5129 if (SPF == SPF_FMINNUM)
5130 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5131 if (SPF == SPF_FMAXNUM)
5132 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5133 llvm_unreachable("unhandled!");
5134}
5135
5136SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5137 if (SPF == SPF_SMIN) return SPF_SMAX;
5138 if (SPF == SPF_UMIN) return SPF_UMAX;
5139 if (SPF == SPF_SMAX) return SPF_SMIN;
5140 if (SPF == SPF_UMAX) return SPF_UMIN;
5141 llvm_unreachable("unhandled!");
5142}
5143
5144CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5145 return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5146}
5147
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005148/// Return true if "icmp Pred LHS RHS" is always true.
Chad Rosiere42b44b2017-07-28 14:39:06 +00005149static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5150 const Value *RHS, const DataLayout &DL,
5151 unsigned Depth) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00005152 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005153 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5154 return true;
5155
5156 switch (Pred) {
5157 default:
5158 return false;
5159
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005160 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00005161 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005162
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005163 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00005164 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00005165 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005166 return false;
5167 }
5168
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005169 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00005170 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005171
Sanjoy Dasdc26df42015-11-11 00:16:41 +00005172 // LHS u<= LHS +_{nuw} C for any C
5173 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00005174 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00005175
5176 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00005177 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5178 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00005179 const APInt *&CA, const APInt *&CB) {
5180 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5181 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5182 return true;
5183
5184 // If X & C == 0 then (X | C) == X +_{nuw} C
5185 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5186 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
Craig Topperb45eabc2017-04-26 16:39:58 +00005187 KnownBits Known(CA->getBitWidth());
Chad Rosiere42b44b2017-07-28 14:39:06 +00005188 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5189 /*CxtI*/ nullptr, /*DT*/ nullptr);
Craig Topperb45eabc2017-04-26 16:39:58 +00005190 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
Sanjoy Das92568102015-11-10 23:56:20 +00005191 return true;
5192 }
5193
5194 return false;
5195 };
5196
Pete Cooper35b00d52016-08-13 01:05:32 +00005197 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00005198 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00005199 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5200 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00005201
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005202 return false;
5203 }
5204 }
5205}
5206
5207/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00005208/// ALHS ARHS" is true. Otherwise, return None.
5209static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00005210isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
Chad Rosiere42b44b2017-07-28 14:39:06 +00005211 const Value *ARHS, const Value *BLHS, const Value *BRHS,
5212 const DataLayout &DL, unsigned Depth) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005213 switch (Pred) {
5214 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00005215 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005216
5217 case CmpInst::ICMP_SLT:
5218 case CmpInst::ICMP_SLE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00005219 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5220 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00005221 return true;
5222 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005223
5224 case CmpInst::ICMP_ULT:
5225 case CmpInst::ICMP_ULE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00005226 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5227 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00005228 return true;
5229 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00005230 }
5231}
5232
Chad Rosier226a7342016-05-05 17:41:19 +00005233/// Return true if the operands of the two compares match. IsSwappedOps is true
5234/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00005235static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5236 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00005237 bool &IsSwappedOps) {
5238
5239 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5240 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5241 return IsMatchingOps || IsSwappedOps;
5242}
5243
Sanjay Patel798c5982018-12-19 16:49:18 +00005244/// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
5245/// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
5246/// Otherwise, return None if we can't infer anything.
Chad Rosier41dd31f2016-04-20 19:15:26 +00005247static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Chad Rosier41dd31f2016-04-20 19:15:26 +00005248 CmpInst::Predicate BPred,
Sanjay Patel798c5982018-12-19 16:49:18 +00005249 bool AreSwappedOps) {
5250 // Canonicalize the predicate as if the operands were not commuted.
5251 if (AreSwappedOps)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00005252 BPred = ICmpInst::getSwappedPredicate(BPred);
Sanjay Patel798c5982018-12-19 16:49:18 +00005253
Chad Rosier99bc4802016-04-21 16:18:02 +00005254 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00005255 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00005256 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00005257 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00005258
Chad Rosier41dd31f2016-04-20 19:15:26 +00005259 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00005260}
5261
Sanjay Patel798c5982018-12-19 16:49:18 +00005262/// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
5263/// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
5264/// Otherwise, return None if we can't infer anything.
Chad Rosier25cfb7d2016-05-05 15:39:18 +00005265static Optional<bool>
Sanjay Patel798c5982018-12-19 16:49:18 +00005266isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00005267 const ConstantInt *C1,
5268 CmpInst::Predicate BPred,
Sanjay Patel798c5982018-12-19 16:49:18 +00005269 const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00005270 ConstantRange DomCR =
5271 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
5272 ConstantRange CR =
5273 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
5274 ConstantRange Intersection = DomCR.intersectWith(CR);
5275 ConstantRange Difference = DomCR.difference(CR);
5276 if (Intersection.isEmptySet())
5277 return false;
5278 if (Difference.isEmptySet())
5279 return true;
5280 return None;
5281}
5282
Chad Rosier2f498032017-07-28 18:47:43 +00005283/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
5284/// false. Otherwise, return None if we can't infer anything.
5285static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
5286 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00005287 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00005288 unsigned Depth) {
5289 Value *ALHS = LHS->getOperand(0);
5290 Value *ARHS = LHS->getOperand(1);
Chad Rosiera72a9ff2017-07-06 20:00:25 +00005291 // The rest of the logic assumes the LHS condition is true. If that's not the
5292 // case, invert the predicate to make it so.
Chad Rosier2f498032017-07-28 18:47:43 +00005293 ICmpInst::Predicate APred =
Chad Rosierdfd1de62017-08-01 20:18:54 +00005294 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
Chad Rosier2f498032017-07-28 18:47:43 +00005295
5296 Value *BLHS = RHS->getOperand(0);
5297 Value *BRHS = RHS->getOperand(1);
5298 ICmpInst::Predicate BPred = RHS->getPredicate();
Chad Rosiere2cbd132016-04-25 17:23:36 +00005299
Chad Rosier226a7342016-05-05 17:41:19 +00005300 // Can we infer anything when the two compares have matching operands?
Sanjay Patel798c5982018-12-19 16:49:18 +00005301 bool AreSwappedOps;
5302 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
Chad Rosier226a7342016-05-05 17:41:19 +00005303 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
Sanjay Patel798c5982018-12-19 16:49:18 +00005304 APred, BPred, AreSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00005305 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00005306 // No amount of additional analysis will infer the second condition, so
5307 // early exit.
5308 return None;
5309 }
5310
5311 // Can we infer anything when the LHS operands match and the RHS operands are
5312 // constants (not necessarily matching)?
5313 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
5314 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
Sanjay Patel798c5982018-12-19 16:49:18 +00005315 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
Chad Rosier226a7342016-05-05 17:41:19 +00005316 return Implication;
5317 // No amount of additional analysis will infer the second condition, so
5318 // early exit.
5319 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00005320 }
5321
Chad Rosier41dd31f2016-04-20 19:15:26 +00005322 if (APred == BPred)
Chad Rosiere42b44b2017-07-28 14:39:06 +00005323 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
Chad Rosier41dd31f2016-04-20 19:15:26 +00005324 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00005325}
Chad Rosier2f498032017-07-28 18:47:43 +00005326
Chad Rosierf73a10d2017-08-01 19:22:36 +00005327/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
5328/// false. Otherwise, return None if we can't infer anything. We expect the
5329/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
5330static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
5331 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00005332 const DataLayout &DL, bool LHSIsTrue,
Chad Rosierf73a10d2017-08-01 19:22:36 +00005333 unsigned Depth) {
5334 // The LHS must be an 'or' or an 'and' instruction.
5335 assert((LHS->getOpcode() == Instruction::And ||
5336 LHS->getOpcode() == Instruction::Or) &&
5337 "Expected LHS to be 'and' or 'or'.");
5338
Davide Italiano1a943a92017-08-09 16:06:54 +00005339 assert(Depth <= MaxDepth && "Hit recursion limit");
Chad Rosierf73a10d2017-08-01 19:22:36 +00005340
5341 // If the result of an 'or' is false, then we know both legs of the 'or' are
5342 // false. Similarly, if the result of an 'and' is true, then we know both
5343 // legs of the 'and' are true.
5344 Value *ALHS, *ARHS;
Chad Rosierdfd1de62017-08-01 20:18:54 +00005345 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
5346 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
Chad Rosierf73a10d2017-08-01 19:22:36 +00005347 // FIXME: Make this non-recursion.
5348 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00005349 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00005350 return Implication;
5351 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00005352 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00005353 return Implication;
5354 return None;
5355 }
5356 return None;
5357}
5358
Chad Rosier2f498032017-07-28 18:47:43 +00005359Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00005360 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00005361 unsigned Depth) {
Davide Italiano30e51942017-08-09 15:13:50 +00005362 // Bail out when we hit the limit.
5363 if (Depth == MaxDepth)
5364 return None;
5365
Chad Rosierf73a10d2017-08-01 19:22:36 +00005366 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
5367 // example.
Chad Rosier2f498032017-07-28 18:47:43 +00005368 if (LHS->getType() != RHS->getType())
5369 return None;
5370
5371 Type *OpTy = LHS->getType();
Chad Rosierf73a10d2017-08-01 19:22:36 +00005372 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
Chad Rosier2f498032017-07-28 18:47:43 +00005373
5374 // LHS ==> RHS by definition
5375 if (LHS == RHS)
Chad Rosierdfd1de62017-08-01 20:18:54 +00005376 return LHSIsTrue;
Chad Rosier2f498032017-07-28 18:47:43 +00005377
Chad Rosierf73a10d2017-08-01 19:22:36 +00005378 // FIXME: Extending the code below to handle vectors.
Chad Rosier2f498032017-07-28 18:47:43 +00005379 if (OpTy->isVectorTy())
Chad Rosier2f498032017-07-28 18:47:43 +00005380 return None;
Chad Rosierf73a10d2017-08-01 19:22:36 +00005381
Chad Rosier2f498032017-07-28 18:47:43 +00005382 assert(OpTy->isIntegerTy(1) && "implied by above");
5383
Chad Rosier2f498032017-07-28 18:47:43 +00005384 // Both LHS and RHS are icmps.
Chad Rosierf73a10d2017-08-01 19:22:36 +00005385 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
5386 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
5387 if (LHSCmp && RHSCmp)
Chad Rosierdfd1de62017-08-01 20:18:54 +00005388 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00005389
Chad Rosierf73a10d2017-08-01 19:22:36 +00005390 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
5391 // an icmp. FIXME: Add support for and/or on the RHS.
5392 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
5393 if (LHSBO && RHSCmp) {
5394 if ((LHSBO->getOpcode() == Instruction::And ||
5395 LHSBO->getOpcode() == Instruction::Or))
Chad Rosierdfd1de62017-08-01 20:18:54 +00005396 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00005397 }
Chad Rosierf73a10d2017-08-01 19:22:36 +00005398 return None;
Chad Rosier2f498032017-07-28 18:47:43 +00005399}
Sanjay Patel7d82d372018-12-02 13:26:03 +00005400
5401Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
5402 const Instruction *ContextI,
5403 const DataLayout &DL) {
5404 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
5405 if (!ContextI || !ContextI->getParent())
5406 return None;
5407
5408 // TODO: This is a poor/cheap way to determine dominance. Should we use a
5409 // dominator tree (eg, from a SimplifyQuery) instead?
5410 const BasicBlock *ContextBB = ContextI->getParent();
5411 const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
5412 if (!PredBB)
5413 return None;
5414
5415 // We need a conditional branch in the predecessor.
5416 Value *PredCond;
5417 BasicBlock *TrueBB, *FalseBB;
5418 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
5419 return None;
5420
5421 // The branch should get simplified. Don't bother simplifying this condition.
5422 if (TrueBB == FalseBB)
5423 return None;
5424
5425 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
5426 "Predecessor block does not point to successor?");
5427
5428 // Is this condition implied by the predecessor condition?
5429 bool CondIsTrue = TrueBB == ContextBB;
5430 return isImpliedCondition(PredCond, Cond, DL, CondIsTrue);
5431}