blob: 2aac19a49a54ec85e87485ca09f29c49bea1e17d [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000016#include "llvm/ADT/APFloat.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
James Molloy493e57d2015-10-26 14:10:46 +000020#include "llvm/ADT/Optional.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000021#include "llvm/ADT/STLExtras.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000022#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000023#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/Analysis/AliasAnalysis.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000028#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000029#include "llvm/Analysis/InstructionSimplify.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000030#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000031#include "llvm/Analysis/LoopInfo.h"
Adam Nemet0965da22017-10-09 23:19:02 +000032#include "llvm/Analysis/OptimizationRemarkEmitter.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000033#include "llvm/Analysis/TargetLibraryInfo.h"
34#include "llvm/IR/Argument.h"
35#include "llvm/IR/Attributes.h"
36#include "llvm/IR/BasicBlock.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000037#include "llvm/IR/CallSite.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000038#include "llvm/IR/Constant.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000039#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000040#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
Matthias Braun50ec0b52017-05-19 22:37:09 +000042#include "llvm/IR/DerivedTypes.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000043#include "llvm/IR/DiagnosticInfo.h"
Hal Finkel60db0582014-09-07 18:57:58 +000044#include "llvm/IR/Dominators.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000045#include "llvm/IR/Function.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000046#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000047#include "llvm/IR/GlobalAlias.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000048#include "llvm/IR/GlobalValue.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000049#include "llvm/IR/GlobalVariable.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000050#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000052#include "llvm/IR/Instructions.h"
53#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000054#include "llvm/IR/Intrinsics.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000055#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/Metadata.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000057#include "llvm/IR/Module.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000058#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000059#include "llvm/IR/PatternMatch.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000060#include "llvm/IR/Type.h"
61#include "llvm/IR/User.h"
62#include "llvm/IR/Value.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/ErrorHandling.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000067#include "llvm/Support/KnownBits.h"
Chris Lattner965c7692008-06-02 01:18:21 +000068#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000069#include <algorithm>
70#include <array>
Eugene Zelenko75075ef2017-09-01 21:37:29 +000071#include <cassert>
72#include <cstdint>
73#include <iterator>
Fangrui Songf78650a2018-07-30 19:41:25 +000074#include <utility>
Eugene Zelenko75075ef2017-09-01 21:37:29 +000075
Chris Lattner965c7692008-06-02 01:18:21 +000076using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000077using namespace llvm::PatternMatch;
78
79const unsigned MaxDepth = 6;
80
Philip Reames1c292272015-03-10 22:43:20 +000081// Controls the number of uses of the value searched for possible
82// dominating comparisons.
83static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000084 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000085
Craig Topper6b3940a2017-05-03 22:25:19 +000086/// Returns the bitwidth of the given scalar or pointer type. For vector types,
87/// returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000088static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000089 if (unsigned BitWidth = Ty->getScalarSizeInBits())
90 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000091
Elena Demikhovsky945b7e52018-02-14 06:58:08 +000092 return DL.getIndexTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000093}
Chris Lattner965c7692008-06-02 01:18:21 +000094
Benjamin Kramercfd8d902014-09-12 08:56:53 +000095namespace {
Eugene Zelenko75075ef2017-09-01 21:37:29 +000096
Hal Finkel60db0582014-09-07 18:57:58 +000097// Simplifying using an assume can only be done in a particular control-flow
98// context (the context instruction provides that context). If an assume and
99// the context instruction are not in the same block then the DT helps in
100// figuring out if we can use it.
101struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000102 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000103 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +0000104 const Instruction *CxtI;
105 const DominatorTree *DT;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000106
Sanjay Patel54656ca2017-02-06 18:26:06 +0000107 // Unlike the other analyses, this may be a nullptr because not all clients
108 // provide it currently.
109 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +0000110
Matthias Braun37e5d792016-01-28 06:29:33 +0000111 /// Set of assumptions that should be excluded from further queries.
112 /// This is because of the potential for mutual recursion to cause
113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
114 /// classic case of this is assume(x = y), which will attempt to determine
115 /// bits in x from bits in y, which will attempt to determine bits in y from
116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
Craig Topper6e11a052017-05-08 16:22:48 +0000117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
118 /// (all of which can call computeKnownBits), and so on.
Li Huang755f75f2016-10-15 19:00:04 +0000119 std::array<const Value *, MaxDepth> Excluded;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000120
121 unsigned NumExcluded = 0;
Matthias Braun37e5d792016-01-28 06:29:33 +0000122
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000124 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000125 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000126
127 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000128 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
129 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000130 Excluded = Q.Excluded;
131 Excluded[NumExcluded++] = NewExcl;
132 assert(NumExcluded <= Excluded.size());
133 }
134
135 bool isExcluded(const Value *Value) const {
136 if (NumExcluded == 0)
137 return false;
138 auto End = Excluded.begin() + NumExcluded;
139 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000140 }
141};
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000142
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000143} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000144
Sanjay Patel547e9752014-11-04 16:09:50 +0000145// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000146// the preferred context instruction (if any).
147static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
148 // If we've been provided with a context instruction, then use that (provided
149 // it has been inserted).
150 if (CxtI && CxtI->getParent())
151 return CxtI;
152
153 // If the value is really an already-inserted instruction, then use that.
154 CxtI = dyn_cast<Instruction>(V);
155 if (CxtI && CxtI->getParent())
156 return CxtI;
157
158 return nullptr;
159}
160
Craig Topperb45eabc2017-04-26 16:39:58 +0000161static void computeKnownBits(const Value *V, KnownBits &Known,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000162 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000163
Craig Topperb45eabc2017-04-26 16:39:58 +0000164void llvm::computeKnownBits(const Value *V, KnownBits &Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000165 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000166 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000167 const DominatorTree *DT,
168 OptimizationRemarkEmitter *ORE) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000169 ::computeKnownBits(V, Known, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000170 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000171}
172
Craig Topper6e11a052017-05-08 16:22:48 +0000173static KnownBits computeKnownBits(const Value *V, unsigned Depth,
174 const Query &Q);
175
176KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
177 unsigned Depth, AssumptionCache *AC,
178 const Instruction *CxtI,
Craig Toppera2025ea2017-05-24 16:53:03 +0000179 const DominatorTree *DT,
180 OptimizationRemarkEmitter *ORE) {
181 return ::computeKnownBits(V, Depth,
182 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Craig Topper6e11a052017-05-08 16:22:48 +0000183}
184
Pete Cooper35b00d52016-08-13 01:05:32 +0000185bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
186 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000187 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000188 const DominatorTree *DT) {
189 assert(LHS->getType() == RHS->getType() &&
190 "LHS and RHS should have the same type");
191 assert(LHS->getType()->isIntOrIntVectorTy() &&
192 "LHS and RHS should be integers");
Roman Lebedev620b3da2018-04-15 18:59:33 +0000193 // Look for an inverted mask: (X & ~M) op (Y & M).
194 Value *M;
195 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
196 match(RHS, m_c_And(m_Specific(M), m_Value())))
197 return true;
198 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
199 match(LHS, m_c_And(m_Specific(M), m_Value())))
200 return true;
Jingyue Wuca321902015-05-14 23:53:19 +0000201 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
Craig Topperb45eabc2017-04-26 16:39:58 +0000202 KnownBits LHSKnown(IT->getBitWidth());
203 KnownBits RHSKnown(IT->getBitWidth());
204 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT);
205 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT);
206 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
Jingyue Wuca321902015-05-14 23:53:19 +0000207}
208
Zaara Syeda3a7578c2017-05-31 17:12:38 +0000209bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
210 for (const User *U : CxtI->users()) {
211 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
212 if (IC->isEquality())
213 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
214 if (C->isNullValue())
215 continue;
216 return false;
217 }
218 return true;
219}
220
Pete Cooper35b00d52016-08-13 01:05:32 +0000221static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000222 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000223
Pete Cooper35b00d52016-08-13 01:05:32 +0000224bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
225 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000226 unsigned Depth, AssumptionCache *AC,
227 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000228 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000229 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000230 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000231}
232
Pete Cooper35b00d52016-08-13 01:05:32 +0000233static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000234
Pete Cooper35b00d52016-08-13 01:05:32 +0000235bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000236 AssumptionCache *AC, const Instruction *CxtI,
237 const DominatorTree *DT) {
238 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000239}
240
Pete Cooper35b00d52016-08-13 01:05:32 +0000241bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000242 unsigned Depth,
243 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000244 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000245 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
246 return Known.isNonNegative();
Jingyue Wu10fcea52015-08-20 18:27:04 +0000247}
248
Pete Cooper35b00d52016-08-13 01:05:32 +0000249bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000250 AssumptionCache *AC, const Instruction *CxtI,
251 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000252 if (auto *CI = dyn_cast<ConstantInt>(V))
253 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000254
Philip Reames8f12eba2016-03-09 21:31:47 +0000255 // TODO: We'd doing two recursive queries here. We should factor this such
256 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000257 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
258 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000259}
260
Pete Cooper35b00d52016-08-13 01:05:32 +0000261bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000262 AssumptionCache *AC, const Instruction *CxtI,
263 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000264 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
265 return Known.isNegative();
Nick Lewycky762f8a82016-04-21 00:53:14 +0000266}
267
Pete Cooper35b00d52016-08-13 01:05:32 +0000268static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000269
Pete Cooper35b00d52016-08-13 01:05:32 +0000270bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000271 const DataLayout &DL,
272 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000273 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000274 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
275 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000276 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000277}
278
Pete Cooper35b00d52016-08-13 01:05:32 +0000279static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000280 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000281
Pete Cooper35b00d52016-08-13 01:05:32 +0000282bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
283 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000284 unsigned Depth, AssumptionCache *AC,
285 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000286 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000287 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000288}
289
Pete Cooper35b00d52016-08-13 01:05:32 +0000290static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
291 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000292
Pete Cooper35b00d52016-08-13 01:05:32 +0000293unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000294 unsigned Depth, AssumptionCache *AC,
295 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000296 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000297 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000298}
299
Craig Topper8fbb74b2017-03-24 22:12:10 +0000300static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
301 bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000302 KnownBits &KnownOut, KnownBits &Known2,
Craig Topper8fbb74b2017-03-24 22:12:10 +0000303 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000304 unsigned BitWidth = KnownOut.getBitWidth();
Craig Topper8fbb74b2017-03-24 22:12:10 +0000305
306 // If an initial sequence of bits in the result is not needed, the
307 // corresponding bits in the operands are not needed.
Craig Topperb45eabc2017-04-26 16:39:58 +0000308 KnownBits LHSKnown(BitWidth);
309 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
310 computeKnownBits(Op1, Known2, Depth + 1, Q);
Craig Topper8fbb74b2017-03-24 22:12:10 +0000311
Craig Topperb498a232017-08-08 16:29:35 +0000312 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000313}
314
Pete Cooper35b00d52016-08-13 01:05:32 +0000315static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000316 KnownBits &Known, KnownBits &Known2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000317 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000318 unsigned BitWidth = Known.getBitWidth();
319 computeKnownBits(Op1, Known, Depth + 1, Q);
320 computeKnownBits(Op0, Known2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000321
322 bool isKnownNegative = false;
323 bool isKnownNonNegative = false;
324 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000325 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000326 if (Op0 == Op1) {
327 // The product of a number with itself is non-negative.
328 isKnownNonNegative = true;
329 } else {
Craig Topperca48af32017-04-29 16:43:11 +0000330 bool isKnownNonNegativeOp1 = Known.isNonNegative();
331 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
332 bool isKnownNegativeOp1 = Known.isNegative();
333 bool isKnownNegativeOp0 = Known2.isNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000334 // The product of two numbers with the same sign is non-negative.
335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337 // The product of a negative number and a non-negative number is either
338 // negative or zero.
339 if (!isKnownNonNegative)
340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000341 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000343 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000344 }
345 }
346
Simon Dardis70dbd5f2017-12-09 23:25:57 +0000347 assert(!Known.hasConflict() && !Known2.hasConflict());
348 // Compute a conservative estimate for high known-0 bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000349 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
350 Known2.countMinLeadingZeros(),
Nick Lewyckyfa306072012-03-18 23:28:48 +0000351 BitWidth) - BitWidth;
Nick Lewyckyfa306072012-03-18 23:28:48 +0000352 LeadZ = std::min(LeadZ, BitWidth);
Simon Dardis70dbd5f2017-12-09 23:25:57 +0000353
354 // The result of the bottom bits of an integer multiply can be
355 // inferred by looking at the bottom bits of both operands and
356 // multiplying them together.
357 // We can infer at least the minimum number of known trailing bits
358 // of both operands. Depending on number of trailing zeros, we can
359 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
360 // a and b are divisible by m and n respectively.
361 // We then calculate how many of those bits are inferrable and set
362 // the output. For example, the i8 mul:
363 // a = XXXX1100 (12)
364 // b = XXXX1110 (14)
365 // We know the bottom 3 bits are zero since the first can be divided by
366 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
367 // Applying the multiplication to the trimmed arguments gets:
368 // XX11 (3)
369 // X111 (7)
370 // -------
371 // XX11
372 // XX11
373 // XX11
374 // XX11
375 // -------
376 // XXXXX01
377 // Which allows us to infer the 2 LSBs. Since we're multiplying the result
378 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
379 // The proof for this can be described as:
380 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
381 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
382 // umin(countTrailingZeros(C2), C6) +
383 // umin(C5 - umin(countTrailingZeros(C1), C5),
384 // C6 - umin(countTrailingZeros(C2), C6)))) - 1)
385 // %aa = shl i8 %a, C5
386 // %bb = shl i8 %b, C6
387 // %aaa = or i8 %aa, C1
388 // %bbb = or i8 %bb, C2
389 // %mul = mul i8 %aaa, %bbb
390 // %mask = and i8 %mul, C7
391 // =>
392 // %mask = i8 ((C1*C2)&C7)
393 // Where C5, C6 describe the known bits of %a, %b
394 // C1, C2 describe the known bottom bits of %a, %b.
395 // C7 describes the mask of the known bits of the result.
396 APInt Bottom0 = Known.One;
397 APInt Bottom1 = Known2.One;
398
399 // How many times we'd be able to divide each argument by 2 (shr by 1).
400 // This gives us the number of trailing zeros on the multiplication result.
401 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
402 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
403 unsigned TrailZero0 = Known.countMinTrailingZeros();
404 unsigned TrailZero1 = Known2.countMinTrailingZeros();
405 unsigned TrailZ = TrailZero0 + TrailZero1;
406
407 // Figure out the fewest known-bits operand.
408 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
409 TrailBitsKnown1 - TrailZero1);
410 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
411
412 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
413 Bottom1.getLoBits(TrailBitsKnown1);
414
Craig Topperf0aeee02017-05-05 17:36:09 +0000415 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000416 Known.Zero.setHighBits(LeadZ);
Simon Dardis70dbd5f2017-12-09 23:25:57 +0000417 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
418 Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000419
420 // Only make use of no-wrap flags if we failed to compute the sign bit
421 // directly. This matters if the multiplication always overflows, in
422 // which case we prefer to follow the result of the direct computation,
423 // though as the program is invoking undefined behaviour we can choose
424 // whatever we like here.
Craig Topperca48af32017-04-29 16:43:11 +0000425 if (isKnownNonNegative && !Known.isNegative())
426 Known.makeNonNegative();
427 else if (isKnownNegative && !Known.isNonNegative())
428 Known.makeNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000429}
430
Jingyue Wu37fcb592014-06-19 16:50:16 +0000431void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Craig Topperf42b23f2017-04-28 06:28:56 +0000432 KnownBits &Known) {
433 unsigned BitWidth = Known.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000434 unsigned NumRanges = Ranges.getNumOperands() / 2;
435 assert(NumRanges >= 1);
436
Craig Topperf42b23f2017-04-28 06:28:56 +0000437 Known.Zero.setAllBits();
438 Known.One.setAllBits();
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000439
Rafael Espindola53190532012-03-30 15:52:11 +0000440 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000441 ConstantInt *Lower =
442 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
443 ConstantInt *Upper =
444 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000445 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000446
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000447 // The first CommonPrefixBits of all values in Range are equal.
448 unsigned CommonPrefixBits =
449 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
450
451 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Craig Topperf42b23f2017-04-28 06:28:56 +0000452 Known.One &= Range.getUnsignedMax() & Mask;
453 Known.Zero &= ~Range.getUnsignedMax() & Mask;
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000454 }
Rafael Espindola53190532012-03-30 15:52:11 +0000455}
Jay Foad5a29c362014-05-15 12:12:55 +0000456
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000457static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000458 SmallVector<const Value *, 16> WorkSet(1, I);
459 SmallPtrSet<const Value *, 32> Visited;
460 SmallPtrSet<const Value *, 16> EphValues;
461
Hal Finkelf2199b22015-10-23 20:37:08 +0000462 // The instruction defining an assumption's condition itself is always
463 // considered ephemeral to that assumption (even if it has other
464 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000465 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000466 return true;
467
Hal Finkel60db0582014-09-07 18:57:58 +0000468 while (!WorkSet.empty()) {
469 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000470 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000471 continue;
472
473 // If all uses of this value are ephemeral, then so is this value.
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000474 if (llvm::all_of(V->users(), [&](const User *U) {
475 return EphValues.count(U);
476 })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000477 if (V == E)
478 return true;
479
Hal Finkelb03dd4b2017-08-14 17:11:43 +0000480 if (V == I || isSafeToSpeculativelyExecute(V)) {
481 EphValues.insert(V);
482 if (const User *U = dyn_cast<User>(V))
483 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
484 J != JE; ++J)
485 WorkSet.push_back(*J);
486 }
Hal Finkel60db0582014-09-07 18:57:58 +0000487 }
488 }
489
490 return false;
491}
492
493// Is this an intrinsic that cannot be speculated but also cannot trap?
Haicheng Wua4461512017-12-15 14:34:41 +0000494bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
Hal Finkel60db0582014-09-07 18:57:58 +0000495 if (const CallInst *CI = dyn_cast<CallInst>(I))
496 if (Function *F = CI->getCalledFunction())
497 switch (F->getIntrinsicID()) {
498 default: break;
499 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
500 case Intrinsic::assume:
Dan Gohman2c74fe92017-11-08 21:59:51 +0000501 case Intrinsic::sideeffect:
Hal Finkel60db0582014-09-07 18:57:58 +0000502 case Intrinsic::dbg_declare:
503 case Intrinsic::dbg_value:
Shiva Chen2c864552018-05-09 02:40:45 +0000504 case Intrinsic::dbg_label:
Hal Finkel60db0582014-09-07 18:57:58 +0000505 case Intrinsic::invariant_start:
506 case Intrinsic::invariant_end:
507 case Intrinsic::lifetime_start:
508 case Intrinsic::lifetime_end:
509 case Intrinsic::objectsize:
510 case Intrinsic::ptr_annotation:
511 case Intrinsic::var_annotation:
512 return true;
513 }
514
515 return false;
516}
517
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000518bool llvm::isValidAssumeForContext(const Instruction *Inv,
519 const Instruction *CxtI,
520 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000521 // There are two restrictions on the use of an assume:
522 // 1. The assume must dominate the context (or the control flow must
523 // reach the assume whenever it reaches the context).
524 // 2. The context must not be in the assume's set of ephemeral values
525 // (otherwise we will use the assume to prove that the condition
526 // feeding the assume is trivially true, thus causing the removal of
527 // the assume).
528
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000529 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000530 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000531 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000532 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
533 // We don't have a DT, but this trivially dominates.
534 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000535 }
536
Pete Cooper54a02552016-08-12 01:00:15 +0000537 // With or without a DT, the only remaining case we will check is if the
538 // instructions are in the same BB. Give up if that is not the case.
539 if (Inv->getParent() != CxtI->getParent())
540 return false;
541
Vedant Kumard3196742018-02-28 19:08:52 +0000542 // If we have a dom tree, then we now know that the assume doesn't dominate
Pete Cooper54a02552016-08-12 01:00:15 +0000543 // the other instruction. If we don't have a dom tree then we can check if
544 // the assume is first in the BB.
545 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000546 // Search forward from the assume until we reach the context (or the end
547 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000548 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000549 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000550 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000551 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000552 }
553
Pete Cooper54a02552016-08-12 01:00:15 +0000554 // The context comes first, but they're both in the same block. Make sure
555 // there is nothing in between that might interrupt the control flow.
556 for (BasicBlock::const_iterator I =
557 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
558 I != IE; ++I)
559 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
560 return false;
561
562 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000563}
564
Craig Topperb45eabc2017-04-26 16:39:58 +0000565static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
566 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000567 // Use of assumptions is context-sensitive. If we don't have a context, we
568 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000569 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000570 return;
571
Craig Topperb45eabc2017-04-26 16:39:58 +0000572 unsigned BitWidth = Known.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000573
Hal Finkel8a9a7832017-01-11 13:24:24 +0000574 // Note that the patterns below need to be kept in sync with the code
575 // in AssumptionCache::updateAffectedValues.
576
577 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000578 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000579 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000580 CallInst *I = cast<CallInst>(AssumeVH);
581 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
582 "Got assumption for the wrong function!");
583 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000584 continue;
585
Vedant Kumard3196742018-02-28 19:08:52 +0000586 // Warning: This loop can end up being somewhat performance sensitive.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000587 // We're running this loop for once for each value queried resulting in a
588 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000589
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000590 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
591 "must be an assume intrinsic");
592
593 Value *Arg = I->getArgOperand(0);
594
595 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000596 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000597 Known.setAllOnes();
Hal Finkel60db0582014-09-07 18:57:58 +0000598 return;
599 }
Sanjay Patel96669962017-01-17 18:15:49 +0000600 if (match(Arg, m_Not(m_Specific(V))) &&
601 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
602 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000603 Known.setAllZero();
Sanjay Patel96669962017-01-17 18:15:49 +0000604 return;
605 }
Hal Finkel60db0582014-09-07 18:57:58 +0000606
David Majnemer9b609752014-12-12 23:59:29 +0000607 // The remaining tests are all recursive, so bail out if we hit the limit.
608 if (Depth == MaxDepth)
609 continue;
610
Hal Finkel60db0582014-09-07 18:57:58 +0000611 Value *A, *B;
612 auto m_V = m_CombineOr(m_Specific(V),
613 m_CombineOr(m_PtrToInt(m_Specific(V)),
614 m_BitCast(m_Specific(V))));
615
616 CmpInst::Predicate Pred;
Igor Laevskycec8f472017-12-05 12:18:15 +0000617 uint64_t C;
Hal Finkel60db0582014-09-07 18:57:58 +0000618 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000619 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000620 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000621 KnownBits RHSKnown(BitWidth);
622 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
623 Known.Zero |= RHSKnown.Zero;
624 Known.One |= RHSKnown.One;
Hal Finkel60db0582014-09-07 18:57:58 +0000625 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000626 } else if (match(Arg,
627 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000628 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000629 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000630 KnownBits RHSKnown(BitWidth);
631 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
632 KnownBits MaskKnown(BitWidth);
633 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000634
635 // For those bits in the mask that are known to be one, we can propagate
636 // known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000637 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
638 Known.One |= RHSKnown.One & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000639 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000640 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
641 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000642 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000643 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000644 KnownBits RHSKnown(BitWidth);
645 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
646 KnownBits MaskKnown(BitWidth);
647 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000648
649 // For those bits in the mask that are known to be one, we can propagate
650 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000651 Known.Zero |= RHSKnown.One & MaskKnown.One;
652 Known.One |= RHSKnown.Zero & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000653 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000654 } else if (match(Arg,
655 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000656 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000657 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000658 KnownBits RHSKnown(BitWidth);
659 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
660 KnownBits BKnown(BitWidth);
661 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000662
663 // For those bits in B that are known to be zero, we can propagate known
664 // bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000665 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
666 Known.One |= RHSKnown.One & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000667 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000668 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
669 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000670 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000672 KnownBits RHSKnown(BitWidth);
673 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
674 KnownBits BKnown(BitWidth);
675 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000676
677 // For those bits in B that are known to be zero, we can propagate
678 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000679 Known.Zero |= RHSKnown.One & BKnown.Zero;
680 Known.One |= RHSKnown.Zero & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000681 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000682 } else if (match(Arg,
683 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000684 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000685 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000686 KnownBits RHSKnown(BitWidth);
687 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
688 KnownBits BKnown(BitWidth);
689 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000690
691 // For those bits in B that are known to be zero, we can propagate known
692 // bits from the RHS to V. For those bits in B that are known to be one,
693 // we can propagate inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000694 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
695 Known.One |= RHSKnown.One & BKnown.Zero;
696 Known.Zero |= RHSKnown.One & BKnown.One;
697 Known.One |= RHSKnown.Zero & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000698 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000699 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
700 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000701 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000702 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000703 KnownBits RHSKnown(BitWidth);
704 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
705 KnownBits BKnown(BitWidth);
706 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000707
708 // For those bits in B that are known to be zero, we can propagate
709 // inverted known bits from the RHS to V. For those bits in B that are
710 // known to be one, we can propagate known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000711 Known.Zero |= RHSKnown.One & BKnown.Zero;
712 Known.One |= RHSKnown.Zero & BKnown.Zero;
713 Known.Zero |= RHSKnown.Zero & BKnown.One;
714 Known.One |= RHSKnown.One & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000715 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000716 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
717 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000718 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000719 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
720 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000721 KnownBits RHSKnown(BitWidth);
722 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000723 // For those bits in RHS that are known, we can propagate them to known
724 // bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000725 RHSKnown.Zero.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000726 Known.Zero |= RHSKnown.Zero;
Igor Laevskycec8f472017-12-05 12:18:15 +0000727 RHSKnown.One.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000728 Known.One |= RHSKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000729 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000730 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
731 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000732 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000733 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
734 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000735 KnownBits RHSKnown(BitWidth);
736 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000737 // For those bits in RHS that are known, we can propagate them inverted
738 // to known bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000739 RHSKnown.One.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000740 Known.Zero |= RHSKnown.One;
Igor Laevskycec8f472017-12-05 12:18:15 +0000741 RHSKnown.Zero.lshrInPlace(C);
Craig Topperb45eabc2017-04-26 16:39:58 +0000742 Known.One |= RHSKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000743 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000744 } else if (match(Arg,
Craig Topper7b66ffe2017-06-24 06:24:04 +0000745 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000746 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000747 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000748 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
749 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000750 KnownBits RHSKnown(BitWidth);
751 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000752 // For those bits in RHS that are known, we can propagate them to known
753 // bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000754 Known.Zero |= RHSKnown.Zero << C;
755 Known.One |= RHSKnown.One << C;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000756 // assume(~(v >> c) = a)
Craig Topper7b66ffe2017-06-24 06:24:04 +0000757 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000758 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000759 Pred == ICmpInst::ICMP_EQ &&
Igor Laevskycec8f472017-12-05 12:18:15 +0000760 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
761 C < BitWidth) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000762 KnownBits RHSKnown(BitWidth);
763 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000764 // For those bits in RHS that are known, we can propagate them inverted
765 // to known bits in V shifted to the right by C.
Igor Laevskycec8f472017-12-05 12:18:15 +0000766 Known.Zero |= RHSKnown.One << C;
767 Known.One |= RHSKnown.Zero << C;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000768 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000769 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000770 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000771 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000772 KnownBits RHSKnown(BitWidth);
773 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000774
Craig Topperca48af32017-04-29 16:43:11 +0000775 if (RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000776 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000777 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000778 }
779 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000780 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000781 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000782 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000783 KnownBits RHSKnown(BitWidth);
784 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000785
Craig Topperf0aeee02017-05-05 17:36:09 +0000786 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000787 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000788 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000789 }
790 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000791 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000792 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000793 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000794 KnownBits RHSKnown(BitWidth);
795 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000796
Craig Topperca48af32017-04-29 16:43:11 +0000797 if (RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000798 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000799 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000800 }
801 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000802 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000803 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000804 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000805 KnownBits RHSKnown(BitWidth);
806 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000807
Craig Topperf0aeee02017-05-05 17:36:09 +0000808 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000809 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000810 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000811 }
812 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000813 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000814 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000815 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000816 KnownBits RHSKnown(BitWidth);
817 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000818
819 // Whatever high bits in c are zero are known to be zero.
Craig Topper8df66c62017-05-12 17:20:30 +0000820 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
821 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000822 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000823 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000824 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000825 KnownBits RHSKnown(BitWidth);
826 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000827
Sanjay Patela60aec12018-02-08 14:52:40 +0000828 // If the RHS is known zero, then this assumption must be wrong (nothing
829 // is unsigned less than zero). Signal a conflict and get out of here.
830 if (RHSKnown.isZero()) {
831 Known.Zero.setAllBits();
832 Known.One.setAllBits();
833 break;
834 }
835
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000836 // Whatever high bits in c are zero are known to be zero (if c is a power
837 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000838 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper8df66c62017-05-12 17:20:30 +0000839 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000840 else
Craig Topper8df66c62017-05-12 17:20:30 +0000841 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
Hal Finkel60db0582014-09-07 18:57:58 +0000842 }
843 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000844
845 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000846 // have a logical fallacy. It's possible that the assumption is not reachable,
847 // so this isn't a real bug. On the other hand, the program may have undefined
848 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
849 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topperb45eabc2017-04-26 16:39:58 +0000850 if (Known.Zero.intersects(Known.One)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000851 Known.resetAll();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000852
Vivek Pandya95906582017-10-11 17:12:59 +0000853 if (Q.ORE)
854 Q.ORE->emit([&]() {
855 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
856 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
857 CxtI)
858 << "Detected conflicting code assumptions. Program may "
859 "have undefined behavior, or compiler may have "
860 "internal error.";
861 });
Sanjay Patel25f6d712017-02-01 15:41:32 +0000862 }
Hal Finkel60db0582014-09-07 18:57:58 +0000863}
864
Sanjay Patelb7d12382017-10-16 14:46:37 +0000865/// Compute known bits from a shift operator, including those with a
866/// non-constant shift amount. Known is the output of this function. Known2 is a
867/// pre-allocated temporary with the same bit width as Known. KZF and KOF are
Vedant Kumard3196742018-02-28 19:08:52 +0000868/// operator-specific functions that, given the known-zero or known-one bits
Sanjay Patelb7d12382017-10-16 14:46:37 +0000869/// respectively, and a shift amount, compute the implied known-zero or
870/// known-one bits of the shift operator's result respectively for that shift
871/// amount. The results from calling KZF and KOF are conservatively combined for
872/// all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000873static void computeKnownBitsFromShiftOperator(
Craig Topperb45eabc2017-04-26 16:39:58 +0000874 const Operator *I, KnownBits &Known, KnownBits &Known2,
875 unsigned Depth, const Query &Q,
Sam McCalld0d43e62017-12-04 12:51:49 +0000876 function_ref<APInt(const APInt &, unsigned)> KZF,
877 function_ref<APInt(const APInt &, unsigned)> KOF) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000878 unsigned BitWidth = Known.getBitWidth();
Hal Finkelf2199b22015-10-23 20:37:08 +0000879
880 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
881 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
882
Craig Topperb45eabc2017-04-26 16:39:58 +0000883 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Sam McCalld0d43e62017-12-04 12:51:49 +0000884 Known.Zero = KZF(Known.Zero, ShiftAmt);
885 Known.One = KOF(Known.One, ShiftAmt);
Sanjay Patele272be72017-10-12 17:31:46 +0000886 // If the known bits conflict, this must be an overflowing left shift, so
887 // the shift result is poison. We can return anything we want. Choose 0 for
888 // the best folding opportunity.
889 if (Known.hasConflict())
890 Known.setAllZero();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000891
Hal Finkelf2199b22015-10-23 20:37:08 +0000892 return;
893 }
894
Craig Topperb45eabc2017-04-26 16:39:58 +0000895 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000896
Sanjay Patele272be72017-10-12 17:31:46 +0000897 // If the shift amount could be greater than or equal to the bit-width of the
898 // LHS, the value could be poison, but bail out because the check below is
899 // expensive. TODO: Should we just carry on?
Craig Topperb45eabc2017-04-26 16:39:58 +0000900 if ((~Known.Zero).uge(BitWidth)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000901 Known.resetAll();
Oliver Stannard06204112017-03-14 10:13:17 +0000902 return;
903 }
904
Craig Topperb45eabc2017-04-26 16:39:58 +0000905 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
Hal Finkelf2199b22015-10-23 20:37:08 +0000906 // BitWidth > 64 and any upper bits are known, we'll end up returning the
907 // limit value (which implies all bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000908 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
909 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
Hal Finkelf2199b22015-10-23 20:37:08 +0000910
911 // It would be more-clearly correct to use the two temporaries for this
912 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Craig Topperf0aeee02017-05-05 17:36:09 +0000913 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000914
James Molloy493e57d2015-10-26 14:10:46 +0000915 // If we know the shifter operand is nonzero, we can sometimes infer more
916 // known bits. However this is expensive to compute, so be lazy about it and
917 // only compute it when absolutely necessary.
918 Optional<bool> ShifterOperandIsNonZero;
919
Hal Finkelf2199b22015-10-23 20:37:08 +0000920 // Early exit if we can't constrain any well-defined shift amount.
Craig Topperf93b7b12017-06-14 17:04:59 +0000921 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
922 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
Sanjay Patelb7d12382017-10-16 14:46:37 +0000923 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000924 if (!*ShifterOperandIsNonZero)
925 return;
926 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000927
Craig Topperb45eabc2017-04-26 16:39:58 +0000928 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000929
Craig Topperb45eabc2017-04-26 16:39:58 +0000930 Known.Zero.setAllBits();
931 Known.One.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000932 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
933 // Combine the shifted known input bits only for those shift amounts
934 // compatible with its known constraints.
935 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
936 continue;
937 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
938 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000939 // If we know the shifter is nonzero, we may be able to infer more known
940 // bits. This check is sunk down as far as possible to avoid the expensive
941 // call to isKnownNonZero if the cheaper checks above fail.
942 if (ShiftAmt == 0) {
943 if (!ShifterOperandIsNonZero.hasValue())
944 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000945 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000946 if (*ShifterOperandIsNonZero)
947 continue;
948 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000949
Sam McCalld0d43e62017-12-04 12:51:49 +0000950 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
951 Known.One &= KOF(Known2.One, ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +0000952 }
953
Sanjay Patele272be72017-10-12 17:31:46 +0000954 // If the known bits conflict, the result is poison. Return a 0 and hope the
955 // caller can further optimize that.
956 if (Known.hasConflict())
957 Known.setAllZero();
Hal Finkelf2199b22015-10-23 20:37:08 +0000958}
959
Craig Topperb45eabc2017-04-26 16:39:58 +0000960static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
961 unsigned Depth, const Query &Q) {
962 unsigned BitWidth = Known.getBitWidth();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000963
Craig Topperb45eabc2017-04-26 16:39:58 +0000964 KnownBits Known2(Known);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000965 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000966 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000967 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000968 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +0000969 computeKnownBitsFromRangeMetadata(*MD, Known);
Jay Foad5a29c362014-05-15 12:12:55 +0000970 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000971 case Instruction::And: {
972 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000973 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
974 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000975
Chris Lattner965c7692008-06-02 01:18:21 +0000976 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000977 Known.One &= Known2.One;
Chris Lattner965c7692008-06-02 01:18:21 +0000978 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000979 Known.Zero |= Known2.Zero;
Philip Reames2d858742015-11-10 18:46:14 +0000980
981 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
982 // here we handle the more general case of adding any odd number by
983 // matching the form add(x, add(x, y)) where y is odd.
984 // TODO: This could be generalized to clearing any bit set in y where the
985 // following bit is known to be unset in y.
Roman Lebedev6959b8e2018-04-27 21:23:20 +0000986 Value *X = nullptr, *Y = nullptr;
Craig Topperb45eabc2017-04-26 16:39:58 +0000987 if (!Known.Zero[0] && !Known.One[0] &&
Roman Lebedev6959b8e2018-04-27 21:23:20 +0000988 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000989 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000990 computeKnownBits(Y, Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000991 if (Known2.countMinTrailingOnes() > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +0000992 Known.Zero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +0000993 }
Jay Foad5a29c362014-05-15 12:12:55 +0000994 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000995 }
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000996 case Instruction::Or:
Craig Topperb45eabc2017-04-26 16:39:58 +0000997 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
998 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000999
Chris Lattner965c7692008-06-02 01:18:21 +00001000 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001001 Known.Zero &= Known2.Zero;
Chris Lattner965c7692008-06-02 01:18:21 +00001002 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001003 Known.One |= Known2.One;
Jay Foad5a29c362014-05-15 12:12:55 +00001004 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001005 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001006 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1007 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001008
Chris Lattner965c7692008-06-02 01:18:21 +00001009 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001010 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
Chris Lattner965c7692008-06-02 01:18:21 +00001011 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001012 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1013 Known.Zero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +00001014 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001015 }
1016 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +00001017 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperb45eabc2017-04-26 16:39:58 +00001018 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1019 Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001020 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001021 }
1022 case Instruction::UDiv: {
1023 // For the purposes of computing leading zeros we can conservatively
1024 // treat a udiv as a logical right shift by the power of 2 known to
1025 // be less than the denominator.
Craig Topperb45eabc2017-04-26 16:39:58 +00001026 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001027 unsigned LeadZ = Known2.countMinLeadingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001028
Craig Topperf0aeee02017-05-05 17:36:09 +00001029 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001030 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001031 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1032 if (RHSMaxLeadingZeros != BitWidth)
1033 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Chris Lattner965c7692008-06-02 01:18:21 +00001034
Craig Topperb45eabc2017-04-26 16:39:58 +00001035 Known.Zero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +00001036 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001037 }
David Majnemera19d0f22016-08-06 08:16:00 +00001038 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +00001039 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +00001040 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1041 if (SelectPatternResult::isMinOrMax(SPF)) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001042 computeKnownBits(RHS, Known, Depth + 1, Q);
1043 computeKnownBits(LHS, Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +00001044 } else {
Craig Topperb45eabc2017-04-26 16:39:58 +00001045 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1046 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +00001047 }
1048
1049 unsigned MaxHighOnes = 0;
1050 unsigned MaxHighZeros = 0;
1051 if (SPF == SPF_SMAX) {
1052 // If both sides are negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +00001053 if (Known.isNegative() && Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001054 // We can derive a lower bound on the result by taking the max of the
1055 // leading one bits.
Craig Topper8df66c62017-05-12 17:20:30 +00001056 MaxHighOnes =
1057 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001058 // If either side is non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +00001059 else if (Known.isNonNegative() || Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001060 MaxHighZeros = 1;
1061 } else if (SPF == SPF_SMIN) {
1062 // If both sides are non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +00001063 if (Known.isNonNegative() && Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001064 // We can derive an upper bound on the result by taking the max of the
1065 // leading zero bits.
Craig Topper8df66c62017-05-12 17:20:30 +00001066 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1067 Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001068 // If either side is negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +00001069 else if (Known.isNegative() || Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001070 MaxHighOnes = 1;
1071 } else if (SPF == SPF_UMAX) {
1072 // We can derive a lower bound on the result by taking the max of the
1073 // leading one bits.
1074 MaxHighOnes =
Craig Topper8df66c62017-05-12 17:20:30 +00001075 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001076 } else if (SPF == SPF_UMIN) {
1077 // We can derive an upper bound on the result by taking the max of the
1078 // leading zero bits.
1079 MaxHighZeros =
Craig Topper8df66c62017-05-12 17:20:30 +00001080 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topper8f77dca2018-05-25 19:18:09 +00001081 } else if (SPF == SPF_ABS) {
1082 // RHS from matchSelectPattern returns the negation part of abs pattern.
1083 // If the negate has an NSW flag we can assume the sign bit of the result
1084 // will be 0 because that makes abs(INT_MIN) undefined.
1085 if (cast<Instruction>(RHS)->hasNoSignedWrap())
1086 MaxHighZeros = 1;
David Majnemera19d0f22016-08-06 08:16:00 +00001087 }
1088
Chris Lattner965c7692008-06-02 01:18:21 +00001089 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001090 Known.One &= Known2.One;
1091 Known.Zero &= Known2.Zero;
David Majnemera19d0f22016-08-06 08:16:00 +00001092 if (MaxHighOnes > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001093 Known.One.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001094 if (MaxHighZeros > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001095 Known.Zero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001096 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001097 }
Chris Lattner965c7692008-06-02 01:18:21 +00001098 case Instruction::FPTrunc:
1099 case Instruction::FPExt:
1100 case Instruction::FPToUI:
1101 case Instruction::FPToSI:
1102 case Instruction::SIToFP:
1103 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001104 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001105 case Instruction::PtrToInt:
1106 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001107 // Fall through and handle them the same as zext/trunc.
1108 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001109 case Instruction::ZExt:
1110 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001111 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001112
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001113 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001114 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1115 // which fall through here.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001116 Type *ScalarTy = SrcTy->getScalarType();
1117 SrcBitWidth = ScalarTy->isPointerTy() ?
1118 Q.DL.getIndexTypeSizeInBits(ScalarTy) :
1119 Q.DL.getTypeSizeInBits(ScalarTy);
Nadav Rotem15198e92012-10-26 17:17:05 +00001120
1121 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Craig Topperd938fd12017-05-03 22:07:25 +00001122 Known = Known.zextOrTrunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001123 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Craig Topperd938fd12017-05-03 22:07:25 +00001124 Known = Known.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001125 // Any top bits are known to be zero.
1126 if (BitWidth > SrcBitWidth)
Craig Topperb45eabc2017-04-26 16:39:58 +00001127 Known.Zero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001128 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001129 }
1130 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001131 Type *SrcTy = I->getOperand(0)->getType();
Vedant Kumarb3091da2018-07-06 20:17:42 +00001132 if (SrcTy->isIntOrPtrTy() &&
Chris Lattneredb84072009-07-02 16:04:08 +00001133 // TODO: For now, not handling conversions like:
1134 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001135 !I->getType()->isVectorTy()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001136 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001137 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001138 }
1139 break;
1140 }
1141 case Instruction::SExt: {
1142 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001143 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001144
Craig Topperd938fd12017-05-03 22:07:25 +00001145 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001146 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001147 // If the sign bit of the input is known set or clear, then we know the
1148 // top bits of the result.
Craig Topperd938fd12017-05-03 22:07:25 +00001149 Known = Known.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001150 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001151 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001152 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001153 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001154 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Sam McCalld0d43e62017-12-04 12:51:49 +00001155 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1156 APInt KZResult = KnownZero << ShiftAmt;
1157 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001158 // If this shift has "nsw" keyword, then the result is either a poison
1159 // value or has the same sign bit as the first operand.
Sam McCalld0d43e62017-12-04 12:51:49 +00001160 if (NSW && KnownZero.isSignBitSet())
1161 KZResult.setSignBit();
1162 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001163 };
1164
Sam McCalld0d43e62017-12-04 12:51:49 +00001165 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1166 APInt KOResult = KnownOne << ShiftAmt;
1167 if (NSW && KnownOne.isSignBitSet())
1168 KOResult.setSignBit();
1169 return KOResult;
1170 };
1171
1172 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001173 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001174 }
1175 case Instruction::LShr: {
Sanjay Patelb7d12382017-10-16 14:46:37 +00001176 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Sam McCalld0d43e62017-12-04 12:51:49 +00001177 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1178 APInt KZResult = KnownZero.lshr(ShiftAmt);
1179 // High bits known zero.
1180 KZResult.setHighBits(ShiftAmt);
1181 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001182 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001183
Sam McCalld0d43e62017-12-04 12:51:49 +00001184 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1185 return KnownOne.lshr(ShiftAmt);
1186 };
1187
1188 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001189 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001190 }
1191 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001192 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Sam McCalld0d43e62017-12-04 12:51:49 +00001193 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1194 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001195 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001196
Sam McCalld0d43e62017-12-04 12:51:49 +00001197 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1198 return KnownOne.ashr(ShiftAmt);
1199 };
1200
1201 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001202 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001203 }
Chris Lattner965c7692008-06-02 01:18:21 +00001204 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001205 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001206 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001207 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001208 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001209 }
Chris Lattner965c7692008-06-02 01:18:21 +00001210 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001211 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001212 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001213 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001214 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001215 }
1216 case Instruction::SRem:
1217 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001218 APInt RA = Rem->getValue().abs();
1219 if (RA.isPowerOf2()) {
1220 APInt LowBits = RA - 1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001221 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001222
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001223 // The low bits of the first operand are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +00001224 Known.Zero = Known2.Zero & LowBits;
1225 Known.One = Known2.One & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001226
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001227 // If the first operand is non-negative or has all low bits zero, then
1228 // the upper bits are all zero.
Craig Topperca48af32017-04-29 16:43:11 +00001229 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +00001230 Known.Zero |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001231
1232 // If the first operand is negative and not all low bits are zero, then
1233 // the upper bits are all one.
Craig Topperca48af32017-04-29 16:43:11 +00001234 if (Known2.isNegative() && LowBits.intersects(Known2.One))
Craig Topperb45eabc2017-04-26 16:39:58 +00001235 Known.One |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001236
Craig Topperb45eabc2017-04-26 16:39:58 +00001237 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001238 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001239 }
1240 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001241
1242 // The sign bit is the LHS's sign bit, except when the result of the
1243 // remainder is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +00001244 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topperda886c62017-04-16 21:46:12 +00001245 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +00001246 if (Known2.isNonNegative())
1247 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +00001248
Chris Lattner965c7692008-06-02 01:18:21 +00001249 break;
1250 case Instruction::URem: {
1251 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001252 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001253 if (RA.isPowerOf2()) {
1254 APInt LowBits = (RA - 1);
Craig Topperb45eabc2017-04-26 16:39:58 +00001255 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1256 Known.Zero |= ~LowBits;
1257 Known.One &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001258 break;
1259 }
1260 }
1261
1262 // Since the result is less than or equal to either operand, any leading
1263 // zero bits in either operand must also exist in the result.
Craig Topperb45eabc2017-04-26 16:39:58 +00001264 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1265 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001266
Craig Topper8df66c62017-05-12 17:20:30 +00001267 unsigned Leaders =
1268 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topperf0aeee02017-05-05 17:36:09 +00001269 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001270 Known.Zero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001271 break;
1272 }
1273
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001274 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001275 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001276 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001277 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001278 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001279
Chris Lattner965c7692008-06-02 01:18:21 +00001280 if (Align > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001281 Known.Zero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001282 break;
1283 }
1284 case Instruction::GetElementPtr: {
1285 // Analyze all of the subscripts of this getelementptr instruction
1286 // to determine if we can prove known low zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001287 KnownBits LocalKnown(BitWidth);
1288 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001289 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001290
1291 gep_type_iterator GTI = gep_type_begin(I);
1292 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1293 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001294 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001295 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001296
1297 // Handle case when index is vector zeroinitializer
1298 Constant *CIndex = cast<Constant>(Index);
1299 if (CIndex->isZeroValue())
1300 continue;
1301
1302 if (CIndex->getType()->isVectorTy())
1303 Index = CIndex->getSplatValue();
1304
Chris Lattner965c7692008-06-02 01:18:21 +00001305 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001306 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001307 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001308 TrailZ = std::min<unsigned>(TrailZ,
1309 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001310 } else {
1311 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001312 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001313 if (!IndexedTy->isSized()) {
1314 TrailZ = 0;
1315 break;
1316 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001317 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001318 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Craig Topperb45eabc2017-04-26 16:39:58 +00001319 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1320 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001321 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001322 unsigned(countTrailingZeros(TypeSize) +
Craig Topper8df66c62017-05-12 17:20:30 +00001323 LocalKnown.countMinTrailingZeros()));
Chris Lattner965c7692008-06-02 01:18:21 +00001324 }
1325 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001326
Craig Topperb45eabc2017-04-26 16:39:58 +00001327 Known.Zero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001328 break;
1329 }
1330 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001331 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001332 // Handle the case of a simple two-predecessor recurrence PHI.
1333 // There's a lot more that could theoretically be done here, but
1334 // this is sufficient to catch some interesting cases.
1335 if (P->getNumIncomingValues() == 2) {
1336 for (unsigned i = 0; i != 2; ++i) {
1337 Value *L = P->getIncomingValue(i);
1338 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001339 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001340 if (!LU)
1341 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001342 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001343 // Check for operations that have the property that if
1344 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001345 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001346 if (Opcode == Instruction::Add ||
1347 Opcode == Instruction::Sub ||
1348 Opcode == Instruction::And ||
1349 Opcode == Instruction::Or ||
1350 Opcode == Instruction::Mul) {
1351 Value *LL = LU->getOperand(0);
1352 Value *LR = LU->getOperand(1);
1353 // Find a recurrence.
1354 if (LL == I)
1355 L = LR;
1356 else if (LR == I)
1357 L = LL;
1358 else
1359 break;
1360 // Ok, we have a PHI of the form L op= R. Check for low
1361 // zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001362 computeKnownBits(R, Known2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001363
1364 // We need to take the minimum number of known bits
Craig Topperb45eabc2017-04-26 16:39:58 +00001365 KnownBits Known3(Known);
1366 computeKnownBits(L, Known3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001367
Craig Topper8df66c62017-05-12 17:20:30 +00001368 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1369 Known3.countMinTrailingZeros()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001370
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001371 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1372 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1373 // If initial value of recurrence is nonnegative, and we are adding
1374 // a nonnegative number with nsw, the result can only be nonnegative
1375 // or poison value regardless of the number of times we execute the
1376 // add in phi recurrence. If initial value is negative and we are
1377 // adding a negative number with nsw, the result can only be
1378 // negative or poison value. Similar arguments apply to sub and mul.
1379 //
1380 // (add non-negative, non-negative) --> non-negative
1381 // (add negative, negative) --> negative
1382 if (Opcode == Instruction::Add) {
Craig Topperca48af32017-04-29 16:43:11 +00001383 if (Known2.isNonNegative() && Known3.isNonNegative())
1384 Known.makeNonNegative();
1385 else if (Known2.isNegative() && Known3.isNegative())
1386 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001387 }
1388
1389 // (sub nsw non-negative, negative) --> non-negative
1390 // (sub nsw negative, non-negative) --> negative
1391 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperca48af32017-04-29 16:43:11 +00001392 if (Known2.isNonNegative() && Known3.isNegative())
1393 Known.makeNonNegative();
1394 else if (Known2.isNegative() && Known3.isNonNegative())
1395 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001396 }
1397
1398 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperca48af32017-04-29 16:43:11 +00001399 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1400 Known3.isNonNegative())
1401 Known.makeNonNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001402 }
1403
Chris Lattner965c7692008-06-02 01:18:21 +00001404 break;
1405 }
1406 }
1407 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001408
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001409 // Unreachable blocks may have zero-operand PHI nodes.
1410 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001411 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001412
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001413 // Otherwise take the unions of the known bit sets of the operands,
1414 // taking conservative care to avoid excessive recursion.
Craig Topperb45eabc2017-04-26 16:39:58 +00001415 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001416 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001417 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001418 break;
1419
Craig Topperb45eabc2017-04-26 16:39:58 +00001420 Known.Zero.setAllBits();
1421 Known.One.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001422 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001423 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001424 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001425
Craig Topperb45eabc2017-04-26 16:39:58 +00001426 Known2 = KnownBits(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001427 // Recurse, but cap the recursion to one level, because we don't
1428 // want to waste time spinning around in loops.
Craig Topperb45eabc2017-04-26 16:39:58 +00001429 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1430 Known.Zero &= Known2.Zero;
1431 Known.One &= Known2.One;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001432 // If all bits have been ruled out, there's no need to check
1433 // more operands.
Craig Topperb45eabc2017-04-26 16:39:58 +00001434 if (!Known.Zero && !Known.One)
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001435 break;
1436 }
1437 }
Chris Lattner965c7692008-06-02 01:18:21 +00001438 break;
1439 }
1440 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001441 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001442 // If range metadata is attached to this call, set known bits from that,
1443 // and then intersect with known bits based on other properties of the
1444 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001445 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +00001446 computeKnownBitsFromRangeMetadata(*MD, Known);
Pete Cooper35b00d52016-08-13 01:05:32 +00001447 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001448 computeKnownBits(RV, Known2, Depth + 1, Q);
1449 Known.Zero |= Known2.Zero;
1450 Known.One |= Known2.One;
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001451 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001452 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001453 switch (II->getIntrinsicID()) {
1454 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001455 case Intrinsic::bitreverse:
Craig Topperb45eabc2017-04-26 16:39:58 +00001456 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1457 Known.Zero |= Known2.Zero.reverseBits();
1458 Known.One |= Known2.One.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001459 break;
Philip Reames675418e2015-10-06 20:20:45 +00001460 case Intrinsic::bswap:
Craig Topperb45eabc2017-04-26 16:39:58 +00001461 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1462 Known.Zero |= Known2.Zero.byteSwap();
1463 Known.One |= Known2.One.byteSwap();
Philip Reames675418e2015-10-06 20:20:45 +00001464 break;
Craig Topper868813f2017-05-08 17:22:34 +00001465 case Intrinsic::ctlz: {
1466 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1467 // If we have a known 1, its position is our upper bound.
1468 unsigned PossibleLZ = Known2.One.countLeadingZeros();
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001469 // If this call is undefined for 0, the result will be less than 2^n.
1470 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
Craig Topper868813f2017-05-08 17:22:34 +00001471 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1472 unsigned LowBits = Log2_32(PossibleLZ)+1;
1473 Known.Zero.setBitsFrom(LowBits);
1474 break;
1475 }
1476 case Intrinsic::cttz: {
1477 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1478 // If we have a known 1, its position is our upper bound.
1479 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1480 // If this call is undefined for 0, the result will be less than 2^n.
1481 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1482 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1483 unsigned LowBits = Log2_32(PossibleTZ)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001484 Known.Zero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001485 break;
1486 }
1487 case Intrinsic::ctpop: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001488 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001489 // We can bound the space the count needs. Also, bits known to be zero
1490 // can't contribute to the population.
Craig Topper8df66c62017-05-12 17:20:30 +00001491 unsigned BitsPossiblySet = Known2.countMaxPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001492 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001493 Known.Zero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001494 // TODO: we could bound KnownOne using the lower bound on the number
1495 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001496 break;
1497 }
Chad Rosierb3628842011-05-26 23:13:19 +00001498 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +00001499 Known.Zero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001500 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001501 }
1502 }
1503 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001504 case Instruction::ExtractElement:
1505 // Look through extract element. At the moment we keep this simple and skip
1506 // tracking the specific element. But at least we might find information
1507 // valid for all elements of the vector (for example if vector is sign
1508 // extended, shifted, etc).
Craig Topperb45eabc2017-04-26 16:39:58 +00001509 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Bjorn Pettersson39616032016-10-06 09:56:21 +00001510 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001511 case Instruction::ExtractValue:
1512 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001513 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001514 if (EVI->getNumIndices() != 1) break;
1515 if (EVI->getIndices()[0] == 0) {
1516 switch (II->getIntrinsicID()) {
1517 default: break;
1518 case Intrinsic::uadd_with_overflow:
1519 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001520 computeKnownBitsAddSub(true, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001521 II->getArgOperand(1), false, Known, Known2,
1522 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001523 break;
1524 case Intrinsic::usub_with_overflow:
1525 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001526 computeKnownBitsAddSub(false, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001527 II->getArgOperand(1), false, Known, Known2,
1528 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001529 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001530 case Intrinsic::umul_with_overflow:
1531 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001532 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Craig Topperb45eabc2017-04-26 16:39:58 +00001533 Known, Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001534 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001535 }
1536 }
1537 }
Chris Lattner965c7692008-06-02 01:18:21 +00001538 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001539}
1540
1541/// Determine which bits of V are known to be either zero or one and return
Craig Topper6e11a052017-05-08 16:22:48 +00001542/// them.
1543KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1544 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1545 computeKnownBits(V, Known, Depth, Q);
1546 return Known;
1547}
1548
1549/// Determine which bits of V are known to be either zero or one and return
Craig Topperb45eabc2017-04-26 16:39:58 +00001550/// them in the Known bit set.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001551///
1552/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1553/// we cannot optimize based on the assumption that it is zero without changing
1554/// it to be an explicit zero. If we don't change it to zero, other code could
1555/// optimized based on the contradictory assumption that it is non-zero.
1556/// Because instcombine aggressively folds operations with undef args anyway,
1557/// this won't lose us code quality.
1558///
1559/// This function is defined on values with integer type, values with pointer
1560/// type, and vectors of integers. In the case
1561/// where V is a vector, known zero, and known one values are the
1562/// same width as the vector element, and the bit is set only if it is true
1563/// for all of the elements in the vector.
Craig Topperb45eabc2017-04-26 16:39:58 +00001564void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1565 const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001566 assert(V && "No Value?");
1567 assert(Depth <= MaxDepth && "Limit Search Depth");
Craig Topperb45eabc2017-04-26 16:39:58 +00001568 unsigned BitWidth = Known.getBitWidth();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001569
Craig Topperfde47232017-07-09 07:04:03 +00001570 assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
Craig Topper95d23472017-07-09 07:04:00 +00001571 V->getType()->isPtrOrPtrVectorTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001572 "Not integer or pointer type!");
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001573
1574 Type *ScalarTy = V->getType()->getScalarType();
1575 unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
1576 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
1577 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001578 (void)BitWidth;
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001579 (void)ExpectedWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001580
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001581 const APInt *C;
1582 if (match(V, m_APInt(C))) {
1583 // We know all of the bits for a scalar constant or a splat vector constant!
Craig Topperb45eabc2017-04-26 16:39:58 +00001584 Known.One = *C;
1585 Known.Zero = ~Known.One;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001586 return;
1587 }
1588 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001589 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001590 Known.setAllZero();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001591 return;
1592 }
1593 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001594 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001595 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001596 // We know that CDS must be a vector of integers. Take the intersection of
1597 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001598 Known.Zero.setAllBits(); Known.One.setAllBits();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001599 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Craig Topperb98ee582017-10-21 16:35:39 +00001600 APInt Elt = CDS->getElementAsAPInt(i);
Craig Topperb45eabc2017-04-26 16:39:58 +00001601 Known.Zero &= ~Elt;
1602 Known.One &= Elt;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001603 }
1604 return;
1605 }
1606
Pete Cooper35b00d52016-08-13 01:05:32 +00001607 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001608 // We know that CV must be a vector of integers. Take the intersection of
1609 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001610 Known.Zero.setAllBits(); Known.One.setAllBits();
David Majnemer3918cdd2016-05-04 06:13:33 +00001611 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1612 Constant *Element = CV->getAggregateElement(i);
1613 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1614 if (!ElementCI) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001615 Known.resetAll();
David Majnemer3918cdd2016-05-04 06:13:33 +00001616 return;
1617 }
Craig Topperb98ee582017-10-21 16:35:39 +00001618 const APInt &Elt = ElementCI->getValue();
Craig Topperb45eabc2017-04-26 16:39:58 +00001619 Known.Zero &= ~Elt;
1620 Known.One &= Elt;
David Majnemer3918cdd2016-05-04 06:13:33 +00001621 }
1622 return;
1623 }
1624
Jingyue Wu12b0c282015-06-15 05:46:29 +00001625 // Start out not knowing anything.
Craig Topperf0aeee02017-05-05 17:36:09 +00001626 Known.resetAll();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001627
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001628 // We can't imply anything about undefs.
1629 if (isa<UndefValue>(V))
1630 return;
1631
1632 // There's no point in looking through other users of ConstantData for
1633 // assumptions. Confirm that we've handled them all.
1634 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1635
Jingyue Wu12b0c282015-06-15 05:46:29 +00001636 // Limit search depth.
1637 // All recursive calls that increase depth must come after this.
1638 if (Depth == MaxDepth)
1639 return;
1640
1641 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1642 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001643 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001644 if (!GA->isInterposable())
Craig Topperb45eabc2017-04-26 16:39:58 +00001645 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001646 return;
1647 }
1648
Pete Cooper35b00d52016-08-13 01:05:32 +00001649 if (const Operator *I = dyn_cast<Operator>(V))
Craig Topperb45eabc2017-04-26 16:39:58 +00001650 computeKnownBitsFromOperator(I, Known, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001651
Craig Topperb45eabc2017-04-26 16:39:58 +00001652 // Aligned pointers have trailing zeros - refine Known.Zero set
Artur Pilipenko029d8532015-09-30 11:55:45 +00001653 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001654 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001655 if (Align)
Craig Topperb45eabc2017-04-26 16:39:58 +00001656 Known.Zero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001657 }
1658
Craig Topperb45eabc2017-04-26 16:39:58 +00001659 // computeKnownBitsFromAssume strictly refines Known.
1660 // Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001661
1662 // Check whether a nearby assume intrinsic can determine some known bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001663 computeKnownBitsFromAssume(V, Known, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001664
Craig Topperb45eabc2017-04-26 16:39:58 +00001665 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001666}
1667
Sanjay Patelaee84212014-11-04 16:27:42 +00001668/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001669/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001670/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001671/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001672bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001673 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00001674 assert(Depth <= MaxDepth && "Limit Search Depth");
1675
Simon Pilgrim9f2ae7e2018-02-06 18:39:23 +00001676 // Attempt to match against constants.
1677 if (OrZero && match(V, m_Power2OrZero()))
1678 return true;
1679 if (match(V, m_Power2()))
1680 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001681
1682 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1683 // it is shifted off the end then the result is undefined.
1684 if (match(V, m_Shl(m_One(), m_Value())))
1685 return true;
1686
Craig Topperbcfd2d12017-04-20 16:56:25 +00001687 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1688 // the bottom. If it is shifted off the bottom then the result is undefined.
1689 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001690 return true;
1691
1692 // The remaining tests are all recursive, so bail out if we hit the limit.
1693 if (Depth++ == MaxDepth)
1694 return false;
1695
Craig Topper9f008862014-04-15 04:59:12 +00001696 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001697 // A shift left or a logical shift right of a power of two is a power of two
1698 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001699 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001700 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001701 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001702
Pete Cooper35b00d52016-08-13 01:05:32 +00001703 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001704 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001705
Pete Cooper35b00d52016-08-13 01:05:32 +00001706 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001707 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1708 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001709
Duncan Sandsba286d72011-10-26 20:55:21 +00001710 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1711 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001712 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1713 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001714 return true;
1715 // X & (-X) is always a power of two or zero.
1716 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1717 return true;
1718 return false;
1719 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001720
David Majnemerb7d54092013-07-30 21:01:36 +00001721 // Adding a power-of-two or zero to the same power-of-two or zero yields
1722 // either the original power-of-two, a larger power-of-two or zero.
1723 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001724 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001725 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1726 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1727 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001728 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001729 return true;
1730 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1731 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001732 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001733 return true;
1734
1735 unsigned BitWidth = V->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00001736 KnownBits LHSBits(BitWidth);
1737 computeKnownBits(X, LHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001738
Craig Topperb45eabc2017-04-26 16:39:58 +00001739 KnownBits RHSBits(BitWidth);
1740 computeKnownBits(Y, RHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001741 // If i8 V is a power of two or zero:
1742 // ZeroBits: 1 1 1 0 1 1 1 1
1743 // ~ZeroBits: 0 0 0 1 0 0 0 0
Craig Topperb45eabc2017-04-26 16:39:58 +00001744 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
David Majnemerb7d54092013-07-30 21:01:36 +00001745 // If OrZero isn't set, we cannot give back a zero result.
1746 // Make sure either the LHS or RHS has a bit set.
Craig Topperb45eabc2017-04-26 16:39:58 +00001747 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
David Majnemerb7d54092013-07-30 21:01:36 +00001748 return true;
1749 }
1750 }
David Majnemerbeab5672013-05-18 19:30:37 +00001751
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001752 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001753 // is a power of two only if the first operand is a power of two and not
1754 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001755 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1756 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001757 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001758 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001759 }
1760
Duncan Sandsd3951082011-01-25 09:38:29 +00001761 return false;
1762}
1763
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001764/// Test whether a GEP's result is known to be non-null.
Chandler Carruth80d3e562012-12-07 02:08:58 +00001765///
1766/// Uses properties inherent in a GEP to try to determine whether it is known
1767/// to be non-null.
1768///
1769/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001770static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001771 const Query &Q) {
Manoj Gupta77eeac32018-07-09 22:27:23 +00001772 const Function *F = nullptr;
1773 if (const Instruction *I = dyn_cast<Instruction>(GEP))
1774 F = I->getFunction();
1775
1776 if (!GEP->isInBounds() ||
1777 NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001778 return false;
1779
1780 // FIXME: Support vector-GEPs.
1781 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1782
1783 // If the base pointer is non-null, we cannot walk to a null address with an
1784 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001785 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001786 return true;
1787
Chandler Carruth80d3e562012-12-07 02:08:58 +00001788 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1789 // If so, then the GEP cannot produce a null pointer, as doing so would
1790 // inherently violate the inbounds contract within address space zero.
1791 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1792 GTI != GTE; ++GTI) {
1793 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001794 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001795 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1796 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001797 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001798 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1799 if (ElementOffset > 0)
1800 return true;
1801 continue;
1802 }
1803
1804 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001805 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001806 continue;
1807
1808 // Fast path the constant operand case both for efficiency and so we don't
1809 // increment Depth when just zipping down an all-constant GEP.
1810 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1811 if (!OpC->isZero())
1812 return true;
1813 continue;
1814 }
1815
1816 // We post-increment Depth here because while isKnownNonZero increments it
1817 // as well, when we pop back up that increment won't persist. We don't want
1818 // to recurse 10k times just because we have 10k GEP operands. We don't
1819 // bail completely out because we want to handle constant GEPs regardless
1820 // of depth.
1821 if (Depth++ >= MaxDepth)
1822 continue;
1823
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001824 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001825 return true;
1826 }
1827
1828 return false;
1829}
1830
Nuno Lopes404f1062017-09-09 18:23:11 +00001831static bool isKnownNonNullFromDominatingCondition(const Value *V,
1832 const Instruction *CtxI,
1833 const DominatorTree *DT) {
1834 assert(V->getType()->isPointerTy() && "V must be pointer type");
1835 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1836
1837 if (!CtxI || !DT)
1838 return false;
1839
1840 unsigned NumUsesExplored = 0;
1841 for (auto *U : V->users()) {
1842 // Avoid massive lists
1843 if (NumUsesExplored >= DomConditionsMaxUses)
1844 break;
1845 NumUsesExplored++;
1846
1847 // If the value is used as an argument to a call or invoke, then argument
1848 // attributes may provide an answer about null-ness.
1849 if (auto CS = ImmutableCallSite(U))
1850 if (auto *CalledFunc = CS.getCalledFunction())
1851 for (const Argument &Arg : CalledFunc->args())
1852 if (CS.getArgOperand(Arg.getArgNo()) == V &&
1853 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1854 return true;
1855
1856 // Consider only compare instructions uniquely controlling a branch
1857 CmpInst::Predicate Pred;
1858 if (!match(const_cast<User *>(U),
1859 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1860 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1861 continue;
1862
Max Kazantsev2dbbd642018-08-06 11:14:18 +00001863 SmallVector<const User *, 4> WorkList;
1864 SmallPtrSet<const User *, 4> Visited;
Nuno Lopes404f1062017-09-09 18:23:11 +00001865 for (auto *CmpU : U->users()) {
Max Kazantsev2dbbd642018-08-06 11:14:18 +00001866 assert(WorkList.empty() && "Should be!");
1867 if (Visited.insert(CmpU).second)
1868 WorkList.push_back(CmpU);
Nuno Lopes404f1062017-09-09 18:23:11 +00001869
Max Kazantsev2dbbd642018-08-06 11:14:18 +00001870 while (!WorkList.empty()) {
1871 auto *Curr = WorkList.pop_back_val();
1872
1873 // If a user is an AND, add all its users to the work list. We only
1874 // propagate "pred != null" condition through AND because it is only
1875 // correct to assume that all conditions of AND are met in true branch.
1876 // TODO: Support similar logic of OR and EQ predicate?
1877 if (Pred == ICmpInst::ICMP_NE)
1878 if (auto *BO = dyn_cast<BinaryOperator>(Curr))
1879 if (BO->getOpcode() == Instruction::And) {
1880 for (auto *BOU : BO->users())
1881 if (Visited.insert(BOU).second)
1882 WorkList.push_back(BOU);
1883 continue;
1884 }
1885
1886 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
1887 assert(BI->isConditional() && "uses a comparison!");
1888
1889 BasicBlock *NonNullSuccessor =
1890 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1891 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1892 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1893 return true;
1894 } else if (Pred == ICmpInst::ICMP_NE &&
1895 match(Curr, m_Intrinsic<Intrinsic::experimental_guard>()) &&
1896 DT->dominates(cast<Instruction>(Curr), CtxI)) {
Nuno Lopes404f1062017-09-09 18:23:11 +00001897 return true;
Max Kazantsev2dbbd642018-08-06 11:14:18 +00001898 }
Nuno Lopes404f1062017-09-09 18:23:11 +00001899 }
1900 }
1901 }
1902
1903 return false;
1904}
1905
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001906/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1907/// ensure that the value it's attached to is never Value? 'RangeType' is
1908/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001909static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001910 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1911 assert(NumRanges >= 1);
1912 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001913 ConstantInt *Lower =
1914 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1915 ConstantInt *Upper =
1916 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001917 ConstantRange Range(Lower->getValue(), Upper->getValue());
1918 if (Range.contains(Value))
1919 return false;
1920 }
1921 return true;
1922}
1923
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001924/// Return true if the given value is known to be non-zero when defined. For
1925/// vectors, return true if every element is known to be non-zero when
1926/// defined. For pointers, if the context instruction and dominator tree are
1927/// specified, perform context-sensitive analysis and return true if the
1928/// pointer couldn't possibly be null at the specified instruction.
1929/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001930bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001931 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001932 if (C->isNullValue())
1933 return false;
1934 if (isa<ConstantInt>(C))
1935 // Must be non-zero due to null test above.
1936 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001937
1938 // For constant vectors, check that all elements are undefined or known
1939 // non-zero to determine that the whole vector is known non-zero.
1940 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1941 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1942 Constant *Elt = C->getAggregateElement(i);
1943 if (!Elt || Elt->isNullValue())
1944 return false;
1945 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1946 return false;
1947 }
1948 return true;
1949 }
1950
Nuno Lopes404f1062017-09-09 18:23:11 +00001951 // A global variable in address space 0 is non null unless extern weak
1952 // or an absolute symbol reference. Other address spaces may have null as a
1953 // valid address for a global, so we can't assume anything.
1954 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1955 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1956 GV->getType()->getAddressSpace() == 0)
1957 return true;
1958 } else
1959 return false;
Duncan Sandsd3951082011-01-25 09:38:29 +00001960 }
1961
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001962 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001963 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001964 // If the possible ranges don't contain zero, then the value is
1965 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001966 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001967 const APInt ZeroValue(Ty->getBitWidth(), 0);
1968 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1969 return true;
1970 }
1971 }
1972 }
1973
Karl-Johan Karlssonebaaa2d2018-05-30 15:56:46 +00001974 // Some of the tests below are recursive, so bail out if we hit the limit.
1975 if (Depth++ >= MaxDepth)
1976 return false;
1977
Nuno Lopes404f1062017-09-09 18:23:11 +00001978 // Check for pointer simplifications.
1979 if (V->getType()->isPointerTy()) {
1980 // Alloca never returns null, malloc might.
1981 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
1982 return true;
1983
1984 // A byval, inalloca, or nonnull argument is never null.
1985 if (const Argument *A = dyn_cast<Argument>(V))
1986 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
1987 return true;
1988
1989 // A Load tagged with nonnull metadata is never null.
1990 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1991 if (LI->getMetadata(LLVMContext::MD_nonnull))
1992 return true;
1993
Piotr Padlewski5642a422018-05-18 23:54:33 +00001994 if (auto CS = ImmutableCallSite(V)) {
Nuno Lopes404f1062017-09-09 18:23:11 +00001995 if (CS.isReturnNonNull())
1996 return true;
Piotr Padlewskid6f73462018-05-23 09:16:44 +00001997 if (const auto *RP = getArgumentAliasingToReturnedPointer(CS))
Karl-Johan Karlssonebaaa2d2018-05-30 15:56:46 +00001998 return isKnownNonZero(RP, Depth, Q);
Piotr Padlewski5642a422018-05-18 23:54:33 +00001999 }
Nuno Lopes404f1062017-09-09 18:23:11 +00002000 }
2001
Duncan Sandsd3951082011-01-25 09:38:29 +00002002
Nuno Lopes404f1062017-09-09 18:23:11 +00002003 // Check for recursive pointer simplifications.
Chandler Carruth80d3e562012-12-07 02:08:58 +00002004 if (V->getType()->isPointerTy()) {
Nuno Lopes404f1062017-09-09 18:23:11 +00002005 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002006 return true;
Nuno Lopes404f1062017-09-09 18:23:11 +00002007
Pete Cooper35b00d52016-08-13 01:05:32 +00002008 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002009 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00002010 return true;
2011 }
2012
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002013 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00002014
2015 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00002016 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00002017 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002018 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002019
2020 // ext X != 0 if X != 0.
2021 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002022 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002023
Duncan Sands2e9e4f12011-01-29 13:27:00 +00002024 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00002025 // if the lowest bit is shifted off the end.
Craig Topper6b3940a2017-05-03 22:25:19 +00002026 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002027 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002028 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002029 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002030 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002031
Craig Topperb45eabc2017-04-26 16:39:58 +00002032 KnownBits Known(BitWidth);
2033 computeKnownBits(X, Known, Depth, Q);
2034 if (Known.One[0])
Duncan Sandsd3951082011-01-25 09:38:29 +00002035 return true;
2036 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00002037 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00002038 // defined if the sign bit is shifted off the end.
2039 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002040 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002041 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002042 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002043 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002044
Craig Topper6e11a052017-05-08 16:22:48 +00002045 KnownBits Known = computeKnownBits(X, Depth, Q);
2046 if (Known.isNegative())
Duncan Sandsd3951082011-01-25 09:38:29 +00002047 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00002048
2049 // If the shifter operand is a constant, and all of the bits shifted
2050 // out are known to be zero, and X is known non-zero then at least one
2051 // non-zero bit must remain.
2052 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
James Molloyb6be1eb2015-09-24 16:06:32 +00002053 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2054 // Is there a known one in the portion not shifted out?
Craig Topper8df66c62017-05-12 17:20:30 +00002055 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
James Molloyb6be1eb2015-09-24 16:06:32 +00002056 return true;
2057 // Are all the bits to be shifted out known zero?
NAKAMURA Takumi76bab1f2017-07-11 02:31:51 +00002058 if (Known.countMinTrailingZeros() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002059 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00002060 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002061 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002062 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00002063 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002064 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00002065 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002066 // X + Y.
2067 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Craig Topper6e11a052017-05-08 16:22:48 +00002068 KnownBits XKnown = computeKnownBits(X, Depth, Q);
2069 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002070
2071 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002072 // zero unless both X and Y are zero.
Craig Topper6e11a052017-05-08 16:22:48 +00002073 if (XKnown.isNonNegative() && YKnown.isNonNegative())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002074 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002075 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00002076
2077 // If X and Y are both negative (as signed values) then their sum is not
2078 // zero unless both X and Y equal INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00002079 if (XKnown.isNegative() && YKnown.isNegative()) {
Duncan Sandsd3951082011-01-25 09:38:29 +00002080 APInt Mask = APInt::getSignedMaxValue(BitWidth);
2081 // The sign bit of X is set. If some other bit is set then X is not equal
2082 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00002083 if (XKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00002084 return true;
2085 // The sign bit of Y is set. If some other bit is set then Y is not equal
2086 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00002087 if (YKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00002088 return true;
2089 }
2090
2091 // The sum of a non-negative number and a power of two is not zero.
Craig Topper6e11a052017-05-08 16:22:48 +00002092 if (XKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002093 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002094 return true;
Craig Topper6e11a052017-05-08 16:22:48 +00002095 if (YKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002096 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002097 return true;
2098 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00002099 // X * Y.
2100 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00002101 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00002102 // If X and Y are non-zero then so is X * Y as long as the multiplication
2103 // does not overflow.
2104 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002105 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00002106 return true;
2107 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002108 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00002109 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002110 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2111 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002112 return true;
2113 }
James Molloy897048b2015-09-29 14:08:45 +00002114 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00002115 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00002116 // Try and detect a recurrence that monotonically increases from a
2117 // starting value, as these are common as induction variables.
2118 if (PN->getNumIncomingValues() == 2) {
2119 Value *Start = PN->getIncomingValue(0);
2120 Value *Induction = PN->getIncomingValue(1);
2121 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2122 std::swap(Start, Induction);
2123 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2124 if (!C->isZero() && !C->isNegative()) {
2125 ConstantInt *X;
2126 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2127 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2128 !X->isNegative())
2129 return true;
2130 }
2131 }
2132 }
Jun Bum Limca832662016-02-01 17:03:07 +00002133 // Check if all incoming values are non-zero constant.
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002134 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
Craig Topper79ab6432017-07-06 18:39:47 +00002135 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
Jun Bum Limca832662016-02-01 17:03:07 +00002136 });
2137 if (AllNonZeroConstants)
2138 return true;
James Molloy897048b2015-09-29 14:08:45 +00002139 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002140
Craig Topperb45eabc2017-04-26 16:39:58 +00002141 KnownBits Known(BitWidth);
2142 computeKnownBits(V, Known, Depth, Q);
2143 return Known.One != 0;
Duncan Sandsd3951082011-01-25 09:38:29 +00002144}
2145
James Molloy1d88d6f2015-10-22 13:18:42 +00002146/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00002147static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2148 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00002149 if (!BO || BO->getOpcode() != Instruction::Add)
2150 return false;
2151 Value *Op = nullptr;
2152 if (V2 == BO->getOperand(0))
2153 Op = BO->getOperand(1);
2154 else if (V2 == BO->getOperand(1))
2155 Op = BO->getOperand(0);
2156 else
2157 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002158 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002159}
2160
2161/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002162static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
Craig Topper3002d5b2017-06-06 07:13:15 +00002163 if (V1 == V2)
James Molloy1d88d6f2015-10-22 13:18:42 +00002164 return false;
2165 if (V1->getType() != V2->getType())
2166 // We can't look through casts yet.
2167 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002168 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002169 return true;
2170
Craig Topper3002d5b2017-06-06 07:13:15 +00002171 if (V1->getType()->isIntOrIntVectorTy()) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002172 // Are any known bits in V1 contradictory to known bits in V2? If V1
2173 // has a known zero where V2 has a known one, they must not be equal.
Craig Topper8e662f72017-06-06 07:13:11 +00002174 KnownBits Known1 = computeKnownBits(V1, 0, Q);
2175 KnownBits Known2 = computeKnownBits(V2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002176
Craig Topper8365df82017-06-06 07:13:09 +00002177 if (Known1.Zero.intersects(Known2.One) ||
2178 Known2.Zero.intersects(Known1.One))
James Molloy1d88d6f2015-10-22 13:18:42 +00002179 return true;
2180 }
2181 return false;
2182}
2183
Sanjay Patelaee84212014-11-04 16:27:42 +00002184/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2185/// simplify operations downstream. Mask is known to be zero for bits that V
2186/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002187///
2188/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002189/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002190/// where V is a vector, the mask, known zero, and known one values are the
2191/// same width as the vector element, and the bit is set only if it is true
2192/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002193bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002194 const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002195 KnownBits Known(Mask.getBitWidth());
2196 computeKnownBits(V, Known, Depth, Q);
2197 return Mask.isSubsetOf(Known.Zero);
Chris Lattner965c7692008-06-02 01:18:21 +00002198}
2199
Sanjay Patela06d9892016-06-22 19:20:59 +00002200/// For vector constants, loop over the elements and find the constant with the
2201/// minimum number of sign bits. Return 0 if the value is not a vector constant
2202/// or if any element was not analyzed; otherwise, return the count for the
2203/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002204static unsigned computeNumSignBitsVectorConstant(const Value *V,
2205 unsigned TyBits) {
2206 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002207 if (!CV || !CV->getType()->isVectorTy())
2208 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002209
Sanjay Patela06d9892016-06-22 19:20:59 +00002210 unsigned MinSignBits = TyBits;
2211 unsigned NumElts = CV->getType()->getVectorNumElements();
2212 for (unsigned i = 0; i != NumElts; ++i) {
2213 // If we find a non-ConstantInt, bail out.
2214 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2215 if (!Elt)
2216 return 0;
2217
Craig Topper8e8b6ef2017-10-21 16:35:41 +00002218 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
Sanjay Patela06d9892016-06-22 19:20:59 +00002219 }
2220
2221 return MinSignBits;
2222}
Chris Lattner965c7692008-06-02 01:18:21 +00002223
Sanjoy Das39a684d2017-02-25 20:30:45 +00002224static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2225 const Query &Q);
2226
2227static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2228 const Query &Q) {
2229 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2230 assert(Result > 0 && "At least one sign bit needs to be present!");
2231 return Result;
2232}
2233
Sanjay Patelaee84212014-11-04 16:27:42 +00002234/// Return the number of times the sign bit of the register is replicated into
2235/// the other bits. We know that at least 1 bit is always equal to the sign bit
2236/// (itself), but other cases can give us information. For example, immediately
2237/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002238/// other, so we return 3. For vectors, return the number of sign bits for the
Vedant Kumard3196742018-02-28 19:08:52 +00002239/// vector element with the minimum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002240static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2241 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00002242 assert(Depth <= MaxDepth && "Limit Search Depth");
Sanjoy Das39a684d2017-02-25 20:30:45 +00002243
2244 // We return the minimum number of sign bits that are guaranteed to be present
2245 // in V, so for undef we have to conservatively return 1. We don't have the
2246 // same behavior for poison though -- that's a FIXME today.
2247
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00002248 Type *ScalarTy = V->getType()->getScalarType();
2249 unsigned TyBits = ScalarTy->isPointerTy() ?
2250 Q.DL.getIndexTypeSizeInBits(ScalarTy) :
2251 Q.DL.getTypeSizeInBits(ScalarTy);
2252
Chris Lattner965c7692008-06-02 01:18:21 +00002253 unsigned Tmp, Tmp2;
2254 unsigned FirstAnswer = 1;
2255
Jay Foada0653a32014-05-14 21:14:37 +00002256 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002257 // below.
2258
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002259 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002260 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002261
Pete Cooper35b00d52016-08-13 01:05:32 +00002262 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002263 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002264 default: break;
2265 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002266 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002267 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002268
Nadav Rotemc99a3872015-03-06 00:23:58 +00002269 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002270 const APInt *Denominator;
2271 // sdiv X, C -> adds log(C) sign bits.
2272 if (match(U->getOperand(1), m_APInt(Denominator))) {
2273
2274 // Ignore non-positive denominator.
2275 if (!Denominator->isStrictlyPositive())
2276 break;
2277
2278 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002279 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002280
2281 // Add floor(log(C)) bits to the numerator bits.
2282 return std::min(TyBits, NumBits + Denominator->logBase2());
2283 }
2284 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002285 }
2286
2287 case Instruction::SRem: {
2288 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002289 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2290 // positive constant. This let us put a lower bound on the number of sign
2291 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002292 if (match(U->getOperand(1), m_APInt(Denominator))) {
2293
2294 // Ignore non-positive denominator.
2295 if (!Denominator->isStrictlyPositive())
2296 break;
2297
2298 // Calculate the incoming numerator bits. SRem by a positive constant
2299 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002300 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002301 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002302
2303 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002304 // denominator. Given that the denominator is positive, there are two
2305 // cases:
2306 //
2307 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2308 // (1 << ceilLogBase2(C)).
2309 //
2310 // 2. the numerator is negative. Then the result range is (-C,0] and
2311 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2312 //
2313 // Thus a lower bound on the number of sign bits is `TyBits -
2314 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002315
Sanjoy Dase561fee2015-03-25 22:33:53 +00002316 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002317 return std::max(NumrBits, ResBits);
2318 }
2319 break;
2320 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002321
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002322 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002323 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002324 // ashr X, C -> adds C sign bits. Vectors too.
2325 const APInt *ShAmt;
2326 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Simon Pilgrim67207262018-01-01 22:44:59 +00002327 if (ShAmt->uge(TyBits))
Sanjoy Das39a684d2017-02-25 20:30:45 +00002328 break; // Bad shift.
Simon Pilgrim67207262018-01-01 22:44:59 +00002329 unsigned ShAmtLimited = ShAmt->getZExtValue();
Sanjoy Das39a684d2017-02-25 20:30:45 +00002330 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002331 if (Tmp > TyBits) Tmp = TyBits;
2332 }
2333 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002334 }
2335 case Instruction::Shl: {
2336 const APInt *ShAmt;
2337 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002338 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002339 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Simon Pilgrim67207262018-01-01 22:44:59 +00002340 if (ShAmt->uge(TyBits) || // Bad shift.
2341 ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002342 Tmp2 = ShAmt->getZExtValue();
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002343 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002344 }
2345 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002346 }
Chris Lattner965c7692008-06-02 01:18:21 +00002347 case Instruction::And:
2348 case Instruction::Or:
2349 case Instruction::Xor: // NOT is handled here.
2350 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002351 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002352 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002353 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002354 FirstAnswer = std::min(Tmp, Tmp2);
2355 // We computed what we know about the sign bits as our first
2356 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002357 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002358 }
2359 break;
2360
2361 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002362 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002363 if (Tmp == 1) break;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002364 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002365 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002366
Chris Lattner965c7692008-06-02 01:18:21 +00002367 case Instruction::Add:
2368 // Add can have at most one carry bit. Thus we know that the output
2369 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002370 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002371 if (Tmp == 1) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002372
Chris Lattner965c7692008-06-02 01:18:21 +00002373 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002374 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002375 if (CRHS->isAllOnesValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002376 KnownBits Known(TyBits);
2377 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002378
Chris Lattner965c7692008-06-02 01:18:21 +00002379 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2380 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002381 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002382 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002383
Chris Lattner965c7692008-06-02 01:18:21 +00002384 // If we are subtracting one from a positive number, there is no carry
2385 // out of the result.
Craig Topperca48af32017-04-29 16:43:11 +00002386 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002387 return Tmp;
2388 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002389
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002390 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002391 if (Tmp2 == 1) break;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002392 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002393
Chris Lattner965c7692008-06-02 01:18:21 +00002394 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002395 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002396 if (Tmp2 == 1) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002397
Chris Lattner965c7692008-06-02 01:18:21 +00002398 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002399 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002400 if (CLHS->isNullValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002401 KnownBits Known(TyBits);
2402 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002403 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2404 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002405 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002406 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002407
Chris Lattner965c7692008-06-02 01:18:21 +00002408 // If the input is known to be positive (the sign bit is known clear),
2409 // the output of the NEG has the same number of sign bits as the input.
Craig Topperca48af32017-04-29 16:43:11 +00002410 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002411 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002412
Chris Lattner965c7692008-06-02 01:18:21 +00002413 // Otherwise, we treat this like a SUB.
2414 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002415
Chris Lattner965c7692008-06-02 01:18:21 +00002416 // Sub can have at most one carry bit. Thus we know that the output
2417 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002418 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002419 if (Tmp == 1) break;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002420 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002421
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002422 case Instruction::Mul: {
2423 // The output of the Mul can be at most twice the valid bits in the inputs.
2424 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002425 if (SignBitsOp0 == 1) break;
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002426 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Stanislav Mekhanoshinb8269a92018-07-25 16:39:24 +00002427 if (SignBitsOp1 == 1) break;
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002428 unsigned OutValidBits =
2429 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2430 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2431 }
2432
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002433 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002434 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002435 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002436 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002437 if (NumIncomingValues > 4) break;
2438 // Unreachable blocks may have zero-operand PHI nodes.
2439 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002440
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002441 // Take the minimum of all incoming values. This can't infinitely loop
2442 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002443 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002444 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002445 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002446 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002447 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002448 }
2449 return Tmp;
2450 }
2451
Chris Lattner965c7692008-06-02 01:18:21 +00002452 case Instruction::Trunc:
2453 // FIXME: it's tricky to do anything useful for this, but it is an important
2454 // case for targets like X86.
2455 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002456
2457 case Instruction::ExtractElement:
2458 // Look through extract element. At the moment we keep this simple and skip
2459 // tracking the specific element. But at least we might find information
2460 // valid for all elements of the vector (for example if vector is sign
2461 // extended, shifted, etc).
2462 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002463 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002464
Chris Lattner965c7692008-06-02 01:18:21 +00002465 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2466 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002467
2468 // If we can examine all elements of a vector constant successfully, we're
2469 // done (we can't do any better than that). If not, keep trying.
2470 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2471 return VecSignBits;
2472
Craig Topperb45eabc2017-04-26 16:39:58 +00002473 KnownBits Known(TyBits);
2474 computeKnownBits(V, Known, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002475
Sanjay Patele0536212016-06-23 17:41:59 +00002476 // If we know that the sign bit is either zero or one, determine the number of
2477 // identical bits in the top of the input value.
Craig Topper8df66c62017-05-12 17:20:30 +00002478 return std::max(FirstAnswer, Known.countMinSignBits());
Chris Lattner965c7692008-06-02 01:18:21 +00002479}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002480
Sanjay Patelaee84212014-11-04 16:27:42 +00002481/// This function computes the integer multiple of Base that equals V.
2482/// If successful, it returns true and returns the multiple in
2483/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002484/// through SExt instructions only if LookThroughSExt is true.
2485bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002486 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002487 const unsigned MaxDepth = 6;
2488
Dan Gohman6a976bb2009-11-18 00:58:27 +00002489 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002490 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002491 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002492
Chris Lattner229907c2011-07-18 04:54:35 +00002493 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002494
Dan Gohman6a976bb2009-11-18 00:58:27 +00002495 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002496
2497 if (Base == 0)
2498 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002499
Victor Hernandez47444882009-11-10 08:28:35 +00002500 if (Base == 1) {
2501 Multiple = V;
2502 return true;
2503 }
2504
2505 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2506 Constant *BaseVal = ConstantInt::get(T, Base);
2507 if (CO && CO == BaseVal) {
2508 // Multiple is 1.
2509 Multiple = ConstantInt::get(T, 1);
2510 return true;
2511 }
2512
2513 if (CI && CI->getZExtValue() % Base == 0) {
2514 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002515 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002516 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002517
Victor Hernandez47444882009-11-10 08:28:35 +00002518 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002519
Victor Hernandez47444882009-11-10 08:28:35 +00002520 Operator *I = dyn_cast<Operator>(V);
2521 if (!I) return false;
2522
2523 switch (I->getOpcode()) {
2524 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002525 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002526 if (!LookThroughSExt) return false;
2527 // otherwise fall through to ZExt
Galina Kistanova244621f2017-05-31 22:16:24 +00002528 LLVM_FALLTHROUGH;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002529 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002530 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2531 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002532 case Instruction::Shl:
2533 case Instruction::Mul: {
2534 Value *Op0 = I->getOperand(0);
2535 Value *Op1 = I->getOperand(1);
2536
2537 if (I->getOpcode() == Instruction::Shl) {
2538 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2539 if (!Op1CI) return false;
2540 // Turn Op0 << Op1 into Op0 * 2^Op1
2541 APInt Op1Int = Op1CI->getValue();
2542 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002543 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002544 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002545 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002546 }
2547
Craig Topper9f008862014-04-15 04:59:12 +00002548 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002549 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2550 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2551 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002552 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002553 MulC->getType()->getPrimitiveSizeInBits())
2554 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002555 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002556 MulC->getType()->getPrimitiveSizeInBits())
2557 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002558
Chris Lattner72d283c2010-09-05 17:20:46 +00002559 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2560 Multiple = ConstantExpr::getMul(MulC, Op1C);
2561 return true;
2562 }
Victor Hernandez47444882009-11-10 08:28:35 +00002563
2564 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2565 if (Mul0CI->getValue() == 1) {
2566 // V == Base * Op1, so return Op1
2567 Multiple = Op1;
2568 return true;
2569 }
2570 }
2571
Craig Topper9f008862014-04-15 04:59:12 +00002572 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002573 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2574 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2575 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002576 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002577 MulC->getType()->getPrimitiveSizeInBits())
2578 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002579 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002580 MulC->getType()->getPrimitiveSizeInBits())
2581 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002582
Chris Lattner72d283c2010-09-05 17:20:46 +00002583 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2584 Multiple = ConstantExpr::getMul(MulC, Op0C);
2585 return true;
2586 }
Victor Hernandez47444882009-11-10 08:28:35 +00002587
2588 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2589 if (Mul1CI->getValue() == 1) {
2590 // V == Base * Op0, so return Op0
2591 Multiple = Op0;
2592 return true;
2593 }
2594 }
Victor Hernandez47444882009-11-10 08:28:35 +00002595 }
2596 }
2597
2598 // We could not determine if V is a multiple of Base.
2599 return false;
2600}
2601
David Majnemerb4b27232016-04-19 19:10:21 +00002602Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2603 const TargetLibraryInfo *TLI) {
2604 const Function *F = ICS.getCalledFunction();
2605 if (!F)
2606 return Intrinsic::not_intrinsic;
2607
2608 if (F->isIntrinsic())
2609 return F->getIntrinsicID();
2610
2611 if (!TLI)
2612 return Intrinsic::not_intrinsic;
2613
David L. Jonesd21529f2017-01-23 23:16:46 +00002614 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002615 // We're going to make assumptions on the semantics of the functions, check
2616 // that the target knows that it's available in this environment and it does
2617 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002618 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2619 return Intrinsic::not_intrinsic;
2620
2621 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002622 return Intrinsic::not_intrinsic;
2623
2624 // Otherwise check if we have a call to a function that can be turned into a
2625 // vector intrinsic.
2626 switch (Func) {
2627 default:
2628 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002629 case LibFunc_sin:
2630 case LibFunc_sinf:
2631 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002632 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002633 case LibFunc_cos:
2634 case LibFunc_cosf:
2635 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002636 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002637 case LibFunc_exp:
2638 case LibFunc_expf:
2639 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002640 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002641 case LibFunc_exp2:
2642 case LibFunc_exp2f:
2643 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002644 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002645 case LibFunc_log:
2646 case LibFunc_logf:
2647 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002648 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002649 case LibFunc_log10:
2650 case LibFunc_log10f:
2651 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002652 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002653 case LibFunc_log2:
2654 case LibFunc_log2f:
2655 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002656 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002657 case LibFunc_fabs:
2658 case LibFunc_fabsf:
2659 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002660 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002661 case LibFunc_fmin:
2662 case LibFunc_fminf:
2663 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002664 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002665 case LibFunc_fmax:
2666 case LibFunc_fmaxf:
2667 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002668 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002669 case LibFunc_copysign:
2670 case LibFunc_copysignf:
2671 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002672 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002673 case LibFunc_floor:
2674 case LibFunc_floorf:
2675 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002676 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002677 case LibFunc_ceil:
2678 case LibFunc_ceilf:
2679 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002680 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002681 case LibFunc_trunc:
2682 case LibFunc_truncf:
2683 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002684 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002685 case LibFunc_rint:
2686 case LibFunc_rintf:
2687 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002688 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002689 case LibFunc_nearbyint:
2690 case LibFunc_nearbyintf:
2691 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002692 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002693 case LibFunc_round:
2694 case LibFunc_roundf:
2695 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002696 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002697 case LibFunc_pow:
2698 case LibFunc_powf:
2699 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002700 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002701 case LibFunc_sqrt:
2702 case LibFunc_sqrtf:
2703 case LibFunc_sqrtl:
Sanjay Patel86d24f12017-11-06 22:40:09 +00002704 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002705 }
2706
2707 return Intrinsic::not_intrinsic;
2708}
2709
Sanjay Patelaee84212014-11-04 16:27:42 +00002710/// Return true if we can prove that the specified FP value is never equal to
2711/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002712///
2713/// NOTE: this function will need to be revisited when we support non-default
2714/// rounding modes!
David Majnemer3ee5f342016-04-13 06:55:52 +00002715bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2716 unsigned Depth) {
Sanjay Patel20df88a2017-11-13 17:56:23 +00002717 if (auto *CFP = dyn_cast<ConstantFP>(V))
Chris Lattnera12a6de2008-06-02 01:29:46 +00002718 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002719
Sanjay Patel20df88a2017-11-13 17:56:23 +00002720 // Limit search depth.
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002721 if (Depth == MaxDepth)
Sanjay Patel20df88a2017-11-13 17:56:23 +00002722 return false;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002723
Sanjay Patel20df88a2017-11-13 17:56:23 +00002724 auto *Op = dyn_cast<Operator>(V);
2725 if (!Op)
2726 return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002727
Sanjay Patel20df88a2017-11-13 17:56:23 +00002728 // Check if the nsz fast-math flag is set.
2729 if (auto *FPO = dyn_cast<FPMathOperator>(Op))
Michael Ilseman0f128372012-12-06 00:07:09 +00002730 if (FPO->hasNoSignedZeros())
2731 return true;
2732
Sanjay Patel9e3d8f42017-11-13 17:40:47 +00002733 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
Sanjay Patel93e64dd2018-03-25 21:16:33 +00002734 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
Sanjay Patel9e3d8f42017-11-13 17:40:47 +00002735 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002736
Chris Lattnera12a6de2008-06-02 01:29:46 +00002737 // sitofp and uitofp turn into +0.0 for zero.
Sanjay Patel20df88a2017-11-13 17:56:23 +00002738 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
Chris Lattnera12a6de2008-06-02 01:29:46 +00002739 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002740
Sanjay Patel20df88a2017-11-13 17:56:23 +00002741 if (auto *Call = dyn_cast<CallInst>(Op)) {
2742 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002743 switch (IID) {
2744 default:
2745 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002746 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002747 case Intrinsic::sqrt:
Matt Arsenault56b31d82018-08-06 15:16:26 +00002748 case Intrinsic::canonicalize:
Sanjay Patel20df88a2017-11-13 17:56:23 +00002749 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002750 // fabs(x) != -0.0
2751 case Intrinsic::fabs:
2752 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002753 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002754 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002755
Chris Lattnera12a6de2008-06-02 01:29:46 +00002756 return false;
2757}
2758
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002759/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2760/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2761/// bit despite comparing equal.
2762static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2763 const TargetLibraryInfo *TLI,
2764 bool SignBitOnly,
2765 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002766 // TODO: This function does not do the right thing when SignBitOnly is true
2767 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2768 // which flips the sign bits of NaNs. See
2769 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2770
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002771 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2772 return !CFP->getValueAPF().isNegative() ||
2773 (!SignBitOnly && CFP->getValueAPF().isZero());
2774 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002775
Craig Topper69c89722018-02-26 22:33:17 +00002776 // Handle vector of constants.
2777 if (auto *CV = dyn_cast<Constant>(V)) {
2778 if (CV->getType()->isVectorTy()) {
2779 unsigned NumElts = CV->getType()->getVectorNumElements();
2780 for (unsigned i = 0; i != NumElts; ++i) {
2781 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
2782 if (!CFP)
2783 return false;
2784 if (CFP->getValueAPF().isNegative() &&
2785 (SignBitOnly || !CFP->getValueAPF().isZero()))
2786 return false;
2787 }
2788
2789 // All non-negative ConstantFPs.
2790 return true;
2791 }
2792 }
2793
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002794 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002795 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002796
2797 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002798 if (!I)
2799 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002800
2801 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002802 default:
2803 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002804 // Unsigned integers are always nonnegative.
2805 case Instruction::UIToFP:
2806 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002807 case Instruction::FMul:
2808 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002809 if (I->getOperand(0) == I->getOperand(1) &&
2810 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002811 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002812
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002813 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002814 case Instruction::FAdd:
2815 case Instruction::FDiv:
2816 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002817 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2818 Depth + 1) &&
2819 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2820 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002821 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002822 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2823 Depth + 1) &&
2824 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2825 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002826 case Instruction::FPExt:
2827 case Instruction::FPTrunc:
2828 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002829 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2830 Depth + 1);
Craig Topper30199102018-02-27 19:53:45 +00002831 case Instruction::ExtractElement:
2832 // Look through extract element. At the moment we keep this simple and skip
2833 // tracking the specific element. But at least we might find information
2834 // valid for all elements of the vector.
2835 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2836 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002837 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002838 const auto *CI = cast<CallInst>(I);
2839 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002840 switch (IID) {
2841 default:
2842 break;
2843 case Intrinsic::maxnum:
Sanjay Patelf9a0d592018-08-02 13:46:20 +00002844 return (isKnownNeverNaN(I->getOperand(0)) &&
2845 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
2846 SignBitOnly, Depth + 1)) ||
2847 (isKnownNeverNaN(I->getOperand(1)) &&
2848 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
2849 SignBitOnly, Depth + 1));
2850
David Majnemer3ee5f342016-04-13 06:55:52 +00002851 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002852 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2853 Depth + 1) &&
2854 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2855 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002856 case Intrinsic::exp:
2857 case Intrinsic::exp2:
2858 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002859 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002860
2861 case Intrinsic::sqrt:
2862 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2863 if (!SignBitOnly)
2864 return true;
2865 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2866 CannotBeNegativeZero(CI->getOperand(0), TLI));
2867
David Majnemer3ee5f342016-04-13 06:55:52 +00002868 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002869 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002870 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002871 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002872 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002873 }
Justin Lebar322c1272017-01-27 00:58:34 +00002874 // TODO: This is not correct. Given that exp is an integer, here are the
2875 // ways that pow can return a negative value:
2876 //
2877 // pow(x, exp) --> negative if exp is odd and x is negative.
2878 // pow(-0, exp) --> -inf if exp is negative odd.
2879 // pow(-0, exp) --> -0 if exp is positive odd.
2880 // pow(-inf, exp) --> -0 if exp is negative odd.
2881 // pow(-inf, exp) --> -inf if exp is positive odd.
2882 //
2883 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2884 // but we must return false if x == -0. Unfortunately we do not currently
2885 // have a way of expressing this constraint. See details in
2886 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002887 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2888 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002889
David Majnemer3ee5f342016-04-13 06:55:52 +00002890 case Intrinsic::fma:
2891 case Intrinsic::fmuladd:
2892 // x*x+y is non-negative if y is non-negative.
2893 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002894 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2895 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2896 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002897 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002898 break;
2899 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002900 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002901}
2902
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002903bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2904 const TargetLibraryInfo *TLI) {
2905 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2906}
2907
2908bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2909 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2910}
2911
Sanjay Patel6840c5f2017-09-05 23:13:13 +00002912bool llvm::isKnownNeverNaN(const Value *V) {
2913 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
2914
2915 // If we're told that NaNs won't happen, assume they won't.
2916 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
2917 if (FPMathOp->hasNoNaNs())
2918 return true;
2919
2920 // TODO: Handle instructions and potentially recurse like other 'isKnown'
2921 // functions. For example, the result of sitofp is never NaN.
2922
2923 // Handle scalar constants.
2924 if (auto *CFP = dyn_cast<ConstantFP>(V))
2925 return !CFP->isNaN();
2926
2927 // Bail out for constant expressions, but try to handle vector constants.
2928 if (!V->getType()->isVectorTy() || !isa<Constant>(V))
2929 return false;
2930
2931 // For vectors, verify that each element is not NaN.
2932 unsigned NumElts = V->getType()->getVectorNumElements();
2933 for (unsigned i = 0; i != NumElts; ++i) {
2934 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
2935 if (!Elt)
2936 return false;
2937 if (isa<UndefValue>(Elt))
2938 continue;
2939 auto *CElt = dyn_cast<ConstantFP>(Elt);
2940 if (!CElt || CElt->isNaN())
2941 return false;
2942 }
2943 // All elements were confirmed not-NaN or undefined.
2944 return true;
2945}
2946
Sanjay Patelaee84212014-11-04 16:27:42 +00002947/// If the specified value can be set by repeating the same byte in memory,
2948/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002949/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2950/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2951/// byte store (e.g. i16 0x1234), return null.
2952Value *llvm::isBytewiseValue(Value *V) {
2953 // All byte-wide stores are splatable, even of arbitrary variables.
2954 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002955
2956 // Handle 'null' ConstantArrayZero etc.
2957 if (Constant *C = dyn_cast<Constant>(V))
2958 if (C->isNullValue())
2959 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002960
Chris Lattner9cb10352010-12-26 20:15:01 +00002961 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002962 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002963 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2964 if (CFP->getType()->isFloatTy())
2965 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2966 if (CFP->getType()->isDoubleTy())
2967 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2968 // Don't handle long double formats, which have strange constraints.
2969 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002970
Benjamin Kramer17d90152015-02-07 19:29:02 +00002971 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002972 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002973 if (CI->getBitWidth() % 8 == 0) {
2974 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002975
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002976 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002977 return nullptr;
2978 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002979 }
2980 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002981
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002982 // A ConstantDataArray/Vector is splatable if all its members are equal and
2983 // also splatable.
2984 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2985 Value *Elt = CA->getElementAsConstant(0);
2986 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002987 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002988 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002989
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002990 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2991 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002992 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002993
Chris Lattner9cb10352010-12-26 20:15:01 +00002994 return Val;
2995 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002996
Chris Lattner9cb10352010-12-26 20:15:01 +00002997 // Conceptually, we could handle things like:
2998 // %a = zext i8 %X to i16
2999 // %b = shl i16 %a, 8
3000 // %c = or i16 %a, %b
3001 // but until there is an example that actually needs this, it doesn't seem
3002 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00003003 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00003004}
3005
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003006// This is the recursive version of BuildSubAggregate. It takes a few different
3007// arguments. Idxs is the index within the nested struct From that we are
3008// looking at now (which is of type IndexedType). IdxSkip is the number of
3009// indices from Idxs that should be left out when inserting into the resulting
3010// struct. To is the result struct built so far, new insertvalue instructions
3011// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00003012static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00003013 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00003014 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00003015 Instruction *InsertBefore) {
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003016 StructType *STy = dyn_cast<StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003017 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003018 // Save the original To argument so we can modify it
3019 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003020 // General case, the type indexed by Idxs is a struct
3021 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3022 // Process each struct element recursively
3023 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003024 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003025 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003026 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003027 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003028 if (!To) {
3029 // Couldn't find any inserted value for this index? Cleanup
3030 while (PrevTo != OrigTo) {
3031 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3032 PrevTo = Del->getAggregateOperand();
3033 Del->eraseFromParent();
3034 }
3035 // Stop processing elements
3036 break;
3037 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003038 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00003039 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003040 if (To)
3041 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003042 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003043 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3044 // the struct's elements had a value that was inserted directly. In the latter
3045 // case, perhaps we can't determine each of the subelements individually, but
3046 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00003047
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003048 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00003049 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003050
3051 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00003052 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003053
Vedant Kumard3196742018-02-28 19:08:52 +00003054 // Insert the value in the new (sub) aggregate
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003055 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3056 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003057}
3058
3059// This helper takes a nested struct and extracts a part of it (which is again a
3060// struct) into a new value. For example, given the struct:
3061// { a, { b, { c, d }, e } }
3062// and the indices "1, 1" this returns
3063// { c, d }.
3064//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003065// It does this by inserting an insertvalue for each element in the resulting
3066// struct, as opposed to just inserting a single struct. This will only work if
3067// each of the elements of the substruct are known (ie, inserted into From by an
3068// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003069//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003070// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00003071static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00003072 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00003073 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00003074 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00003075 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00003076 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00003077 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003078 unsigned IdxSkip = Idxs.size();
3079
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003080 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003081}
3082
Vedant Kumard3196742018-02-28 19:08:52 +00003083/// Given an aggregate and a sequence of indices, see if the scalar value
3084/// indexed is already around as a register, for example if it was inserted
3085/// directly into the aggregate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00003086///
3087/// If InsertBefore is not null, this function will duplicate (modified)
3088/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00003089Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3090 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003091 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003092 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00003093 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003094 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003095 // We have indices, so V should have an indexable type.
3096 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3097 "Not looking at a struct or array?");
3098 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3099 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00003100
Chris Lattner67058832012-01-25 06:48:06 +00003101 if (Constant *C = dyn_cast<Constant>(V)) {
3102 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00003103 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00003104 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3105 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003106
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003107 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003108 // Loop the indices for the insertvalue instruction in parallel with the
3109 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00003110 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003111 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3112 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00003113 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003114 // We can't handle this without inserting insertvalues
3115 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00003116 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003117
3118 // The requested index identifies a part of a nested aggregate. Handle
3119 // this specially. For example,
3120 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3121 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3122 // %C = extractvalue {i32, { i32, i32 } } %B, 1
3123 // This can be changed into
3124 // %A = insertvalue {i32, i32 } undef, i32 10, 0
3125 // %C = insertvalue {i32, i32 } %A, i32 11, 1
3126 // which allows the unused 0,0 element from the nested struct to be
3127 // removed.
3128 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3129 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00003130 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003131
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003132 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00003133 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003134 // looking for, then.
3135 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00003136 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003137 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003138 }
3139 // If we end up here, the indices of the insertvalue match with those
3140 // requested (though possibly only partially). Now we recursively look at
3141 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00003142 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00003143 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003144 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003145 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003146
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003147 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00003148 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003149 // something else, we can extract from that something else directly instead.
3150 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00003151
3152 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00003153 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003154 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00003155 SmallVector<unsigned, 5> Idxs;
3156 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003157 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00003158 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00003159
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003160 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00003161 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003162
Craig Topper1bef2c82012-12-22 19:15:35 +00003163 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003164 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00003165
Jay Foad57aa6362011-07-13 10:26:04 +00003166 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003167 }
3168 // Otherwise, we don't know (such as, extracting from a function return value
3169 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00003170 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003171}
Evan Chengda3db112008-06-30 07:31:25 +00003172
Sanjay Patelaee84212014-11-04 16:27:42 +00003173/// Analyze the specified pointer to see if it can be expressed as a base
3174/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00003175Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003176 const DataLayout &DL) {
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00003177 unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00003178 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00003179
3180 // We walk up the defs but use a visited set to handle unreachable code. In
3181 // that case, we stop after accumulating the cycle once (not that it
3182 // matters).
3183 SmallPtrSet<Value *, 16> Visited;
3184 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003185 if (Ptr->getType()->isVectorTy())
3186 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00003187
Nuno Lopes368c4d02012-12-31 20:48:35 +00003188 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00003189 // If one of the values we have visited is an addrspacecast, then
3190 // the pointer type of this GEP may be different from the type
3191 // of the Ptr parameter which was passed to this function. This
3192 // means when we construct GEPOffset, we need to use the size
3193 // of GEP's pointer type rather than the size of the original
3194 // pointer type.
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00003195 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003196 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3197 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003198
Tom Stellard17eb3412016-10-07 14:23:29 +00003199 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003200
Nuno Lopes368c4d02012-12-31 20:48:35 +00003201 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00003202 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3203 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003204 Ptr = cast<Operator>(Ptr)->getOperand(0);
3205 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003206 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00003207 break;
3208 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00003209 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003210 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00003211 }
3212 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00003213 Offset = ByteOffset.getSExtValue();
3214 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00003215}
3216
Matthias Braun50ec0b52017-05-19 22:37:09 +00003217bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3218 unsigned CharSize) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003219 // Make sure the GEP has exactly three arguments.
3220 if (GEP->getNumOperands() != 3)
3221 return false;
3222
Matthias Braun50ec0b52017-05-19 22:37:09 +00003223 // Make sure the index-ee is a pointer to array of \p CharSize integers.
3224 // CharSize.
David L Kreitzer752c1442016-04-13 14:31:06 +00003225 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Matthias Braun50ec0b52017-05-19 22:37:09 +00003226 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
David L Kreitzer752c1442016-04-13 14:31:06 +00003227 return false;
3228
3229 // Check to make sure that the first operand of the GEP is an integer and
3230 // has value 0 so that we are sure we're indexing into the initializer.
3231 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3232 if (!FirstIdx || !FirstIdx->isZero())
3233 return false;
3234
3235 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003236}
Chris Lattnere28618d2010-11-30 22:25:26 +00003237
Matthias Braun50ec0b52017-05-19 22:37:09 +00003238bool llvm::getConstantDataArrayInfo(const Value *V,
3239 ConstantDataArraySlice &Slice,
3240 unsigned ElementSize, uint64_t Offset) {
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003241 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00003242
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003243 // Look through bitcast instructions and geps.
3244 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00003245
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003246 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003247 // offset.
3248 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003249 // The GEP operator should be based on a pointer to string constant, and is
3250 // indexing into the string constant.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003251 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003252 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003253
Evan Chengda3db112008-06-30 07:31:25 +00003254 // If the second index isn't a ConstantInt, then this is a variable index
3255 // into the array. If this occurs, we can't say anything meaningful about
3256 // the string.
3257 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003258 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003259 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003260 else
3261 return false;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003262 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3263 StartIdx + Offset);
Evan Chengda3db112008-06-30 07:31:25 +00003264 }
Nick Lewycky46209882011-10-20 00:34:35 +00003265
Evan Chengda3db112008-06-30 07:31:25 +00003266 // The GEP instruction, constant or instruction, must reference a global
3267 // variable that is a constant and is initialized. The referenced constant
3268 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003269 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003270 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003271 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003272
Matthias Braun50ec0b52017-05-19 22:37:09 +00003273 const ConstantDataArray *Array;
3274 ArrayType *ArrayTy;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003275 if (GV->getInitializer()->isNullValue()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003276 Type *GVTy = GV->getValueType();
3277 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
Sanjay Patel2ad88f82017-06-12 22:34:37 +00003278 // A zeroinitializer for the array; there is no ConstantDataArray.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003279 Array = nullptr;
3280 } else {
3281 const DataLayout &DL = GV->getParent()->getDataLayout();
3282 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3283 uint64_t Length = SizeInBytes / (ElementSize / 8);
3284 if (Length <= Offset)
3285 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003286
Matthias Braun50ec0b52017-05-19 22:37:09 +00003287 Slice.Array = nullptr;
3288 Slice.Offset = 0;
3289 Slice.Length = Length - Offset;
3290 return true;
3291 }
3292 } else {
3293 // This must be a ConstantDataArray.
3294 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3295 if (!Array)
3296 return false;
3297 ArrayTy = Array->getType();
3298 }
3299 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003300 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003301
Matthias Braun50ec0b52017-05-19 22:37:09 +00003302 uint64_t NumElts = ArrayTy->getArrayNumElements();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003303 if (Offset > NumElts)
3304 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003305
Matthias Braun50ec0b52017-05-19 22:37:09 +00003306 Slice.Array = Array;
3307 Slice.Offset = Offset;
3308 Slice.Length = NumElts - Offset;
3309 return true;
3310}
3311
3312/// This function computes the length of a null-terminated C string pointed to
3313/// by V. If successful, it returns true and returns the string in Str.
3314/// If unsuccessful, it returns false.
3315bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3316 uint64_t Offset, bool TrimAtNul) {
3317 ConstantDataArraySlice Slice;
3318 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3319 return false;
3320
3321 if (Slice.Array == nullptr) {
3322 if (TrimAtNul) {
3323 Str = StringRef();
3324 return true;
3325 }
3326 if (Slice.Length == 1) {
3327 Str = StringRef("", 1);
3328 return true;
3329 }
Sanjay Patelfef83e82017-06-09 14:21:18 +00003330 // We cannot instantiate a StringRef as we do not have an appropriate string
Matthias Braun50ec0b52017-05-19 22:37:09 +00003331 // of 0s at hand.
3332 return false;
3333 }
3334
3335 // Start out with the entire array in the StringRef.
3336 Str = Slice.Array->getAsString();
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003337 // Skip over 'offset' bytes.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003338 Str = Str.substr(Slice.Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003339
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003340 if (TrimAtNul) {
3341 // Trim off the \0 and anything after it. If the array is not nul
3342 // terminated, we just return the whole end of string. The client may know
3343 // some other way that the string is length-bound.
3344 Str = Str.substr(0, Str.find('\0'));
3345 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003346 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003347}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003348
3349// These next two are very similar to the above, but also look through PHI
3350// nodes.
3351// TODO: See if we can integrate these two together.
3352
Sanjay Patelaee84212014-11-04 16:27:42 +00003353/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003354/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003355static uint64_t GetStringLengthH(const Value *V,
Matthias Braun50ec0b52017-05-19 22:37:09 +00003356 SmallPtrSetImpl<const PHINode*> &PHIs,
3357 unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003358 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003359 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003360
3361 // If this is a PHI node, there are two cases: either we have already seen it
3362 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003363 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003364 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003365 return ~0ULL; // already in the set.
3366
3367 // If it was new, see if all the input strings are the same length.
3368 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003369 for (Value *IncValue : PN->incoming_values()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003370 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003371 if (Len == 0) return 0; // Unknown length -> unknown.
3372
3373 if (Len == ~0ULL) continue;
3374
3375 if (Len != LenSoFar && LenSoFar != ~0ULL)
3376 return 0; // Disagree -> unknown.
3377 LenSoFar = Len;
3378 }
3379
3380 // Success, all agree.
3381 return LenSoFar;
3382 }
3383
3384 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003385 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003386 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003387 if (Len1 == 0) return 0;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003388 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003389 if (Len2 == 0) return 0;
3390 if (Len1 == ~0ULL) return Len2;
3391 if (Len2 == ~0ULL) return Len1;
3392 if (Len1 != Len2) return 0;
3393 return Len1;
3394 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003395
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003396 // Otherwise, see if we can read the string.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003397 ConstantDataArraySlice Slice;
3398 if (!getConstantDataArrayInfo(V, Slice, CharSize))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003399 return 0;
3400
Matthias Braun50ec0b52017-05-19 22:37:09 +00003401 if (Slice.Array == nullptr)
3402 return 1;
3403
3404 // Search for nul characters
3405 unsigned NullIndex = 0;
3406 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3407 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3408 break;
3409 }
3410
3411 return NullIndex + 1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003412}
3413
Sanjay Patelaee84212014-11-04 16:27:42 +00003414/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003415/// the specified pointer, return 'len+1'. If we can't, return 0.
David Bolvansky1f343fa2018-05-22 20:27:36 +00003416uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
David Bolvansky41f4b642018-05-22 15:41:23 +00003417 if (!V->getType()->isPointerTy())
3418 return 0;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003419
Pete Cooper35b00d52016-08-13 01:05:32 +00003420 SmallPtrSet<const PHINode*, 32> PHIs;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003421 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003422 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3423 // an empty string as a length.
3424 return Len == ~0ULL ? 1 : Len;
3425}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003426
Piotr Padlewskid6f73462018-05-23 09:16:44 +00003427const Value *llvm::getArgumentAliasingToReturnedPointer(ImmutableCallSite CS) {
3428 assert(CS &&
3429 "getArgumentAliasingToReturnedPointer only works on nonnull CallSite");
3430 if (const Value *RV = CS.getReturnedArgOperand())
3431 return RV;
3432 // This can be used only as a aliasing property.
3433 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CS))
3434 return CS.getArgOperand(0);
3435 return nullptr;
3436}
3437
3438bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
Piotr Padlewski5b3db452018-07-02 04:49:30 +00003439 ImmutableCallSite CS) {
3440 return CS.getIntrinsicID() == Intrinsic::launder_invariant_group ||
3441 CS.getIntrinsicID() == Intrinsic::strip_invariant_group;
Piotr Padlewskid6f73462018-05-23 09:16:44 +00003442}
3443
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00003444/// \p PN defines a loop-variant pointer to an object. Check if the
Adam Nemete2b885c2015-04-23 20:09:20 +00003445/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003446static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3447 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003448 // Find the loop-defined value.
3449 Loop *L = LI->getLoopFor(PN->getParent());
3450 if (PN->getNumIncomingValues() != 2)
3451 return true;
3452
3453 // Find the value from previous iteration.
3454 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3455 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3456 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3457 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3458 return true;
3459
3460 // If a new pointer is loaded in the loop, the pointer references a different
3461 // object in every iteration. E.g.:
3462 // for (i)
3463 // int *p = a[i];
3464 // ...
3465 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3466 if (!L->isLoopInvariant(Load->getPointerOperand()))
3467 return false;
3468 return true;
3469}
3470
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003471Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3472 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003473 if (!V->getType()->isPointerTy())
3474 return V;
3475 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3476 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3477 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003478 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3479 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003480 V = cast<Operator>(V)->getOperand(0);
3481 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003482 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003483 return V;
3484 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003485 } else if (isa<AllocaInst>(V)) {
3486 // An alloca can't be further simplified.
3487 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003488 } else {
Piotr Padlewskid6f73462018-05-23 09:16:44 +00003489 if (auto CS = CallSite(V)) {
Piotr Padlewski5b3db452018-07-02 04:49:30 +00003490 // CaptureTracking can know about special capturing properties of some
3491 // intrinsics like launder.invariant.group, that can't be expressed with
3492 // the attributes, but have properties like returning aliasing pointer.
3493 // Because some analysis may assume that nocaptured pointer is not
3494 // returned from some special intrinsic (because function would have to
3495 // be marked with returns attribute), it is crucial to use this function
3496 // because it should be in sync with CaptureTracking. Not using it may
3497 // cause weird miscompilations where 2 aliasing pointers are assumed to
3498 // noalias.
Piotr Padlewskid6f73462018-05-23 09:16:44 +00003499 if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) {
3500 V = RP;
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003501 continue;
3502 }
Piotr Padlewskid6f73462018-05-23 09:16:44 +00003503 }
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003504
Dan Gohman05b18f12010-12-15 20:49:55 +00003505 // See if InstructionSimplify knows any relevant tricks.
3506 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003507 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Daniel Berlin4d0fe642017-04-28 19:55:38 +00003508 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003509 V = Simplified;
3510 continue;
3511 }
3512
Dan Gohmana4fcd242010-12-15 20:02:24 +00003513 return V;
3514 }
3515 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3516 }
3517 return V;
3518}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003519
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003520void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003521 const DataLayout &DL, LoopInfo *LI,
3522 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003523 SmallPtrSet<Value *, 4> Visited;
3524 SmallVector<Value *, 4> Worklist;
3525 Worklist.push_back(V);
3526 do {
3527 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003528 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003529
David Blaikie70573dc2014-11-19 07:49:26 +00003530 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003531 continue;
3532
3533 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3534 Worklist.push_back(SI->getTrueValue());
3535 Worklist.push_back(SI->getFalseValue());
3536 continue;
3537 }
3538
3539 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003540 // If this PHI changes the underlying object in every iteration of the
3541 // loop, don't look through it. Consider:
3542 // int **A;
3543 // for (i) {
3544 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3545 // Curr = A[i];
3546 // *Prev, *Curr;
3547 //
3548 // Prev is tracking Curr one iteration behind so they refer to different
3549 // underlying objects.
3550 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3551 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003552 for (Value *IncValue : PN->incoming_values())
3553 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003554 continue;
3555 }
3556
3557 Objects.push_back(P);
3558 } while (!Worklist.empty());
3559}
3560
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003561/// This is the function that does the work of looking through basic
3562/// ptrtoint+arithmetic+inttoptr sequences.
3563static const Value *getUnderlyingObjectFromInt(const Value *V) {
3564 do {
3565 if (const Operator *U = dyn_cast<Operator>(V)) {
3566 // If we find a ptrtoint, we can transfer control back to the
3567 // regular getUnderlyingObjectFromInt.
3568 if (U->getOpcode() == Instruction::PtrToInt)
3569 return U->getOperand(0);
3570 // If we find an add of a constant, a multiplied value, or a phi, it's
3571 // likely that the other operand will lead us to the base
3572 // object. We don't have to worry about the case where the
3573 // object address is somehow being computed by the multiply,
3574 // because our callers only care when the result is an
3575 // identifiable object.
3576 if (U->getOpcode() != Instruction::Add ||
3577 (!isa<ConstantInt>(U->getOperand(1)) &&
3578 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3579 !isa<PHINode>(U->getOperand(1))))
3580 return V;
3581 V = U->getOperand(0);
3582 } else {
3583 return V;
3584 }
3585 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3586 } while (true);
3587}
3588
3589/// This is a wrapper around GetUnderlyingObjects and adds support for basic
3590/// ptrtoint+arithmetic+inttoptr sequences.
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003591/// It returns false if unidentified object is found in GetUnderlyingObjects.
3592bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003593 SmallVectorImpl<Value *> &Objects,
3594 const DataLayout &DL) {
3595 SmallPtrSet<const Value *, 16> Visited;
3596 SmallVector<const Value *, 4> Working(1, V);
3597 do {
3598 V = Working.pop_back_val();
3599
3600 SmallVector<Value *, 4> Objs;
3601 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3602
3603 for (Value *V : Objs) {
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003604 if (!Visited.insert(V).second)
3605 continue;
3606 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3607 const Value *O =
3608 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3609 if (O->getType()->isPointerTy()) {
3610 Working.push_back(O);
3611 continue;
3612 }
3613 }
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003614 // If GetUnderlyingObjects fails to find an identifiable object,
3615 // getUnderlyingObjectsForCodeGen also fails for safety.
3616 if (!isIdentifiedObject(V)) {
3617 Objects.clear();
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003618 return false;
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003619 }
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003620 Objects.push_back(const_cast<Value *>(V));
3621 }
3622 } while (!Working.empty());
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003623 return true;
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003624}
3625
Sanjay Patelaee84212014-11-04 16:27:42 +00003626/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003627bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003628 for (const User *U : V->users()) {
3629 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003630 if (!II) return false;
3631
3632 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3633 II->getIntrinsicID() != Intrinsic::lifetime_end)
3634 return false;
3635 }
3636 return true;
3637}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003638
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003639bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3640 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003641 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003642 const Operator *Inst = dyn_cast<Operator>(V);
3643 if (!Inst)
3644 return false;
3645
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003646 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3647 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3648 if (C->canTrap())
3649 return false;
3650
3651 switch (Inst->getOpcode()) {
3652 default:
3653 return true;
3654 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003655 case Instruction::URem: {
3656 // x / y is undefined if y == 0.
3657 const APInt *V;
3658 if (match(Inst->getOperand(1), m_APInt(V)))
3659 return *V != 0;
3660 return false;
3661 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003662 case Instruction::SDiv:
3663 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003664 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003665 const APInt *Numerator, *Denominator;
3666 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3667 return false;
3668 // We cannot hoist this division if the denominator is 0.
3669 if (*Denominator == 0)
3670 return false;
3671 // It's safe to hoist if the denominator is not 0 or -1.
3672 if (*Denominator != -1)
3673 return true;
3674 // At this point we know that the denominator is -1. It is safe to hoist as
3675 // long we know that the numerator is not INT_MIN.
3676 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3677 return !Numerator->isMinSignedValue();
3678 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003679 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003680 }
3681 case Instruction::Load: {
3682 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003683 if (!LI->isUnordered() ||
3684 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003685 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003686 // Speculative load may load data from dirty regions.
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00003687 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3688 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003689 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003690 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003691 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3692 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003693 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003694 case Instruction::Call: {
Matt Arsenaultcf5e7fe2017-04-28 21:13:09 +00003695 auto *CI = cast<const CallInst>(Inst);
3696 const Function *Callee = CI->getCalledFunction();
David Majnemer0a92f862015-08-28 21:13:39 +00003697
Matt Arsenault6a288c12017-05-03 02:26:10 +00003698 // The called function could have undefined behavior or side-effects, even
3699 // if marked readnone nounwind.
3700 return Callee && Callee->isSpeculatable();
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003701 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003702 case Instruction::VAArg:
3703 case Instruction::Alloca:
3704 case Instruction::Invoke:
3705 case Instruction::PHI:
3706 case Instruction::Store:
3707 case Instruction::Ret:
3708 case Instruction::Br:
3709 case Instruction::IndirectBr:
3710 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003711 case Instruction::Unreachable:
3712 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003713 case Instruction::AtomicRMW:
3714 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003715 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003716 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003717 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003718 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003719 case Instruction::CatchRet:
3720 case Instruction::CleanupPad:
3721 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003722 return false; // Misc instructions which have effects
3723 }
3724}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003725
Quentin Colombet6443cce2015-08-06 18:44:34 +00003726bool llvm::mayBeMemoryDependent(const Instruction &I) {
3727 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3728}
3729
Pete Cooper35b00d52016-08-13 01:05:32 +00003730OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3731 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003732 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003733 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003734 const Instruction *CxtI,
3735 const DominatorTree *DT) {
3736 // Multiplying n * m significant bits yields a result of n + m significant
3737 // bits. If the total number of significant bits does not exceed the
3738 // result bit width (minus 1), there is no overflow.
3739 // This means if we have enough leading zero bits in the operands
3740 // we can guarantee that the result does not overflow.
3741 // Ref: "Hacker's Delight" by Henry Warren
3742 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00003743 KnownBits LHSKnown(BitWidth);
3744 KnownBits RHSKnown(BitWidth);
3745 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
3746 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer491331a2015-01-02 07:29:43 +00003747 // Note that underestimating the number of zero bits gives a more
3748 // conservative answer.
Craig Topper8df66c62017-05-12 17:20:30 +00003749 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3750 RHSKnown.countMinLeadingZeros();
David Majnemer491331a2015-01-02 07:29:43 +00003751 // First handle the easy case: if we have enough zero bits there's
3752 // definitely no overflow.
3753 if (ZeroBits >= BitWidth)
3754 return OverflowResult::NeverOverflows;
3755
3756 // Get the largest possible values for each operand.
Craig Topperb45eabc2017-04-26 16:39:58 +00003757 APInt LHSMax = ~LHSKnown.Zero;
3758 APInt RHSMax = ~RHSKnown.Zero;
David Majnemer491331a2015-01-02 07:29:43 +00003759
3760 // We know the multiply operation doesn't overflow if the maximum values for
3761 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003762 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003763 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003764 if (!MaxOverflow)
3765 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003766
David Majnemerc8a576b2015-01-02 07:29:47 +00003767 // We know it always overflows if multiplying the smallest possible values for
3768 // the operands also results in overflow.
3769 bool MinOverflow;
Craig Topperb45eabc2017-04-26 16:39:58 +00003770 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003771 if (MinOverflow)
3772 return OverflowResult::AlwaysOverflows;
3773
3774 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003775}
David Majnemer5310c1e2015-01-07 00:39:50 +00003776
Omer Paparo Bivasfbb83de2018-05-10 19:46:19 +00003777OverflowResult llvm::computeOverflowForSignedMul(const Value *LHS,
3778 const Value *RHS,
3779 const DataLayout &DL,
3780 AssumptionCache *AC,
3781 const Instruction *CxtI,
3782 const DominatorTree *DT) {
3783 // Multiplying n * m significant bits yields a result of n + m significant
3784 // bits. If the total number of significant bits does not exceed the
3785 // result bit width (minus 1), there is no overflow.
3786 // This means if we have enough leading sign bits in the operands
3787 // we can guarantee that the result does not overflow.
3788 // Ref: "Hacker's Delight" by Henry Warren
3789 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3790
3791 // Note that underestimating the number of sign bits gives a more
3792 // conservative answer.
3793 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
3794 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
3795
3796 // First handle the easy case: if we have enough sign bits there's
3797 // definitely no overflow.
3798 if (SignBits > BitWidth + 1)
3799 return OverflowResult::NeverOverflows;
3800
3801 // There are two ambiguous cases where there can be no overflow:
3802 // SignBits == BitWidth + 1 and
3803 // SignBits == BitWidth
3804 // The second case is difficult to check, therefore we only handle the
3805 // first case.
3806 if (SignBits == BitWidth + 1) {
3807 // It overflows only when both arguments are negative and the true
3808 // product is exactly the minimum negative number.
3809 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
3810 // For simplicity we just check if at least one side is not negative.
3811 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3812 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
3813 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
3814 return OverflowResult::NeverOverflows;
3815 }
3816 return OverflowResult::MayOverflow;
3817}
3818
Pete Cooper35b00d52016-08-13 01:05:32 +00003819OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3820 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003821 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003822 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003823 const Instruction *CxtI,
3824 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +00003825 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3826 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3827 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003828
Craig Topper6e11a052017-05-08 16:22:48 +00003829 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003830 // The sign bit is set in both cases: this MUST overflow.
3831 // Create a simple add instruction, and insert it into the struct.
3832 return OverflowResult::AlwaysOverflows;
3833 }
3834
Craig Topper6e11a052017-05-08 16:22:48 +00003835 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003836 // The sign bit is clear in both cases: this CANNOT overflow.
3837 // Create a simple add instruction, and insert it into the struct.
3838 return OverflowResult::NeverOverflows;
3839 }
3840 }
3841
3842 return OverflowResult::MayOverflow;
3843}
James Molloy71b91c22015-05-11 14:42:20 +00003844
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00003845/// Return true if we can prove that adding the two values of the
Craig Topperbb973722017-05-15 02:44:08 +00003846/// knownbits will not overflow.
3847/// Otherwise return false.
3848static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3849 const KnownBits &RHSKnown) {
3850 // Addition of two 2's complement numbers having opposite signs will never
3851 // overflow.
3852 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3853 (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3854 return true;
3855
3856 // If either of the values is known to be non-negative, adding them can only
3857 // overflow if the second is also non-negative, so we can assume that.
Fangrui Songf78650a2018-07-30 19:41:25 +00003858 // Two non-negative numbers will only overflow if there is a carry to the
Craig Topperbb973722017-05-15 02:44:08 +00003859 // sign bit, so we can check if even when the values are as big as possible
3860 // there is no overflow to the sign bit.
3861 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3862 APInt MaxLHS = ~LHSKnown.Zero;
3863 MaxLHS.clearSignBit();
3864 APInt MaxRHS = ~RHSKnown.Zero;
3865 MaxRHS.clearSignBit();
3866 APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3867 return Result.isSignBitClear();
3868 }
3869
3870 // If either of the values is known to be negative, adding them can only
3871 // overflow if the second is also negative, so we can assume that.
3872 // Two negative number will only overflow if there is no carry to the sign
3873 // bit, so we can check if even when the values are as small as possible
3874 // there is overflow to the sign bit.
3875 if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
3876 APInt MinLHS = LHSKnown.One;
3877 MinLHS.clearSignBit();
3878 APInt MinRHS = RHSKnown.One;
3879 MinRHS.clearSignBit();
3880 APInt Result = std::move(MinLHS) + std::move(MinRHS);
3881 return Result.isSignBitSet();
3882 }
3883
3884 // If we reached here it means that we know nothing about the sign bits.
Fangrui Songf78650a2018-07-30 19:41:25 +00003885 // In this case we can't know if there will be an overflow, since by
Craig Topperbb973722017-05-15 02:44:08 +00003886 // changing the sign bits any two values can be made to overflow.
3887 return false;
3888}
3889
Pete Cooper35b00d52016-08-13 01:05:32 +00003890static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3891 const Value *RHS,
3892 const AddOperator *Add,
3893 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003894 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003895 const Instruction *CxtI,
3896 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003897 if (Add && Add->hasNoSignedWrap()) {
3898 return OverflowResult::NeverOverflows;
3899 }
3900
Craig Topperbb973722017-05-15 02:44:08 +00003901 // If LHS and RHS each have at least two sign bits, the addition will look
3902 // like
3903 //
3904 // XX..... +
3905 // YY.....
3906 //
3907 // If the carry into the most significant position is 0, X and Y can't both
3908 // be 1 and therefore the carry out of the addition is also 0.
3909 //
3910 // If the carry into the most significant position is 1, X and Y can't both
3911 // be 0 and therefore the carry out of the addition is also 1.
3912 //
3913 // Since the carry into the most significant position is always equal to
3914 // the carry out of the addition, there is no signed overflow.
3915 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
3916 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
3917 return OverflowResult::NeverOverflows;
3918
Craig Topper6e11a052017-05-08 16:22:48 +00003919 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3920 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003921
Craig Topperbb973722017-05-15 02:44:08 +00003922 if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
Jingyue Wu10fcea52015-08-20 18:27:04 +00003923 return OverflowResult::NeverOverflows;
Jingyue Wu10fcea52015-08-20 18:27:04 +00003924
3925 // The remaining code needs Add to be available. Early returns if not so.
3926 if (!Add)
3927 return OverflowResult::MayOverflow;
3928
3929 // If the sign of Add is the same as at least one of the operands, this add
3930 // CANNOT overflow. This is particularly useful when the sum is
3931 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3932 // operands.
3933 bool LHSOrRHSKnownNonNegative =
Craig Topper6e11a052017-05-08 16:22:48 +00003934 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
Fangrui Songf78650a2018-07-30 19:41:25 +00003935 bool LHSOrRHSKnownNegative =
Craig Topperbb973722017-05-15 02:44:08 +00003936 (LHSKnown.isNegative() || RHSKnown.isNegative());
Jingyue Wu10fcea52015-08-20 18:27:04 +00003937 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
Craig Topper6e11a052017-05-08 16:22:48 +00003938 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
3939 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
3940 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003941 return OverflowResult::NeverOverflows;
3942 }
3943 }
3944
3945 return OverflowResult::MayOverflow;
3946}
3947
Omer Paparo Bivasfbb83de2018-05-10 19:46:19 +00003948OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
3949 const Value *RHS,
3950 const DataLayout &DL,
3951 AssumptionCache *AC,
3952 const Instruction *CxtI,
3953 const DominatorTree *DT) {
3954 // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
3955 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3956 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
3957 if (LHSKnown.isNegative() && RHSKnown.isNonNegative())
3958 return OverflowResult::NeverOverflows;
3959
3960 return OverflowResult::MayOverflow;
3961}
3962
3963OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
3964 const Value *RHS,
3965 const DataLayout &DL,
3966 AssumptionCache *AC,
3967 const Instruction *CxtI,
3968 const DominatorTree *DT) {
3969 // If LHS and RHS each have at least two sign bits, the subtraction
3970 // cannot overflow.
3971 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
3972 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
3973 return OverflowResult::NeverOverflows;
3974
3975 KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT);
3976
3977 KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT);
3978
3979 // Subtraction of two 2's complement numbers having identical signs will
3980 // never overflow.
3981 if ((LHSKnown.isNegative() && RHSKnown.isNegative()) ||
3982 (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()))
3983 return OverflowResult::NeverOverflows;
3984
3985 // TODO: implement logic similar to checkRippleForAdd
3986 return OverflowResult::MayOverflow;
3987}
3988
Pete Cooper35b00d52016-08-13 01:05:32 +00003989bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3990 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003991#ifndef NDEBUG
3992 auto IID = II->getIntrinsicID();
3993 assert((IID == Intrinsic::sadd_with_overflow ||
3994 IID == Intrinsic::uadd_with_overflow ||
3995 IID == Intrinsic::ssub_with_overflow ||
3996 IID == Intrinsic::usub_with_overflow ||
3997 IID == Intrinsic::smul_with_overflow ||
3998 IID == Intrinsic::umul_with_overflow) &&
3999 "Not an overflow intrinsic!");
4000#endif
4001
Pete Cooper35b00d52016-08-13 01:05:32 +00004002 SmallVector<const BranchInst *, 2> GuardingBranches;
4003 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004004
Pete Cooper35b00d52016-08-13 01:05:32 +00004005 for (const User *U : II->users()) {
4006 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004007 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4008
4009 if (EVI->getIndices()[0] == 0)
4010 Results.push_back(EVI);
4011 else {
4012 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4013
Pete Cooper35b00d52016-08-13 01:05:32 +00004014 for (const auto *U : EVI->users())
4015 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004016 assert(B->isConditional() && "How else is it using an i1?");
4017 GuardingBranches.push_back(B);
4018 }
4019 }
4020 } else {
4021 // We are using the aggregate directly in a way we don't want to analyze
4022 // here (storing it to a global, say).
4023 return false;
4024 }
4025 }
4026
Pete Cooper35b00d52016-08-13 01:05:32 +00004027 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004028 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4029 if (!NoWrapEdge.isSingleEdge())
4030 return false;
4031
4032 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00004033 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004034 // If the extractvalue itself is not executed on overflow, the we don't
4035 // need to check each use separately, since domination is transitive.
4036 if (DT.dominates(NoWrapEdge, Result->getParent()))
4037 continue;
4038
4039 for (auto &RU : Result->uses())
4040 if (!DT.dominates(NoWrapEdge, RU))
4041 return false;
4042 }
4043
4044 return true;
4045 };
4046
Eugene Zelenko75075ef2017-09-01 21:37:29 +00004047 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004048}
4049
4050
Pete Cooper35b00d52016-08-13 01:05:32 +00004051OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00004052 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004053 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00004054 const Instruction *CxtI,
4055 const DominatorTree *DT) {
4056 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004057 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00004058}
4059
Pete Cooper35b00d52016-08-13 01:05:32 +00004060OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4061 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00004062 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004063 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00004064 const Instruction *CxtI,
4065 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004066 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00004067}
4068
Jingyue Wu42f1d672015-07-28 18:22:40 +00004069bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00004070 // A memory operation returns normally if it isn't volatile. A volatile
4071 // operation is allowed to trap.
4072 //
4073 // An atomic operation isn't guaranteed to return in a reasonable amount of
4074 // time because it's possible for another thread to interfere with it for an
4075 // arbitrary length of time, but programs aren't allowed to rely on that.
4076 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
4077 return !LI->isVolatile();
4078 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
4079 return !SI->isVolatile();
4080 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
4081 return !CXI->isVolatile();
4082 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
4083 return !RMWI->isVolatile();
4084 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
4085 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00004086
Eli Friedmanf1da33e2016-06-11 21:48:25 +00004087 // If there is no successor, then execution can't transfer to it.
4088 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4089 return !CRI->unwindsToCaller();
4090 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4091 return !CatchSwitch->unwindsToCaller();
4092 if (isa<ResumeInst>(I))
4093 return false;
4094 if (isa<ReturnInst>(I))
4095 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00004096 if (isa<UnreachableInst>(I))
4097 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00004098
Eli Friedmanf1da33e2016-06-11 21:48:25 +00004099 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00004100 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00004101 // Call sites that throw have implicit non-local control flow.
4102 if (!CS.doesNotThrow())
4103 return false;
4104
4105 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4106 // etc. and thus not return. However, LLVM already assumes that
4107 //
4108 // - Thread exiting actions are modeled as writes to memory invisible to
4109 // the program.
4110 //
4111 // - Loops that don't have side effects (side effects are volatile/atomic
4112 // stores and IO) always terminate (see http://llvm.org/PR965).
4113 // Furthermore IO itself is also modeled as writes to memory invisible to
4114 // the program.
4115 //
4116 // We rely on those assumptions here, and use the memory effects of the call
4117 // target as a proxy for checking that it always returns.
4118
4119 // FIXME: This isn't aggressive enough; a call which only writes to a global
4120 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00004121 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
Dan Gohman2c74fe92017-11-08 21:59:51 +00004122 match(I, m_Intrinsic<Intrinsic::assume>()) ||
4123 match(I, m_Intrinsic<Intrinsic::sideeffect>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00004124 }
4125
4126 // Other instructions return normally.
4127 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004128}
4129
Philip Reamesfbffd122018-03-08 21:25:30 +00004130bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4131 // TODO: This is slightly consdervative for invoke instruction since exiting
4132 // via an exception *is* normal control for them.
4133 for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4134 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4135 return false;
4136 return true;
4137}
4138
Jingyue Wu42f1d672015-07-28 18:22:40 +00004139bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4140 const Loop *L) {
4141 // The loop header is guaranteed to be executed for every iteration.
4142 //
4143 // FIXME: Relax this constraint to cover all basic blocks that are
4144 // guaranteed to be executed at every iteration.
4145 if (I->getParent() != L->getHeader()) return false;
4146
4147 for (const Instruction &LI : *L->getHeader()) {
4148 if (&LI == I) return true;
4149 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4150 }
4151 llvm_unreachable("Instruction not contained in its own parent basic block.");
4152}
4153
4154bool llvm::propagatesFullPoison(const Instruction *I) {
4155 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004156 case Instruction::Add:
4157 case Instruction::Sub:
4158 case Instruction::Xor:
4159 case Instruction::Trunc:
4160 case Instruction::BitCast:
4161 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00004162 case Instruction::Mul:
4163 case Instruction::Shl:
4164 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004165 // These operations all propagate poison unconditionally. Note that poison
4166 // is not any particular value, so xor or subtraction of poison with
4167 // itself still yields poison, not zero.
4168 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004169
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004170 case Instruction::AShr:
4171 case Instruction::SExt:
4172 // For these operations, one bit of the input is replicated across
4173 // multiple output bits. A replicated poison bit is still poison.
4174 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004175
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004176 case Instruction::ICmp:
4177 // Comparing poison with any value yields poison. This is why, for
4178 // instance, x s< (x +nsw 1) can be folded to true.
4179 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00004180
Sanjoy Das7b0b4082017-02-21 02:42:42 +00004181 default:
4182 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004183 }
4184}
4185
4186const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
4187 switch (I->getOpcode()) {
4188 case Instruction::Store:
4189 return cast<StoreInst>(I)->getPointerOperand();
4190
4191 case Instruction::Load:
4192 return cast<LoadInst>(I)->getPointerOperand();
4193
4194 case Instruction::AtomicCmpXchg:
4195 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4196
4197 case Instruction::AtomicRMW:
4198 return cast<AtomicRMWInst>(I)->getPointerOperand();
4199
4200 case Instruction::UDiv:
4201 case Instruction::SDiv:
4202 case Instruction::URem:
4203 case Instruction::SRem:
4204 return I->getOperand(1);
4205
4206 default:
4207 return nullptr;
4208 }
4209}
4210
Sanjoy Das08989c72017-04-30 19:41:19 +00004211bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004212 // We currently only look for uses of poison values within the same basic
4213 // block, as that makes it easier to guarantee that the uses will be
4214 // executed given that PoisonI is executed.
4215 //
4216 // FIXME: Expand this to consider uses beyond the same basic block. To do
4217 // this, look out for the distinction between post-dominance and strong
4218 // post-dominance.
4219 const BasicBlock *BB = PoisonI->getParent();
4220
4221 // Set of instructions that we have proved will yield poison if PoisonI
4222 // does.
4223 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004224 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004225 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004226 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004227
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004228 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00004229
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004230 unsigned Iter = 0;
4231 while (Iter++ < MaxDepth) {
4232 for (auto &I : make_range(Begin, End)) {
4233 if (&I != PoisonI) {
4234 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
4235 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
4236 return true;
4237 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4238 return false;
4239 }
4240
4241 // Mark poison that propagates from I through uses of I.
4242 if (YieldsPoison.count(&I)) {
4243 for (const User *User : I.users()) {
4244 const Instruction *UserI = cast<Instruction>(User);
4245 if (propagatesFullPoison(UserI))
4246 YieldsPoison.insert(User);
4247 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004248 }
4249 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00004250
4251 if (auto *NextBB = BB->getSingleSuccessor()) {
4252 if (Visited.insert(NextBB).second) {
4253 BB = NextBB;
4254 Begin = BB->getFirstNonPHI()->getIterator();
4255 End = BB->end();
4256 continue;
4257 }
4258 }
4259
4260 break;
Eugene Zelenko75075ef2017-09-01 21:37:29 +00004261 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004262 return false;
4263}
4264
Pete Cooper35b00d52016-08-13 01:05:32 +00004265static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00004266 if (FMF.noNaNs())
4267 return true;
4268
4269 if (auto *C = dyn_cast<ConstantFP>(V))
4270 return !C->isNaN();
4271 return false;
4272}
4273
Pete Cooper35b00d52016-08-13 01:05:32 +00004274static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00004275 if (auto *C = dyn_cast<ConstantFP>(V))
4276 return !C->isZero();
4277 return false;
4278}
4279
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004280/// Match clamp pattern for float types without care about NaNs or signed zeros.
4281/// Given non-min/max outer cmp/select from the clamp pattern this
4282/// function recognizes if it can be substitued by a "canonical" min/max
4283/// pattern.
4284static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4285 Value *CmpLHS, Value *CmpRHS,
4286 Value *TrueVal, Value *FalseVal,
4287 Value *&LHS, Value *&RHS) {
4288 // Try to match
4289 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4290 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4291 // and return description of the outer Max/Min.
4292
4293 // First, check if select has inverse order:
4294 if (CmpRHS == FalseVal) {
4295 std::swap(TrueVal, FalseVal);
4296 Pred = CmpInst::getInversePredicate(Pred);
4297 }
4298
4299 // Assume success now. If there's no match, callers should not use these anyway.
4300 LHS = TrueVal;
4301 RHS = FalseVal;
4302
4303 const APFloat *FC1;
4304 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4305 return {SPF_UNKNOWN, SPNB_NA, false};
4306
4307 const APFloat *FC2;
4308 switch (Pred) {
4309 case CmpInst::FCMP_OLT:
4310 case CmpInst::FCMP_OLE:
4311 case CmpInst::FCMP_ULT:
4312 case CmpInst::FCMP_ULE:
4313 if (match(FalseVal,
4314 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4315 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4316 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4317 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4318 break;
4319 case CmpInst::FCMP_OGT:
4320 case CmpInst::FCMP_OGE:
4321 case CmpInst::FCMP_UGT:
4322 case CmpInst::FCMP_UGE:
4323 if (match(FalseVal,
4324 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4325 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4326 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4327 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4328 break;
4329 default:
4330 break;
4331 }
4332
4333 return {SPF_UNKNOWN, SPNB_NA, false};
4334}
4335
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004336/// Recognize variations of:
4337/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4338static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4339 Value *CmpLHS, Value *CmpRHS,
4340 Value *TrueVal, Value *FalseVal) {
4341 // Swap the select operands and predicate to match the patterns below.
4342 if (CmpRHS != TrueVal) {
4343 Pred = ICmpInst::getSwappedPredicate(Pred);
4344 std::swap(TrueVal, FalseVal);
4345 }
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004346 const APInt *C1;
4347 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4348 const APInt *C2;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004349 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4350 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004351 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004352 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004353
4354 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4355 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004356 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004357 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004358
4359 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4360 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004361 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004362 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004363
4364 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4365 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004366 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004367 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004368 }
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004369 return {SPF_UNKNOWN, SPNB_NA, false};
4370}
4371
Sanjay Patel78114302018-01-02 20:56:45 +00004372/// Recognize variations of:
4373/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4374static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4375 Value *CmpLHS, Value *CmpRHS,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004376 Value *TVal, Value *FVal,
4377 unsigned Depth) {
Sanjay Patel78114302018-01-02 20:56:45 +00004378 // TODO: Allow FP min/max with nnan/nsz.
4379 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
4380
4381 Value *A, *B;
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004382 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
Sanjay Patel78114302018-01-02 20:56:45 +00004383 if (!SelectPatternResult::isMinOrMax(L.Flavor))
4384 return {SPF_UNKNOWN, SPNB_NA, false};
4385
4386 Value *C, *D;
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004387 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
Sanjay Patel78114302018-01-02 20:56:45 +00004388 if (L.Flavor != R.Flavor)
4389 return {SPF_UNKNOWN, SPNB_NA, false};
4390
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004391 // We have something like: x Pred y ? min(a, b) : min(c, d).
4392 // Try to match the compare to the min/max operations of the select operands.
4393 // First, make sure we have the right compare predicate.
Sanjay Patel78114302018-01-02 20:56:45 +00004394 switch (L.Flavor) {
4395 case SPF_SMIN:
4396 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4397 Pred = ICmpInst::getSwappedPredicate(Pred);
4398 std::swap(CmpLHS, CmpRHS);
4399 }
4400 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4401 break;
4402 return {SPF_UNKNOWN, SPNB_NA, false};
4403 case SPF_SMAX:
4404 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4405 Pred = ICmpInst::getSwappedPredicate(Pred);
4406 std::swap(CmpLHS, CmpRHS);
4407 }
4408 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4409 break;
4410 return {SPF_UNKNOWN, SPNB_NA, false};
4411 case SPF_UMIN:
4412 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4413 Pred = ICmpInst::getSwappedPredicate(Pred);
4414 std::swap(CmpLHS, CmpRHS);
4415 }
4416 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4417 break;
4418 return {SPF_UNKNOWN, SPNB_NA, false};
4419 case SPF_UMAX:
4420 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4421 Pred = ICmpInst::getSwappedPredicate(Pred);
4422 std::swap(CmpLHS, CmpRHS);
4423 }
4424 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4425 break;
4426 return {SPF_UNKNOWN, SPNB_NA, false};
4427 default:
Sanjay Patel7dfe96a2018-01-08 18:31:13 +00004428 return {SPF_UNKNOWN, SPNB_NA, false};
Sanjay Patel78114302018-01-02 20:56:45 +00004429 }
4430
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004431 // If there is a common operand in the already matched min/max and the other
4432 // min/max operands match the compare operands (either directly or inverted),
4433 // then this is min/max of the same flavor.
4434
Sanjay Patel78114302018-01-02 20:56:45 +00004435 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004436 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4437 if (D == B) {
4438 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4439 match(A, m_Not(m_Specific(CmpRHS)))))
4440 return {L.Flavor, SPNB_NA, false};
4441 }
Sanjay Patel78114302018-01-02 20:56:45 +00004442 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004443 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4444 if (C == B) {
4445 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4446 match(A, m_Not(m_Specific(CmpRHS)))))
4447 return {L.Flavor, SPNB_NA, false};
4448 }
Sanjay Patel78114302018-01-02 20:56:45 +00004449 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004450 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4451 if (D == A) {
4452 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4453 match(B, m_Not(m_Specific(CmpRHS)))))
4454 return {L.Flavor, SPNB_NA, false};
4455 }
Sanjay Patel78114302018-01-02 20:56:45 +00004456 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
Sanjay Patele63d8dd2018-01-11 15:13:47 +00004457 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4458 if (C == A) {
4459 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4460 match(B, m_Not(m_Specific(CmpRHS)))))
4461 return {L.Flavor, SPNB_NA, false};
4462 }
Sanjay Patel78114302018-01-02 20:56:45 +00004463
4464 return {SPF_UNKNOWN, SPNB_NA, false};
4465}
4466
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004467/// Match non-obvious integer minimum and maximum sequences.
4468static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4469 Value *CmpLHS, Value *CmpRHS,
4470 Value *TrueVal, Value *FalseVal,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004471 Value *&LHS, Value *&RHS,
4472 unsigned Depth) {
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004473 // Assume success. If there's no match, callers should not use these anyway.
4474 LHS = TrueVal;
4475 RHS = FalseVal;
4476
4477 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4478 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4479 return SPR;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004480
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004481 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
Sanjay Patel78114302018-01-02 20:56:45 +00004482 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4483 return SPR;
Fangrui Songf78650a2018-07-30 19:41:25 +00004484
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004485 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
Sanjay Patel819f0962016-11-13 19:30:19 +00004486 return {SPF_UNKNOWN, SPNB_NA, false};
4487
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004488 // Z = X -nsw Y
4489 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4490 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4491 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004492 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004493 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004494
4495 // Z = X -nsw Y
4496 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4497 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4498 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004499 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004500 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004501
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004502 const APInt *C1;
Sanjay Patel819f0962016-11-13 19:30:19 +00004503 if (!match(CmpRHS, m_APInt(C1)))
4504 return {SPF_UNKNOWN, SPNB_NA, false};
4505
4506 // An unsigned min/max can be written with a signed compare.
4507 const APInt *C2;
4508 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4509 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4510 // Is the sign bit set?
4511 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4512 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Craig Topper81d772c2017-11-08 19:38:45 +00004513 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4514 C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004515 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004516
4517 // Is the sign bit clear?
4518 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4519 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004520 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4521 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004522 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004523 }
4524
4525 // Look through 'not' ops to find disguised signed min/max.
4526 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4527 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4528 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004529 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004530 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004531
4532 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4533 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4534 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004535 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004536 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004537
4538 return {SPF_UNKNOWN, SPNB_NA, false};
4539}
4540
Chen Zheng69bb0642018-07-21 12:27:54 +00004541bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
Chen Zhengfdf13ef2018-07-12 03:06:04 +00004542 assert(X && Y && "Invalid operand");
4543
Chen Zheng69bb0642018-07-21 12:27:54 +00004544 // X = sub (0, Y) || X = sub nsw (0, Y)
4545 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
4546 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
Chen Zhengfdf13ef2018-07-12 03:06:04 +00004547 return true;
4548
Chen Zheng69bb0642018-07-21 12:27:54 +00004549 // Y = sub (0, X) || Y = sub nsw (0, X)
4550 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
4551 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
Chen Zhengfdf13ef2018-07-12 03:06:04 +00004552 return true;
4553
Chen Zheng69bb0642018-07-21 12:27:54 +00004554 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
Chen Zhengfdf13ef2018-07-12 03:06:04 +00004555 Value *A, *B;
Chen Zheng69bb0642018-07-21 12:27:54 +00004556 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
4557 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
4558 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
4559 match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
Chen Zhengfdf13ef2018-07-12 03:06:04 +00004560}
4561
James Molloy134bec22015-08-11 09:12:57 +00004562static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4563 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004564 Value *CmpLHS, Value *CmpRHS,
4565 Value *TrueVal, Value *FalseVal,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004566 Value *&LHS, Value *&RHS,
4567 unsigned Depth) {
James Molloy71b91c22015-05-11 14:42:20 +00004568 LHS = CmpLHS;
4569 RHS = CmpRHS;
4570
Sanjay Patel9a399792017-12-26 15:09:19 +00004571 // Signed zero may return inconsistent results between implementations.
4572 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4573 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4574 // Therefore, we behave conservatively and only proceed if at least one of the
4575 // operands is known to not be zero or if we don't care about signed zero.
James Molloy134bec22015-08-11 09:12:57 +00004576 switch (Pred) {
4577 default: break;
Sanjay Patel9a399792017-12-26 15:09:19 +00004578 // FIXME: Include OGT/OLT/UGT/ULT.
James Molloy134bec22015-08-11 09:12:57 +00004579 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4580 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4581 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4582 !isKnownNonZero(CmpRHS))
4583 return {SPF_UNKNOWN, SPNB_NA, false};
4584 }
4585
4586 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4587 bool Ordered = false;
4588
4589 // When given one NaN and one non-NaN input:
4590 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4591 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4592 // ordered comparison fails), which could be NaN or non-NaN.
4593 // so here we discover exactly what NaN behavior is required/accepted.
4594 if (CmpInst::isFPPredicate(Pred)) {
4595 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4596 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4597
4598 if (LHSSafe && RHSSafe) {
4599 // Both operands are known non-NaN.
4600 NaNBehavior = SPNB_RETURNS_ANY;
4601 } else if (CmpInst::isOrdered(Pred)) {
4602 // An ordered comparison will return false when given a NaN, so it
4603 // returns the RHS.
4604 Ordered = true;
4605 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004606 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004607 NaNBehavior = SPNB_RETURNS_NAN;
4608 else if (RHSSafe)
4609 NaNBehavior = SPNB_RETURNS_OTHER;
4610 else
4611 // Completely unsafe.
4612 return {SPF_UNKNOWN, SPNB_NA, false};
4613 } else {
4614 Ordered = false;
4615 // An unordered comparison will return true when given a NaN, so it
4616 // returns the LHS.
4617 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004618 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004619 NaNBehavior = SPNB_RETURNS_OTHER;
4620 else if (RHSSafe)
4621 NaNBehavior = SPNB_RETURNS_NAN;
4622 else
4623 // Completely unsafe.
4624 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004625 }
4626 }
4627
James Molloy71b91c22015-05-11 14:42:20 +00004628 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004629 std::swap(CmpLHS, CmpRHS);
4630 Pred = CmpInst::getSwappedPredicate(Pred);
4631 if (NaNBehavior == SPNB_RETURNS_NAN)
4632 NaNBehavior = SPNB_RETURNS_OTHER;
4633 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4634 NaNBehavior = SPNB_RETURNS_NAN;
4635 Ordered = !Ordered;
4636 }
4637
4638 // ([if]cmp X, Y) ? X : Y
4639 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004640 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004641 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004642 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004643 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004644 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004645 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004646 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004647 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004648 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004649 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4650 case FCmpInst::FCMP_UGT:
4651 case FCmpInst::FCMP_UGE:
4652 case FCmpInst::FCMP_OGT:
4653 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4654 case FCmpInst::FCMP_ULT:
4655 case FCmpInst::FCMP_ULE:
4656 case FCmpInst::FCMP_OLT:
4657 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004658 }
4659 }
Fangrui Songf78650a2018-07-30 19:41:25 +00004660
Chen Zhengccc84222018-07-16 02:23:00 +00004661 if (isKnownNegation(TrueVal, FalseVal)) {
4662 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
4663 // match against either LHS or sext(LHS).
4664 auto MaybeSExtCmpLHS =
4665 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
4666 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
4667 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
4668 if (match(TrueVal, MaybeSExtCmpLHS)) {
4669 // Set the return values. If the compare uses the negated value (-X >s 0),
4670 // swap the return values because the negated value is always 'RHS'.
Sanjay Patel284ba0c2018-07-02 14:43:40 +00004671 LHS = TrueVal;
4672 RHS = FalseVal;
Chen Zhengccc84222018-07-16 02:23:00 +00004673 if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
4674 std::swap(LHS, RHS);
4675
4676 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
4677 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
4678 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4679 return {SPF_ABS, SPNB_NA, false};
4680
4681 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
4682 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
4683 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4684 return {SPF_NABS, SPNB_NA, false};
4685 }
4686 else if (match(FalseVal, MaybeSExtCmpLHS)) {
4687 // Set the return values. If the compare uses the negated value (-X >s 0),
4688 // swap the return values because the negated value is always 'RHS'.
Sanjay Patel284ba0c2018-07-02 14:43:40 +00004689 LHS = FalseVal;
4690 RHS = TrueVal;
Chen Zhengccc84222018-07-16 02:23:00 +00004691 if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
4692 std::swap(LHS, RHS);
4693
4694 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
4695 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
4696 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4697 return {SPF_NABS, SPNB_NA, false};
4698
4699 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
4700 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
4701 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4702 return {SPF_ABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004703 }
James Molloy71b91c22015-05-11 14:42:20 +00004704 }
4705
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004706 if (CmpInst::isIntPredicate(Pred))
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004707 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004708
4709 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4710 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4711 // semantics than minNum. Be conservative in such case.
4712 if (NaNBehavior != SPNB_RETURNS_ANY ||
4713 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4714 !isKnownNonZero(CmpRHS)))
4715 return {SPF_UNKNOWN, SPNB_NA, false};
4716
4717 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004718}
James Molloy270ef8c2015-05-15 16:04:50 +00004719
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004720/// Helps to match a select pattern in case of a type mismatch.
4721///
4722/// The function processes the case when type of true and false values of a
4723/// select instruction differs from type of the cmp instruction operands because
Vedant Kumar1a8456d2018-03-02 18:57:02 +00004724/// of a cast instruction. The function checks if it is legal to move the cast
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004725/// operation after "select". If yes, it returns the new second value of
4726/// "select" (with the assumption that cast is moved):
4727/// 1. As operand of cast instruction when both values of "select" are same cast
4728/// instructions.
4729/// 2. As restored constant (by applying reverse cast operation) when the first
4730/// value of the "select" is a cast operation and the second value is a
4731/// constant.
4732/// NOTE: We return only the new second value because the first value could be
4733/// accessed as operand of cast instruction.
James Molloy569cea62015-09-02 17:25:25 +00004734static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4735 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004736 auto *Cast1 = dyn_cast<CastInst>(V1);
4737 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004738 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004739
Sanjay Patel14a4b812017-01-29 16:34:57 +00004740 *CastOp = Cast1->getOpcode();
4741 Type *SrcTy = Cast1->getSrcTy();
4742 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4743 // If V1 and V2 are both the same cast from the same type, look through V1.
4744 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4745 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004746 return nullptr;
4747 }
4748
Sanjay Patel14a4b812017-01-29 16:34:57 +00004749 auto *C = dyn_cast<Constant>(V2);
4750 if (!C)
4751 return nullptr;
4752
David Majnemerd2a074b2016-04-29 18:40:34 +00004753 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004754 switch (*CastOp) {
4755 case Instruction::ZExt:
4756 if (CmpI->isUnsigned())
4757 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4758 break;
4759 case Instruction::SExt:
4760 if (CmpI->isSigned())
4761 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4762 break;
4763 case Instruction::Trunc:
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004764 Constant *CmpConst;
Nikolai Bozhenov9723f122017-10-18 14:24:50 +00004765 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
4766 CmpConst->getType() == SrcTy) {
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004767 // Here we have the following case:
4768 //
4769 // %cond = cmp iN %x, CmpConst
4770 // %tr = trunc iN %x to iK
4771 // %narrowsel = select i1 %cond, iK %t, iK C
4772 //
4773 // We can always move trunc after select operation:
4774 //
4775 // %cond = cmp iN %x, CmpConst
4776 // %widesel = select i1 %cond, iN %x, iN CmpConst
4777 // %tr = trunc iN %widesel to iK
4778 //
4779 // Note that C could be extended in any way because we don't care about
4780 // upper bits after truncation. It can't be abs pattern, because it would
4781 // look like:
4782 //
4783 // select i1 %cond, x, -x.
4784 //
4785 // So only min/max pattern could be matched. Such match requires widened C
4786 // == CmpConst. That is why set widened C = CmpConst, condition trunc
4787 // CmpConst == C is checked below.
4788 CastedTo = CmpConst;
4789 } else {
4790 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4791 }
Sanjay Patel14a4b812017-01-29 16:34:57 +00004792 break;
4793 case Instruction::FPTrunc:
4794 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4795 break;
4796 case Instruction::FPExt:
4797 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4798 break;
4799 case Instruction::FPToUI:
4800 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4801 break;
4802 case Instruction::FPToSI:
4803 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4804 break;
4805 case Instruction::UIToFP:
4806 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4807 break;
4808 case Instruction::SIToFP:
4809 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4810 break;
4811 default:
4812 break;
4813 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004814
4815 if (!CastedTo)
4816 return nullptr;
4817
David Majnemerd2a074b2016-04-29 18:40:34 +00004818 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004819 Constant *CastedBack =
4820 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004821 if (CastedBack != C)
4822 return nullptr;
4823
4824 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004825}
4826
Sanjay Patele8dc0902016-05-23 17:57:54 +00004827SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004828 Instruction::CastOps *CastOp,
4829 unsigned Depth) {
4830 if (Depth >= MaxDepth)
4831 return {SPF_UNKNOWN, SPNB_NA, false};
4832
James Molloy270ef8c2015-05-15 16:04:50 +00004833 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004834 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004835
James Molloy134bec22015-08-11 09:12:57 +00004836 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4837 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004838
James Molloy134bec22015-08-11 09:12:57 +00004839 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004840 Value *CmpLHS = CmpI->getOperand(0);
4841 Value *CmpRHS = CmpI->getOperand(1);
4842 Value *TrueVal = SI->getTrueValue();
4843 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004844 FastMathFlags FMF;
4845 if (isa<FPMathOperator>(CmpI))
4846 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004847
4848 // Bail out early.
4849 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004850 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004851
4852 // Deal with type mismatches.
4853 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
Sanjay Patel9a399792017-12-26 15:09:19 +00004854 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
4855 // If this is a potential fmin/fmax with a cast to integer, then ignore
4856 // -0.0 because there is no corresponding integer value.
4857 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
4858 FMF.setNoSignedZeros();
James Molloy134bec22015-08-11 09:12:57 +00004859 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004860 cast<CastInst>(TrueVal)->getOperand(0), C,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004861 LHS, RHS, Depth);
Sanjay Patel9a399792017-12-26 15:09:19 +00004862 }
4863 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
4864 // If this is a potential fmin/fmax with a cast to integer, then ignore
4865 // -0.0 because there is no corresponding integer value.
4866 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
4867 FMF.setNoSignedZeros();
James Molloy134bec22015-08-11 09:12:57 +00004868 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004869 C, cast<CastInst>(FalseVal)->getOperand(0),
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004870 LHS, RHS, Depth);
Sanjay Patel9a399792017-12-26 15:09:19 +00004871 }
James Molloy270ef8c2015-05-15 16:04:50 +00004872 }
James Molloy134bec22015-08-11 09:12:57 +00004873 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
Sanjay Patel1d91ec32018-01-24 15:20:37 +00004874 LHS, RHS, Depth);
James Molloy270ef8c2015-05-15 16:04:50 +00004875}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004876
Sanjay Patel7ed0bc22018-03-06 16:57:55 +00004877CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
4878 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
4879 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
4880 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
4881 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
4882 if (SPF == SPF_FMINNUM)
4883 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
4884 if (SPF == SPF_FMAXNUM)
4885 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
4886 llvm_unreachable("unhandled!");
4887}
4888
4889SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
4890 if (SPF == SPF_SMIN) return SPF_SMAX;
4891 if (SPF == SPF_UMIN) return SPF_UMAX;
4892 if (SPF == SPF_SMAX) return SPF_SMIN;
4893 if (SPF == SPF_UMAX) return SPF_UMIN;
4894 llvm_unreachable("unhandled!");
4895}
4896
4897CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
4898 return getMinMaxPred(getInverseMinMaxFlavor(SPF));
4899}
4900
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004901/// Return true if "icmp Pred LHS RHS" is always true.
Chad Rosiere42b44b2017-07-28 14:39:06 +00004902static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
4903 const Value *RHS, const DataLayout &DL,
4904 unsigned Depth) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004905 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004906 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4907 return true;
4908
4909 switch (Pred) {
4910 default:
4911 return false;
4912
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004913 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004914 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004915
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004916 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004917 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004918 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004919 return false;
4920 }
4921
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004922 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004923 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004924
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004925 // LHS u<= LHS +_{nuw} C for any C
4926 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004927 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004928
4929 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004930 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4931 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004932 const APInt *&CA, const APInt *&CB) {
4933 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4934 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4935 return true;
4936
4937 // If X & C == 0 then (X | C) == X +_{nuw} C
4938 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4939 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
Craig Topperb45eabc2017-04-26 16:39:58 +00004940 KnownBits Known(CA->getBitWidth());
Chad Rosiere42b44b2017-07-28 14:39:06 +00004941 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
4942 /*CxtI*/ nullptr, /*DT*/ nullptr);
Craig Topperb45eabc2017-04-26 16:39:58 +00004943 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
Sanjoy Das92568102015-11-10 23:56:20 +00004944 return true;
4945 }
4946
4947 return false;
4948 };
4949
Pete Cooper35b00d52016-08-13 01:05:32 +00004950 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004951 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004952 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4953 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004954
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004955 return false;
4956 }
4957 }
4958}
4959
4960/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004961/// ALHS ARHS" is true. Otherwise, return None.
4962static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004963isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
Chad Rosiere42b44b2017-07-28 14:39:06 +00004964 const Value *ARHS, const Value *BLHS, const Value *BRHS,
4965 const DataLayout &DL, unsigned Depth) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004966 switch (Pred) {
4967 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004968 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004969
4970 case CmpInst::ICMP_SLT:
4971 case CmpInst::ICMP_SLE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004972 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
4973 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004974 return true;
4975 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004976
4977 case CmpInst::ICMP_ULT:
4978 case CmpInst::ICMP_ULE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004979 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
4980 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004981 return true;
4982 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004983 }
4984}
4985
Chad Rosier226a7342016-05-05 17:41:19 +00004986/// Return true if the operands of the two compares match. IsSwappedOps is true
4987/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004988static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4989 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004990 bool &IsSwappedOps) {
4991
4992 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4993 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4994 return IsMatchingOps || IsSwappedOps;
4995}
4996
Chad Rosier41dd31f2016-04-20 19:15:26 +00004997/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4998/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4999/// BRHS" is false. Otherwise, return None if we can't infer anything.
5000static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00005001 const Value *ALHS,
5002 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00005003 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00005004 const Value *BLHS,
5005 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00005006 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00005007 // Canonicalize the operands so they're matching.
5008 if (IsSwappedOps) {
5009 std::swap(BLHS, BRHS);
5010 BPred = ICmpInst::getSwappedPredicate(BPred);
5011 }
Chad Rosier99bc4802016-04-21 16:18:02 +00005012 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00005013 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00005014 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00005015 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00005016
Chad Rosier41dd31f2016-04-20 19:15:26 +00005017 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00005018}
5019
Chad Rosier25cfb7d2016-05-05 15:39:18 +00005020/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
5021/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
5022/// C2" is false. Otherwise, return None if we can't infer anything.
5023static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00005024isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
5025 const ConstantInt *C1,
5026 CmpInst::Predicate BPred,
5027 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00005028 assert(ALHS == BLHS && "LHS operands must match.");
5029 ConstantRange DomCR =
5030 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
5031 ConstantRange CR =
5032 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
5033 ConstantRange Intersection = DomCR.intersectWith(CR);
5034 ConstantRange Difference = DomCR.difference(CR);
5035 if (Intersection.isEmptySet())
5036 return false;
5037 if (Difference.isEmptySet())
5038 return true;
5039 return None;
5040}
5041
Chad Rosier2f498032017-07-28 18:47:43 +00005042/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
5043/// false. Otherwise, return None if we can't infer anything.
5044static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
5045 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00005046 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00005047 unsigned Depth) {
5048 Value *ALHS = LHS->getOperand(0);
5049 Value *ARHS = LHS->getOperand(1);
Chad Rosiera72a9ff2017-07-06 20:00:25 +00005050 // The rest of the logic assumes the LHS condition is true. If that's not the
5051 // case, invert the predicate to make it so.
Chad Rosier2f498032017-07-28 18:47:43 +00005052 ICmpInst::Predicate APred =
Chad Rosierdfd1de62017-08-01 20:18:54 +00005053 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
Chad Rosier2f498032017-07-28 18:47:43 +00005054
5055 Value *BLHS = RHS->getOperand(0);
5056 Value *BRHS = RHS->getOperand(1);
5057 ICmpInst::Predicate BPred = RHS->getPredicate();
Chad Rosiere2cbd132016-04-25 17:23:36 +00005058
Chad Rosier226a7342016-05-05 17:41:19 +00005059 // Can we infer anything when the two compares have matching operands?
5060 bool IsSwappedOps;
5061 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
5062 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
5063 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00005064 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00005065 // No amount of additional analysis will infer the second condition, so
5066 // early exit.
5067 return None;
5068 }
5069
5070 // Can we infer anything when the LHS operands match and the RHS operands are
5071 // constants (not necessarily matching)?
5072 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
5073 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
5074 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
5075 cast<ConstantInt>(BRHS)))
5076 return Implication;
5077 // No amount of additional analysis will infer the second condition, so
5078 // early exit.
5079 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00005080 }
5081
Chad Rosier41dd31f2016-04-20 19:15:26 +00005082 if (APred == BPred)
Chad Rosiere42b44b2017-07-28 14:39:06 +00005083 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
Chad Rosier41dd31f2016-04-20 19:15:26 +00005084 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00005085}
Chad Rosier2f498032017-07-28 18:47:43 +00005086
Chad Rosierf73a10d2017-08-01 19:22:36 +00005087/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
5088/// false. Otherwise, return None if we can't infer anything. We expect the
5089/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
5090static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
5091 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00005092 const DataLayout &DL, bool LHSIsTrue,
Chad Rosierf73a10d2017-08-01 19:22:36 +00005093 unsigned Depth) {
5094 // The LHS must be an 'or' or an 'and' instruction.
5095 assert((LHS->getOpcode() == Instruction::And ||
5096 LHS->getOpcode() == Instruction::Or) &&
5097 "Expected LHS to be 'and' or 'or'.");
5098
Davide Italiano1a943a92017-08-09 16:06:54 +00005099 assert(Depth <= MaxDepth && "Hit recursion limit");
Chad Rosierf73a10d2017-08-01 19:22:36 +00005100
5101 // If the result of an 'or' is false, then we know both legs of the 'or' are
5102 // false. Similarly, if the result of an 'and' is true, then we know both
5103 // legs of the 'and' are true.
5104 Value *ALHS, *ARHS;
Chad Rosierdfd1de62017-08-01 20:18:54 +00005105 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
5106 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
Chad Rosierf73a10d2017-08-01 19:22:36 +00005107 // FIXME: Make this non-recursion.
5108 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00005109 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00005110 return Implication;
5111 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00005112 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00005113 return Implication;
5114 return None;
5115 }
5116 return None;
5117}
5118
Chad Rosier2f498032017-07-28 18:47:43 +00005119Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00005120 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00005121 unsigned Depth) {
Davide Italiano30e51942017-08-09 15:13:50 +00005122 // Bail out when we hit the limit.
5123 if (Depth == MaxDepth)
5124 return None;
5125
Chad Rosierf73a10d2017-08-01 19:22:36 +00005126 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
5127 // example.
Chad Rosier2f498032017-07-28 18:47:43 +00005128 if (LHS->getType() != RHS->getType())
5129 return None;
5130
5131 Type *OpTy = LHS->getType();
Chad Rosierf73a10d2017-08-01 19:22:36 +00005132 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
Chad Rosier2f498032017-07-28 18:47:43 +00005133
5134 // LHS ==> RHS by definition
5135 if (LHS == RHS)
Chad Rosierdfd1de62017-08-01 20:18:54 +00005136 return LHSIsTrue;
Chad Rosier2f498032017-07-28 18:47:43 +00005137
Chad Rosierf73a10d2017-08-01 19:22:36 +00005138 // FIXME: Extending the code below to handle vectors.
Chad Rosier2f498032017-07-28 18:47:43 +00005139 if (OpTy->isVectorTy())
Chad Rosier2f498032017-07-28 18:47:43 +00005140 return None;
Chad Rosierf73a10d2017-08-01 19:22:36 +00005141
Chad Rosier2f498032017-07-28 18:47:43 +00005142 assert(OpTy->isIntegerTy(1) && "implied by above");
5143
Chad Rosier2f498032017-07-28 18:47:43 +00005144 // Both LHS and RHS are icmps.
Chad Rosierf73a10d2017-08-01 19:22:36 +00005145 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
5146 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
5147 if (LHSCmp && RHSCmp)
Chad Rosierdfd1de62017-08-01 20:18:54 +00005148 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00005149
Chad Rosierf73a10d2017-08-01 19:22:36 +00005150 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
5151 // an icmp. FIXME: Add support for and/or on the RHS.
5152 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
5153 if (LHSBO && RHSCmp) {
5154 if ((LHSBO->getOpcode() == Instruction::And ||
5155 LHSBO->getOpcode() == Instruction::Or))
Chad Rosierdfd1de62017-08-01 20:18:54 +00005156 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00005157 }
Chad Rosierf73a10d2017-08-01 19:22:36 +00005158 return None;
Chad Rosier2f498032017-07-28 18:47:43 +00005159}