blob: 0985cbd61e6aa53c11f35b18d724804798ea7d14 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner00950542001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000040 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000044 </ol>
45 </li>
Chris Lattner00950542001-06-06 20:29:01 +000046 <li><a href="#t_derived">Derived Types</a>
47 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000048 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000049 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000050 <li><a href="#t_function">Function Type</a></li>
51 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000052 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000053 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000054 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000055 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000056 </ol>
57 </li>
Chris Lattner242d61d2009-02-02 07:32:36 +000058 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000059 </ol>
60 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000061 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000062 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000063 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner70882792009-02-28 18:32:25 +000064 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000065 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
66 <li><a href="#undefvalues">Undefined Values</a></li>
67 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000068 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000069 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000070 <li><a href="#othervalues">Other Values</a>
71 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000072 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000073 </ol>
74 </li>
Chris Lattner00950542001-06-06 20:29:01 +000075 <li><a href="#instref">Instruction Reference</a>
76 <ol>
77 <li><a href="#terminators">Terminator Instructions</a>
78 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000079 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
80 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000081 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
82 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000083 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000084 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000085 </ol>
86 </li>
Chris Lattner00950542001-06-06 20:29:01 +000087 <li><a href="#binaryops">Binary Operations</a>
88 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000089 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
90 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
91 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000092 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
93 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
94 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000095 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
96 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
97 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000098 </ol>
99 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000100 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
101 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000102 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
103 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
104 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000105 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000106 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000107 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000108 </ol>
109 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000110 <li><a href="#vectorops">Vector Operations</a>
111 <ol>
112 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
113 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
114 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000115 </ol>
116 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000117 <li><a href="#aggregateops">Aggregate Operations</a>
118 <ol>
119 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
120 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
121 </ol>
122 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000123 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000124 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000125 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
126 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
127 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000128 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
129 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
130 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000131 </ol>
132 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000133 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000134 <ol>
135 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
136 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
137 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000140 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
141 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
142 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
143 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000144 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
145 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000146 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000147 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000148 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000149 <li><a href="#otherops">Other Operations</a>
150 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000151 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
152 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000153 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
154 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000155 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000156 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000157 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000158 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000159 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000161 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000162 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000163 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000164 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000165 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
166 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000167 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
168 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
169 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000170 </ol>
171 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000172 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
173 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000174 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
175 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
176 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000177 </ol>
178 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000179 <li><a href="#int_codegen">Code Generator Intrinsics</a>
180 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000181 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
182 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
183 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
184 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
185 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
186 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
187 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000188 </ol>
189 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000190 <li><a href="#int_libc">Standard C Library Intrinsics</a>
191 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000192 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000197 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000200 </ol>
201 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000202 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000203 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000204 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000205 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000208 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
209 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000210 </ol>
211 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000212 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
213 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000214 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
215 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
216 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
217 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
218 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling41b485c2009-02-08 23:00:09 +0000219 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000220 </ol>
221 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000222 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000223 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000224 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000225 <ol>
226 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000227 </ol>
228 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000229 <li><a href="#int_atomics">Atomic intrinsics</a>
230 <ol>
231 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
232 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
233 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
234 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
235 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
236 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
237 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
238 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
239 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
240 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
241 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
242 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
243 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
244 </ol>
245 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000246 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000247 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000248 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000249 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000250 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000251 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000252 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000253 '<tt>llvm.trap</tt>' Intrinsic</a></li>
254 <li><a href="#int_stackprotector">
255 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000256 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000257 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000258 </ol>
259 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000260</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000261
262<div class="doc_author">
263 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
264 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000265</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000266
Chris Lattner00950542001-06-06 20:29:01 +0000267<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000268<div class="doc_section"> <a name="abstract">Abstract </a></div>
269<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000270
Misha Brukman9d0919f2003-11-08 01:05:38 +0000271<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000272<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000273LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000274type safety, low-level operations, flexibility, and the capability of
275representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000276representation used throughout all phases of the LLVM compilation
277strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000278</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000279
Chris Lattner00950542001-06-06 20:29:01 +0000280<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000281<div class="doc_section"> <a name="introduction">Introduction</a> </div>
282<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000283
Misha Brukman9d0919f2003-11-08 01:05:38 +0000284<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000285
Chris Lattner261efe92003-11-25 01:02:51 +0000286<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000287different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000288representation (suitable for fast loading by a Just-In-Time compiler),
289and as a human readable assembly language representation. This allows
290LLVM to provide a powerful intermediate representation for efficient
291compiler transformations and analysis, while providing a natural means
292to debug and visualize the transformations. The three different forms
293of LLVM are all equivalent. This document describes the human readable
294representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000295
John Criswellc1f786c2005-05-13 22:25:59 +0000296<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000297while being expressive, typed, and extensible at the same time. It
298aims to be a "universal IR" of sorts, by being at a low enough level
299that high-level ideas may be cleanly mapped to it (similar to how
300microprocessors are "universal IR's", allowing many source languages to
301be mapped to them). By providing type information, LLVM can be used as
302the target of optimizations: for example, through pointer analysis, it
303can be proven that a C automatic variable is never accessed outside of
304the current function... allowing it to be promoted to a simple SSA
305value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000306
Misha Brukman9d0919f2003-11-08 01:05:38 +0000307</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000308
Chris Lattner00950542001-06-06 20:29:01 +0000309<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000310<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000311
Misha Brukman9d0919f2003-11-08 01:05:38 +0000312<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000313
Chris Lattner261efe92003-11-25 01:02:51 +0000314<p>It is important to note that this document describes 'well formed'
315LLVM assembly language. There is a difference between what the parser
316accepts and what is considered 'well formed'. For example, the
317following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000318
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000319<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000320<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000321%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000322</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000323</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000324
Chris Lattner261efe92003-11-25 01:02:51 +0000325<p>...because the definition of <tt>%x</tt> does not dominate all of
326its uses. The LLVM infrastructure provides a verification pass that may
327be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000328automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000329the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000330by the verifier pass indicate bugs in transformation passes or input to
331the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000332</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000333
Chris Lattnercc689392007-10-03 17:34:29 +0000334<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000335
Chris Lattner00950542001-06-06 20:29:01 +0000336<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000337<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000338<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000339
Misha Brukman9d0919f2003-11-08 01:05:38 +0000340<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000341
Reid Spencer2c452282007-08-07 14:34:28 +0000342 <p>LLVM identifiers come in two basic types: global and local. Global
343 identifiers (functions, global variables) begin with the @ character. Local
344 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000345 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000346
Chris Lattner00950542001-06-06 20:29:01 +0000347<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000348 <li>Named values are represented as a string of characters with their prefix.
349 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
350 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000351 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000352 with quotes. Special characters may be escaped using "\xx" where xx is the
353 ASCII code for the character in hexadecimal. In this way, any character can
354 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000355
Reid Spencer2c452282007-08-07 14:34:28 +0000356 <li>Unnamed values are represented as an unsigned numeric value with their
357 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000358
Reid Spencercc16dc32004-12-09 18:02:53 +0000359 <li>Constants, which are described in a <a href="#constants">section about
360 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000361</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000362
Reid Spencer2c452282007-08-07 14:34:28 +0000363<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000364don't need to worry about name clashes with reserved words, and the set of
365reserved words may be expanded in the future without penalty. Additionally,
366unnamed identifiers allow a compiler to quickly come up with a temporary
367variable without having to avoid symbol table conflicts.</p>
368
Chris Lattner261efe92003-11-25 01:02:51 +0000369<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000370languages. There are keywords for different opcodes
371('<tt><a href="#i_add">add</a></tt>',
372 '<tt><a href="#i_bitcast">bitcast</a></tt>',
373 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000374href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000375and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000376none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000377
378<p>Here is an example of LLVM code to multiply the integer variable
379'<tt>%X</tt>' by 8:</p>
380
Misha Brukman9d0919f2003-11-08 01:05:38 +0000381<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000382
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000383<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000384<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000385%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000386</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000387</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000388
Misha Brukman9d0919f2003-11-08 01:05:38 +0000389<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000390
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000391<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000392<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000393%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000394</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000395</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000396
Misha Brukman9d0919f2003-11-08 01:05:38 +0000397<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000398
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000399<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000400<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000401<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
402<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
403%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000404</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000405</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000406
Chris Lattner261efe92003-11-25 01:02:51 +0000407<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
408important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000409
Chris Lattner00950542001-06-06 20:29:01 +0000410<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000411
412 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
413 line.</li>
414
415 <li>Unnamed temporaries are created when the result of a computation is not
416 assigned to a named value.</li>
417
Misha Brukman9d0919f2003-11-08 01:05:38 +0000418 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000419
Misha Brukman9d0919f2003-11-08 01:05:38 +0000420</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000421
John Criswelle4c57cc2005-05-12 16:52:32 +0000422<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000423demonstrating instructions, we will follow an instruction with a comment that
424defines the type and name of value produced. Comments are shown in italic
425text.</p>
426
Misha Brukman9d0919f2003-11-08 01:05:38 +0000427</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000428
429<!-- *********************************************************************** -->
430<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
431<!-- *********************************************************************** -->
432
433<!-- ======================================================================= -->
434<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
435</div>
436
437<div class="doc_text">
438
439<p>LLVM programs are composed of "Module"s, each of which is a
440translation unit of the input programs. Each module consists of
441functions, global variables, and symbol table entries. Modules may be
442combined together with the LLVM linker, which merges function (and
443global variable) definitions, resolves forward declarations, and merges
444symbol table entries. Here is an example of the "hello world" module:</p>
445
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000446<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000447<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000448<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
449 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000450
451<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000452<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000453
454<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000455define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000456 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000457 %cast210 = <a
Dan Gohman2a08c532009-01-04 23:44:43 +0000458 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000459
460 <i>; Call puts function to write out the string to stdout...</i>
461 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000462 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000463 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000464 href="#i_ret">ret</a> i32 0<br>}<br>
465</pre>
466</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000467
468<p>This example is made up of a <a href="#globalvars">global variable</a>
469named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
470function, and a <a href="#functionstructure">function definition</a>
471for "<tt>main</tt>".</p>
472
Chris Lattnere5d947b2004-12-09 16:36:40 +0000473<p>In general, a module is made up of a list of global values,
474where both functions and global variables are global values. Global values are
475represented by a pointer to a memory location (in this case, a pointer to an
476array of char, and a pointer to a function), and have one of the following <a
477href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000478
Chris Lattnere5d947b2004-12-09 16:36:40 +0000479</div>
480
481<!-- ======================================================================= -->
482<div class="doc_subsection">
483 <a name="linkage">Linkage Types</a>
484</div>
485
486<div class="doc_text">
487
488<p>
489All Global Variables and Functions have one of the following types of linkage:
490</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000491
492<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000493
Rafael Espindolabb46f522009-01-15 20:18:42 +0000494 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
495
496 <dd>Global values with private linkage are only directly accessible by
497 objects in the current module. In particular, linking code into a module with
498 an private global value may cause the private to be renamed as necessary to
499 avoid collisions. Because the symbol is private to the module, all
500 references can be updated. This doesn't show up in any symbol table in the
501 object file.
502 </dd>
503
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000504 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000505
Duncan Sands81d05c22009-01-16 09:29:46 +0000506 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindolabb46f522009-01-15 20:18:42 +0000507 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000508 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000509 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000510
Chris Lattnerfa730212004-12-09 16:11:40 +0000511 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000512
Chris Lattner4887bd82007-01-14 06:51:48 +0000513 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
514 the same name when linkage occurs. This is typically used to implement
515 inline functions, templates, or other code which must be generated in each
516 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
517 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000518 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000519
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000520 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
521
522 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
523 linkage, except that unreferenced <tt>common</tt> globals may not be
524 discarded. This is used for globals that may be emitted in multiple
525 translation units, but that are not guaranteed to be emitted into every
526 translation unit that uses them. One example of this is tentative
527 definitions in C, such as "<tt>int X;</tt>" at global scope.
528 </dd>
529
Chris Lattnerfa730212004-12-09 16:11:40 +0000530 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000531
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000532 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
533 that some targets may choose to emit different assembly sequences for them
534 for target-dependent reasons. This is used for globals that are declared
535 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000536 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000537
Chris Lattnerfa730212004-12-09 16:11:40 +0000538 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000539
540 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
541 pointer to array type. When two global variables with appending linkage are
542 linked together, the two global arrays are appended together. This is the
543 LLVM, typesafe, equivalent of having the system linker append together
544 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000545 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000546
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000547 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000548
Chris Lattnerd3eda892008-08-05 18:29:16 +0000549 <dd>The semantics of this linkage follow the ELF object file model: the
550 symbol is weak until linked, if not linked, the symbol becomes null instead
551 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000552 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000553
Duncan Sands667d4b82009-03-07 15:45:40 +0000554 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
555 <dt><tt><b><a name="linkage_common">common_odr</a></b></tt>: </dt>
556 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
557 <dt><tt><b><a name="linkage_externweak">extern_weak_odr</a></b></tt>: </dt>
558 <dd>Some languages allow inequivalent globals to be merged, such as two
559 functions with different semantics. Other languages, such as <tt>C++</tt>,
560 ensure that only equivalent globals are ever merged (the "one definition
561 rule" - <tt>odr</tt>). Such languages can use the <tt>linkonce_odr</tt>,
562 <tt>common_odr</tt>, <tt>weak_odr</tt> and <tt>extern_weak_odr</tt> linkage
563 types to indicate that the global will only be merged with equivalent
564 globals. These linkage types are otherwise the same as their
565 non-<tt>odr</tt> versions.
566 </dd>
567
Chris Lattnerfa730212004-12-09 16:11:40 +0000568 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000569
570 <dd>If none of the above identifiers are used, the global is externally
571 visible, meaning that it participates in linkage and can be used to resolve
572 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000573 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000574</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000575
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000576 <p>
577 The next two types of linkage are targeted for Microsoft Windows platform
578 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000579 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000580 </p>
581
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000582 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000583 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
584
585 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
586 or variable via a global pointer to a pointer that is set up by the DLL
587 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman79564122009-01-12 21:35:55 +0000588 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000589 </dd>
590
591 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
592
593 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
594 pointer to a pointer in a DLL, so that it can be referenced with the
595 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman79564122009-01-12 21:35:55 +0000596 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000597 name.
598 </dd>
599
Chris Lattnerfa730212004-12-09 16:11:40 +0000600</dl>
601
Dan Gohmanf0032762008-11-24 17:18:39 +0000602<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000603variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
604variable and was linked with this one, one of the two would be renamed,
605preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
606external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000607outside of the current module.</p>
608<p>It is illegal for a function <i>declaration</i>
609to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Duncan Sands667d4b82009-03-07 15:45:40 +0000610<tt>extern_weak</tt> or <tt>extern_weak_odr</tt>.</p>
611<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
612or <tt>weak_odr</tt> linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000613</div>
614
615<!-- ======================================================================= -->
616<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000617 <a name="callingconv">Calling Conventions</a>
618</div>
619
620<div class="doc_text">
621
622<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
623and <a href="#i_invoke">invokes</a> can all have an optional calling convention
624specified for the call. The calling convention of any pair of dynamic
625caller/callee must match, or the behavior of the program is undefined. The
626following calling conventions are supported by LLVM, and more may be added in
627the future:</p>
628
629<dl>
630 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
631
632 <dd>This calling convention (the default if no other calling convention is
633 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000634 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000635 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000636 </dd>
637
638 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
639
640 <dd>This calling convention attempts to make calls as fast as possible
641 (e.g. by passing things in registers). This calling convention allows the
642 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000643 without having to conform to an externally specified ABI (Application Binary
644 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000645 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
646 supported. This calling convention does not support varargs and requires the
647 prototype of all callees to exactly match the prototype of the function
648 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000649 </dd>
650
651 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
652
653 <dd>This calling convention attempts to make code in the caller as efficient
654 as possible under the assumption that the call is not commonly executed. As
655 such, these calls often preserve all registers so that the call does not break
656 any live ranges in the caller side. This calling convention does not support
657 varargs and requires the prototype of all callees to exactly match the
658 prototype of the function definition.
659 </dd>
660
Chris Lattnercfe6b372005-05-07 01:46:40 +0000661 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000662
663 <dd>Any calling convention may be specified by number, allowing
664 target-specific calling conventions to be used. Target specific calling
665 conventions start at 64.
666 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000667</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000668
669<p>More calling conventions can be added/defined on an as-needed basis, to
670support pascal conventions or any other well-known target-independent
671convention.</p>
672
673</div>
674
675<!-- ======================================================================= -->
676<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000677 <a name="visibility">Visibility Styles</a>
678</div>
679
680<div class="doc_text">
681
682<p>
683All Global Variables and Functions have one of the following visibility styles:
684</p>
685
686<dl>
687 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
688
Chris Lattnerd3eda892008-08-05 18:29:16 +0000689 <dd>On targets that use the ELF object file format, default visibility means
690 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000691 modules and, in shared libraries, means that the declared entity may be
692 overridden. On Darwin, default visibility means that the declaration is
693 visible to other modules. Default visibility corresponds to "external
694 linkage" in the language.
695 </dd>
696
697 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
698
699 <dd>Two declarations of an object with hidden visibility refer to the same
700 object if they are in the same shared object. Usually, hidden visibility
701 indicates that the symbol will not be placed into the dynamic symbol table,
702 so no other module (executable or shared library) can reference it
703 directly.
704 </dd>
705
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000706 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
707
708 <dd>On ELF, protected visibility indicates that the symbol will be placed in
709 the dynamic symbol table, but that references within the defining module will
710 bind to the local symbol. That is, the symbol cannot be overridden by another
711 module.
712 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000713</dl>
714
715</div>
716
717<!-- ======================================================================= -->
718<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000719 <a name="namedtypes">Named Types</a>
720</div>
721
722<div class="doc_text">
723
724<p>LLVM IR allows you to specify name aliases for certain types. This can make
725it easier to read the IR and make the IR more condensed (particularly when
726recursive types are involved). An example of a name specification is:
727</p>
728
729<div class="doc_code">
730<pre>
731%mytype = type { %mytype*, i32 }
732</pre>
733</div>
734
735<p>You may give a name to any <a href="#typesystem">type</a> except "<a
736href="t_void">void</a>". Type name aliases may be used anywhere a type is
737expected with the syntax "%mytype".</p>
738
739<p>Note that type names are aliases for the structural type that they indicate,
740and that you can therefore specify multiple names for the same type. This often
741leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
742structural typing, the name is not part of the type. When printing out LLVM IR,
743the printer will pick <em>one name</em> to render all types of a particular
744shape. This means that if you have code where two different source types end up
745having the same LLVM type, that the dumper will sometimes print the "wrong" or
746unexpected type. This is an important design point and isn't going to
747change.</p>
748
749</div>
750
Chris Lattnere7886e42009-01-11 20:53:49 +0000751<!-- ======================================================================= -->
752<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000753 <a name="globalvars">Global Variables</a>
754</div>
755
756<div class="doc_text">
757
Chris Lattner3689a342005-02-12 19:30:21 +0000758<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000759instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000760an explicit section to be placed in, and may have an optional explicit alignment
761specified. A variable may be defined as "thread_local", which means that it
762will not be shared by threads (each thread will have a separated copy of the
763variable). A variable may be defined as a global "constant," which indicates
764that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000765optimization, allowing the global data to be placed in the read-only section of
766an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000767cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000768
769<p>
770LLVM explicitly allows <em>declarations</em> of global variables to be marked
771constant, even if the final definition of the global is not. This capability
772can be used to enable slightly better optimization of the program, but requires
773the language definition to guarantee that optimizations based on the
774'constantness' are valid for the translation units that do not include the
775definition.
776</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000777
778<p>As SSA values, global variables define pointer values that are in
779scope (i.e. they dominate) all basic blocks in the program. Global
780variables always define a pointer to their "content" type because they
781describe a region of memory, and all memory objects in LLVM are
782accessed through pointers.</p>
783
Christopher Lamb284d9922007-12-11 09:31:00 +0000784<p>A global variable may be declared to reside in a target-specifc numbered
785address space. For targets that support them, address spaces may affect how
786optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000787the variable. The default address space is zero. The address space qualifier
788must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000789
Chris Lattner88f6c462005-11-12 00:45:07 +0000790<p>LLVM allows an explicit section to be specified for globals. If the target
791supports it, it will emit globals to the section specified.</p>
792
Chris Lattner2cbdc452005-11-06 08:02:57 +0000793<p>An explicit alignment may be specified for a global. If not present, or if
794the alignment is set to zero, the alignment of the global is set by the target
795to whatever it feels convenient. If an explicit alignment is specified, the
796global is forced to have at least that much alignment. All alignments must be
797a power of 2.</p>
798
Christopher Lamb284d9922007-12-11 09:31:00 +0000799<p>For example, the following defines a global in a numbered address space with
800an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000801
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000802<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000803<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000804@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000805</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000806</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000807
Chris Lattnerfa730212004-12-09 16:11:40 +0000808</div>
809
810
811<!-- ======================================================================= -->
812<div class="doc_subsection">
813 <a name="functionstructure">Functions</a>
814</div>
815
816<div class="doc_text">
817
Reid Spencerca86e162006-12-31 07:07:53 +0000818<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
819an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000820<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000821<a href="#callingconv">calling convention</a>, a return type, an optional
822<a href="#paramattrs">parameter attribute</a> for the return type, a function
823name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000824<a href="#paramattrs">parameter attributes</a>), optional
825<a href="#fnattrs">function attributes</a>, an optional section,
826an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000827an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000828
829LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
830optional <a href="#linkage">linkage type</a>, an optional
831<a href="#visibility">visibility style</a>, an optional
832<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000833<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000834name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000835<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000836
Chris Lattnerd3eda892008-08-05 18:29:16 +0000837<p>A function definition contains a list of basic blocks, forming the CFG
838(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000839the function. Each basic block may optionally start with a label (giving the
840basic block a symbol table entry), contains a list of instructions, and ends
841with a <a href="#terminators">terminator</a> instruction (such as a branch or
842function return).</p>
843
Chris Lattner4a3c9012007-06-08 16:52:14 +0000844<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000845executed on entrance to the function, and it is not allowed to have predecessor
846basic blocks (i.e. there can not be any branches to the entry block of a
847function). Because the block can have no predecessors, it also cannot have any
848<a href="#i_phi">PHI nodes</a>.</p>
849
Chris Lattner88f6c462005-11-12 00:45:07 +0000850<p>LLVM allows an explicit section to be specified for functions. If the target
851supports it, it will emit functions to the section specified.</p>
852
Chris Lattner2cbdc452005-11-06 08:02:57 +0000853<p>An explicit alignment may be specified for a function. If not present, or if
854the alignment is set to zero, the alignment of the function is set by the target
855to whatever it feels convenient. If an explicit alignment is specified, the
856function is forced to have at least that much alignment. All alignments must be
857a power of 2.</p>
858
Devang Patel307e8ab2008-10-07 17:48:33 +0000859 <h5>Syntax:</h5>
860
861<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000862<tt>
863define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
864 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
865 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
866 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
867 [<a href="#gc">gc</a>] { ... }
868</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000869</div>
870
Chris Lattnerfa730212004-12-09 16:11:40 +0000871</div>
872
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000873
874<!-- ======================================================================= -->
875<div class="doc_subsection">
876 <a name="aliasstructure">Aliases</a>
877</div>
878<div class="doc_text">
879 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000880 function, global variable, another alias or bitcast of global value). Aliases
881 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000882 optional <a href="#visibility">visibility style</a>.</p>
883
884 <h5>Syntax:</h5>
885
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000886<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000887<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000888@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000889</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000890</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000891
892</div>
893
894
895
Chris Lattner4e9aba72006-01-23 23:23:47 +0000896<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000897<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
898<div class="doc_text">
899 <p>The return type and each parameter of a function type may have a set of
900 <i>parameter attributes</i> associated with them. Parameter attributes are
901 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000902 a function. Parameter attributes are considered to be part of the function,
903 not of the function type, so functions with different parameter attributes
904 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000905
Reid Spencer950e9f82007-01-15 18:27:39 +0000906 <p>Parameter attributes are simple keywords that follow the type specified. If
907 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000908 example:</p>
909
910<div class="doc_code">
911<pre>
Nick Lewyckyb6a7d252009-02-15 23:06:14 +0000912declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000913declare i32 @atoi(i8 zeroext)
914declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000915</pre>
916</div>
917
Duncan Sandsdc024672007-11-27 13:23:08 +0000918 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
919 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000920
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000921 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000922 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000923 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000924 <dd>This indicates to the code generator that the parameter or return value
925 should be zero-extended to a 32-bit value by the caller (for a parameter)
926 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000927
Reid Spencer9445e9a2007-07-19 23:13:04 +0000928 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000929 <dd>This indicates to the code generator that the parameter or return value
930 should be sign-extended to a 32-bit value by the caller (for a parameter)
931 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000932
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000933 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000934 <dd>This indicates that this parameter or return value should be treated
935 in a special target-dependent fashion during while emitting code for a
936 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000937 to memory, though some targets use it to distinguish between two different
938 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000939
Duncan Sandsedb05df2008-10-06 08:14:18 +0000940 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000941 <dd>This indicates that the pointer parameter should really be passed by
942 value to the function. The attribute implies that a hidden copy of the
943 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000944 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000945 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000946 value, but is also valid on pointers to scalars. The copy is considered to
947 belong to the caller not the callee (for example,
948 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000949 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerce459b12009-02-05 05:42:28 +0000950 values. The byval attribute also supports specifying an alignment with the
951 align attribute. This has a target-specific effect on the code generator
952 that usually indicates a desired alignment for the synthesized stack
953 slot.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000954
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000955 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000956 <dd>This indicates that the pointer parameter specifies the address of a
957 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000958 This pointer must be guaranteed by the caller to be valid: loads and stores
959 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000960 be applied to the first parameter. This is not a valid attribute for
961 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000962
Zhou Shengfebca342007-06-05 05:28:26 +0000963 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000964 <dd>This indicates that the pointer does not alias any global or any other
965 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000966 case. On a function return value, <tt>noalias</tt> additionally indicates
967 that the pointer does not alias any other pointers visible to the
Nick Lewyckyf23d0d32008-12-19 06:39:12 +0000968 caller. For further details, please see the discussion of the NoAlias
969 response in
970 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
971 analysis</a>.</dd>
972
973 <dt><tt>nocapture</tt></dt>
974 <dd>This indicates that the callee does not make any copies of the pointer
975 that outlive the callee itself. This is not a valid attribute for return
976 values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000977
Duncan Sands50f19f52007-07-27 19:57:41 +0000978 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000979 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000980 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
981 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000982 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000983
Reid Spencerca86e162006-12-31 07:07:53 +0000984</div>
985
986<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000987<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000988 <a name="gc">Garbage Collector Names</a>
989</div>
990
991<div class="doc_text">
992<p>Each function may specify a garbage collector name, which is simply a
993string.</p>
994
995<div class="doc_code"><pre
996>define void @f() gc "name" { ...</pre></div>
997
998<p>The compiler declares the supported values of <i>name</i>. Specifying a
999collector which will cause the compiler to alter its output in order to support
1000the named garbage collection algorithm.</p>
1001</div>
1002
1003<!-- ======================================================================= -->
1004<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001005 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +00001006</div>
1007
1008<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001009
1010<p>Function attributes are set to communicate additional information about
1011 a function. Function attributes are considered to be part of the function,
1012 not of the function type, so functions with different parameter attributes
1013 can have the same function type.</p>
1014
1015 <p>Function attributes are simple keywords that follow the type specified. If
1016 multiple attributes are needed, they are space separated. For
1017 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001018
1019<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001020<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001021define void @f() noinline { ... }
1022define void @f() alwaysinline { ... }
1023define void @f() alwaysinline optsize { ... }
1024define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001025</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001026</div>
1027
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001028<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001029<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001030<dd>This attribute indicates that the inliner should attempt to inline this
1031function into callers whenever possible, ignoring any active inlining size
1032threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001033
Devang Patel2c9c3e72008-09-26 23:51:19 +00001034<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001035<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +00001036in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +00001037<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001038
Devang Patel2c9c3e72008-09-26 23:51:19 +00001039<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +00001040<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +00001041make choices that keep the code size of this function low, and otherwise do
1042optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001043
Devang Patel2c9c3e72008-09-26 23:51:19 +00001044<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001045<dd>This function attribute indicates that the function never returns normally.
1046This produces undefined behavior at runtime if the function ever does
1047dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001048
1049<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001050<dd>This function attribute indicates that the function never returns with an
1051unwind or exceptional control flow. If the function does unwind, its runtime
1052behavior is undefined.</dd>
1053
1054<dt><tt>readnone</tt></dt>
Duncan Sandsedb05df2008-10-06 08:14:18 +00001055<dd>This attribute indicates that the function computes its result (or the
1056exception it throws) based strictly on its arguments, without dereferencing any
1057pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1058registers, etc) visible to caller functions. It does not write through any
1059pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
1060never changes any state visible to callers.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001061
Duncan Sandsedb05df2008-10-06 08:14:18 +00001062<dt><tt><a name="readonly">readonly</a></tt></dt>
1063<dd>This attribute indicates that the function does not write through any
1064pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1065or otherwise modify any state (e.g. memory, control registers, etc) visible to
1066caller functions. It may dereference pointer arguments and read state that may
1067be set in the caller. A readonly function always returns the same value (or
1068throws the same exception) when called with the same set of arguments and global
1069state.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001070
1071<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001072<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +00001073protector. It is in the form of a "canary"&mdash;a random value placed on the
1074stack before the local variables that's checked upon return from the function to
1075see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001076needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001077
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001078<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
1079that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
1080have an <tt>ssp</tt> attribute.</p></dd>
1081
1082<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001083<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001084stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001085function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001086
1087<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
1088function that doesn't have an <tt>sspreq</tt> attribute or which has
1089an <tt>ssp</tt> attribute, then the resulting function will have
1090an <tt>sspreq</tt> attribute.</p></dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001091</dl>
1092
Devang Patelf8b94812008-09-04 23:05:13 +00001093</div>
1094
1095<!-- ======================================================================= -->
1096<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001097 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001098</div>
1099
1100<div class="doc_text">
1101<p>
1102Modules may contain "module-level inline asm" blocks, which corresponds to the
1103GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1104LLVM and treated as a single unit, but may be separated in the .ll file if
1105desired. The syntax is very simple:
1106</p>
1107
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001108<div class="doc_code">
1109<pre>
1110module asm "inline asm code goes here"
1111module asm "more can go here"
1112</pre>
1113</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001114
1115<p>The strings can contain any character by escaping non-printable characters.
1116 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1117 for the number.
1118</p>
1119
1120<p>
1121 The inline asm code is simply printed to the machine code .s file when
1122 assembly code is generated.
1123</p>
1124</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001125
Reid Spencerde151942007-02-19 23:54:10 +00001126<!-- ======================================================================= -->
1127<div class="doc_subsection">
1128 <a name="datalayout">Data Layout</a>
1129</div>
1130
1131<div class="doc_text">
1132<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001133data is to be laid out in memory. The syntax for the data layout is simply:</p>
1134<pre> target datalayout = "<i>layout specification</i>"</pre>
1135<p>The <i>layout specification</i> consists of a list of specifications
1136separated by the minus sign character ('-'). Each specification starts with a
1137letter and may include other information after the letter to define some
1138aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001139<dl>
1140 <dt><tt>E</tt></dt>
1141 <dd>Specifies that the target lays out data in big-endian form. That is, the
1142 bits with the most significance have the lowest address location.</dd>
1143 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001144 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001145 the bits with the least significance have the lowest address location.</dd>
1146 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1147 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1148 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1149 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1150 too.</dd>
1151 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1152 <dd>This specifies the alignment for an integer type of a given bit
1153 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1154 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1155 <dd>This specifies the alignment for a vector type of a given bit
1156 <i>size</i>.</dd>
1157 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1158 <dd>This specifies the alignment for a floating point type of a given bit
1159 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1160 (double).</dd>
1161 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1162 <dd>This specifies the alignment for an aggregate type of a given bit
1163 <i>size</i>.</dd>
1164</dl>
1165<p>When constructing the data layout for a given target, LLVM starts with a
1166default set of specifications which are then (possibly) overriden by the
1167specifications in the <tt>datalayout</tt> keyword. The default specifications
1168are given in this list:</p>
1169<ul>
1170 <li><tt>E</tt> - big endian</li>
1171 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1172 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1173 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1174 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1175 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001176 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001177 alignment of 64-bits</li>
1178 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1179 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1180 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1181 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1182 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1183</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001184<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001185following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001186<ol>
1187 <li>If the type sought is an exact match for one of the specifications, that
1188 specification is used.</li>
1189 <li>If no match is found, and the type sought is an integer type, then the
1190 smallest integer type that is larger than the bitwidth of the sought type is
1191 used. If none of the specifications are larger than the bitwidth then the the
1192 largest integer type is used. For example, given the default specifications
1193 above, the i7 type will use the alignment of i8 (next largest) while both
1194 i65 and i256 will use the alignment of i64 (largest specified).</li>
1195 <li>If no match is found, and the type sought is a vector type, then the
1196 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001197 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1198 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001199</ol>
1200</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001201
Chris Lattner00950542001-06-06 20:29:01 +00001202<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001203<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1204<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001205
Misha Brukman9d0919f2003-11-08 01:05:38 +00001206<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001207
Misha Brukman9d0919f2003-11-08 01:05:38 +00001208<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001209intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001210optimizations to be performed on the intermediate representation directly,
1211without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001212extra analyses on the side before the transformation. A strong type
1213system makes it easier to read the generated code and enables novel
1214analyses and transformations that are not feasible to perform on normal
1215three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001216
1217</div>
1218
Chris Lattner00950542001-06-06 20:29:01 +00001219<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001220<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001221Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001222<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001223<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001224classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001225
1226<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001227 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001228 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001229 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001230 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001231 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001232 </tr>
1233 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001234 <td><a href="#t_floating">floating point</a></td>
1235 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001236 </tr>
1237 <tr>
1238 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001239 <td><a href="#t_integer">integer</a>,
1240 <a href="#t_floating">floating point</a>,
1241 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001242 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001243 <a href="#t_struct">structure</a>,
1244 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001245 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001246 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001247 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001248 <tr>
1249 <td><a href="#t_primitive">primitive</a></td>
1250 <td><a href="#t_label">label</a>,
1251 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001252 <a href="#t_floating">floating point</a>.</td>
1253 </tr>
1254 <tr>
1255 <td><a href="#t_derived">derived</a></td>
1256 <td><a href="#t_integer">integer</a>,
1257 <a href="#t_array">array</a>,
1258 <a href="#t_function">function</a>,
1259 <a href="#t_pointer">pointer</a>,
1260 <a href="#t_struct">structure</a>,
1261 <a href="#t_pstruct">packed structure</a>,
1262 <a href="#t_vector">vector</a>,
1263 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001264 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001265 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001266 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001267</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001268
Chris Lattner261efe92003-11-25 01:02:51 +00001269<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1270most important. Values of these types are the only ones which can be
1271produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001272instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001273</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001274
Chris Lattner00950542001-06-06 20:29:01 +00001275<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001276<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001277
Chris Lattner4f69f462008-01-04 04:32:38 +00001278<div class="doc_text">
1279<p>The primitive types are the fundamental building blocks of the LLVM
1280system.</p>
1281
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001282</div>
1283
Chris Lattner4f69f462008-01-04 04:32:38 +00001284<!-- _______________________________________________________________________ -->
1285<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1286
1287<div class="doc_text">
1288 <table>
1289 <tbody>
1290 <tr><th>Type</th><th>Description</th></tr>
1291 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1292 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1293 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1294 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1295 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1296 </tbody>
1297 </table>
1298</div>
1299
1300<!-- _______________________________________________________________________ -->
1301<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1302
1303<div class="doc_text">
1304<h5>Overview:</h5>
1305<p>The void type does not represent any value and has no size.</p>
1306
1307<h5>Syntax:</h5>
1308
1309<pre>
1310 void
1311</pre>
1312</div>
1313
1314<!-- _______________________________________________________________________ -->
1315<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1316
1317<div class="doc_text">
1318<h5>Overview:</h5>
1319<p>The label type represents code labels.</p>
1320
1321<h5>Syntax:</h5>
1322
1323<pre>
1324 label
1325</pre>
1326</div>
1327
1328
1329<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001330<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001331
Misha Brukman9d0919f2003-11-08 01:05:38 +00001332<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001333
Chris Lattner261efe92003-11-25 01:02:51 +00001334<p>The real power in LLVM comes from the derived types in the system.
1335This is what allows a programmer to represent arrays, functions,
1336pointers, and other useful types. Note that these derived types may be
1337recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001338
Misha Brukman9d0919f2003-11-08 01:05:38 +00001339</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001340
Chris Lattner00950542001-06-06 20:29:01 +00001341<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001342<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1343
1344<div class="doc_text">
1345
1346<h5>Overview:</h5>
1347<p>The integer type is a very simple derived type that simply specifies an
1348arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13492^23-1 (about 8 million) can be specified.</p>
1350
1351<h5>Syntax:</h5>
1352
1353<pre>
1354 iN
1355</pre>
1356
1357<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1358value.</p>
1359
1360<h5>Examples:</h5>
1361<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001362 <tbody>
1363 <tr>
1364 <td><tt>i1</tt></td>
1365 <td>a single-bit integer.</td>
1366 </tr><tr>
1367 <td><tt>i32</tt></td>
1368 <td>a 32-bit integer.</td>
1369 </tr><tr>
1370 <td><tt>i1942652</tt></td>
1371 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001372 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001373 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001374</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001375
1376<p>Note that the code generator does not yet support large integer types
1377to be used as function return types. The specific limit on how large a
1378return type the code generator can currently handle is target-dependent;
1379currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1380targets.</p>
1381
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001382</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001383
1384<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001385<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001386
Misha Brukman9d0919f2003-11-08 01:05:38 +00001387<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001388
Chris Lattner00950542001-06-06 20:29:01 +00001389<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001390
Misha Brukman9d0919f2003-11-08 01:05:38 +00001391<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001392sequentially in memory. The array type requires a size (number of
1393elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001394
Chris Lattner7faa8832002-04-14 06:13:44 +00001395<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001396
1397<pre>
1398 [&lt;# elements&gt; x &lt;elementtype&gt;]
1399</pre>
1400
John Criswelle4c57cc2005-05-12 16:52:32 +00001401<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001402be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001403
Chris Lattner7faa8832002-04-14 06:13:44 +00001404<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001405<table class="layout">
1406 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001407 <td class="left"><tt>[40 x i32]</tt></td>
1408 <td class="left">Array of 40 32-bit integer values.</td>
1409 </tr>
1410 <tr class="layout">
1411 <td class="left"><tt>[41 x i32]</tt></td>
1412 <td class="left">Array of 41 32-bit integer values.</td>
1413 </tr>
1414 <tr class="layout">
1415 <td class="left"><tt>[4 x i8]</tt></td>
1416 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001417 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001418</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001419<p>Here are some examples of multidimensional arrays:</p>
1420<table class="layout">
1421 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001422 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1423 <td class="left">3x4 array of 32-bit integer values.</td>
1424 </tr>
1425 <tr class="layout">
1426 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1427 <td class="left">12x10 array of single precision floating point values.</td>
1428 </tr>
1429 <tr class="layout">
1430 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1431 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001432 </tr>
1433</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001434
John Criswell0ec250c2005-10-24 16:17:18 +00001435<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1436length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001437LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1438As a special case, however, zero length arrays are recognized to be variable
1439length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001440type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001441
Dan Gohmand8791e52009-01-24 15:58:40 +00001442<p>Note that the code generator does not yet support large aggregate types
1443to be used as function return types. The specific limit on how large an
1444aggregate return type the code generator can currently handle is
1445target-dependent, and also dependent on the aggregate element types.</p>
1446
Misha Brukman9d0919f2003-11-08 01:05:38 +00001447</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001448
Chris Lattner00950542001-06-06 20:29:01 +00001449<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001450<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001451<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001452
Chris Lattner00950542001-06-06 20:29:01 +00001453<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001454
Chris Lattner261efe92003-11-25 01:02:51 +00001455<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001456consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001457return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001458If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001459class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001460
Chris Lattner00950542001-06-06 20:29:01 +00001461<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001462
1463<pre>
1464 &lt;returntype list&gt; (&lt;parameter list&gt;)
1465</pre>
1466
John Criswell0ec250c2005-10-24 16:17:18 +00001467<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001468specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001469which indicates that the function takes a variable number of arguments.
1470Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001471 href="#int_varargs">variable argument handling intrinsic</a> functions.
1472'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1473<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001474
Chris Lattner00950542001-06-06 20:29:01 +00001475<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001476<table class="layout">
1477 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001478 <td class="left"><tt>i32 (i32)</tt></td>
1479 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001480 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001481 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001482 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001483 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001484 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1485 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001486 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001487 <tt>float</tt>.
1488 </td>
1489 </tr><tr class="layout">
1490 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1491 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001492 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001493 which returns an integer. This is the signature for <tt>printf</tt> in
1494 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001495 </td>
Devang Patela582f402008-03-24 05:35:41 +00001496 </tr><tr class="layout">
1497 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001498 <td class="left">A function taking an <tt>i32</tt>, returning two
1499 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001500 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001501 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001502</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001503
Misha Brukman9d0919f2003-11-08 01:05:38 +00001504</div>
Chris Lattner00950542001-06-06 20:29:01 +00001505<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001506<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001507<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001508<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001509<p>The structure type is used to represent a collection of data members
1510together in memory. The packing of the field types is defined to match
1511the ABI of the underlying processor. The elements of a structure may
1512be any type that has a size.</p>
1513<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1514and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1515field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1516instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001517<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001518<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001519<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001520<table class="layout">
1521 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001522 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1523 <td class="left">A triple of three <tt>i32</tt> values</td>
1524 </tr><tr class="layout">
1525 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1526 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1527 second element is a <a href="#t_pointer">pointer</a> to a
1528 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1529 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001530 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001531</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001532
1533<p>Note that the code generator does not yet support large aggregate types
1534to be used as function return types. The specific limit on how large an
1535aggregate return type the code generator can currently handle is
1536target-dependent, and also dependent on the aggregate element types.</p>
1537
Misha Brukman9d0919f2003-11-08 01:05:38 +00001538</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001539
Chris Lattner00950542001-06-06 20:29:01 +00001540<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001541<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1542</div>
1543<div class="doc_text">
1544<h5>Overview:</h5>
1545<p>The packed structure type is used to represent a collection of data members
1546together in memory. There is no padding between fields. Further, the alignment
1547of a packed structure is 1 byte. The elements of a packed structure may
1548be any type that has a size.</p>
1549<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1550and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1551field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1552instruction.</p>
1553<h5>Syntax:</h5>
1554<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1555<h5>Examples:</h5>
1556<table class="layout">
1557 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001558 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1559 <td class="left">A triple of three <tt>i32</tt> values</td>
1560 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001561 <td class="left">
1562<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001563 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1564 second element is a <a href="#t_pointer">pointer</a> to a
1565 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1566 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001567 </tr>
1568</table>
1569</div>
1570
1571<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001572<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001573<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001574<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001575<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001576reference to another object, which must live in memory. Pointer types may have
1577an optional address space attribute defining the target-specific numbered
1578address space where the pointed-to object resides. The default address space is
1579zero.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001580
1581<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
Chris Lattnere220e8c2009-02-08 22:21:28 +00001582it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001583
Chris Lattner7faa8832002-04-14 06:13:44 +00001584<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001585<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001586<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001587<table class="layout">
1588 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001589 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001590 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1591 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1592 </tr>
1593 <tr class="layout">
1594 <td class="left"><tt>i32 (i32 *) *</tt></td>
1595 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001596 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001597 <tt>i32</tt>.</td>
1598 </tr>
1599 <tr class="layout">
1600 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1601 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1602 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001603 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001604</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001605</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001606
Chris Lattnera58561b2004-08-12 19:12:28 +00001607<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001608<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001609<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001610
Chris Lattnera58561b2004-08-12 19:12:28 +00001611<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001612
Reid Spencer485bad12007-02-15 03:07:05 +00001613<p>A vector type is a simple derived type that represents a vector
1614of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001615are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001616A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001617elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001618of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001619considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001620
Chris Lattnera58561b2004-08-12 19:12:28 +00001621<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001622
1623<pre>
1624 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1625</pre>
1626
John Criswellc1f786c2005-05-13 22:25:59 +00001627<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001628be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001629
Chris Lattnera58561b2004-08-12 19:12:28 +00001630<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001631
Reid Spencerd3f876c2004-11-01 08:19:36 +00001632<table class="layout">
1633 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001634 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1635 <td class="left">Vector of 4 32-bit integer values.</td>
1636 </tr>
1637 <tr class="layout">
1638 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1639 <td class="left">Vector of 8 32-bit floating-point values.</td>
1640 </tr>
1641 <tr class="layout">
1642 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1643 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001644 </tr>
1645</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001646
1647<p>Note that the code generator does not yet support large vector types
1648to be used as function return types. The specific limit on how large a
1649vector return type codegen can currently handle is target-dependent;
1650currently it's often a few times longer than a hardware vector register.</p>
1651
Misha Brukman9d0919f2003-11-08 01:05:38 +00001652</div>
1653
Chris Lattner69c11bb2005-04-25 17:34:15 +00001654<!-- _______________________________________________________________________ -->
1655<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1656<div class="doc_text">
1657
1658<h5>Overview:</h5>
1659
1660<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001661corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001662In LLVM, opaque types can eventually be resolved to any type (not just a
1663structure type).</p>
1664
1665<h5>Syntax:</h5>
1666
1667<pre>
1668 opaque
1669</pre>
1670
1671<h5>Examples:</h5>
1672
1673<table class="layout">
1674 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001675 <td class="left"><tt>opaque</tt></td>
1676 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001677 </tr>
1678</table>
1679</div>
1680
Chris Lattner242d61d2009-02-02 07:32:36 +00001681<!-- ======================================================================= -->
1682<div class="doc_subsection">
1683 <a name="t_uprefs">Type Up-references</a>
1684</div>
1685
1686<div class="doc_text">
1687<h5>Overview:</h5>
1688<p>
1689An "up reference" allows you to refer to a lexically enclosing type without
1690requiring it to have a name. For instance, a structure declaration may contain a
1691pointer to any of the types it is lexically a member of. Example of up
1692references (with their equivalent as named type declarations) include:</p>
1693
1694<pre>
Chris Lattner3060f5b2009-02-09 10:00:56 +00001695 { \2 * } %x = type { %x* }
Chris Lattner242d61d2009-02-02 07:32:36 +00001696 { \2 }* %y = type { %y }*
1697 \1* %z = type %z*
1698</pre>
1699
1700<p>
1701An up reference is needed by the asmprinter for printing out cyclic types when
1702there is no declared name for a type in the cycle. Because the asmprinter does
1703not want to print out an infinite type string, it needs a syntax to handle
1704recursive types that have no names (all names are optional in llvm IR).
1705</p>
1706
1707<h5>Syntax:</h5>
1708<pre>
1709 \&lt;level&gt;
1710</pre>
1711
1712<p>
1713The level is the count of the lexical type that is being referred to.
1714</p>
1715
1716<h5>Examples:</h5>
1717
1718<table class="layout">
1719 <tr class="layout">
1720 <td class="left"><tt>\1*</tt></td>
1721 <td class="left">Self-referential pointer.</td>
1722 </tr>
1723 <tr class="layout">
1724 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1725 <td class="left">Recursive structure where the upref refers to the out-most
1726 structure.</td>
1727 </tr>
1728</table>
1729</div>
1730
Chris Lattner69c11bb2005-04-25 17:34:15 +00001731
Chris Lattnerc3f59762004-12-09 17:30:23 +00001732<!-- *********************************************************************** -->
1733<div class="doc_section"> <a name="constants">Constants</a> </div>
1734<!-- *********************************************************************** -->
1735
1736<div class="doc_text">
1737
1738<p>LLVM has several different basic types of constants. This section describes
1739them all and their syntax.</p>
1740
1741</div>
1742
1743<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001744<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001745
1746<div class="doc_text">
1747
1748<dl>
1749 <dt><b>Boolean constants</b></dt>
1750
1751 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001752 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001753 </dd>
1754
1755 <dt><b>Integer constants</b></dt>
1756
Reid Spencercc16dc32004-12-09 18:02:53 +00001757 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001758 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001759 integer types.
1760 </dd>
1761
1762 <dt><b>Floating point constants</b></dt>
1763
1764 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1765 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001766 notation (see below). The assembler requires the exact decimal value of
1767 a floating-point constant. For example, the assembler accepts 1.25 but
1768 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1769 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001770
1771 <dt><b>Null pointer constants</b></dt>
1772
John Criswell9e2485c2004-12-10 15:51:16 +00001773 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001774 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1775
1776</dl>
1777
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001778<p>The one non-intuitive notation for constants is the hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001779of floating point constants. For example, the form '<tt>double
17800x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
17814.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001782(and the only time that they are generated by the disassembler) is when a
1783floating point constant must be emitted but it cannot be represented as a
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001784decimal floating point number in a reasonable number of digits. For example,
1785NaN's, infinities, and other
Reid Spencercc16dc32004-12-09 18:02:53 +00001786special values are represented in their IEEE hexadecimal format so that
1787assembly and disassembly do not cause any bits to change in the constants.</p>
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001788<p>When using the hexadecimal form, constants of types float and double are
1789represented using the 16-digit form shown above (which matches the IEEE754
1790representation for double); float values must, however, be exactly representable
1791as IEE754 single precision.
1792Hexadecimal format is always used for long
1793double, and there are three forms of long double. The 80-bit
1794format used by x86 is represented as <tt>0xK</tt>
1795followed by 20 hexadecimal digits.
1796The 128-bit format used by PowerPC (two adjacent doubles) is represented
1797by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
1798format is represented
1799by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
1800target uses this format. Long doubles will only work if they match
1801the long double format on your target. All hexadecimal formats are big-endian
1802(sign bit at the left).</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001803</div>
1804
1805<!-- ======================================================================= -->
Chris Lattner70882792009-02-28 18:32:25 +00001806<div class="doc_subsection">
1807<a name="aggregateconstants"> <!-- old anchor -->
1808<a name="complexconstants">Complex Constants</a></a>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001809</div>
1810
1811<div class="doc_text">
Chris Lattner70882792009-02-28 18:32:25 +00001812<p>Complex constants are a (potentially recursive) combination of simple
1813constants and smaller complex constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001814
1815<dl>
1816 <dt><b>Structure constants</b></dt>
1817
1818 <dd>Structure constants are represented with notation similar to structure
1819 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001820 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1821 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001822 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001823 types of elements must match those specified by the type.
1824 </dd>
1825
1826 <dt><b>Array constants</b></dt>
1827
1828 <dd>Array constants are represented with notation similar to array type
1829 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001830 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001831 constants must have <a href="#t_array">array type</a>, and the number and
1832 types of elements must match those specified by the type.
1833 </dd>
1834
Reid Spencer485bad12007-02-15 03:07:05 +00001835 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001836
Reid Spencer485bad12007-02-15 03:07:05 +00001837 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001838 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001839 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001840 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001841 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001842 match those specified by the type.
1843 </dd>
1844
1845 <dt><b>Zero initialization</b></dt>
1846
1847 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1848 value to zero of <em>any</em> type, including scalar and aggregate types.
1849 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001850 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001851 initializers.
1852 </dd>
1853</dl>
1854
1855</div>
1856
1857<!-- ======================================================================= -->
1858<div class="doc_subsection">
1859 <a name="globalconstants">Global Variable and Function Addresses</a>
1860</div>
1861
1862<div class="doc_text">
1863
1864<p>The addresses of <a href="#globalvars">global variables</a> and <a
1865href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001866constants. These constants are explicitly referenced when the <a
1867href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001868href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1869file:</p>
1870
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001871<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001872<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001873@X = global i32 17
1874@Y = global i32 42
1875@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001876</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001877</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001878
1879</div>
1880
1881<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001882<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001883<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001884 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001885 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001886 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001887
Reid Spencer2dc45b82004-12-09 18:13:12 +00001888 <p>Undefined values indicate to the compiler that the program is well defined
1889 no matter what value is used, giving the compiler more freedom to optimize.
1890 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001891</div>
1892
1893<!-- ======================================================================= -->
1894<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1895</div>
1896
1897<div class="doc_text">
1898
1899<p>Constant expressions are used to allow expressions involving other constants
1900to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001901href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001902that does not have side effects (e.g. load and call are not supported). The
1903following is the syntax for constant expressions:</p>
1904
1905<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001906 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1907 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001908 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001909
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001910 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1911 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001912 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001913
1914 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1915 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001916 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001917
1918 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1919 <dd>Truncate a floating point constant to another floating point type. The
1920 size of CST must be larger than the size of TYPE. Both types must be
1921 floating point.</dd>
1922
1923 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1924 <dd>Floating point extend a constant to another type. The size of CST must be
1925 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1926
Reid Spencer1539a1c2007-07-31 14:40:14 +00001927 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001928 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001929 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1930 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1931 of the same number of elements. If the value won't fit in the integer type,
1932 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001933
Reid Spencerd4448792006-11-09 23:03:26 +00001934 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001935 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001936 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1937 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1938 of the same number of elements. If the value won't fit in the integer type,
1939 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001940
Reid Spencerd4448792006-11-09 23:03:26 +00001941 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001942 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001943 constant. TYPE must be a scalar or vector floating point type. CST must be of
1944 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1945 of the same number of elements. If the value won't fit in the floating point
1946 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001947
Reid Spencerd4448792006-11-09 23:03:26 +00001948 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001949 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001950 constant. TYPE must be a scalar or vector floating point type. CST must be of
1951 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1952 of the same number of elements. If the value won't fit in the floating point
1953 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001954
Reid Spencer5c0ef472006-11-11 23:08:07 +00001955 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1956 <dd>Convert a pointer typed constant to the corresponding integer constant
1957 TYPE must be an integer type. CST must be of pointer type. The CST value is
1958 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1959
1960 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1961 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1962 pointer type. CST must be of integer type. The CST value is zero extended,
1963 truncated, or unchanged to make it fit in a pointer size. This one is
1964 <i>really</i> dangerous!</dd>
1965
1966 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner03bbad62009-02-28 18:27:03 +00001967 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
1968 are the same as those for the <a href="#i_bitcast">bitcast
1969 instruction</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001970
1971 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1972
1973 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1974 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1975 instruction, the index list may have zero or more indexes, which are required
1976 to make sense for the type of "CSTPTR".</dd>
1977
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001978 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1979
1980 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001981 constants.</dd>
1982
1983 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1984 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1985
1986 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1987 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001988
Nate Begemanac80ade2008-05-12 19:01:56 +00001989 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1990 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1991
1992 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1993 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1994
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001995 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1996
1997 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00001998 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001999
Robert Bocchino05ccd702006-01-15 20:48:27 +00002000 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
2001
2002 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00002003 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00002004
Chris Lattnerc1989542006-04-08 00:13:41 +00002005
2006 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
2007
2008 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00002009 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002010
Chris Lattnerc3f59762004-12-09 17:30:23 +00002011 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
2012
Reid Spencer2dc45b82004-12-09 18:13:12 +00002013 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2014 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00002015 binary</a> operations. The constraints on operands are the same as those for
2016 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00002017 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002018</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002019</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00002020
Chris Lattner00950542001-06-06 20:29:01 +00002021<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00002022<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2023<!-- *********************************************************************** -->
2024
2025<!-- ======================================================================= -->
2026<div class="doc_subsection">
2027<a name="inlineasm">Inline Assembler Expressions</a>
2028</div>
2029
2030<div class="doc_text">
2031
2032<p>
2033LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2034Module-Level Inline Assembly</a>) through the use of a special value. This
2035value represents the inline assembler as a string (containing the instructions
2036to emit), a list of operand constraints (stored as a string), and a flag that
2037indicates whether or not the inline asm expression has side effects. An example
2038inline assembler expression is:
2039</p>
2040
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002041<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002042<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002043i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002044</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002045</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002046
2047<p>
2048Inline assembler expressions may <b>only</b> be used as the callee operand of
2049a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2050</p>
2051
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002052<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002053<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002054%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002055</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002056</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002057
2058<p>
2059Inline asms with side effects not visible in the constraint list must be marked
2060as having side effects. This is done through the use of the
2061'<tt>sideeffect</tt>' keyword, like so:
2062</p>
2063
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002064<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002065<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002066call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002067</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002068</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002069
2070<p>TODO: The format of the asm and constraints string still need to be
2071documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00002072need to be documented). This is probably best done by reference to another
2073document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00002074</p>
2075
2076</div>
2077
2078<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00002079<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2080<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002081
Misha Brukman9d0919f2003-11-08 01:05:38 +00002082<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002083
Chris Lattner261efe92003-11-25 01:02:51 +00002084<p>The LLVM instruction set consists of several different
2085classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00002086instructions</a>, <a href="#binaryops">binary instructions</a>,
2087<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00002088 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2089instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002090
Misha Brukman9d0919f2003-11-08 01:05:38 +00002091</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002092
Chris Lattner00950542001-06-06 20:29:01 +00002093<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002094<div class="doc_subsection"> <a name="terminators">Terminator
2095Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002096
Misha Brukman9d0919f2003-11-08 01:05:38 +00002097<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002098
Chris Lattner261efe92003-11-25 01:02:51 +00002099<p>As mentioned <a href="#functionstructure">previously</a>, every
2100basic block in a program ends with a "Terminator" instruction, which
2101indicates which block should be executed after the current block is
2102finished. These terminator instructions typically yield a '<tt>void</tt>'
2103value: they produce control flow, not values (the one exception being
2104the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00002105<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00002106 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2107instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00002108the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2109 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2110 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002111
Misha Brukman9d0919f2003-11-08 01:05:38 +00002112</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002113
Chris Lattner00950542001-06-06 20:29:01 +00002114<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002115<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2116Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002117<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002118<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002119<pre>
2120 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002121 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002122</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002123
Chris Lattner00950542001-06-06 20:29:01 +00002124<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002125
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002126<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2127optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00002128<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002129returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00002130control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002131
Chris Lattner00950542001-06-06 20:29:01 +00002132<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002133
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002134<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2135the return value. The type of the return value must be a
2136'<a href="#t_firstclass">first class</a>' type.</p>
2137
2138<p>A function is not <a href="#wellformed">well formed</a> if
2139it it has a non-void return type and contains a '<tt>ret</tt>'
2140instruction with no return value or a return value with a type that
2141does not match its type, or if it has a void return type and contains
2142a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002143
Chris Lattner00950542001-06-06 20:29:01 +00002144<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002145
Chris Lattner261efe92003-11-25 01:02:51 +00002146<p>When the '<tt>ret</tt>' instruction is executed, control flow
2147returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00002148 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00002149the instruction after the call. If the caller was an "<a
2150 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00002151at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00002152returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00002153return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002154
Chris Lattner00950542001-06-06 20:29:01 +00002155<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002156
2157<pre>
2158 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002159 ret void <i>; Return from a void function</i>
Bill Wendling0a4bbbf2009-02-28 22:12:54 +00002160 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002161</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002162
Dan Gohmand8791e52009-01-24 15:58:40 +00002163<p>Note that the code generator does not yet fully support large
2164 return values. The specific sizes that are currently supported are
2165 dependent on the target. For integers, on 32-bit targets the limit
2166 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2167 For aggregate types, the current limits are dependent on the element
2168 types; for example targets are often limited to 2 total integer
2169 elements and 2 total floating-point elements.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002170
Misha Brukman9d0919f2003-11-08 01:05:38 +00002171</div>
Chris Lattner00950542001-06-06 20:29:01 +00002172<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002173<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002174<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002175<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002176<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002177</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002178<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002179<p>The '<tt>br</tt>' instruction is used to cause control flow to
2180transfer to a different basic block in the current function. There are
2181two forms of this instruction, corresponding to a conditional branch
2182and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002183<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002184<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002185single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002186unconditional form of the '<tt>br</tt>' instruction takes a single
2187'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002188<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002189<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002190argument is evaluated. If the value is <tt>true</tt>, control flows
2191to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2192control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002193<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002194<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002195 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002196</div>
Chris Lattner00950542001-06-06 20:29:01 +00002197<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002198<div class="doc_subsubsection">
2199 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2200</div>
2201
Misha Brukman9d0919f2003-11-08 01:05:38 +00002202<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002203<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002204
2205<pre>
2206 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2207</pre>
2208
Chris Lattner00950542001-06-06 20:29:01 +00002209<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002210
2211<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2212several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002213instruction, allowing a branch to occur to one of many possible
2214destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002215
2216
Chris Lattner00950542001-06-06 20:29:01 +00002217<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002218
2219<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2220comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2221an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2222table is not allowed to contain duplicate constant entries.</p>
2223
Chris Lattner00950542001-06-06 20:29:01 +00002224<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002225
Chris Lattner261efe92003-11-25 01:02:51 +00002226<p>The <tt>switch</tt> instruction specifies a table of values and
2227destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002228table is searched for the given value. If the value is found, control flow is
2229transfered to the corresponding destination; otherwise, control flow is
2230transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002231
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002232<h5>Implementation:</h5>
2233
2234<p>Depending on properties of the target machine and the particular
2235<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002236ways. For example, it could be generated as a series of chained conditional
2237branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002238
2239<h5>Example:</h5>
2240
2241<pre>
2242 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002243 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002244 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002245
2246 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002247 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002248
2249 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002250 switch i32 %val, label %otherwise [ i32 0, label %onzero
2251 i32 1, label %onone
2252 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002253</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002254</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002255
Chris Lattner00950542001-06-06 20:29:01 +00002256<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002257<div class="doc_subsubsection">
2258 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2259</div>
2260
Misha Brukman9d0919f2003-11-08 01:05:38 +00002261<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002262
Chris Lattner00950542001-06-06 20:29:01 +00002263<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002264
2265<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002266 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002267 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002268</pre>
2269
Chris Lattner6536cfe2002-05-06 22:08:29 +00002270<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002271
2272<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2273function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002274'<tt>normal</tt>' label or the
2275'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002276"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2277"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002278href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002279continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002280
Chris Lattner00950542001-06-06 20:29:01 +00002281<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002282
Misha Brukman9d0919f2003-11-08 01:05:38 +00002283<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002284
Chris Lattner00950542001-06-06 20:29:01 +00002285<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002286 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002287 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002288 convention</a> the call should use. If none is specified, the call defaults
2289 to using C calling conventions.
2290 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002291
2292 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2293 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2294 and '<tt>inreg</tt>' attributes are valid here.</li>
2295
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002296 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2297 function value being invoked. In most cases, this is a direct function
2298 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2299 an arbitrary pointer to function value.
2300 </li>
2301
2302 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2303 function to be invoked. </li>
2304
2305 <li>'<tt>function args</tt>': argument list whose types match the function
2306 signature argument types. If the function signature indicates the function
2307 accepts a variable number of arguments, the extra arguments can be
2308 specified. </li>
2309
2310 <li>'<tt>normal label</tt>': the label reached when the called function
2311 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2312
2313 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2314 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2315
Devang Patel307e8ab2008-10-07 17:48:33 +00002316 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002317 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2318 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002319</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002320
Chris Lattner00950542001-06-06 20:29:01 +00002321<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002322
Misha Brukman9d0919f2003-11-08 01:05:38 +00002323<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002324href="#i_call">call</a></tt>' instruction in most regards. The primary
2325difference is that it establishes an association with a label, which is used by
2326the runtime library to unwind the stack.</p>
2327
2328<p>This instruction is used in languages with destructors to ensure that proper
2329cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2330exception. Additionally, this is important for implementation of
2331'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2332
Chris Lattner00950542001-06-06 20:29:01 +00002333<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002334<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002335 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002336 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002337 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002338 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002339</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002340</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002341
2342
Chris Lattner27f71f22003-09-03 00:41:47 +00002343<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002344
Chris Lattner261efe92003-11-25 01:02:51 +00002345<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2346Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002347
Misha Brukman9d0919f2003-11-08 01:05:38 +00002348<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002349
Chris Lattner27f71f22003-09-03 00:41:47 +00002350<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002351<pre>
2352 unwind
2353</pre>
2354
Chris Lattner27f71f22003-09-03 00:41:47 +00002355<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002356
2357<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2358at the first callee in the dynamic call stack which used an <a
2359href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2360primarily used to implement exception handling.</p>
2361
Chris Lattner27f71f22003-09-03 00:41:47 +00002362<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002363
Chris Lattner72ed2002008-04-19 21:01:16 +00002364<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002365immediately halt. The dynamic call stack is then searched for the first <a
2366href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2367execution continues at the "exceptional" destination block specified by the
2368<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2369dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002370</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002371
2372<!-- _______________________________________________________________________ -->
2373
2374<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2375Instruction</a> </div>
2376
2377<div class="doc_text">
2378
2379<h5>Syntax:</h5>
2380<pre>
2381 unreachable
2382</pre>
2383
2384<h5>Overview:</h5>
2385
2386<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2387instruction is used to inform the optimizer that a particular portion of the
2388code is not reachable. This can be used to indicate that the code after a
2389no-return function cannot be reached, and other facts.</p>
2390
2391<h5>Semantics:</h5>
2392
2393<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2394</div>
2395
2396
2397
Chris Lattner00950542001-06-06 20:29:01 +00002398<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002399<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002400<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002401<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002402program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002403produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002404multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002405The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002406<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002407</div>
Chris Lattner00950542001-06-06 20:29:01 +00002408<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002409<div class="doc_subsubsection">
2410 <a name="i_add">'<tt>add</tt>' Instruction</a>
2411</div>
2412
Misha Brukman9d0919f2003-11-08 01:05:38 +00002413<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002414
Chris Lattner00950542001-06-06 20:29:01 +00002415<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002416
2417<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002418 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002419</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002420
Chris Lattner00950542001-06-06 20:29:01 +00002421<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002422
Misha Brukman9d0919f2003-11-08 01:05:38 +00002423<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002424
Chris Lattner00950542001-06-06 20:29:01 +00002425<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002426
2427<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2428 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2429 <a href="#t_vector">vector</a> values. Both arguments must have identical
2430 types.</p>
2431
Chris Lattner00950542001-06-06 20:29:01 +00002432<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002433
Misha Brukman9d0919f2003-11-08 01:05:38 +00002434<p>The value produced is the integer or floating point sum of the two
2435operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002436
Chris Lattner5ec89832008-01-28 00:36:27 +00002437<p>If an integer sum has unsigned overflow, the result returned is the
2438mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2439the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002440
Chris Lattner5ec89832008-01-28 00:36:27 +00002441<p>Because LLVM integers use a two's complement representation, this
2442instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002443
Chris Lattner00950542001-06-06 20:29:01 +00002444<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002445
2446<pre>
2447 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002448</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002449</div>
Chris Lattner00950542001-06-06 20:29:01 +00002450<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002451<div class="doc_subsubsection">
2452 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2453</div>
2454
Misha Brukman9d0919f2003-11-08 01:05:38 +00002455<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002456
Chris Lattner00950542001-06-06 20:29:01 +00002457<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002458
2459<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002460 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002461</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002462
Chris Lattner00950542001-06-06 20:29:01 +00002463<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002464
Misha Brukman9d0919f2003-11-08 01:05:38 +00002465<p>The '<tt>sub</tt>' instruction returns the difference of its two
2466operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002467
2468<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2469'<tt>neg</tt>' instruction present in most other intermediate
2470representations.</p>
2471
Chris Lattner00950542001-06-06 20:29:01 +00002472<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002473
2474<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2475 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2476 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2477 types.</p>
2478
Chris Lattner00950542001-06-06 20:29:01 +00002479<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002480
Chris Lattner261efe92003-11-25 01:02:51 +00002481<p>The value produced is the integer or floating point difference of
2482the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002483
Chris Lattner5ec89832008-01-28 00:36:27 +00002484<p>If an integer difference has unsigned overflow, the result returned is the
2485mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2486the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002487
Chris Lattner5ec89832008-01-28 00:36:27 +00002488<p>Because LLVM integers use a two's complement representation, this
2489instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002490
Chris Lattner00950542001-06-06 20:29:01 +00002491<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002492<pre>
2493 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002494 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002495</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002496</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002497
Chris Lattner00950542001-06-06 20:29:01 +00002498<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002499<div class="doc_subsubsection">
2500 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2501</div>
2502
Misha Brukman9d0919f2003-11-08 01:05:38 +00002503<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002504
Chris Lattner00950542001-06-06 20:29:01 +00002505<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002506<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002507</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002508<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002509<p>The '<tt>mul</tt>' instruction returns the product of its two
2510operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002511
Chris Lattner00950542001-06-06 20:29:01 +00002512<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002513
2514<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2515href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2516or <a href="#t_vector">vector</a> values. Both arguments must have identical
2517types.</p>
2518
Chris Lattner00950542001-06-06 20:29:01 +00002519<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002520
Chris Lattner261efe92003-11-25 01:02:51 +00002521<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002522two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002523
Chris Lattner5ec89832008-01-28 00:36:27 +00002524<p>If the result of an integer multiplication has unsigned overflow,
2525the result returned is the mathematical result modulo
25262<sup>n</sup>, where n is the bit width of the result.</p>
2527<p>Because LLVM integers use a two's complement representation, and the
2528result is the same width as the operands, this instruction returns the
2529correct result for both signed and unsigned integers. If a full product
2530(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2531should be sign-extended or zero-extended as appropriate to the
2532width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002533<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002534<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002535</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002536</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002537
Chris Lattner00950542001-06-06 20:29:01 +00002538<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002539<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2540</a></div>
2541<div class="doc_text">
2542<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002543<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002544</pre>
2545<h5>Overview:</h5>
2546<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2547operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002548
Reid Spencer1628cec2006-10-26 06:15:43 +00002549<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002550
Reid Spencer1628cec2006-10-26 06:15:43 +00002551<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002552<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2553values. Both arguments must have identical types.</p>
2554
Reid Spencer1628cec2006-10-26 06:15:43 +00002555<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002556
Chris Lattner5ec89832008-01-28 00:36:27 +00002557<p>The value produced is the unsigned integer quotient of the two operands.</p>
2558<p>Note that unsigned integer division and signed integer division are distinct
2559operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2560<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002561<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002562<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002563</pre>
2564</div>
2565<!-- _______________________________________________________________________ -->
2566<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2567</a> </div>
2568<div class="doc_text">
2569<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002570<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002571 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002572</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002573
Reid Spencer1628cec2006-10-26 06:15:43 +00002574<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002575
Reid Spencer1628cec2006-10-26 06:15:43 +00002576<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2577operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002578
Reid Spencer1628cec2006-10-26 06:15:43 +00002579<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002580
2581<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2582<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2583values. Both arguments must have identical types.</p>
2584
Reid Spencer1628cec2006-10-26 06:15:43 +00002585<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002586<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002587<p>Note that signed integer division and unsigned integer division are distinct
2588operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2589<p>Division by zero leads to undefined behavior. Overflow also leads to
2590undefined behavior; this is a rare case, but can occur, for example,
2591by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002592<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002593<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002594</pre>
2595</div>
2596<!-- _______________________________________________________________________ -->
2597<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002598Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002599<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002600<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002601<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002602 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002603</pre>
2604<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002605
Reid Spencer1628cec2006-10-26 06:15:43 +00002606<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002607operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002608
Chris Lattner261efe92003-11-25 01:02:51 +00002609<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002610
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002611<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002612<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2613of floating point values. Both arguments must have identical types.</p>
2614
Chris Lattner261efe92003-11-25 01:02:51 +00002615<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002616
Reid Spencer1628cec2006-10-26 06:15:43 +00002617<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002618
Chris Lattner261efe92003-11-25 01:02:51 +00002619<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002620
2621<pre>
2622 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002623</pre>
2624</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002625
Chris Lattner261efe92003-11-25 01:02:51 +00002626<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002627<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2628</div>
2629<div class="doc_text">
2630<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002631<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002632</pre>
2633<h5>Overview:</h5>
2634<p>The '<tt>urem</tt>' instruction returns the remainder from the
2635unsigned division of its two arguments.</p>
2636<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002637<p>The two arguments to the '<tt>urem</tt>' instruction must be
2638<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2639values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002640<h5>Semantics:</h5>
2641<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002642This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002643<p>Note that unsigned integer remainder and signed integer remainder are
2644distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2645<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002646<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002647<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002648</pre>
2649
2650</div>
2651<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002652<div class="doc_subsubsection">
2653 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2654</div>
2655
Chris Lattner261efe92003-11-25 01:02:51 +00002656<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002657
Chris Lattner261efe92003-11-25 01:02:51 +00002658<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002659
2660<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002661 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002662</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002663
Chris Lattner261efe92003-11-25 01:02:51 +00002664<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002665
Reid Spencer0a783f72006-11-02 01:53:59 +00002666<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002667signed division of its two operands. This instruction can also take
2668<a href="#t_vector">vector</a> versions of the values in which case
2669the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002670
Chris Lattner261efe92003-11-25 01:02:51 +00002671<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002672
Reid Spencer0a783f72006-11-02 01:53:59 +00002673<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002674<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2675values. Both arguments must have identical types.</p>
2676
Chris Lattner261efe92003-11-25 01:02:51 +00002677<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002678
Reid Spencer0a783f72006-11-02 01:53:59 +00002679<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002680has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2681operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002682a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002683 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002684Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002685please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002686Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002687<p>Note that signed integer remainder and unsigned integer remainder are
2688distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2689<p>Taking the remainder of a division by zero leads to undefined behavior.
2690Overflow also leads to undefined behavior; this is a rare case, but can occur,
2691for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2692(The remainder doesn't actually overflow, but this rule lets srem be
2693implemented using instructions that return both the result of the division
2694and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002695<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002696<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002697</pre>
2698
2699</div>
2700<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002701<div class="doc_subsubsection">
2702 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2703
Reid Spencer0a783f72006-11-02 01:53:59 +00002704<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002705
Reid Spencer0a783f72006-11-02 01:53:59 +00002706<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002707<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002708</pre>
2709<h5>Overview:</h5>
2710<p>The '<tt>frem</tt>' instruction returns the remainder from the
2711division of its two operands.</p>
2712<h5>Arguments:</h5>
2713<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002714<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2715of floating point values. Both arguments must have identical types.</p>
2716
Reid Spencer0a783f72006-11-02 01:53:59 +00002717<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002718
Chris Lattnera73afe02008-04-01 18:45:27 +00002719<p>This instruction returns the <i>remainder</i> of a division.
2720The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002721
Reid Spencer0a783f72006-11-02 01:53:59 +00002722<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002723
2724<pre>
2725 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002726</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002727</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002728
Reid Spencer8e11bf82007-02-02 13:57:07 +00002729<!-- ======================================================================= -->
2730<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2731Operations</a> </div>
2732<div class="doc_text">
2733<p>Bitwise binary operators are used to do various forms of
2734bit-twiddling in a program. They are generally very efficient
2735instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002736instructions. They require two operands of the same type, execute an operation on them,
2737and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002738</div>
2739
Reid Spencer569f2fa2007-01-31 21:39:12 +00002740<!-- _______________________________________________________________________ -->
2741<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2742Instruction</a> </div>
2743<div class="doc_text">
2744<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002745<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002746</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002747
Reid Spencer569f2fa2007-01-31 21:39:12 +00002748<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002749
Reid Spencer569f2fa2007-01-31 21:39:12 +00002750<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2751the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002752
Reid Spencer569f2fa2007-01-31 21:39:12 +00002753<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002754
Reid Spencer569f2fa2007-01-31 21:39:12 +00002755<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002756 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002757type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002758
Reid Spencer569f2fa2007-01-31 21:39:12 +00002759<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002760
Gabor Greiffb224a22008-08-07 21:46:00 +00002761<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2762where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang01f8d092008-12-10 08:55:09 +00002763equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2764If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2765corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002766
Reid Spencer569f2fa2007-01-31 21:39:12 +00002767<h5>Example:</h5><pre>
2768 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2769 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2770 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002771 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002772 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002773</pre>
2774</div>
2775<!-- _______________________________________________________________________ -->
2776<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2777Instruction</a> </div>
2778<div class="doc_text">
2779<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002780<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002781</pre>
2782
2783<h5>Overview:</h5>
2784<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002785operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002786
2787<h5>Arguments:</h5>
2788<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002789<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002790type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002791
2792<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002793
Reid Spencer569f2fa2007-01-31 21:39:12 +00002794<p>This instruction always performs a logical shift right operation. The most
2795significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002796shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang01f8d092008-12-10 08:55:09 +00002797the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2798vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2799amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002800
2801<h5>Example:</h5>
2802<pre>
2803 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2804 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2805 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2806 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002807 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002808 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002809</pre>
2810</div>
2811
Reid Spencer8e11bf82007-02-02 13:57:07 +00002812<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002813<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2814Instruction</a> </div>
2815<div class="doc_text">
2816
2817<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002818<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002819</pre>
2820
2821<h5>Overview:</h5>
2822<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002823operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002824
2825<h5>Arguments:</h5>
2826<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002827<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002828type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002829
2830<h5>Semantics:</h5>
2831<p>This instruction always performs an arithmetic shift right operation,
2832The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002833of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang01f8d092008-12-10 08:55:09 +00002834larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
2835arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2836corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002837
2838<h5>Example:</h5>
2839<pre>
2840 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2841 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2842 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2843 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002844 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002845 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002846</pre>
2847</div>
2848
Chris Lattner00950542001-06-06 20:29:01 +00002849<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002850<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2851Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002852
Misha Brukman9d0919f2003-11-08 01:05:38 +00002853<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002854
Chris Lattner00950542001-06-06 20:29:01 +00002855<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002856
2857<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002858 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002859</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002860
Chris Lattner00950542001-06-06 20:29:01 +00002861<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002862
Chris Lattner261efe92003-11-25 01:02:51 +00002863<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2864its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002865
Chris Lattner00950542001-06-06 20:29:01 +00002866<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002867
2868<p>The two arguments to the '<tt>and</tt>' instruction must be
2869<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2870values. Both arguments must have identical types.</p>
2871
Chris Lattner00950542001-06-06 20:29:01 +00002872<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002873<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002874<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002875<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002876<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002877 <tbody>
2878 <tr>
2879 <td>In0</td>
2880 <td>In1</td>
2881 <td>Out</td>
2882 </tr>
2883 <tr>
2884 <td>0</td>
2885 <td>0</td>
2886 <td>0</td>
2887 </tr>
2888 <tr>
2889 <td>0</td>
2890 <td>1</td>
2891 <td>0</td>
2892 </tr>
2893 <tr>
2894 <td>1</td>
2895 <td>0</td>
2896 <td>0</td>
2897 </tr>
2898 <tr>
2899 <td>1</td>
2900 <td>1</td>
2901 <td>1</td>
2902 </tr>
2903 </tbody>
2904</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002905</div>
Chris Lattner00950542001-06-06 20:29:01 +00002906<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002907<pre>
2908 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002909 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2910 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002911</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002912</div>
Chris Lattner00950542001-06-06 20:29:01 +00002913<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002914<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002915<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002916<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002917<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002918</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002919<h5>Overview:</h5>
2920<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2921or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002922<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002923
2924<p>The two arguments to the '<tt>or</tt>' instruction must be
2925<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2926values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002927<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002928<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002929<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002930<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002931<table border="1" cellspacing="0" cellpadding="4">
2932 <tbody>
2933 <tr>
2934 <td>In0</td>
2935 <td>In1</td>
2936 <td>Out</td>
2937 </tr>
2938 <tr>
2939 <td>0</td>
2940 <td>0</td>
2941 <td>0</td>
2942 </tr>
2943 <tr>
2944 <td>0</td>
2945 <td>1</td>
2946 <td>1</td>
2947 </tr>
2948 <tr>
2949 <td>1</td>
2950 <td>0</td>
2951 <td>1</td>
2952 </tr>
2953 <tr>
2954 <td>1</td>
2955 <td>1</td>
2956 <td>1</td>
2957 </tr>
2958 </tbody>
2959</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002960</div>
Chris Lattner00950542001-06-06 20:29:01 +00002961<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002962<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2963 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2964 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002965</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002966</div>
Chris Lattner00950542001-06-06 20:29:01 +00002967<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002968<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2969Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002970<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002971<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002972<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002973</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002974<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002975<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2976or of its two operands. The <tt>xor</tt> is used to implement the
2977"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002978<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002979<p>The two arguments to the '<tt>xor</tt>' instruction must be
2980<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2981values. Both arguments must have identical types.</p>
2982
Chris Lattner00950542001-06-06 20:29:01 +00002983<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002984
Misha Brukman9d0919f2003-11-08 01:05:38 +00002985<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002986<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002987<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002988<table border="1" cellspacing="0" cellpadding="4">
2989 <tbody>
2990 <tr>
2991 <td>In0</td>
2992 <td>In1</td>
2993 <td>Out</td>
2994 </tr>
2995 <tr>
2996 <td>0</td>
2997 <td>0</td>
2998 <td>0</td>
2999 </tr>
3000 <tr>
3001 <td>0</td>
3002 <td>1</td>
3003 <td>1</td>
3004 </tr>
3005 <tr>
3006 <td>1</td>
3007 <td>0</td>
3008 <td>1</td>
3009 </tr>
3010 <tr>
3011 <td>1</td>
3012 <td>1</td>
3013 <td>0</td>
3014 </tr>
3015 </tbody>
3016</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003017</div>
Chris Lattner261efe92003-11-25 01:02:51 +00003018<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00003019<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003020<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3021 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3022 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3023 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00003024</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003025</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003026
Chris Lattner00950542001-06-06 20:29:01 +00003027<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003028<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00003029 <a name="vectorops">Vector Operations</a>
3030</div>
3031
3032<div class="doc_text">
3033
3034<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003035target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00003036vector-specific operations needed to process vectors effectively. While LLVM
3037does directly support these vector operations, many sophisticated algorithms
3038will want to use target-specific intrinsics to take full advantage of a specific
3039target.</p>
3040
3041</div>
3042
3043<!-- _______________________________________________________________________ -->
3044<div class="doc_subsubsection">
3045 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3046</div>
3047
3048<div class="doc_text">
3049
3050<h5>Syntax:</h5>
3051
3052<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003053 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003054</pre>
3055
3056<h5>Overview:</h5>
3057
3058<p>
3059The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003060element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003061</p>
3062
3063
3064<h5>Arguments:</h5>
3065
3066<p>
3067The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003068value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00003069an index indicating the position from which to extract the element.
3070The index may be a variable.</p>
3071
3072<h5>Semantics:</h5>
3073
3074<p>
3075The result is a scalar of the same type as the element type of
3076<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3077<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3078results are undefined.
3079</p>
3080
3081<h5>Example:</h5>
3082
3083<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003084 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003085</pre>
3086</div>
3087
3088
3089<!-- _______________________________________________________________________ -->
3090<div class="doc_subsubsection">
3091 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3092</div>
3093
3094<div class="doc_text">
3095
3096<h5>Syntax:</h5>
3097
3098<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00003099 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003100</pre>
3101
3102<h5>Overview:</h5>
3103
3104<p>
3105The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003106element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003107</p>
3108
3109
3110<h5>Arguments:</h5>
3111
3112<p>
3113The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003114value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00003115scalar value whose type must equal the element type of the first
3116operand. The third operand is an index indicating the position at
3117which to insert the value. The index may be a variable.</p>
3118
3119<h5>Semantics:</h5>
3120
3121<p>
Reid Spencer485bad12007-02-15 03:07:05 +00003122The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00003123element values are those of <tt>val</tt> except at position
3124<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3125exceeds the length of <tt>val</tt>, the results are undefined.
3126</p>
3127
3128<h5>Example:</h5>
3129
3130<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003131 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003132</pre>
3133</div>
3134
3135<!-- _______________________________________________________________________ -->
3136<div class="doc_subsubsection">
3137 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3138</div>
3139
3140<div class="doc_text">
3141
3142<h5>Syntax:</h5>
3143
3144<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003145 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003146</pre>
3147
3148<h5>Overview:</h5>
3149
3150<p>
3151The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00003152from two input vectors, returning a vector with the same element type as
3153the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00003154</p>
3155
3156<h5>Arguments:</h5>
3157
3158<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003159The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3160with types that match each other. The third argument is a shuffle mask whose
3161element type is always 'i32'. The result of the instruction is a vector whose
3162length is the same as the shuffle mask and whose element type is the same as
3163the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00003164</p>
3165
3166<p>
3167The shuffle mask operand is required to be a constant vector with either
3168constant integer or undef values.
3169</p>
3170
3171<h5>Semantics:</h5>
3172
3173<p>
3174The elements of the two input vectors are numbered from left to right across
3175both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00003176the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00003177gets. The element selector may be undef (meaning "don't care") and the second
3178operand may be undef if performing a shuffle from only one vector.
3179</p>
3180
3181<h5>Example:</h5>
3182
3183<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003184 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003185 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003186 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3187 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003188 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3189 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3190 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3191 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003192</pre>
3193</div>
3194
Tanya Lattner09474292006-04-14 19:24:33 +00003195
Chris Lattner3df241e2006-04-08 23:07:04 +00003196<!-- ======================================================================= -->
3197<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003198 <a name="aggregateops">Aggregate Operations</a>
3199</div>
3200
3201<div class="doc_text">
3202
3203<p>LLVM supports several instructions for working with aggregate values.
3204</p>
3205
3206</div>
3207
3208<!-- _______________________________________________________________________ -->
3209<div class="doc_subsubsection">
3210 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3211</div>
3212
3213<div class="doc_text">
3214
3215<h5>Syntax:</h5>
3216
3217<pre>
3218 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3219</pre>
3220
3221<h5>Overview:</h5>
3222
3223<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003224The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3225or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003226</p>
3227
3228
3229<h5>Arguments:</h5>
3230
3231<p>
3232The first operand of an '<tt>extractvalue</tt>' instruction is a
3233value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003234type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003235in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003236'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3237</p>
3238
3239<h5>Semantics:</h5>
3240
3241<p>
3242The result is the value at the position in the aggregate specified by
3243the index operands.
3244</p>
3245
3246<h5>Example:</h5>
3247
3248<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003249 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003250</pre>
3251</div>
3252
3253
3254<!-- _______________________________________________________________________ -->
3255<div class="doc_subsubsection">
3256 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3257</div>
3258
3259<div class="doc_text">
3260
3261<h5>Syntax:</h5>
3262
3263<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003264 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003265</pre>
3266
3267<h5>Overview:</h5>
3268
3269<p>
3270The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003271into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003272</p>
3273
3274
3275<h5>Arguments:</h5>
3276
3277<p>
3278The first operand of an '<tt>insertvalue</tt>' instruction is a
3279value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3280The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003281The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003282indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003283indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003284'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3285The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003286by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003287</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003288
3289<h5>Semantics:</h5>
3290
3291<p>
3292The result is an aggregate of the same type as <tt>val</tt>. Its
3293value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003294specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003295</p>
3296
3297<h5>Example:</h5>
3298
3299<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003300 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003301</pre>
3302</div>
3303
3304
3305<!-- ======================================================================= -->
3306<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003307 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003308</div>
3309
Misha Brukman9d0919f2003-11-08 01:05:38 +00003310<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003311
Chris Lattner261efe92003-11-25 01:02:51 +00003312<p>A key design point of an SSA-based representation is how it
3313represents memory. In LLVM, no memory locations are in SSA form, which
3314makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003315allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003316
Misha Brukman9d0919f2003-11-08 01:05:38 +00003317</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003318
Chris Lattner00950542001-06-06 20:29:01 +00003319<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003320<div class="doc_subsubsection">
3321 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3322</div>
3323
Misha Brukman9d0919f2003-11-08 01:05:38 +00003324<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003325
Chris Lattner00950542001-06-06 20:29:01 +00003326<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003327
3328<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003329 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003330</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003331
Chris Lattner00950542001-06-06 20:29:01 +00003332<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003333
Chris Lattner261efe92003-11-25 01:02:51 +00003334<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003335heap and returns a pointer to it. The object is always allocated in the generic
3336address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003337
Chris Lattner00950542001-06-06 20:29:01 +00003338<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003339
3340<p>The '<tt>malloc</tt>' instruction allocates
3341<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003342bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003343appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003344number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003345If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003346be aligned to at least that boundary. If not specified, or if zero, the target can
3347choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003348
Misha Brukman9d0919f2003-11-08 01:05:38 +00003349<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003350
Chris Lattner00950542001-06-06 20:29:01 +00003351<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003352
Chris Lattner261efe92003-11-25 01:02:51 +00003353<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003354a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003355result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003356
Chris Lattner2cbdc452005-11-06 08:02:57 +00003357<h5>Example:</h5>
3358
3359<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003360 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003361
Bill Wendlingaac388b2007-05-29 09:42:13 +00003362 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3363 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3364 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3365 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3366 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003367</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003368
3369<p>Note that the code generator does not yet respect the
3370 alignment value.</p>
3371
Misha Brukman9d0919f2003-11-08 01:05:38 +00003372</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003373
Chris Lattner00950542001-06-06 20:29:01 +00003374<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003375<div class="doc_subsubsection">
3376 <a name="i_free">'<tt>free</tt>' Instruction</a>
3377</div>
3378
Misha Brukman9d0919f2003-11-08 01:05:38 +00003379<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003380
Chris Lattner00950542001-06-06 20:29:01 +00003381<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003382
3383<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003384 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003385</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003386
Chris Lattner00950542001-06-06 20:29:01 +00003387<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003388
Chris Lattner261efe92003-11-25 01:02:51 +00003389<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003390memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003391
Chris Lattner00950542001-06-06 20:29:01 +00003392<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003393
Chris Lattner261efe92003-11-25 01:02:51 +00003394<p>'<tt>value</tt>' shall be a pointer value that points to a value
3395that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3396instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003397
Chris Lattner00950542001-06-06 20:29:01 +00003398<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003399
John Criswell9e2485c2004-12-10 15:51:16 +00003400<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003401after this instruction executes. If the pointer is null, the operation
3402is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003403
Chris Lattner00950542001-06-06 20:29:01 +00003404<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003405
3406<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003407 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003408 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003409</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003410</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003411
Chris Lattner00950542001-06-06 20:29:01 +00003412<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003413<div class="doc_subsubsection">
3414 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3415</div>
3416
Misha Brukman9d0919f2003-11-08 01:05:38 +00003417<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003418
Chris Lattner00950542001-06-06 20:29:01 +00003419<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003420
3421<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003422 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003423</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003424
Chris Lattner00950542001-06-06 20:29:01 +00003425<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003426
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003427<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3428currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003429returns to its caller. The object is always allocated in the generic address
3430space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003431
Chris Lattner00950542001-06-06 20:29:01 +00003432<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003433
John Criswell9e2485c2004-12-10 15:51:16 +00003434<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003435bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003436appropriate type to the program. If "NumElements" is specified, it is the
3437number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003438If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003439to be aligned to at least that boundary. If not specified, or if zero, the target
3440can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003441
Misha Brukman9d0919f2003-11-08 01:05:38 +00003442<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003443
Chris Lattner00950542001-06-06 20:29:01 +00003444<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003445
Chris Lattner72ed2002008-04-19 21:01:16 +00003446<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3447there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003448memory is automatically released when the function returns. The '<tt>alloca</tt>'
3449instruction is commonly used to represent automatic variables that must
3450have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003451 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003452instructions), the memory is reclaimed. Allocating zero bytes
3453is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003454
Chris Lattner00950542001-06-06 20:29:01 +00003455<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003456
3457<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003458 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3459 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3460 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3461 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003462</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003463</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003464
Chris Lattner00950542001-06-06 20:29:01 +00003465<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003466<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3467Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003468<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003469<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003470<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003471<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003472<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003473<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003474<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003475address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003476 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003477marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003478the number or order of execution of this <tt>load</tt> with other
3479volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3480instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003481<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003482The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003483(that is, the alignment of the memory address). A value of 0 or an
3484omitted "align" argument means that the operation has the preferential
3485alignment for the target. It is the responsibility of the code emitter
3486to ensure that the alignment information is correct. Overestimating
3487the alignment results in an undefined behavior. Underestimating the
3488alignment may produce less efficient code. An alignment of 1 is always
3489safe.
3490</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003491<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003492<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003493<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003494<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003495 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003496 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3497 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003498</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003499</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003500<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003501<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3502Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003503<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003504<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003505<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3506 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003507</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003508<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003509<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003510<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003511<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003512to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003513operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3514of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003515operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003516optimizer is not allowed to modify the number or order of execution of
3517this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3518 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003519<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003520The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003521(that is, the alignment of the memory address). A value of 0 or an
3522omitted "align" argument means that the operation has the preferential
3523alignment for the target. It is the responsibility of the code emitter
3524to ensure that the alignment information is correct. Overestimating
3525the alignment results in an undefined behavior. Underestimating the
3526alignment may produce less efficient code. An alignment of 1 is always
3527safe.
3528</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003529<h5>Semantics:</h5>
3530<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3531at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003532<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003533<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003534 store i32 3, i32* %ptr <i>; yields {void}</i>
3535 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003536</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003537</div>
3538
Chris Lattner2b7d3202002-05-06 03:03:22 +00003539<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003540<div class="doc_subsubsection">
3541 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3542</div>
3543
Misha Brukman9d0919f2003-11-08 01:05:38 +00003544<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003545<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003546<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003547 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003548</pre>
3549
Chris Lattner7faa8832002-04-14 06:13:44 +00003550<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003551
3552<p>
3553The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003554subelement of an aggregate data structure. It performs address calculation only
3555and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003556
Chris Lattner7faa8832002-04-14 06:13:44 +00003557<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003558
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003559<p>The first argument is always a pointer, and forms the basis of the
3560calculation. The remaining arguments are indices, that indicate which of the
3561elements of the aggregate object are indexed. The interpretation of each index
3562is dependent on the type being indexed into. The first index always indexes the
3563pointer value given as the first argument, the second index indexes a value of
3564the type pointed to (not necessarily the value directly pointed to, since the
3565first index can be non-zero), etc. The first type indexed into must be a pointer
3566value, subsequent types can be arrays, vectors and structs. Note that subsequent
3567types being indexed into can never be pointers, since that would require loading
3568the pointer before continuing calculation.</p>
3569
3570<p>The type of each index argument depends on the type it is indexing into.
3571When indexing into a (packed) structure, only <tt>i32</tt> integer
3572<b>constants</b> are allowed. When indexing into an array, pointer or vector,
3573only integers of 32 or 64 bits are allowed (also non-constants). 32-bit values
3574will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003575
Chris Lattner261efe92003-11-25 01:02:51 +00003576<p>For example, let's consider a C code fragment and how it gets
3577compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003578
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003579<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003580<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003581struct RT {
3582 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003583 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003584 char C;
3585};
3586struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003587 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003588 double Y;
3589 struct RT Z;
3590};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003591
Chris Lattnercabc8462007-05-29 15:43:56 +00003592int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003593 return &amp;s[1].Z.B[5][13];
3594}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003595</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003596</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003597
Misha Brukman9d0919f2003-11-08 01:05:38 +00003598<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003599
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003600<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003601<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00003602%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3603%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003604
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003605define i32* %foo(%ST* %s) {
3606entry:
3607 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3608 ret i32* %reg
3609}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003610</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003611</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003612
Chris Lattner7faa8832002-04-14 06:13:44 +00003613<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003614
Misha Brukman9d0919f2003-11-08 01:05:38 +00003615<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003616type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003617}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003618the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3619i8 }</tt>' type, another structure. The third index indexes into the second
3620element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003621array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003622'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3623to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003624
Chris Lattner261efe92003-11-25 01:02:51 +00003625<p>Note that it is perfectly legal to index partially through a
3626structure, returning a pointer to an inner element. Because of this,
3627the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003628
3629<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003630 define i32* %foo(%ST* %s) {
3631 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003632 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3633 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003634 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3635 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3636 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003637 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003638</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003639
3640<p>Note that it is undefined to access an array out of bounds: array and
3641pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003642The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003643defined to be accessible as variable length arrays, which requires access
3644beyond the zero'th element.</p>
3645
Chris Lattner884a9702006-08-15 00:45:58 +00003646<p>The getelementptr instruction is often confusing. For some more insight
3647into how it works, see <a href="GetElementPtr.html">the getelementptr
3648FAQ</a>.</p>
3649
Chris Lattner7faa8832002-04-14 06:13:44 +00003650<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003651
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003652<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003653 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003654 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3655 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003656 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003657 <i>; yields i8*:eptr</i>
3658 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003659</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003660</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003661
Chris Lattner00950542001-06-06 20:29:01 +00003662<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003663<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003664</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003665<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003666<p>The instructions in this category are the conversion instructions (casting)
3667which all take a single operand and a type. They perform various bit conversions
3668on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003669</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003670
Chris Lattner6536cfe2002-05-06 22:08:29 +00003671<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003672<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003673 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3674</div>
3675<div class="doc_text">
3676
3677<h5>Syntax:</h5>
3678<pre>
3679 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3680</pre>
3681
3682<h5>Overview:</h5>
3683<p>
3684The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3685</p>
3686
3687<h5>Arguments:</h5>
3688<p>
3689The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3690be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003691and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003692type. The bit size of <tt>value</tt> must be larger than the bit size of
3693<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003694
3695<h5>Semantics:</h5>
3696<p>
3697The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003698and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3699larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3700It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003701
3702<h5>Example:</h5>
3703<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003704 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003705 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3706 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003707</pre>
3708</div>
3709
3710<!-- _______________________________________________________________________ -->
3711<div class="doc_subsubsection">
3712 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3713</div>
3714<div class="doc_text">
3715
3716<h5>Syntax:</h5>
3717<pre>
3718 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3719</pre>
3720
3721<h5>Overview:</h5>
3722<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3723<tt>ty2</tt>.</p>
3724
3725
3726<h5>Arguments:</h5>
3727<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003728<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3729also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003730<tt>value</tt> must be smaller than the bit size of the destination type,
3731<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003732
3733<h5>Semantics:</h5>
3734<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003735bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003736
Reid Spencerb5929522007-01-12 15:46:11 +00003737<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003738
3739<h5>Example:</h5>
3740<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003741 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003742 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003743</pre>
3744</div>
3745
3746<!-- _______________________________________________________________________ -->
3747<div class="doc_subsubsection">
3748 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3749</div>
3750<div class="doc_text">
3751
3752<h5>Syntax:</h5>
3753<pre>
3754 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3755</pre>
3756
3757<h5>Overview:</h5>
3758<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3759
3760<h5>Arguments:</h5>
3761<p>
3762The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003763<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3764also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003765<tt>value</tt> must be smaller than the bit size of the destination type,
3766<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003767
3768<h5>Semantics:</h5>
3769<p>
3770The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3771bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003772the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003773
Reid Spencerc78f3372007-01-12 03:35:51 +00003774<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003775
3776<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003777<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003778 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003779 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003780</pre>
3781</div>
3782
3783<!-- _______________________________________________________________________ -->
3784<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003785 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3786</div>
3787
3788<div class="doc_text">
3789
3790<h5>Syntax:</h5>
3791
3792<pre>
3793 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3794</pre>
3795
3796<h5>Overview:</h5>
3797<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3798<tt>ty2</tt>.</p>
3799
3800
3801<h5>Arguments:</h5>
3802<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3803 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3804cast it to. The size of <tt>value</tt> must be larger than the size of
3805<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3806<i>no-op cast</i>.</p>
3807
3808<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003809<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3810<a href="#t_floating">floating point</a> type to a smaller
3811<a href="#t_floating">floating point</a> type. If the value cannot fit within
3812the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003813
3814<h5>Example:</h5>
3815<pre>
3816 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3817 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3818</pre>
3819</div>
3820
3821<!-- _______________________________________________________________________ -->
3822<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003823 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3824</div>
3825<div class="doc_text">
3826
3827<h5>Syntax:</h5>
3828<pre>
3829 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3830</pre>
3831
3832<h5>Overview:</h5>
3833<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3834floating point value.</p>
3835
3836<h5>Arguments:</h5>
3837<p>The '<tt>fpext</tt>' instruction takes a
3838<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003839and a <a href="#t_floating">floating point</a> type to cast it to. The source
3840type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003841
3842<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003843<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003844<a href="#t_floating">floating point</a> type to a larger
3845<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003846used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003847<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003848
3849<h5>Example:</h5>
3850<pre>
3851 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3852 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3853</pre>
3854</div>
3855
3856<!-- _______________________________________________________________________ -->
3857<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003858 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003859</div>
3860<div class="doc_text">
3861
3862<h5>Syntax:</h5>
3863<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003864 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003865</pre>
3866
3867<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003868<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003869unsigned integer equivalent of type <tt>ty2</tt>.
3870</p>
3871
3872<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003873<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003874scalar or vector <a href="#t_floating">floating point</a> value, and a type
3875to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3876type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3877vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003878
3879<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003880<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003881<a href="#t_floating">floating point</a> operand into the nearest (rounding
3882towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3883the results are undefined.</p>
3884
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003885<h5>Example:</h5>
3886<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003887 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003888 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003889 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003890</pre>
3891</div>
3892
3893<!-- _______________________________________________________________________ -->
3894<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003895 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003896</div>
3897<div class="doc_text">
3898
3899<h5>Syntax:</h5>
3900<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003901 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003902</pre>
3903
3904<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003905<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003906<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003907</p>
3908
Chris Lattner6536cfe2002-05-06 22:08:29 +00003909<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003910<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003911scalar or vector <a href="#t_floating">floating point</a> value, and a type
3912to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3913type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3914vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003915
Chris Lattner6536cfe2002-05-06 22:08:29 +00003916<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003917<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003918<a href="#t_floating">floating point</a> operand into the nearest (rounding
3919towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3920the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003921
Chris Lattner33ba0d92001-07-09 00:26:23 +00003922<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003923<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003924 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003925 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003926 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003927</pre>
3928</div>
3929
3930<!-- _______________________________________________________________________ -->
3931<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003932 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003933</div>
3934<div class="doc_text">
3935
3936<h5>Syntax:</h5>
3937<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003938 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003939</pre>
3940
3941<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003942<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003943integer and converts that value to the <tt>ty2</tt> type.</p>
3944
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003945<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003946<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3947scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3948to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3949type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3950floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003951
3952<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003953<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003954integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003955the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003956
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003957<h5>Example:</h5>
3958<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003959 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003960 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003961</pre>
3962</div>
3963
3964<!-- _______________________________________________________________________ -->
3965<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003966 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003967</div>
3968<div class="doc_text">
3969
3970<h5>Syntax:</h5>
3971<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003972 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003973</pre>
3974
3975<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003976<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003977integer and converts that value to the <tt>ty2</tt> type.</p>
3978
3979<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003980<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3981scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3982to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3983type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3984floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003985
3986<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003987<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003988integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003989the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003990
3991<h5>Example:</h5>
3992<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003993 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003994 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003995</pre>
3996</div>
3997
3998<!-- _______________________________________________________________________ -->
3999<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00004000 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4001</div>
4002<div class="doc_text">
4003
4004<h5>Syntax:</h5>
4005<pre>
4006 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4007</pre>
4008
4009<h5>Overview:</h5>
4010<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4011the integer type <tt>ty2</tt>.</p>
4012
4013<h5>Arguments:</h5>
4014<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00004015must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00004016<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004017
4018<h5>Semantics:</h5>
4019<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4020<tt>ty2</tt> by interpreting the pointer value as an integer and either
4021truncating or zero extending that value to the size of the integer type. If
4022<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4023<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00004024are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4025change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004026
4027<h5>Example:</h5>
4028<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004029 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4030 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004031</pre>
4032</div>
4033
4034<!-- _______________________________________________________________________ -->
4035<div class="doc_subsubsection">
4036 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4037</div>
4038<div class="doc_text">
4039
4040<h5>Syntax:</h5>
4041<pre>
4042 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4043</pre>
4044
4045<h5>Overview:</h5>
4046<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4047a pointer type, <tt>ty2</tt>.</p>
4048
4049<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00004050<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00004051value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004052<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004053
4054<h5>Semantics:</h5>
4055<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4056<tt>ty2</tt> by applying either a zero extension or a truncation depending on
4057the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4058size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4059the size of a pointer then a zero extension is done. If they are the same size,
4060nothing is done (<i>no-op cast</i>).</p>
4061
4062<h5>Example:</h5>
4063<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004064 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4065 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4066 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004067</pre>
4068</div>
4069
4070<!-- _______________________________________________________________________ -->
4071<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00004072 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004073</div>
4074<div class="doc_text">
4075
4076<h5>Syntax:</h5>
4077<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004078 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004079</pre>
4080
4081<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004082
Reid Spencer5c0ef472006-11-11 23:08:07 +00004083<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004084<tt>ty2</tt> without changing any bits.</p>
4085
4086<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004087
Reid Spencer5c0ef472006-11-11 23:08:07 +00004088<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00004089a non-aggregate first class value, and a type to cast it to, which must also be
4090a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4091<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00004092and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00004093type is a pointer, the destination type must also be a pointer. This
4094instruction supports bitwise conversion of vectors to integers and to vectors
4095of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004096
4097<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004098<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00004099<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4100this conversion. The conversion is done as if the <tt>value</tt> had been
4101stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4102converted to other pointer types with this instruction. To convert pointers to
4103other types, use the <a href="#i_inttoptr">inttoptr</a> or
4104<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004105
4106<h5>Example:</h5>
4107<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004108 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004109 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004110 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00004111</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004112</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004113
Reid Spencer2fd21e62006-11-08 01:18:52 +00004114<!-- ======================================================================= -->
4115<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4116<div class="doc_text">
4117<p>The instructions in this category are the "miscellaneous"
4118instructions, which defy better classification.</p>
4119</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004120
4121<!-- _______________________________________________________________________ -->
4122<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4123</div>
4124<div class="doc_text">
4125<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004126<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004127</pre>
4128<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004129<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4130a vector of boolean values based on comparison
4131of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004132<h5>Arguments:</h5>
4133<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004134the condition code indicating the kind of comparison to perform. It is not
4135a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004136</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004137<ol>
4138 <li><tt>eq</tt>: equal</li>
4139 <li><tt>ne</tt>: not equal </li>
4140 <li><tt>ugt</tt>: unsigned greater than</li>
4141 <li><tt>uge</tt>: unsigned greater or equal</li>
4142 <li><tt>ult</tt>: unsigned less than</li>
4143 <li><tt>ule</tt>: unsigned less or equal</li>
4144 <li><tt>sgt</tt>: signed greater than</li>
4145 <li><tt>sge</tt>: signed greater or equal</li>
4146 <li><tt>slt</tt>: signed less than</li>
4147 <li><tt>sle</tt>: signed less or equal</li>
4148</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00004149<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00004150<a href="#t_pointer">pointer</a>
4151or integer <a href="#t_vector">vector</a> typed.
4152They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004153<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004154<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00004155the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00004156yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004157</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004158<ol>
4159 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4160 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4161 </li>
4162 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00004163 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004164 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004165 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004166 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004167 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004168 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004169 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004170 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004171 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004172 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004173 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004174 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004175 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004176 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004177 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004178 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004179 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004180</ol>
4181<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00004182values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004183<p>If the operands are integer vectors, then they are compared
4184element by element. The result is an <tt>i1</tt> vector with
4185the same number of elements as the values being compared.
4186Otherwise, the result is an <tt>i1</tt>.
4187</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004188
4189<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004190<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4191 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4192 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4193 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4194 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4195 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004196</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004197
4198<p>Note that the code generator does not yet support vector types with
4199 the <tt>icmp</tt> instruction.</p>
4200
Reid Spencerf3a70a62006-11-18 21:50:54 +00004201</div>
4202
4203<!-- _______________________________________________________________________ -->
4204<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4205</div>
4206<div class="doc_text">
4207<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004208<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004209</pre>
4210<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004211<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4212or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004213of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004214<p>
4215If the operands are floating point scalars, then the result
4216type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4217</p>
4218<p>If the operands are floating point vectors, then the result type
4219is a vector of boolean with the same number of elements as the
4220operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004221<h5>Arguments:</h5>
4222<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004223the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004224a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004225<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004226 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004227 <li><tt>oeq</tt>: ordered and equal</li>
4228 <li><tt>ogt</tt>: ordered and greater than </li>
4229 <li><tt>oge</tt>: ordered and greater than or equal</li>
4230 <li><tt>olt</tt>: ordered and less than </li>
4231 <li><tt>ole</tt>: ordered and less than or equal</li>
4232 <li><tt>one</tt>: ordered and not equal</li>
4233 <li><tt>ord</tt>: ordered (no nans)</li>
4234 <li><tt>ueq</tt>: unordered or equal</li>
4235 <li><tt>ugt</tt>: unordered or greater than </li>
4236 <li><tt>uge</tt>: unordered or greater than or equal</li>
4237 <li><tt>ult</tt>: unordered or less than </li>
4238 <li><tt>ule</tt>: unordered or less than or equal</li>
4239 <li><tt>une</tt>: unordered or not equal</li>
4240 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004241 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004242</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004243<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004244<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004245<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4246either a <a href="#t_floating">floating point</a> type
4247or a <a href="#t_vector">vector</a> of floating point type.
4248They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004249<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004250<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004251according to the condition code given as <tt>cond</tt>.
4252If the operands are vectors, then the vectors are compared
4253element by element.
4254Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004255always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004256<ol>
4257 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004258 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004259 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004260 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004261 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004262 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004263 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004264 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004265 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004266 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004267 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004268 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004269 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004270 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4271 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004272 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004273 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004274 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004275 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004276 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004277 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004278 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004279 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004280 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004281 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004282 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004283 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004284 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4285</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004286
4287<h5>Example:</h5>
4288<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004289 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4290 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4291 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004292</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004293
4294<p>Note that the code generator does not yet support vector types with
4295 the <tt>fcmp</tt> instruction.</p>
4296
Reid Spencerf3a70a62006-11-18 21:50:54 +00004297</div>
4298
Reid Spencer2fd21e62006-11-08 01:18:52 +00004299<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004300<div class="doc_subsubsection">
4301 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4302</div>
4303<div class="doc_text">
4304<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004305<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004306</pre>
4307<h5>Overview:</h5>
4308<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4309element-wise comparison of its two integer vector operands.</p>
4310<h5>Arguments:</h5>
4311<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4312the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004313a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004314<ol>
4315 <li><tt>eq</tt>: equal</li>
4316 <li><tt>ne</tt>: not equal </li>
4317 <li><tt>ugt</tt>: unsigned greater than</li>
4318 <li><tt>uge</tt>: unsigned greater or equal</li>
4319 <li><tt>ult</tt>: unsigned less than</li>
4320 <li><tt>ule</tt>: unsigned less or equal</li>
4321 <li><tt>sgt</tt>: signed greater than</li>
4322 <li><tt>sge</tt>: signed greater or equal</li>
4323 <li><tt>slt</tt>: signed less than</li>
4324 <li><tt>sle</tt>: signed less or equal</li>
4325</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004326<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004327<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4328<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004329<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004330according to the condition code given as <tt>cond</tt>. The comparison yields a
4331<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4332identical type as the values being compared. The most significant bit in each
4333element is 1 if the element-wise comparison evaluates to true, and is 0
4334otherwise. All other bits of the result are undefined. The condition codes
4335are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman0e451ce2008-10-14 16:51:45 +00004336instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004337
4338<h5>Example:</h5>
4339<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004340 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4341 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004342</pre>
4343</div>
4344
4345<!-- _______________________________________________________________________ -->
4346<div class="doc_subsubsection">
4347 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4348</div>
4349<div class="doc_text">
4350<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004351<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004352<h5>Overview:</h5>
4353<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4354element-wise comparison of its two floating point vector operands. The output
4355elements have the same width as the input elements.</p>
4356<h5>Arguments:</h5>
4357<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4358the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004359a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004360<ol>
4361 <li><tt>false</tt>: no comparison, always returns false</li>
4362 <li><tt>oeq</tt>: ordered and equal</li>
4363 <li><tt>ogt</tt>: ordered and greater than </li>
4364 <li><tt>oge</tt>: ordered and greater than or equal</li>
4365 <li><tt>olt</tt>: ordered and less than </li>
4366 <li><tt>ole</tt>: ordered and less than or equal</li>
4367 <li><tt>one</tt>: ordered and not equal</li>
4368 <li><tt>ord</tt>: ordered (no nans)</li>
4369 <li><tt>ueq</tt>: unordered or equal</li>
4370 <li><tt>ugt</tt>: unordered or greater than </li>
4371 <li><tt>uge</tt>: unordered or greater than or equal</li>
4372 <li><tt>ult</tt>: unordered or less than </li>
4373 <li><tt>ule</tt>: unordered or less than or equal</li>
4374 <li><tt>une</tt>: unordered or not equal</li>
4375 <li><tt>uno</tt>: unordered (either nans)</li>
4376 <li><tt>true</tt>: no comparison, always returns true</li>
4377</ol>
4378<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4379<a href="#t_floating">floating point</a> typed. They must also be identical
4380types.</p>
4381<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004382<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004383according to the condition code given as <tt>cond</tt>. The comparison yields a
4384<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4385an identical number of elements as the values being compared, and each element
4386having identical with to the width of the floating point elements. The most
4387significant bit in each element is 1 if the element-wise comparison evaluates to
4388true, and is 0 otherwise. All other bits of the result are undefined. The
4389condition codes are evaluated identically to the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004390<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004391
4392<h5>Example:</h5>
4393<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +00004394 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4395 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4396
4397 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4398 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemanac80ade2008-05-12 19:01:56 +00004399</pre>
4400</div>
4401
4402<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004403<div class="doc_subsubsection">
4404 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4405</div>
4406
Reid Spencer2fd21e62006-11-08 01:18:52 +00004407<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004408
Reid Spencer2fd21e62006-11-08 01:18:52 +00004409<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004410
Reid Spencer2fd21e62006-11-08 01:18:52 +00004411<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4412<h5>Overview:</h5>
4413<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4414the SSA graph representing the function.</p>
4415<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004416
Jeff Cohenb627eab2007-04-29 01:07:00 +00004417<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004418field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4419as arguments, with one pair for each predecessor basic block of the
4420current block. Only values of <a href="#t_firstclass">first class</a>
4421type may be used as the value arguments to the PHI node. Only labels
4422may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004423
Reid Spencer2fd21e62006-11-08 01:18:52 +00004424<p>There must be no non-phi instructions between the start of a basic
4425block and the PHI instructions: i.e. PHI instructions must be first in
4426a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004427
Reid Spencer2fd21e62006-11-08 01:18:52 +00004428<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004429
Jeff Cohenb627eab2007-04-29 01:07:00 +00004430<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4431specified by the pair corresponding to the predecessor basic block that executed
4432just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004433
Reid Spencer2fd21e62006-11-08 01:18:52 +00004434<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004435<pre>
4436Loop: ; Infinite loop that counts from 0 on up...
4437 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4438 %nextindvar = add i32 %indvar, 1
4439 br label %Loop
4440</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004441</div>
4442
Chris Lattnercc37aae2004-03-12 05:50:16 +00004443<!-- _______________________________________________________________________ -->
4444<div class="doc_subsubsection">
4445 <a name="i_select">'<tt>select</tt>' Instruction</a>
4446</div>
4447
4448<div class="doc_text">
4449
4450<h5>Syntax:</h5>
4451
4452<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004453 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4454
Dan Gohman0e451ce2008-10-14 16:51:45 +00004455 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004456</pre>
4457
4458<h5>Overview:</h5>
4459
4460<p>
4461The '<tt>select</tt>' instruction is used to choose one value based on a
4462condition, without branching.
4463</p>
4464
4465
4466<h5>Arguments:</h5>
4467
4468<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004469The '<tt>select</tt>' instruction requires an 'i1' value or
4470a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004471condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004472type. If the val1/val2 are vectors and
4473the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004474individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004475</p>
4476
4477<h5>Semantics:</h5>
4478
4479<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004480If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004481value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004482</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004483<p>
4484If the condition is a vector of i1, then the value arguments must
4485be vectors of the same size, and the selection is done element
4486by element.
4487</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004488
4489<h5>Example:</h5>
4490
4491<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004492 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004493</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004494
4495<p>Note that the code generator does not yet support conditions
4496 with vector type.</p>
4497
Chris Lattnercc37aae2004-03-12 05:50:16 +00004498</div>
4499
Robert Bocchino05ccd702006-01-15 20:48:27 +00004500
4501<!-- _______________________________________________________________________ -->
4502<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004503 <a name="i_call">'<tt>call</tt>' Instruction</a>
4504</div>
4505
Misha Brukman9d0919f2003-11-08 01:05:38 +00004506<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004507
Chris Lattner00950542001-06-06 20:29:01 +00004508<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004509<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004510 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004511</pre>
4512
Chris Lattner00950542001-06-06 20:29:01 +00004513<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004514
Misha Brukman9d0919f2003-11-08 01:05:38 +00004515<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004516
Chris Lattner00950542001-06-06 20:29:01 +00004517<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004518
Misha Brukman9d0919f2003-11-08 01:05:38 +00004519<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004520
Chris Lattner6536cfe2002-05-06 22:08:29 +00004521<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004522 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004523 <p>The optional "tail" marker indicates whether the callee function accesses
4524 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004525 function call is eligible for tail call optimization. Note that calls may
4526 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004527 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004528 </li>
4529 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004530 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004531 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004532 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004533 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004534
4535 <li>
4536 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4537 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4538 and '<tt>inreg</tt>' attributes are valid here.</p>
4539 </li>
4540
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004541 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004542 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4543 the type of the return value. Functions that return no value are marked
4544 <tt><a href="#t_void">void</a></tt>.</p>
4545 </li>
4546 <li>
4547 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4548 value being invoked. The argument types must match the types implied by
4549 this signature. This type can be omitted if the function is not varargs
4550 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004551 </li>
4552 <li>
4553 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4554 be invoked. In most cases, this is a direct function invocation, but
4555 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004556 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004557 </li>
4558 <li>
4559 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004560 function signature argument types. All arguments must be of
4561 <a href="#t_firstclass">first class</a> type. If the function signature
4562 indicates the function accepts a variable number of arguments, the extra
4563 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004564 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004565 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004566 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004567 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4568 '<tt>readnone</tt>' attributes are valid here.</p>
4569 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004570</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004571
Chris Lattner00950542001-06-06 20:29:01 +00004572<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004573
Chris Lattner261efe92003-11-25 01:02:51 +00004574<p>The '<tt>call</tt>' instruction is used to cause control flow to
4575transfer to a specified function, with its incoming arguments bound to
4576the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4577instruction in the called function, control flow continues with the
4578instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004579function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004580
Chris Lattner00950542001-06-06 20:29:01 +00004581<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004582
4583<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004584 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004585 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4586 %X = tail call i32 @foo() <i>; yields i32</i>
4587 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4588 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004589
4590 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004591 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004592 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4593 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004594 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004595 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004596</pre>
4597
Misha Brukman9d0919f2003-11-08 01:05:38 +00004598</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004599
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004600<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004601<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004602 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004603</div>
4604
Misha Brukman9d0919f2003-11-08 01:05:38 +00004605<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004606
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004607<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004608
4609<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004610 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004611</pre>
4612
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004613<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004614
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004615<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004616the "variable argument" area of a function call. It is used to implement the
4617<tt>va_arg</tt> macro in C.</p>
4618
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004619<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004620
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004621<p>This instruction takes a <tt>va_list*</tt> value and the type of
4622the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004623increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004624actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004625
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004626<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004627
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004628<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4629type from the specified <tt>va_list</tt> and causes the
4630<tt>va_list</tt> to point to the next argument. For more information,
4631see the variable argument handling <a href="#int_varargs">Intrinsic
4632Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004633
4634<p>It is legal for this instruction to be called in a function which does not
4635take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004636function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004637
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004638<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004639href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004640argument.</p>
4641
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004642<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004643
4644<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4645
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00004646<p>Note that the code generator does not yet fully support va_arg
4647 on many targets. Also, it does not currently support va_arg with
4648 aggregate types on any target.</p>
4649
Misha Brukman9d0919f2003-11-08 01:05:38 +00004650</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004651
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004652<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004653<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4654<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004655
Misha Brukman9d0919f2003-11-08 01:05:38 +00004656<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004657
4658<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004659well known names and semantics and are required to follow certain restrictions.
4660Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004661language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004662adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004663
John Criswellfc6b8952005-05-16 16:17:45 +00004664<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004665prefix is reserved in LLVM for intrinsic names; thus, function names may not
4666begin with this prefix. Intrinsic functions must always be external functions:
4667you cannot define the body of intrinsic functions. Intrinsic functions may
4668only be used in call or invoke instructions: it is illegal to take the address
4669of an intrinsic function. Additionally, because intrinsic functions are part
4670of the LLVM language, it is required if any are added that they be documented
4671here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004672
Chandler Carruth69940402007-08-04 01:51:18 +00004673<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4674a family of functions that perform the same operation but on different data
4675types. Because LLVM can represent over 8 million different integer types,
4676overloading is used commonly to allow an intrinsic function to operate on any
4677integer type. One or more of the argument types or the result type can be
4678overloaded to accept any integer type. Argument types may also be defined as
4679exactly matching a previous argument's type or the result type. This allows an
4680intrinsic function which accepts multiple arguments, but needs all of them to
4681be of the same type, to only be overloaded with respect to a single argument or
4682the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004683
Chandler Carruth69940402007-08-04 01:51:18 +00004684<p>Overloaded intrinsics will have the names of its overloaded argument types
4685encoded into its function name, each preceded by a period. Only those types
4686which are overloaded result in a name suffix. Arguments whose type is matched
4687against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4688take an integer of any width and returns an integer of exactly the same integer
4689width. This leads to a family of functions such as
4690<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4691Only one type, the return type, is overloaded, and only one type suffix is
4692required. Because the argument's type is matched against the return type, it
4693does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004694
4695<p>To learn how to add an intrinsic function, please see the
4696<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004697</p>
4698
Misha Brukman9d0919f2003-11-08 01:05:38 +00004699</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004700
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004701<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004702<div class="doc_subsection">
4703 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4704</div>
4705
Misha Brukman9d0919f2003-11-08 01:05:38 +00004706<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004707
Misha Brukman9d0919f2003-11-08 01:05:38 +00004708<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004709 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004710intrinsic functions. These functions are related to the similarly
4711named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004712
Chris Lattner261efe92003-11-25 01:02:51 +00004713<p>All of these functions operate on arguments that use a
4714target-specific value type "<tt>va_list</tt>". The LLVM assembly
4715language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004716transformations should be prepared to handle these functions regardless of
4717the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004718
Chris Lattner374ab302006-05-15 17:26:46 +00004719<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004720instruction and the variable argument handling intrinsic functions are
4721used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004722
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004723<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004724<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004725define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004726 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004727 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004728 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004729 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004730
4731 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004732 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004733
4734 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004735 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004736 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004737 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004738 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004739
4740 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004741 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004742 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004743}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004744
4745declare void @llvm.va_start(i8*)
4746declare void @llvm.va_copy(i8*, i8*)
4747declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004748</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004749</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004750
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004751</div>
4752
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004753<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004754<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004755 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004756</div>
4757
4758
Misha Brukman9d0919f2003-11-08 01:05:38 +00004759<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004760<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004761<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004762<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004763<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004764<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4765href="#i_va_arg">va_arg</a></tt>.</p>
4766
4767<h5>Arguments:</h5>
4768
Dan Gohman0e451ce2008-10-14 16:51:45 +00004769<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004770
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004771<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004772
Dan Gohman0e451ce2008-10-14 16:51:45 +00004773<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004774macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004775<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004776<tt>va_arg</tt> will produce the first variable argument passed to the function.
4777Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004778last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004779
Misha Brukman9d0919f2003-11-08 01:05:38 +00004780</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004781
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004782<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004783<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004784 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004785</div>
4786
Misha Brukman9d0919f2003-11-08 01:05:38 +00004787<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004788<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004789<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004790<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004791
Jeff Cohenb627eab2007-04-29 01:07:00 +00004792<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004793which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004794or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004795
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004796<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004797
Jeff Cohenb627eab2007-04-29 01:07:00 +00004798<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004799
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004800<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004801
Misha Brukman9d0919f2003-11-08 01:05:38 +00004802<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004803macro available in C. In a target-dependent way, it destroys the
4804<tt>va_list</tt> element to which the argument points. Calls to <a
4805href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4806<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4807<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004808
Misha Brukman9d0919f2003-11-08 01:05:38 +00004809</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004810
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004811<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004812<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004813 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004814</div>
4815
Misha Brukman9d0919f2003-11-08 01:05:38 +00004816<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004817
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004818<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004819
4820<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004821 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004822</pre>
4823
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004824<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004825
Jeff Cohenb627eab2007-04-29 01:07:00 +00004826<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4827from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004828
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004829<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004830
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004831<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004832The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004833
Chris Lattnerd7923912004-05-23 21:06:01 +00004834
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004835<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004836
Jeff Cohenb627eab2007-04-29 01:07:00 +00004837<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4838macro available in C. In a target-dependent way, it copies the source
4839<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4840intrinsic is necessary because the <tt><a href="#int_va_start">
4841llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4842example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004843
Misha Brukman9d0919f2003-11-08 01:05:38 +00004844</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004845
Chris Lattner33aec9e2004-02-12 17:01:32 +00004846<!-- ======================================================================= -->
4847<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004848 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4849</div>
4850
4851<div class="doc_text">
4852
4853<p>
4854LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004855Collection</a> (GC) requires the implementation and generation of these
4856intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004857These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004858stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004859href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004860Front-ends for type-safe garbage collected languages should generate these
4861intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4862href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4863</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004864
4865<p>The garbage collection intrinsics only operate on objects in the generic
4866 address space (address space zero).</p>
4867
Chris Lattnerd7923912004-05-23 21:06:01 +00004868</div>
4869
4870<!-- _______________________________________________________________________ -->
4871<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004872 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004873</div>
4874
4875<div class="doc_text">
4876
4877<h5>Syntax:</h5>
4878
4879<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004880 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004881</pre>
4882
4883<h5>Overview:</h5>
4884
John Criswell9e2485c2004-12-10 15:51:16 +00004885<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004886the code generator, and allows some metadata to be associated with it.</p>
4887
4888<h5>Arguments:</h5>
4889
4890<p>The first argument specifies the address of a stack object that contains the
4891root pointer. The second pointer (which must be either a constant or a global
4892value address) contains the meta-data to be associated with the root.</p>
4893
4894<h5>Semantics:</h5>
4895
Chris Lattner05d67092008-04-24 05:59:56 +00004896<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004897location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004898the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4899intrinsic may only be used in a function which <a href="#gc">specifies a GC
4900algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004901
4902</div>
4903
4904
4905<!-- _______________________________________________________________________ -->
4906<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004907 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004908</div>
4909
4910<div class="doc_text">
4911
4912<h5>Syntax:</h5>
4913
4914<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004915 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004916</pre>
4917
4918<h5>Overview:</h5>
4919
4920<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4921locations, allowing garbage collector implementations that require read
4922barriers.</p>
4923
4924<h5>Arguments:</h5>
4925
Chris Lattner80626e92006-03-14 20:02:51 +00004926<p>The second argument is the address to read from, which should be an address
4927allocated from the garbage collector. The first object is a pointer to the
4928start of the referenced object, if needed by the language runtime (otherwise
4929null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004930
4931<h5>Semantics:</h5>
4932
4933<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4934instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004935garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4936may only be used in a function which <a href="#gc">specifies a GC
4937algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004938
4939</div>
4940
4941
4942<!-- _______________________________________________________________________ -->
4943<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004944 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004945</div>
4946
4947<div class="doc_text">
4948
4949<h5>Syntax:</h5>
4950
4951<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004952 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004953</pre>
4954
4955<h5>Overview:</h5>
4956
4957<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4958locations, allowing garbage collector implementations that require write
4959barriers (such as generational or reference counting collectors).</p>
4960
4961<h5>Arguments:</h5>
4962
Chris Lattner80626e92006-03-14 20:02:51 +00004963<p>The first argument is the reference to store, the second is the start of the
4964object to store it to, and the third is the address of the field of Obj to
4965store to. If the runtime does not require a pointer to the object, Obj may be
4966null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004967
4968<h5>Semantics:</h5>
4969
4970<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4971instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004972garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4973may only be used in a function which <a href="#gc">specifies a GC
4974algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004975
4976</div>
4977
4978
4979
4980<!-- ======================================================================= -->
4981<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004982 <a name="int_codegen">Code Generator Intrinsics</a>
4983</div>
4984
4985<div class="doc_text">
4986<p>
4987These intrinsics are provided by LLVM to expose special features that may only
4988be implemented with code generator support.
4989</p>
4990
4991</div>
4992
4993<!-- _______________________________________________________________________ -->
4994<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004995 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004996</div>
4997
4998<div class="doc_text">
4999
5000<h5>Syntax:</h5>
5001<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005002 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005003</pre>
5004
5005<h5>Overview:</h5>
5006
5007<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005008The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5009target-specific value indicating the return address of the current function
5010or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00005011</p>
5012
5013<h5>Arguments:</h5>
5014
5015<p>
5016The argument to this intrinsic indicates which function to return the address
5017for. Zero indicates the calling function, one indicates its caller, etc. The
5018argument is <b>required</b> to be a constant integer value.
5019</p>
5020
5021<h5>Semantics:</h5>
5022
5023<p>
5024The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
5025the return address of the specified call frame, or zero if it cannot be
5026identified. The value returned by this intrinsic is likely to be incorrect or 0
5027for arguments other than zero, so it should only be used for debugging purposes.
5028</p>
5029
5030<p>
5031Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005032aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005033source-language caller.
5034</p>
5035</div>
5036
5037
5038<!-- _______________________________________________________________________ -->
5039<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005040 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005041</div>
5042
5043<div class="doc_text">
5044
5045<h5>Syntax:</h5>
5046<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005047 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005048</pre>
5049
5050<h5>Overview:</h5>
5051
5052<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005053The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5054target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00005055</p>
5056
5057<h5>Arguments:</h5>
5058
5059<p>
5060The argument to this intrinsic indicates which function to return the frame
5061pointer for. Zero indicates the calling function, one indicates its caller,
5062etc. The argument is <b>required</b> to be a constant integer value.
5063</p>
5064
5065<h5>Semantics:</h5>
5066
5067<p>
5068The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5069the frame address of the specified call frame, or zero if it cannot be
5070identified. The value returned by this intrinsic is likely to be incorrect or 0
5071for arguments other than zero, so it should only be used for debugging purposes.
5072</p>
5073
5074<p>
5075Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005076aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005077source-language caller.
5078</p>
5079</div>
5080
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005081<!-- _______________________________________________________________________ -->
5082<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005083 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005084</div>
5085
5086<div class="doc_text">
5087
5088<h5>Syntax:</h5>
5089<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005090 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00005091</pre>
5092
5093<h5>Overview:</h5>
5094
5095<p>
5096The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00005097the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00005098<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5099features like scoped automatic variable sized arrays in C99.
5100</p>
5101
5102<h5>Semantics:</h5>
5103
5104<p>
5105This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005106href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00005107<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5108<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5109state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5110practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5111that were allocated after the <tt>llvm.stacksave</tt> was executed.
5112</p>
5113
5114</div>
5115
5116<!-- _______________________________________________________________________ -->
5117<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005118 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005119</div>
5120
5121<div class="doc_text">
5122
5123<h5>Syntax:</h5>
5124<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005125 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005126</pre>
5127
5128<h5>Overview:</h5>
5129
5130<p>
5131The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5132the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005133href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00005134useful for implementing language features like scoped automatic variable sized
5135arrays in C99.
5136</p>
5137
5138<h5>Semantics:</h5>
5139
5140<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00005141See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00005142</p>
5143
5144</div>
5145
5146
5147<!-- _______________________________________________________________________ -->
5148<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005149 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005150</div>
5151
5152<div class="doc_text">
5153
5154<h5>Syntax:</h5>
5155<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005156 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005157</pre>
5158
5159<h5>Overview:</h5>
5160
5161
5162<p>
5163The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00005164a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5165no
5166effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00005167characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005168</p>
5169
5170<h5>Arguments:</h5>
5171
5172<p>
5173<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5174determining if the fetch should be for a read (0) or write (1), and
5175<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00005176locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005177<tt>locality</tt> arguments must be constant integers.
5178</p>
5179
5180<h5>Semantics:</h5>
5181
5182<p>
5183This intrinsic does not modify the behavior of the program. In particular,
5184prefetches cannot trap and do not produce a value. On targets that support this
5185intrinsic, the prefetch can provide hints to the processor cache for better
5186performance.
5187</p>
5188
5189</div>
5190
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005191<!-- _______________________________________________________________________ -->
5192<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005193 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005194</div>
5195
5196<div class="doc_text">
5197
5198<h5>Syntax:</h5>
5199<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005200 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005201</pre>
5202
5203<h5>Overview:</h5>
5204
5205
5206<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005207The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005208(PC) in a region of
5209code to simulators and other tools. The method is target specific, but it is
5210expected that the marker will use exported symbols to transmit the PC of the
5211marker.
5212The marker makes no guarantees that it will remain with any specific instruction
5213after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005214optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005215correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005216</p>
5217
5218<h5>Arguments:</h5>
5219
5220<p>
5221<tt>id</tt> is a numerical id identifying the marker.
5222</p>
5223
5224<h5>Semantics:</h5>
5225
5226<p>
5227This intrinsic does not modify the behavior of the program. Backends that do not
5228support this intrinisic may ignore it.
5229</p>
5230
5231</div>
5232
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005233<!-- _______________________________________________________________________ -->
5234<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005235 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005236</div>
5237
5238<div class="doc_text">
5239
5240<h5>Syntax:</h5>
5241<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005242 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005243</pre>
5244
5245<h5>Overview:</h5>
5246
5247
5248<p>
5249The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5250counter register (or similar low latency, high accuracy clocks) on those targets
5251that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5252As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5253should only be used for small timings.
5254</p>
5255
5256<h5>Semantics:</h5>
5257
5258<p>
5259When directly supported, reading the cycle counter should not modify any memory.
5260Implementations are allowed to either return a application specific value or a
5261system wide value. On backends without support, this is lowered to a constant 0.
5262</p>
5263
5264</div>
5265
Chris Lattner10610642004-02-14 04:08:35 +00005266<!-- ======================================================================= -->
5267<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005268 <a name="int_libc">Standard C Library Intrinsics</a>
5269</div>
5270
5271<div class="doc_text">
5272<p>
Chris Lattner10610642004-02-14 04:08:35 +00005273LLVM provides intrinsics for a few important standard C library functions.
5274These intrinsics allow source-language front-ends to pass information about the
5275alignment of the pointer arguments to the code generator, providing opportunity
5276for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005277</p>
5278
5279</div>
5280
5281<!-- _______________________________________________________________________ -->
5282<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005283 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005284</div>
5285
5286<div class="doc_text">
5287
5288<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005289<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5290width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005291<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005292 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5293 i8 &lt;len&gt;, i32 &lt;align&gt;)
5294 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5295 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005296 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005297 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005298 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005299 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005300</pre>
5301
5302<h5>Overview:</h5>
5303
5304<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005305The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005306location to the destination location.
5307</p>
5308
5309<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005310Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5311intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005312</p>
5313
5314<h5>Arguments:</h5>
5315
5316<p>
5317The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005318the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005319specifying the number of bytes to copy, and the fourth argument is the alignment
5320of the source and destination locations.
5321</p>
5322
Chris Lattner3301ced2004-02-12 21:18:15 +00005323<p>
5324If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005325the caller guarantees that both the source and destination pointers are aligned
5326to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005327</p>
5328
Chris Lattner33aec9e2004-02-12 17:01:32 +00005329<h5>Semantics:</h5>
5330
5331<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005332The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005333location to the destination location, which are not allowed to overlap. It
5334copies "len" bytes of memory over. If the argument is known to be aligned to
5335some boundary, this can be specified as the fourth argument, otherwise it should
5336be set to 0 or 1.
5337</p>
5338</div>
5339
5340
Chris Lattner0eb51b42004-02-12 18:10:10 +00005341<!-- _______________________________________________________________________ -->
5342<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005343 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005344</div>
5345
5346<div class="doc_text">
5347
5348<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005349<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5350width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005351<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005352 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5353 i8 &lt;len&gt;, i32 &lt;align&gt;)
5354 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5355 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005356 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005357 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005358 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005359 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005360</pre>
5361
5362<h5>Overview:</h5>
5363
5364<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005365The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5366location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005367'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005368</p>
5369
5370<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005371Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5372intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005373</p>
5374
5375<h5>Arguments:</h5>
5376
5377<p>
5378The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005379the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005380specifying the number of bytes to copy, and the fourth argument is the alignment
5381of the source and destination locations.
5382</p>
5383
Chris Lattner3301ced2004-02-12 21:18:15 +00005384<p>
5385If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005386the caller guarantees that the source and destination pointers are aligned to
5387that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005388</p>
5389
Chris Lattner0eb51b42004-02-12 18:10:10 +00005390<h5>Semantics:</h5>
5391
5392<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005393The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005394location to the destination location, which may overlap. It
5395copies "len" bytes of memory over. If the argument is known to be aligned to
5396some boundary, this can be specified as the fourth argument, otherwise it should
5397be set to 0 or 1.
5398</p>
5399</div>
5400
Chris Lattner8ff75902004-01-06 05:31:32 +00005401
Chris Lattner10610642004-02-14 04:08:35 +00005402<!-- _______________________________________________________________________ -->
5403<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005404 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005405</div>
5406
5407<div class="doc_text">
5408
5409<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005410<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5411width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005412<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005413 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5414 i8 &lt;len&gt;, i32 &lt;align&gt;)
5415 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5416 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005417 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005418 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005419 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005420 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005421</pre>
5422
5423<h5>Overview:</h5>
5424
5425<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005426The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005427byte value.
5428</p>
5429
5430<p>
5431Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5432does not return a value, and takes an extra alignment argument.
5433</p>
5434
5435<h5>Arguments:</h5>
5436
5437<p>
5438The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005439byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005440argument specifying the number of bytes to fill, and the fourth argument is the
5441known alignment of destination location.
5442</p>
5443
5444<p>
5445If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005446the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005447</p>
5448
5449<h5>Semantics:</h5>
5450
5451<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005452The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5453the
Chris Lattner10610642004-02-14 04:08:35 +00005454destination location. If the argument is known to be aligned to some boundary,
5455this can be specified as the fourth argument, otherwise it should be set to 0 or
54561.
5457</p>
5458</div>
5459
5460
Chris Lattner32006282004-06-11 02:28:03 +00005461<!-- _______________________________________________________________________ -->
5462<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005463 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005464</div>
5465
5466<div class="doc_text">
5467
5468<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005469<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005470floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005471types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005472<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005473 declare float @llvm.sqrt.f32(float %Val)
5474 declare double @llvm.sqrt.f64(double %Val)
5475 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5476 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5477 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005478</pre>
5479
5480<h5>Overview:</h5>
5481
5482<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005483The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005484returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005485<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005486negative numbers other than -0.0 (which allows for better optimization, because
5487there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5488defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005489</p>
5490
5491<h5>Arguments:</h5>
5492
5493<p>
5494The argument and return value are floating point numbers of the same type.
5495</p>
5496
5497<h5>Semantics:</h5>
5498
5499<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005500This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005501floating point number.
5502</p>
5503</div>
5504
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005505<!-- _______________________________________________________________________ -->
5506<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005507 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005508</div>
5509
5510<div class="doc_text">
5511
5512<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005513<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005514floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005515types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005516<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005517 declare float @llvm.powi.f32(float %Val, i32 %power)
5518 declare double @llvm.powi.f64(double %Val, i32 %power)
5519 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5520 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5521 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005522</pre>
5523
5524<h5>Overview:</h5>
5525
5526<p>
5527The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5528specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005529multiplications is not defined. When a vector of floating point type is
5530used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005531</p>
5532
5533<h5>Arguments:</h5>
5534
5535<p>
5536The second argument is an integer power, and the first is a value to raise to
5537that power.
5538</p>
5539
5540<h5>Semantics:</h5>
5541
5542<p>
5543This function returns the first value raised to the second power with an
5544unspecified sequence of rounding operations.</p>
5545</div>
5546
Dan Gohman91c284c2007-10-15 20:30:11 +00005547<!-- _______________________________________________________________________ -->
5548<div class="doc_subsubsection">
5549 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5550</div>
5551
5552<div class="doc_text">
5553
5554<h5>Syntax:</h5>
5555<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5556floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005557types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005558<pre>
5559 declare float @llvm.sin.f32(float %Val)
5560 declare double @llvm.sin.f64(double %Val)
5561 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5562 declare fp128 @llvm.sin.f128(fp128 %Val)
5563 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5564</pre>
5565
5566<h5>Overview:</h5>
5567
5568<p>
5569The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5570</p>
5571
5572<h5>Arguments:</h5>
5573
5574<p>
5575The argument and return value are floating point numbers of the same type.
5576</p>
5577
5578<h5>Semantics:</h5>
5579
5580<p>
5581This function returns the sine of the specified operand, returning the
5582same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005583conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005584</div>
5585
5586<!-- _______________________________________________________________________ -->
5587<div class="doc_subsubsection">
5588 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5589</div>
5590
5591<div class="doc_text">
5592
5593<h5>Syntax:</h5>
5594<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5595floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005596types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005597<pre>
5598 declare float @llvm.cos.f32(float %Val)
5599 declare double @llvm.cos.f64(double %Val)
5600 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5601 declare fp128 @llvm.cos.f128(fp128 %Val)
5602 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5603</pre>
5604
5605<h5>Overview:</h5>
5606
5607<p>
5608The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5609</p>
5610
5611<h5>Arguments:</h5>
5612
5613<p>
5614The argument and return value are floating point numbers of the same type.
5615</p>
5616
5617<h5>Semantics:</h5>
5618
5619<p>
5620This function returns the cosine of the specified operand, returning the
5621same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005622conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005623</div>
5624
5625<!-- _______________________________________________________________________ -->
5626<div class="doc_subsubsection">
5627 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5628</div>
5629
5630<div class="doc_text">
5631
5632<h5>Syntax:</h5>
5633<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5634floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005635types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005636<pre>
5637 declare float @llvm.pow.f32(float %Val, float %Power)
5638 declare double @llvm.pow.f64(double %Val, double %Power)
5639 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5640 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5641 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5642</pre>
5643
5644<h5>Overview:</h5>
5645
5646<p>
5647The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5648specified (positive or negative) power.
5649</p>
5650
5651<h5>Arguments:</h5>
5652
5653<p>
5654The second argument is a floating point power, and the first is a value to
5655raise to that power.
5656</p>
5657
5658<h5>Semantics:</h5>
5659
5660<p>
5661This function returns the first value raised to the second power,
5662returning the
5663same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005664conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005665</div>
5666
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005667
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005668<!-- ======================================================================= -->
5669<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005670 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005671</div>
5672
5673<div class="doc_text">
5674<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005675LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005676These allow efficient code generation for some algorithms.
5677</p>
5678
5679</div>
5680
5681<!-- _______________________________________________________________________ -->
5682<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005683 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005684</div>
5685
5686<div class="doc_text">
5687
5688<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005689<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005690type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005691<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005692 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5693 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5694 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005695</pre>
5696
5697<h5>Overview:</h5>
5698
5699<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005700The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005701values with an even number of bytes (positive multiple of 16 bits). These are
5702useful for performing operations on data that is not in the target's native
5703byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005704</p>
5705
5706<h5>Semantics:</h5>
5707
5708<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005709The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005710and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5711intrinsic returns an i32 value that has the four bytes of the input i32
5712swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005713i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5714<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005715additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005716</p>
5717
5718</div>
5719
5720<!-- _______________________________________________________________________ -->
5721<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005722 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005723</div>
5724
5725<div class="doc_text">
5726
5727<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005728<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005729width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005730<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005731 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005732 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005733 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005734 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5735 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005736</pre>
5737
5738<h5>Overview:</h5>
5739
5740<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005741The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5742value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005743</p>
5744
5745<h5>Arguments:</h5>
5746
5747<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005748The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005749integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005750</p>
5751
5752<h5>Semantics:</h5>
5753
5754<p>
5755The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5756</p>
5757</div>
5758
5759<!-- _______________________________________________________________________ -->
5760<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005761 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005762</div>
5763
5764<div class="doc_text">
5765
5766<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005767<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005768integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005769<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005770 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5771 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005772 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005773 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5774 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005775</pre>
5776
5777<h5>Overview:</h5>
5778
5779<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005780The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5781leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005782</p>
5783
5784<h5>Arguments:</h5>
5785
5786<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005787The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005788integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005789</p>
5790
5791<h5>Semantics:</h5>
5792
5793<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005794The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5795in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005796of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005797</p>
5798</div>
Chris Lattner32006282004-06-11 02:28:03 +00005799
5800
Chris Lattnereff29ab2005-05-15 19:39:26 +00005801
5802<!-- _______________________________________________________________________ -->
5803<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005804 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005805</div>
5806
5807<div class="doc_text">
5808
5809<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005810<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005811integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005812<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005813 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5814 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005815 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005816 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5817 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005818</pre>
5819
5820<h5>Overview:</h5>
5821
5822<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005823The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5824trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005825</p>
5826
5827<h5>Arguments:</h5>
5828
5829<p>
5830The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005831integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005832</p>
5833
5834<h5>Semantics:</h5>
5835
5836<p>
5837The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5838in a variable. If the src == 0 then the result is the size in bits of the type
5839of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5840</p>
5841</div>
5842
Reid Spencer497d93e2007-04-01 08:27:01 +00005843<!-- _______________________________________________________________________ -->
5844<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005845 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005846</div>
5847
5848<div class="doc_text">
5849
5850<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005851<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005852on any integer bit width.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005853<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005854 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5855 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005856</pre>
5857
5858<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005859<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005860range of bits from an integer value and returns them in the same bit width as
5861the original value.</p>
5862
5863<h5>Arguments:</h5>
5864<p>The first argument, <tt>%val</tt> and the result may be integer types of
5865any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005866arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005867
5868<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005869<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005870of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5871<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5872operates in forward mode.</p>
5873<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5874right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005875only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5876<ol>
5877 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5878 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5879 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5880 to determine the number of bits to retain.</li>
5881 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005882 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005883</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005884<p>In reverse mode, a similar computation is made except that the bits are
5885returned in the reverse order. So, for example, if <tt>X</tt> has the value
5886<tt>i16 0x0ACF (101011001111)</tt> and we apply
5887<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5888<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005889</div>
5890
Reid Spencerf86037f2007-04-11 23:23:49 +00005891<div class="doc_subsubsection">
5892 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5893</div>
5894
5895<div class="doc_text">
5896
5897<h5>Syntax:</h5>
5898<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005899on any integer bit width.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005900<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005901 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5902 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005903</pre>
5904
5905<h5>Overview:</h5>
5906<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5907of bits in an integer value with another integer value. It returns the integer
5908with the replaced bits.</p>
5909
5910<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005911<p>The first argument, <tt>%val</tt>, and the result may be integer types of
5912any bit width, but they must have the same bit width. <tt>%val</tt> is the value
Reid Spencerf86037f2007-04-11 23:23:49 +00005913whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5914integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5915type since they specify only a bit index.</p>
5916
5917<h5>Semantics:</h5>
5918<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5919of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5920<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5921operates in forward mode.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005922
Reid Spencerf86037f2007-04-11 23:23:49 +00005923<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5924truncating it down to the size of the replacement area or zero extending it
5925up to that size.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005926
Reid Spencerf86037f2007-04-11 23:23:49 +00005927<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5928are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5929in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman0e451ce2008-10-14 16:51:45 +00005930to the <tt>%hi</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005931
Reid Spencerc6749c42007-05-14 16:50:20 +00005932<p>In reverse mode, a similar computation is made except that the bits are
5933reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman0e451ce2008-10-14 16:51:45 +00005934<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005935
Reid Spencerf86037f2007-04-11 23:23:49 +00005936<h5>Examples:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005937
Reid Spencerf86037f2007-04-11 23:23:49 +00005938<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005939 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005940 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5941 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5942 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005943 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005944</pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005945
5946</div>
5947
Bill Wendlingda01af72009-02-08 04:04:40 +00005948<!-- ======================================================================= -->
5949<div class="doc_subsection">
5950 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
5951</div>
5952
5953<div class="doc_text">
5954<p>
5955LLVM provides intrinsics for some arithmetic with overflow operations.
5956</p>
5957
5958</div>
5959
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005960<!-- _______________________________________________________________________ -->
5961<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00005962 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005963</div>
5964
5965<div class="doc_text">
5966
5967<h5>Syntax:</h5>
5968
5969<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00005970on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005971
5972<pre>
5973 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
5974 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
5975 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
5976</pre>
5977
5978<h5>Overview:</h5>
5979
5980<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5981a signed addition of the two arguments, and indicate whether an overflow
5982occurred during the signed summation.</p>
5983
5984<h5>Arguments:</h5>
5985
5986<p>The arguments (%a and %b) and the first element of the result structure may
5987be of integer types of any bit width, but they must have the same bit width. The
5988second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
5989and <tt>%b</tt> are the two values that will undergo signed addition.</p>
5990
5991<h5>Semantics:</h5>
5992
5993<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5994a signed addition of the two variables. They return a structure &mdash; the
5995first element of which is the signed summation, and the second element of which
5996is a bit specifying if the signed summation resulted in an overflow.</p>
5997
5998<h5>Examples:</h5>
5999<pre>
6000 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6001 %sum = extractvalue {i32, i1} %res, 0
6002 %obit = extractvalue {i32, i1} %res, 1
6003 br i1 %obit, label %overflow, label %normal
6004</pre>
6005
6006</div>
6007
6008<!-- _______________________________________________________________________ -->
6009<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006010 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006011</div>
6012
6013<div class="doc_text">
6014
6015<h5>Syntax:</h5>
6016
6017<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006018on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006019
6020<pre>
6021 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6022 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6023 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6024</pre>
6025
6026<h5>Overview:</h5>
6027
6028<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6029an unsigned addition of the two arguments, and indicate whether a carry occurred
6030during the unsigned summation.</p>
6031
6032<h5>Arguments:</h5>
6033
6034<p>The arguments (%a and %b) and the first element of the result structure may
6035be of integer types of any bit width, but they must have the same bit width. The
6036second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6037and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6038
6039<h5>Semantics:</h5>
6040
6041<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6042an unsigned addition of the two arguments. They return a structure &mdash; the
6043first element of which is the sum, and the second element of which is a bit
6044specifying if the unsigned summation resulted in a carry.</p>
6045
6046<h5>Examples:</h5>
6047<pre>
6048 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6049 %sum = extractvalue {i32, i1} %res, 0
6050 %obit = extractvalue {i32, i1} %res, 1
6051 br i1 %obit, label %carry, label %normal
6052</pre>
6053
6054</div>
6055
6056<!-- _______________________________________________________________________ -->
6057<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006058 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006059</div>
6060
6061<div class="doc_text">
6062
6063<h5>Syntax:</h5>
6064
6065<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006066on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006067
6068<pre>
6069 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6070 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6071 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6072</pre>
6073
6074<h5>Overview:</h5>
6075
6076<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6077a signed subtraction of the two arguments, and indicate whether an overflow
6078occurred during the signed subtraction.</p>
6079
6080<h5>Arguments:</h5>
6081
6082<p>The arguments (%a and %b) and the first element of the result structure may
6083be of integer types of any bit width, but they must have the same bit width. The
6084second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6085and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6086
6087<h5>Semantics:</h5>
6088
6089<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6090a signed subtraction of the two arguments. They return a structure &mdash; the
6091first element of which is the subtraction, and the second element of which is a bit
6092specifying if the signed subtraction resulted in an overflow.</p>
6093
6094<h5>Examples:</h5>
6095<pre>
6096 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6097 %sum = extractvalue {i32, i1} %res, 0
6098 %obit = extractvalue {i32, i1} %res, 1
6099 br i1 %obit, label %overflow, label %normal
6100</pre>
6101
6102</div>
6103
6104<!-- _______________________________________________________________________ -->
6105<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006106 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006107</div>
6108
6109<div class="doc_text">
6110
6111<h5>Syntax:</h5>
6112
6113<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006114on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006115
6116<pre>
6117 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6118 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6119 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6120</pre>
6121
6122<h5>Overview:</h5>
6123
6124<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6125an unsigned subtraction of the two arguments, and indicate whether an overflow
6126occurred during the unsigned subtraction.</p>
6127
6128<h5>Arguments:</h5>
6129
6130<p>The arguments (%a and %b) and the first element of the result structure may
6131be of integer types of any bit width, but they must have the same bit width. The
6132second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6133and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6134
6135<h5>Semantics:</h5>
6136
6137<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6138an unsigned subtraction of the two arguments. They return a structure &mdash; the
6139first element of which is the subtraction, and the second element of which is a bit
6140specifying if the unsigned subtraction resulted in an overflow.</p>
6141
6142<h5>Examples:</h5>
6143<pre>
6144 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6145 %sum = extractvalue {i32, i1} %res, 0
6146 %obit = extractvalue {i32, i1} %res, 1
6147 br i1 %obit, label %overflow, label %normal
6148</pre>
6149
6150</div>
6151
6152<!-- _______________________________________________________________________ -->
6153<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006154 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006155</div>
6156
6157<div class="doc_text">
6158
6159<h5>Syntax:</h5>
6160
6161<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006162on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006163
6164<pre>
6165 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6166 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6167 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6168</pre>
6169
6170<h5>Overview:</h5>
6171
6172<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6173a signed multiplication of the two arguments, and indicate whether an overflow
6174occurred during the signed multiplication.</p>
6175
6176<h5>Arguments:</h5>
6177
6178<p>The arguments (%a and %b) and the first element of the result structure may
6179be of integer types of any bit width, but they must have the same bit width. The
6180second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6181and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6182
6183<h5>Semantics:</h5>
6184
6185<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6186a signed multiplication of the two arguments. They return a structure &mdash;
6187the first element of which is the multiplication, and the second element of
6188which is a bit specifying if the signed multiplication resulted in an
6189overflow.</p>
6190
6191<h5>Examples:</h5>
6192<pre>
6193 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6194 %sum = extractvalue {i32, i1} %res, 0
6195 %obit = extractvalue {i32, i1} %res, 1
6196 br i1 %obit, label %overflow, label %normal
6197</pre>
6198
Reid Spencerf86037f2007-04-11 23:23:49 +00006199</div>
6200
Bill Wendling41b485c2009-02-08 23:00:09 +00006201<!-- _______________________________________________________________________ -->
6202<div class="doc_subsubsection">
6203 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6204</div>
6205
6206<div class="doc_text">
6207
6208<h5>Syntax:</h5>
6209
6210<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6211on any integer bit width.</p>
6212
6213<pre>
6214 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6215 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6216 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6217</pre>
6218
6219<h5>Overview:</h5>
6220
6221<p><i><b>Warning:</b> '<tt>llvm.umul.with.overflow</tt>' is badly broken. It is
6222actively being fixed, but it should not currently be used!</i></p>
6223
6224<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6225a unsigned multiplication of the two arguments, and indicate whether an overflow
6226occurred during the unsigned multiplication.</p>
6227
6228<h5>Arguments:</h5>
6229
6230<p>The arguments (%a and %b) and the first element of the result structure may
6231be of integer types of any bit width, but they must have the same bit width. The
6232second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6233and <tt>%b</tt> are the two values that will undergo unsigned
6234multiplication.</p>
6235
6236<h5>Semantics:</h5>
6237
6238<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6239an unsigned multiplication of the two arguments. They return a structure &mdash;
6240the first element of which is the multiplication, and the second element of
6241which is a bit specifying if the unsigned multiplication resulted in an
6242overflow.</p>
6243
6244<h5>Examples:</h5>
6245<pre>
6246 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6247 %sum = extractvalue {i32, i1} %res, 0
6248 %obit = extractvalue {i32, i1} %res, 1
6249 br i1 %obit, label %overflow, label %normal
6250</pre>
6251
6252</div>
6253
Chris Lattner8ff75902004-01-06 05:31:32 +00006254<!-- ======================================================================= -->
6255<div class="doc_subsection">
6256 <a name="int_debugger">Debugger Intrinsics</a>
6257</div>
6258
6259<div class="doc_text">
6260<p>
6261The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6262are described in the <a
6263href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6264Debugging</a> document.
6265</p>
6266</div>
6267
6268
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006269<!-- ======================================================================= -->
6270<div class="doc_subsection">
6271 <a name="int_eh">Exception Handling Intrinsics</a>
6272</div>
6273
6274<div class="doc_text">
6275<p> The LLVM exception handling intrinsics (which all start with
6276<tt>llvm.eh.</tt> prefix), are described in the <a
6277href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6278Handling</a> document. </p>
6279</div>
6280
Tanya Lattner6d806e92007-06-15 20:50:54 +00006281<!-- ======================================================================= -->
6282<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00006283 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00006284</div>
6285
6286<div class="doc_text">
6287<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006288 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00006289 the <tt>nest</tt> attribute, from a function. The result is a callable
6290 function pointer lacking the nest parameter - the caller does not need
6291 to provide a value for it. Instead, the value to use is stored in
6292 advance in a "trampoline", a block of memory usually allocated
6293 on the stack, which also contains code to splice the nest value into the
6294 argument list. This is used to implement the GCC nested function address
6295 extension.
6296</p>
6297<p>
6298 For example, if the function is
6299 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00006300 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006301<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006302 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6303 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6304 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6305 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00006306</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00006307 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6308 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006309</div>
6310
6311<!-- _______________________________________________________________________ -->
6312<div class="doc_subsubsection">
6313 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6314</div>
6315<div class="doc_text">
6316<h5>Syntax:</h5>
6317<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006318declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00006319</pre>
6320<h5>Overview:</h5>
6321<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006322 This fills the memory pointed to by <tt>tramp</tt> with code
6323 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00006324</p>
6325<h5>Arguments:</h5>
6326<p>
6327 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6328 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6329 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00006330 intrinsic. Note that the size and the alignment are target-specific - LLVM
6331 currently provides no portable way of determining them, so a front-end that
6332 generates this intrinsic needs to have some target-specific knowledge.
6333 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00006334</p>
6335<h5>Semantics:</h5>
6336<p>
6337 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00006338 dependent code, turning it into a function. A pointer to this function is
6339 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00006340 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006341 before being called. The new function's signature is the same as that of
6342 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6343 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6344 of pointer type. Calling the new function is equivalent to calling
6345 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6346 missing <tt>nest</tt> argument. If, after calling
6347 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6348 modified, then the effect of any later call to the returned function pointer is
6349 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00006350</p>
6351</div>
6352
6353<!-- ======================================================================= -->
6354<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006355 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6356</div>
6357
6358<div class="doc_text">
6359<p>
6360 These intrinsic functions expand the "universal IR" of LLVM to represent
6361 hardware constructs for atomic operations and memory synchronization. This
6362 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00006363 is aimed at a low enough level to allow any programming models or APIs
6364 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006365 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6366 hardware behavior. Just as hardware provides a "universal IR" for source
6367 languages, it also provides a starting point for developing a "universal"
6368 atomic operation and synchronization IR.
6369</p>
6370<p>
6371 These do <em>not</em> form an API such as high-level threading libraries,
6372 software transaction memory systems, atomic primitives, and intrinsic
6373 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6374 application libraries. The hardware interface provided by LLVM should allow
6375 a clean implementation of all of these APIs and parallel programming models.
6376 No one model or paradigm should be selected above others unless the hardware
6377 itself ubiquitously does so.
6378
6379</p>
6380</div>
6381
6382<!-- _______________________________________________________________________ -->
6383<div class="doc_subsubsection">
6384 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6385</div>
6386<div class="doc_text">
6387<h5>Syntax:</h5>
6388<pre>
6389declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
6390i1 &lt;device&gt; )
6391
6392</pre>
6393<h5>Overview:</h5>
6394<p>
6395 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6396 specific pairs of memory access types.
6397</p>
6398<h5>Arguments:</h5>
6399<p>
6400 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6401 The first four arguments enables a specific barrier as listed below. The fith
6402 argument specifies that the barrier applies to io or device or uncached memory.
6403
6404</p>
6405 <ul>
6406 <li><tt>ll</tt>: load-load barrier</li>
6407 <li><tt>ls</tt>: load-store barrier</li>
6408 <li><tt>sl</tt>: store-load barrier</li>
6409 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006410 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006411 </ul>
6412<h5>Semantics:</h5>
6413<p>
6414 This intrinsic causes the system to enforce some ordering constraints upon
6415 the loads and stores of the program. This barrier does not indicate
6416 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6417 which they occur. For any of the specified pairs of load and store operations
6418 (f.ex. load-load, or store-load), all of the first operations preceding the
6419 barrier will complete before any of the second operations succeeding the
6420 barrier begin. Specifically the semantics for each pairing is as follows:
6421</p>
6422 <ul>
6423 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6424 after the barrier begins.</li>
6425
6426 <li><tt>ls</tt>: All loads before the barrier must complete before any
6427 store after the barrier begins.</li>
6428 <li><tt>ss</tt>: All stores before the barrier must complete before any
6429 store after the barrier begins.</li>
6430 <li><tt>sl</tt>: All stores before the barrier must complete before any
6431 load after the barrier begins.</li>
6432 </ul>
6433<p>
6434 These semantics are applied with a logical "and" behavior when more than one
6435 is enabled in a single memory barrier intrinsic.
6436</p>
6437<p>
6438 Backends may implement stronger barriers than those requested when they do not
6439 support as fine grained a barrier as requested. Some architectures do not
6440 need all types of barriers and on such architectures, these become noops.
6441</p>
6442<h5>Example:</h5>
6443<pre>
6444%ptr = malloc i32
6445 store i32 4, %ptr
6446
6447%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6448 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6449 <i>; guarantee the above finishes</i>
6450 store i32 8, %ptr <i>; before this begins</i>
6451</pre>
6452</div>
6453
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006454<!-- _______________________________________________________________________ -->
6455<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006456 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006457</div>
6458<div class="doc_text">
6459<h5>Syntax:</h5>
6460<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00006461 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6462 any integer bit width and for different address spaces. Not all targets
6463 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006464
6465<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006466declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6467declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6468declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6469declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006470
6471</pre>
6472<h5>Overview:</h5>
6473<p>
6474 This loads a value in memory and compares it to a given value. If they are
6475 equal, it stores a new value into the memory.
6476</p>
6477<h5>Arguments:</h5>
6478<p>
Mon P Wang28873102008-06-25 08:15:39 +00006479 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006480 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6481 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6482 this integer type. While any bit width integer may be used, targets may only
6483 lower representations they support in hardware.
6484
6485</p>
6486<h5>Semantics:</h5>
6487<p>
6488 This entire intrinsic must be executed atomically. It first loads the value
6489 in memory pointed to by <tt>ptr</tt> and compares it with the value
6490 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6491 loaded value is yielded in all cases. This provides the equivalent of an
6492 atomic compare-and-swap operation within the SSA framework.
6493</p>
6494<h5>Examples:</h5>
6495
6496<pre>
6497%ptr = malloc i32
6498 store i32 4, %ptr
6499
6500%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006501%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006502 <i>; yields {i32}:result1 = 4</i>
6503%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6504%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6505
6506%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006507%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006508 <i>; yields {i32}:result2 = 8</i>
6509%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6510
6511%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6512</pre>
6513</div>
6514
6515<!-- _______________________________________________________________________ -->
6516<div class="doc_subsubsection">
6517 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6518</div>
6519<div class="doc_text">
6520<h5>Syntax:</h5>
6521
6522<p>
6523 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6524 integer bit width. Not all targets support all bit widths however.</p>
6525<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006526declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6527declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6528declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6529declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006530
6531</pre>
6532<h5>Overview:</h5>
6533<p>
6534 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6535 the value from memory. It then stores the value in <tt>val</tt> in the memory
6536 at <tt>ptr</tt>.
6537</p>
6538<h5>Arguments:</h5>
6539
6540<p>
Mon P Wang28873102008-06-25 08:15:39 +00006541 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006542 <tt>val</tt> argument and the result must be integers of the same bit width.
6543 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6544 integer type. The targets may only lower integer representations they
6545 support.
6546</p>
6547<h5>Semantics:</h5>
6548<p>
6549 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6550 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6551 equivalent of an atomic swap operation within the SSA framework.
6552
6553</p>
6554<h5>Examples:</h5>
6555<pre>
6556%ptr = malloc i32
6557 store i32 4, %ptr
6558
6559%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006560%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006561 <i>; yields {i32}:result1 = 4</i>
6562%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6563%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6564
6565%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006566%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006567 <i>; yields {i32}:result2 = 8</i>
6568
6569%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6570%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6571</pre>
6572</div>
6573
6574<!-- _______________________________________________________________________ -->
6575<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006576 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006577
6578</div>
6579<div class="doc_text">
6580<h5>Syntax:</h5>
6581<p>
Mon P Wang28873102008-06-25 08:15:39 +00006582 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006583 integer bit width. Not all targets support all bit widths however.</p>
6584<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006585declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6586declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6587declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6588declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006589
6590</pre>
6591<h5>Overview:</h5>
6592<p>
6593 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6594 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6595</p>
6596<h5>Arguments:</h5>
6597<p>
6598
6599 The intrinsic takes two arguments, the first a pointer to an integer value
6600 and the second an integer value. The result is also an integer value. These
6601 integer types can have any bit width, but they must all have the same bit
6602 width. The targets may only lower integer representations they support.
6603</p>
6604<h5>Semantics:</h5>
6605<p>
6606 This intrinsic does a series of operations atomically. It first loads the
6607 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6608 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6609</p>
6610
6611<h5>Examples:</h5>
6612<pre>
6613%ptr = malloc i32
6614 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006615%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006616 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006617%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006618 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006619%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006620 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006621%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006622</pre>
6623</div>
6624
Mon P Wang28873102008-06-25 08:15:39 +00006625<!-- _______________________________________________________________________ -->
6626<div class="doc_subsubsection">
6627 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6628
6629</div>
6630<div class="doc_text">
6631<h5>Syntax:</h5>
6632<p>
6633 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006634 any integer bit width and for different address spaces. Not all targets
6635 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006636<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006637declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6638declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6639declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6640declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006641
6642</pre>
6643<h5>Overview:</h5>
6644<p>
6645 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6646 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6647</p>
6648<h5>Arguments:</h5>
6649<p>
6650
6651 The intrinsic takes two arguments, the first a pointer to an integer value
6652 and the second an integer value. The result is also an integer value. These
6653 integer types can have any bit width, but they must all have the same bit
6654 width. The targets may only lower integer representations they support.
6655</p>
6656<h5>Semantics:</h5>
6657<p>
6658 This intrinsic does a series of operations atomically. It first loads the
6659 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6660 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6661</p>
6662
6663<h5>Examples:</h5>
6664<pre>
6665%ptr = malloc i32
6666 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006667%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006668 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006669%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006670 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006671%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006672 <i>; yields {i32}:result3 = 2</i>
6673%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6674</pre>
6675</div>
6676
6677<!-- _______________________________________________________________________ -->
6678<div class="doc_subsubsection">
6679 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6680 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6681 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6682 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6683
6684</div>
6685<div class="doc_text">
6686<h5>Syntax:</h5>
6687<p>
6688 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6689 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006690 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6691 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006692<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006693declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6694declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6695declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6696declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006697
6698</pre>
6699
6700<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006701declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6702declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6703declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6704declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006705
6706</pre>
6707
6708<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006709declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6710declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6711declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6712declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006713
6714</pre>
6715
6716<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006717declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6718declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6719declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6720declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006721
6722</pre>
6723<h5>Overview:</h5>
6724<p>
6725 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6726 the value stored in memory at <tt>ptr</tt>. It yields the original value
6727 at <tt>ptr</tt>.
6728</p>
6729<h5>Arguments:</h5>
6730<p>
6731
6732 These intrinsics take two arguments, the first a pointer to an integer value
6733 and the second an integer value. The result is also an integer value. These
6734 integer types can have any bit width, but they must all have the same bit
6735 width. The targets may only lower integer representations they support.
6736</p>
6737<h5>Semantics:</h5>
6738<p>
6739 These intrinsics does a series of operations atomically. They first load the
6740 value stored at <tt>ptr</tt>. They then do the bitwise operation
6741 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6742 value stored at <tt>ptr</tt>.
6743</p>
6744
6745<h5>Examples:</h5>
6746<pre>
6747%ptr = malloc i32
6748 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006749%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006750 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006751%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006752 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006753%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006754 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006755%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006756 <i>; yields {i32}:result3 = FF</i>
6757%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6758</pre>
6759</div>
6760
6761
6762<!-- _______________________________________________________________________ -->
6763<div class="doc_subsubsection">
6764 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6765 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6766 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6767 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6768
6769</div>
6770<div class="doc_text">
6771<h5>Syntax:</h5>
6772<p>
6773 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6774 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006775 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6776 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006777 support all bit widths however.</p>
6778<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006779declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6780declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6781declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6782declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006783
6784</pre>
6785
6786<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006787declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6788declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6789declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6790declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006791
6792</pre>
6793
6794<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006795declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6796declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6797declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6798declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006799
6800</pre>
6801
6802<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006803declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6804declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6805declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6806declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006807
6808</pre>
6809<h5>Overview:</h5>
6810<p>
6811 These intrinsics takes the signed or unsigned minimum or maximum of
6812 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6813 original value at <tt>ptr</tt>.
6814</p>
6815<h5>Arguments:</h5>
6816<p>
6817
6818 These intrinsics take two arguments, the first a pointer to an integer value
6819 and the second an integer value. The result is also an integer value. These
6820 integer types can have any bit width, but they must all have the same bit
6821 width. The targets may only lower integer representations they support.
6822</p>
6823<h5>Semantics:</h5>
6824<p>
6825 These intrinsics does a series of operations atomically. They first load the
6826 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6827 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6828 the original value stored at <tt>ptr</tt>.
6829</p>
6830
6831<h5>Examples:</h5>
6832<pre>
6833%ptr = malloc i32
6834 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006835%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006836 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006837%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006838 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006839%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006840 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006841%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006842 <i>; yields {i32}:result3 = 8</i>
6843%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6844</pre>
6845</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006846
6847<!-- ======================================================================= -->
6848<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006849 <a name="int_general">General Intrinsics</a>
6850</div>
6851
6852<div class="doc_text">
6853<p> This class of intrinsics is designed to be generic and has
6854no specific purpose. </p>
6855</div>
6856
6857<!-- _______________________________________________________________________ -->
6858<div class="doc_subsubsection">
6859 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6860</div>
6861
6862<div class="doc_text">
6863
6864<h5>Syntax:</h5>
6865<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006866 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006867</pre>
6868
6869<h5>Overview:</h5>
6870
6871<p>
6872The '<tt>llvm.var.annotation</tt>' intrinsic
6873</p>
6874
6875<h5>Arguments:</h5>
6876
6877<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006878The first argument is a pointer to a value, the second is a pointer to a
6879global string, the third is a pointer to a global string which is the source
6880file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006881</p>
6882
6883<h5>Semantics:</h5>
6884
6885<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006886This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006887This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006888annotations. These have no other defined use, they are ignored by code
6889generation and optimization.
6890</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006891</div>
6892
Tanya Lattnerb6367882007-09-21 22:59:12 +00006893<!-- _______________________________________________________________________ -->
6894<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006895 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006896</div>
6897
6898<div class="doc_text">
6899
6900<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006901<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6902any integer bit width.
6903</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006904<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006905 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6906 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6907 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6908 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6909 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006910</pre>
6911
6912<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006913
6914<p>
6915The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006916</p>
6917
6918<h5>Arguments:</h5>
6919
6920<p>
6921The first argument is an integer value (result of some expression),
6922the second is a pointer to a global string, the third is a pointer to a global
6923string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006924It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006925</p>
6926
6927<h5>Semantics:</h5>
6928
6929<p>
6930This intrinsic allows annotations to be put on arbitrary expressions
6931with arbitrary strings. This can be useful for special purpose optimizations
6932that want to look for these annotations. These have no other defined use, they
6933are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00006934</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006935</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006936
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006937<!-- _______________________________________________________________________ -->
6938<div class="doc_subsubsection">
6939 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6940</div>
6941
6942<div class="doc_text">
6943
6944<h5>Syntax:</h5>
6945<pre>
6946 declare void @llvm.trap()
6947</pre>
6948
6949<h5>Overview:</h5>
6950
6951<p>
6952The '<tt>llvm.trap</tt>' intrinsic
6953</p>
6954
6955<h5>Arguments:</h5>
6956
6957<p>
6958None
6959</p>
6960
6961<h5>Semantics:</h5>
6962
6963<p>
6964This intrinsics is lowered to the target dependent trap instruction. If the
6965target does not have a trap instruction, this intrinsic will be lowered to the
6966call of the abort() function.
6967</p>
6968</div>
6969
Bill Wendling69e4adb2008-11-19 05:56:17 +00006970<!-- _______________________________________________________________________ -->
6971<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00006972 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00006973</div>
6974<div class="doc_text">
6975<h5>Syntax:</h5>
6976<pre>
6977declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
6978
6979</pre>
6980<h5>Overview:</h5>
6981<p>
6982 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
6983 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
6984 it is placed on the stack before local variables.
6985</p>
6986<h5>Arguments:</h5>
6987<p>
6988 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
6989 first argument is the value loaded from the stack guard
6990 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
6991 has enough space to hold the value of the guard.
6992</p>
6993<h5>Semantics:</h5>
6994<p>
6995 This intrinsic causes the prologue/epilogue inserter to force the position of
6996 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6997 stack. This is to ensure that if a local variable on the stack is overwritten,
6998 it will destroy the value of the guard. When the function exits, the guard on
6999 the stack is checked against the original guard. If they're different, then
7000 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
7001</p>
7002</div>
7003
Chris Lattner00950542001-06-06 20:29:01 +00007004<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00007005<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007006<address>
7007 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007008 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007009 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007010 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007011
7012 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00007013 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007014 Last modified: $Date$
7015</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00007016
Misha Brukman9d0919f2003-11-08 01:05:38 +00007017</body>
7018</html>