blob: c698e8a90a9d07b9193ae55ea83eff1aea434e5b [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner00950542001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000040 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000044 </ol>
45 </li>
Chris Lattner00950542001-06-06 20:29:01 +000046 <li><a href="#t_derived">Derived Types</a>
47 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000048 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000049 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000050 <li><a href="#t_function">Function Type</a></li>
51 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000052 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000053 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000054 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000055 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000056 </ol>
57 </li>
Chris Lattner242d61d2009-02-02 07:32:36 +000058 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000059 </ol>
60 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000061 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000062 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000063 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner70882792009-02-28 18:32:25 +000064 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000065 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
66 <li><a href="#undefvalues">Undefined Values</a></li>
67 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000068 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000069 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000070 <li><a href="#othervalues">Other Values</a>
71 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000072 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000073 </ol>
74 </li>
Chris Lattner00950542001-06-06 20:29:01 +000075 <li><a href="#instref">Instruction Reference</a>
76 <ol>
77 <li><a href="#terminators">Terminator Instructions</a>
78 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000079 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
80 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000081 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
82 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000083 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000084 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000085 </ol>
86 </li>
Chris Lattner00950542001-06-06 20:29:01 +000087 <li><a href="#binaryops">Binary Operations</a>
88 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000089 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
90 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
91 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000092 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
93 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
94 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000095 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
96 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
97 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000098 </ol>
99 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000100 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
101 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000102 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
103 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
104 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000105 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000106 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000107 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000108 </ol>
109 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000110 <li><a href="#vectorops">Vector Operations</a>
111 <ol>
112 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
113 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
114 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000115 </ol>
116 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000117 <li><a href="#aggregateops">Aggregate Operations</a>
118 <ol>
119 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
120 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
121 </ol>
122 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000123 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000124 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000125 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
126 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
127 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000128 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
129 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
130 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000131 </ol>
132 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000133 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000134 <ol>
135 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
136 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
137 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000140 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
141 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
142 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
143 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000144 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
145 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000146 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000147 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000148 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000149 <li><a href="#otherops">Other Operations</a>
150 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000151 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
152 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000153 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
154 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000155 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000156 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000157 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000158 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000159 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000161 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000162 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000163 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000164 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000165 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
166 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000167 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
168 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
169 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000170 </ol>
171 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000172 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
173 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000174 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
175 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
176 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000177 </ol>
178 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000179 <li><a href="#int_codegen">Code Generator Intrinsics</a>
180 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000181 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
182 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
183 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
184 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
185 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
186 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
187 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000188 </ol>
189 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000190 <li><a href="#int_libc">Standard C Library Intrinsics</a>
191 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000192 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000197 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000200 </ol>
201 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000202 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000203 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000204 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000205 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000208 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
209 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000210 </ol>
211 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000212 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
213 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000214 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
215 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
216 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
217 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
218 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling41b485c2009-02-08 23:00:09 +0000219 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000220 </ol>
221 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000222 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000223 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000224 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000225 <ol>
226 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000227 </ol>
228 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000229 <li><a href="#int_atomics">Atomic intrinsics</a>
230 <ol>
231 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
232 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
233 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
234 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
235 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
236 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
237 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
238 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
239 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
240 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
241 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
242 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
243 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
244 </ol>
245 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000246 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000247 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000248 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000249 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000250 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000251 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000252 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000253 '<tt>llvm.trap</tt>' Intrinsic</a></li>
254 <li><a href="#int_stackprotector">
255 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000256 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000257 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000258 </ol>
259 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000260</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000261
262<div class="doc_author">
263 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
264 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000265</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000266
Chris Lattner00950542001-06-06 20:29:01 +0000267<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000268<div class="doc_section"> <a name="abstract">Abstract </a></div>
269<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000270
Misha Brukman9d0919f2003-11-08 01:05:38 +0000271<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000272<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000273LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000274type safety, low-level operations, flexibility, and the capability of
275representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000276representation used throughout all phases of the LLVM compilation
277strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000278</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000279
Chris Lattner00950542001-06-06 20:29:01 +0000280<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000281<div class="doc_section"> <a name="introduction">Introduction</a> </div>
282<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000283
Misha Brukman9d0919f2003-11-08 01:05:38 +0000284<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000285
Chris Lattner261efe92003-11-25 01:02:51 +0000286<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000287different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000288representation (suitable for fast loading by a Just-In-Time compiler),
289and as a human readable assembly language representation. This allows
290LLVM to provide a powerful intermediate representation for efficient
291compiler transformations and analysis, while providing a natural means
292to debug and visualize the transformations. The three different forms
293of LLVM are all equivalent. This document describes the human readable
294representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000295
John Criswellc1f786c2005-05-13 22:25:59 +0000296<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000297while being expressive, typed, and extensible at the same time. It
298aims to be a "universal IR" of sorts, by being at a low enough level
299that high-level ideas may be cleanly mapped to it (similar to how
300microprocessors are "universal IR's", allowing many source languages to
301be mapped to them). By providing type information, LLVM can be used as
302the target of optimizations: for example, through pointer analysis, it
303can be proven that a C automatic variable is never accessed outside of
304the current function... allowing it to be promoted to a simple SSA
305value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000306
Misha Brukman9d0919f2003-11-08 01:05:38 +0000307</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000308
Chris Lattner00950542001-06-06 20:29:01 +0000309<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000310<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000311
Misha Brukman9d0919f2003-11-08 01:05:38 +0000312<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000313
Chris Lattner261efe92003-11-25 01:02:51 +0000314<p>It is important to note that this document describes 'well formed'
315LLVM assembly language. There is a difference between what the parser
316accepts and what is considered 'well formed'. For example, the
317following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000318
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000319<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000320<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000321%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000322</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000323</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000324
Chris Lattner261efe92003-11-25 01:02:51 +0000325<p>...because the definition of <tt>%x</tt> does not dominate all of
326its uses. The LLVM infrastructure provides a verification pass that may
327be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000328automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000329the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000330by the verifier pass indicate bugs in transformation passes or input to
331the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000332</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000333
Chris Lattnercc689392007-10-03 17:34:29 +0000334<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000335
Chris Lattner00950542001-06-06 20:29:01 +0000336<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000337<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000338<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000339
Misha Brukman9d0919f2003-11-08 01:05:38 +0000340<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000341
Reid Spencer2c452282007-08-07 14:34:28 +0000342 <p>LLVM identifiers come in two basic types: global and local. Global
343 identifiers (functions, global variables) begin with the @ character. Local
344 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000345 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000346
Chris Lattner00950542001-06-06 20:29:01 +0000347<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000348 <li>Named values are represented as a string of characters with their prefix.
349 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
350 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000351 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000352 with quotes. Special characters may be escaped using "\xx" where xx is the
353 ASCII code for the character in hexadecimal. In this way, any character can
354 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000355
Reid Spencer2c452282007-08-07 14:34:28 +0000356 <li>Unnamed values are represented as an unsigned numeric value with their
357 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000358
Reid Spencercc16dc32004-12-09 18:02:53 +0000359 <li>Constants, which are described in a <a href="#constants">section about
360 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000361</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000362
Reid Spencer2c452282007-08-07 14:34:28 +0000363<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000364don't need to worry about name clashes with reserved words, and the set of
365reserved words may be expanded in the future without penalty. Additionally,
366unnamed identifiers allow a compiler to quickly come up with a temporary
367variable without having to avoid symbol table conflicts.</p>
368
Chris Lattner261efe92003-11-25 01:02:51 +0000369<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000370languages. There are keywords for different opcodes
371('<tt><a href="#i_add">add</a></tt>',
372 '<tt><a href="#i_bitcast">bitcast</a></tt>',
373 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000374href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000375and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000376none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000377
378<p>Here is an example of LLVM code to multiply the integer variable
379'<tt>%X</tt>' by 8:</p>
380
Misha Brukman9d0919f2003-11-08 01:05:38 +0000381<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000382
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000383<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000384<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000385%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000386</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000387</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000388
Misha Brukman9d0919f2003-11-08 01:05:38 +0000389<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000390
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000391<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000392<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000393%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000394</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000395</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000396
Misha Brukman9d0919f2003-11-08 01:05:38 +0000397<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000398
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000399<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000400<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000401<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
402<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
403%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000404</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000405</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000406
Chris Lattner261efe92003-11-25 01:02:51 +0000407<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
408important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000409
Chris Lattner00950542001-06-06 20:29:01 +0000410<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000411
412 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
413 line.</li>
414
415 <li>Unnamed temporaries are created when the result of a computation is not
416 assigned to a named value.</li>
417
Misha Brukman9d0919f2003-11-08 01:05:38 +0000418 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000419
Misha Brukman9d0919f2003-11-08 01:05:38 +0000420</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000421
John Criswelle4c57cc2005-05-12 16:52:32 +0000422<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000423demonstrating instructions, we will follow an instruction with a comment that
424defines the type and name of value produced. Comments are shown in italic
425text.</p>
426
Misha Brukman9d0919f2003-11-08 01:05:38 +0000427</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000428
429<!-- *********************************************************************** -->
430<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
431<!-- *********************************************************************** -->
432
433<!-- ======================================================================= -->
434<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
435</div>
436
437<div class="doc_text">
438
439<p>LLVM programs are composed of "Module"s, each of which is a
440translation unit of the input programs. Each module consists of
441functions, global variables, and symbol table entries. Modules may be
442combined together with the LLVM linker, which merges function (and
443global variable) definitions, resolves forward declarations, and merges
444symbol table entries. Here is an example of the "hello world" module:</p>
445
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000446<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000447<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000448<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
449 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000450
451<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000452<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000453
454<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000455define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000456 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000457 %cast210 = <a
Dan Gohman2a08c532009-01-04 23:44:43 +0000458 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000459
460 <i>; Call puts function to write out the string to stdout...</i>
461 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000462 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000463 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000464 href="#i_ret">ret</a> i32 0<br>}<br>
465</pre>
466</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000467
468<p>This example is made up of a <a href="#globalvars">global variable</a>
469named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
470function, and a <a href="#functionstructure">function definition</a>
471for "<tt>main</tt>".</p>
472
Chris Lattnere5d947b2004-12-09 16:36:40 +0000473<p>In general, a module is made up of a list of global values,
474where both functions and global variables are global values. Global values are
475represented by a pointer to a memory location (in this case, a pointer to an
476array of char, and a pointer to a function), and have one of the following <a
477href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000478
Chris Lattnere5d947b2004-12-09 16:36:40 +0000479</div>
480
481<!-- ======================================================================= -->
482<div class="doc_subsection">
483 <a name="linkage">Linkage Types</a>
484</div>
485
486<div class="doc_text">
487
488<p>
489All Global Variables and Functions have one of the following types of linkage:
490</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000491
492<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000493
Rafael Espindolabb46f522009-01-15 20:18:42 +0000494 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
495
496 <dd>Global values with private linkage are only directly accessible by
497 objects in the current module. In particular, linking code into a module with
498 an private global value may cause the private to be renamed as necessary to
499 avoid collisions. Because the symbol is private to the module, all
500 references can be updated. This doesn't show up in any symbol table in the
501 object file.
502 </dd>
503
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000504 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000505
Duncan Sands81d05c22009-01-16 09:29:46 +0000506 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindolabb46f522009-01-15 20:18:42 +0000507 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000508 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000509 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000510
Chris Lattnerfa730212004-12-09 16:11:40 +0000511 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000512
Chris Lattner4887bd82007-01-14 06:51:48 +0000513 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
514 the same name when linkage occurs. This is typically used to implement
515 inline functions, templates, or other code which must be generated in each
516 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
517 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000518 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000519
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000520 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
521
522 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
523 linkage, except that unreferenced <tt>common</tt> globals may not be
524 discarded. This is used for globals that may be emitted in multiple
525 translation units, but that are not guaranteed to be emitted into every
526 translation unit that uses them. One example of this is tentative
527 definitions in C, such as "<tt>int X;</tt>" at global scope.
528 </dd>
529
Chris Lattnerfa730212004-12-09 16:11:40 +0000530 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000531
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000532 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
533 that some targets may choose to emit different assembly sequences for them
534 for target-dependent reasons. This is used for globals that are declared
535 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000536 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000537
Chris Lattnerfa730212004-12-09 16:11:40 +0000538 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000539
540 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
541 pointer to array type. When two global variables with appending linkage are
542 linked together, the two global arrays are appended together. This is the
543 LLVM, typesafe, equivalent of having the system linker append together
544 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000545 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000546
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000547 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000548
Chris Lattnerd3eda892008-08-05 18:29:16 +0000549 <dd>The semantics of this linkage follow the ELF object file model: the
550 symbol is weak until linked, if not linked, the symbol becomes null instead
551 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000552 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000553
Duncan Sands667d4b82009-03-07 15:45:40 +0000554 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
555 <dt><tt><b><a name="linkage_common">common_odr</a></b></tt>: </dt>
556 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000557 <dd>Some languages allow inequivalent globals to be merged, such as two
558 functions with different semantics. Other languages, such as <tt>C++</tt>,
559 ensure that only equivalent globals are ever merged (the "one definition
560 rule" - <tt>odr</tt>). Such languages can use the <tt>linkonce_odr</tt>,
Duncan Sands5f4ee1f2009-03-11 08:08:06 +0000561 <tt>common_odr</tt> and <tt>weak_odr</tt> linkage types to indicate that
562 the global will only be merged with equivalent globals. These linkage
563 types are otherwise the same as their non-<tt>odr</tt> versions.
Duncan Sands667d4b82009-03-07 15:45:40 +0000564 </dd>
565
Chris Lattnerfa730212004-12-09 16:11:40 +0000566 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000567
568 <dd>If none of the above identifiers are used, the global is externally
569 visible, meaning that it participates in linkage and can be used to resolve
570 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000571 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000572</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000573
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000574 <p>
575 The next two types of linkage are targeted for Microsoft Windows platform
576 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000577 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000578 </p>
579
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000580 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000581 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
582
583 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
584 or variable via a global pointer to a pointer that is set up by the DLL
585 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman79564122009-01-12 21:35:55 +0000586 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000587 </dd>
588
589 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
590
591 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
592 pointer to a pointer in a DLL, so that it can be referenced with the
593 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman79564122009-01-12 21:35:55 +0000594 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000595 name.
596 </dd>
597
Chris Lattnerfa730212004-12-09 16:11:40 +0000598</dl>
599
Dan Gohmanf0032762008-11-24 17:18:39 +0000600<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000601variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
602variable and was linked with this one, one of the two would be renamed,
603preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
604external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000605outside of the current module.</p>
606<p>It is illegal for a function <i>declaration</i>
Duncan Sands5f4ee1f2009-03-11 08:08:06 +0000607to have any linkage type other than "externally visible", <tt>dllimport</tt>
608or <tt>extern_weak</tt>.</p>
Duncan Sands667d4b82009-03-07 15:45:40 +0000609<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
610or <tt>weak_odr</tt> linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000611</div>
612
613<!-- ======================================================================= -->
614<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000615 <a name="callingconv">Calling Conventions</a>
616</div>
617
618<div class="doc_text">
619
620<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
621and <a href="#i_invoke">invokes</a> can all have an optional calling convention
622specified for the call. The calling convention of any pair of dynamic
623caller/callee must match, or the behavior of the program is undefined. The
624following calling conventions are supported by LLVM, and more may be added in
625the future:</p>
626
627<dl>
628 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
629
630 <dd>This calling convention (the default if no other calling convention is
631 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000632 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000633 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000634 </dd>
635
636 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
637
638 <dd>This calling convention attempts to make calls as fast as possible
639 (e.g. by passing things in registers). This calling convention allows the
640 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000641 without having to conform to an externally specified ABI (Application Binary
642 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000643 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
644 supported. This calling convention does not support varargs and requires the
645 prototype of all callees to exactly match the prototype of the function
646 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000647 </dd>
648
649 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
650
651 <dd>This calling convention attempts to make code in the caller as efficient
652 as possible under the assumption that the call is not commonly executed. As
653 such, these calls often preserve all registers so that the call does not break
654 any live ranges in the caller side. This calling convention does not support
655 varargs and requires the prototype of all callees to exactly match the
656 prototype of the function definition.
657 </dd>
658
Chris Lattnercfe6b372005-05-07 01:46:40 +0000659 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000660
661 <dd>Any calling convention may be specified by number, allowing
662 target-specific calling conventions to be used. Target specific calling
663 conventions start at 64.
664 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000665</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000666
667<p>More calling conventions can be added/defined on an as-needed basis, to
668support pascal conventions or any other well-known target-independent
669convention.</p>
670
671</div>
672
673<!-- ======================================================================= -->
674<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000675 <a name="visibility">Visibility Styles</a>
676</div>
677
678<div class="doc_text">
679
680<p>
681All Global Variables and Functions have one of the following visibility styles:
682</p>
683
684<dl>
685 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
686
Chris Lattnerd3eda892008-08-05 18:29:16 +0000687 <dd>On targets that use the ELF object file format, default visibility means
688 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000689 modules and, in shared libraries, means that the declared entity may be
690 overridden. On Darwin, default visibility means that the declaration is
691 visible to other modules. Default visibility corresponds to "external
692 linkage" in the language.
693 </dd>
694
695 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
696
697 <dd>Two declarations of an object with hidden visibility refer to the same
698 object if they are in the same shared object. Usually, hidden visibility
699 indicates that the symbol will not be placed into the dynamic symbol table,
700 so no other module (executable or shared library) can reference it
701 directly.
702 </dd>
703
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000704 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
705
706 <dd>On ELF, protected visibility indicates that the symbol will be placed in
707 the dynamic symbol table, but that references within the defining module will
708 bind to the local symbol. That is, the symbol cannot be overridden by another
709 module.
710 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000711</dl>
712
713</div>
714
715<!-- ======================================================================= -->
716<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000717 <a name="namedtypes">Named Types</a>
718</div>
719
720<div class="doc_text">
721
722<p>LLVM IR allows you to specify name aliases for certain types. This can make
723it easier to read the IR and make the IR more condensed (particularly when
724recursive types are involved). An example of a name specification is:
725</p>
726
727<div class="doc_code">
728<pre>
729%mytype = type { %mytype*, i32 }
730</pre>
731</div>
732
733<p>You may give a name to any <a href="#typesystem">type</a> except "<a
734href="t_void">void</a>". Type name aliases may be used anywhere a type is
735expected with the syntax "%mytype".</p>
736
737<p>Note that type names are aliases for the structural type that they indicate,
738and that you can therefore specify multiple names for the same type. This often
739leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
740structural typing, the name is not part of the type. When printing out LLVM IR,
741the printer will pick <em>one name</em> to render all types of a particular
742shape. This means that if you have code where two different source types end up
743having the same LLVM type, that the dumper will sometimes print the "wrong" or
744unexpected type. This is an important design point and isn't going to
745change.</p>
746
747</div>
748
Chris Lattnere7886e42009-01-11 20:53:49 +0000749<!-- ======================================================================= -->
750<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000751 <a name="globalvars">Global Variables</a>
752</div>
753
754<div class="doc_text">
755
Chris Lattner3689a342005-02-12 19:30:21 +0000756<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000757instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000758an explicit section to be placed in, and may have an optional explicit alignment
759specified. A variable may be defined as "thread_local", which means that it
760will not be shared by threads (each thread will have a separated copy of the
761variable). A variable may be defined as a global "constant," which indicates
762that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000763optimization, allowing the global data to be placed in the read-only section of
764an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000765cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000766
767<p>
768LLVM explicitly allows <em>declarations</em> of global variables to be marked
769constant, even if the final definition of the global is not. This capability
770can be used to enable slightly better optimization of the program, but requires
771the language definition to guarantee that optimizations based on the
772'constantness' are valid for the translation units that do not include the
773definition.
774</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000775
776<p>As SSA values, global variables define pointer values that are in
777scope (i.e. they dominate) all basic blocks in the program. Global
778variables always define a pointer to their "content" type because they
779describe a region of memory, and all memory objects in LLVM are
780accessed through pointers.</p>
781
Christopher Lamb284d9922007-12-11 09:31:00 +0000782<p>A global variable may be declared to reside in a target-specifc numbered
783address space. For targets that support them, address spaces may affect how
784optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000785the variable. The default address space is zero. The address space qualifier
786must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000787
Chris Lattner88f6c462005-11-12 00:45:07 +0000788<p>LLVM allows an explicit section to be specified for globals. If the target
789supports it, it will emit globals to the section specified.</p>
790
Chris Lattner2cbdc452005-11-06 08:02:57 +0000791<p>An explicit alignment may be specified for a global. If not present, or if
792the alignment is set to zero, the alignment of the global is set by the target
793to whatever it feels convenient. If an explicit alignment is specified, the
794global is forced to have at least that much alignment. All alignments must be
795a power of 2.</p>
796
Christopher Lamb284d9922007-12-11 09:31:00 +0000797<p>For example, the following defines a global in a numbered address space with
798an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000799
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000800<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000801<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000802@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000803</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000804</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000805
Chris Lattnerfa730212004-12-09 16:11:40 +0000806</div>
807
808
809<!-- ======================================================================= -->
810<div class="doc_subsection">
811 <a name="functionstructure">Functions</a>
812</div>
813
814<div class="doc_text">
815
Reid Spencerca86e162006-12-31 07:07:53 +0000816<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
817an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000818<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000819<a href="#callingconv">calling convention</a>, a return type, an optional
820<a href="#paramattrs">parameter attribute</a> for the return type, a function
821name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000822<a href="#paramattrs">parameter attributes</a>), optional
823<a href="#fnattrs">function attributes</a>, an optional section,
824an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000825an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000826
827LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
828optional <a href="#linkage">linkage type</a>, an optional
829<a href="#visibility">visibility style</a>, an optional
830<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000831<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000832name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000833<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000834
Chris Lattnerd3eda892008-08-05 18:29:16 +0000835<p>A function definition contains a list of basic blocks, forming the CFG
836(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000837the function. Each basic block may optionally start with a label (giving the
838basic block a symbol table entry), contains a list of instructions, and ends
839with a <a href="#terminators">terminator</a> instruction (such as a branch or
840function return).</p>
841
Chris Lattner4a3c9012007-06-08 16:52:14 +0000842<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000843executed on entrance to the function, and it is not allowed to have predecessor
844basic blocks (i.e. there can not be any branches to the entry block of a
845function). Because the block can have no predecessors, it also cannot have any
846<a href="#i_phi">PHI nodes</a>.</p>
847
Chris Lattner88f6c462005-11-12 00:45:07 +0000848<p>LLVM allows an explicit section to be specified for functions. If the target
849supports it, it will emit functions to the section specified.</p>
850
Chris Lattner2cbdc452005-11-06 08:02:57 +0000851<p>An explicit alignment may be specified for a function. If not present, or if
852the alignment is set to zero, the alignment of the function is set by the target
853to whatever it feels convenient. If an explicit alignment is specified, the
854function is forced to have at least that much alignment. All alignments must be
855a power of 2.</p>
856
Devang Patel307e8ab2008-10-07 17:48:33 +0000857 <h5>Syntax:</h5>
858
859<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000860<tt>
861define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
862 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
863 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
864 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
865 [<a href="#gc">gc</a>] { ... }
866</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000867</div>
868
Chris Lattnerfa730212004-12-09 16:11:40 +0000869</div>
870
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000871
872<!-- ======================================================================= -->
873<div class="doc_subsection">
874 <a name="aliasstructure">Aliases</a>
875</div>
876<div class="doc_text">
877 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000878 function, global variable, another alias or bitcast of global value). Aliases
879 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000880 optional <a href="#visibility">visibility style</a>.</p>
881
882 <h5>Syntax:</h5>
883
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000884<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000885<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000886@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000887</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000888</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000889
890</div>
891
892
893
Chris Lattner4e9aba72006-01-23 23:23:47 +0000894<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000895<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
896<div class="doc_text">
897 <p>The return type and each parameter of a function type may have a set of
898 <i>parameter attributes</i> associated with them. Parameter attributes are
899 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000900 a function. Parameter attributes are considered to be part of the function,
901 not of the function type, so functions with different parameter attributes
902 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000903
Reid Spencer950e9f82007-01-15 18:27:39 +0000904 <p>Parameter attributes are simple keywords that follow the type specified. If
905 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000906 example:</p>
907
908<div class="doc_code">
909<pre>
Nick Lewyckyb6a7d252009-02-15 23:06:14 +0000910declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000911declare i32 @atoi(i8 zeroext)
912declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000913</pre>
914</div>
915
Duncan Sandsdc024672007-11-27 13:23:08 +0000916 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
917 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000918
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000919 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000920 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000921 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000922 <dd>This indicates to the code generator that the parameter or return value
923 should be zero-extended to a 32-bit value by the caller (for a parameter)
924 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000925
Reid Spencer9445e9a2007-07-19 23:13:04 +0000926 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000927 <dd>This indicates to the code generator that the parameter or return value
928 should be sign-extended to a 32-bit value by the caller (for a parameter)
929 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000930
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000931 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000932 <dd>This indicates that this parameter or return value should be treated
933 in a special target-dependent fashion during while emitting code for a
934 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000935 to memory, though some targets use it to distinguish between two different
936 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000937
Duncan Sandsedb05df2008-10-06 08:14:18 +0000938 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000939 <dd>This indicates that the pointer parameter should really be passed by
940 value to the function. The attribute implies that a hidden copy of the
941 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000942 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000943 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000944 value, but is also valid on pointers to scalars. The copy is considered to
945 belong to the caller not the callee (for example,
946 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000947 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerce459b12009-02-05 05:42:28 +0000948 values. The byval attribute also supports specifying an alignment with the
949 align attribute. This has a target-specific effect on the code generator
950 that usually indicates a desired alignment for the synthesized stack
951 slot.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000952
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000953 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000954 <dd>This indicates that the pointer parameter specifies the address of a
955 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000956 This pointer must be guaranteed by the caller to be valid: loads and stores
957 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000958 be applied to the first parameter. This is not a valid attribute for
959 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000960
Zhou Shengfebca342007-06-05 05:28:26 +0000961 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000962 <dd>This indicates that the pointer does not alias any global or any other
963 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000964 case. On a function return value, <tt>noalias</tt> additionally indicates
965 that the pointer does not alias any other pointers visible to the
Nick Lewyckyf23d0d32008-12-19 06:39:12 +0000966 caller. For further details, please see the discussion of the NoAlias
967 response in
968 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
969 analysis</a>.</dd>
970
971 <dt><tt>nocapture</tt></dt>
972 <dd>This indicates that the callee does not make any copies of the pointer
973 that outlive the callee itself. This is not a valid attribute for return
974 values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000975
Duncan Sands50f19f52007-07-27 19:57:41 +0000976 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000977 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000978 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
979 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000980 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000981
Reid Spencerca86e162006-12-31 07:07:53 +0000982</div>
983
984<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000985<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000986 <a name="gc">Garbage Collector Names</a>
987</div>
988
989<div class="doc_text">
990<p>Each function may specify a garbage collector name, which is simply a
991string.</p>
992
993<div class="doc_code"><pre
994>define void @f() gc "name" { ...</pre></div>
995
996<p>The compiler declares the supported values of <i>name</i>. Specifying a
997collector which will cause the compiler to alter its output in order to support
998the named garbage collection algorithm.</p>
999</div>
1000
1001<!-- ======================================================================= -->
1002<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001003 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +00001004</div>
1005
1006<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001007
1008<p>Function attributes are set to communicate additional information about
1009 a function. Function attributes are considered to be part of the function,
1010 not of the function type, so functions with different parameter attributes
1011 can have the same function type.</p>
1012
1013 <p>Function attributes are simple keywords that follow the type specified. If
1014 multiple attributes are needed, they are space separated. For
1015 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001016
1017<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001018<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001019define void @f() noinline { ... }
1020define void @f() alwaysinline { ... }
1021define void @f() alwaysinline optsize { ... }
1022define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001023</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001024</div>
1025
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001026<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001027<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001028<dd>This attribute indicates that the inliner should attempt to inline this
1029function into callers whenever possible, ignoring any active inlining size
1030threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001031
Devang Patel2c9c3e72008-09-26 23:51:19 +00001032<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001033<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +00001034in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +00001035<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001036
Devang Patel2c9c3e72008-09-26 23:51:19 +00001037<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +00001038<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +00001039make choices that keep the code size of this function low, and otherwise do
1040optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001041
Devang Patel2c9c3e72008-09-26 23:51:19 +00001042<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001043<dd>This function attribute indicates that the function never returns normally.
1044This produces undefined behavior at runtime if the function ever does
1045dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001046
1047<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001048<dd>This function attribute indicates that the function never returns with an
1049unwind or exceptional control flow. If the function does unwind, its runtime
1050behavior is undefined.</dd>
1051
1052<dt><tt>readnone</tt></dt>
Duncan Sandsedb05df2008-10-06 08:14:18 +00001053<dd>This attribute indicates that the function computes its result (or the
1054exception it throws) based strictly on its arguments, without dereferencing any
1055pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1056registers, etc) visible to caller functions. It does not write through any
1057pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
1058never changes any state visible to callers.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001059
Duncan Sandsedb05df2008-10-06 08:14:18 +00001060<dt><tt><a name="readonly">readonly</a></tt></dt>
1061<dd>This attribute indicates that the function does not write through any
1062pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1063or otherwise modify any state (e.g. memory, control registers, etc) visible to
1064caller functions. It may dereference pointer arguments and read state that may
1065be set in the caller. A readonly function always returns the same value (or
1066throws the same exception) when called with the same set of arguments and global
1067state.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001068
1069<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001070<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +00001071protector. It is in the form of a "canary"&mdash;a random value placed on the
1072stack before the local variables that's checked upon return from the function to
1073see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001074needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001075
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001076<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
1077that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
1078have an <tt>ssp</tt> attribute.</p></dd>
1079
1080<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001081<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001082stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001083function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001084
1085<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
1086function that doesn't have an <tt>sspreq</tt> attribute or which has
1087an <tt>ssp</tt> attribute, then the resulting function will have
1088an <tt>sspreq</tt> attribute.</p></dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001089</dl>
1090
Devang Patelf8b94812008-09-04 23:05:13 +00001091</div>
1092
1093<!-- ======================================================================= -->
1094<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001095 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001096</div>
1097
1098<div class="doc_text">
1099<p>
1100Modules may contain "module-level inline asm" blocks, which corresponds to the
1101GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1102LLVM and treated as a single unit, but may be separated in the .ll file if
1103desired. The syntax is very simple:
1104</p>
1105
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001106<div class="doc_code">
1107<pre>
1108module asm "inline asm code goes here"
1109module asm "more can go here"
1110</pre>
1111</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001112
1113<p>The strings can contain any character by escaping non-printable characters.
1114 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1115 for the number.
1116</p>
1117
1118<p>
1119 The inline asm code is simply printed to the machine code .s file when
1120 assembly code is generated.
1121</p>
1122</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001123
Reid Spencerde151942007-02-19 23:54:10 +00001124<!-- ======================================================================= -->
1125<div class="doc_subsection">
1126 <a name="datalayout">Data Layout</a>
1127</div>
1128
1129<div class="doc_text">
1130<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001131data is to be laid out in memory. The syntax for the data layout is simply:</p>
1132<pre> target datalayout = "<i>layout specification</i>"</pre>
1133<p>The <i>layout specification</i> consists of a list of specifications
1134separated by the minus sign character ('-'). Each specification starts with a
1135letter and may include other information after the letter to define some
1136aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001137<dl>
1138 <dt><tt>E</tt></dt>
1139 <dd>Specifies that the target lays out data in big-endian form. That is, the
1140 bits with the most significance have the lowest address location.</dd>
1141 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001142 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001143 the bits with the least significance have the lowest address location.</dd>
1144 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1145 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1146 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1147 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1148 too.</dd>
1149 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1150 <dd>This specifies the alignment for an integer type of a given bit
1151 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1152 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1153 <dd>This specifies the alignment for a vector type of a given bit
1154 <i>size</i>.</dd>
1155 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1156 <dd>This specifies the alignment for a floating point type of a given bit
1157 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1158 (double).</dd>
1159 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1160 <dd>This specifies the alignment for an aggregate type of a given bit
1161 <i>size</i>.</dd>
1162</dl>
1163<p>When constructing the data layout for a given target, LLVM starts with a
1164default set of specifications which are then (possibly) overriden by the
1165specifications in the <tt>datalayout</tt> keyword. The default specifications
1166are given in this list:</p>
1167<ul>
1168 <li><tt>E</tt> - big endian</li>
1169 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1170 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1171 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1172 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1173 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001174 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001175 alignment of 64-bits</li>
1176 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1177 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1178 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1179 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1180 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1181</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001182<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001183following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001184<ol>
1185 <li>If the type sought is an exact match for one of the specifications, that
1186 specification is used.</li>
1187 <li>If no match is found, and the type sought is an integer type, then the
1188 smallest integer type that is larger than the bitwidth of the sought type is
1189 used. If none of the specifications are larger than the bitwidth then the the
1190 largest integer type is used. For example, given the default specifications
1191 above, the i7 type will use the alignment of i8 (next largest) while both
1192 i65 and i256 will use the alignment of i64 (largest specified).</li>
1193 <li>If no match is found, and the type sought is a vector type, then the
1194 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001195 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1196 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001197</ol>
1198</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001199
Chris Lattner00950542001-06-06 20:29:01 +00001200<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001201<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1202<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001203
Misha Brukman9d0919f2003-11-08 01:05:38 +00001204<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001205
Misha Brukman9d0919f2003-11-08 01:05:38 +00001206<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001207intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001208optimizations to be performed on the intermediate representation directly,
1209without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001210extra analyses on the side before the transformation. A strong type
1211system makes it easier to read the generated code and enables novel
1212analyses and transformations that are not feasible to perform on normal
1213three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001214
1215</div>
1216
Chris Lattner00950542001-06-06 20:29:01 +00001217<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001218<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001219Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001220<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001221<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001222classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001223
1224<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001225 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001226 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001227 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001228 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001229 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001230 </tr>
1231 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001232 <td><a href="#t_floating">floating point</a></td>
1233 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001234 </tr>
1235 <tr>
1236 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001237 <td><a href="#t_integer">integer</a>,
1238 <a href="#t_floating">floating point</a>,
1239 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001240 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001241 <a href="#t_struct">structure</a>,
1242 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001243 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001244 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001245 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001246 <tr>
1247 <td><a href="#t_primitive">primitive</a></td>
1248 <td><a href="#t_label">label</a>,
1249 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001250 <a href="#t_floating">floating point</a>.</td>
1251 </tr>
1252 <tr>
1253 <td><a href="#t_derived">derived</a></td>
1254 <td><a href="#t_integer">integer</a>,
1255 <a href="#t_array">array</a>,
1256 <a href="#t_function">function</a>,
1257 <a href="#t_pointer">pointer</a>,
1258 <a href="#t_struct">structure</a>,
1259 <a href="#t_pstruct">packed structure</a>,
1260 <a href="#t_vector">vector</a>,
1261 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001262 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001263 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001264 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001265</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001266
Chris Lattner261efe92003-11-25 01:02:51 +00001267<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1268most important. Values of these types are the only ones which can be
1269produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001270instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001271</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001272
Chris Lattner00950542001-06-06 20:29:01 +00001273<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001274<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001275
Chris Lattner4f69f462008-01-04 04:32:38 +00001276<div class="doc_text">
1277<p>The primitive types are the fundamental building blocks of the LLVM
1278system.</p>
1279
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001280</div>
1281
Chris Lattner4f69f462008-01-04 04:32:38 +00001282<!-- _______________________________________________________________________ -->
1283<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1284
1285<div class="doc_text">
1286 <table>
1287 <tbody>
1288 <tr><th>Type</th><th>Description</th></tr>
1289 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1290 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1291 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1292 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1293 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1294 </tbody>
1295 </table>
1296</div>
1297
1298<!-- _______________________________________________________________________ -->
1299<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1300
1301<div class="doc_text">
1302<h5>Overview:</h5>
1303<p>The void type does not represent any value and has no size.</p>
1304
1305<h5>Syntax:</h5>
1306
1307<pre>
1308 void
1309</pre>
1310</div>
1311
1312<!-- _______________________________________________________________________ -->
1313<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1314
1315<div class="doc_text">
1316<h5>Overview:</h5>
1317<p>The label type represents code labels.</p>
1318
1319<h5>Syntax:</h5>
1320
1321<pre>
1322 label
1323</pre>
1324</div>
1325
1326
1327<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001328<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001329
Misha Brukman9d0919f2003-11-08 01:05:38 +00001330<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001331
Chris Lattner261efe92003-11-25 01:02:51 +00001332<p>The real power in LLVM comes from the derived types in the system.
1333This is what allows a programmer to represent arrays, functions,
1334pointers, and other useful types. Note that these derived types may be
1335recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001336
Misha Brukman9d0919f2003-11-08 01:05:38 +00001337</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001338
Chris Lattner00950542001-06-06 20:29:01 +00001339<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001340<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1341
1342<div class="doc_text">
1343
1344<h5>Overview:</h5>
1345<p>The integer type is a very simple derived type that simply specifies an
1346arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13472^23-1 (about 8 million) can be specified.</p>
1348
1349<h5>Syntax:</h5>
1350
1351<pre>
1352 iN
1353</pre>
1354
1355<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1356value.</p>
1357
1358<h5>Examples:</h5>
1359<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001360 <tbody>
1361 <tr>
1362 <td><tt>i1</tt></td>
1363 <td>a single-bit integer.</td>
1364 </tr><tr>
1365 <td><tt>i32</tt></td>
1366 <td>a 32-bit integer.</td>
1367 </tr><tr>
1368 <td><tt>i1942652</tt></td>
1369 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001370 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001371 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001372</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001373
1374<p>Note that the code generator does not yet support large integer types
1375to be used as function return types. The specific limit on how large a
1376return type the code generator can currently handle is target-dependent;
1377currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1378targets.</p>
1379
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001380</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001381
1382<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001383<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001384
Misha Brukman9d0919f2003-11-08 01:05:38 +00001385<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001386
Chris Lattner00950542001-06-06 20:29:01 +00001387<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001388
Misha Brukman9d0919f2003-11-08 01:05:38 +00001389<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001390sequentially in memory. The array type requires a size (number of
1391elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001392
Chris Lattner7faa8832002-04-14 06:13:44 +00001393<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001394
1395<pre>
1396 [&lt;# elements&gt; x &lt;elementtype&gt;]
1397</pre>
1398
John Criswelle4c57cc2005-05-12 16:52:32 +00001399<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001400be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001401
Chris Lattner7faa8832002-04-14 06:13:44 +00001402<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001403<table class="layout">
1404 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001405 <td class="left"><tt>[40 x i32]</tt></td>
1406 <td class="left">Array of 40 32-bit integer values.</td>
1407 </tr>
1408 <tr class="layout">
1409 <td class="left"><tt>[41 x i32]</tt></td>
1410 <td class="left">Array of 41 32-bit integer values.</td>
1411 </tr>
1412 <tr class="layout">
1413 <td class="left"><tt>[4 x i8]</tt></td>
1414 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001415 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001416</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001417<p>Here are some examples of multidimensional arrays:</p>
1418<table class="layout">
1419 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001420 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1421 <td class="left">3x4 array of 32-bit integer values.</td>
1422 </tr>
1423 <tr class="layout">
1424 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1425 <td class="left">12x10 array of single precision floating point values.</td>
1426 </tr>
1427 <tr class="layout">
1428 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1429 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001430 </tr>
1431</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001432
John Criswell0ec250c2005-10-24 16:17:18 +00001433<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1434length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001435LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1436As a special case, however, zero length arrays are recognized to be variable
1437length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001438type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001439
Dan Gohmand8791e52009-01-24 15:58:40 +00001440<p>Note that the code generator does not yet support large aggregate types
1441to be used as function return types. The specific limit on how large an
1442aggregate return type the code generator can currently handle is
1443target-dependent, and also dependent on the aggregate element types.</p>
1444
Misha Brukman9d0919f2003-11-08 01:05:38 +00001445</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001446
Chris Lattner00950542001-06-06 20:29:01 +00001447<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001448<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001449<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001450
Chris Lattner00950542001-06-06 20:29:01 +00001451<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001452
Chris Lattner261efe92003-11-25 01:02:51 +00001453<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001454consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001455return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001456If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001457class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001458
Chris Lattner00950542001-06-06 20:29:01 +00001459<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001460
1461<pre>
1462 &lt;returntype list&gt; (&lt;parameter list&gt;)
1463</pre>
1464
John Criswell0ec250c2005-10-24 16:17:18 +00001465<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001466specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001467which indicates that the function takes a variable number of arguments.
1468Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001469 href="#int_varargs">variable argument handling intrinsic</a> functions.
1470'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1471<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001472
Chris Lattner00950542001-06-06 20:29:01 +00001473<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001474<table class="layout">
1475 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001476 <td class="left"><tt>i32 (i32)</tt></td>
1477 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001478 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001479 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001480 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001481 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001482 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1483 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001484 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001485 <tt>float</tt>.
1486 </td>
1487 </tr><tr class="layout">
1488 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1489 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001490 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001491 which returns an integer. This is the signature for <tt>printf</tt> in
1492 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001493 </td>
Devang Patela582f402008-03-24 05:35:41 +00001494 </tr><tr class="layout">
1495 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001496 <td class="left">A function taking an <tt>i32</tt>, returning two
1497 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001498 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001499 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001500</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001501
Misha Brukman9d0919f2003-11-08 01:05:38 +00001502</div>
Chris Lattner00950542001-06-06 20:29:01 +00001503<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001504<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001505<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001506<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001507<p>The structure type is used to represent a collection of data members
1508together in memory. The packing of the field types is defined to match
1509the ABI of the underlying processor. The elements of a structure may
1510be any type that has a size.</p>
1511<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1512and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1513field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1514instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001515<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001516<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001517<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001518<table class="layout">
1519 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001520 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1521 <td class="left">A triple of three <tt>i32</tt> values</td>
1522 </tr><tr class="layout">
1523 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1524 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1525 second element is a <a href="#t_pointer">pointer</a> to a
1526 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1527 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001528 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001529</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001530
1531<p>Note that the code generator does not yet support large aggregate types
1532to be used as function return types. The specific limit on how large an
1533aggregate return type the code generator can currently handle is
1534target-dependent, and also dependent on the aggregate element types.</p>
1535
Misha Brukman9d0919f2003-11-08 01:05:38 +00001536</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001537
Chris Lattner00950542001-06-06 20:29:01 +00001538<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001539<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1540</div>
1541<div class="doc_text">
1542<h5>Overview:</h5>
1543<p>The packed structure type is used to represent a collection of data members
1544together in memory. There is no padding between fields. Further, the alignment
1545of a packed structure is 1 byte. The elements of a packed structure may
1546be any type that has a size.</p>
1547<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1548and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1549field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1550instruction.</p>
1551<h5>Syntax:</h5>
1552<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1553<h5>Examples:</h5>
1554<table class="layout">
1555 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001556 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1557 <td class="left">A triple of three <tt>i32</tt> values</td>
1558 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001559 <td class="left">
1560<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001561 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1562 second element is a <a href="#t_pointer">pointer</a> to a
1563 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1564 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001565 </tr>
1566</table>
1567</div>
1568
1569<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001570<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001571<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001572<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001573<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001574reference to another object, which must live in memory. Pointer types may have
1575an optional address space attribute defining the target-specific numbered
1576address space where the pointed-to object resides. The default address space is
1577zero.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001578
1579<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
Chris Lattnere220e8c2009-02-08 22:21:28 +00001580it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001581
Chris Lattner7faa8832002-04-14 06:13:44 +00001582<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001583<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001584<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001585<table class="layout">
1586 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001587 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001588 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1589 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1590 </tr>
1591 <tr class="layout">
1592 <td class="left"><tt>i32 (i32 *) *</tt></td>
1593 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001594 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001595 <tt>i32</tt>.</td>
1596 </tr>
1597 <tr class="layout">
1598 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1599 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1600 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001601 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001602</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001603</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001604
Chris Lattnera58561b2004-08-12 19:12:28 +00001605<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001606<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001607<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001608
Chris Lattnera58561b2004-08-12 19:12:28 +00001609<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001610
Reid Spencer485bad12007-02-15 03:07:05 +00001611<p>A vector type is a simple derived type that represents a vector
1612of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001613are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001614A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001615elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001616of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001617considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001618
Chris Lattnera58561b2004-08-12 19:12:28 +00001619<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001620
1621<pre>
1622 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1623</pre>
1624
John Criswellc1f786c2005-05-13 22:25:59 +00001625<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001626be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001627
Chris Lattnera58561b2004-08-12 19:12:28 +00001628<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001629
Reid Spencerd3f876c2004-11-01 08:19:36 +00001630<table class="layout">
1631 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001632 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1633 <td class="left">Vector of 4 32-bit integer values.</td>
1634 </tr>
1635 <tr class="layout">
1636 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1637 <td class="left">Vector of 8 32-bit floating-point values.</td>
1638 </tr>
1639 <tr class="layout">
1640 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1641 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001642 </tr>
1643</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001644
1645<p>Note that the code generator does not yet support large vector types
1646to be used as function return types. The specific limit on how large a
1647vector return type codegen can currently handle is target-dependent;
1648currently it's often a few times longer than a hardware vector register.</p>
1649
Misha Brukman9d0919f2003-11-08 01:05:38 +00001650</div>
1651
Chris Lattner69c11bb2005-04-25 17:34:15 +00001652<!-- _______________________________________________________________________ -->
1653<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1654<div class="doc_text">
1655
1656<h5>Overview:</h5>
1657
1658<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001659corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001660In LLVM, opaque types can eventually be resolved to any type (not just a
1661structure type).</p>
1662
1663<h5>Syntax:</h5>
1664
1665<pre>
1666 opaque
1667</pre>
1668
1669<h5>Examples:</h5>
1670
1671<table class="layout">
1672 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001673 <td class="left"><tt>opaque</tt></td>
1674 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001675 </tr>
1676</table>
1677</div>
1678
Chris Lattner242d61d2009-02-02 07:32:36 +00001679<!-- ======================================================================= -->
1680<div class="doc_subsection">
1681 <a name="t_uprefs">Type Up-references</a>
1682</div>
1683
1684<div class="doc_text">
1685<h5>Overview:</h5>
1686<p>
1687An "up reference" allows you to refer to a lexically enclosing type without
1688requiring it to have a name. For instance, a structure declaration may contain a
1689pointer to any of the types it is lexically a member of. Example of up
1690references (with their equivalent as named type declarations) include:</p>
1691
1692<pre>
Chris Lattner3060f5b2009-02-09 10:00:56 +00001693 { \2 * } %x = type { %x* }
Chris Lattner242d61d2009-02-02 07:32:36 +00001694 { \2 }* %y = type { %y }*
1695 \1* %z = type %z*
1696</pre>
1697
1698<p>
1699An up reference is needed by the asmprinter for printing out cyclic types when
1700there is no declared name for a type in the cycle. Because the asmprinter does
1701not want to print out an infinite type string, it needs a syntax to handle
1702recursive types that have no names (all names are optional in llvm IR).
1703</p>
1704
1705<h5>Syntax:</h5>
1706<pre>
1707 \&lt;level&gt;
1708</pre>
1709
1710<p>
1711The level is the count of the lexical type that is being referred to.
1712</p>
1713
1714<h5>Examples:</h5>
1715
1716<table class="layout">
1717 <tr class="layout">
1718 <td class="left"><tt>\1*</tt></td>
1719 <td class="left">Self-referential pointer.</td>
1720 </tr>
1721 <tr class="layout">
1722 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1723 <td class="left">Recursive structure where the upref refers to the out-most
1724 structure.</td>
1725 </tr>
1726</table>
1727</div>
1728
Chris Lattner69c11bb2005-04-25 17:34:15 +00001729
Chris Lattnerc3f59762004-12-09 17:30:23 +00001730<!-- *********************************************************************** -->
1731<div class="doc_section"> <a name="constants">Constants</a> </div>
1732<!-- *********************************************************************** -->
1733
1734<div class="doc_text">
1735
1736<p>LLVM has several different basic types of constants. This section describes
1737them all and their syntax.</p>
1738
1739</div>
1740
1741<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001742<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001743
1744<div class="doc_text">
1745
1746<dl>
1747 <dt><b>Boolean constants</b></dt>
1748
1749 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001750 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001751 </dd>
1752
1753 <dt><b>Integer constants</b></dt>
1754
Reid Spencercc16dc32004-12-09 18:02:53 +00001755 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001756 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001757 integer types.
1758 </dd>
1759
1760 <dt><b>Floating point constants</b></dt>
1761
1762 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1763 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001764 notation (see below). The assembler requires the exact decimal value of
1765 a floating-point constant. For example, the assembler accepts 1.25 but
1766 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1767 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001768
1769 <dt><b>Null pointer constants</b></dt>
1770
John Criswell9e2485c2004-12-10 15:51:16 +00001771 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001772 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1773
1774</dl>
1775
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001776<p>The one non-intuitive notation for constants is the hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001777of floating point constants. For example, the form '<tt>double
17780x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
17794.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001780(and the only time that they are generated by the disassembler) is when a
1781floating point constant must be emitted but it cannot be represented as a
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001782decimal floating point number in a reasonable number of digits. For example,
1783NaN's, infinities, and other
Reid Spencercc16dc32004-12-09 18:02:53 +00001784special values are represented in their IEEE hexadecimal format so that
1785assembly and disassembly do not cause any bits to change in the constants.</p>
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001786<p>When using the hexadecimal form, constants of types float and double are
1787represented using the 16-digit form shown above (which matches the IEEE754
1788representation for double); float values must, however, be exactly representable
1789as IEE754 single precision.
1790Hexadecimal format is always used for long
1791double, and there are three forms of long double. The 80-bit
1792format used by x86 is represented as <tt>0xK</tt>
1793followed by 20 hexadecimal digits.
1794The 128-bit format used by PowerPC (two adjacent doubles) is represented
1795by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
1796format is represented
1797by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
1798target uses this format. Long doubles will only work if they match
1799the long double format on your target. All hexadecimal formats are big-endian
1800(sign bit at the left).</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001801</div>
1802
1803<!-- ======================================================================= -->
Chris Lattner70882792009-02-28 18:32:25 +00001804<div class="doc_subsection">
1805<a name="aggregateconstants"> <!-- old anchor -->
1806<a name="complexconstants">Complex Constants</a></a>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001807</div>
1808
1809<div class="doc_text">
Chris Lattner70882792009-02-28 18:32:25 +00001810<p>Complex constants are a (potentially recursive) combination of simple
1811constants and smaller complex constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001812
1813<dl>
1814 <dt><b>Structure constants</b></dt>
1815
1816 <dd>Structure constants are represented with notation similar to structure
1817 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001818 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1819 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001820 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001821 types of elements must match those specified by the type.
1822 </dd>
1823
1824 <dt><b>Array constants</b></dt>
1825
1826 <dd>Array constants are represented with notation similar to array type
1827 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001828 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001829 constants must have <a href="#t_array">array type</a>, and the number and
1830 types of elements must match those specified by the type.
1831 </dd>
1832
Reid Spencer485bad12007-02-15 03:07:05 +00001833 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001834
Reid Spencer485bad12007-02-15 03:07:05 +00001835 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001836 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001837 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001838 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001839 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001840 match those specified by the type.
1841 </dd>
1842
1843 <dt><b>Zero initialization</b></dt>
1844
1845 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1846 value to zero of <em>any</em> type, including scalar and aggregate types.
1847 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001848 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001849 initializers.
1850 </dd>
1851</dl>
1852
1853</div>
1854
1855<!-- ======================================================================= -->
1856<div class="doc_subsection">
1857 <a name="globalconstants">Global Variable and Function Addresses</a>
1858</div>
1859
1860<div class="doc_text">
1861
1862<p>The addresses of <a href="#globalvars">global variables</a> and <a
1863href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001864constants. These constants are explicitly referenced when the <a
1865href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001866href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1867file:</p>
1868
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001869<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001870<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001871@X = global i32 17
1872@Y = global i32 42
1873@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001874</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001875</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001876
1877</div>
1878
1879<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001880<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001881<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001882 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001883 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001884 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001885
Reid Spencer2dc45b82004-12-09 18:13:12 +00001886 <p>Undefined values indicate to the compiler that the program is well defined
1887 no matter what value is used, giving the compiler more freedom to optimize.
1888 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001889</div>
1890
1891<!-- ======================================================================= -->
1892<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1893</div>
1894
1895<div class="doc_text">
1896
1897<p>Constant expressions are used to allow expressions involving other constants
1898to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001899href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001900that does not have side effects (e.g. load and call are not supported). The
1901following is the syntax for constant expressions:</p>
1902
1903<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001904 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1905 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001906 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001907
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001908 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1909 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001910 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001911
1912 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1913 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001914 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001915
1916 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1917 <dd>Truncate a floating point constant to another floating point type. The
1918 size of CST must be larger than the size of TYPE. Both types must be
1919 floating point.</dd>
1920
1921 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1922 <dd>Floating point extend a constant to another type. The size of CST must be
1923 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1924
Reid Spencer1539a1c2007-07-31 14:40:14 +00001925 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001926 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001927 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1928 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1929 of the same number of elements. If the value won't fit in the integer type,
1930 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001931
Reid Spencerd4448792006-11-09 23:03:26 +00001932 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001933 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001934 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1935 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1936 of the same number of elements. If the value won't fit in the integer type,
1937 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001938
Reid Spencerd4448792006-11-09 23:03:26 +00001939 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001940 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001941 constant. TYPE must be a scalar or vector floating point type. CST must be of
1942 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1943 of the same number of elements. If the value won't fit in the floating point
1944 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001945
Reid Spencerd4448792006-11-09 23:03:26 +00001946 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001947 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001948 constant. TYPE must be a scalar or vector floating point type. CST must be of
1949 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1950 of the same number of elements. If the value won't fit in the floating point
1951 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001952
Reid Spencer5c0ef472006-11-11 23:08:07 +00001953 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1954 <dd>Convert a pointer typed constant to the corresponding integer constant
1955 TYPE must be an integer type. CST must be of pointer type. The CST value is
1956 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1957
1958 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1959 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1960 pointer type. CST must be of integer type. The CST value is zero extended,
1961 truncated, or unchanged to make it fit in a pointer size. This one is
1962 <i>really</i> dangerous!</dd>
1963
1964 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner03bbad62009-02-28 18:27:03 +00001965 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
1966 are the same as those for the <a href="#i_bitcast">bitcast
1967 instruction</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001968
1969 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1970
1971 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1972 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1973 instruction, the index list may have zero or more indexes, which are required
1974 to make sense for the type of "CSTPTR".</dd>
1975
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001976 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1977
1978 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001979 constants.</dd>
1980
1981 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1982 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1983
1984 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1985 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001986
Nate Begemanac80ade2008-05-12 19:01:56 +00001987 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1988 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1989
1990 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1991 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1992
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001993 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1994
1995 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00001996 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001997
Robert Bocchino05ccd702006-01-15 20:48:27 +00001998 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1999
2000 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00002001 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00002002
Chris Lattnerc1989542006-04-08 00:13:41 +00002003
2004 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
2005
2006 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00002007 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002008
Chris Lattnerc3f59762004-12-09 17:30:23 +00002009 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
2010
Reid Spencer2dc45b82004-12-09 18:13:12 +00002011 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2012 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00002013 binary</a> operations. The constraints on operands are the same as those for
2014 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00002015 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002016</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002017</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00002018
Chris Lattner00950542001-06-06 20:29:01 +00002019<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00002020<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2021<!-- *********************************************************************** -->
2022
2023<!-- ======================================================================= -->
2024<div class="doc_subsection">
2025<a name="inlineasm">Inline Assembler Expressions</a>
2026</div>
2027
2028<div class="doc_text">
2029
2030<p>
2031LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2032Module-Level Inline Assembly</a>) through the use of a special value. This
2033value represents the inline assembler as a string (containing the instructions
2034to emit), a list of operand constraints (stored as a string), and a flag that
2035indicates whether or not the inline asm expression has side effects. An example
2036inline assembler expression is:
2037</p>
2038
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002039<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002040<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002041i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002042</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002043</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002044
2045<p>
2046Inline assembler expressions may <b>only</b> be used as the callee operand of
2047a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2048</p>
2049
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002050<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002051<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002052%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002053</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002054</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002055
2056<p>
2057Inline asms with side effects not visible in the constraint list must be marked
2058as having side effects. This is done through the use of the
2059'<tt>sideeffect</tt>' keyword, like so:
2060</p>
2061
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002062<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002063<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002064call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002065</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002066</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002067
2068<p>TODO: The format of the asm and constraints string still need to be
2069documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00002070need to be documented). This is probably best done by reference to another
2071document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00002072</p>
2073
2074</div>
2075
2076<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00002077<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2078<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002079
Misha Brukman9d0919f2003-11-08 01:05:38 +00002080<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002081
Chris Lattner261efe92003-11-25 01:02:51 +00002082<p>The LLVM instruction set consists of several different
2083classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00002084instructions</a>, <a href="#binaryops">binary instructions</a>,
2085<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00002086 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2087instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002088
Misha Brukman9d0919f2003-11-08 01:05:38 +00002089</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002090
Chris Lattner00950542001-06-06 20:29:01 +00002091<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002092<div class="doc_subsection"> <a name="terminators">Terminator
2093Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002094
Misha Brukman9d0919f2003-11-08 01:05:38 +00002095<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002096
Chris Lattner261efe92003-11-25 01:02:51 +00002097<p>As mentioned <a href="#functionstructure">previously</a>, every
2098basic block in a program ends with a "Terminator" instruction, which
2099indicates which block should be executed after the current block is
2100finished. These terminator instructions typically yield a '<tt>void</tt>'
2101value: they produce control flow, not values (the one exception being
2102the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00002103<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00002104 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2105instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00002106the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2107 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2108 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002109
Misha Brukman9d0919f2003-11-08 01:05:38 +00002110</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002111
Chris Lattner00950542001-06-06 20:29:01 +00002112<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002113<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2114Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002115<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002116<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002117<pre>
2118 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002119 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002120</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002121
Chris Lattner00950542001-06-06 20:29:01 +00002122<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002123
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002124<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2125optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00002126<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002127returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00002128control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002129
Chris Lattner00950542001-06-06 20:29:01 +00002130<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002131
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002132<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2133the return value. The type of the return value must be a
2134'<a href="#t_firstclass">first class</a>' type.</p>
2135
2136<p>A function is not <a href="#wellformed">well formed</a> if
2137it it has a non-void return type and contains a '<tt>ret</tt>'
2138instruction with no return value or a return value with a type that
2139does not match its type, or if it has a void return type and contains
2140a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002141
Chris Lattner00950542001-06-06 20:29:01 +00002142<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002143
Chris Lattner261efe92003-11-25 01:02:51 +00002144<p>When the '<tt>ret</tt>' instruction is executed, control flow
2145returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00002146 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00002147the instruction after the call. If the caller was an "<a
2148 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00002149at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00002150returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00002151return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002152
Chris Lattner00950542001-06-06 20:29:01 +00002153<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002154
2155<pre>
2156 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002157 ret void <i>; Return from a void function</i>
Bill Wendling0a4bbbf2009-02-28 22:12:54 +00002158 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002159</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002160
Dan Gohmand8791e52009-01-24 15:58:40 +00002161<p>Note that the code generator does not yet fully support large
2162 return values. The specific sizes that are currently supported are
2163 dependent on the target. For integers, on 32-bit targets the limit
2164 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2165 For aggregate types, the current limits are dependent on the element
2166 types; for example targets are often limited to 2 total integer
2167 elements and 2 total floating-point elements.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002168
Misha Brukman9d0919f2003-11-08 01:05:38 +00002169</div>
Chris Lattner00950542001-06-06 20:29:01 +00002170<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002171<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002172<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002173<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002174<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002175</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002176<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002177<p>The '<tt>br</tt>' instruction is used to cause control flow to
2178transfer to a different basic block in the current function. There are
2179two forms of this instruction, corresponding to a conditional branch
2180and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002181<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002182<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002183single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002184unconditional form of the '<tt>br</tt>' instruction takes a single
2185'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002186<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002187<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002188argument is evaluated. If the value is <tt>true</tt>, control flows
2189to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2190control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002191<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002192<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002193 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002194</div>
Chris Lattner00950542001-06-06 20:29:01 +00002195<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002196<div class="doc_subsubsection">
2197 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2198</div>
2199
Misha Brukman9d0919f2003-11-08 01:05:38 +00002200<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002201<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002202
2203<pre>
2204 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2205</pre>
2206
Chris Lattner00950542001-06-06 20:29:01 +00002207<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002208
2209<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2210several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002211instruction, allowing a branch to occur to one of many possible
2212destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002213
2214
Chris Lattner00950542001-06-06 20:29:01 +00002215<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002216
2217<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2218comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2219an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2220table is not allowed to contain duplicate constant entries.</p>
2221
Chris Lattner00950542001-06-06 20:29:01 +00002222<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002223
Chris Lattner261efe92003-11-25 01:02:51 +00002224<p>The <tt>switch</tt> instruction specifies a table of values and
2225destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002226table is searched for the given value. If the value is found, control flow is
2227transfered to the corresponding destination; otherwise, control flow is
2228transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002229
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002230<h5>Implementation:</h5>
2231
2232<p>Depending on properties of the target machine and the particular
2233<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002234ways. For example, it could be generated as a series of chained conditional
2235branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002236
2237<h5>Example:</h5>
2238
2239<pre>
2240 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002241 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002242 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002243
2244 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002245 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002246
2247 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002248 switch i32 %val, label %otherwise [ i32 0, label %onzero
2249 i32 1, label %onone
2250 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002251</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002252</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002253
Chris Lattner00950542001-06-06 20:29:01 +00002254<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002255<div class="doc_subsubsection">
2256 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2257</div>
2258
Misha Brukman9d0919f2003-11-08 01:05:38 +00002259<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002260
Chris Lattner00950542001-06-06 20:29:01 +00002261<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002262
2263<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002264 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002265 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002266</pre>
2267
Chris Lattner6536cfe2002-05-06 22:08:29 +00002268<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002269
2270<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2271function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002272'<tt>normal</tt>' label or the
2273'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002274"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2275"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002276href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002277continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002278
Chris Lattner00950542001-06-06 20:29:01 +00002279<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002280
Misha Brukman9d0919f2003-11-08 01:05:38 +00002281<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002282
Chris Lattner00950542001-06-06 20:29:01 +00002283<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002284 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002285 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002286 convention</a> the call should use. If none is specified, the call defaults
2287 to using C calling conventions.
2288 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002289
2290 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2291 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2292 and '<tt>inreg</tt>' attributes are valid here.</li>
2293
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002294 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2295 function value being invoked. In most cases, this is a direct function
2296 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2297 an arbitrary pointer to function value.
2298 </li>
2299
2300 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2301 function to be invoked. </li>
2302
2303 <li>'<tt>function args</tt>': argument list whose types match the function
2304 signature argument types. If the function signature indicates the function
2305 accepts a variable number of arguments, the extra arguments can be
2306 specified. </li>
2307
2308 <li>'<tt>normal label</tt>': the label reached when the called function
2309 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2310
2311 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2312 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2313
Devang Patel307e8ab2008-10-07 17:48:33 +00002314 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002315 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2316 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002317</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002318
Chris Lattner00950542001-06-06 20:29:01 +00002319<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002320
Misha Brukman9d0919f2003-11-08 01:05:38 +00002321<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002322href="#i_call">call</a></tt>' instruction in most regards. The primary
2323difference is that it establishes an association with a label, which is used by
2324the runtime library to unwind the stack.</p>
2325
2326<p>This instruction is used in languages with destructors to ensure that proper
2327cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2328exception. Additionally, this is important for implementation of
2329'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2330
Chris Lattner00950542001-06-06 20:29:01 +00002331<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002332<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002333 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002334 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002335 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002336 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002337</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002338</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002339
2340
Chris Lattner27f71f22003-09-03 00:41:47 +00002341<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002342
Chris Lattner261efe92003-11-25 01:02:51 +00002343<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2344Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002345
Misha Brukman9d0919f2003-11-08 01:05:38 +00002346<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002347
Chris Lattner27f71f22003-09-03 00:41:47 +00002348<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002349<pre>
2350 unwind
2351</pre>
2352
Chris Lattner27f71f22003-09-03 00:41:47 +00002353<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002354
2355<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2356at the first callee in the dynamic call stack which used an <a
2357href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2358primarily used to implement exception handling.</p>
2359
Chris Lattner27f71f22003-09-03 00:41:47 +00002360<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002361
Chris Lattner72ed2002008-04-19 21:01:16 +00002362<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002363immediately halt. The dynamic call stack is then searched for the first <a
2364href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2365execution continues at the "exceptional" destination block specified by the
2366<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2367dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002368</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002369
2370<!-- _______________________________________________________________________ -->
2371
2372<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2373Instruction</a> </div>
2374
2375<div class="doc_text">
2376
2377<h5>Syntax:</h5>
2378<pre>
2379 unreachable
2380</pre>
2381
2382<h5>Overview:</h5>
2383
2384<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2385instruction is used to inform the optimizer that a particular portion of the
2386code is not reachable. This can be used to indicate that the code after a
2387no-return function cannot be reached, and other facts.</p>
2388
2389<h5>Semantics:</h5>
2390
2391<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2392</div>
2393
2394
2395
Chris Lattner00950542001-06-06 20:29:01 +00002396<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002397<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002398<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002399<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002400program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002401produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002402multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002403The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002404<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002405</div>
Chris Lattner00950542001-06-06 20:29:01 +00002406<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002407<div class="doc_subsubsection">
2408 <a name="i_add">'<tt>add</tt>' Instruction</a>
2409</div>
2410
Misha Brukman9d0919f2003-11-08 01:05:38 +00002411<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002412
Chris Lattner00950542001-06-06 20:29:01 +00002413<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002414
2415<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002416 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002417</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002418
Chris Lattner00950542001-06-06 20:29:01 +00002419<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002420
Misha Brukman9d0919f2003-11-08 01:05:38 +00002421<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002422
Chris Lattner00950542001-06-06 20:29:01 +00002423<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002424
2425<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2426 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2427 <a href="#t_vector">vector</a> values. Both arguments must have identical
2428 types.</p>
2429
Chris Lattner00950542001-06-06 20:29:01 +00002430<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002431
Misha Brukman9d0919f2003-11-08 01:05:38 +00002432<p>The value produced is the integer or floating point sum of the two
2433operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002434
Chris Lattner5ec89832008-01-28 00:36:27 +00002435<p>If an integer sum has unsigned overflow, the result returned is the
2436mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2437the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002438
Chris Lattner5ec89832008-01-28 00:36:27 +00002439<p>Because LLVM integers use a two's complement representation, this
2440instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002441
Chris Lattner00950542001-06-06 20:29:01 +00002442<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002443
2444<pre>
2445 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002446</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002447</div>
Chris Lattner00950542001-06-06 20:29:01 +00002448<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002449<div class="doc_subsubsection">
2450 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2451</div>
2452
Misha Brukman9d0919f2003-11-08 01:05:38 +00002453<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002454
Chris Lattner00950542001-06-06 20:29:01 +00002455<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002456
2457<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002458 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002459</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002460
Chris Lattner00950542001-06-06 20:29:01 +00002461<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002462
Misha Brukman9d0919f2003-11-08 01:05:38 +00002463<p>The '<tt>sub</tt>' instruction returns the difference of its two
2464operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002465
2466<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2467'<tt>neg</tt>' instruction present in most other intermediate
2468representations.</p>
2469
Chris Lattner00950542001-06-06 20:29:01 +00002470<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002471
2472<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2473 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2474 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2475 types.</p>
2476
Chris Lattner00950542001-06-06 20:29:01 +00002477<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002478
Chris Lattner261efe92003-11-25 01:02:51 +00002479<p>The value produced is the integer or floating point difference of
2480the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002481
Chris Lattner5ec89832008-01-28 00:36:27 +00002482<p>If an integer difference has unsigned overflow, the result returned is the
2483mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2484the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002485
Chris Lattner5ec89832008-01-28 00:36:27 +00002486<p>Because LLVM integers use a two's complement representation, this
2487instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002488
Chris Lattner00950542001-06-06 20:29:01 +00002489<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002490<pre>
2491 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002492 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002493</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002494</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002495
Chris Lattner00950542001-06-06 20:29:01 +00002496<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002497<div class="doc_subsubsection">
2498 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2499</div>
2500
Misha Brukman9d0919f2003-11-08 01:05:38 +00002501<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002502
Chris Lattner00950542001-06-06 20:29:01 +00002503<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002504<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002505</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002506<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002507<p>The '<tt>mul</tt>' instruction returns the product of its two
2508operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002509
Chris Lattner00950542001-06-06 20:29:01 +00002510<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002511
2512<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2513href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2514or <a href="#t_vector">vector</a> values. Both arguments must have identical
2515types.</p>
2516
Chris Lattner00950542001-06-06 20:29:01 +00002517<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002518
Chris Lattner261efe92003-11-25 01:02:51 +00002519<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002520two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002521
Chris Lattner5ec89832008-01-28 00:36:27 +00002522<p>If the result of an integer multiplication has unsigned overflow,
2523the result returned is the mathematical result modulo
25242<sup>n</sup>, where n is the bit width of the result.</p>
2525<p>Because LLVM integers use a two's complement representation, and the
2526result is the same width as the operands, this instruction returns the
2527correct result for both signed and unsigned integers. If a full product
2528(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2529should be sign-extended or zero-extended as appropriate to the
2530width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002531<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002532<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002533</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002534</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002535
Chris Lattner00950542001-06-06 20:29:01 +00002536<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002537<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2538</a></div>
2539<div class="doc_text">
2540<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002541<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002542</pre>
2543<h5>Overview:</h5>
2544<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2545operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002546
Reid Spencer1628cec2006-10-26 06:15:43 +00002547<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002548
Reid Spencer1628cec2006-10-26 06:15:43 +00002549<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002550<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2551values. Both arguments must have identical types.</p>
2552
Reid Spencer1628cec2006-10-26 06:15:43 +00002553<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002554
Chris Lattner5ec89832008-01-28 00:36:27 +00002555<p>The value produced is the unsigned integer quotient of the two operands.</p>
2556<p>Note that unsigned integer division and signed integer division are distinct
2557operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2558<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002559<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002560<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002561</pre>
2562</div>
2563<!-- _______________________________________________________________________ -->
2564<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2565</a> </div>
2566<div class="doc_text">
2567<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002568<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002569 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002570</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002571
Reid Spencer1628cec2006-10-26 06:15:43 +00002572<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002573
Reid Spencer1628cec2006-10-26 06:15:43 +00002574<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2575operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002576
Reid Spencer1628cec2006-10-26 06:15:43 +00002577<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002578
2579<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2580<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2581values. Both arguments must have identical types.</p>
2582
Reid Spencer1628cec2006-10-26 06:15:43 +00002583<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002584<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002585<p>Note that signed integer division and unsigned integer division are distinct
2586operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2587<p>Division by zero leads to undefined behavior. Overflow also leads to
2588undefined behavior; this is a rare case, but can occur, for example,
2589by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002590<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002591<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002592</pre>
2593</div>
2594<!-- _______________________________________________________________________ -->
2595<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002596Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002597<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002598<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002599<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002600 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002601</pre>
2602<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002603
Reid Spencer1628cec2006-10-26 06:15:43 +00002604<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002605operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002606
Chris Lattner261efe92003-11-25 01:02:51 +00002607<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002608
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002609<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002610<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2611of floating point values. Both arguments must have identical types.</p>
2612
Chris Lattner261efe92003-11-25 01:02:51 +00002613<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002614
Reid Spencer1628cec2006-10-26 06:15:43 +00002615<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002616
Chris Lattner261efe92003-11-25 01:02:51 +00002617<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002618
2619<pre>
2620 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002621</pre>
2622</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002623
Chris Lattner261efe92003-11-25 01:02:51 +00002624<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002625<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2626</div>
2627<div class="doc_text">
2628<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002629<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002630</pre>
2631<h5>Overview:</h5>
2632<p>The '<tt>urem</tt>' instruction returns the remainder from the
2633unsigned division of its two arguments.</p>
2634<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002635<p>The two arguments to the '<tt>urem</tt>' instruction must be
2636<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2637values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002638<h5>Semantics:</h5>
2639<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002640This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002641<p>Note that unsigned integer remainder and signed integer remainder are
2642distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2643<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002644<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002645<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002646</pre>
2647
2648</div>
2649<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002650<div class="doc_subsubsection">
2651 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2652</div>
2653
Chris Lattner261efe92003-11-25 01:02:51 +00002654<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002655
Chris Lattner261efe92003-11-25 01:02:51 +00002656<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002657
2658<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002659 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002660</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002661
Chris Lattner261efe92003-11-25 01:02:51 +00002662<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002663
Reid Spencer0a783f72006-11-02 01:53:59 +00002664<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002665signed division of its two operands. This instruction can also take
2666<a href="#t_vector">vector</a> versions of the values in which case
2667the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002668
Chris Lattner261efe92003-11-25 01:02:51 +00002669<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002670
Reid Spencer0a783f72006-11-02 01:53:59 +00002671<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002672<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2673values. Both arguments must have identical types.</p>
2674
Chris Lattner261efe92003-11-25 01:02:51 +00002675<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002676
Reid Spencer0a783f72006-11-02 01:53:59 +00002677<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002678has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2679operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002680a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002681 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002682Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002683please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002684Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002685<p>Note that signed integer remainder and unsigned integer remainder are
2686distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2687<p>Taking the remainder of a division by zero leads to undefined behavior.
2688Overflow also leads to undefined behavior; this is a rare case, but can occur,
2689for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2690(The remainder doesn't actually overflow, but this rule lets srem be
2691implemented using instructions that return both the result of the division
2692and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002693<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002694<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002695</pre>
2696
2697</div>
2698<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002699<div class="doc_subsubsection">
2700 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2701
Reid Spencer0a783f72006-11-02 01:53:59 +00002702<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002703
Reid Spencer0a783f72006-11-02 01:53:59 +00002704<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002705<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002706</pre>
2707<h5>Overview:</h5>
2708<p>The '<tt>frem</tt>' instruction returns the remainder from the
2709division of its two operands.</p>
2710<h5>Arguments:</h5>
2711<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002712<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2713of floating point values. Both arguments must have identical types.</p>
2714
Reid Spencer0a783f72006-11-02 01:53:59 +00002715<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002716
Chris Lattnera73afe02008-04-01 18:45:27 +00002717<p>This instruction returns the <i>remainder</i> of a division.
2718The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002719
Reid Spencer0a783f72006-11-02 01:53:59 +00002720<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002721
2722<pre>
2723 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002724</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002725</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002726
Reid Spencer8e11bf82007-02-02 13:57:07 +00002727<!-- ======================================================================= -->
2728<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2729Operations</a> </div>
2730<div class="doc_text">
2731<p>Bitwise binary operators are used to do various forms of
2732bit-twiddling in a program. They are generally very efficient
2733instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002734instructions. They require two operands of the same type, execute an operation on them,
2735and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002736</div>
2737
Reid Spencer569f2fa2007-01-31 21:39:12 +00002738<!-- _______________________________________________________________________ -->
2739<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2740Instruction</a> </div>
2741<div class="doc_text">
2742<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002743<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002744</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002745
Reid Spencer569f2fa2007-01-31 21:39:12 +00002746<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002747
Reid Spencer569f2fa2007-01-31 21:39:12 +00002748<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2749the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002750
Reid Spencer569f2fa2007-01-31 21:39:12 +00002751<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002752
Reid Spencer569f2fa2007-01-31 21:39:12 +00002753<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002754 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002755type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002756
Reid Spencer569f2fa2007-01-31 21:39:12 +00002757<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002758
Gabor Greiffb224a22008-08-07 21:46:00 +00002759<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2760where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang01f8d092008-12-10 08:55:09 +00002761equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2762If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2763corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002764
Reid Spencer569f2fa2007-01-31 21:39:12 +00002765<h5>Example:</h5><pre>
2766 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2767 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2768 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002769 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002770 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002771</pre>
2772</div>
2773<!-- _______________________________________________________________________ -->
2774<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2775Instruction</a> </div>
2776<div class="doc_text">
2777<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002778<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002779</pre>
2780
2781<h5>Overview:</h5>
2782<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002783operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002784
2785<h5>Arguments:</h5>
2786<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002787<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002788type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002789
2790<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002791
Reid Spencer569f2fa2007-01-31 21:39:12 +00002792<p>This instruction always performs a logical shift right operation. The most
2793significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002794shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang01f8d092008-12-10 08:55:09 +00002795the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2796vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2797amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002798
2799<h5>Example:</h5>
2800<pre>
2801 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2802 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2803 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2804 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002805 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002806 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002807</pre>
2808</div>
2809
Reid Spencer8e11bf82007-02-02 13:57:07 +00002810<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002811<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2812Instruction</a> </div>
2813<div class="doc_text">
2814
2815<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002816<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002817</pre>
2818
2819<h5>Overview:</h5>
2820<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002821operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002822
2823<h5>Arguments:</h5>
2824<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002825<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002826type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002827
2828<h5>Semantics:</h5>
2829<p>This instruction always performs an arithmetic shift right operation,
2830The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002831of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang01f8d092008-12-10 08:55:09 +00002832larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
2833arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2834corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002835
2836<h5>Example:</h5>
2837<pre>
2838 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2839 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2840 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2841 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002842 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002843 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002844</pre>
2845</div>
2846
Chris Lattner00950542001-06-06 20:29:01 +00002847<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002848<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2849Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002850
Misha Brukman9d0919f2003-11-08 01:05:38 +00002851<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002852
Chris Lattner00950542001-06-06 20:29:01 +00002853<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002854
2855<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002856 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002857</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002858
Chris Lattner00950542001-06-06 20:29:01 +00002859<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002860
Chris Lattner261efe92003-11-25 01:02:51 +00002861<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2862its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002863
Chris Lattner00950542001-06-06 20:29:01 +00002864<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002865
2866<p>The two arguments to the '<tt>and</tt>' instruction must be
2867<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2868values. Both arguments must have identical types.</p>
2869
Chris Lattner00950542001-06-06 20:29:01 +00002870<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002871<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002872<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002873<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002874<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002875 <tbody>
2876 <tr>
2877 <td>In0</td>
2878 <td>In1</td>
2879 <td>Out</td>
2880 </tr>
2881 <tr>
2882 <td>0</td>
2883 <td>0</td>
2884 <td>0</td>
2885 </tr>
2886 <tr>
2887 <td>0</td>
2888 <td>1</td>
2889 <td>0</td>
2890 </tr>
2891 <tr>
2892 <td>1</td>
2893 <td>0</td>
2894 <td>0</td>
2895 </tr>
2896 <tr>
2897 <td>1</td>
2898 <td>1</td>
2899 <td>1</td>
2900 </tr>
2901 </tbody>
2902</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002903</div>
Chris Lattner00950542001-06-06 20:29:01 +00002904<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002905<pre>
2906 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002907 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2908 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002909</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002910</div>
Chris Lattner00950542001-06-06 20:29:01 +00002911<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002912<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002913<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002914<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002915<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002916</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002917<h5>Overview:</h5>
2918<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2919or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002920<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002921
2922<p>The two arguments to the '<tt>or</tt>' instruction must be
2923<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2924values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002925<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002926<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002927<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002928<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002929<table border="1" cellspacing="0" cellpadding="4">
2930 <tbody>
2931 <tr>
2932 <td>In0</td>
2933 <td>In1</td>
2934 <td>Out</td>
2935 </tr>
2936 <tr>
2937 <td>0</td>
2938 <td>0</td>
2939 <td>0</td>
2940 </tr>
2941 <tr>
2942 <td>0</td>
2943 <td>1</td>
2944 <td>1</td>
2945 </tr>
2946 <tr>
2947 <td>1</td>
2948 <td>0</td>
2949 <td>1</td>
2950 </tr>
2951 <tr>
2952 <td>1</td>
2953 <td>1</td>
2954 <td>1</td>
2955 </tr>
2956 </tbody>
2957</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002958</div>
Chris Lattner00950542001-06-06 20:29:01 +00002959<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002960<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2961 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2962 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002963</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002964</div>
Chris Lattner00950542001-06-06 20:29:01 +00002965<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002966<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2967Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002968<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002969<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002970<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002971</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002972<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002973<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2974or of its two operands. The <tt>xor</tt> is used to implement the
2975"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002976<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002977<p>The two arguments to the '<tt>xor</tt>' instruction must be
2978<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2979values. Both arguments must have identical types.</p>
2980
Chris Lattner00950542001-06-06 20:29:01 +00002981<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002982
Misha Brukman9d0919f2003-11-08 01:05:38 +00002983<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002984<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002985<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002986<table border="1" cellspacing="0" cellpadding="4">
2987 <tbody>
2988 <tr>
2989 <td>In0</td>
2990 <td>In1</td>
2991 <td>Out</td>
2992 </tr>
2993 <tr>
2994 <td>0</td>
2995 <td>0</td>
2996 <td>0</td>
2997 </tr>
2998 <tr>
2999 <td>0</td>
3000 <td>1</td>
3001 <td>1</td>
3002 </tr>
3003 <tr>
3004 <td>1</td>
3005 <td>0</td>
3006 <td>1</td>
3007 </tr>
3008 <tr>
3009 <td>1</td>
3010 <td>1</td>
3011 <td>0</td>
3012 </tr>
3013 </tbody>
3014</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003015</div>
Chris Lattner261efe92003-11-25 01:02:51 +00003016<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00003017<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003018<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3019 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3020 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3021 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00003022</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003023</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003024
Chris Lattner00950542001-06-06 20:29:01 +00003025<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003026<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00003027 <a name="vectorops">Vector Operations</a>
3028</div>
3029
3030<div class="doc_text">
3031
3032<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003033target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00003034vector-specific operations needed to process vectors effectively. While LLVM
3035does directly support these vector operations, many sophisticated algorithms
3036will want to use target-specific intrinsics to take full advantage of a specific
3037target.</p>
3038
3039</div>
3040
3041<!-- _______________________________________________________________________ -->
3042<div class="doc_subsubsection">
3043 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3044</div>
3045
3046<div class="doc_text">
3047
3048<h5>Syntax:</h5>
3049
3050<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003051 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003052</pre>
3053
3054<h5>Overview:</h5>
3055
3056<p>
3057The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003058element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003059</p>
3060
3061
3062<h5>Arguments:</h5>
3063
3064<p>
3065The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003066value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00003067an index indicating the position from which to extract the element.
3068The index may be a variable.</p>
3069
3070<h5>Semantics:</h5>
3071
3072<p>
3073The result is a scalar of the same type as the element type of
3074<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3075<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3076results are undefined.
3077</p>
3078
3079<h5>Example:</h5>
3080
3081<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003082 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003083</pre>
3084</div>
3085
3086
3087<!-- _______________________________________________________________________ -->
3088<div class="doc_subsubsection">
3089 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3090</div>
3091
3092<div class="doc_text">
3093
3094<h5>Syntax:</h5>
3095
3096<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00003097 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003098</pre>
3099
3100<h5>Overview:</h5>
3101
3102<p>
3103The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003104element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003105</p>
3106
3107
3108<h5>Arguments:</h5>
3109
3110<p>
3111The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003112value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00003113scalar value whose type must equal the element type of the first
3114operand. The third operand is an index indicating the position at
3115which to insert the value. The index may be a variable.</p>
3116
3117<h5>Semantics:</h5>
3118
3119<p>
Reid Spencer485bad12007-02-15 03:07:05 +00003120The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00003121element values are those of <tt>val</tt> except at position
3122<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3123exceeds the length of <tt>val</tt>, the results are undefined.
3124</p>
3125
3126<h5>Example:</h5>
3127
3128<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003129 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003130</pre>
3131</div>
3132
3133<!-- _______________________________________________________________________ -->
3134<div class="doc_subsubsection">
3135 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3136</div>
3137
3138<div class="doc_text">
3139
3140<h5>Syntax:</h5>
3141
3142<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003143 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003144</pre>
3145
3146<h5>Overview:</h5>
3147
3148<p>
3149The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00003150from two input vectors, returning a vector with the same element type as
3151the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00003152</p>
3153
3154<h5>Arguments:</h5>
3155
3156<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003157The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3158with types that match each other. The third argument is a shuffle mask whose
3159element type is always 'i32'. The result of the instruction is a vector whose
3160length is the same as the shuffle mask and whose element type is the same as
3161the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00003162</p>
3163
3164<p>
3165The shuffle mask operand is required to be a constant vector with either
3166constant integer or undef values.
3167</p>
3168
3169<h5>Semantics:</h5>
3170
3171<p>
3172The elements of the two input vectors are numbered from left to right across
3173both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00003174the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00003175gets. The element selector may be undef (meaning "don't care") and the second
3176operand may be undef if performing a shuffle from only one vector.
3177</p>
3178
3179<h5>Example:</h5>
3180
3181<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003182 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003183 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003184 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3185 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003186 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3187 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3188 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3189 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003190</pre>
3191</div>
3192
Tanya Lattner09474292006-04-14 19:24:33 +00003193
Chris Lattner3df241e2006-04-08 23:07:04 +00003194<!-- ======================================================================= -->
3195<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003196 <a name="aggregateops">Aggregate Operations</a>
3197</div>
3198
3199<div class="doc_text">
3200
3201<p>LLVM supports several instructions for working with aggregate values.
3202</p>
3203
3204</div>
3205
3206<!-- _______________________________________________________________________ -->
3207<div class="doc_subsubsection">
3208 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3209</div>
3210
3211<div class="doc_text">
3212
3213<h5>Syntax:</h5>
3214
3215<pre>
3216 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3217</pre>
3218
3219<h5>Overview:</h5>
3220
3221<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003222The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3223or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003224</p>
3225
3226
3227<h5>Arguments:</h5>
3228
3229<p>
3230The first operand of an '<tt>extractvalue</tt>' instruction is a
3231value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003232type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003233in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003234'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3235</p>
3236
3237<h5>Semantics:</h5>
3238
3239<p>
3240The result is the value at the position in the aggregate specified by
3241the index operands.
3242</p>
3243
3244<h5>Example:</h5>
3245
3246<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003247 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003248</pre>
3249</div>
3250
3251
3252<!-- _______________________________________________________________________ -->
3253<div class="doc_subsubsection">
3254 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3255</div>
3256
3257<div class="doc_text">
3258
3259<h5>Syntax:</h5>
3260
3261<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003262 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003263</pre>
3264
3265<h5>Overview:</h5>
3266
3267<p>
3268The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003269into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003270</p>
3271
3272
3273<h5>Arguments:</h5>
3274
3275<p>
3276The first operand of an '<tt>insertvalue</tt>' instruction is a
3277value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3278The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003279The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003280indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003281indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003282'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3283The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003284by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003285</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003286
3287<h5>Semantics:</h5>
3288
3289<p>
3290The result is an aggregate of the same type as <tt>val</tt>. Its
3291value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003292specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003293</p>
3294
3295<h5>Example:</h5>
3296
3297<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003298 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003299</pre>
3300</div>
3301
3302
3303<!-- ======================================================================= -->
3304<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003305 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003306</div>
3307
Misha Brukman9d0919f2003-11-08 01:05:38 +00003308<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003309
Chris Lattner261efe92003-11-25 01:02:51 +00003310<p>A key design point of an SSA-based representation is how it
3311represents memory. In LLVM, no memory locations are in SSA form, which
3312makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003313allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003314
Misha Brukman9d0919f2003-11-08 01:05:38 +00003315</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003316
Chris Lattner00950542001-06-06 20:29:01 +00003317<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003318<div class="doc_subsubsection">
3319 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3320</div>
3321
Misha Brukman9d0919f2003-11-08 01:05:38 +00003322<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003323
Chris Lattner00950542001-06-06 20:29:01 +00003324<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003325
3326<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003327 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003328</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003329
Chris Lattner00950542001-06-06 20:29:01 +00003330<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003331
Chris Lattner261efe92003-11-25 01:02:51 +00003332<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003333heap and returns a pointer to it. The object is always allocated in the generic
3334address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003335
Chris Lattner00950542001-06-06 20:29:01 +00003336<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003337
3338<p>The '<tt>malloc</tt>' instruction allocates
3339<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003340bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003341appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003342number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003343If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003344be aligned to at least that boundary. If not specified, or if zero, the target can
3345choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003346
Misha Brukman9d0919f2003-11-08 01:05:38 +00003347<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003348
Chris Lattner00950542001-06-06 20:29:01 +00003349<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003350
Chris Lattner261efe92003-11-25 01:02:51 +00003351<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003352a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003353result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003354
Chris Lattner2cbdc452005-11-06 08:02:57 +00003355<h5>Example:</h5>
3356
3357<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003358 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003359
Bill Wendlingaac388b2007-05-29 09:42:13 +00003360 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3361 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3362 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3363 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3364 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003365</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003366
3367<p>Note that the code generator does not yet respect the
3368 alignment value.</p>
3369
Misha Brukman9d0919f2003-11-08 01:05:38 +00003370</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003371
Chris Lattner00950542001-06-06 20:29:01 +00003372<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003373<div class="doc_subsubsection">
3374 <a name="i_free">'<tt>free</tt>' Instruction</a>
3375</div>
3376
Misha Brukman9d0919f2003-11-08 01:05:38 +00003377<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003378
Chris Lattner00950542001-06-06 20:29:01 +00003379<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003380
3381<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003382 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003383</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003384
Chris Lattner00950542001-06-06 20:29:01 +00003385<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003386
Chris Lattner261efe92003-11-25 01:02:51 +00003387<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003388memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003389
Chris Lattner00950542001-06-06 20:29:01 +00003390<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003391
Chris Lattner261efe92003-11-25 01:02:51 +00003392<p>'<tt>value</tt>' shall be a pointer value that points to a value
3393that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3394instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003395
Chris Lattner00950542001-06-06 20:29:01 +00003396<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003397
John Criswell9e2485c2004-12-10 15:51:16 +00003398<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003399after this instruction executes. If the pointer is null, the operation
3400is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003401
Chris Lattner00950542001-06-06 20:29:01 +00003402<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003403
3404<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003405 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003406 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003407</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003408</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003409
Chris Lattner00950542001-06-06 20:29:01 +00003410<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003411<div class="doc_subsubsection">
3412 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3413</div>
3414
Misha Brukman9d0919f2003-11-08 01:05:38 +00003415<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003416
Chris Lattner00950542001-06-06 20:29:01 +00003417<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003418
3419<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003420 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003421</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003422
Chris Lattner00950542001-06-06 20:29:01 +00003423<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003424
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003425<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3426currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003427returns to its caller. The object is always allocated in the generic address
3428space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003429
Chris Lattner00950542001-06-06 20:29:01 +00003430<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003431
John Criswell9e2485c2004-12-10 15:51:16 +00003432<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003433bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003434appropriate type to the program. If "NumElements" is specified, it is the
3435number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003436If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003437to be aligned to at least that boundary. If not specified, or if zero, the target
3438can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003439
Misha Brukman9d0919f2003-11-08 01:05:38 +00003440<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003441
Chris Lattner00950542001-06-06 20:29:01 +00003442<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003443
Chris Lattner72ed2002008-04-19 21:01:16 +00003444<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3445there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003446memory is automatically released when the function returns. The '<tt>alloca</tt>'
3447instruction is commonly used to represent automatic variables that must
3448have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003449 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003450instructions), the memory is reclaimed. Allocating zero bytes
3451is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003452
Chris Lattner00950542001-06-06 20:29:01 +00003453<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003454
3455<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003456 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3457 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3458 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3459 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003460</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003461</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003462
Chris Lattner00950542001-06-06 20:29:01 +00003463<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003464<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3465Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003466<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003467<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003468<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003469<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003470<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003471<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003472<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003473address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003474 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003475marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003476the number or order of execution of this <tt>load</tt> with other
3477volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3478instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003479<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003480The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003481(that is, the alignment of the memory address). A value of 0 or an
3482omitted "align" argument means that the operation has the preferential
3483alignment for the target. It is the responsibility of the code emitter
3484to ensure that the alignment information is correct. Overestimating
3485the alignment results in an undefined behavior. Underestimating the
3486alignment may produce less efficient code. An alignment of 1 is always
3487safe.
3488</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003489<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003490<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003491<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003492<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003493 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003494 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3495 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003496</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003497</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003498<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003499<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3500Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003501<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003502<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003503<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3504 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003505</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003506<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003507<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003508<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003509<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003510to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003511operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3512of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003513operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003514optimizer is not allowed to modify the number or order of execution of
3515this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3516 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003517<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003518The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003519(that is, the alignment of the memory address). A value of 0 or an
3520omitted "align" argument means that the operation has the preferential
3521alignment for the target. It is the responsibility of the code emitter
3522to ensure that the alignment information is correct. Overestimating
3523the alignment results in an undefined behavior. Underestimating the
3524alignment may produce less efficient code. An alignment of 1 is always
3525safe.
3526</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003527<h5>Semantics:</h5>
3528<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3529at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003530<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003531<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003532 store i32 3, i32* %ptr <i>; yields {void}</i>
3533 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003534</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003535</div>
3536
Chris Lattner2b7d3202002-05-06 03:03:22 +00003537<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003538<div class="doc_subsubsection">
3539 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3540</div>
3541
Misha Brukman9d0919f2003-11-08 01:05:38 +00003542<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003543<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003544<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003545 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003546</pre>
3547
Chris Lattner7faa8832002-04-14 06:13:44 +00003548<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003549
3550<p>
3551The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003552subelement of an aggregate data structure. It performs address calculation only
3553and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003554
Chris Lattner7faa8832002-04-14 06:13:44 +00003555<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003556
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003557<p>The first argument is always a pointer, and forms the basis of the
3558calculation. The remaining arguments are indices, that indicate which of the
3559elements of the aggregate object are indexed. The interpretation of each index
3560is dependent on the type being indexed into. The first index always indexes the
3561pointer value given as the first argument, the second index indexes a value of
3562the type pointed to (not necessarily the value directly pointed to, since the
3563first index can be non-zero), etc. The first type indexed into must be a pointer
3564value, subsequent types can be arrays, vectors and structs. Note that subsequent
3565types being indexed into can never be pointers, since that would require loading
3566the pointer before continuing calculation.</p>
3567
3568<p>The type of each index argument depends on the type it is indexing into.
3569When indexing into a (packed) structure, only <tt>i32</tt> integer
3570<b>constants</b> are allowed. When indexing into an array, pointer or vector,
3571only integers of 32 or 64 bits are allowed (also non-constants). 32-bit values
3572will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003573
Chris Lattner261efe92003-11-25 01:02:51 +00003574<p>For example, let's consider a C code fragment and how it gets
3575compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003576
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003577<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003578<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003579struct RT {
3580 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003581 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003582 char C;
3583};
3584struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003585 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003586 double Y;
3587 struct RT Z;
3588};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003589
Chris Lattnercabc8462007-05-29 15:43:56 +00003590int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003591 return &amp;s[1].Z.B[5][13];
3592}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003593</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003594</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003595
Misha Brukman9d0919f2003-11-08 01:05:38 +00003596<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003597
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003598<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003599<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00003600%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3601%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003602
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003603define i32* %foo(%ST* %s) {
3604entry:
3605 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3606 ret i32* %reg
3607}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003608</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003609</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003610
Chris Lattner7faa8832002-04-14 06:13:44 +00003611<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003612
Misha Brukman9d0919f2003-11-08 01:05:38 +00003613<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003614type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003615}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003616the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3617i8 }</tt>' type, another structure. The third index indexes into the second
3618element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003619array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003620'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3621to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003622
Chris Lattner261efe92003-11-25 01:02:51 +00003623<p>Note that it is perfectly legal to index partially through a
3624structure, returning a pointer to an inner element. Because of this,
3625the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003626
3627<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003628 define i32* %foo(%ST* %s) {
3629 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003630 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3631 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003632 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3633 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3634 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003635 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003636</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003637
Chris Lattner8c0e62c2009-03-09 20:55:18 +00003638<p>Note that it is undefined to access an array out of bounds: array
3639and pointer indexes must always be within the defined bounds of the
3640array type when accessed with an instruction that dereferences the
3641pointer (e.g. a load or store instruction). The one exception for
3642this rule is zero length arrays. These arrays are defined to be
3643accessible as variable length arrays, which requires access beyond the
3644zero'th element.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00003645
Chris Lattner884a9702006-08-15 00:45:58 +00003646<p>The getelementptr instruction is often confusing. For some more insight
3647into how it works, see <a href="GetElementPtr.html">the getelementptr
3648FAQ</a>.</p>
3649
Chris Lattner7faa8832002-04-14 06:13:44 +00003650<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003651
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003652<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003653 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003654 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3655 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003656 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003657 <i>; yields i8*:eptr</i>
3658 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003659</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003660</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003661
Chris Lattner00950542001-06-06 20:29:01 +00003662<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003663<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003664</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003665<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003666<p>The instructions in this category are the conversion instructions (casting)
3667which all take a single operand and a type. They perform various bit conversions
3668on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003669</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003670
Chris Lattner6536cfe2002-05-06 22:08:29 +00003671<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003672<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003673 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3674</div>
3675<div class="doc_text">
3676
3677<h5>Syntax:</h5>
3678<pre>
3679 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3680</pre>
3681
3682<h5>Overview:</h5>
3683<p>
3684The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3685</p>
3686
3687<h5>Arguments:</h5>
3688<p>
3689The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3690be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003691and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003692type. The bit size of <tt>value</tt> must be larger than the bit size of
3693<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003694
3695<h5>Semantics:</h5>
3696<p>
3697The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003698and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3699larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3700It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003701
3702<h5>Example:</h5>
3703<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003704 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003705 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3706 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003707</pre>
3708</div>
3709
3710<!-- _______________________________________________________________________ -->
3711<div class="doc_subsubsection">
3712 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3713</div>
3714<div class="doc_text">
3715
3716<h5>Syntax:</h5>
3717<pre>
3718 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3719</pre>
3720
3721<h5>Overview:</h5>
3722<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3723<tt>ty2</tt>.</p>
3724
3725
3726<h5>Arguments:</h5>
3727<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003728<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3729also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003730<tt>value</tt> must be smaller than the bit size of the destination type,
3731<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003732
3733<h5>Semantics:</h5>
3734<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003735bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003736
Reid Spencerb5929522007-01-12 15:46:11 +00003737<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003738
3739<h5>Example:</h5>
3740<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003741 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003742 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003743</pre>
3744</div>
3745
3746<!-- _______________________________________________________________________ -->
3747<div class="doc_subsubsection">
3748 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3749</div>
3750<div class="doc_text">
3751
3752<h5>Syntax:</h5>
3753<pre>
3754 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3755</pre>
3756
3757<h5>Overview:</h5>
3758<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3759
3760<h5>Arguments:</h5>
3761<p>
3762The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003763<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3764also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003765<tt>value</tt> must be smaller than the bit size of the destination type,
3766<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003767
3768<h5>Semantics:</h5>
3769<p>
3770The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3771bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003772the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003773
Reid Spencerc78f3372007-01-12 03:35:51 +00003774<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003775
3776<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003777<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003778 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003779 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003780</pre>
3781</div>
3782
3783<!-- _______________________________________________________________________ -->
3784<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003785 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3786</div>
3787
3788<div class="doc_text">
3789
3790<h5>Syntax:</h5>
3791
3792<pre>
3793 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3794</pre>
3795
3796<h5>Overview:</h5>
3797<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3798<tt>ty2</tt>.</p>
3799
3800
3801<h5>Arguments:</h5>
3802<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3803 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3804cast it to. The size of <tt>value</tt> must be larger than the size of
3805<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3806<i>no-op cast</i>.</p>
3807
3808<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003809<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3810<a href="#t_floating">floating point</a> type to a smaller
3811<a href="#t_floating">floating point</a> type. If the value cannot fit within
3812the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003813
3814<h5>Example:</h5>
3815<pre>
3816 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3817 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3818</pre>
3819</div>
3820
3821<!-- _______________________________________________________________________ -->
3822<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003823 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3824</div>
3825<div class="doc_text">
3826
3827<h5>Syntax:</h5>
3828<pre>
3829 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3830</pre>
3831
3832<h5>Overview:</h5>
3833<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3834floating point value.</p>
3835
3836<h5>Arguments:</h5>
3837<p>The '<tt>fpext</tt>' instruction takes a
3838<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003839and a <a href="#t_floating">floating point</a> type to cast it to. The source
3840type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003841
3842<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003843<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003844<a href="#t_floating">floating point</a> type to a larger
3845<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003846used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003847<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003848
3849<h5>Example:</h5>
3850<pre>
3851 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3852 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3853</pre>
3854</div>
3855
3856<!-- _______________________________________________________________________ -->
3857<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003858 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003859</div>
3860<div class="doc_text">
3861
3862<h5>Syntax:</h5>
3863<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003864 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003865</pre>
3866
3867<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003868<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003869unsigned integer equivalent of type <tt>ty2</tt>.
3870</p>
3871
3872<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003873<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003874scalar or vector <a href="#t_floating">floating point</a> value, and a type
3875to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3876type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3877vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003878
3879<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003880<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003881<a href="#t_floating">floating point</a> operand into the nearest (rounding
3882towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3883the results are undefined.</p>
3884
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003885<h5>Example:</h5>
3886<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003887 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003888 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003889 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003890</pre>
3891</div>
3892
3893<!-- _______________________________________________________________________ -->
3894<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003895 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003896</div>
3897<div class="doc_text">
3898
3899<h5>Syntax:</h5>
3900<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003901 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003902</pre>
3903
3904<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003905<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003906<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003907</p>
3908
Chris Lattner6536cfe2002-05-06 22:08:29 +00003909<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003910<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003911scalar or vector <a href="#t_floating">floating point</a> value, and a type
3912to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3913type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3914vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003915
Chris Lattner6536cfe2002-05-06 22:08:29 +00003916<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003917<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003918<a href="#t_floating">floating point</a> operand into the nearest (rounding
3919towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3920the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003921
Chris Lattner33ba0d92001-07-09 00:26:23 +00003922<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003923<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003924 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003925 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003926 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003927</pre>
3928</div>
3929
3930<!-- _______________________________________________________________________ -->
3931<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003932 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003933</div>
3934<div class="doc_text">
3935
3936<h5>Syntax:</h5>
3937<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003938 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003939</pre>
3940
3941<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003942<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003943integer and converts that value to the <tt>ty2</tt> type.</p>
3944
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003945<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003946<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3947scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3948to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3949type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3950floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003951
3952<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003953<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003954integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003955the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003956
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003957<h5>Example:</h5>
3958<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003959 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003960 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003961</pre>
3962</div>
3963
3964<!-- _______________________________________________________________________ -->
3965<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003966 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003967</div>
3968<div class="doc_text">
3969
3970<h5>Syntax:</h5>
3971<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003972 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003973</pre>
3974
3975<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003976<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003977integer and converts that value to the <tt>ty2</tt> type.</p>
3978
3979<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003980<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3981scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3982to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3983type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3984floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003985
3986<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003987<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003988integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003989the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003990
3991<h5>Example:</h5>
3992<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003993 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003994 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003995</pre>
3996</div>
3997
3998<!-- _______________________________________________________________________ -->
3999<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00004000 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4001</div>
4002<div class="doc_text">
4003
4004<h5>Syntax:</h5>
4005<pre>
4006 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4007</pre>
4008
4009<h5>Overview:</h5>
4010<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4011the integer type <tt>ty2</tt>.</p>
4012
4013<h5>Arguments:</h5>
4014<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00004015must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00004016<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004017
4018<h5>Semantics:</h5>
4019<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4020<tt>ty2</tt> by interpreting the pointer value as an integer and either
4021truncating or zero extending that value to the size of the integer type. If
4022<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4023<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00004024are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4025change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004026
4027<h5>Example:</h5>
4028<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004029 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4030 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004031</pre>
4032</div>
4033
4034<!-- _______________________________________________________________________ -->
4035<div class="doc_subsubsection">
4036 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4037</div>
4038<div class="doc_text">
4039
4040<h5>Syntax:</h5>
4041<pre>
4042 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4043</pre>
4044
4045<h5>Overview:</h5>
4046<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4047a pointer type, <tt>ty2</tt>.</p>
4048
4049<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00004050<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00004051value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004052<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004053
4054<h5>Semantics:</h5>
4055<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4056<tt>ty2</tt> by applying either a zero extension or a truncation depending on
4057the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4058size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4059the size of a pointer then a zero extension is done. If they are the same size,
4060nothing is done (<i>no-op cast</i>).</p>
4061
4062<h5>Example:</h5>
4063<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004064 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4065 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4066 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004067</pre>
4068</div>
4069
4070<!-- _______________________________________________________________________ -->
4071<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00004072 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004073</div>
4074<div class="doc_text">
4075
4076<h5>Syntax:</h5>
4077<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004078 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004079</pre>
4080
4081<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004082
Reid Spencer5c0ef472006-11-11 23:08:07 +00004083<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004084<tt>ty2</tt> without changing any bits.</p>
4085
4086<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004087
Reid Spencer5c0ef472006-11-11 23:08:07 +00004088<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00004089a non-aggregate first class value, and a type to cast it to, which must also be
4090a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4091<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00004092and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00004093type is a pointer, the destination type must also be a pointer. This
4094instruction supports bitwise conversion of vectors to integers and to vectors
4095of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004096
4097<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004098<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00004099<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4100this conversion. The conversion is done as if the <tt>value</tt> had been
4101stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4102converted to other pointer types with this instruction. To convert pointers to
4103other types, use the <a href="#i_inttoptr">inttoptr</a> or
4104<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004105
4106<h5>Example:</h5>
4107<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004108 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004109 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004110 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00004111</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004112</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004113
Reid Spencer2fd21e62006-11-08 01:18:52 +00004114<!-- ======================================================================= -->
4115<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4116<div class="doc_text">
4117<p>The instructions in this category are the "miscellaneous"
4118instructions, which defy better classification.</p>
4119</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004120
4121<!-- _______________________________________________________________________ -->
4122<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4123</div>
4124<div class="doc_text">
4125<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004126<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004127</pre>
4128<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004129<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4130a vector of boolean values based on comparison
4131of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004132<h5>Arguments:</h5>
4133<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004134the condition code indicating the kind of comparison to perform. It is not
4135a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004136</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004137<ol>
4138 <li><tt>eq</tt>: equal</li>
4139 <li><tt>ne</tt>: not equal </li>
4140 <li><tt>ugt</tt>: unsigned greater than</li>
4141 <li><tt>uge</tt>: unsigned greater or equal</li>
4142 <li><tt>ult</tt>: unsigned less than</li>
4143 <li><tt>ule</tt>: unsigned less or equal</li>
4144 <li><tt>sgt</tt>: signed greater than</li>
4145 <li><tt>sge</tt>: signed greater or equal</li>
4146 <li><tt>slt</tt>: signed less than</li>
4147 <li><tt>sle</tt>: signed less or equal</li>
4148</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00004149<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00004150<a href="#t_pointer">pointer</a>
4151or integer <a href="#t_vector">vector</a> typed.
4152They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004153<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004154<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00004155the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00004156yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004157</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004158<ol>
4159 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4160 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4161 </li>
4162 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00004163 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004164 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004165 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004166 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004167 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004168 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004169 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004170 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004171 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004172 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004173 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004174 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004175 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004176 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004177 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004178 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004179 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004180</ol>
4181<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00004182values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004183<p>If the operands are integer vectors, then they are compared
4184element by element. The result is an <tt>i1</tt> vector with
4185the same number of elements as the values being compared.
4186Otherwise, the result is an <tt>i1</tt>.
4187</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004188
4189<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004190<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4191 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4192 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4193 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4194 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4195 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004196</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004197
4198<p>Note that the code generator does not yet support vector types with
4199 the <tt>icmp</tt> instruction.</p>
4200
Reid Spencerf3a70a62006-11-18 21:50:54 +00004201</div>
4202
4203<!-- _______________________________________________________________________ -->
4204<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4205</div>
4206<div class="doc_text">
4207<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004208<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004209</pre>
4210<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004211<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4212or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004213of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004214<p>
4215If the operands are floating point scalars, then the result
4216type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4217</p>
4218<p>If the operands are floating point vectors, then the result type
4219is a vector of boolean with the same number of elements as the
4220operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004221<h5>Arguments:</h5>
4222<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004223the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004224a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004225<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004226 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004227 <li><tt>oeq</tt>: ordered and equal</li>
4228 <li><tt>ogt</tt>: ordered and greater than </li>
4229 <li><tt>oge</tt>: ordered and greater than or equal</li>
4230 <li><tt>olt</tt>: ordered and less than </li>
4231 <li><tt>ole</tt>: ordered and less than or equal</li>
4232 <li><tt>one</tt>: ordered and not equal</li>
4233 <li><tt>ord</tt>: ordered (no nans)</li>
4234 <li><tt>ueq</tt>: unordered or equal</li>
4235 <li><tt>ugt</tt>: unordered or greater than </li>
4236 <li><tt>uge</tt>: unordered or greater than or equal</li>
4237 <li><tt>ult</tt>: unordered or less than </li>
4238 <li><tt>ule</tt>: unordered or less than or equal</li>
4239 <li><tt>une</tt>: unordered or not equal</li>
4240 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004241 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004242</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004243<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004244<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004245<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4246either a <a href="#t_floating">floating point</a> type
4247or a <a href="#t_vector">vector</a> of floating point type.
4248They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004249<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004250<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004251according to the condition code given as <tt>cond</tt>.
4252If the operands are vectors, then the vectors are compared
4253element by element.
4254Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004255always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004256<ol>
4257 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004258 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004259 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004260 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004261 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004262 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004263 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004264 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004265 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004266 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004267 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004268 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004269 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004270 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4271 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004272 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004273 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004274 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004275 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004276 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004277 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004278 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004279 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004280 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004281 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004282 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004283 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004284 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4285</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004286
4287<h5>Example:</h5>
4288<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004289 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4290 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4291 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004292</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004293
4294<p>Note that the code generator does not yet support vector types with
4295 the <tt>fcmp</tt> instruction.</p>
4296
Reid Spencerf3a70a62006-11-18 21:50:54 +00004297</div>
4298
Reid Spencer2fd21e62006-11-08 01:18:52 +00004299<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004300<div class="doc_subsubsection">
4301 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4302</div>
4303<div class="doc_text">
4304<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004305<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004306</pre>
4307<h5>Overview:</h5>
4308<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4309element-wise comparison of its two integer vector operands.</p>
4310<h5>Arguments:</h5>
4311<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4312the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004313a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004314<ol>
4315 <li><tt>eq</tt>: equal</li>
4316 <li><tt>ne</tt>: not equal </li>
4317 <li><tt>ugt</tt>: unsigned greater than</li>
4318 <li><tt>uge</tt>: unsigned greater or equal</li>
4319 <li><tt>ult</tt>: unsigned less than</li>
4320 <li><tt>ule</tt>: unsigned less or equal</li>
4321 <li><tt>sgt</tt>: signed greater than</li>
4322 <li><tt>sge</tt>: signed greater or equal</li>
4323 <li><tt>slt</tt>: signed less than</li>
4324 <li><tt>sle</tt>: signed less or equal</li>
4325</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004326<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004327<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4328<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004329<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004330according to the condition code given as <tt>cond</tt>. The comparison yields a
4331<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4332identical type as the values being compared. The most significant bit in each
4333element is 1 if the element-wise comparison evaluates to true, and is 0
4334otherwise. All other bits of the result are undefined. The condition codes
4335are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman0e451ce2008-10-14 16:51:45 +00004336instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004337
4338<h5>Example:</h5>
4339<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004340 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4341 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004342</pre>
4343</div>
4344
4345<!-- _______________________________________________________________________ -->
4346<div class="doc_subsubsection">
4347 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4348</div>
4349<div class="doc_text">
4350<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004351<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004352<h5>Overview:</h5>
4353<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4354element-wise comparison of its two floating point vector operands. The output
4355elements have the same width as the input elements.</p>
4356<h5>Arguments:</h5>
4357<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4358the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004359a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004360<ol>
4361 <li><tt>false</tt>: no comparison, always returns false</li>
4362 <li><tt>oeq</tt>: ordered and equal</li>
4363 <li><tt>ogt</tt>: ordered and greater than </li>
4364 <li><tt>oge</tt>: ordered and greater than or equal</li>
4365 <li><tt>olt</tt>: ordered and less than </li>
4366 <li><tt>ole</tt>: ordered and less than or equal</li>
4367 <li><tt>one</tt>: ordered and not equal</li>
4368 <li><tt>ord</tt>: ordered (no nans)</li>
4369 <li><tt>ueq</tt>: unordered or equal</li>
4370 <li><tt>ugt</tt>: unordered or greater than </li>
4371 <li><tt>uge</tt>: unordered or greater than or equal</li>
4372 <li><tt>ult</tt>: unordered or less than </li>
4373 <li><tt>ule</tt>: unordered or less than or equal</li>
4374 <li><tt>une</tt>: unordered or not equal</li>
4375 <li><tt>uno</tt>: unordered (either nans)</li>
4376 <li><tt>true</tt>: no comparison, always returns true</li>
4377</ol>
4378<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4379<a href="#t_floating">floating point</a> typed. They must also be identical
4380types.</p>
4381<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004382<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004383according to the condition code given as <tt>cond</tt>. The comparison yields a
4384<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4385an identical number of elements as the values being compared, and each element
4386having identical with to the width of the floating point elements. The most
4387significant bit in each element is 1 if the element-wise comparison evaluates to
4388true, and is 0 otherwise. All other bits of the result are undefined. The
4389condition codes are evaluated identically to the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004390<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004391
4392<h5>Example:</h5>
4393<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +00004394 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4395 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4396
4397 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4398 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemanac80ade2008-05-12 19:01:56 +00004399</pre>
4400</div>
4401
4402<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004403<div class="doc_subsubsection">
4404 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4405</div>
4406
Reid Spencer2fd21e62006-11-08 01:18:52 +00004407<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004408
Reid Spencer2fd21e62006-11-08 01:18:52 +00004409<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004410
Reid Spencer2fd21e62006-11-08 01:18:52 +00004411<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4412<h5>Overview:</h5>
4413<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4414the SSA graph representing the function.</p>
4415<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004416
Jeff Cohenb627eab2007-04-29 01:07:00 +00004417<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004418field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4419as arguments, with one pair for each predecessor basic block of the
4420current block. Only values of <a href="#t_firstclass">first class</a>
4421type may be used as the value arguments to the PHI node. Only labels
4422may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004423
Reid Spencer2fd21e62006-11-08 01:18:52 +00004424<p>There must be no non-phi instructions between the start of a basic
4425block and the PHI instructions: i.e. PHI instructions must be first in
4426a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004427
Reid Spencer2fd21e62006-11-08 01:18:52 +00004428<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004429
Jeff Cohenb627eab2007-04-29 01:07:00 +00004430<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4431specified by the pair corresponding to the predecessor basic block that executed
4432just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004433
Reid Spencer2fd21e62006-11-08 01:18:52 +00004434<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004435<pre>
4436Loop: ; Infinite loop that counts from 0 on up...
4437 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4438 %nextindvar = add i32 %indvar, 1
4439 br label %Loop
4440</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004441</div>
4442
Chris Lattnercc37aae2004-03-12 05:50:16 +00004443<!-- _______________________________________________________________________ -->
4444<div class="doc_subsubsection">
4445 <a name="i_select">'<tt>select</tt>' Instruction</a>
4446</div>
4447
4448<div class="doc_text">
4449
4450<h5>Syntax:</h5>
4451
4452<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004453 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4454
Dan Gohman0e451ce2008-10-14 16:51:45 +00004455 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004456</pre>
4457
4458<h5>Overview:</h5>
4459
4460<p>
4461The '<tt>select</tt>' instruction is used to choose one value based on a
4462condition, without branching.
4463</p>
4464
4465
4466<h5>Arguments:</h5>
4467
4468<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004469The '<tt>select</tt>' instruction requires an 'i1' value or
4470a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004471condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004472type. If the val1/val2 are vectors and
4473the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004474individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004475</p>
4476
4477<h5>Semantics:</h5>
4478
4479<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004480If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004481value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004482</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004483<p>
4484If the condition is a vector of i1, then the value arguments must
4485be vectors of the same size, and the selection is done element
4486by element.
4487</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004488
4489<h5>Example:</h5>
4490
4491<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004492 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004493</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004494
4495<p>Note that the code generator does not yet support conditions
4496 with vector type.</p>
4497
Chris Lattnercc37aae2004-03-12 05:50:16 +00004498</div>
4499
Robert Bocchino05ccd702006-01-15 20:48:27 +00004500
4501<!-- _______________________________________________________________________ -->
4502<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004503 <a name="i_call">'<tt>call</tt>' Instruction</a>
4504</div>
4505
Misha Brukman9d0919f2003-11-08 01:05:38 +00004506<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004507
Chris Lattner00950542001-06-06 20:29:01 +00004508<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004509<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004510 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004511</pre>
4512
Chris Lattner00950542001-06-06 20:29:01 +00004513<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004514
Misha Brukman9d0919f2003-11-08 01:05:38 +00004515<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004516
Chris Lattner00950542001-06-06 20:29:01 +00004517<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004518
Misha Brukman9d0919f2003-11-08 01:05:38 +00004519<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004520
Chris Lattner6536cfe2002-05-06 22:08:29 +00004521<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004522 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004523 <p>The optional "tail" marker indicates whether the callee function accesses
4524 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004525 function call is eligible for tail call optimization. Note that calls may
4526 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004527 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004528 </li>
4529 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004530 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004531 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004532 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004533 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004534
4535 <li>
4536 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4537 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4538 and '<tt>inreg</tt>' attributes are valid here.</p>
4539 </li>
4540
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004541 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004542 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4543 the type of the return value. Functions that return no value are marked
4544 <tt><a href="#t_void">void</a></tt>.</p>
4545 </li>
4546 <li>
4547 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4548 value being invoked. The argument types must match the types implied by
4549 this signature. This type can be omitted if the function is not varargs
4550 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004551 </li>
4552 <li>
4553 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4554 be invoked. In most cases, this is a direct function invocation, but
4555 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004556 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004557 </li>
4558 <li>
4559 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004560 function signature argument types. All arguments must be of
4561 <a href="#t_firstclass">first class</a> type. If the function signature
4562 indicates the function accepts a variable number of arguments, the extra
4563 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004564 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004565 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004566 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004567 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4568 '<tt>readnone</tt>' attributes are valid here.</p>
4569 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004570</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004571
Chris Lattner00950542001-06-06 20:29:01 +00004572<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004573
Chris Lattner261efe92003-11-25 01:02:51 +00004574<p>The '<tt>call</tt>' instruction is used to cause control flow to
4575transfer to a specified function, with its incoming arguments bound to
4576the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4577instruction in the called function, control flow continues with the
4578instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004579function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004580
Chris Lattner00950542001-06-06 20:29:01 +00004581<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004582
4583<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004584 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004585 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4586 %X = tail call i32 @foo() <i>; yields i32</i>
4587 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4588 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004589
4590 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004591 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004592 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4593 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004594 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004595 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004596</pre>
4597
Misha Brukman9d0919f2003-11-08 01:05:38 +00004598</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004599
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004600<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004601<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004602 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004603</div>
4604
Misha Brukman9d0919f2003-11-08 01:05:38 +00004605<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004606
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004607<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004608
4609<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004610 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004611</pre>
4612
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004613<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004614
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004615<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004616the "variable argument" area of a function call. It is used to implement the
4617<tt>va_arg</tt> macro in C.</p>
4618
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004619<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004620
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004621<p>This instruction takes a <tt>va_list*</tt> value and the type of
4622the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004623increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004624actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004625
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004626<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004627
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004628<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4629type from the specified <tt>va_list</tt> and causes the
4630<tt>va_list</tt> to point to the next argument. For more information,
4631see the variable argument handling <a href="#int_varargs">Intrinsic
4632Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004633
4634<p>It is legal for this instruction to be called in a function which does not
4635take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004636function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004637
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004638<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004639href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004640argument.</p>
4641
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004642<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004643
4644<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4645
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00004646<p>Note that the code generator does not yet fully support va_arg
4647 on many targets. Also, it does not currently support va_arg with
4648 aggregate types on any target.</p>
4649
Misha Brukman9d0919f2003-11-08 01:05:38 +00004650</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004651
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004652<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004653<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4654<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004655
Misha Brukman9d0919f2003-11-08 01:05:38 +00004656<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004657
4658<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004659well known names and semantics and are required to follow certain restrictions.
4660Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004661language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004662adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004663
John Criswellfc6b8952005-05-16 16:17:45 +00004664<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004665prefix is reserved in LLVM for intrinsic names; thus, function names may not
4666begin with this prefix. Intrinsic functions must always be external functions:
4667you cannot define the body of intrinsic functions. Intrinsic functions may
4668only be used in call or invoke instructions: it is illegal to take the address
4669of an intrinsic function. Additionally, because intrinsic functions are part
4670of the LLVM language, it is required if any are added that they be documented
4671here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004672
Chandler Carruth69940402007-08-04 01:51:18 +00004673<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4674a family of functions that perform the same operation but on different data
4675types. Because LLVM can represent over 8 million different integer types,
4676overloading is used commonly to allow an intrinsic function to operate on any
4677integer type. One or more of the argument types or the result type can be
4678overloaded to accept any integer type. Argument types may also be defined as
4679exactly matching a previous argument's type or the result type. This allows an
4680intrinsic function which accepts multiple arguments, but needs all of them to
4681be of the same type, to only be overloaded with respect to a single argument or
4682the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004683
Chandler Carruth69940402007-08-04 01:51:18 +00004684<p>Overloaded intrinsics will have the names of its overloaded argument types
4685encoded into its function name, each preceded by a period. Only those types
4686which are overloaded result in a name suffix. Arguments whose type is matched
4687against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4688take an integer of any width and returns an integer of exactly the same integer
4689width. This leads to a family of functions such as
4690<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4691Only one type, the return type, is overloaded, and only one type suffix is
4692required. Because the argument's type is matched against the return type, it
4693does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004694
4695<p>To learn how to add an intrinsic function, please see the
4696<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004697</p>
4698
Misha Brukman9d0919f2003-11-08 01:05:38 +00004699</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004700
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004701<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004702<div class="doc_subsection">
4703 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4704</div>
4705
Misha Brukman9d0919f2003-11-08 01:05:38 +00004706<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004707
Misha Brukman9d0919f2003-11-08 01:05:38 +00004708<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004709 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004710intrinsic functions. These functions are related to the similarly
4711named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004712
Chris Lattner261efe92003-11-25 01:02:51 +00004713<p>All of these functions operate on arguments that use a
4714target-specific value type "<tt>va_list</tt>". The LLVM assembly
4715language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004716transformations should be prepared to handle these functions regardless of
4717the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004718
Chris Lattner374ab302006-05-15 17:26:46 +00004719<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004720instruction and the variable argument handling intrinsic functions are
4721used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004722
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004723<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004724<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004725define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004726 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004727 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004728 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004729 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004730
4731 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004732 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004733
4734 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004735 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004736 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004737 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004738 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004739
4740 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004741 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004742 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004743}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004744
4745declare void @llvm.va_start(i8*)
4746declare void @llvm.va_copy(i8*, i8*)
4747declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004748</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004749</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004750
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004751</div>
4752
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004753<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004754<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004755 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004756</div>
4757
4758
Misha Brukman9d0919f2003-11-08 01:05:38 +00004759<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004760<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004761<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004762<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004763<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004764<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4765href="#i_va_arg">va_arg</a></tt>.</p>
4766
4767<h5>Arguments:</h5>
4768
Dan Gohman0e451ce2008-10-14 16:51:45 +00004769<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004770
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004771<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004772
Dan Gohman0e451ce2008-10-14 16:51:45 +00004773<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004774macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004775<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004776<tt>va_arg</tt> will produce the first variable argument passed to the function.
4777Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004778last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004779
Misha Brukman9d0919f2003-11-08 01:05:38 +00004780</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004781
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004782<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004783<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004784 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004785</div>
4786
Misha Brukman9d0919f2003-11-08 01:05:38 +00004787<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004788<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004789<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004790<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004791
Jeff Cohenb627eab2007-04-29 01:07:00 +00004792<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004793which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004794or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004795
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004796<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004797
Jeff Cohenb627eab2007-04-29 01:07:00 +00004798<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004799
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004800<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004801
Misha Brukman9d0919f2003-11-08 01:05:38 +00004802<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004803macro available in C. In a target-dependent way, it destroys the
4804<tt>va_list</tt> element to which the argument points. Calls to <a
4805href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4806<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4807<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004808
Misha Brukman9d0919f2003-11-08 01:05:38 +00004809</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004810
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004811<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004812<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004813 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004814</div>
4815
Misha Brukman9d0919f2003-11-08 01:05:38 +00004816<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004817
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004818<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004819
4820<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004821 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004822</pre>
4823
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004824<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004825
Jeff Cohenb627eab2007-04-29 01:07:00 +00004826<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4827from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004828
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004829<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004830
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004831<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004832The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004833
Chris Lattnerd7923912004-05-23 21:06:01 +00004834
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004835<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004836
Jeff Cohenb627eab2007-04-29 01:07:00 +00004837<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4838macro available in C. In a target-dependent way, it copies the source
4839<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4840intrinsic is necessary because the <tt><a href="#int_va_start">
4841llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4842example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004843
Misha Brukman9d0919f2003-11-08 01:05:38 +00004844</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004845
Chris Lattner33aec9e2004-02-12 17:01:32 +00004846<!-- ======================================================================= -->
4847<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004848 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4849</div>
4850
4851<div class="doc_text">
4852
4853<p>
4854LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004855Collection</a> (GC) requires the implementation and generation of these
4856intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004857These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004858stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004859href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004860Front-ends for type-safe garbage collected languages should generate these
4861intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4862href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4863</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004864
4865<p>The garbage collection intrinsics only operate on objects in the generic
4866 address space (address space zero).</p>
4867
Chris Lattnerd7923912004-05-23 21:06:01 +00004868</div>
4869
4870<!-- _______________________________________________________________________ -->
4871<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004872 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004873</div>
4874
4875<div class="doc_text">
4876
4877<h5>Syntax:</h5>
4878
4879<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004880 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004881</pre>
4882
4883<h5>Overview:</h5>
4884
John Criswell9e2485c2004-12-10 15:51:16 +00004885<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004886the code generator, and allows some metadata to be associated with it.</p>
4887
4888<h5>Arguments:</h5>
4889
4890<p>The first argument specifies the address of a stack object that contains the
4891root pointer. The second pointer (which must be either a constant or a global
4892value address) contains the meta-data to be associated with the root.</p>
4893
4894<h5>Semantics:</h5>
4895
Chris Lattner05d67092008-04-24 05:59:56 +00004896<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004897location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004898the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4899intrinsic may only be used in a function which <a href="#gc">specifies a GC
4900algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004901
4902</div>
4903
4904
4905<!-- _______________________________________________________________________ -->
4906<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004907 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004908</div>
4909
4910<div class="doc_text">
4911
4912<h5>Syntax:</h5>
4913
4914<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004915 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004916</pre>
4917
4918<h5>Overview:</h5>
4919
4920<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4921locations, allowing garbage collector implementations that require read
4922barriers.</p>
4923
4924<h5>Arguments:</h5>
4925
Chris Lattner80626e92006-03-14 20:02:51 +00004926<p>The second argument is the address to read from, which should be an address
4927allocated from the garbage collector. The first object is a pointer to the
4928start of the referenced object, if needed by the language runtime (otherwise
4929null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004930
4931<h5>Semantics:</h5>
4932
4933<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4934instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004935garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4936may only be used in a function which <a href="#gc">specifies a GC
4937algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004938
4939</div>
4940
4941
4942<!-- _______________________________________________________________________ -->
4943<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004944 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004945</div>
4946
4947<div class="doc_text">
4948
4949<h5>Syntax:</h5>
4950
4951<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004952 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004953</pre>
4954
4955<h5>Overview:</h5>
4956
4957<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4958locations, allowing garbage collector implementations that require write
4959barriers (such as generational or reference counting collectors).</p>
4960
4961<h5>Arguments:</h5>
4962
Chris Lattner80626e92006-03-14 20:02:51 +00004963<p>The first argument is the reference to store, the second is the start of the
4964object to store it to, and the third is the address of the field of Obj to
4965store to. If the runtime does not require a pointer to the object, Obj may be
4966null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004967
4968<h5>Semantics:</h5>
4969
4970<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4971instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004972garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4973may only be used in a function which <a href="#gc">specifies a GC
4974algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004975
4976</div>
4977
4978
4979
4980<!-- ======================================================================= -->
4981<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004982 <a name="int_codegen">Code Generator Intrinsics</a>
4983</div>
4984
4985<div class="doc_text">
4986<p>
4987These intrinsics are provided by LLVM to expose special features that may only
4988be implemented with code generator support.
4989</p>
4990
4991</div>
4992
4993<!-- _______________________________________________________________________ -->
4994<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004995 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004996</div>
4997
4998<div class="doc_text">
4999
5000<h5>Syntax:</h5>
5001<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005002 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005003</pre>
5004
5005<h5>Overview:</h5>
5006
5007<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005008The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5009target-specific value indicating the return address of the current function
5010or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00005011</p>
5012
5013<h5>Arguments:</h5>
5014
5015<p>
5016The argument to this intrinsic indicates which function to return the address
5017for. Zero indicates the calling function, one indicates its caller, etc. The
5018argument is <b>required</b> to be a constant integer value.
5019</p>
5020
5021<h5>Semantics:</h5>
5022
5023<p>
5024The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
5025the return address of the specified call frame, or zero if it cannot be
5026identified. The value returned by this intrinsic is likely to be incorrect or 0
5027for arguments other than zero, so it should only be used for debugging purposes.
5028</p>
5029
5030<p>
5031Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005032aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005033source-language caller.
5034</p>
5035</div>
5036
5037
5038<!-- _______________________________________________________________________ -->
5039<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005040 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005041</div>
5042
5043<div class="doc_text">
5044
5045<h5>Syntax:</h5>
5046<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005047 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005048</pre>
5049
5050<h5>Overview:</h5>
5051
5052<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005053The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5054target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00005055</p>
5056
5057<h5>Arguments:</h5>
5058
5059<p>
5060The argument to this intrinsic indicates which function to return the frame
5061pointer for. Zero indicates the calling function, one indicates its caller,
5062etc. The argument is <b>required</b> to be a constant integer value.
5063</p>
5064
5065<h5>Semantics:</h5>
5066
5067<p>
5068The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5069the frame address of the specified call frame, or zero if it cannot be
5070identified. The value returned by this intrinsic is likely to be incorrect or 0
5071for arguments other than zero, so it should only be used for debugging purposes.
5072</p>
5073
5074<p>
5075Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005076aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005077source-language caller.
5078</p>
5079</div>
5080
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005081<!-- _______________________________________________________________________ -->
5082<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005083 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005084</div>
5085
5086<div class="doc_text">
5087
5088<h5>Syntax:</h5>
5089<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005090 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00005091</pre>
5092
5093<h5>Overview:</h5>
5094
5095<p>
5096The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00005097the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00005098<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5099features like scoped automatic variable sized arrays in C99.
5100</p>
5101
5102<h5>Semantics:</h5>
5103
5104<p>
5105This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005106href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00005107<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5108<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5109state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5110practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5111that were allocated after the <tt>llvm.stacksave</tt> was executed.
5112</p>
5113
5114</div>
5115
5116<!-- _______________________________________________________________________ -->
5117<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005118 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005119</div>
5120
5121<div class="doc_text">
5122
5123<h5>Syntax:</h5>
5124<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005125 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005126</pre>
5127
5128<h5>Overview:</h5>
5129
5130<p>
5131The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5132the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005133href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00005134useful for implementing language features like scoped automatic variable sized
5135arrays in C99.
5136</p>
5137
5138<h5>Semantics:</h5>
5139
5140<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00005141See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00005142</p>
5143
5144</div>
5145
5146
5147<!-- _______________________________________________________________________ -->
5148<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005149 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005150</div>
5151
5152<div class="doc_text">
5153
5154<h5>Syntax:</h5>
5155<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005156 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005157</pre>
5158
5159<h5>Overview:</h5>
5160
5161
5162<p>
5163The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00005164a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5165no
5166effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00005167characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005168</p>
5169
5170<h5>Arguments:</h5>
5171
5172<p>
5173<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5174determining if the fetch should be for a read (0) or write (1), and
5175<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00005176locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005177<tt>locality</tt> arguments must be constant integers.
5178</p>
5179
5180<h5>Semantics:</h5>
5181
5182<p>
5183This intrinsic does not modify the behavior of the program. In particular,
5184prefetches cannot trap and do not produce a value. On targets that support this
5185intrinsic, the prefetch can provide hints to the processor cache for better
5186performance.
5187</p>
5188
5189</div>
5190
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005191<!-- _______________________________________________________________________ -->
5192<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005193 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005194</div>
5195
5196<div class="doc_text">
5197
5198<h5>Syntax:</h5>
5199<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005200 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005201</pre>
5202
5203<h5>Overview:</h5>
5204
5205
5206<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005207The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005208(PC) in a region of
5209code to simulators and other tools. The method is target specific, but it is
5210expected that the marker will use exported symbols to transmit the PC of the
5211marker.
5212The marker makes no guarantees that it will remain with any specific instruction
5213after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005214optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005215correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005216</p>
5217
5218<h5>Arguments:</h5>
5219
5220<p>
5221<tt>id</tt> is a numerical id identifying the marker.
5222</p>
5223
5224<h5>Semantics:</h5>
5225
5226<p>
5227This intrinsic does not modify the behavior of the program. Backends that do not
5228support this intrinisic may ignore it.
5229</p>
5230
5231</div>
5232
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005233<!-- _______________________________________________________________________ -->
5234<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005235 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005236</div>
5237
5238<div class="doc_text">
5239
5240<h5>Syntax:</h5>
5241<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005242 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005243</pre>
5244
5245<h5>Overview:</h5>
5246
5247
5248<p>
5249The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5250counter register (or similar low latency, high accuracy clocks) on those targets
5251that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5252As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5253should only be used for small timings.
5254</p>
5255
5256<h5>Semantics:</h5>
5257
5258<p>
5259When directly supported, reading the cycle counter should not modify any memory.
5260Implementations are allowed to either return a application specific value or a
5261system wide value. On backends without support, this is lowered to a constant 0.
5262</p>
5263
5264</div>
5265
Chris Lattner10610642004-02-14 04:08:35 +00005266<!-- ======================================================================= -->
5267<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005268 <a name="int_libc">Standard C Library Intrinsics</a>
5269</div>
5270
5271<div class="doc_text">
5272<p>
Chris Lattner10610642004-02-14 04:08:35 +00005273LLVM provides intrinsics for a few important standard C library functions.
5274These intrinsics allow source-language front-ends to pass information about the
5275alignment of the pointer arguments to the code generator, providing opportunity
5276for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005277</p>
5278
5279</div>
5280
5281<!-- _______________________________________________________________________ -->
5282<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005283 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005284</div>
5285
5286<div class="doc_text">
5287
5288<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005289<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5290width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005291<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005292 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5293 i8 &lt;len&gt;, i32 &lt;align&gt;)
5294 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5295 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005296 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005297 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005298 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005299 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005300</pre>
5301
5302<h5>Overview:</h5>
5303
5304<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005305The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005306location to the destination location.
5307</p>
5308
5309<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005310Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5311intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005312</p>
5313
5314<h5>Arguments:</h5>
5315
5316<p>
5317The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005318the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005319specifying the number of bytes to copy, and the fourth argument is the alignment
5320of the source and destination locations.
5321</p>
5322
Chris Lattner3301ced2004-02-12 21:18:15 +00005323<p>
5324If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005325the caller guarantees that both the source and destination pointers are aligned
5326to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005327</p>
5328
Chris Lattner33aec9e2004-02-12 17:01:32 +00005329<h5>Semantics:</h5>
5330
5331<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005332The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005333location to the destination location, which are not allowed to overlap. It
5334copies "len" bytes of memory over. If the argument is known to be aligned to
5335some boundary, this can be specified as the fourth argument, otherwise it should
5336be set to 0 or 1.
5337</p>
5338</div>
5339
5340
Chris Lattner0eb51b42004-02-12 18:10:10 +00005341<!-- _______________________________________________________________________ -->
5342<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005343 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005344</div>
5345
5346<div class="doc_text">
5347
5348<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005349<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5350width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005351<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005352 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5353 i8 &lt;len&gt;, i32 &lt;align&gt;)
5354 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5355 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005356 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005357 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005358 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005359 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005360</pre>
5361
5362<h5>Overview:</h5>
5363
5364<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005365The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5366location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005367'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005368</p>
5369
5370<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005371Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5372intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005373</p>
5374
5375<h5>Arguments:</h5>
5376
5377<p>
5378The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005379the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005380specifying the number of bytes to copy, and the fourth argument is the alignment
5381of the source and destination locations.
5382</p>
5383
Chris Lattner3301ced2004-02-12 21:18:15 +00005384<p>
5385If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005386the caller guarantees that the source and destination pointers are aligned to
5387that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005388</p>
5389
Chris Lattner0eb51b42004-02-12 18:10:10 +00005390<h5>Semantics:</h5>
5391
5392<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005393The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005394location to the destination location, which may overlap. It
5395copies "len" bytes of memory over. If the argument is known to be aligned to
5396some boundary, this can be specified as the fourth argument, otherwise it should
5397be set to 0 or 1.
5398</p>
5399</div>
5400
Chris Lattner8ff75902004-01-06 05:31:32 +00005401
Chris Lattner10610642004-02-14 04:08:35 +00005402<!-- _______________________________________________________________________ -->
5403<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005404 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005405</div>
5406
5407<div class="doc_text">
5408
5409<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005410<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5411width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005412<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005413 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5414 i8 &lt;len&gt;, i32 &lt;align&gt;)
5415 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5416 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005417 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005418 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005419 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005420 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005421</pre>
5422
5423<h5>Overview:</h5>
5424
5425<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005426The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005427byte value.
5428</p>
5429
5430<p>
5431Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5432does not return a value, and takes an extra alignment argument.
5433</p>
5434
5435<h5>Arguments:</h5>
5436
5437<p>
5438The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005439byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005440argument specifying the number of bytes to fill, and the fourth argument is the
5441known alignment of destination location.
5442</p>
5443
5444<p>
5445If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005446the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005447</p>
5448
5449<h5>Semantics:</h5>
5450
5451<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005452The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5453the
Chris Lattner10610642004-02-14 04:08:35 +00005454destination location. If the argument is known to be aligned to some boundary,
5455this can be specified as the fourth argument, otherwise it should be set to 0 or
54561.
5457</p>
5458</div>
5459
5460
Chris Lattner32006282004-06-11 02:28:03 +00005461<!-- _______________________________________________________________________ -->
5462<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005463 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005464</div>
5465
5466<div class="doc_text">
5467
5468<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005469<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005470floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005471types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005472<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005473 declare float @llvm.sqrt.f32(float %Val)
5474 declare double @llvm.sqrt.f64(double %Val)
5475 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5476 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5477 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005478</pre>
5479
5480<h5>Overview:</h5>
5481
5482<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005483The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005484returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005485<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005486negative numbers other than -0.0 (which allows for better optimization, because
5487there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5488defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005489</p>
5490
5491<h5>Arguments:</h5>
5492
5493<p>
5494The argument and return value are floating point numbers of the same type.
5495</p>
5496
5497<h5>Semantics:</h5>
5498
5499<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005500This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005501floating point number.
5502</p>
5503</div>
5504
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005505<!-- _______________________________________________________________________ -->
5506<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005507 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005508</div>
5509
5510<div class="doc_text">
5511
5512<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005513<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005514floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005515types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005516<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005517 declare float @llvm.powi.f32(float %Val, i32 %power)
5518 declare double @llvm.powi.f64(double %Val, i32 %power)
5519 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5520 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5521 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005522</pre>
5523
5524<h5>Overview:</h5>
5525
5526<p>
5527The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5528specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005529multiplications is not defined. When a vector of floating point type is
5530used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005531</p>
5532
5533<h5>Arguments:</h5>
5534
5535<p>
5536The second argument is an integer power, and the first is a value to raise to
5537that power.
5538</p>
5539
5540<h5>Semantics:</h5>
5541
5542<p>
5543This function returns the first value raised to the second power with an
5544unspecified sequence of rounding operations.</p>
5545</div>
5546
Dan Gohman91c284c2007-10-15 20:30:11 +00005547<!-- _______________________________________________________________________ -->
5548<div class="doc_subsubsection">
5549 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5550</div>
5551
5552<div class="doc_text">
5553
5554<h5>Syntax:</h5>
5555<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5556floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005557types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005558<pre>
5559 declare float @llvm.sin.f32(float %Val)
5560 declare double @llvm.sin.f64(double %Val)
5561 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5562 declare fp128 @llvm.sin.f128(fp128 %Val)
5563 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5564</pre>
5565
5566<h5>Overview:</h5>
5567
5568<p>
5569The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5570</p>
5571
5572<h5>Arguments:</h5>
5573
5574<p>
5575The argument and return value are floating point numbers of the same type.
5576</p>
5577
5578<h5>Semantics:</h5>
5579
5580<p>
5581This function returns the sine of the specified operand, returning the
5582same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005583conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005584</div>
5585
5586<!-- _______________________________________________________________________ -->
5587<div class="doc_subsubsection">
5588 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5589</div>
5590
5591<div class="doc_text">
5592
5593<h5>Syntax:</h5>
5594<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5595floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005596types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005597<pre>
5598 declare float @llvm.cos.f32(float %Val)
5599 declare double @llvm.cos.f64(double %Val)
5600 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5601 declare fp128 @llvm.cos.f128(fp128 %Val)
5602 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5603</pre>
5604
5605<h5>Overview:</h5>
5606
5607<p>
5608The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5609</p>
5610
5611<h5>Arguments:</h5>
5612
5613<p>
5614The argument and return value are floating point numbers of the same type.
5615</p>
5616
5617<h5>Semantics:</h5>
5618
5619<p>
5620This function returns the cosine of the specified operand, returning the
5621same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005622conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005623</div>
5624
5625<!-- _______________________________________________________________________ -->
5626<div class="doc_subsubsection">
5627 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5628</div>
5629
5630<div class="doc_text">
5631
5632<h5>Syntax:</h5>
5633<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5634floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005635types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005636<pre>
5637 declare float @llvm.pow.f32(float %Val, float %Power)
5638 declare double @llvm.pow.f64(double %Val, double %Power)
5639 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5640 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5641 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5642</pre>
5643
5644<h5>Overview:</h5>
5645
5646<p>
5647The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5648specified (positive or negative) power.
5649</p>
5650
5651<h5>Arguments:</h5>
5652
5653<p>
5654The second argument is a floating point power, and the first is a value to
5655raise to that power.
5656</p>
5657
5658<h5>Semantics:</h5>
5659
5660<p>
5661This function returns the first value raised to the second power,
5662returning the
5663same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005664conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005665</div>
5666
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005667
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005668<!-- ======================================================================= -->
5669<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005670 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005671</div>
5672
5673<div class="doc_text">
5674<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005675LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005676These allow efficient code generation for some algorithms.
5677</p>
5678
5679</div>
5680
5681<!-- _______________________________________________________________________ -->
5682<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005683 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005684</div>
5685
5686<div class="doc_text">
5687
5688<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005689<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005690type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005691<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005692 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5693 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5694 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005695</pre>
5696
5697<h5>Overview:</h5>
5698
5699<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005700The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005701values with an even number of bytes (positive multiple of 16 bits). These are
5702useful for performing operations on data that is not in the target's native
5703byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005704</p>
5705
5706<h5>Semantics:</h5>
5707
5708<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005709The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005710and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5711intrinsic returns an i32 value that has the four bytes of the input i32
5712swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005713i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5714<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005715additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005716</p>
5717
5718</div>
5719
5720<!-- _______________________________________________________________________ -->
5721<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005722 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005723</div>
5724
5725<div class="doc_text">
5726
5727<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005728<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005729width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005730<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005731 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005732 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005733 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005734 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5735 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005736</pre>
5737
5738<h5>Overview:</h5>
5739
5740<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005741The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5742value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005743</p>
5744
5745<h5>Arguments:</h5>
5746
5747<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005748The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005749integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005750</p>
5751
5752<h5>Semantics:</h5>
5753
5754<p>
5755The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5756</p>
5757</div>
5758
5759<!-- _______________________________________________________________________ -->
5760<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005761 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005762</div>
5763
5764<div class="doc_text">
5765
5766<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005767<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005768integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005769<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005770 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5771 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005772 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005773 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5774 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005775</pre>
5776
5777<h5>Overview:</h5>
5778
5779<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005780The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5781leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005782</p>
5783
5784<h5>Arguments:</h5>
5785
5786<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005787The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005788integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005789</p>
5790
5791<h5>Semantics:</h5>
5792
5793<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005794The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5795in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005796of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005797</p>
5798</div>
Chris Lattner32006282004-06-11 02:28:03 +00005799
5800
Chris Lattnereff29ab2005-05-15 19:39:26 +00005801
5802<!-- _______________________________________________________________________ -->
5803<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005804 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005805</div>
5806
5807<div class="doc_text">
5808
5809<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005810<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005811integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005812<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005813 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5814 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005815 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005816 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5817 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005818</pre>
5819
5820<h5>Overview:</h5>
5821
5822<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005823The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5824trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005825</p>
5826
5827<h5>Arguments:</h5>
5828
5829<p>
5830The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005831integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005832</p>
5833
5834<h5>Semantics:</h5>
5835
5836<p>
5837The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5838in a variable. If the src == 0 then the result is the size in bits of the type
5839of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5840</p>
5841</div>
5842
Reid Spencer497d93e2007-04-01 08:27:01 +00005843<!-- _______________________________________________________________________ -->
5844<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005845 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005846</div>
5847
5848<div class="doc_text">
5849
5850<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005851<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005852on any integer bit width.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005853<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005854 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5855 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005856</pre>
5857
5858<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005859<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005860range of bits from an integer value and returns them in the same bit width as
5861the original value.</p>
5862
5863<h5>Arguments:</h5>
5864<p>The first argument, <tt>%val</tt> and the result may be integer types of
5865any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005866arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005867
5868<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005869<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005870of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5871<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5872operates in forward mode.</p>
5873<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5874right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005875only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5876<ol>
5877 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5878 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5879 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5880 to determine the number of bits to retain.</li>
5881 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005882 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005883</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005884<p>In reverse mode, a similar computation is made except that the bits are
5885returned in the reverse order. So, for example, if <tt>X</tt> has the value
5886<tt>i16 0x0ACF (101011001111)</tt> and we apply
5887<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5888<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005889</div>
5890
Reid Spencerf86037f2007-04-11 23:23:49 +00005891<div class="doc_subsubsection">
5892 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5893</div>
5894
5895<div class="doc_text">
5896
5897<h5>Syntax:</h5>
5898<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005899on any integer bit width.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005900<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005901 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5902 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005903</pre>
5904
5905<h5>Overview:</h5>
5906<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5907of bits in an integer value with another integer value. It returns the integer
5908with the replaced bits.</p>
5909
5910<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005911<p>The first argument, <tt>%val</tt>, and the result may be integer types of
5912any bit width, but they must have the same bit width. <tt>%val</tt> is the value
Reid Spencerf86037f2007-04-11 23:23:49 +00005913whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5914integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5915type since they specify only a bit index.</p>
5916
5917<h5>Semantics:</h5>
5918<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5919of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5920<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5921operates in forward mode.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005922
Reid Spencerf86037f2007-04-11 23:23:49 +00005923<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5924truncating it down to the size of the replacement area or zero extending it
5925up to that size.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005926
Reid Spencerf86037f2007-04-11 23:23:49 +00005927<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5928are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5929in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman0e451ce2008-10-14 16:51:45 +00005930to the <tt>%hi</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005931
Reid Spencerc6749c42007-05-14 16:50:20 +00005932<p>In reverse mode, a similar computation is made except that the bits are
5933reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman0e451ce2008-10-14 16:51:45 +00005934<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005935
Reid Spencerf86037f2007-04-11 23:23:49 +00005936<h5>Examples:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005937
Reid Spencerf86037f2007-04-11 23:23:49 +00005938<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005939 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005940 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5941 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5942 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005943 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005944</pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005945
5946</div>
5947
Bill Wendlingda01af72009-02-08 04:04:40 +00005948<!-- ======================================================================= -->
5949<div class="doc_subsection">
5950 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
5951</div>
5952
5953<div class="doc_text">
5954<p>
5955LLVM provides intrinsics for some arithmetic with overflow operations.
5956</p>
5957
5958</div>
5959
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005960<!-- _______________________________________________________________________ -->
5961<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00005962 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005963</div>
5964
5965<div class="doc_text">
5966
5967<h5>Syntax:</h5>
5968
5969<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00005970on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005971
5972<pre>
5973 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
5974 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
5975 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
5976</pre>
5977
5978<h5>Overview:</h5>
5979
5980<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5981a signed addition of the two arguments, and indicate whether an overflow
5982occurred during the signed summation.</p>
5983
5984<h5>Arguments:</h5>
5985
5986<p>The arguments (%a and %b) and the first element of the result structure may
5987be of integer types of any bit width, but they must have the same bit width. The
5988second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
5989and <tt>%b</tt> are the two values that will undergo signed addition.</p>
5990
5991<h5>Semantics:</h5>
5992
5993<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5994a signed addition of the two variables. They return a structure &mdash; the
5995first element of which is the signed summation, and the second element of which
5996is a bit specifying if the signed summation resulted in an overflow.</p>
5997
5998<h5>Examples:</h5>
5999<pre>
6000 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6001 %sum = extractvalue {i32, i1} %res, 0
6002 %obit = extractvalue {i32, i1} %res, 1
6003 br i1 %obit, label %overflow, label %normal
6004</pre>
6005
6006</div>
6007
6008<!-- _______________________________________________________________________ -->
6009<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006010 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006011</div>
6012
6013<div class="doc_text">
6014
6015<h5>Syntax:</h5>
6016
6017<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006018on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006019
6020<pre>
6021 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6022 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6023 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6024</pre>
6025
6026<h5>Overview:</h5>
6027
6028<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6029an unsigned addition of the two arguments, and indicate whether a carry occurred
6030during the unsigned summation.</p>
6031
6032<h5>Arguments:</h5>
6033
6034<p>The arguments (%a and %b) and the first element of the result structure may
6035be of integer types of any bit width, but they must have the same bit width. The
6036second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6037and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6038
6039<h5>Semantics:</h5>
6040
6041<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6042an unsigned addition of the two arguments. They return a structure &mdash; the
6043first element of which is the sum, and the second element of which is a bit
6044specifying if the unsigned summation resulted in a carry.</p>
6045
6046<h5>Examples:</h5>
6047<pre>
6048 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6049 %sum = extractvalue {i32, i1} %res, 0
6050 %obit = extractvalue {i32, i1} %res, 1
6051 br i1 %obit, label %carry, label %normal
6052</pre>
6053
6054</div>
6055
6056<!-- _______________________________________________________________________ -->
6057<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006058 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006059</div>
6060
6061<div class="doc_text">
6062
6063<h5>Syntax:</h5>
6064
6065<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006066on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006067
6068<pre>
6069 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6070 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6071 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6072</pre>
6073
6074<h5>Overview:</h5>
6075
6076<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6077a signed subtraction of the two arguments, and indicate whether an overflow
6078occurred during the signed subtraction.</p>
6079
6080<h5>Arguments:</h5>
6081
6082<p>The arguments (%a and %b) and the first element of the result structure may
6083be of integer types of any bit width, but they must have the same bit width. The
6084second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6085and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6086
6087<h5>Semantics:</h5>
6088
6089<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6090a signed subtraction of the two arguments. They return a structure &mdash; the
6091first element of which is the subtraction, and the second element of which is a bit
6092specifying if the signed subtraction resulted in an overflow.</p>
6093
6094<h5>Examples:</h5>
6095<pre>
6096 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6097 %sum = extractvalue {i32, i1} %res, 0
6098 %obit = extractvalue {i32, i1} %res, 1
6099 br i1 %obit, label %overflow, label %normal
6100</pre>
6101
6102</div>
6103
6104<!-- _______________________________________________________________________ -->
6105<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006106 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006107</div>
6108
6109<div class="doc_text">
6110
6111<h5>Syntax:</h5>
6112
6113<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006114on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006115
6116<pre>
6117 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6118 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6119 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6120</pre>
6121
6122<h5>Overview:</h5>
6123
6124<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6125an unsigned subtraction of the two arguments, and indicate whether an overflow
6126occurred during the unsigned subtraction.</p>
6127
6128<h5>Arguments:</h5>
6129
6130<p>The arguments (%a and %b) and the first element of the result structure may
6131be of integer types of any bit width, but they must have the same bit width. The
6132second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6133and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6134
6135<h5>Semantics:</h5>
6136
6137<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6138an unsigned subtraction of the two arguments. They return a structure &mdash; the
6139first element of which is the subtraction, and the second element of which is a bit
6140specifying if the unsigned subtraction resulted in an overflow.</p>
6141
6142<h5>Examples:</h5>
6143<pre>
6144 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6145 %sum = extractvalue {i32, i1} %res, 0
6146 %obit = extractvalue {i32, i1} %res, 1
6147 br i1 %obit, label %overflow, label %normal
6148</pre>
6149
6150</div>
6151
6152<!-- _______________________________________________________________________ -->
6153<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006154 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006155</div>
6156
6157<div class="doc_text">
6158
6159<h5>Syntax:</h5>
6160
6161<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006162on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006163
6164<pre>
6165 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6166 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6167 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6168</pre>
6169
6170<h5>Overview:</h5>
6171
6172<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6173a signed multiplication of the two arguments, and indicate whether an overflow
6174occurred during the signed multiplication.</p>
6175
6176<h5>Arguments:</h5>
6177
6178<p>The arguments (%a and %b) and the first element of the result structure may
6179be of integer types of any bit width, but they must have the same bit width. The
6180second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6181and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6182
6183<h5>Semantics:</h5>
6184
6185<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6186a signed multiplication of the two arguments. They return a structure &mdash;
6187the first element of which is the multiplication, and the second element of
6188which is a bit specifying if the signed multiplication resulted in an
6189overflow.</p>
6190
6191<h5>Examples:</h5>
6192<pre>
6193 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6194 %sum = extractvalue {i32, i1} %res, 0
6195 %obit = extractvalue {i32, i1} %res, 1
6196 br i1 %obit, label %overflow, label %normal
6197</pre>
6198
Reid Spencerf86037f2007-04-11 23:23:49 +00006199</div>
6200
Bill Wendling41b485c2009-02-08 23:00:09 +00006201<!-- _______________________________________________________________________ -->
6202<div class="doc_subsubsection">
6203 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6204</div>
6205
6206<div class="doc_text">
6207
6208<h5>Syntax:</h5>
6209
6210<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6211on any integer bit width.</p>
6212
6213<pre>
6214 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6215 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6216 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6217</pre>
6218
6219<h5>Overview:</h5>
6220
6221<p><i><b>Warning:</b> '<tt>llvm.umul.with.overflow</tt>' is badly broken. It is
6222actively being fixed, but it should not currently be used!</i></p>
6223
6224<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6225a unsigned multiplication of the two arguments, and indicate whether an overflow
6226occurred during the unsigned multiplication.</p>
6227
6228<h5>Arguments:</h5>
6229
6230<p>The arguments (%a and %b) and the first element of the result structure may
6231be of integer types of any bit width, but they must have the same bit width. The
6232second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6233and <tt>%b</tt> are the two values that will undergo unsigned
6234multiplication.</p>
6235
6236<h5>Semantics:</h5>
6237
6238<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6239an unsigned multiplication of the two arguments. They return a structure &mdash;
6240the first element of which is the multiplication, and the second element of
6241which is a bit specifying if the unsigned multiplication resulted in an
6242overflow.</p>
6243
6244<h5>Examples:</h5>
6245<pre>
6246 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6247 %sum = extractvalue {i32, i1} %res, 0
6248 %obit = extractvalue {i32, i1} %res, 1
6249 br i1 %obit, label %overflow, label %normal
6250</pre>
6251
6252</div>
6253
Chris Lattner8ff75902004-01-06 05:31:32 +00006254<!-- ======================================================================= -->
6255<div class="doc_subsection">
6256 <a name="int_debugger">Debugger Intrinsics</a>
6257</div>
6258
6259<div class="doc_text">
6260<p>
6261The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6262are described in the <a
6263href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6264Debugging</a> document.
6265</p>
6266</div>
6267
6268
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006269<!-- ======================================================================= -->
6270<div class="doc_subsection">
6271 <a name="int_eh">Exception Handling Intrinsics</a>
6272</div>
6273
6274<div class="doc_text">
6275<p> The LLVM exception handling intrinsics (which all start with
6276<tt>llvm.eh.</tt> prefix), are described in the <a
6277href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6278Handling</a> document. </p>
6279</div>
6280
Tanya Lattner6d806e92007-06-15 20:50:54 +00006281<!-- ======================================================================= -->
6282<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00006283 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00006284</div>
6285
6286<div class="doc_text">
6287<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006288 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00006289 the <tt>nest</tt> attribute, from a function. The result is a callable
6290 function pointer lacking the nest parameter - the caller does not need
6291 to provide a value for it. Instead, the value to use is stored in
6292 advance in a "trampoline", a block of memory usually allocated
6293 on the stack, which also contains code to splice the nest value into the
6294 argument list. This is used to implement the GCC nested function address
6295 extension.
6296</p>
6297<p>
6298 For example, if the function is
6299 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00006300 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006301<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006302 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6303 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6304 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6305 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00006306</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00006307 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6308 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006309</div>
6310
6311<!-- _______________________________________________________________________ -->
6312<div class="doc_subsubsection">
6313 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6314</div>
6315<div class="doc_text">
6316<h5>Syntax:</h5>
6317<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006318declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00006319</pre>
6320<h5>Overview:</h5>
6321<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006322 This fills the memory pointed to by <tt>tramp</tt> with code
6323 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00006324</p>
6325<h5>Arguments:</h5>
6326<p>
6327 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6328 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6329 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00006330 intrinsic. Note that the size and the alignment are target-specific - LLVM
6331 currently provides no portable way of determining them, so a front-end that
6332 generates this intrinsic needs to have some target-specific knowledge.
6333 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00006334</p>
6335<h5>Semantics:</h5>
6336<p>
6337 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00006338 dependent code, turning it into a function. A pointer to this function is
6339 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00006340 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006341 before being called. The new function's signature is the same as that of
6342 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6343 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6344 of pointer type. Calling the new function is equivalent to calling
6345 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6346 missing <tt>nest</tt> argument. If, after calling
6347 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6348 modified, then the effect of any later call to the returned function pointer is
6349 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00006350</p>
6351</div>
6352
6353<!-- ======================================================================= -->
6354<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006355 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6356</div>
6357
6358<div class="doc_text">
6359<p>
6360 These intrinsic functions expand the "universal IR" of LLVM to represent
6361 hardware constructs for atomic operations and memory synchronization. This
6362 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00006363 is aimed at a low enough level to allow any programming models or APIs
6364 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006365 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6366 hardware behavior. Just as hardware provides a "universal IR" for source
6367 languages, it also provides a starting point for developing a "universal"
6368 atomic operation and synchronization IR.
6369</p>
6370<p>
6371 These do <em>not</em> form an API such as high-level threading libraries,
6372 software transaction memory systems, atomic primitives, and intrinsic
6373 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6374 application libraries. The hardware interface provided by LLVM should allow
6375 a clean implementation of all of these APIs and parallel programming models.
6376 No one model or paradigm should be selected above others unless the hardware
6377 itself ubiquitously does so.
6378
6379</p>
6380</div>
6381
6382<!-- _______________________________________________________________________ -->
6383<div class="doc_subsubsection">
6384 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6385</div>
6386<div class="doc_text">
6387<h5>Syntax:</h5>
6388<pre>
6389declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
6390i1 &lt;device&gt; )
6391
6392</pre>
6393<h5>Overview:</h5>
6394<p>
6395 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6396 specific pairs of memory access types.
6397</p>
6398<h5>Arguments:</h5>
6399<p>
6400 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6401 The first four arguments enables a specific barrier as listed below. The fith
6402 argument specifies that the barrier applies to io or device or uncached memory.
6403
6404</p>
6405 <ul>
6406 <li><tt>ll</tt>: load-load barrier</li>
6407 <li><tt>ls</tt>: load-store barrier</li>
6408 <li><tt>sl</tt>: store-load barrier</li>
6409 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006410 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006411 </ul>
6412<h5>Semantics:</h5>
6413<p>
6414 This intrinsic causes the system to enforce some ordering constraints upon
6415 the loads and stores of the program. This barrier does not indicate
6416 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6417 which they occur. For any of the specified pairs of load and store operations
6418 (f.ex. load-load, or store-load), all of the first operations preceding the
6419 barrier will complete before any of the second operations succeeding the
6420 barrier begin. Specifically the semantics for each pairing is as follows:
6421</p>
6422 <ul>
6423 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6424 after the barrier begins.</li>
6425
6426 <li><tt>ls</tt>: All loads before the barrier must complete before any
6427 store after the barrier begins.</li>
6428 <li><tt>ss</tt>: All stores before the barrier must complete before any
6429 store after the barrier begins.</li>
6430 <li><tt>sl</tt>: All stores before the barrier must complete before any
6431 load after the barrier begins.</li>
6432 </ul>
6433<p>
6434 These semantics are applied with a logical "and" behavior when more than one
6435 is enabled in a single memory barrier intrinsic.
6436</p>
6437<p>
6438 Backends may implement stronger barriers than those requested when they do not
6439 support as fine grained a barrier as requested. Some architectures do not
6440 need all types of barriers and on such architectures, these become noops.
6441</p>
6442<h5>Example:</h5>
6443<pre>
6444%ptr = malloc i32
6445 store i32 4, %ptr
6446
6447%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6448 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6449 <i>; guarantee the above finishes</i>
6450 store i32 8, %ptr <i>; before this begins</i>
6451</pre>
6452</div>
6453
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006454<!-- _______________________________________________________________________ -->
6455<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006456 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006457</div>
6458<div class="doc_text">
6459<h5>Syntax:</h5>
6460<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00006461 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6462 any integer bit width and for different address spaces. Not all targets
6463 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006464
6465<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006466declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6467declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6468declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6469declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006470
6471</pre>
6472<h5>Overview:</h5>
6473<p>
6474 This loads a value in memory and compares it to a given value. If they are
6475 equal, it stores a new value into the memory.
6476</p>
6477<h5>Arguments:</h5>
6478<p>
Mon P Wang28873102008-06-25 08:15:39 +00006479 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006480 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6481 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6482 this integer type. While any bit width integer may be used, targets may only
6483 lower representations they support in hardware.
6484
6485</p>
6486<h5>Semantics:</h5>
6487<p>
6488 This entire intrinsic must be executed atomically. It first loads the value
6489 in memory pointed to by <tt>ptr</tt> and compares it with the value
6490 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6491 loaded value is yielded in all cases. This provides the equivalent of an
6492 atomic compare-and-swap operation within the SSA framework.
6493</p>
6494<h5>Examples:</h5>
6495
6496<pre>
6497%ptr = malloc i32
6498 store i32 4, %ptr
6499
6500%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006501%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006502 <i>; yields {i32}:result1 = 4</i>
6503%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6504%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6505
6506%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006507%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006508 <i>; yields {i32}:result2 = 8</i>
6509%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6510
6511%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6512</pre>
6513</div>
6514
6515<!-- _______________________________________________________________________ -->
6516<div class="doc_subsubsection">
6517 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6518</div>
6519<div class="doc_text">
6520<h5>Syntax:</h5>
6521
6522<p>
6523 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6524 integer bit width. Not all targets support all bit widths however.</p>
6525<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006526declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6527declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6528declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6529declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006530
6531</pre>
6532<h5>Overview:</h5>
6533<p>
6534 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6535 the value from memory. It then stores the value in <tt>val</tt> in the memory
6536 at <tt>ptr</tt>.
6537</p>
6538<h5>Arguments:</h5>
6539
6540<p>
Mon P Wang28873102008-06-25 08:15:39 +00006541 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006542 <tt>val</tt> argument and the result must be integers of the same bit width.
6543 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6544 integer type. The targets may only lower integer representations they
6545 support.
6546</p>
6547<h5>Semantics:</h5>
6548<p>
6549 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6550 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6551 equivalent of an atomic swap operation within the SSA framework.
6552
6553</p>
6554<h5>Examples:</h5>
6555<pre>
6556%ptr = malloc i32
6557 store i32 4, %ptr
6558
6559%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006560%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006561 <i>; yields {i32}:result1 = 4</i>
6562%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6563%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6564
6565%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006566%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006567 <i>; yields {i32}:result2 = 8</i>
6568
6569%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6570%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6571</pre>
6572</div>
6573
6574<!-- _______________________________________________________________________ -->
6575<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006576 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006577
6578</div>
6579<div class="doc_text">
6580<h5>Syntax:</h5>
6581<p>
Mon P Wang28873102008-06-25 08:15:39 +00006582 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006583 integer bit width. Not all targets support all bit widths however.</p>
6584<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006585declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6586declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6587declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6588declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006589
6590</pre>
6591<h5>Overview:</h5>
6592<p>
6593 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6594 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6595</p>
6596<h5>Arguments:</h5>
6597<p>
6598
6599 The intrinsic takes two arguments, the first a pointer to an integer value
6600 and the second an integer value. The result is also an integer value. These
6601 integer types can have any bit width, but they must all have the same bit
6602 width. The targets may only lower integer representations they support.
6603</p>
6604<h5>Semantics:</h5>
6605<p>
6606 This intrinsic does a series of operations atomically. It first loads the
6607 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6608 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6609</p>
6610
6611<h5>Examples:</h5>
6612<pre>
6613%ptr = malloc i32
6614 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006615%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006616 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006617%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006618 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006619%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006620 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006621%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006622</pre>
6623</div>
6624
Mon P Wang28873102008-06-25 08:15:39 +00006625<!-- _______________________________________________________________________ -->
6626<div class="doc_subsubsection">
6627 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6628
6629</div>
6630<div class="doc_text">
6631<h5>Syntax:</h5>
6632<p>
6633 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006634 any integer bit width and for different address spaces. Not all targets
6635 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006636<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006637declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6638declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6639declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6640declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006641
6642</pre>
6643<h5>Overview:</h5>
6644<p>
6645 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6646 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6647</p>
6648<h5>Arguments:</h5>
6649<p>
6650
6651 The intrinsic takes two arguments, the first a pointer to an integer value
6652 and the second an integer value. The result is also an integer value. These
6653 integer types can have any bit width, but they must all have the same bit
6654 width. The targets may only lower integer representations they support.
6655</p>
6656<h5>Semantics:</h5>
6657<p>
6658 This intrinsic does a series of operations atomically. It first loads the
6659 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6660 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6661</p>
6662
6663<h5>Examples:</h5>
6664<pre>
6665%ptr = malloc i32
6666 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006667%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006668 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006669%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006670 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006671%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006672 <i>; yields {i32}:result3 = 2</i>
6673%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6674</pre>
6675</div>
6676
6677<!-- _______________________________________________________________________ -->
6678<div class="doc_subsubsection">
6679 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6680 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6681 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6682 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6683
6684</div>
6685<div class="doc_text">
6686<h5>Syntax:</h5>
6687<p>
6688 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6689 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006690 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6691 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006692<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006693declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6694declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6695declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6696declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006697
6698</pre>
6699
6700<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006701declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6702declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6703declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6704declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006705
6706</pre>
6707
6708<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006709declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6710declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6711declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6712declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006713
6714</pre>
6715
6716<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006717declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6718declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6719declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6720declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006721
6722</pre>
6723<h5>Overview:</h5>
6724<p>
6725 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6726 the value stored in memory at <tt>ptr</tt>. It yields the original value
6727 at <tt>ptr</tt>.
6728</p>
6729<h5>Arguments:</h5>
6730<p>
6731
6732 These intrinsics take two arguments, the first a pointer to an integer value
6733 and the second an integer value. The result is also an integer value. These
6734 integer types can have any bit width, but they must all have the same bit
6735 width. The targets may only lower integer representations they support.
6736</p>
6737<h5>Semantics:</h5>
6738<p>
6739 These intrinsics does a series of operations atomically. They first load the
6740 value stored at <tt>ptr</tt>. They then do the bitwise operation
6741 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6742 value stored at <tt>ptr</tt>.
6743</p>
6744
6745<h5>Examples:</h5>
6746<pre>
6747%ptr = malloc i32
6748 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006749%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006750 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006751%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006752 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006753%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006754 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006755%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006756 <i>; yields {i32}:result3 = FF</i>
6757%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6758</pre>
6759</div>
6760
6761
6762<!-- _______________________________________________________________________ -->
6763<div class="doc_subsubsection">
6764 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6765 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6766 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6767 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6768
6769</div>
6770<div class="doc_text">
6771<h5>Syntax:</h5>
6772<p>
6773 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6774 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006775 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6776 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006777 support all bit widths however.</p>
6778<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006779declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6780declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6781declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6782declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006783
6784</pre>
6785
6786<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006787declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6788declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6789declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6790declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006791
6792</pre>
6793
6794<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006795declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6796declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6797declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6798declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006799
6800</pre>
6801
6802<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006803declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6804declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6805declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6806declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006807
6808</pre>
6809<h5>Overview:</h5>
6810<p>
6811 These intrinsics takes the signed or unsigned minimum or maximum of
6812 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6813 original value at <tt>ptr</tt>.
6814</p>
6815<h5>Arguments:</h5>
6816<p>
6817
6818 These intrinsics take two arguments, the first a pointer to an integer value
6819 and the second an integer value. The result is also an integer value. These
6820 integer types can have any bit width, but they must all have the same bit
6821 width. The targets may only lower integer representations they support.
6822</p>
6823<h5>Semantics:</h5>
6824<p>
6825 These intrinsics does a series of operations atomically. They first load the
6826 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6827 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6828 the original value stored at <tt>ptr</tt>.
6829</p>
6830
6831<h5>Examples:</h5>
6832<pre>
6833%ptr = malloc i32
6834 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006835%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006836 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006837%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006838 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006839%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006840 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006841%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006842 <i>; yields {i32}:result3 = 8</i>
6843%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6844</pre>
6845</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006846
6847<!-- ======================================================================= -->
6848<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006849 <a name="int_general">General Intrinsics</a>
6850</div>
6851
6852<div class="doc_text">
6853<p> This class of intrinsics is designed to be generic and has
6854no specific purpose. </p>
6855</div>
6856
6857<!-- _______________________________________________________________________ -->
6858<div class="doc_subsubsection">
6859 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6860</div>
6861
6862<div class="doc_text">
6863
6864<h5>Syntax:</h5>
6865<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006866 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006867</pre>
6868
6869<h5>Overview:</h5>
6870
6871<p>
6872The '<tt>llvm.var.annotation</tt>' intrinsic
6873</p>
6874
6875<h5>Arguments:</h5>
6876
6877<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006878The first argument is a pointer to a value, the second is a pointer to a
6879global string, the third is a pointer to a global string which is the source
6880file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006881</p>
6882
6883<h5>Semantics:</h5>
6884
6885<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006886This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006887This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006888annotations. These have no other defined use, they are ignored by code
6889generation and optimization.
6890</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006891</div>
6892
Tanya Lattnerb6367882007-09-21 22:59:12 +00006893<!-- _______________________________________________________________________ -->
6894<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006895 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006896</div>
6897
6898<div class="doc_text">
6899
6900<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006901<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6902any integer bit width.
6903</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006904<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006905 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6906 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6907 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6908 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6909 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006910</pre>
6911
6912<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006913
6914<p>
6915The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006916</p>
6917
6918<h5>Arguments:</h5>
6919
6920<p>
6921The first argument is an integer value (result of some expression),
6922the second is a pointer to a global string, the third is a pointer to a global
6923string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006924It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006925</p>
6926
6927<h5>Semantics:</h5>
6928
6929<p>
6930This intrinsic allows annotations to be put on arbitrary expressions
6931with arbitrary strings. This can be useful for special purpose optimizations
6932that want to look for these annotations. These have no other defined use, they
6933are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00006934</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006935</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006936
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006937<!-- _______________________________________________________________________ -->
6938<div class="doc_subsubsection">
6939 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6940</div>
6941
6942<div class="doc_text">
6943
6944<h5>Syntax:</h5>
6945<pre>
6946 declare void @llvm.trap()
6947</pre>
6948
6949<h5>Overview:</h5>
6950
6951<p>
6952The '<tt>llvm.trap</tt>' intrinsic
6953</p>
6954
6955<h5>Arguments:</h5>
6956
6957<p>
6958None
6959</p>
6960
6961<h5>Semantics:</h5>
6962
6963<p>
6964This intrinsics is lowered to the target dependent trap instruction. If the
6965target does not have a trap instruction, this intrinsic will be lowered to the
6966call of the abort() function.
6967</p>
6968</div>
6969
Bill Wendling69e4adb2008-11-19 05:56:17 +00006970<!-- _______________________________________________________________________ -->
6971<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00006972 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00006973</div>
6974<div class="doc_text">
6975<h5>Syntax:</h5>
6976<pre>
6977declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
6978
6979</pre>
6980<h5>Overview:</h5>
6981<p>
6982 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
6983 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
6984 it is placed on the stack before local variables.
6985</p>
6986<h5>Arguments:</h5>
6987<p>
6988 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
6989 first argument is the value loaded from the stack guard
6990 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
6991 has enough space to hold the value of the guard.
6992</p>
6993<h5>Semantics:</h5>
6994<p>
6995 This intrinsic causes the prologue/epilogue inserter to force the position of
6996 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6997 stack. This is to ensure that if a local variable on the stack is overwritten,
6998 it will destroy the value of the guard. When the function exits, the guard on
6999 the stack is checked against the original guard. If they're different, then
7000 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
7001</p>
7002</div>
7003
Chris Lattner00950542001-06-06 20:29:01 +00007004<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00007005<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007006<address>
7007 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007008 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007009 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007010 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007011
7012 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00007013 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007014 Last modified: $Date$
7015</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00007016
Misha Brukman9d0919f2003-11-08 01:05:38 +00007017</body>
7018</html>