blob: 5f23674b31bc888dae85b0350290cadd7131287e [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner00950542001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000040 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Nick Lewycky7a0370f2009-05-30 05:06:04 +000044 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000045 </ol>
46 </li>
Chris Lattner00950542001-06-06 20:29:01 +000047 <li><a href="#t_derived">Derived Types</a>
48 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000049 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000050 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000051 <li><a href="#t_function">Function Type</a></li>
52 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000053 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000054 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000055 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000056 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000057 </ol>
58 </li>
Chris Lattner242d61d2009-02-02 07:32:36 +000059 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000060 </ol>
61 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000062 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000063 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000064 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner70882792009-02-28 18:32:25 +000065 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000066 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
67 <li><a href="#undefvalues">Undefined Values</a></li>
68 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky21cc4462009-04-04 07:22:01 +000069 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000070 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000071 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000072 <li><a href="#othervalues">Other Values</a>
73 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000074 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000075 </ol>
76 </li>
Chris Lattner00950542001-06-06 20:29:01 +000077 <li><a href="#instref">Instruction Reference</a>
78 <ol>
79 <li><a href="#terminators">Terminator Instructions</a>
80 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
82 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000083 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
84 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000085 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000086 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000087 </ol>
88 </li>
Chris Lattner00950542001-06-06 20:29:01 +000089 <li><a href="#binaryops">Binary Operations</a>
90 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000091 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
92 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
93 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000094 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
95 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
96 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000097 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
98 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
99 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000100 </ol>
101 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000102 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
103 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000104 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
105 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
106 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000107 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000108 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000109 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000110 </ol>
111 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000112 <li><a href="#vectorops">Vector Operations</a>
113 <ol>
114 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
115 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
116 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000117 </ol>
118 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000119 <li><a href="#aggregateops">Aggregate Operations</a>
120 <ol>
121 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
122 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
123 </ol>
124 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000125 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000126 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000127 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
128 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
129 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000130 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
131 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
132 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000133 </ol>
134 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000135 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000136 <ol>
137 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
138 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
139 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
140 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
141 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000142 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
143 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
144 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
145 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000146 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
147 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000148 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000149 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000150 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000151 <li><a href="#otherops">Other Operations</a>
152 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000153 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
154 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000155 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
156 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000157 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000158 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000159 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000160 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000161 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000162 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000163 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000164 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000165 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000166 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000167 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
168 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000169 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
170 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
171 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000172 </ol>
173 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000174 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
175 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000176 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
177 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
178 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000179 </ol>
180 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000181 <li><a href="#int_codegen">Code Generator Intrinsics</a>
182 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000183 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
184 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
185 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
186 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
187 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
188 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
189 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000190 </ol>
191 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000192 <li><a href="#int_libc">Standard C Library Intrinsics</a>
193 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000194 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000199 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
200 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
201 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000202 </ol>
203 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000204 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000205 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000206 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000207 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
208 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
209 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000210 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
211 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000212 </ol>
213 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000214 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
215 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000216 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
217 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
218 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
219 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
220 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling41b485c2009-02-08 23:00:09 +0000221 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000222 </ol>
223 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000224 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000225 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000226 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000227 <ol>
228 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000229 </ol>
230 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000231 <li><a href="#int_atomics">Atomic intrinsics</a>
232 <ol>
233 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
234 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
235 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
236 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
237 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
238 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
239 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
240 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
241 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
242 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
243 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
244 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
245 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
246 </ol>
247 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000248 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000249 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000250 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000251 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000252 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000253 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000254 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000255 '<tt>llvm.trap</tt>' Intrinsic</a></li>
256 <li><a href="#int_stackprotector">
257 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000258 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000259 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000260 </ol>
261 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000262</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000263
264<div class="doc_author">
265 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
266 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000267</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000268
Chris Lattner00950542001-06-06 20:29:01 +0000269<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000270<div class="doc_section"> <a name="abstract">Abstract </a></div>
271<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000272
Misha Brukman9d0919f2003-11-08 01:05:38 +0000273<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000274<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000275LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000276type safety, low-level operations, flexibility, and the capability of
277representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000278representation used throughout all phases of the LLVM compilation
279strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000280</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000281
Chris Lattner00950542001-06-06 20:29:01 +0000282<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000283<div class="doc_section"> <a name="introduction">Introduction</a> </div>
284<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000285
Misha Brukman9d0919f2003-11-08 01:05:38 +0000286<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000287
Chris Lattner261efe92003-11-25 01:02:51 +0000288<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000289different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000290representation (suitable for fast loading by a Just-In-Time compiler),
291and as a human readable assembly language representation. This allows
292LLVM to provide a powerful intermediate representation for efficient
293compiler transformations and analysis, while providing a natural means
294to debug and visualize the transformations. The three different forms
295of LLVM are all equivalent. This document describes the human readable
296representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000297
John Criswellc1f786c2005-05-13 22:25:59 +0000298<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000299while being expressive, typed, and extensible at the same time. It
300aims to be a "universal IR" of sorts, by being at a low enough level
301that high-level ideas may be cleanly mapped to it (similar to how
302microprocessors are "universal IR's", allowing many source languages to
303be mapped to them). By providing type information, LLVM can be used as
304the target of optimizations: for example, through pointer analysis, it
305can be proven that a C automatic variable is never accessed outside of
306the current function... allowing it to be promoted to a simple SSA
307value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000308
Misha Brukman9d0919f2003-11-08 01:05:38 +0000309</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000310
Chris Lattner00950542001-06-06 20:29:01 +0000311<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000312<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000313
Misha Brukman9d0919f2003-11-08 01:05:38 +0000314<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000315
Chris Lattner261efe92003-11-25 01:02:51 +0000316<p>It is important to note that this document describes 'well formed'
317LLVM assembly language. There is a difference between what the parser
318accepts and what is considered 'well formed'. For example, the
319following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000320
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000321<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000322<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000323%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000324</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000325</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000326
Chris Lattner261efe92003-11-25 01:02:51 +0000327<p>...because the definition of <tt>%x</tt> does not dominate all of
328its uses. The LLVM infrastructure provides a verification pass that may
329be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000330automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000331the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000332by the verifier pass indicate bugs in transformation passes or input to
333the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000334</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000335
Chris Lattnercc689392007-10-03 17:34:29 +0000336<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000337
Chris Lattner00950542001-06-06 20:29:01 +0000338<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000339<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000340<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000341
Misha Brukman9d0919f2003-11-08 01:05:38 +0000342<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000343
Reid Spencer2c452282007-08-07 14:34:28 +0000344 <p>LLVM identifiers come in two basic types: global and local. Global
345 identifiers (functions, global variables) begin with the @ character. Local
346 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000347 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000348
Chris Lattner00950542001-06-06 20:29:01 +0000349<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000350 <li>Named values are represented as a string of characters with their prefix.
351 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
352 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000353 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000354 with quotes. Special characters may be escaped using "\xx" where xx is the
355 ASCII code for the character in hexadecimal. In this way, any character can
356 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000357
Reid Spencer2c452282007-08-07 14:34:28 +0000358 <li>Unnamed values are represented as an unsigned numeric value with their
359 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000360
Reid Spencercc16dc32004-12-09 18:02:53 +0000361 <li>Constants, which are described in a <a href="#constants">section about
362 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000363</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000364
Reid Spencer2c452282007-08-07 14:34:28 +0000365<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000366don't need to worry about name clashes with reserved words, and the set of
367reserved words may be expanded in the future without penalty. Additionally,
368unnamed identifiers allow a compiler to quickly come up with a temporary
369variable without having to avoid symbol table conflicts.</p>
370
Chris Lattner261efe92003-11-25 01:02:51 +0000371<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000372languages. There are keywords for different opcodes
373('<tt><a href="#i_add">add</a></tt>',
374 '<tt><a href="#i_bitcast">bitcast</a></tt>',
375 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000376href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000377and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000378none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000379
380<p>Here is an example of LLVM code to multiply the integer variable
381'<tt>%X</tt>' by 8:</p>
382
Misha Brukman9d0919f2003-11-08 01:05:38 +0000383<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000384
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000385<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000386<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000387%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000388</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000389</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000390
Misha Brukman9d0919f2003-11-08 01:05:38 +0000391<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000392
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000393<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000394<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000395%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000396</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000397</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000398
Misha Brukman9d0919f2003-11-08 01:05:38 +0000399<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000400
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000401<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000402<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000403<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
404<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
405%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000406</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000407</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000408
Chris Lattner261efe92003-11-25 01:02:51 +0000409<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
410important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000411
Chris Lattner00950542001-06-06 20:29:01 +0000412<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000413
414 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
415 line.</li>
416
417 <li>Unnamed temporaries are created when the result of a computation is not
418 assigned to a named value.</li>
419
Misha Brukman9d0919f2003-11-08 01:05:38 +0000420 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000421
Misha Brukman9d0919f2003-11-08 01:05:38 +0000422</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000423
John Criswelle4c57cc2005-05-12 16:52:32 +0000424<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000425demonstrating instructions, we will follow an instruction with a comment that
426defines the type and name of value produced. Comments are shown in italic
427text.</p>
428
Misha Brukman9d0919f2003-11-08 01:05:38 +0000429</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000430
431<!-- *********************************************************************** -->
432<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
433<!-- *********************************************************************** -->
434
435<!-- ======================================================================= -->
436<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
437</div>
438
439<div class="doc_text">
440
441<p>LLVM programs are composed of "Module"s, each of which is a
442translation unit of the input programs. Each module consists of
443functions, global variables, and symbol table entries. Modules may be
444combined together with the LLVM linker, which merges function (and
445global variable) definitions, resolves forward declarations, and merges
446symbol table entries. Here is an example of the "hello world" module:</p>
447
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000448<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000449<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000450<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
451 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000452
453<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000454<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000455
456<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000457define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000458 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000459 %cast210 = <a
Dan Gohman2a08c532009-01-04 23:44:43 +0000460 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000461
462 <i>; Call puts function to write out the string to stdout...</i>
463 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000464 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000465 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000466 href="#i_ret">ret</a> i32 0<br>}<br>
467</pre>
468</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000469
470<p>This example is made up of a <a href="#globalvars">global variable</a>
471named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
472function, and a <a href="#functionstructure">function definition</a>
473for "<tt>main</tt>".</p>
474
Chris Lattnere5d947b2004-12-09 16:36:40 +0000475<p>In general, a module is made up of a list of global values,
476where both functions and global variables are global values. Global values are
477represented by a pointer to a memory location (in this case, a pointer to an
478array of char, and a pointer to a function), and have one of the following <a
479href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000480
Chris Lattnere5d947b2004-12-09 16:36:40 +0000481</div>
482
483<!-- ======================================================================= -->
484<div class="doc_subsection">
485 <a name="linkage">Linkage Types</a>
486</div>
487
488<div class="doc_text">
489
490<p>
491All Global Variables and Functions have one of the following types of linkage:
492</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000493
494<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000495
Rafael Espindolabb46f522009-01-15 20:18:42 +0000496 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
497
498 <dd>Global values with private linkage are only directly accessible by
499 objects in the current module. In particular, linking code into a module with
500 an private global value may cause the private to be renamed as necessary to
501 avoid collisions. Because the symbol is private to the module, all
502 references can be updated. This doesn't show up in any symbol table in the
503 object file.
504 </dd>
505
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000506 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000507
Duncan Sands81d05c22009-01-16 09:29:46 +0000508 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindolabb46f522009-01-15 20:18:42 +0000509 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000510 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000511 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000512
Chris Lattner266c7bb2009-04-13 05:44:34 +0000513 <dt><tt><b><a name="available_externally">available_externally</a></b></tt>:
514 </dt>
515
516 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
517 into the object file corresponding to the LLVM module. They exist to
518 allow inlining and other optimizations to take place given knowledge of the
519 definition of the global, which is known to be somewhere outside the module.
520 Globals with <tt>available_externally</tt> linkage are allowed to be discarded
521 at will, and are otherwise the same as <tt>linkonce_odr</tt>. This linkage
522 type is only allowed on definitions, not declarations.</dd>
523
Chris Lattnerfa730212004-12-09 16:11:40 +0000524 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000525
Chris Lattner4887bd82007-01-14 06:51:48 +0000526 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
527 the same name when linkage occurs. This is typically used to implement
528 inline functions, templates, or other code which must be generated in each
529 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
530 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000531 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000532
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000533 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
534
535 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
536 linkage, except that unreferenced <tt>common</tt> globals may not be
537 discarded. This is used for globals that may be emitted in multiple
538 translation units, but that are not guaranteed to be emitted into every
539 translation unit that uses them. One example of this is tentative
540 definitions in C, such as "<tt>int X;</tt>" at global scope.
541 </dd>
542
Chris Lattnerfa730212004-12-09 16:11:40 +0000543 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000544
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000545 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
546 that some targets may choose to emit different assembly sequences for them
547 for target-dependent reasons. This is used for globals that are declared
548 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000549 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000550
Chris Lattnerfa730212004-12-09 16:11:40 +0000551 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000552
553 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
554 pointer to array type. When two global variables with appending linkage are
555 linked together, the two global arrays are appended together. This is the
556 LLVM, typesafe, equivalent of having the system linker append together
557 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000558 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000559
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000560 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000561
Chris Lattnerd3eda892008-08-05 18:29:16 +0000562 <dd>The semantics of this linkage follow the ELF object file model: the
563 symbol is weak until linked, if not linked, the symbol becomes null instead
564 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000565 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000566
Duncan Sands667d4b82009-03-07 15:45:40 +0000567 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000568 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000569 <dd>Some languages allow differing globals to be merged, such as two
Duncan Sands667d4b82009-03-07 15:45:40 +0000570 functions with different semantics. Other languages, such as <tt>C++</tt>,
571 ensure that only equivalent globals are ever merged (the "one definition
Chris Lattner266c7bb2009-04-13 05:44:34 +0000572 rule" - "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Duncan Sands4dc2b392009-03-11 20:14:15 +0000573 and <tt>weak_odr</tt> linkage types to indicate that the global will only
574 be merged with equivalent globals. These linkage types are otherwise the
575 same as their non-<tt>odr</tt> versions.
Duncan Sands667d4b82009-03-07 15:45:40 +0000576 </dd>
577
Chris Lattnerfa730212004-12-09 16:11:40 +0000578 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000579
580 <dd>If none of the above identifiers are used, the global is externally
581 visible, meaning that it participates in linkage and can be used to resolve
582 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000583 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000584</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000585
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000586 <p>
587 The next two types of linkage are targeted for Microsoft Windows platform
588 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000589 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000590 </p>
591
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000592 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000593 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
594
595 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
596 or variable via a global pointer to a pointer that is set up by the DLL
597 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman79564122009-01-12 21:35:55 +0000598 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000599 </dd>
600
601 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
602
603 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
604 pointer to a pointer in a DLL, so that it can be referenced with the
605 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman79564122009-01-12 21:35:55 +0000606 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000607 name.
608 </dd>
609
Chris Lattnerfa730212004-12-09 16:11:40 +0000610</dl>
611
Dan Gohmanf0032762008-11-24 17:18:39 +0000612<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000613variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
614variable and was linked with this one, one of the two would be renamed,
615preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
616external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000617outside of the current module.</p>
618<p>It is illegal for a function <i>declaration</i>
Duncan Sands5f4ee1f2009-03-11 08:08:06 +0000619to have any linkage type other than "externally visible", <tt>dllimport</tt>
620or <tt>extern_weak</tt>.</p>
Duncan Sands667d4b82009-03-07 15:45:40 +0000621<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
622or <tt>weak_odr</tt> linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000623</div>
624
625<!-- ======================================================================= -->
626<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000627 <a name="callingconv">Calling Conventions</a>
628</div>
629
630<div class="doc_text">
631
632<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
633and <a href="#i_invoke">invokes</a> can all have an optional calling convention
634specified for the call. The calling convention of any pair of dynamic
635caller/callee must match, or the behavior of the program is undefined. The
636following calling conventions are supported by LLVM, and more may be added in
637the future:</p>
638
639<dl>
640 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
641
642 <dd>This calling convention (the default if no other calling convention is
643 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000644 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000645 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000646 </dd>
647
648 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
649
650 <dd>This calling convention attempts to make calls as fast as possible
651 (e.g. by passing things in registers). This calling convention allows the
652 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000653 without having to conform to an externally specified ABI (Application Binary
654 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000655 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
656 supported. This calling convention does not support varargs and requires the
657 prototype of all callees to exactly match the prototype of the function
658 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000659 </dd>
660
661 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
662
663 <dd>This calling convention attempts to make code in the caller as efficient
664 as possible under the assumption that the call is not commonly executed. As
665 such, these calls often preserve all registers so that the call does not break
666 any live ranges in the caller side. This calling convention does not support
667 varargs and requires the prototype of all callees to exactly match the
668 prototype of the function definition.
669 </dd>
670
Chris Lattnercfe6b372005-05-07 01:46:40 +0000671 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000672
673 <dd>Any calling convention may be specified by number, allowing
674 target-specific calling conventions to be used. Target specific calling
675 conventions start at 64.
676 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000677</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000678
679<p>More calling conventions can be added/defined on an as-needed basis, to
680support pascal conventions or any other well-known target-independent
681convention.</p>
682
683</div>
684
685<!-- ======================================================================= -->
686<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000687 <a name="visibility">Visibility Styles</a>
688</div>
689
690<div class="doc_text">
691
692<p>
693All Global Variables and Functions have one of the following visibility styles:
694</p>
695
696<dl>
697 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
698
Chris Lattnerd3eda892008-08-05 18:29:16 +0000699 <dd>On targets that use the ELF object file format, default visibility means
700 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000701 modules and, in shared libraries, means that the declared entity may be
702 overridden. On Darwin, default visibility means that the declaration is
703 visible to other modules. Default visibility corresponds to "external
704 linkage" in the language.
705 </dd>
706
707 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
708
709 <dd>Two declarations of an object with hidden visibility refer to the same
710 object if they are in the same shared object. Usually, hidden visibility
711 indicates that the symbol will not be placed into the dynamic symbol table,
712 so no other module (executable or shared library) can reference it
713 directly.
714 </dd>
715
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000716 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
717
718 <dd>On ELF, protected visibility indicates that the symbol will be placed in
719 the dynamic symbol table, but that references within the defining module will
720 bind to the local symbol. That is, the symbol cannot be overridden by another
721 module.
722 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000723</dl>
724
725</div>
726
727<!-- ======================================================================= -->
728<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000729 <a name="namedtypes">Named Types</a>
730</div>
731
732<div class="doc_text">
733
734<p>LLVM IR allows you to specify name aliases for certain types. This can make
735it easier to read the IR and make the IR more condensed (particularly when
736recursive types are involved). An example of a name specification is:
737</p>
738
739<div class="doc_code">
740<pre>
741%mytype = type { %mytype*, i32 }
742</pre>
743</div>
744
745<p>You may give a name to any <a href="#typesystem">type</a> except "<a
746href="t_void">void</a>". Type name aliases may be used anywhere a type is
747expected with the syntax "%mytype".</p>
748
749<p>Note that type names are aliases for the structural type that they indicate,
750and that you can therefore specify multiple names for the same type. This often
751leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
752structural typing, the name is not part of the type. When printing out LLVM IR,
753the printer will pick <em>one name</em> to render all types of a particular
754shape. This means that if you have code where two different source types end up
755having the same LLVM type, that the dumper will sometimes print the "wrong" or
756unexpected type. This is an important design point and isn't going to
757change.</p>
758
759</div>
760
Chris Lattnere7886e42009-01-11 20:53:49 +0000761<!-- ======================================================================= -->
762<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000763 <a name="globalvars">Global Variables</a>
764</div>
765
766<div class="doc_text">
767
Chris Lattner3689a342005-02-12 19:30:21 +0000768<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000769instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000770an explicit section to be placed in, and may have an optional explicit alignment
771specified. A variable may be defined as "thread_local", which means that it
772will not be shared by threads (each thread will have a separated copy of the
773variable). A variable may be defined as a global "constant," which indicates
774that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000775optimization, allowing the global data to be placed in the read-only section of
776an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000777cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000778
779<p>
780LLVM explicitly allows <em>declarations</em> of global variables to be marked
781constant, even if the final definition of the global is not. This capability
782can be used to enable slightly better optimization of the program, but requires
783the language definition to guarantee that optimizations based on the
784'constantness' are valid for the translation units that do not include the
785definition.
786</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000787
788<p>As SSA values, global variables define pointer values that are in
789scope (i.e. they dominate) all basic blocks in the program. Global
790variables always define a pointer to their "content" type because they
791describe a region of memory, and all memory objects in LLVM are
792accessed through pointers.</p>
793
Christopher Lamb284d9922007-12-11 09:31:00 +0000794<p>A global variable may be declared to reside in a target-specifc numbered
795address space. For targets that support them, address spaces may affect how
796optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000797the variable. The default address space is zero. The address space qualifier
798must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000799
Chris Lattner88f6c462005-11-12 00:45:07 +0000800<p>LLVM allows an explicit section to be specified for globals. If the target
801supports it, it will emit globals to the section specified.</p>
802
Chris Lattner2cbdc452005-11-06 08:02:57 +0000803<p>An explicit alignment may be specified for a global. If not present, or if
804the alignment is set to zero, the alignment of the global is set by the target
805to whatever it feels convenient. If an explicit alignment is specified, the
806global is forced to have at least that much alignment. All alignments must be
807a power of 2.</p>
808
Christopher Lamb284d9922007-12-11 09:31:00 +0000809<p>For example, the following defines a global in a numbered address space with
810an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000811
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000812<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000813<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000814@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000815</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000816</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000817
Chris Lattnerfa730212004-12-09 16:11:40 +0000818</div>
819
820
821<!-- ======================================================================= -->
822<div class="doc_subsection">
823 <a name="functionstructure">Functions</a>
824</div>
825
826<div class="doc_text">
827
Reid Spencerca86e162006-12-31 07:07:53 +0000828<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
829an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000830<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000831<a href="#callingconv">calling convention</a>, a return type, an optional
832<a href="#paramattrs">parameter attribute</a> for the return type, a function
833name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000834<a href="#paramattrs">parameter attributes</a>), optional
835<a href="#fnattrs">function attributes</a>, an optional section,
836an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000837an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000838
839LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
840optional <a href="#linkage">linkage type</a>, an optional
841<a href="#visibility">visibility style</a>, an optional
842<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000843<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000844name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000845<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000846
Chris Lattnerd3eda892008-08-05 18:29:16 +0000847<p>A function definition contains a list of basic blocks, forming the CFG
848(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000849the function. Each basic block may optionally start with a label (giving the
850basic block a symbol table entry), contains a list of instructions, and ends
851with a <a href="#terminators">terminator</a> instruction (such as a branch or
852function return).</p>
853
Chris Lattner4a3c9012007-06-08 16:52:14 +0000854<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000855executed on entrance to the function, and it is not allowed to have predecessor
856basic blocks (i.e. there can not be any branches to the entry block of a
857function). Because the block can have no predecessors, it also cannot have any
858<a href="#i_phi">PHI nodes</a>.</p>
859
Chris Lattner88f6c462005-11-12 00:45:07 +0000860<p>LLVM allows an explicit section to be specified for functions. If the target
861supports it, it will emit functions to the section specified.</p>
862
Chris Lattner2cbdc452005-11-06 08:02:57 +0000863<p>An explicit alignment may be specified for a function. If not present, or if
864the alignment is set to zero, the alignment of the function is set by the target
865to whatever it feels convenient. If an explicit alignment is specified, the
866function is forced to have at least that much alignment. All alignments must be
867a power of 2.</p>
868
Devang Patel307e8ab2008-10-07 17:48:33 +0000869 <h5>Syntax:</h5>
870
871<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000872<tt>
873define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
874 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
875 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
876 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
877 [<a href="#gc">gc</a>] { ... }
878</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000879</div>
880
Chris Lattnerfa730212004-12-09 16:11:40 +0000881</div>
882
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000883
884<!-- ======================================================================= -->
885<div class="doc_subsection">
886 <a name="aliasstructure">Aliases</a>
887</div>
888<div class="doc_text">
889 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000890 function, global variable, another alias or bitcast of global value). Aliases
891 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000892 optional <a href="#visibility">visibility style</a>.</p>
893
894 <h5>Syntax:</h5>
895
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000896<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000897<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000898@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000899</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000900</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000901
902</div>
903
904
905
Chris Lattner4e9aba72006-01-23 23:23:47 +0000906<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000907<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
908<div class="doc_text">
909 <p>The return type and each parameter of a function type may have a set of
910 <i>parameter attributes</i> associated with them. Parameter attributes are
911 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000912 a function. Parameter attributes are considered to be part of the function,
913 not of the function type, so functions with different parameter attributes
914 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000915
Reid Spencer950e9f82007-01-15 18:27:39 +0000916 <p>Parameter attributes are simple keywords that follow the type specified. If
917 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000918 example:</p>
919
920<div class="doc_code">
921<pre>
Nick Lewyckyb6a7d252009-02-15 23:06:14 +0000922declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000923declare i32 @atoi(i8 zeroext)
924declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000925</pre>
926</div>
927
Duncan Sandsdc024672007-11-27 13:23:08 +0000928 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
929 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000930
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000931 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000932 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000933 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000934 <dd>This indicates to the code generator that the parameter or return value
935 should be zero-extended to a 32-bit value by the caller (for a parameter)
936 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000937
Reid Spencer9445e9a2007-07-19 23:13:04 +0000938 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000939 <dd>This indicates to the code generator that the parameter or return value
940 should be sign-extended to a 32-bit value by the caller (for a parameter)
941 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000942
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000943 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000944 <dd>This indicates that this parameter or return value should be treated
945 in a special target-dependent fashion during while emitting code for a
946 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000947 to memory, though some targets use it to distinguish between two different
948 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000949
Duncan Sandsedb05df2008-10-06 08:14:18 +0000950 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000951 <dd>This indicates that the pointer parameter should really be passed by
952 value to the function. The attribute implies that a hidden copy of the
953 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000954 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000955 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000956 value, but is also valid on pointers to scalars. The copy is considered to
957 belong to the caller not the callee (for example,
958 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000959 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerce459b12009-02-05 05:42:28 +0000960 values. The byval attribute also supports specifying an alignment with the
961 align attribute. This has a target-specific effect on the code generator
962 that usually indicates a desired alignment for the synthesized stack
963 slot.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000964
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000965 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000966 <dd>This indicates that the pointer parameter specifies the address of a
967 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000968 This pointer must be guaranteed by the caller to be valid: loads and stores
969 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000970 be applied to the first parameter. This is not a valid attribute for
971 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000972
Zhou Shengfebca342007-06-05 05:28:26 +0000973 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000974 <dd>This indicates that the pointer does not alias any global or any other
975 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000976 case. On a function return value, <tt>noalias</tt> additionally indicates
977 that the pointer does not alias any other pointers visible to the
Nick Lewyckyf23d0d32008-12-19 06:39:12 +0000978 caller. For further details, please see the discussion of the NoAlias
979 response in
980 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
981 analysis</a>.</dd>
982
983 <dt><tt>nocapture</tt></dt>
984 <dd>This indicates that the callee does not make any copies of the pointer
985 that outlive the callee itself. This is not a valid attribute for return
986 values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000987
Duncan Sands50f19f52007-07-27 19:57:41 +0000988 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000989 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000990 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
991 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000992 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000993
Reid Spencerca86e162006-12-31 07:07:53 +0000994</div>
995
996<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000997<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000998 <a name="gc">Garbage Collector Names</a>
999</div>
1000
1001<div class="doc_text">
1002<p>Each function may specify a garbage collector name, which is simply a
1003string.</p>
1004
1005<div class="doc_code"><pre
1006>define void @f() gc "name" { ...</pre></div>
1007
1008<p>The compiler declares the supported values of <i>name</i>. Specifying a
1009collector which will cause the compiler to alter its output in order to support
1010the named garbage collection algorithm.</p>
1011</div>
1012
1013<!-- ======================================================================= -->
1014<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001015 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +00001016</div>
1017
1018<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001019
1020<p>Function attributes are set to communicate additional information about
1021 a function. Function attributes are considered to be part of the function,
1022 not of the function type, so functions with different parameter attributes
1023 can have the same function type.</p>
1024
1025 <p>Function attributes are simple keywords that follow the type specified. If
1026 multiple attributes are needed, they are space separated. For
1027 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001028
1029<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001030<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001031define void @f() noinline { ... }
1032define void @f() alwaysinline { ... }
1033define void @f() alwaysinline optsize { ... }
1034define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001035</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001036</div>
1037
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001038<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001039<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001040<dd>This attribute indicates that the inliner should attempt to inline this
1041function into callers whenever possible, ignoring any active inlining size
1042threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001043
Devang Patel2c9c3e72008-09-26 23:51:19 +00001044<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001045<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +00001046in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +00001047<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001048
Devang Patel2c9c3e72008-09-26 23:51:19 +00001049<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +00001050<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +00001051make choices that keep the code size of this function low, and otherwise do
1052optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001053
Devang Patel2c9c3e72008-09-26 23:51:19 +00001054<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001055<dd>This function attribute indicates that the function never returns normally.
1056This produces undefined behavior at runtime if the function ever does
1057dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001058
1059<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001060<dd>This function attribute indicates that the function never returns with an
1061unwind or exceptional control flow. If the function does unwind, its runtime
1062behavior is undefined.</dd>
1063
1064<dt><tt>readnone</tt></dt>
Duncan Sands7af1c782009-05-06 06:49:50 +00001065<dd>This attribute indicates that the function computes its result (or decides to
1066unwind an exception) based strictly on its arguments, without dereferencing any
Duncan Sandsedb05df2008-10-06 08:14:18 +00001067pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1068registers, etc) visible to caller functions. It does not write through any
1069pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
Duncan Sands7af1c782009-05-06 06:49:50 +00001070never changes any state visible to callers. This means that it cannot unwind
1071exceptions by calling the <tt>C++</tt> exception throwing methods, but could
1072use the <tt>unwind</tt> instruction.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001073
Duncan Sandsedb05df2008-10-06 08:14:18 +00001074<dt><tt><a name="readonly">readonly</a></tt></dt>
1075<dd>This attribute indicates that the function does not write through any
1076pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1077or otherwise modify any state (e.g. memory, control registers, etc) visible to
1078caller functions. It may dereference pointer arguments and read state that may
Duncan Sands7af1c782009-05-06 06:49:50 +00001079be set in the caller. A readonly function always returns the same value (or
1080unwinds an exception identically) when called with the same set of arguments
1081and global state. It cannot unwind an exception by calling the <tt>C++</tt>
1082exception throwing methods, but may use the <tt>unwind</tt> instruction.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001083
1084<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001085<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +00001086protector. It is in the form of a "canary"&mdash;a random value placed on the
1087stack before the local variables that's checked upon return from the function to
1088see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001089needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001090
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001091<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
1092that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
1093have an <tt>ssp</tt> attribute.</p></dd>
1094
1095<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001096<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001097stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001098function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001099
1100<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
1101function that doesn't have an <tt>sspreq</tt> attribute or which has
1102an <tt>ssp</tt> attribute, then the resulting function will have
1103an <tt>sspreq</tt> attribute.</p></dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001104</dl>
1105
Devang Patelf8b94812008-09-04 23:05:13 +00001106</div>
1107
1108<!-- ======================================================================= -->
1109<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001110 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001111</div>
1112
1113<div class="doc_text">
1114<p>
1115Modules may contain "module-level inline asm" blocks, which corresponds to the
1116GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1117LLVM and treated as a single unit, but may be separated in the .ll file if
1118desired. The syntax is very simple:
1119</p>
1120
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001121<div class="doc_code">
1122<pre>
1123module asm "inline asm code goes here"
1124module asm "more can go here"
1125</pre>
1126</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001127
1128<p>The strings can contain any character by escaping non-printable characters.
1129 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1130 for the number.
1131</p>
1132
1133<p>
1134 The inline asm code is simply printed to the machine code .s file when
1135 assembly code is generated.
1136</p>
1137</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001138
Reid Spencerde151942007-02-19 23:54:10 +00001139<!-- ======================================================================= -->
1140<div class="doc_subsection">
1141 <a name="datalayout">Data Layout</a>
1142</div>
1143
1144<div class="doc_text">
1145<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001146data is to be laid out in memory. The syntax for the data layout is simply:</p>
1147<pre> target datalayout = "<i>layout specification</i>"</pre>
1148<p>The <i>layout specification</i> consists of a list of specifications
1149separated by the minus sign character ('-'). Each specification starts with a
1150letter and may include other information after the letter to define some
1151aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001152<dl>
1153 <dt><tt>E</tt></dt>
1154 <dd>Specifies that the target lays out data in big-endian form. That is, the
1155 bits with the most significance have the lowest address location.</dd>
1156 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001157 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001158 the bits with the least significance have the lowest address location.</dd>
1159 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1160 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1161 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1162 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1163 too.</dd>
1164 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1165 <dd>This specifies the alignment for an integer type of a given bit
1166 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1167 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1168 <dd>This specifies the alignment for a vector type of a given bit
1169 <i>size</i>.</dd>
1170 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1171 <dd>This specifies the alignment for a floating point type of a given bit
1172 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1173 (double).</dd>
1174 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1175 <dd>This specifies the alignment for an aggregate type of a given bit
1176 <i>size</i>.</dd>
1177</dl>
1178<p>When constructing the data layout for a given target, LLVM starts with a
1179default set of specifications which are then (possibly) overriden by the
1180specifications in the <tt>datalayout</tt> keyword. The default specifications
1181are given in this list:</p>
1182<ul>
1183 <li><tt>E</tt> - big endian</li>
1184 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1185 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1186 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1187 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1188 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001189 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001190 alignment of 64-bits</li>
1191 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1192 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1193 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1194 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1195 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1196</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001197<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001198following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001199<ol>
1200 <li>If the type sought is an exact match for one of the specifications, that
1201 specification is used.</li>
1202 <li>If no match is found, and the type sought is an integer type, then the
1203 smallest integer type that is larger than the bitwidth of the sought type is
1204 used. If none of the specifications are larger than the bitwidth then the the
1205 largest integer type is used. For example, given the default specifications
1206 above, the i7 type will use the alignment of i8 (next largest) while both
1207 i65 and i256 will use the alignment of i64 (largest specified).</li>
1208 <li>If no match is found, and the type sought is a vector type, then the
1209 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001210 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1211 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001212</ol>
1213</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001214
Chris Lattner00950542001-06-06 20:29:01 +00001215<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001216<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1217<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001218
Misha Brukman9d0919f2003-11-08 01:05:38 +00001219<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001220
Misha Brukman9d0919f2003-11-08 01:05:38 +00001221<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001222intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001223optimizations to be performed on the intermediate representation directly,
1224without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001225extra analyses on the side before the transformation. A strong type
1226system makes it easier to read the generated code and enables novel
1227analyses and transformations that are not feasible to perform on normal
1228three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001229
1230</div>
1231
Chris Lattner00950542001-06-06 20:29:01 +00001232<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001233<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001234Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001235<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001236<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001237classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001238
1239<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001240 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001241 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001242 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001243 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001244 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001245 </tr>
1246 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001247 <td><a href="#t_floating">floating point</a></td>
1248 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001249 </tr>
1250 <tr>
1251 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001252 <td><a href="#t_integer">integer</a>,
1253 <a href="#t_floating">floating point</a>,
1254 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001255 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001256 <a href="#t_struct">structure</a>,
1257 <a href="#t_array">array</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001258 <a href="#t_label">label</a>,
1259 <a href="#t_metadata">metadata</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001260 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001261 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001262 <tr>
1263 <td><a href="#t_primitive">primitive</a></td>
1264 <td><a href="#t_label">label</a>,
1265 <a href="#t_void">void</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001266 <a href="#t_floating">floating point</a>,
1267 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001268 </tr>
1269 <tr>
1270 <td><a href="#t_derived">derived</a></td>
1271 <td><a href="#t_integer">integer</a>,
1272 <a href="#t_array">array</a>,
1273 <a href="#t_function">function</a>,
1274 <a href="#t_pointer">pointer</a>,
1275 <a href="#t_struct">structure</a>,
1276 <a href="#t_pstruct">packed structure</a>,
1277 <a href="#t_vector">vector</a>,
1278 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001279 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001280 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001281 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001282</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001283
Chris Lattner261efe92003-11-25 01:02:51 +00001284<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1285most important. Values of these types are the only ones which can be
1286produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001287instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001288</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001289
Chris Lattner00950542001-06-06 20:29:01 +00001290<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001291<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001292
Chris Lattner4f69f462008-01-04 04:32:38 +00001293<div class="doc_text">
1294<p>The primitive types are the fundamental building blocks of the LLVM
1295system.</p>
1296
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001297</div>
1298
Chris Lattner4f69f462008-01-04 04:32:38 +00001299<!-- _______________________________________________________________________ -->
1300<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1301
1302<div class="doc_text">
1303 <table>
1304 <tbody>
1305 <tr><th>Type</th><th>Description</th></tr>
1306 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1307 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1308 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1309 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1310 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1311 </tbody>
1312 </table>
1313</div>
1314
1315<!-- _______________________________________________________________________ -->
1316<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1317
1318<div class="doc_text">
1319<h5>Overview:</h5>
1320<p>The void type does not represent any value and has no size.</p>
1321
1322<h5>Syntax:</h5>
1323
1324<pre>
1325 void
1326</pre>
1327</div>
1328
1329<!-- _______________________________________________________________________ -->
1330<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1331
1332<div class="doc_text">
1333<h5>Overview:</h5>
1334<p>The label type represents code labels.</p>
1335
1336<h5>Syntax:</h5>
1337
1338<pre>
1339 label
1340</pre>
1341</div>
1342
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001343<!-- _______________________________________________________________________ -->
1344<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1345
1346<div class="doc_text">
1347<h5>Overview:</h5>
1348<p>The metadata type represents embedded metadata. The only derived type that
1349may contain metadata is <tt>metadata*</tt> or a function type that returns or
1350takes metadata typed parameters, but not pointer to metadata types.</p>
1351
1352<h5>Syntax:</h5>
1353
1354<pre>
1355 metadata
1356</pre>
1357</div>
1358
Chris Lattner4f69f462008-01-04 04:32:38 +00001359
1360<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001361<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001362
Misha Brukman9d0919f2003-11-08 01:05:38 +00001363<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001364
Chris Lattner261efe92003-11-25 01:02:51 +00001365<p>The real power in LLVM comes from the derived types in the system.
1366This is what allows a programmer to represent arrays, functions,
1367pointers, and other useful types. Note that these derived types may be
1368recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001369
Misha Brukman9d0919f2003-11-08 01:05:38 +00001370</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001371
Chris Lattner00950542001-06-06 20:29:01 +00001372<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001373<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1374
1375<div class="doc_text">
1376
1377<h5>Overview:</h5>
1378<p>The integer type is a very simple derived type that simply specifies an
1379arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13802^23-1 (about 8 million) can be specified.</p>
1381
1382<h5>Syntax:</h5>
1383
1384<pre>
1385 iN
1386</pre>
1387
1388<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1389value.</p>
1390
1391<h5>Examples:</h5>
1392<table class="layout">
Nick Lewycky86c48642009-05-24 02:46:06 +00001393 <tr class="layout">
1394 <td class="left"><tt>i1</tt></td>
1395 <td class="left">a single-bit integer.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001396 </tr>
Nick Lewycky86c48642009-05-24 02:46:06 +00001397 <tr class="layout">
1398 <td class="left"><tt>i32</tt></td>
1399 <td class="left">a 32-bit integer.</td>
1400 </tr>
1401 <tr class="layout">
1402 <td class="left"><tt>i1942652</tt></td>
1403 <td class="left">a really big integer of over 1 million bits.</td>
1404 </tr>
Reid Spencer2b916312007-05-16 18:44:01 +00001405</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001406
1407<p>Note that the code generator does not yet support large integer types
1408to be used as function return types. The specific limit on how large a
1409return type the code generator can currently handle is target-dependent;
1410currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1411targets.</p>
1412
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001413</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001414
1415<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001416<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001417
Misha Brukman9d0919f2003-11-08 01:05:38 +00001418<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001419
Chris Lattner00950542001-06-06 20:29:01 +00001420<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001421
Misha Brukman9d0919f2003-11-08 01:05:38 +00001422<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001423sequentially in memory. The array type requires a size (number of
1424elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001425
Chris Lattner7faa8832002-04-14 06:13:44 +00001426<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001427
1428<pre>
1429 [&lt;# elements&gt; x &lt;elementtype&gt;]
1430</pre>
1431
John Criswelle4c57cc2005-05-12 16:52:32 +00001432<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001433be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001434
Chris Lattner7faa8832002-04-14 06:13:44 +00001435<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001436<table class="layout">
1437 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001438 <td class="left"><tt>[40 x i32]</tt></td>
1439 <td class="left">Array of 40 32-bit integer values.</td>
1440 </tr>
1441 <tr class="layout">
1442 <td class="left"><tt>[41 x i32]</tt></td>
1443 <td class="left">Array of 41 32-bit integer values.</td>
1444 </tr>
1445 <tr class="layout">
1446 <td class="left"><tt>[4 x i8]</tt></td>
1447 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001448 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001449</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001450<p>Here are some examples of multidimensional arrays:</p>
1451<table class="layout">
1452 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001453 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1454 <td class="left">3x4 array of 32-bit integer values.</td>
1455 </tr>
1456 <tr class="layout">
1457 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1458 <td class="left">12x10 array of single precision floating point values.</td>
1459 </tr>
1460 <tr class="layout">
1461 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1462 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001463 </tr>
1464</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001465
John Criswell0ec250c2005-10-24 16:17:18 +00001466<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1467length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001468LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1469As a special case, however, zero length arrays are recognized to be variable
1470length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001471type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001472
Dan Gohmand8791e52009-01-24 15:58:40 +00001473<p>Note that the code generator does not yet support large aggregate types
1474to be used as function return types. The specific limit on how large an
1475aggregate return type the code generator can currently handle is
1476target-dependent, and also dependent on the aggregate element types.</p>
1477
Misha Brukman9d0919f2003-11-08 01:05:38 +00001478</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001479
Chris Lattner00950542001-06-06 20:29:01 +00001480<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001481<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001482<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001483
Chris Lattner00950542001-06-06 20:29:01 +00001484<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001485
Chris Lattner261efe92003-11-25 01:02:51 +00001486<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001487consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001488return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001489If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001490class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001491
Chris Lattner00950542001-06-06 20:29:01 +00001492<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001493
1494<pre>
1495 &lt;returntype list&gt; (&lt;parameter list&gt;)
1496</pre>
1497
John Criswell0ec250c2005-10-24 16:17:18 +00001498<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001499specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001500which indicates that the function takes a variable number of arguments.
1501Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001502 href="#int_varargs">variable argument handling intrinsic</a> functions.
1503'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1504<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001505
Chris Lattner00950542001-06-06 20:29:01 +00001506<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001507<table class="layout">
1508 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001509 <td class="left"><tt>i32 (i32)</tt></td>
1510 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001511 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001512 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001513 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001514 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001515 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1516 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001517 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001518 <tt>float</tt>.
1519 </td>
1520 </tr><tr class="layout">
1521 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1522 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001523 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001524 which returns an integer. This is the signature for <tt>printf</tt> in
1525 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001526 </td>
Devang Patela582f402008-03-24 05:35:41 +00001527 </tr><tr class="layout">
1528 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001529 <td class="left">A function taking an <tt>i32</tt>, returning two
1530 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001531 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001532 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001533</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001534
Misha Brukman9d0919f2003-11-08 01:05:38 +00001535</div>
Chris Lattner00950542001-06-06 20:29:01 +00001536<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001537<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001538<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001539<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001540<p>The structure type is used to represent a collection of data members
1541together in memory. The packing of the field types is defined to match
1542the ABI of the underlying processor. The elements of a structure may
1543be any type that has a size.</p>
1544<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1545and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1546field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1547instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001548<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001549<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001550<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001551<table class="layout">
1552 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001553 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1554 <td class="left">A triple of three <tt>i32</tt> values</td>
1555 </tr><tr class="layout">
1556 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1557 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1558 second element is a <a href="#t_pointer">pointer</a> to a
1559 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1560 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001561 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001562</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001563
1564<p>Note that the code generator does not yet support large aggregate types
1565to be used as function return types. The specific limit on how large an
1566aggregate return type the code generator can currently handle is
1567target-dependent, and also dependent on the aggregate element types.</p>
1568
Misha Brukman9d0919f2003-11-08 01:05:38 +00001569</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001570
Chris Lattner00950542001-06-06 20:29:01 +00001571<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001572<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1573</div>
1574<div class="doc_text">
1575<h5>Overview:</h5>
1576<p>The packed structure type is used to represent a collection of data members
1577together in memory. There is no padding between fields. Further, the alignment
1578of a packed structure is 1 byte. The elements of a packed structure may
1579be any type that has a size.</p>
1580<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1581and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1582field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1583instruction.</p>
1584<h5>Syntax:</h5>
1585<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1586<h5>Examples:</h5>
1587<table class="layout">
1588 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001589 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1590 <td class="left">A triple of three <tt>i32</tt> values</td>
1591 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001592 <td class="left">
1593<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001594 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1595 second element is a <a href="#t_pointer">pointer</a> to a
1596 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1597 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001598 </tr>
1599</table>
1600</div>
1601
1602<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001603<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001604<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001605<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001606<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001607reference to another object, which must live in memory. Pointer types may have
1608an optional address space attribute defining the target-specific numbered
1609address space where the pointed-to object resides. The default address space is
1610zero.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001611
1612<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
Chris Lattnere220e8c2009-02-08 22:21:28 +00001613it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001614
Chris Lattner7faa8832002-04-14 06:13:44 +00001615<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001616<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001617<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001618<table class="layout">
1619 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001620 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001621 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1622 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1623 </tr>
1624 <tr class="layout">
1625 <td class="left"><tt>i32 (i32 *) *</tt></td>
1626 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001627 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001628 <tt>i32</tt>.</td>
1629 </tr>
1630 <tr class="layout">
1631 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1632 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1633 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001634 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001635</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001636</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001637
Chris Lattnera58561b2004-08-12 19:12:28 +00001638<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001639<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001640<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001641
Chris Lattnera58561b2004-08-12 19:12:28 +00001642<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001643
Reid Spencer485bad12007-02-15 03:07:05 +00001644<p>A vector type is a simple derived type that represents a vector
1645of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001646are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001647A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001648elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001649of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001650considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001651
Chris Lattnera58561b2004-08-12 19:12:28 +00001652<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001653
1654<pre>
1655 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1656</pre>
1657
John Criswellc1f786c2005-05-13 22:25:59 +00001658<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001659be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001660
Chris Lattnera58561b2004-08-12 19:12:28 +00001661<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001662
Reid Spencerd3f876c2004-11-01 08:19:36 +00001663<table class="layout">
1664 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001665 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1666 <td class="left">Vector of 4 32-bit integer values.</td>
1667 </tr>
1668 <tr class="layout">
1669 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1670 <td class="left">Vector of 8 32-bit floating-point values.</td>
1671 </tr>
1672 <tr class="layout">
1673 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1674 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001675 </tr>
1676</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001677
1678<p>Note that the code generator does not yet support large vector types
1679to be used as function return types. The specific limit on how large a
1680vector return type codegen can currently handle is target-dependent;
1681currently it's often a few times longer than a hardware vector register.</p>
1682
Misha Brukman9d0919f2003-11-08 01:05:38 +00001683</div>
1684
Chris Lattner69c11bb2005-04-25 17:34:15 +00001685<!-- _______________________________________________________________________ -->
1686<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1687<div class="doc_text">
1688
1689<h5>Overview:</h5>
1690
1691<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001692corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001693In LLVM, opaque types can eventually be resolved to any type (not just a
1694structure type).</p>
1695
1696<h5>Syntax:</h5>
1697
1698<pre>
1699 opaque
1700</pre>
1701
1702<h5>Examples:</h5>
1703
1704<table class="layout">
1705 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001706 <td class="left"><tt>opaque</tt></td>
1707 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001708 </tr>
1709</table>
1710</div>
1711
Chris Lattner242d61d2009-02-02 07:32:36 +00001712<!-- ======================================================================= -->
1713<div class="doc_subsection">
1714 <a name="t_uprefs">Type Up-references</a>
1715</div>
1716
1717<div class="doc_text">
1718<h5>Overview:</h5>
1719<p>
1720An "up reference" allows you to refer to a lexically enclosing type without
1721requiring it to have a name. For instance, a structure declaration may contain a
1722pointer to any of the types it is lexically a member of. Example of up
1723references (with their equivalent as named type declarations) include:</p>
1724
1725<pre>
Chris Lattner3060f5b2009-02-09 10:00:56 +00001726 { \2 * } %x = type { %x* }
Chris Lattner242d61d2009-02-02 07:32:36 +00001727 { \2 }* %y = type { %y }*
1728 \1* %z = type %z*
1729</pre>
1730
1731<p>
1732An up reference is needed by the asmprinter for printing out cyclic types when
1733there is no declared name for a type in the cycle. Because the asmprinter does
1734not want to print out an infinite type string, it needs a syntax to handle
1735recursive types that have no names (all names are optional in llvm IR).
1736</p>
1737
1738<h5>Syntax:</h5>
1739<pre>
1740 \&lt;level&gt;
1741</pre>
1742
1743<p>
1744The level is the count of the lexical type that is being referred to.
1745</p>
1746
1747<h5>Examples:</h5>
1748
1749<table class="layout">
1750 <tr class="layout">
1751 <td class="left"><tt>\1*</tt></td>
1752 <td class="left">Self-referential pointer.</td>
1753 </tr>
1754 <tr class="layout">
1755 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1756 <td class="left">Recursive structure where the upref refers to the out-most
1757 structure.</td>
1758 </tr>
1759</table>
1760</div>
1761
Chris Lattner69c11bb2005-04-25 17:34:15 +00001762
Chris Lattnerc3f59762004-12-09 17:30:23 +00001763<!-- *********************************************************************** -->
1764<div class="doc_section"> <a name="constants">Constants</a> </div>
1765<!-- *********************************************************************** -->
1766
1767<div class="doc_text">
1768
1769<p>LLVM has several different basic types of constants. This section describes
1770them all and their syntax.</p>
1771
1772</div>
1773
1774<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001775<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001776
1777<div class="doc_text">
1778
1779<dl>
1780 <dt><b>Boolean constants</b></dt>
1781
1782 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001783 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001784 </dd>
1785
1786 <dt><b>Integer constants</b></dt>
1787
Reid Spencercc16dc32004-12-09 18:02:53 +00001788 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001789 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001790 integer types.
1791 </dd>
1792
1793 <dt><b>Floating point constants</b></dt>
1794
1795 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1796 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001797 notation (see below). The assembler requires the exact decimal value of
1798 a floating-point constant. For example, the assembler accepts 1.25 but
1799 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1800 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001801
1802 <dt><b>Null pointer constants</b></dt>
1803
John Criswell9e2485c2004-12-10 15:51:16 +00001804 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001805 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1806
1807</dl>
1808
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001809<p>The one non-intuitive notation for constants is the hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001810of floating point constants. For example, the form '<tt>double
18110x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
18124.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001813(and the only time that they are generated by the disassembler) is when a
1814floating point constant must be emitted but it cannot be represented as a
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001815decimal floating point number in a reasonable number of digits. For example,
1816NaN's, infinities, and other
Reid Spencercc16dc32004-12-09 18:02:53 +00001817special values are represented in their IEEE hexadecimal format so that
1818assembly and disassembly do not cause any bits to change in the constants.</p>
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001819<p>When using the hexadecimal form, constants of types float and double are
1820represented using the 16-digit form shown above (which matches the IEEE754
1821representation for double); float values must, however, be exactly representable
1822as IEE754 single precision.
1823Hexadecimal format is always used for long
1824double, and there are three forms of long double. The 80-bit
1825format used by x86 is represented as <tt>0xK</tt>
1826followed by 20 hexadecimal digits.
1827The 128-bit format used by PowerPC (two adjacent doubles) is represented
1828by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
1829format is represented
1830by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
1831target uses this format. Long doubles will only work if they match
1832the long double format on your target. All hexadecimal formats are big-endian
1833(sign bit at the left).</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001834</div>
1835
1836<!-- ======================================================================= -->
Chris Lattner70882792009-02-28 18:32:25 +00001837<div class="doc_subsection">
1838<a name="aggregateconstants"> <!-- old anchor -->
1839<a name="complexconstants">Complex Constants</a></a>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001840</div>
1841
1842<div class="doc_text">
Chris Lattner70882792009-02-28 18:32:25 +00001843<p>Complex constants are a (potentially recursive) combination of simple
1844constants and smaller complex constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001845
1846<dl>
1847 <dt><b>Structure constants</b></dt>
1848
1849 <dd>Structure constants are represented with notation similar to structure
1850 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001851 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1852 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001853 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001854 types of elements must match those specified by the type.
1855 </dd>
1856
1857 <dt><b>Array constants</b></dt>
1858
1859 <dd>Array constants are represented with notation similar to array type
1860 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001861 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001862 constants must have <a href="#t_array">array type</a>, and the number and
1863 types of elements must match those specified by the type.
1864 </dd>
1865
Reid Spencer485bad12007-02-15 03:07:05 +00001866 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001867
Reid Spencer485bad12007-02-15 03:07:05 +00001868 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001869 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001870 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001871 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001872 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001873 match those specified by the type.
1874 </dd>
1875
1876 <dt><b>Zero initialization</b></dt>
1877
1878 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1879 value to zero of <em>any</em> type, including scalar and aggregate types.
1880 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001881 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001882 initializers.
1883 </dd>
Nick Lewycky21cc4462009-04-04 07:22:01 +00001884
1885 <dt><b>Metadata node</b></dt>
1886
Nick Lewycky1e8c7a62009-05-30 16:08:30 +00001887 <dd>A metadata node is a structure-like constant with
1888 <a href="#t_metadata">metadata type</a>. For example:
1889 "<tt>metadata !{ i32 0, metadata !"test" }</tt>". Unlike other constants
1890 that are meant to be interpreted as part of the instruction stream, metadata
1891 is a place to attach additional information such as debug info.
Nick Lewycky21cc4462009-04-04 07:22:01 +00001892 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001893</dl>
1894
1895</div>
1896
1897<!-- ======================================================================= -->
1898<div class="doc_subsection">
1899 <a name="globalconstants">Global Variable and Function Addresses</a>
1900</div>
1901
1902<div class="doc_text">
1903
1904<p>The addresses of <a href="#globalvars">global variables</a> and <a
1905href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001906constants. These constants are explicitly referenced when the <a
1907href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001908href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1909file:</p>
1910
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001911<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001912<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001913@X = global i32 17
1914@Y = global i32 42
1915@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001916</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001917</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001918
1919</div>
1920
1921<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001922<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001923<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001924 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001925 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001926 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001927
Reid Spencer2dc45b82004-12-09 18:13:12 +00001928 <p>Undefined values indicate to the compiler that the program is well defined
1929 no matter what value is used, giving the compiler more freedom to optimize.
1930 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001931</div>
1932
1933<!-- ======================================================================= -->
1934<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1935</div>
1936
1937<div class="doc_text">
1938
1939<p>Constant expressions are used to allow expressions involving other constants
1940to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001941href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001942that does not have side effects (e.g. load and call are not supported). The
1943following is the syntax for constant expressions:</p>
1944
1945<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001946 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1947 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001948 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001949
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001950 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1951 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001952 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001953
1954 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1955 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001956 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001957
1958 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1959 <dd>Truncate a floating point constant to another floating point type. The
1960 size of CST must be larger than the size of TYPE. Both types must be
1961 floating point.</dd>
1962
1963 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1964 <dd>Floating point extend a constant to another type. The size of CST must be
1965 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1966
Reid Spencer1539a1c2007-07-31 14:40:14 +00001967 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001968 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001969 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1970 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1971 of the same number of elements. If the value won't fit in the integer type,
1972 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001973
Reid Spencerd4448792006-11-09 23:03:26 +00001974 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001975 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001976 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1977 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1978 of the same number of elements. If the value won't fit in the integer type,
1979 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001980
Reid Spencerd4448792006-11-09 23:03:26 +00001981 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001982 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001983 constant. TYPE must be a scalar or vector floating point type. CST must be of
1984 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1985 of the same number of elements. If the value won't fit in the floating point
1986 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001987
Reid Spencerd4448792006-11-09 23:03:26 +00001988 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001989 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001990 constant. TYPE must be a scalar or vector floating point type. CST must be of
1991 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1992 of the same number of elements. If the value won't fit in the floating point
1993 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001994
Reid Spencer5c0ef472006-11-11 23:08:07 +00001995 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1996 <dd>Convert a pointer typed constant to the corresponding integer constant
1997 TYPE must be an integer type. CST must be of pointer type. The CST value is
1998 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1999
2000 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
2001 <dd>Convert a integer constant to a pointer constant. TYPE must be a
2002 pointer type. CST must be of integer type. The CST value is zero extended,
2003 truncated, or unchanged to make it fit in a pointer size. This one is
2004 <i>really</i> dangerous!</dd>
2005
2006 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner03bbad62009-02-28 18:27:03 +00002007 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2008 are the same as those for the <a href="#i_bitcast">bitcast
2009 instruction</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002010
2011 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
2012
2013 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2014 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2015 instruction, the index list may have zero or more indexes, which are required
2016 to make sense for the type of "CSTPTR".</dd>
2017
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002018 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
2019
2020 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00002021 constants.</dd>
2022
2023 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2024 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2025
2026 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2027 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002028
Nate Begemanac80ade2008-05-12 19:01:56 +00002029 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
2030 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
2031
2032 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
2033 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
2034
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002035 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
2036
2037 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00002038 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002039
Robert Bocchino05ccd702006-01-15 20:48:27 +00002040 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
2041
2042 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00002043 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00002044
Chris Lattnerc1989542006-04-08 00:13:41 +00002045
2046 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
2047
2048 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00002049 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002050
Chris Lattnerc3f59762004-12-09 17:30:23 +00002051 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
2052
Reid Spencer2dc45b82004-12-09 18:13:12 +00002053 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2054 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00002055 binary</a> operations. The constraints on operands are the same as those for
2056 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00002057 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002058</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002059</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00002060
Nick Lewycky21cc4462009-04-04 07:22:01 +00002061<!-- ======================================================================= -->
2062<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2063</div>
2064
2065<div class="doc_text">
2066
2067<p>Embedded metadata provides a way to attach arbitrary data to the
2068instruction stream without affecting the behaviour of the program. There are
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002069two metadata primitives, strings and nodes. All metadata has the
2070<tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2071point ('<tt>!</tt>').
Nick Lewycky21cc4462009-04-04 07:22:01 +00002072</p>
2073
2074<p>A metadata string is a string surrounded by double quotes. It can contain
2075any character by escaping non-printable characters with "\xx" where "xx" is
2076the two digit hex code. For example: "<tt>!"test\00"</tt>".
2077</p>
2078
2079<p>Metadata nodes are represented with notation similar to structure constants
2080(a comma separated list of elements, surrounded by braces and preceeded by an
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002081exclamation point). For example: "<tt>!{ metadata !"test\00", i32 10}</tt>".
Nick Lewycky21cc4462009-04-04 07:22:01 +00002082</p>
2083
Nick Lewyckycb337992009-05-10 20:57:05 +00002084<p>A metadata node will attempt to track changes to the values it holds. In
2085the event that a value is deleted, it will be replaced with a typeless
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002086"<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
Nick Lewyckycb337992009-05-10 20:57:05 +00002087
Nick Lewycky21cc4462009-04-04 07:22:01 +00002088<p>Optimizations may rely on metadata to provide additional information about
2089the program that isn't available in the instructions, or that isn't easily
2090computable. Similarly, the code generator may expect a certain metadata format
2091to be used to express debugging information.</p>
2092</div>
2093
Chris Lattner00950542001-06-06 20:29:01 +00002094<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00002095<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2096<!-- *********************************************************************** -->
2097
2098<!-- ======================================================================= -->
2099<div class="doc_subsection">
2100<a name="inlineasm">Inline Assembler Expressions</a>
2101</div>
2102
2103<div class="doc_text">
2104
2105<p>
2106LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2107Module-Level Inline Assembly</a>) through the use of a special value. This
2108value represents the inline assembler as a string (containing the instructions
2109to emit), a list of operand constraints (stored as a string), and a flag that
2110indicates whether or not the inline asm expression has side effects. An example
2111inline assembler expression is:
2112</p>
2113
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002114<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002115<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002116i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002117</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002118</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002119
2120<p>
2121Inline assembler expressions may <b>only</b> be used as the callee operand of
2122a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2123</p>
2124
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002125<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002126<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002127%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002128</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002129</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002130
2131<p>
2132Inline asms with side effects not visible in the constraint list must be marked
2133as having side effects. This is done through the use of the
2134'<tt>sideeffect</tt>' keyword, like so:
2135</p>
2136
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002137<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002138<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002139call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002140</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002141</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002142
2143<p>TODO: The format of the asm and constraints string still need to be
2144documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00002145need to be documented). This is probably best done by reference to another
2146document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00002147</p>
2148
2149</div>
2150
2151<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00002152<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2153<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002154
Misha Brukman9d0919f2003-11-08 01:05:38 +00002155<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002156
Chris Lattner261efe92003-11-25 01:02:51 +00002157<p>The LLVM instruction set consists of several different
2158classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00002159instructions</a>, <a href="#binaryops">binary instructions</a>,
2160<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00002161 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2162instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002163
Misha Brukman9d0919f2003-11-08 01:05:38 +00002164</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002165
Chris Lattner00950542001-06-06 20:29:01 +00002166<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002167<div class="doc_subsection"> <a name="terminators">Terminator
2168Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002169
Misha Brukman9d0919f2003-11-08 01:05:38 +00002170<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002171
Chris Lattner261efe92003-11-25 01:02:51 +00002172<p>As mentioned <a href="#functionstructure">previously</a>, every
2173basic block in a program ends with a "Terminator" instruction, which
2174indicates which block should be executed after the current block is
2175finished. These terminator instructions typically yield a '<tt>void</tt>'
2176value: they produce control flow, not values (the one exception being
2177the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00002178<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00002179 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2180instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00002181the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2182 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2183 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002184
Misha Brukman9d0919f2003-11-08 01:05:38 +00002185</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002186
Chris Lattner00950542001-06-06 20:29:01 +00002187<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002188<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2189Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002190<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002191<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002192<pre>
2193 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002194 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002195</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002196
Chris Lattner00950542001-06-06 20:29:01 +00002197<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002198
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002199<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2200optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00002201<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002202returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00002203control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002204
Chris Lattner00950542001-06-06 20:29:01 +00002205<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002206
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002207<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2208the return value. The type of the return value must be a
2209'<a href="#t_firstclass">first class</a>' type.</p>
2210
2211<p>A function is not <a href="#wellformed">well formed</a> if
2212it it has a non-void return type and contains a '<tt>ret</tt>'
2213instruction with no return value or a return value with a type that
2214does not match its type, or if it has a void return type and contains
2215a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002216
Chris Lattner00950542001-06-06 20:29:01 +00002217<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002218
Chris Lattner261efe92003-11-25 01:02:51 +00002219<p>When the '<tt>ret</tt>' instruction is executed, control flow
2220returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00002221 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00002222the instruction after the call. If the caller was an "<a
2223 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00002224at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00002225returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00002226return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002227
Chris Lattner00950542001-06-06 20:29:01 +00002228<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002229
2230<pre>
2231 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002232 ret void <i>; Return from a void function</i>
Bill Wendling0a4bbbf2009-02-28 22:12:54 +00002233 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002234</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002235
Dan Gohmand8791e52009-01-24 15:58:40 +00002236<p>Note that the code generator does not yet fully support large
2237 return values. The specific sizes that are currently supported are
2238 dependent on the target. For integers, on 32-bit targets the limit
2239 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2240 For aggregate types, the current limits are dependent on the element
2241 types; for example targets are often limited to 2 total integer
2242 elements and 2 total floating-point elements.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002243
Misha Brukman9d0919f2003-11-08 01:05:38 +00002244</div>
Chris Lattner00950542001-06-06 20:29:01 +00002245<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002246<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002247<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002248<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002249<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002250</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002251<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002252<p>The '<tt>br</tt>' instruction is used to cause control flow to
2253transfer to a different basic block in the current function. There are
2254two forms of this instruction, corresponding to a conditional branch
2255and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002256<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002257<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002258single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002259unconditional form of the '<tt>br</tt>' instruction takes a single
2260'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002261<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002262<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002263argument is evaluated. If the value is <tt>true</tt>, control flows
2264to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2265control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002266<h5>Example:</h5>
Chris Lattner60150a32009-05-09 18:11:50 +00002267<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002268 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002269</div>
Chris Lattner00950542001-06-06 20:29:01 +00002270<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002271<div class="doc_subsubsection">
2272 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2273</div>
2274
Misha Brukman9d0919f2003-11-08 01:05:38 +00002275<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002276<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002277
2278<pre>
2279 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2280</pre>
2281
Chris Lattner00950542001-06-06 20:29:01 +00002282<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002283
2284<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2285several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002286instruction, allowing a branch to occur to one of many possible
2287destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002288
2289
Chris Lattner00950542001-06-06 20:29:01 +00002290<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002291
2292<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2293comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2294an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2295table is not allowed to contain duplicate constant entries.</p>
2296
Chris Lattner00950542001-06-06 20:29:01 +00002297<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002298
Chris Lattner261efe92003-11-25 01:02:51 +00002299<p>The <tt>switch</tt> instruction specifies a table of values and
2300destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002301table is searched for the given value. If the value is found, control flow is
2302transfered to the corresponding destination; otherwise, control flow is
2303transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002304
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002305<h5>Implementation:</h5>
2306
2307<p>Depending on properties of the target machine and the particular
2308<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002309ways. For example, it could be generated as a series of chained conditional
2310branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002311
2312<h5>Example:</h5>
2313
2314<pre>
2315 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002316 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002317 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002318
2319 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002320 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002321
2322 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002323 switch i32 %val, label %otherwise [ i32 0, label %onzero
2324 i32 1, label %onone
2325 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002326</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002327</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002328
Chris Lattner00950542001-06-06 20:29:01 +00002329<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002330<div class="doc_subsubsection">
2331 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2332</div>
2333
Misha Brukman9d0919f2003-11-08 01:05:38 +00002334<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002335
Chris Lattner00950542001-06-06 20:29:01 +00002336<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002337
2338<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002339 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002340 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002341</pre>
2342
Chris Lattner6536cfe2002-05-06 22:08:29 +00002343<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002344
2345<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2346function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002347'<tt>normal</tt>' label or the
2348'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002349"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2350"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002351href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002352continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002353
Chris Lattner00950542001-06-06 20:29:01 +00002354<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002355
Misha Brukman9d0919f2003-11-08 01:05:38 +00002356<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002357
Chris Lattner00950542001-06-06 20:29:01 +00002358<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002359 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002360 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002361 convention</a> the call should use. If none is specified, the call defaults
2362 to using C calling conventions.
2363 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002364
2365 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2366 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2367 and '<tt>inreg</tt>' attributes are valid here.</li>
2368
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002369 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2370 function value being invoked. In most cases, this is a direct function
2371 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2372 an arbitrary pointer to function value.
2373 </li>
2374
2375 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2376 function to be invoked. </li>
2377
2378 <li>'<tt>function args</tt>': argument list whose types match the function
2379 signature argument types. If the function signature indicates the function
2380 accepts a variable number of arguments, the extra arguments can be
2381 specified. </li>
2382
2383 <li>'<tt>normal label</tt>': the label reached when the called function
2384 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2385
2386 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2387 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2388
Devang Patel307e8ab2008-10-07 17:48:33 +00002389 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002390 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2391 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002392</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002393
Chris Lattner00950542001-06-06 20:29:01 +00002394<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002395
Misha Brukman9d0919f2003-11-08 01:05:38 +00002396<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002397href="#i_call">call</a></tt>' instruction in most regards. The primary
2398difference is that it establishes an association with a label, which is used by
2399the runtime library to unwind the stack.</p>
2400
2401<p>This instruction is used in languages with destructors to ensure that proper
2402cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2403exception. Additionally, this is important for implementation of
2404'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2405
Jay Foadd2449092009-06-03 10:20:10 +00002406<p>For the purposes of the SSA form, the definition of the value
2407returned by the '<tt>invoke</tt>' instruction is deemed to occur on
2408the edge from the current block to the "normal" label. If the callee
2409unwinds then no return value is available.</p>
Dan Gohmanf96a4992009-05-22 21:47:08 +00002410
Chris Lattner00950542001-06-06 20:29:01 +00002411<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002412<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002413 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002414 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002415 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002416 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002417</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002418</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002419
2420
Chris Lattner27f71f22003-09-03 00:41:47 +00002421<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002422
Chris Lattner261efe92003-11-25 01:02:51 +00002423<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2424Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002425
Misha Brukman9d0919f2003-11-08 01:05:38 +00002426<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002427
Chris Lattner27f71f22003-09-03 00:41:47 +00002428<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002429<pre>
2430 unwind
2431</pre>
2432
Chris Lattner27f71f22003-09-03 00:41:47 +00002433<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002434
2435<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2436at the first callee in the dynamic call stack which used an <a
2437href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2438primarily used to implement exception handling.</p>
2439
Chris Lattner27f71f22003-09-03 00:41:47 +00002440<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002441
Chris Lattner72ed2002008-04-19 21:01:16 +00002442<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002443immediately halt. The dynamic call stack is then searched for the first <a
2444href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2445execution continues at the "exceptional" destination block specified by the
2446<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2447dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002448</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002449
2450<!-- _______________________________________________________________________ -->
2451
2452<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2453Instruction</a> </div>
2454
2455<div class="doc_text">
2456
2457<h5>Syntax:</h5>
2458<pre>
2459 unreachable
2460</pre>
2461
2462<h5>Overview:</h5>
2463
2464<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2465instruction is used to inform the optimizer that a particular portion of the
2466code is not reachable. This can be used to indicate that the code after a
2467no-return function cannot be reached, and other facts.</p>
2468
2469<h5>Semantics:</h5>
2470
2471<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2472</div>
2473
2474
2475
Chris Lattner00950542001-06-06 20:29:01 +00002476<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002477<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002478<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002479<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002480program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002481produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002482multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002483The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002484<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002485</div>
Chris Lattner00950542001-06-06 20:29:01 +00002486<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002487<div class="doc_subsubsection">
2488 <a name="i_add">'<tt>add</tt>' Instruction</a>
2489</div>
2490
Misha Brukman9d0919f2003-11-08 01:05:38 +00002491<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002492
Chris Lattner00950542001-06-06 20:29:01 +00002493<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002494
2495<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002496 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002497</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002498
Chris Lattner00950542001-06-06 20:29:01 +00002499<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002500
Misha Brukman9d0919f2003-11-08 01:05:38 +00002501<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002502
Chris Lattner00950542001-06-06 20:29:01 +00002503<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002504
2505<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2506 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2507 <a href="#t_vector">vector</a> values. Both arguments must have identical
2508 types.</p>
2509
Chris Lattner00950542001-06-06 20:29:01 +00002510<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002511
Misha Brukman9d0919f2003-11-08 01:05:38 +00002512<p>The value produced is the integer or floating point sum of the two
2513operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002514
Chris Lattner5ec89832008-01-28 00:36:27 +00002515<p>If an integer sum has unsigned overflow, the result returned is the
2516mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2517the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002518
Chris Lattner5ec89832008-01-28 00:36:27 +00002519<p>Because LLVM integers use a two's complement representation, this
2520instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002521
Chris Lattner00950542001-06-06 20:29:01 +00002522<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002523
2524<pre>
2525 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002526</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002527</div>
Chris Lattner00950542001-06-06 20:29:01 +00002528<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002529<div class="doc_subsubsection">
2530 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2531</div>
2532
Misha Brukman9d0919f2003-11-08 01:05:38 +00002533<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002534
Chris Lattner00950542001-06-06 20:29:01 +00002535<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002536
2537<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002538 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002539</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002540
Chris Lattner00950542001-06-06 20:29:01 +00002541<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002542
Misha Brukman9d0919f2003-11-08 01:05:38 +00002543<p>The '<tt>sub</tt>' instruction returns the difference of its two
2544operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002545
2546<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2547'<tt>neg</tt>' instruction present in most other intermediate
2548representations.</p>
2549
Chris Lattner00950542001-06-06 20:29:01 +00002550<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002551
2552<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2553 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2554 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2555 types.</p>
2556
Chris Lattner00950542001-06-06 20:29:01 +00002557<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002558
Chris Lattner261efe92003-11-25 01:02:51 +00002559<p>The value produced is the integer or floating point difference of
2560the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002561
Chris Lattner5ec89832008-01-28 00:36:27 +00002562<p>If an integer difference has unsigned overflow, the result returned is the
2563mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2564the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002565
Chris Lattner5ec89832008-01-28 00:36:27 +00002566<p>Because LLVM integers use a two's complement representation, this
2567instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002568
Chris Lattner00950542001-06-06 20:29:01 +00002569<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002570<pre>
2571 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002572 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002573</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002574</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002575
Chris Lattner00950542001-06-06 20:29:01 +00002576<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002577<div class="doc_subsubsection">
2578 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2579</div>
2580
Misha Brukman9d0919f2003-11-08 01:05:38 +00002581<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002582
Chris Lattner00950542001-06-06 20:29:01 +00002583<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002584<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002585</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002586<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002587<p>The '<tt>mul</tt>' instruction returns the product of its two
2588operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002589
Chris Lattner00950542001-06-06 20:29:01 +00002590<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002591
2592<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2593href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2594or <a href="#t_vector">vector</a> values. Both arguments must have identical
2595types.</p>
2596
Chris Lattner00950542001-06-06 20:29:01 +00002597<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002598
Chris Lattner261efe92003-11-25 01:02:51 +00002599<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002600two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002601
Chris Lattner5ec89832008-01-28 00:36:27 +00002602<p>If the result of an integer multiplication has unsigned overflow,
2603the result returned is the mathematical result modulo
26042<sup>n</sup>, where n is the bit width of the result.</p>
2605<p>Because LLVM integers use a two's complement representation, and the
2606result is the same width as the operands, this instruction returns the
2607correct result for both signed and unsigned integers. If a full product
2608(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2609should be sign-extended or zero-extended as appropriate to the
2610width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002611<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002612<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002613</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002614</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002615
Chris Lattner00950542001-06-06 20:29:01 +00002616<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002617<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2618</a></div>
2619<div class="doc_text">
2620<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002621<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002622</pre>
2623<h5>Overview:</h5>
2624<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2625operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002626
Reid Spencer1628cec2006-10-26 06:15:43 +00002627<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002628
Reid Spencer1628cec2006-10-26 06:15:43 +00002629<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002630<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2631values. Both arguments must have identical types.</p>
2632
Reid Spencer1628cec2006-10-26 06:15:43 +00002633<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002634
Chris Lattner5ec89832008-01-28 00:36:27 +00002635<p>The value produced is the unsigned integer quotient of the two operands.</p>
2636<p>Note that unsigned integer division and signed integer division are distinct
2637operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2638<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002639<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002640<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002641</pre>
2642</div>
2643<!-- _______________________________________________________________________ -->
2644<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2645</a> </div>
2646<div class="doc_text">
2647<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002648<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002649 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002650</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002651
Reid Spencer1628cec2006-10-26 06:15:43 +00002652<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002653
Reid Spencer1628cec2006-10-26 06:15:43 +00002654<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2655operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002656
Reid Spencer1628cec2006-10-26 06:15:43 +00002657<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002658
2659<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2660<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2661values. Both arguments must have identical types.</p>
2662
Reid Spencer1628cec2006-10-26 06:15:43 +00002663<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002664<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002665<p>Note that signed integer division and unsigned integer division are distinct
2666operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2667<p>Division by zero leads to undefined behavior. Overflow also leads to
2668undefined behavior; this is a rare case, but can occur, for example,
2669by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002670<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002671<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002672</pre>
2673</div>
2674<!-- _______________________________________________________________________ -->
2675<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002676Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002677<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002678<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002679<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002680 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002681</pre>
2682<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002683
Reid Spencer1628cec2006-10-26 06:15:43 +00002684<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002685operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002686
Chris Lattner261efe92003-11-25 01:02:51 +00002687<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002688
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002689<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002690<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2691of floating point values. Both arguments must have identical types.</p>
2692
Chris Lattner261efe92003-11-25 01:02:51 +00002693<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002694
Reid Spencer1628cec2006-10-26 06:15:43 +00002695<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002696
Chris Lattner261efe92003-11-25 01:02:51 +00002697<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002698
2699<pre>
2700 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002701</pre>
2702</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002703
Chris Lattner261efe92003-11-25 01:02:51 +00002704<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002705<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2706</div>
2707<div class="doc_text">
2708<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002709<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002710</pre>
2711<h5>Overview:</h5>
2712<p>The '<tt>urem</tt>' instruction returns the remainder from the
2713unsigned division of its two arguments.</p>
2714<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002715<p>The two arguments to the '<tt>urem</tt>' instruction must be
2716<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2717values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002718<h5>Semantics:</h5>
2719<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002720This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002721<p>Note that unsigned integer remainder and signed integer remainder are
2722distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2723<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002724<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002725<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002726</pre>
2727
2728</div>
2729<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002730<div class="doc_subsubsection">
2731 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2732</div>
2733
Chris Lattner261efe92003-11-25 01:02:51 +00002734<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002735
Chris Lattner261efe92003-11-25 01:02:51 +00002736<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002737
2738<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002739 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002740</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002741
Chris Lattner261efe92003-11-25 01:02:51 +00002742<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002743
Reid Spencer0a783f72006-11-02 01:53:59 +00002744<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002745signed division of its two operands. This instruction can also take
2746<a href="#t_vector">vector</a> versions of the values in which case
2747the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002748
Chris Lattner261efe92003-11-25 01:02:51 +00002749<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002750
Reid Spencer0a783f72006-11-02 01:53:59 +00002751<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002752<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2753values. Both arguments must have identical types.</p>
2754
Chris Lattner261efe92003-11-25 01:02:51 +00002755<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002756
Reid Spencer0a783f72006-11-02 01:53:59 +00002757<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002758has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2759operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002760a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002761 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002762Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002763please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002764Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002765<p>Note that signed integer remainder and unsigned integer remainder are
2766distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2767<p>Taking the remainder of a division by zero leads to undefined behavior.
2768Overflow also leads to undefined behavior; this is a rare case, but can occur,
2769for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2770(The remainder doesn't actually overflow, but this rule lets srem be
2771implemented using instructions that return both the result of the division
2772and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002773<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002774<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002775</pre>
2776
2777</div>
2778<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002779<div class="doc_subsubsection">
2780 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2781
Reid Spencer0a783f72006-11-02 01:53:59 +00002782<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002783
Reid Spencer0a783f72006-11-02 01:53:59 +00002784<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002785<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002786</pre>
2787<h5>Overview:</h5>
2788<p>The '<tt>frem</tt>' instruction returns the remainder from the
2789division of its two operands.</p>
2790<h5>Arguments:</h5>
2791<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002792<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2793of floating point values. Both arguments must have identical types.</p>
2794
Reid Spencer0a783f72006-11-02 01:53:59 +00002795<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002796
Chris Lattnera73afe02008-04-01 18:45:27 +00002797<p>This instruction returns the <i>remainder</i> of a division.
2798The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002799
Reid Spencer0a783f72006-11-02 01:53:59 +00002800<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002801
2802<pre>
2803 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002804</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002805</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002806
Reid Spencer8e11bf82007-02-02 13:57:07 +00002807<!-- ======================================================================= -->
2808<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2809Operations</a> </div>
2810<div class="doc_text">
2811<p>Bitwise binary operators are used to do various forms of
2812bit-twiddling in a program. They are generally very efficient
2813instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002814instructions. They require two operands of the same type, execute an operation on them,
2815and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002816</div>
2817
Reid Spencer569f2fa2007-01-31 21:39:12 +00002818<!-- _______________________________________________________________________ -->
2819<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2820Instruction</a> </div>
2821<div class="doc_text">
2822<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002823<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002824</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002825
Reid Spencer569f2fa2007-01-31 21:39:12 +00002826<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002827
Reid Spencer569f2fa2007-01-31 21:39:12 +00002828<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2829the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002830
Reid Spencer569f2fa2007-01-31 21:39:12 +00002831<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002832
Reid Spencer569f2fa2007-01-31 21:39:12 +00002833<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002834 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002835type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002836
Reid Spencer569f2fa2007-01-31 21:39:12 +00002837<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002838
Gabor Greiffb224a22008-08-07 21:46:00 +00002839<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2840where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang01f8d092008-12-10 08:55:09 +00002841equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2842If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2843corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002844
Reid Spencer569f2fa2007-01-31 21:39:12 +00002845<h5>Example:</h5><pre>
2846 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2847 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2848 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002849 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002850 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002851</pre>
2852</div>
2853<!-- _______________________________________________________________________ -->
2854<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2855Instruction</a> </div>
2856<div class="doc_text">
2857<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002858<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002859</pre>
2860
2861<h5>Overview:</h5>
2862<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002863operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002864
2865<h5>Arguments:</h5>
2866<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002867<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002868type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002869
2870<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002871
Reid Spencer569f2fa2007-01-31 21:39:12 +00002872<p>This instruction always performs a logical shift right operation. The most
2873significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002874shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang01f8d092008-12-10 08:55:09 +00002875the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2876vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2877amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002878
2879<h5>Example:</h5>
2880<pre>
2881 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2882 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2883 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2884 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002885 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002886 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002887</pre>
2888</div>
2889
Reid Spencer8e11bf82007-02-02 13:57:07 +00002890<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002891<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2892Instruction</a> </div>
2893<div class="doc_text">
2894
2895<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002896<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002897</pre>
2898
2899<h5>Overview:</h5>
2900<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002901operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002902
2903<h5>Arguments:</h5>
2904<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002905<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002906type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002907
2908<h5>Semantics:</h5>
2909<p>This instruction always performs an arithmetic shift right operation,
2910The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002911of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang01f8d092008-12-10 08:55:09 +00002912larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
2913arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2914corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002915
2916<h5>Example:</h5>
2917<pre>
2918 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2919 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2920 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2921 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002922 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002923 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002924</pre>
2925</div>
2926
Chris Lattner00950542001-06-06 20:29:01 +00002927<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002928<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2929Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002930
Misha Brukman9d0919f2003-11-08 01:05:38 +00002931<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002932
Chris Lattner00950542001-06-06 20:29:01 +00002933<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002934
2935<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002936 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002937</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002938
Chris Lattner00950542001-06-06 20:29:01 +00002939<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002940
Chris Lattner261efe92003-11-25 01:02:51 +00002941<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2942its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002943
Chris Lattner00950542001-06-06 20:29:01 +00002944<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002945
2946<p>The two arguments to the '<tt>and</tt>' instruction must be
2947<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2948values. Both arguments must have identical types.</p>
2949
Chris Lattner00950542001-06-06 20:29:01 +00002950<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002951<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002952<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002953<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002954<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002955 <tbody>
2956 <tr>
2957 <td>In0</td>
2958 <td>In1</td>
2959 <td>Out</td>
2960 </tr>
2961 <tr>
2962 <td>0</td>
2963 <td>0</td>
2964 <td>0</td>
2965 </tr>
2966 <tr>
2967 <td>0</td>
2968 <td>1</td>
2969 <td>0</td>
2970 </tr>
2971 <tr>
2972 <td>1</td>
2973 <td>0</td>
2974 <td>0</td>
2975 </tr>
2976 <tr>
2977 <td>1</td>
2978 <td>1</td>
2979 <td>1</td>
2980 </tr>
2981 </tbody>
2982</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002983</div>
Chris Lattner00950542001-06-06 20:29:01 +00002984<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002985<pre>
2986 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002987 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2988 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002989</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002990</div>
Chris Lattner00950542001-06-06 20:29:01 +00002991<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002992<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002993<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002994<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002995<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002996</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002997<h5>Overview:</h5>
2998<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2999or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003000<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003001
3002<p>The two arguments to the '<tt>or</tt>' instruction must be
3003<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3004values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003005<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003006<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003007<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003008<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003009<table border="1" cellspacing="0" cellpadding="4">
3010 <tbody>
3011 <tr>
3012 <td>In0</td>
3013 <td>In1</td>
3014 <td>Out</td>
3015 </tr>
3016 <tr>
3017 <td>0</td>
3018 <td>0</td>
3019 <td>0</td>
3020 </tr>
3021 <tr>
3022 <td>0</td>
3023 <td>1</td>
3024 <td>1</td>
3025 </tr>
3026 <tr>
3027 <td>1</td>
3028 <td>0</td>
3029 <td>1</td>
3030 </tr>
3031 <tr>
3032 <td>1</td>
3033 <td>1</td>
3034 <td>1</td>
3035 </tr>
3036 </tbody>
3037</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003038</div>
Chris Lattner00950542001-06-06 20:29:01 +00003039<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003040<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
3041 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3042 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00003043</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003044</div>
Chris Lattner00950542001-06-06 20:29:01 +00003045<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003046<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3047Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003048<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00003049<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003050<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003051</pre>
Chris Lattner00950542001-06-06 20:29:01 +00003052<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003053<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
3054or of its two operands. The <tt>xor</tt> is used to implement the
3055"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003056<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003057<p>The two arguments to the '<tt>xor</tt>' instruction must be
3058<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3059values. Both arguments must have identical types.</p>
3060
Chris Lattner00950542001-06-06 20:29:01 +00003061<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003062
Misha Brukman9d0919f2003-11-08 01:05:38 +00003063<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003064<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003065<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003066<table border="1" cellspacing="0" cellpadding="4">
3067 <tbody>
3068 <tr>
3069 <td>In0</td>
3070 <td>In1</td>
3071 <td>Out</td>
3072 </tr>
3073 <tr>
3074 <td>0</td>
3075 <td>0</td>
3076 <td>0</td>
3077 </tr>
3078 <tr>
3079 <td>0</td>
3080 <td>1</td>
3081 <td>1</td>
3082 </tr>
3083 <tr>
3084 <td>1</td>
3085 <td>0</td>
3086 <td>1</td>
3087 </tr>
3088 <tr>
3089 <td>1</td>
3090 <td>1</td>
3091 <td>0</td>
3092 </tr>
3093 </tbody>
3094</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003095</div>
Chris Lattner261efe92003-11-25 01:02:51 +00003096<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00003097<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003098<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3099 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3100 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3101 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00003102</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003103</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003104
Chris Lattner00950542001-06-06 20:29:01 +00003105<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003106<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00003107 <a name="vectorops">Vector Operations</a>
3108</div>
3109
3110<div class="doc_text">
3111
3112<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003113target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00003114vector-specific operations needed to process vectors effectively. While LLVM
3115does directly support these vector operations, many sophisticated algorithms
3116will want to use target-specific intrinsics to take full advantage of a specific
3117target.</p>
3118
3119</div>
3120
3121<!-- _______________________________________________________________________ -->
3122<div class="doc_subsubsection">
3123 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3124</div>
3125
3126<div class="doc_text">
3127
3128<h5>Syntax:</h5>
3129
3130<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003131 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003132</pre>
3133
3134<h5>Overview:</h5>
3135
3136<p>
3137The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003138element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003139</p>
3140
3141
3142<h5>Arguments:</h5>
3143
3144<p>
3145The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003146value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00003147an index indicating the position from which to extract the element.
3148The index may be a variable.</p>
3149
3150<h5>Semantics:</h5>
3151
3152<p>
3153The result is a scalar of the same type as the element type of
3154<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3155<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3156results are undefined.
3157</p>
3158
3159<h5>Example:</h5>
3160
3161<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003162 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003163</pre>
3164</div>
3165
3166
3167<!-- _______________________________________________________________________ -->
3168<div class="doc_subsubsection">
3169 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3170</div>
3171
3172<div class="doc_text">
3173
3174<h5>Syntax:</h5>
3175
3176<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00003177 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003178</pre>
3179
3180<h5>Overview:</h5>
3181
3182<p>
3183The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003184element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003185</p>
3186
3187
3188<h5>Arguments:</h5>
3189
3190<p>
3191The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003192value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00003193scalar value whose type must equal the element type of the first
3194operand. The third operand is an index indicating the position at
3195which to insert the value. The index may be a variable.</p>
3196
3197<h5>Semantics:</h5>
3198
3199<p>
Reid Spencer485bad12007-02-15 03:07:05 +00003200The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00003201element values are those of <tt>val</tt> except at position
3202<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3203exceeds the length of <tt>val</tt>, the results are undefined.
3204</p>
3205
3206<h5>Example:</h5>
3207
3208<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003209 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003210</pre>
3211</div>
3212
3213<!-- _______________________________________________________________________ -->
3214<div class="doc_subsubsection">
3215 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3216</div>
3217
3218<div class="doc_text">
3219
3220<h5>Syntax:</h5>
3221
3222<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003223 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003224</pre>
3225
3226<h5>Overview:</h5>
3227
3228<p>
3229The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00003230from two input vectors, returning a vector with the same element type as
3231the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00003232</p>
3233
3234<h5>Arguments:</h5>
3235
3236<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003237The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3238with types that match each other. The third argument is a shuffle mask whose
3239element type is always 'i32'. The result of the instruction is a vector whose
3240length is the same as the shuffle mask and whose element type is the same as
3241the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00003242</p>
3243
3244<p>
3245The shuffle mask operand is required to be a constant vector with either
3246constant integer or undef values.
3247</p>
3248
3249<h5>Semantics:</h5>
3250
3251<p>
3252The elements of the two input vectors are numbered from left to right across
3253both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00003254the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00003255gets. The element selector may be undef (meaning "don't care") and the second
3256operand may be undef if performing a shuffle from only one vector.
3257</p>
3258
3259<h5>Example:</h5>
3260
3261<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003262 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003263 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003264 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3265 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003266 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3267 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3268 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3269 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003270</pre>
3271</div>
3272
Tanya Lattner09474292006-04-14 19:24:33 +00003273
Chris Lattner3df241e2006-04-08 23:07:04 +00003274<!-- ======================================================================= -->
3275<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003276 <a name="aggregateops">Aggregate Operations</a>
3277</div>
3278
3279<div class="doc_text">
3280
3281<p>LLVM supports several instructions for working with aggregate values.
3282</p>
3283
3284</div>
3285
3286<!-- _______________________________________________________________________ -->
3287<div class="doc_subsubsection">
3288 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3289</div>
3290
3291<div class="doc_text">
3292
3293<h5>Syntax:</h5>
3294
3295<pre>
3296 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3297</pre>
3298
3299<h5>Overview:</h5>
3300
3301<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003302The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3303or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003304</p>
3305
3306
3307<h5>Arguments:</h5>
3308
3309<p>
3310The first operand of an '<tt>extractvalue</tt>' instruction is a
3311value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003312type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003313in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003314'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3315</p>
3316
3317<h5>Semantics:</h5>
3318
3319<p>
3320The result is the value at the position in the aggregate specified by
3321the index operands.
3322</p>
3323
3324<h5>Example:</h5>
3325
3326<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003327 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003328</pre>
3329</div>
3330
3331
3332<!-- _______________________________________________________________________ -->
3333<div class="doc_subsubsection">
3334 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3335</div>
3336
3337<div class="doc_text">
3338
3339<h5>Syntax:</h5>
3340
3341<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003342 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003343</pre>
3344
3345<h5>Overview:</h5>
3346
3347<p>
3348The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003349into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003350</p>
3351
3352
3353<h5>Arguments:</h5>
3354
3355<p>
3356The first operand of an '<tt>insertvalue</tt>' instruction is a
3357value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3358The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003359The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003360indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003361indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003362'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3363The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003364by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003365</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003366
3367<h5>Semantics:</h5>
3368
3369<p>
3370The result is an aggregate of the same type as <tt>val</tt>. Its
3371value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003372specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003373</p>
3374
3375<h5>Example:</h5>
3376
3377<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003378 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003379</pre>
3380</div>
3381
3382
3383<!-- ======================================================================= -->
3384<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003385 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003386</div>
3387
Misha Brukman9d0919f2003-11-08 01:05:38 +00003388<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003389
Chris Lattner261efe92003-11-25 01:02:51 +00003390<p>A key design point of an SSA-based representation is how it
3391represents memory. In LLVM, no memory locations are in SSA form, which
3392makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003393allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003394
Misha Brukman9d0919f2003-11-08 01:05:38 +00003395</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003396
Chris Lattner00950542001-06-06 20:29:01 +00003397<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003398<div class="doc_subsubsection">
3399 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3400</div>
3401
Misha Brukman9d0919f2003-11-08 01:05:38 +00003402<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003403
Chris Lattner00950542001-06-06 20:29:01 +00003404<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003405
3406<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003407 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003408</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003409
Chris Lattner00950542001-06-06 20:29:01 +00003410<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003411
Chris Lattner261efe92003-11-25 01:02:51 +00003412<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003413heap and returns a pointer to it. The object is always allocated in the generic
3414address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003415
Chris Lattner00950542001-06-06 20:29:01 +00003416<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003417
3418<p>The '<tt>malloc</tt>' instruction allocates
3419<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003420bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003421appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003422number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003423If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003424be aligned to at least that boundary. If not specified, or if zero, the target can
3425choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003426
Misha Brukman9d0919f2003-11-08 01:05:38 +00003427<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003428
Chris Lattner00950542001-06-06 20:29:01 +00003429<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003430
Chris Lattner261efe92003-11-25 01:02:51 +00003431<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003432a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003433result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003434
Chris Lattner2cbdc452005-11-06 08:02:57 +00003435<h5>Example:</h5>
3436
3437<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003438 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003439
Bill Wendlingaac388b2007-05-29 09:42:13 +00003440 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3441 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3442 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3443 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3444 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003445</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003446
3447<p>Note that the code generator does not yet respect the
3448 alignment value.</p>
3449
Misha Brukman9d0919f2003-11-08 01:05:38 +00003450</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003451
Chris Lattner00950542001-06-06 20:29:01 +00003452<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003453<div class="doc_subsubsection">
3454 <a name="i_free">'<tt>free</tt>' Instruction</a>
3455</div>
3456
Misha Brukman9d0919f2003-11-08 01:05:38 +00003457<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003458
Chris Lattner00950542001-06-06 20:29:01 +00003459<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003460
3461<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003462 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003463</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003464
Chris Lattner00950542001-06-06 20:29:01 +00003465<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003466
Chris Lattner261efe92003-11-25 01:02:51 +00003467<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003468memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003469
Chris Lattner00950542001-06-06 20:29:01 +00003470<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003471
Chris Lattner261efe92003-11-25 01:02:51 +00003472<p>'<tt>value</tt>' shall be a pointer value that points to a value
3473that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3474instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003475
Chris Lattner00950542001-06-06 20:29:01 +00003476<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003477
John Criswell9e2485c2004-12-10 15:51:16 +00003478<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003479after this instruction executes. If the pointer is null, the operation
3480is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003481
Chris Lattner00950542001-06-06 20:29:01 +00003482<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003483
3484<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003485 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003486 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003487</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003488</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003489
Chris Lattner00950542001-06-06 20:29:01 +00003490<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003491<div class="doc_subsubsection">
3492 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3493</div>
3494
Misha Brukman9d0919f2003-11-08 01:05:38 +00003495<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003496
Chris Lattner00950542001-06-06 20:29:01 +00003497<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003498
3499<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003500 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003501</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003502
Chris Lattner00950542001-06-06 20:29:01 +00003503<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003504
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003505<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3506currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003507returns to its caller. The object is always allocated in the generic address
3508space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003509
Chris Lattner00950542001-06-06 20:29:01 +00003510<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003511
John Criswell9e2485c2004-12-10 15:51:16 +00003512<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003513bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003514appropriate type to the program. If "NumElements" is specified, it is the
3515number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003516If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003517to be aligned to at least that boundary. If not specified, or if zero, the target
3518can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003519
Misha Brukman9d0919f2003-11-08 01:05:38 +00003520<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003521
Chris Lattner00950542001-06-06 20:29:01 +00003522<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003523
Bill Wendling871eb0a2009-05-08 20:49:29 +00003524<p>Memory is allocated; a pointer is returned. The operation is undefined if
Chris Lattner72ed2002008-04-19 21:01:16 +00003525there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003526memory is automatically released when the function returns. The '<tt>alloca</tt>'
3527instruction is commonly used to represent automatic variables that must
3528have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003529 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003530instructions), the memory is reclaimed. Allocating zero bytes
3531is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003532
Chris Lattner00950542001-06-06 20:29:01 +00003533<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003534
3535<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003536 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3537 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3538 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3539 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003540</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003541</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003542
Chris Lattner00950542001-06-06 20:29:01 +00003543<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003544<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3545Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003546<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003547<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003548<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003549<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003550<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003551<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003552<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003553address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003554 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003555marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003556the number or order of execution of this <tt>load</tt> with other
3557volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3558instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003559<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003560The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003561(that is, the alignment of the memory address). A value of 0 or an
3562omitted "align" argument means that the operation has the preferential
3563alignment for the target. It is the responsibility of the code emitter
3564to ensure that the alignment information is correct. Overestimating
3565the alignment results in an undefined behavior. Underestimating the
3566alignment may produce less efficient code. An alignment of 1 is always
3567safe.
3568</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003569<h5>Semantics:</h5>
Duncan Sands19527c62009-03-22 11:33:16 +00003570<p>The location of memory pointed to is loaded. If the value being loaded
3571is of scalar type then the number of bytes read does not exceed the minimum
3572number of bytes needed to hold all bits of the type. For example, loading an
3573<tt>i24</tt> reads at most three bytes. When loading a value of a type like
3574<tt>i20</tt> with a size that is not an integral number of bytes, the result
3575is undefined if the value was not originally written using a store of the
3576same type.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003577<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003578<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003579 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003580 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3581 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003582</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003583</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003584<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003585<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3586Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003587<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003588<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003589<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3590 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003591</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003592<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003593<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003594<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003595<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003596to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003597operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3598of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003599operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003600optimizer is not allowed to modify the number or order of execution of
3601this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3602 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003603<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003604The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003605(that is, the alignment of the memory address). A value of 0 or an
3606omitted "align" argument means that the operation has the preferential
3607alignment for the target. It is the responsibility of the code emitter
3608to ensure that the alignment information is correct. Overestimating
3609the alignment results in an undefined behavior. Underestimating the
3610alignment may produce less efficient code. An alignment of 1 is always
3611safe.
3612</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003613<h5>Semantics:</h5>
3614<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
Duncan Sands19527c62009-03-22 11:33:16 +00003615at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.
3616If '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes
3617written does not exceed the minimum number of bytes needed to hold all
3618bits of the type. For example, storing an <tt>i24</tt> writes at most
3619three bytes. When writing a value of a type like <tt>i20</tt> with a
3620size that is not an integral number of bytes, it is unspecified what
3621happens to the extra bits that do not belong to the type, but they will
3622typically be overwritten.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003623<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003624<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003625 store i32 3, i32* %ptr <i>; yields {void}</i>
3626 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003627</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003628</div>
3629
Chris Lattner2b7d3202002-05-06 03:03:22 +00003630<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003631<div class="doc_subsubsection">
3632 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3633</div>
3634
Misha Brukman9d0919f2003-11-08 01:05:38 +00003635<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003636<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003637<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003638 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003639</pre>
3640
Chris Lattner7faa8832002-04-14 06:13:44 +00003641<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003642
3643<p>
3644The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003645subelement of an aggregate data structure. It performs address calculation only
3646and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003647
Chris Lattner7faa8832002-04-14 06:13:44 +00003648<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003649
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003650<p>The first argument is always a pointer, and forms the basis of the
3651calculation. The remaining arguments are indices, that indicate which of the
3652elements of the aggregate object are indexed. The interpretation of each index
3653is dependent on the type being indexed into. The first index always indexes the
3654pointer value given as the first argument, the second index indexes a value of
3655the type pointed to (not necessarily the value directly pointed to, since the
3656first index can be non-zero), etc. The first type indexed into must be a pointer
3657value, subsequent types can be arrays, vectors and structs. Note that subsequent
3658types being indexed into can never be pointers, since that would require loading
3659the pointer before continuing calculation.</p>
3660
3661<p>The type of each index argument depends on the type it is indexing into.
3662When indexing into a (packed) structure, only <tt>i32</tt> integer
3663<b>constants</b> are allowed. When indexing into an array, pointer or vector,
Sanjiv Gupta23c70f42009-04-27 03:21:00 +00003664integers of any width are allowed (also non-constants).</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003665
Chris Lattner261efe92003-11-25 01:02:51 +00003666<p>For example, let's consider a C code fragment and how it gets
3667compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003668
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003669<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003670<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003671struct RT {
3672 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003673 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003674 char C;
3675};
3676struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003677 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003678 double Y;
3679 struct RT Z;
3680};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003681
Chris Lattnercabc8462007-05-29 15:43:56 +00003682int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003683 return &amp;s[1].Z.B[5][13];
3684}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003685</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003686</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003687
Misha Brukman9d0919f2003-11-08 01:05:38 +00003688<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003689
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003690<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003691<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00003692%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3693%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003694
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003695define i32* %foo(%ST* %s) {
3696entry:
3697 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3698 ret i32* %reg
3699}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003700</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003701</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003702
Chris Lattner7faa8832002-04-14 06:13:44 +00003703<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003704
Misha Brukman9d0919f2003-11-08 01:05:38 +00003705<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003706type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003707}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003708the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3709i8 }</tt>' type, another structure. The third index indexes into the second
3710element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003711array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003712'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3713to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003714
Chris Lattner261efe92003-11-25 01:02:51 +00003715<p>Note that it is perfectly legal to index partially through a
3716structure, returning a pointer to an inner element. Because of this,
3717the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003718
3719<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003720 define i32* %foo(%ST* %s) {
3721 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003722 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3723 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003724 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3725 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3726 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003727 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003728</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003729
Chris Lattner8c0e62c2009-03-09 20:55:18 +00003730<p>Note that it is undefined to access an array out of bounds: array
3731and pointer indexes must always be within the defined bounds of the
3732array type when accessed with an instruction that dereferences the
3733pointer (e.g. a load or store instruction). The one exception for
3734this rule is zero length arrays. These arrays are defined to be
3735accessible as variable length arrays, which requires access beyond the
3736zero'th element.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00003737
Chris Lattner884a9702006-08-15 00:45:58 +00003738<p>The getelementptr instruction is often confusing. For some more insight
3739into how it works, see <a href="GetElementPtr.html">the getelementptr
3740FAQ</a>.</p>
3741
Chris Lattner7faa8832002-04-14 06:13:44 +00003742<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003743
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003744<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003745 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003746 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3747 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003748 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003749 <i>; yields i8*:eptr</i>
3750 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta9f805c22009-04-25 07:27:44 +00003751 <i>; yields i32*:iptr</i>
Sanjiv Gupta16ffa802009-04-24 16:38:13 +00003752 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003753</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003754</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003755
Chris Lattner00950542001-06-06 20:29:01 +00003756<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003757<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003758</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003759<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003760<p>The instructions in this category are the conversion instructions (casting)
3761which all take a single operand and a type. They perform various bit conversions
3762on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003763</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003764
Chris Lattner6536cfe2002-05-06 22:08:29 +00003765<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003766<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003767 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3768</div>
3769<div class="doc_text">
3770
3771<h5>Syntax:</h5>
3772<pre>
3773 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3774</pre>
3775
3776<h5>Overview:</h5>
3777<p>
3778The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3779</p>
3780
3781<h5>Arguments:</h5>
3782<p>
3783The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3784be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003785and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003786type. The bit size of <tt>value</tt> must be larger than the bit size of
3787<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003788
3789<h5>Semantics:</h5>
3790<p>
3791The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003792and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3793larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3794It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003795
3796<h5>Example:</h5>
3797<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003798 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003799 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3800 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003801</pre>
3802</div>
3803
3804<!-- _______________________________________________________________________ -->
3805<div class="doc_subsubsection">
3806 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3807</div>
3808<div class="doc_text">
3809
3810<h5>Syntax:</h5>
3811<pre>
3812 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3813</pre>
3814
3815<h5>Overview:</h5>
3816<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3817<tt>ty2</tt>.</p>
3818
3819
3820<h5>Arguments:</h5>
3821<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003822<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3823also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003824<tt>value</tt> must be smaller than the bit size of the destination type,
3825<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003826
3827<h5>Semantics:</h5>
3828<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003829bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003830
Reid Spencerb5929522007-01-12 15:46:11 +00003831<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003832
3833<h5>Example:</h5>
3834<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003835 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003836 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003837</pre>
3838</div>
3839
3840<!-- _______________________________________________________________________ -->
3841<div class="doc_subsubsection">
3842 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3843</div>
3844<div class="doc_text">
3845
3846<h5>Syntax:</h5>
3847<pre>
3848 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3849</pre>
3850
3851<h5>Overview:</h5>
3852<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3853
3854<h5>Arguments:</h5>
3855<p>
3856The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003857<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3858also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003859<tt>value</tt> must be smaller than the bit size of the destination type,
3860<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003861
3862<h5>Semantics:</h5>
3863<p>
3864The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3865bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003866the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003867
Reid Spencerc78f3372007-01-12 03:35:51 +00003868<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003869
3870<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003871<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003872 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003873 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003874</pre>
3875</div>
3876
3877<!-- _______________________________________________________________________ -->
3878<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003879 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3880</div>
3881
3882<div class="doc_text">
3883
3884<h5>Syntax:</h5>
3885
3886<pre>
3887 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3888</pre>
3889
3890<h5>Overview:</h5>
3891<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3892<tt>ty2</tt>.</p>
3893
3894
3895<h5>Arguments:</h5>
3896<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3897 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3898cast it to. The size of <tt>value</tt> must be larger than the size of
3899<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3900<i>no-op cast</i>.</p>
3901
3902<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003903<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3904<a href="#t_floating">floating point</a> type to a smaller
3905<a href="#t_floating">floating point</a> type. If the value cannot fit within
3906the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003907
3908<h5>Example:</h5>
3909<pre>
3910 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3911 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3912</pre>
3913</div>
3914
3915<!-- _______________________________________________________________________ -->
3916<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003917 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3918</div>
3919<div class="doc_text">
3920
3921<h5>Syntax:</h5>
3922<pre>
3923 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3924</pre>
3925
3926<h5>Overview:</h5>
3927<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3928floating point value.</p>
3929
3930<h5>Arguments:</h5>
3931<p>The '<tt>fpext</tt>' instruction takes a
3932<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003933and a <a href="#t_floating">floating point</a> type to cast it to. The source
3934type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003935
3936<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003937<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003938<a href="#t_floating">floating point</a> type to a larger
3939<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003940used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003941<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003942
3943<h5>Example:</h5>
3944<pre>
3945 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3946 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3947</pre>
3948</div>
3949
3950<!-- _______________________________________________________________________ -->
3951<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003952 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003953</div>
3954<div class="doc_text">
3955
3956<h5>Syntax:</h5>
3957<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003958 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003959</pre>
3960
3961<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003962<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003963unsigned integer equivalent of type <tt>ty2</tt>.
3964</p>
3965
3966<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003967<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003968scalar or vector <a href="#t_floating">floating point</a> value, and a type
3969to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3970type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3971vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003972
3973<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003974<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003975<a href="#t_floating">floating point</a> operand into the nearest (rounding
3976towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3977the results are undefined.</p>
3978
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003979<h5>Example:</h5>
3980<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003981 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003982 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003983 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003984</pre>
3985</div>
3986
3987<!-- _______________________________________________________________________ -->
3988<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003989 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003990</div>
3991<div class="doc_text">
3992
3993<h5>Syntax:</h5>
3994<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003995 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003996</pre>
3997
3998<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003999<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004000<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004001</p>
4002
Chris Lattner6536cfe2002-05-06 22:08:29 +00004003<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004004<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00004005scalar or vector <a href="#t_floating">floating point</a> value, and a type
4006to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4007type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4008vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004009
Chris Lattner6536cfe2002-05-06 22:08:29 +00004010<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004011<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004012<a href="#t_floating">floating point</a> operand into the nearest (rounding
4013towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4014the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004015
Chris Lattner33ba0d92001-07-09 00:26:23 +00004016<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004017<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004018 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004019 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004020 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004021</pre>
4022</div>
4023
4024<!-- _______________________________________________________________________ -->
4025<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004026 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004027</div>
4028<div class="doc_text">
4029
4030<h5>Syntax:</h5>
4031<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004032 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004033</pre>
4034
4035<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004036<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004037integer and converts that value to the <tt>ty2</tt> type.</p>
4038
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004039<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004040<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4041scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4042to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4043type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4044floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004045
4046<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004047<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004048integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00004049the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004050
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004051<h5>Example:</h5>
4052<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004053 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004054 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004055</pre>
4056</div>
4057
4058<!-- _______________________________________________________________________ -->
4059<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004060 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004061</div>
4062<div class="doc_text">
4063
4064<h5>Syntax:</h5>
4065<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004066 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004067</pre>
4068
4069<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004070<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004071integer and converts that value to the <tt>ty2</tt> type.</p>
4072
4073<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004074<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4075scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4076to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4077type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4078floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004079
4080<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004081<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004082integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00004083the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004084
4085<h5>Example:</h5>
4086<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004087 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004088 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004089</pre>
4090</div>
4091
4092<!-- _______________________________________________________________________ -->
4093<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00004094 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4095</div>
4096<div class="doc_text">
4097
4098<h5>Syntax:</h5>
4099<pre>
4100 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4101</pre>
4102
4103<h5>Overview:</h5>
4104<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4105the integer type <tt>ty2</tt>.</p>
4106
4107<h5>Arguments:</h5>
4108<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00004109must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00004110<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004111
4112<h5>Semantics:</h5>
4113<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4114<tt>ty2</tt> by interpreting the pointer value as an integer and either
4115truncating or zero extending that value to the size of the integer type. If
4116<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4117<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00004118are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4119change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004120
4121<h5>Example:</h5>
4122<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004123 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4124 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004125</pre>
4126</div>
4127
4128<!-- _______________________________________________________________________ -->
4129<div class="doc_subsubsection">
4130 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4131</div>
4132<div class="doc_text">
4133
4134<h5>Syntax:</h5>
4135<pre>
4136 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4137</pre>
4138
4139<h5>Overview:</h5>
4140<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4141a pointer type, <tt>ty2</tt>.</p>
4142
4143<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00004144<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00004145value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004146<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004147
4148<h5>Semantics:</h5>
4149<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4150<tt>ty2</tt> by applying either a zero extension or a truncation depending on
4151the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4152size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4153the size of a pointer then a zero extension is done. If they are the same size,
4154nothing is done (<i>no-op cast</i>).</p>
4155
4156<h5>Example:</h5>
4157<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004158 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4159 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4160 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004161</pre>
4162</div>
4163
4164<!-- _______________________________________________________________________ -->
4165<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00004166 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004167</div>
4168<div class="doc_text">
4169
4170<h5>Syntax:</h5>
4171<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004172 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004173</pre>
4174
4175<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004176
Reid Spencer5c0ef472006-11-11 23:08:07 +00004177<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004178<tt>ty2</tt> without changing any bits.</p>
4179
4180<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004181
Reid Spencer5c0ef472006-11-11 23:08:07 +00004182<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00004183a non-aggregate first class value, and a type to cast it to, which must also be
4184a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4185<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00004186and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00004187type is a pointer, the destination type must also be a pointer. This
4188instruction supports bitwise conversion of vectors to integers and to vectors
4189of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004190
4191<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004192<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00004193<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4194this conversion. The conversion is done as if the <tt>value</tt> had been
4195stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4196converted to other pointer types with this instruction. To convert pointers to
4197other types, use the <a href="#i_inttoptr">inttoptr</a> or
4198<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004199
4200<h5>Example:</h5>
4201<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004202 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004203 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004204 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00004205</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004206</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004207
Reid Spencer2fd21e62006-11-08 01:18:52 +00004208<!-- ======================================================================= -->
4209<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4210<div class="doc_text">
4211<p>The instructions in this category are the "miscellaneous"
4212instructions, which defy better classification.</p>
4213</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004214
4215<!-- _______________________________________________________________________ -->
4216<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4217</div>
4218<div class="doc_text">
4219<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004220<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004221</pre>
4222<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004223<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4224a vector of boolean values based on comparison
4225of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004226<h5>Arguments:</h5>
4227<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004228the condition code indicating the kind of comparison to perform. It is not
4229a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004230</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004231<ol>
4232 <li><tt>eq</tt>: equal</li>
4233 <li><tt>ne</tt>: not equal </li>
4234 <li><tt>ugt</tt>: unsigned greater than</li>
4235 <li><tt>uge</tt>: unsigned greater or equal</li>
4236 <li><tt>ult</tt>: unsigned less than</li>
4237 <li><tt>ule</tt>: unsigned less or equal</li>
4238 <li><tt>sgt</tt>: signed greater than</li>
4239 <li><tt>sge</tt>: signed greater or equal</li>
4240 <li><tt>slt</tt>: signed less than</li>
4241 <li><tt>sle</tt>: signed less or equal</li>
4242</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00004243<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00004244<a href="#t_pointer">pointer</a>
4245or integer <a href="#t_vector">vector</a> typed.
4246They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004247<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004248<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00004249the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00004250yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004251</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004252<ol>
4253 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4254 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4255 </li>
4256 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00004257 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004258 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004259 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004260 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004261 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004262 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004263 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004264 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004265 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004266 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004267 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004268 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004269 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004270 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004271 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004272 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004273 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004274</ol>
4275<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00004276values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004277<p>If the operands are integer vectors, then they are compared
4278element by element. The result is an <tt>i1</tt> vector with
4279the same number of elements as the values being compared.
4280Otherwise, the result is an <tt>i1</tt>.
4281</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004282
4283<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004284<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4285 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4286 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4287 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4288 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4289 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004290</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004291
4292<p>Note that the code generator does not yet support vector types with
4293 the <tt>icmp</tt> instruction.</p>
4294
Reid Spencerf3a70a62006-11-18 21:50:54 +00004295</div>
4296
4297<!-- _______________________________________________________________________ -->
4298<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4299</div>
4300<div class="doc_text">
4301<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004302<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004303</pre>
4304<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004305<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4306or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004307of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004308<p>
4309If the operands are floating point scalars, then the result
4310type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4311</p>
4312<p>If the operands are floating point vectors, then the result type
4313is a vector of boolean with the same number of elements as the
4314operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004315<h5>Arguments:</h5>
4316<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004317the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004318a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004319<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004320 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004321 <li><tt>oeq</tt>: ordered and equal</li>
4322 <li><tt>ogt</tt>: ordered and greater than </li>
4323 <li><tt>oge</tt>: ordered and greater than or equal</li>
4324 <li><tt>olt</tt>: ordered and less than </li>
4325 <li><tt>ole</tt>: ordered and less than or equal</li>
4326 <li><tt>one</tt>: ordered and not equal</li>
4327 <li><tt>ord</tt>: ordered (no nans)</li>
4328 <li><tt>ueq</tt>: unordered or equal</li>
4329 <li><tt>ugt</tt>: unordered or greater than </li>
4330 <li><tt>uge</tt>: unordered or greater than or equal</li>
4331 <li><tt>ult</tt>: unordered or less than </li>
4332 <li><tt>ule</tt>: unordered or less than or equal</li>
4333 <li><tt>une</tt>: unordered or not equal</li>
4334 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004335 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004336</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004337<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004338<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004339<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4340either a <a href="#t_floating">floating point</a> type
4341or a <a href="#t_vector">vector</a> of floating point type.
4342They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004343<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004344<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004345according to the condition code given as <tt>cond</tt>.
4346If the operands are vectors, then the vectors are compared
4347element by element.
4348Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004349always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004350<ol>
4351 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004352 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004353 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004354 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004355 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004356 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004357 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004358 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004359 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004360 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004361 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004362 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004363 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004364 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4365 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004366 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004367 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004368 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004369 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004370 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004371 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004372 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004373 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004374 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004375 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004376 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004377 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004378 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4379</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004380
4381<h5>Example:</h5>
4382<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004383 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4384 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4385 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004386</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004387
4388<p>Note that the code generator does not yet support vector types with
4389 the <tt>fcmp</tt> instruction.</p>
4390
Reid Spencerf3a70a62006-11-18 21:50:54 +00004391</div>
4392
Reid Spencer2fd21e62006-11-08 01:18:52 +00004393<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004394<div class="doc_subsubsection">
4395 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4396</div>
4397<div class="doc_text">
4398<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004399<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004400</pre>
4401<h5>Overview:</h5>
4402<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4403element-wise comparison of its two integer vector operands.</p>
4404<h5>Arguments:</h5>
4405<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4406the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004407a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004408<ol>
4409 <li><tt>eq</tt>: equal</li>
4410 <li><tt>ne</tt>: not equal </li>
4411 <li><tt>ugt</tt>: unsigned greater than</li>
4412 <li><tt>uge</tt>: unsigned greater or equal</li>
4413 <li><tt>ult</tt>: unsigned less than</li>
4414 <li><tt>ule</tt>: unsigned less or equal</li>
4415 <li><tt>sgt</tt>: signed greater than</li>
4416 <li><tt>sge</tt>: signed greater or equal</li>
4417 <li><tt>slt</tt>: signed less than</li>
4418 <li><tt>sle</tt>: signed less or equal</li>
4419</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004420<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004421<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4422<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004423<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004424according to the condition code given as <tt>cond</tt>. The comparison yields a
4425<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4426identical type as the values being compared. The most significant bit in each
4427element is 1 if the element-wise comparison evaluates to true, and is 0
4428otherwise. All other bits of the result are undefined. The condition codes
4429are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman0e451ce2008-10-14 16:51:45 +00004430instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004431
4432<h5>Example:</h5>
4433<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004434 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4435 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004436</pre>
4437</div>
4438
4439<!-- _______________________________________________________________________ -->
4440<div class="doc_subsubsection">
4441 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4442</div>
4443<div class="doc_text">
4444<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004445<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004446<h5>Overview:</h5>
4447<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4448element-wise comparison of its two floating point vector operands. The output
4449elements have the same width as the input elements.</p>
4450<h5>Arguments:</h5>
4451<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4452the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004453a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004454<ol>
4455 <li><tt>false</tt>: no comparison, always returns false</li>
4456 <li><tt>oeq</tt>: ordered and equal</li>
4457 <li><tt>ogt</tt>: ordered and greater than </li>
4458 <li><tt>oge</tt>: ordered and greater than or equal</li>
4459 <li><tt>olt</tt>: ordered and less than </li>
4460 <li><tt>ole</tt>: ordered and less than or equal</li>
4461 <li><tt>one</tt>: ordered and not equal</li>
4462 <li><tt>ord</tt>: ordered (no nans)</li>
4463 <li><tt>ueq</tt>: unordered or equal</li>
4464 <li><tt>ugt</tt>: unordered or greater than </li>
4465 <li><tt>uge</tt>: unordered or greater than or equal</li>
4466 <li><tt>ult</tt>: unordered or less than </li>
4467 <li><tt>ule</tt>: unordered or less than or equal</li>
4468 <li><tt>une</tt>: unordered or not equal</li>
4469 <li><tt>uno</tt>: unordered (either nans)</li>
4470 <li><tt>true</tt>: no comparison, always returns true</li>
4471</ol>
4472<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4473<a href="#t_floating">floating point</a> typed. They must also be identical
4474types.</p>
4475<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004476<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004477according to the condition code given as <tt>cond</tt>. The comparison yields a
4478<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4479an identical number of elements as the values being compared, and each element
4480having identical with to the width of the floating point elements. The most
4481significant bit in each element is 1 if the element-wise comparison evaluates to
4482true, and is 0 otherwise. All other bits of the result are undefined. The
4483condition codes are evaluated identically to the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004484<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004485
4486<h5>Example:</h5>
4487<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +00004488 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4489 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4490
4491 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4492 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemanac80ade2008-05-12 19:01:56 +00004493</pre>
4494</div>
4495
4496<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004497<div class="doc_subsubsection">
4498 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4499</div>
4500
Reid Spencer2fd21e62006-11-08 01:18:52 +00004501<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004502
Reid Spencer2fd21e62006-11-08 01:18:52 +00004503<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004504
Reid Spencer2fd21e62006-11-08 01:18:52 +00004505<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4506<h5>Overview:</h5>
4507<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4508the SSA graph representing the function.</p>
4509<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004510
Jeff Cohenb627eab2007-04-29 01:07:00 +00004511<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004512field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4513as arguments, with one pair for each predecessor basic block of the
4514current block. Only values of <a href="#t_firstclass">first class</a>
4515type may be used as the value arguments to the PHI node. Only labels
4516may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004517
Reid Spencer2fd21e62006-11-08 01:18:52 +00004518<p>There must be no non-phi instructions between the start of a basic
4519block and the PHI instructions: i.e. PHI instructions must be first in
4520a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004521
Jay Foadd2449092009-06-03 10:20:10 +00004522<p>For the purposes of the SSA form, the use of each incoming value is
4523deemed to occur on the edge from the corresponding predecessor block
4524to the current block (but after any definition of an '<tt>invoke</tt>'
4525instruction's return value on the same edge).</p>
4526
Reid Spencer2fd21e62006-11-08 01:18:52 +00004527<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004528
Jeff Cohenb627eab2007-04-29 01:07:00 +00004529<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4530specified by the pair corresponding to the predecessor basic block that executed
4531just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004532
Reid Spencer2fd21e62006-11-08 01:18:52 +00004533<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004534<pre>
4535Loop: ; Infinite loop that counts from 0 on up...
4536 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4537 %nextindvar = add i32 %indvar, 1
4538 br label %Loop
4539</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004540</div>
4541
Chris Lattnercc37aae2004-03-12 05:50:16 +00004542<!-- _______________________________________________________________________ -->
4543<div class="doc_subsubsection">
4544 <a name="i_select">'<tt>select</tt>' Instruction</a>
4545</div>
4546
4547<div class="doc_text">
4548
4549<h5>Syntax:</h5>
4550
4551<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004552 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4553
Dan Gohman0e451ce2008-10-14 16:51:45 +00004554 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004555</pre>
4556
4557<h5>Overview:</h5>
4558
4559<p>
4560The '<tt>select</tt>' instruction is used to choose one value based on a
4561condition, without branching.
4562</p>
4563
4564
4565<h5>Arguments:</h5>
4566
4567<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004568The '<tt>select</tt>' instruction requires an 'i1' value or
4569a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004570condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004571type. If the val1/val2 are vectors and
4572the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004573individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004574</p>
4575
4576<h5>Semantics:</h5>
4577
4578<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004579If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004580value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004581</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004582<p>
4583If the condition is a vector of i1, then the value arguments must
4584be vectors of the same size, and the selection is done element
4585by element.
4586</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004587
4588<h5>Example:</h5>
4589
4590<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004591 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004592</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004593
4594<p>Note that the code generator does not yet support conditions
4595 with vector type.</p>
4596
Chris Lattnercc37aae2004-03-12 05:50:16 +00004597</div>
4598
Robert Bocchino05ccd702006-01-15 20:48:27 +00004599
4600<!-- _______________________________________________________________________ -->
4601<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004602 <a name="i_call">'<tt>call</tt>' Instruction</a>
4603</div>
4604
Misha Brukman9d0919f2003-11-08 01:05:38 +00004605<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004606
Chris Lattner00950542001-06-06 20:29:01 +00004607<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004608<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004609 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004610</pre>
4611
Chris Lattner00950542001-06-06 20:29:01 +00004612<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004613
Misha Brukman9d0919f2003-11-08 01:05:38 +00004614<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004615
Chris Lattner00950542001-06-06 20:29:01 +00004616<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004617
Misha Brukman9d0919f2003-11-08 01:05:38 +00004618<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004619
Chris Lattner6536cfe2002-05-06 22:08:29 +00004620<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004621 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004622 <p>The optional "tail" marker indicates whether the callee function accesses
4623 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004624 function call is eligible for tail call optimization. Note that calls may
4625 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004626 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004627 </li>
4628 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004629 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004630 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004631 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004632 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004633
4634 <li>
4635 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4636 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4637 and '<tt>inreg</tt>' attributes are valid here.</p>
4638 </li>
4639
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004640 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004641 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4642 the type of the return value. Functions that return no value are marked
4643 <tt><a href="#t_void">void</a></tt>.</p>
4644 </li>
4645 <li>
4646 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4647 value being invoked. The argument types must match the types implied by
4648 this signature. This type can be omitted if the function is not varargs
4649 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004650 </li>
4651 <li>
4652 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4653 be invoked. In most cases, this is a direct function invocation, but
4654 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004655 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004656 </li>
4657 <li>
4658 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004659 function signature argument types. All arguments must be of
4660 <a href="#t_firstclass">first class</a> type. If the function signature
4661 indicates the function accepts a variable number of arguments, the extra
4662 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004663 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004664 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004665 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004666 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4667 '<tt>readnone</tt>' attributes are valid here.</p>
4668 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004669</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004670
Chris Lattner00950542001-06-06 20:29:01 +00004671<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004672
Chris Lattner261efe92003-11-25 01:02:51 +00004673<p>The '<tt>call</tt>' instruction is used to cause control flow to
4674transfer to a specified function, with its incoming arguments bound to
4675the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4676instruction in the called function, control flow continues with the
4677instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004678function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004679
Chris Lattner00950542001-06-06 20:29:01 +00004680<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004681
4682<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004683 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004684 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4685 %X = tail call i32 @foo() <i>; yields i32</i>
4686 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4687 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004688
4689 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004690 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004691 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4692 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004693 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004694 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004695</pre>
4696
Misha Brukman9d0919f2003-11-08 01:05:38 +00004697</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004698
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004699<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004700<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004701 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004702</div>
4703
Misha Brukman9d0919f2003-11-08 01:05:38 +00004704<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004705
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004706<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004707
4708<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004709 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004710</pre>
4711
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004712<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004713
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004714<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004715the "variable argument" area of a function call. It is used to implement the
4716<tt>va_arg</tt> macro in C.</p>
4717
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004718<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004719
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004720<p>This instruction takes a <tt>va_list*</tt> value and the type of
4721the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004722increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004723actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004724
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004725<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004726
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004727<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4728type from the specified <tt>va_list</tt> and causes the
4729<tt>va_list</tt> to point to the next argument. For more information,
4730see the variable argument handling <a href="#int_varargs">Intrinsic
4731Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004732
4733<p>It is legal for this instruction to be called in a function which does not
4734take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004735function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004736
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004737<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004738href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004739argument.</p>
4740
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004741<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004742
4743<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4744
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00004745<p>Note that the code generator does not yet fully support va_arg
4746 on many targets. Also, it does not currently support va_arg with
4747 aggregate types on any target.</p>
4748
Misha Brukman9d0919f2003-11-08 01:05:38 +00004749</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004750
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004751<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004752<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4753<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004754
Misha Brukman9d0919f2003-11-08 01:05:38 +00004755<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004756
4757<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004758well known names and semantics and are required to follow certain restrictions.
4759Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004760language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004761adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004762
John Criswellfc6b8952005-05-16 16:17:45 +00004763<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004764prefix is reserved in LLVM for intrinsic names; thus, function names may not
4765begin with this prefix. Intrinsic functions must always be external functions:
4766you cannot define the body of intrinsic functions. Intrinsic functions may
4767only be used in call or invoke instructions: it is illegal to take the address
4768of an intrinsic function. Additionally, because intrinsic functions are part
4769of the LLVM language, it is required if any are added that they be documented
4770here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004771
Chandler Carruth69940402007-08-04 01:51:18 +00004772<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4773a family of functions that perform the same operation but on different data
4774types. Because LLVM can represent over 8 million different integer types,
4775overloading is used commonly to allow an intrinsic function to operate on any
4776integer type. One or more of the argument types or the result type can be
4777overloaded to accept any integer type. Argument types may also be defined as
4778exactly matching a previous argument's type or the result type. This allows an
4779intrinsic function which accepts multiple arguments, but needs all of them to
4780be of the same type, to only be overloaded with respect to a single argument or
4781the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004782
Chandler Carruth69940402007-08-04 01:51:18 +00004783<p>Overloaded intrinsics will have the names of its overloaded argument types
4784encoded into its function name, each preceded by a period. Only those types
4785which are overloaded result in a name suffix. Arguments whose type is matched
4786against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4787take an integer of any width and returns an integer of exactly the same integer
4788width. This leads to a family of functions such as
4789<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4790Only one type, the return type, is overloaded, and only one type suffix is
4791required. Because the argument's type is matched against the return type, it
4792does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004793
4794<p>To learn how to add an intrinsic function, please see the
4795<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004796</p>
4797
Misha Brukman9d0919f2003-11-08 01:05:38 +00004798</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004799
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004800<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004801<div class="doc_subsection">
4802 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4803</div>
4804
Misha Brukman9d0919f2003-11-08 01:05:38 +00004805<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004806
Misha Brukman9d0919f2003-11-08 01:05:38 +00004807<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004808 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004809intrinsic functions. These functions are related to the similarly
4810named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004811
Chris Lattner261efe92003-11-25 01:02:51 +00004812<p>All of these functions operate on arguments that use a
4813target-specific value type "<tt>va_list</tt>". The LLVM assembly
4814language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004815transformations should be prepared to handle these functions regardless of
4816the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004817
Chris Lattner374ab302006-05-15 17:26:46 +00004818<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004819instruction and the variable argument handling intrinsic functions are
4820used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004821
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004822<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004823<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004824define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004825 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004826 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004827 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004828 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004829
4830 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004831 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004832
4833 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004834 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004835 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004836 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004837 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004838
4839 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004840 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004841 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004842}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004843
4844declare void @llvm.va_start(i8*)
4845declare void @llvm.va_copy(i8*, i8*)
4846declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004847</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004848</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004849
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004850</div>
4851
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004852<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004853<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004854 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004855</div>
4856
4857
Misha Brukman9d0919f2003-11-08 01:05:38 +00004858<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004859<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004860<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004861<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004862<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004863<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4864href="#i_va_arg">va_arg</a></tt>.</p>
4865
4866<h5>Arguments:</h5>
4867
Dan Gohman0e451ce2008-10-14 16:51:45 +00004868<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004869
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004870<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004871
Dan Gohman0e451ce2008-10-14 16:51:45 +00004872<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004873macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004874<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004875<tt>va_arg</tt> will produce the first variable argument passed to the function.
4876Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004877last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004878
Misha Brukman9d0919f2003-11-08 01:05:38 +00004879</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004880
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004881<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004882<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004883 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004884</div>
4885
Misha Brukman9d0919f2003-11-08 01:05:38 +00004886<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004887<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004888<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004889<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004890
Jeff Cohenb627eab2007-04-29 01:07:00 +00004891<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004892which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004893or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004894
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004895<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004896
Jeff Cohenb627eab2007-04-29 01:07:00 +00004897<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004898
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004899<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004900
Misha Brukman9d0919f2003-11-08 01:05:38 +00004901<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004902macro available in C. In a target-dependent way, it destroys the
4903<tt>va_list</tt> element to which the argument points. Calls to <a
4904href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4905<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4906<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004907
Misha Brukman9d0919f2003-11-08 01:05:38 +00004908</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004909
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004910<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004911<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004912 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004913</div>
4914
Misha Brukman9d0919f2003-11-08 01:05:38 +00004915<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004916
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004917<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004918
4919<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004920 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004921</pre>
4922
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004923<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004924
Jeff Cohenb627eab2007-04-29 01:07:00 +00004925<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4926from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004927
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004928<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004929
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004930<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004931The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004932
Chris Lattnerd7923912004-05-23 21:06:01 +00004933
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004934<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004935
Jeff Cohenb627eab2007-04-29 01:07:00 +00004936<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4937macro available in C. In a target-dependent way, it copies the source
4938<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4939intrinsic is necessary because the <tt><a href="#int_va_start">
4940llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4941example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004942
Misha Brukman9d0919f2003-11-08 01:05:38 +00004943</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004944
Chris Lattner33aec9e2004-02-12 17:01:32 +00004945<!-- ======================================================================= -->
4946<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004947 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4948</div>
4949
4950<div class="doc_text">
4951
4952<p>
4953LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004954Collection</a> (GC) requires the implementation and generation of these
4955intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004956These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004957stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004958href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004959Front-ends for type-safe garbage collected languages should generate these
4960intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4961href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4962</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004963
4964<p>The garbage collection intrinsics only operate on objects in the generic
4965 address space (address space zero).</p>
4966
Chris Lattnerd7923912004-05-23 21:06:01 +00004967</div>
4968
4969<!-- _______________________________________________________________________ -->
4970<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004971 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004972</div>
4973
4974<div class="doc_text">
4975
4976<h5>Syntax:</h5>
4977
4978<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004979 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004980</pre>
4981
4982<h5>Overview:</h5>
4983
John Criswell9e2485c2004-12-10 15:51:16 +00004984<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004985the code generator, and allows some metadata to be associated with it.</p>
4986
4987<h5>Arguments:</h5>
4988
4989<p>The first argument specifies the address of a stack object that contains the
4990root pointer. The second pointer (which must be either a constant or a global
4991value address) contains the meta-data to be associated with the root.</p>
4992
4993<h5>Semantics:</h5>
4994
Chris Lattner05d67092008-04-24 05:59:56 +00004995<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004996location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004997the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4998intrinsic may only be used in a function which <a href="#gc">specifies a GC
4999algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005000
5001</div>
5002
5003
5004<!-- _______________________________________________________________________ -->
5005<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005006 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005007</div>
5008
5009<div class="doc_text">
5010
5011<h5>Syntax:</h5>
5012
5013<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005014 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00005015</pre>
5016
5017<h5>Overview:</h5>
5018
5019<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
5020locations, allowing garbage collector implementations that require read
5021barriers.</p>
5022
5023<h5>Arguments:</h5>
5024
Chris Lattner80626e92006-03-14 20:02:51 +00005025<p>The second argument is the address to read from, which should be an address
5026allocated from the garbage collector. The first object is a pointer to the
5027start of the referenced object, if needed by the language runtime (otherwise
5028null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005029
5030<h5>Semantics:</h5>
5031
5032<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
5033instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00005034garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5035may only be used in a function which <a href="#gc">specifies a GC
5036algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005037
5038</div>
5039
5040
5041<!-- _______________________________________________________________________ -->
5042<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005043 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005044</div>
5045
5046<div class="doc_text">
5047
5048<h5>Syntax:</h5>
5049
5050<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005051 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00005052</pre>
5053
5054<h5>Overview:</h5>
5055
5056<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5057locations, allowing garbage collector implementations that require write
5058barriers (such as generational or reference counting collectors).</p>
5059
5060<h5>Arguments:</h5>
5061
Chris Lattner80626e92006-03-14 20:02:51 +00005062<p>The first argument is the reference to store, the second is the start of the
5063object to store it to, and the third is the address of the field of Obj to
5064store to. If the runtime does not require a pointer to the object, Obj may be
5065null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005066
5067<h5>Semantics:</h5>
5068
5069<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5070instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00005071garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5072may only be used in a function which <a href="#gc">specifies a GC
5073algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005074
5075</div>
5076
5077
5078
5079<!-- ======================================================================= -->
5080<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00005081 <a name="int_codegen">Code Generator Intrinsics</a>
5082</div>
5083
5084<div class="doc_text">
5085<p>
5086These intrinsics are provided by LLVM to expose special features that may only
5087be implemented with code generator support.
5088</p>
5089
5090</div>
5091
5092<!-- _______________________________________________________________________ -->
5093<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005094 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005095</div>
5096
5097<div class="doc_text">
5098
5099<h5>Syntax:</h5>
5100<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005101 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005102</pre>
5103
5104<h5>Overview:</h5>
5105
5106<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005107The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5108target-specific value indicating the return address of the current function
5109or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00005110</p>
5111
5112<h5>Arguments:</h5>
5113
5114<p>
5115The argument to this intrinsic indicates which function to return the address
5116for. Zero indicates the calling function, one indicates its caller, etc. The
5117argument is <b>required</b> to be a constant integer value.
5118</p>
5119
5120<h5>Semantics:</h5>
5121
5122<p>
5123The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
5124the return address of the specified call frame, or zero if it cannot be
5125identified. The value returned by this intrinsic is likely to be incorrect or 0
5126for arguments other than zero, so it should only be used for debugging purposes.
5127</p>
5128
5129<p>
5130Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005131aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005132source-language caller.
5133</p>
5134</div>
5135
5136
5137<!-- _______________________________________________________________________ -->
5138<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005139 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005140</div>
5141
5142<div class="doc_text">
5143
5144<h5>Syntax:</h5>
5145<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005146 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005147</pre>
5148
5149<h5>Overview:</h5>
5150
5151<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005152The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5153target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00005154</p>
5155
5156<h5>Arguments:</h5>
5157
5158<p>
5159The argument to this intrinsic indicates which function to return the frame
5160pointer for. Zero indicates the calling function, one indicates its caller,
5161etc. The argument is <b>required</b> to be a constant integer value.
5162</p>
5163
5164<h5>Semantics:</h5>
5165
5166<p>
5167The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5168the frame address of the specified call frame, or zero if it cannot be
5169identified. The value returned by this intrinsic is likely to be incorrect or 0
5170for arguments other than zero, so it should only be used for debugging purposes.
5171</p>
5172
5173<p>
5174Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005175aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005176source-language caller.
5177</p>
5178</div>
5179
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005180<!-- _______________________________________________________________________ -->
5181<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005182 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005183</div>
5184
5185<div class="doc_text">
5186
5187<h5>Syntax:</h5>
5188<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005189 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00005190</pre>
5191
5192<h5>Overview:</h5>
5193
5194<p>
5195The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00005196the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00005197<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5198features like scoped automatic variable sized arrays in C99.
5199</p>
5200
5201<h5>Semantics:</h5>
5202
5203<p>
5204This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005205href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00005206<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5207<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5208state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5209practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5210that were allocated after the <tt>llvm.stacksave</tt> was executed.
5211</p>
5212
5213</div>
5214
5215<!-- _______________________________________________________________________ -->
5216<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005217 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005218</div>
5219
5220<div class="doc_text">
5221
5222<h5>Syntax:</h5>
5223<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005224 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005225</pre>
5226
5227<h5>Overview:</h5>
5228
5229<p>
5230The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5231the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005232href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00005233useful for implementing language features like scoped automatic variable sized
5234arrays in C99.
5235</p>
5236
5237<h5>Semantics:</h5>
5238
5239<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00005240See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00005241</p>
5242
5243</div>
5244
5245
5246<!-- _______________________________________________________________________ -->
5247<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005248 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005249</div>
5250
5251<div class="doc_text">
5252
5253<h5>Syntax:</h5>
5254<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005255 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005256</pre>
5257
5258<h5>Overview:</h5>
5259
5260
5261<p>
5262The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00005263a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5264no
5265effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00005266characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005267</p>
5268
5269<h5>Arguments:</h5>
5270
5271<p>
5272<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5273determining if the fetch should be for a read (0) or write (1), and
5274<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00005275locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005276<tt>locality</tt> arguments must be constant integers.
5277</p>
5278
5279<h5>Semantics:</h5>
5280
5281<p>
5282This intrinsic does not modify the behavior of the program. In particular,
5283prefetches cannot trap and do not produce a value. On targets that support this
5284intrinsic, the prefetch can provide hints to the processor cache for better
5285performance.
5286</p>
5287
5288</div>
5289
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005290<!-- _______________________________________________________________________ -->
5291<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005292 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005293</div>
5294
5295<div class="doc_text">
5296
5297<h5>Syntax:</h5>
5298<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005299 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005300</pre>
5301
5302<h5>Overview:</h5>
5303
5304
5305<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005306The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005307(PC) in a region of
5308code to simulators and other tools. The method is target specific, but it is
5309expected that the marker will use exported symbols to transmit the PC of the
5310marker.
5311The marker makes no guarantees that it will remain with any specific instruction
5312after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005313optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005314correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005315</p>
5316
5317<h5>Arguments:</h5>
5318
5319<p>
5320<tt>id</tt> is a numerical id identifying the marker.
5321</p>
5322
5323<h5>Semantics:</h5>
5324
5325<p>
5326This intrinsic does not modify the behavior of the program. Backends that do not
5327support this intrinisic may ignore it.
5328</p>
5329
5330</div>
5331
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005332<!-- _______________________________________________________________________ -->
5333<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005334 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005335</div>
5336
5337<div class="doc_text">
5338
5339<h5>Syntax:</h5>
5340<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005341 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005342</pre>
5343
5344<h5>Overview:</h5>
5345
5346
5347<p>
5348The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5349counter register (or similar low latency, high accuracy clocks) on those targets
5350that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5351As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5352should only be used for small timings.
5353</p>
5354
5355<h5>Semantics:</h5>
5356
5357<p>
5358When directly supported, reading the cycle counter should not modify any memory.
5359Implementations are allowed to either return a application specific value or a
5360system wide value. On backends without support, this is lowered to a constant 0.
5361</p>
5362
5363</div>
5364
Chris Lattner10610642004-02-14 04:08:35 +00005365<!-- ======================================================================= -->
5366<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005367 <a name="int_libc">Standard C Library Intrinsics</a>
5368</div>
5369
5370<div class="doc_text">
5371<p>
Chris Lattner10610642004-02-14 04:08:35 +00005372LLVM provides intrinsics for a few important standard C library functions.
5373These intrinsics allow source-language front-ends to pass information about the
5374alignment of the pointer arguments to the code generator, providing opportunity
5375for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005376</p>
5377
5378</div>
5379
5380<!-- _______________________________________________________________________ -->
5381<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005382 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005383</div>
5384
5385<div class="doc_text">
5386
5387<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005388<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5389width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005390<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005391 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5392 i8 &lt;len&gt;, i32 &lt;align&gt;)
5393 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5394 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005395 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005396 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005397 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005398 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005399</pre>
5400
5401<h5>Overview:</h5>
5402
5403<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005404The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005405location to the destination location.
5406</p>
5407
5408<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005409Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5410intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005411</p>
5412
5413<h5>Arguments:</h5>
5414
5415<p>
5416The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005417the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005418specifying the number of bytes to copy, and the fourth argument is the alignment
5419of the source and destination locations.
5420</p>
5421
Chris Lattner3301ced2004-02-12 21:18:15 +00005422<p>
5423If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005424the caller guarantees that both the source and destination pointers are aligned
5425to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005426</p>
5427
Chris Lattner33aec9e2004-02-12 17:01:32 +00005428<h5>Semantics:</h5>
5429
5430<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005431The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005432location to the destination location, which are not allowed to overlap. It
5433copies "len" bytes of memory over. If the argument is known to be aligned to
5434some boundary, this can be specified as the fourth argument, otherwise it should
5435be set to 0 or 1.
5436</p>
5437</div>
5438
5439
Chris Lattner0eb51b42004-02-12 18:10:10 +00005440<!-- _______________________________________________________________________ -->
5441<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005442 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005443</div>
5444
5445<div class="doc_text">
5446
5447<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005448<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5449width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005450<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005451 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5452 i8 &lt;len&gt;, i32 &lt;align&gt;)
5453 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5454 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005455 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005456 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005457 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005458 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005459</pre>
5460
5461<h5>Overview:</h5>
5462
5463<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005464The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5465location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005466'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005467</p>
5468
5469<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005470Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5471intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005472</p>
5473
5474<h5>Arguments:</h5>
5475
5476<p>
5477The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005478the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005479specifying the number of bytes to copy, and the fourth argument is the alignment
5480of the source and destination locations.
5481</p>
5482
Chris Lattner3301ced2004-02-12 21:18:15 +00005483<p>
5484If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005485the caller guarantees that the source and destination pointers are aligned to
5486that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005487</p>
5488
Chris Lattner0eb51b42004-02-12 18:10:10 +00005489<h5>Semantics:</h5>
5490
5491<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005492The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005493location to the destination location, which may overlap. It
5494copies "len" bytes of memory over. If the argument is known to be aligned to
5495some boundary, this can be specified as the fourth argument, otherwise it should
5496be set to 0 or 1.
5497</p>
5498</div>
5499
Chris Lattner8ff75902004-01-06 05:31:32 +00005500
Chris Lattner10610642004-02-14 04:08:35 +00005501<!-- _______________________________________________________________________ -->
5502<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005503 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005504</div>
5505
5506<div class="doc_text">
5507
5508<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005509<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5510width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005511<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005512 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5513 i8 &lt;len&gt;, i32 &lt;align&gt;)
5514 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5515 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005516 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005517 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005518 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005519 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005520</pre>
5521
5522<h5>Overview:</h5>
5523
5524<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005525The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005526byte value.
5527</p>
5528
5529<p>
5530Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5531does not return a value, and takes an extra alignment argument.
5532</p>
5533
5534<h5>Arguments:</h5>
5535
5536<p>
5537The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005538byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005539argument specifying the number of bytes to fill, and the fourth argument is the
5540known alignment of destination location.
5541</p>
5542
5543<p>
5544If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005545the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005546</p>
5547
5548<h5>Semantics:</h5>
5549
5550<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005551The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5552the
Chris Lattner10610642004-02-14 04:08:35 +00005553destination location. If the argument is known to be aligned to some boundary,
5554this can be specified as the fourth argument, otherwise it should be set to 0 or
55551.
5556</p>
5557</div>
5558
5559
Chris Lattner32006282004-06-11 02:28:03 +00005560<!-- _______________________________________________________________________ -->
5561<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005562 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005563</div>
5564
5565<div class="doc_text">
5566
5567<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005568<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005569floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005570types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005571<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005572 declare float @llvm.sqrt.f32(float %Val)
5573 declare double @llvm.sqrt.f64(double %Val)
5574 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5575 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5576 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005577</pre>
5578
5579<h5>Overview:</h5>
5580
5581<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005582The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005583returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005584<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005585negative numbers other than -0.0 (which allows for better optimization, because
5586there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5587defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005588</p>
5589
5590<h5>Arguments:</h5>
5591
5592<p>
5593The argument and return value are floating point numbers of the same type.
5594</p>
5595
5596<h5>Semantics:</h5>
5597
5598<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005599This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005600floating point number.
5601</p>
5602</div>
5603
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005604<!-- _______________________________________________________________________ -->
5605<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005606 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005607</div>
5608
5609<div class="doc_text">
5610
5611<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005612<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005613floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005614types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005615<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005616 declare float @llvm.powi.f32(float %Val, i32 %power)
5617 declare double @llvm.powi.f64(double %Val, i32 %power)
5618 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5619 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5620 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005621</pre>
5622
5623<h5>Overview:</h5>
5624
5625<p>
5626The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5627specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005628multiplications is not defined. When a vector of floating point type is
5629used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005630</p>
5631
5632<h5>Arguments:</h5>
5633
5634<p>
5635The second argument is an integer power, and the first is a value to raise to
5636that power.
5637</p>
5638
5639<h5>Semantics:</h5>
5640
5641<p>
5642This function returns the first value raised to the second power with an
5643unspecified sequence of rounding operations.</p>
5644</div>
5645
Dan Gohman91c284c2007-10-15 20:30:11 +00005646<!-- _______________________________________________________________________ -->
5647<div class="doc_subsubsection">
5648 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5649</div>
5650
5651<div class="doc_text">
5652
5653<h5>Syntax:</h5>
5654<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5655floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005656types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005657<pre>
5658 declare float @llvm.sin.f32(float %Val)
5659 declare double @llvm.sin.f64(double %Val)
5660 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5661 declare fp128 @llvm.sin.f128(fp128 %Val)
5662 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5663</pre>
5664
5665<h5>Overview:</h5>
5666
5667<p>
5668The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5669</p>
5670
5671<h5>Arguments:</h5>
5672
5673<p>
5674The argument and return value are floating point numbers of the same type.
5675</p>
5676
5677<h5>Semantics:</h5>
5678
5679<p>
5680This function returns the sine of the specified operand, returning the
5681same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005682conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005683</div>
5684
5685<!-- _______________________________________________________________________ -->
5686<div class="doc_subsubsection">
5687 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5688</div>
5689
5690<div class="doc_text">
5691
5692<h5>Syntax:</h5>
5693<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5694floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005695types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005696<pre>
5697 declare float @llvm.cos.f32(float %Val)
5698 declare double @llvm.cos.f64(double %Val)
5699 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5700 declare fp128 @llvm.cos.f128(fp128 %Val)
5701 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5702</pre>
5703
5704<h5>Overview:</h5>
5705
5706<p>
5707The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5708</p>
5709
5710<h5>Arguments:</h5>
5711
5712<p>
5713The argument and return value are floating point numbers of the same type.
5714</p>
5715
5716<h5>Semantics:</h5>
5717
5718<p>
5719This function returns the cosine of the specified operand, returning the
5720same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005721conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005722</div>
5723
5724<!-- _______________________________________________________________________ -->
5725<div class="doc_subsubsection">
5726 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5727</div>
5728
5729<div class="doc_text">
5730
5731<h5>Syntax:</h5>
5732<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5733floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005734types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005735<pre>
5736 declare float @llvm.pow.f32(float %Val, float %Power)
5737 declare double @llvm.pow.f64(double %Val, double %Power)
5738 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5739 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5740 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5741</pre>
5742
5743<h5>Overview:</h5>
5744
5745<p>
5746The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5747specified (positive or negative) power.
5748</p>
5749
5750<h5>Arguments:</h5>
5751
5752<p>
5753The second argument is a floating point power, and the first is a value to
5754raise to that power.
5755</p>
5756
5757<h5>Semantics:</h5>
5758
5759<p>
5760This function returns the first value raised to the second power,
5761returning the
5762same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005763conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005764</div>
5765
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005766
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005767<!-- ======================================================================= -->
5768<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005769 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005770</div>
5771
5772<div class="doc_text">
5773<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005774LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005775These allow efficient code generation for some algorithms.
5776</p>
5777
5778</div>
5779
5780<!-- _______________________________________________________________________ -->
5781<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005782 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005783</div>
5784
5785<div class="doc_text">
5786
5787<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005788<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005789type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005790<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005791 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5792 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5793 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005794</pre>
5795
5796<h5>Overview:</h5>
5797
5798<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005799The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005800values with an even number of bytes (positive multiple of 16 bits). These are
5801useful for performing operations on data that is not in the target's native
5802byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005803</p>
5804
5805<h5>Semantics:</h5>
5806
5807<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005808The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005809and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5810intrinsic returns an i32 value that has the four bytes of the input i32
5811swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005812i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5813<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005814additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005815</p>
5816
5817</div>
5818
5819<!-- _______________________________________________________________________ -->
5820<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005821 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005822</div>
5823
5824<div class="doc_text">
5825
5826<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005827<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005828width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005829<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005830 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005831 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005832 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005833 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5834 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005835</pre>
5836
5837<h5>Overview:</h5>
5838
5839<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005840The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5841value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005842</p>
5843
5844<h5>Arguments:</h5>
5845
5846<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005847The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005848integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005849</p>
5850
5851<h5>Semantics:</h5>
5852
5853<p>
5854The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5855</p>
5856</div>
5857
5858<!-- _______________________________________________________________________ -->
5859<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005860 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005861</div>
5862
5863<div class="doc_text">
5864
5865<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005866<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005867integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005868<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005869 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5870 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005871 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005872 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5873 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005874</pre>
5875
5876<h5>Overview:</h5>
5877
5878<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005879The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5880leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005881</p>
5882
5883<h5>Arguments:</h5>
5884
5885<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005886The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005887integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005888</p>
5889
5890<h5>Semantics:</h5>
5891
5892<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005893The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5894in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005895of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005896</p>
5897</div>
Chris Lattner32006282004-06-11 02:28:03 +00005898
5899
Chris Lattnereff29ab2005-05-15 19:39:26 +00005900
5901<!-- _______________________________________________________________________ -->
5902<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005903 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005904</div>
5905
5906<div class="doc_text">
5907
5908<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005909<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005910integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005911<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005912 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5913 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005914 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005915 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5916 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005917</pre>
5918
5919<h5>Overview:</h5>
5920
5921<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005922The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5923trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005924</p>
5925
5926<h5>Arguments:</h5>
5927
5928<p>
5929The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005930integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005931</p>
5932
5933<h5>Semantics:</h5>
5934
5935<p>
5936The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5937in a variable. If the src == 0 then the result is the size in bits of the type
5938of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5939</p>
5940</div>
5941
Reid Spencer497d93e2007-04-01 08:27:01 +00005942<!-- _______________________________________________________________________ -->
5943<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005944 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005945</div>
5946
5947<div class="doc_text">
5948
5949<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005950<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005951on any integer bit width.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005952<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005953 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5954 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005955</pre>
5956
5957<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005958<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005959range of bits from an integer value and returns them in the same bit width as
5960the original value.</p>
5961
5962<h5>Arguments:</h5>
5963<p>The first argument, <tt>%val</tt> and the result may be integer types of
5964any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005965arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005966
5967<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005968<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005969of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5970<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5971operates in forward mode.</p>
5972<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5973right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005974only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5975<ol>
5976 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5977 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5978 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5979 to determine the number of bits to retain.</li>
5980 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005981 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005982</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005983<p>In reverse mode, a similar computation is made except that the bits are
5984returned in the reverse order. So, for example, if <tt>X</tt> has the value
5985<tt>i16 0x0ACF (101011001111)</tt> and we apply
5986<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5987<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005988</div>
5989
Reid Spencerf86037f2007-04-11 23:23:49 +00005990<div class="doc_subsubsection">
5991 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5992</div>
5993
5994<div class="doc_text">
5995
5996<h5>Syntax:</h5>
5997<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005998on any integer bit width.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005999<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006000 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
6001 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00006002</pre>
6003
6004<h5>Overview:</h5>
6005<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
6006of bits in an integer value with another integer value. It returns the integer
6007with the replaced bits.</p>
6008
6009<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006010<p>The first argument, <tt>%val</tt>, and the result may be integer types of
6011any bit width, but they must have the same bit width. <tt>%val</tt> is the value
Reid Spencerf86037f2007-04-11 23:23:49 +00006012whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
6013integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
6014type since they specify only a bit index.</p>
6015
6016<h5>Semantics:</h5>
6017<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
6018of operation: forwards and reverse. If <tt>%lo</tt> is greater than
6019<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
6020operates in forward mode.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006021
Reid Spencerf86037f2007-04-11 23:23:49 +00006022<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
6023truncating it down to the size of the replacement area or zero extending it
6024up to that size.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006025
Reid Spencerf86037f2007-04-11 23:23:49 +00006026<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
6027are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
6028in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman0e451ce2008-10-14 16:51:45 +00006029to the <tt>%hi</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006030
Reid Spencerc6749c42007-05-14 16:50:20 +00006031<p>In reverse mode, a similar computation is made except that the bits are
6032reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman0e451ce2008-10-14 16:51:45 +00006033<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006034
Reid Spencerf86037f2007-04-11 23:23:49 +00006035<h5>Examples:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006036
Reid Spencerf86037f2007-04-11 23:23:49 +00006037<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00006038 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00006039 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
6040 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
6041 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00006042 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00006043</pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006044
6045</div>
6046
Bill Wendlingda01af72009-02-08 04:04:40 +00006047<!-- ======================================================================= -->
6048<div class="doc_subsection">
6049 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6050</div>
6051
6052<div class="doc_text">
6053<p>
6054LLVM provides intrinsics for some arithmetic with overflow operations.
6055</p>
6056
6057</div>
6058
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006059<!-- _______________________________________________________________________ -->
6060<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006061 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006062</div>
6063
6064<div class="doc_text">
6065
6066<h5>Syntax:</h5>
6067
6068<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006069on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006070
6071<pre>
6072 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6073 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6074 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6075</pre>
6076
6077<h5>Overview:</h5>
6078
6079<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6080a signed addition of the two arguments, and indicate whether an overflow
6081occurred during the signed summation.</p>
6082
6083<h5>Arguments:</h5>
6084
6085<p>The arguments (%a and %b) and the first element of the result structure may
6086be of integer types of any bit width, but they must have the same bit width. The
6087second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6088and <tt>%b</tt> are the two values that will undergo signed addition.</p>
6089
6090<h5>Semantics:</h5>
6091
6092<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6093a signed addition of the two variables. They return a structure &mdash; the
6094first element of which is the signed summation, and the second element of which
6095is a bit specifying if the signed summation resulted in an overflow.</p>
6096
6097<h5>Examples:</h5>
6098<pre>
6099 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6100 %sum = extractvalue {i32, i1} %res, 0
6101 %obit = extractvalue {i32, i1} %res, 1
6102 br i1 %obit, label %overflow, label %normal
6103</pre>
6104
6105</div>
6106
6107<!-- _______________________________________________________________________ -->
6108<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006109 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006110</div>
6111
6112<div class="doc_text">
6113
6114<h5>Syntax:</h5>
6115
6116<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006117on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006118
6119<pre>
6120 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6121 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6122 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6123</pre>
6124
6125<h5>Overview:</h5>
6126
6127<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6128an unsigned addition of the two arguments, and indicate whether a carry occurred
6129during the unsigned summation.</p>
6130
6131<h5>Arguments:</h5>
6132
6133<p>The arguments (%a and %b) and the first element of the result structure may
6134be of integer types of any bit width, but they must have the same bit width. The
6135second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6136and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6137
6138<h5>Semantics:</h5>
6139
6140<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6141an unsigned addition of the two arguments. They return a structure &mdash; the
6142first element of which is the sum, and the second element of which is a bit
6143specifying if the unsigned summation resulted in a carry.</p>
6144
6145<h5>Examples:</h5>
6146<pre>
6147 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6148 %sum = extractvalue {i32, i1} %res, 0
6149 %obit = extractvalue {i32, i1} %res, 1
6150 br i1 %obit, label %carry, label %normal
6151</pre>
6152
6153</div>
6154
6155<!-- _______________________________________________________________________ -->
6156<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006157 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006158</div>
6159
6160<div class="doc_text">
6161
6162<h5>Syntax:</h5>
6163
6164<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006165on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006166
6167<pre>
6168 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6169 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6170 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6171</pre>
6172
6173<h5>Overview:</h5>
6174
6175<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6176a signed subtraction of the two arguments, and indicate whether an overflow
6177occurred during the signed subtraction.</p>
6178
6179<h5>Arguments:</h5>
6180
6181<p>The arguments (%a and %b) and the first element of the result structure may
6182be of integer types of any bit width, but they must have the same bit width. The
6183second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6184and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6185
6186<h5>Semantics:</h5>
6187
6188<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6189a signed subtraction of the two arguments. They return a structure &mdash; the
6190first element of which is the subtraction, and the second element of which is a bit
6191specifying if the signed subtraction resulted in an overflow.</p>
6192
6193<h5>Examples:</h5>
6194<pre>
6195 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6196 %sum = extractvalue {i32, i1} %res, 0
6197 %obit = extractvalue {i32, i1} %res, 1
6198 br i1 %obit, label %overflow, label %normal
6199</pre>
6200
6201</div>
6202
6203<!-- _______________________________________________________________________ -->
6204<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006205 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006206</div>
6207
6208<div class="doc_text">
6209
6210<h5>Syntax:</h5>
6211
6212<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006213on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006214
6215<pre>
6216 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6217 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6218 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6219</pre>
6220
6221<h5>Overview:</h5>
6222
6223<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6224an unsigned subtraction of the two arguments, and indicate whether an overflow
6225occurred during the unsigned subtraction.</p>
6226
6227<h5>Arguments:</h5>
6228
6229<p>The arguments (%a and %b) and the first element of the result structure may
6230be of integer types of any bit width, but they must have the same bit width. The
6231second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6232and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6233
6234<h5>Semantics:</h5>
6235
6236<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6237an unsigned subtraction of the two arguments. They return a structure &mdash; the
6238first element of which is the subtraction, and the second element of which is a bit
6239specifying if the unsigned subtraction resulted in an overflow.</p>
6240
6241<h5>Examples:</h5>
6242<pre>
6243 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6244 %sum = extractvalue {i32, i1} %res, 0
6245 %obit = extractvalue {i32, i1} %res, 1
6246 br i1 %obit, label %overflow, label %normal
6247</pre>
6248
6249</div>
6250
6251<!-- _______________________________________________________________________ -->
6252<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006253 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006254</div>
6255
6256<div class="doc_text">
6257
6258<h5>Syntax:</h5>
6259
6260<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006261on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006262
6263<pre>
6264 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6265 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6266 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6267</pre>
6268
6269<h5>Overview:</h5>
6270
6271<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6272a signed multiplication of the two arguments, and indicate whether an overflow
6273occurred during the signed multiplication.</p>
6274
6275<h5>Arguments:</h5>
6276
6277<p>The arguments (%a and %b) and the first element of the result structure may
6278be of integer types of any bit width, but they must have the same bit width. The
6279second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6280and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6281
6282<h5>Semantics:</h5>
6283
6284<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6285a signed multiplication of the two arguments. They return a structure &mdash;
6286the first element of which is the multiplication, and the second element of
6287which is a bit specifying if the signed multiplication resulted in an
6288overflow.</p>
6289
6290<h5>Examples:</h5>
6291<pre>
6292 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6293 %sum = extractvalue {i32, i1} %res, 0
6294 %obit = extractvalue {i32, i1} %res, 1
6295 br i1 %obit, label %overflow, label %normal
6296</pre>
6297
Reid Spencerf86037f2007-04-11 23:23:49 +00006298</div>
6299
Bill Wendling41b485c2009-02-08 23:00:09 +00006300<!-- _______________________________________________________________________ -->
6301<div class="doc_subsubsection">
6302 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6303</div>
6304
6305<div class="doc_text">
6306
6307<h5>Syntax:</h5>
6308
6309<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6310on any integer bit width.</p>
6311
6312<pre>
6313 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6314 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6315 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6316</pre>
6317
6318<h5>Overview:</h5>
6319
6320<p><i><b>Warning:</b> '<tt>llvm.umul.with.overflow</tt>' is badly broken. It is
6321actively being fixed, but it should not currently be used!</i></p>
6322
6323<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6324a unsigned multiplication of the two arguments, and indicate whether an overflow
6325occurred during the unsigned multiplication.</p>
6326
6327<h5>Arguments:</h5>
6328
6329<p>The arguments (%a and %b) and the first element of the result structure may
6330be of integer types of any bit width, but they must have the same bit width. The
6331second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6332and <tt>%b</tt> are the two values that will undergo unsigned
6333multiplication.</p>
6334
6335<h5>Semantics:</h5>
6336
6337<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6338an unsigned multiplication of the two arguments. They return a structure &mdash;
6339the first element of which is the multiplication, and the second element of
6340which is a bit specifying if the unsigned multiplication resulted in an
6341overflow.</p>
6342
6343<h5>Examples:</h5>
6344<pre>
6345 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6346 %sum = extractvalue {i32, i1} %res, 0
6347 %obit = extractvalue {i32, i1} %res, 1
6348 br i1 %obit, label %overflow, label %normal
6349</pre>
6350
6351</div>
6352
Chris Lattner8ff75902004-01-06 05:31:32 +00006353<!-- ======================================================================= -->
6354<div class="doc_subsection">
6355 <a name="int_debugger">Debugger Intrinsics</a>
6356</div>
6357
6358<div class="doc_text">
6359<p>
6360The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6361are described in the <a
6362href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6363Debugging</a> document.
6364</p>
6365</div>
6366
6367
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006368<!-- ======================================================================= -->
6369<div class="doc_subsection">
6370 <a name="int_eh">Exception Handling Intrinsics</a>
6371</div>
6372
6373<div class="doc_text">
6374<p> The LLVM exception handling intrinsics (which all start with
6375<tt>llvm.eh.</tt> prefix), are described in the <a
6376href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6377Handling</a> document. </p>
6378</div>
6379
Tanya Lattner6d806e92007-06-15 20:50:54 +00006380<!-- ======================================================================= -->
6381<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00006382 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00006383</div>
6384
6385<div class="doc_text">
6386<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006387 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00006388 the <tt>nest</tt> attribute, from a function. The result is a callable
6389 function pointer lacking the nest parameter - the caller does not need
6390 to provide a value for it. Instead, the value to use is stored in
6391 advance in a "trampoline", a block of memory usually allocated
6392 on the stack, which also contains code to splice the nest value into the
6393 argument list. This is used to implement the GCC nested function address
6394 extension.
6395</p>
6396<p>
6397 For example, if the function is
6398 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00006399 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006400<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006401 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6402 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6403 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6404 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00006405</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00006406 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6407 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006408</div>
6409
6410<!-- _______________________________________________________________________ -->
6411<div class="doc_subsubsection">
6412 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6413</div>
6414<div class="doc_text">
6415<h5>Syntax:</h5>
6416<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006417declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00006418</pre>
6419<h5>Overview:</h5>
6420<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006421 This fills the memory pointed to by <tt>tramp</tt> with code
6422 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00006423</p>
6424<h5>Arguments:</h5>
6425<p>
6426 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6427 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6428 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00006429 intrinsic. Note that the size and the alignment are target-specific - LLVM
6430 currently provides no portable way of determining them, so a front-end that
6431 generates this intrinsic needs to have some target-specific knowledge.
6432 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00006433</p>
6434<h5>Semantics:</h5>
6435<p>
6436 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00006437 dependent code, turning it into a function. A pointer to this function is
6438 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00006439 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006440 before being called. The new function's signature is the same as that of
6441 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6442 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6443 of pointer type. Calling the new function is equivalent to calling
6444 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6445 missing <tt>nest</tt> argument. If, after calling
6446 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6447 modified, then the effect of any later call to the returned function pointer is
6448 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00006449</p>
6450</div>
6451
6452<!-- ======================================================================= -->
6453<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006454 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6455</div>
6456
6457<div class="doc_text">
6458<p>
6459 These intrinsic functions expand the "universal IR" of LLVM to represent
6460 hardware constructs for atomic operations and memory synchronization. This
6461 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00006462 is aimed at a low enough level to allow any programming models or APIs
6463 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006464 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6465 hardware behavior. Just as hardware provides a "universal IR" for source
6466 languages, it also provides a starting point for developing a "universal"
6467 atomic operation and synchronization IR.
6468</p>
6469<p>
6470 These do <em>not</em> form an API such as high-level threading libraries,
6471 software transaction memory systems, atomic primitives, and intrinsic
6472 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6473 application libraries. The hardware interface provided by LLVM should allow
6474 a clean implementation of all of these APIs and parallel programming models.
6475 No one model or paradigm should be selected above others unless the hardware
6476 itself ubiquitously does so.
6477
6478</p>
6479</div>
6480
6481<!-- _______________________________________________________________________ -->
6482<div class="doc_subsubsection">
6483 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6484</div>
6485<div class="doc_text">
6486<h5>Syntax:</h5>
6487<pre>
6488declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
6489i1 &lt;device&gt; )
6490
6491</pre>
6492<h5>Overview:</h5>
6493<p>
6494 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6495 specific pairs of memory access types.
6496</p>
6497<h5>Arguments:</h5>
6498<p>
6499 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6500 The first four arguments enables a specific barrier as listed below. The fith
6501 argument specifies that the barrier applies to io or device or uncached memory.
6502
6503</p>
6504 <ul>
6505 <li><tt>ll</tt>: load-load barrier</li>
6506 <li><tt>ls</tt>: load-store barrier</li>
6507 <li><tt>sl</tt>: store-load barrier</li>
6508 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006509 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006510 </ul>
6511<h5>Semantics:</h5>
6512<p>
6513 This intrinsic causes the system to enforce some ordering constraints upon
6514 the loads and stores of the program. This barrier does not indicate
6515 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6516 which they occur. For any of the specified pairs of load and store operations
6517 (f.ex. load-load, or store-load), all of the first operations preceding the
6518 barrier will complete before any of the second operations succeeding the
6519 barrier begin. Specifically the semantics for each pairing is as follows:
6520</p>
6521 <ul>
6522 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6523 after the barrier begins.</li>
6524
6525 <li><tt>ls</tt>: All loads before the barrier must complete before any
6526 store after the barrier begins.</li>
6527 <li><tt>ss</tt>: All stores before the barrier must complete before any
6528 store after the barrier begins.</li>
6529 <li><tt>sl</tt>: All stores before the barrier must complete before any
6530 load after the barrier begins.</li>
6531 </ul>
6532<p>
6533 These semantics are applied with a logical "and" behavior when more than one
6534 is enabled in a single memory barrier intrinsic.
6535</p>
6536<p>
6537 Backends may implement stronger barriers than those requested when they do not
6538 support as fine grained a barrier as requested. Some architectures do not
6539 need all types of barriers and on such architectures, these become noops.
6540</p>
6541<h5>Example:</h5>
6542<pre>
6543%ptr = malloc i32
6544 store i32 4, %ptr
6545
6546%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6547 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6548 <i>; guarantee the above finishes</i>
6549 store i32 8, %ptr <i>; before this begins</i>
6550</pre>
6551</div>
6552
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006553<!-- _______________________________________________________________________ -->
6554<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006555 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006556</div>
6557<div class="doc_text">
6558<h5>Syntax:</h5>
6559<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00006560 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6561 any integer bit width and for different address spaces. Not all targets
6562 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006563
6564<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006565declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6566declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6567declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6568declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006569
6570</pre>
6571<h5>Overview:</h5>
6572<p>
6573 This loads a value in memory and compares it to a given value. If they are
6574 equal, it stores a new value into the memory.
6575</p>
6576<h5>Arguments:</h5>
6577<p>
Mon P Wang28873102008-06-25 08:15:39 +00006578 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006579 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6580 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6581 this integer type. While any bit width integer may be used, targets may only
6582 lower representations they support in hardware.
6583
6584</p>
6585<h5>Semantics:</h5>
6586<p>
6587 This entire intrinsic must be executed atomically. It first loads the value
6588 in memory pointed to by <tt>ptr</tt> and compares it with the value
6589 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6590 loaded value is yielded in all cases. This provides the equivalent of an
6591 atomic compare-and-swap operation within the SSA framework.
6592</p>
6593<h5>Examples:</h5>
6594
6595<pre>
6596%ptr = malloc i32
6597 store i32 4, %ptr
6598
6599%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006600%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006601 <i>; yields {i32}:result1 = 4</i>
6602%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6603%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6604
6605%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006606%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006607 <i>; yields {i32}:result2 = 8</i>
6608%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6609
6610%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6611</pre>
6612</div>
6613
6614<!-- _______________________________________________________________________ -->
6615<div class="doc_subsubsection">
6616 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6617</div>
6618<div class="doc_text">
6619<h5>Syntax:</h5>
6620
6621<p>
6622 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6623 integer bit width. Not all targets support all bit widths however.</p>
6624<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006625declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6626declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6627declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6628declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006629
6630</pre>
6631<h5>Overview:</h5>
6632<p>
6633 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6634 the value from memory. It then stores the value in <tt>val</tt> in the memory
6635 at <tt>ptr</tt>.
6636</p>
6637<h5>Arguments:</h5>
6638
6639<p>
Mon P Wang28873102008-06-25 08:15:39 +00006640 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006641 <tt>val</tt> argument and the result must be integers of the same bit width.
6642 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6643 integer type. The targets may only lower integer representations they
6644 support.
6645</p>
6646<h5>Semantics:</h5>
6647<p>
6648 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6649 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6650 equivalent of an atomic swap operation within the SSA framework.
6651
6652</p>
6653<h5>Examples:</h5>
6654<pre>
6655%ptr = malloc i32
6656 store i32 4, %ptr
6657
6658%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006659%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006660 <i>; yields {i32}:result1 = 4</i>
6661%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6662%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6663
6664%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006665%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006666 <i>; yields {i32}:result2 = 8</i>
6667
6668%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6669%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6670</pre>
6671</div>
6672
6673<!-- _______________________________________________________________________ -->
6674<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006675 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006676
6677</div>
6678<div class="doc_text">
6679<h5>Syntax:</h5>
6680<p>
Mon P Wang28873102008-06-25 08:15:39 +00006681 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006682 integer bit width. Not all targets support all bit widths however.</p>
6683<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006684declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6685declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6686declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6687declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006688
6689</pre>
6690<h5>Overview:</h5>
6691<p>
6692 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6693 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6694</p>
6695<h5>Arguments:</h5>
6696<p>
6697
6698 The intrinsic takes two arguments, the first a pointer to an integer value
6699 and the second an integer value. The result is also an integer value. These
6700 integer types can have any bit width, but they must all have the same bit
6701 width. The targets may only lower integer representations they support.
6702</p>
6703<h5>Semantics:</h5>
6704<p>
6705 This intrinsic does a series of operations atomically. It first loads the
6706 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6707 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6708</p>
6709
6710<h5>Examples:</h5>
6711<pre>
6712%ptr = malloc i32
6713 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006714%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006715 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006716%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006717 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006718%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006719 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006720%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006721</pre>
6722</div>
6723
Mon P Wang28873102008-06-25 08:15:39 +00006724<!-- _______________________________________________________________________ -->
6725<div class="doc_subsubsection">
6726 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6727
6728</div>
6729<div class="doc_text">
6730<h5>Syntax:</h5>
6731<p>
6732 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006733 any integer bit width and for different address spaces. Not all targets
6734 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006735<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006736declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6737declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6738declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6739declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006740
6741</pre>
6742<h5>Overview:</h5>
6743<p>
6744 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6745 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6746</p>
6747<h5>Arguments:</h5>
6748<p>
6749
6750 The intrinsic takes two arguments, the first a pointer to an integer value
6751 and the second an integer value. The result is also an integer value. These
6752 integer types can have any bit width, but they must all have the same bit
6753 width. The targets may only lower integer representations they support.
6754</p>
6755<h5>Semantics:</h5>
6756<p>
6757 This intrinsic does a series of operations atomically. It first loads the
6758 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6759 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6760</p>
6761
6762<h5>Examples:</h5>
6763<pre>
6764%ptr = malloc i32
6765 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006766%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006767 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006768%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006769 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006770%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006771 <i>; yields {i32}:result3 = 2</i>
6772%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6773</pre>
6774</div>
6775
6776<!-- _______________________________________________________________________ -->
6777<div class="doc_subsubsection">
6778 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6779 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6780 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6781 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6782
6783</div>
6784<div class="doc_text">
6785<h5>Syntax:</h5>
6786<p>
6787 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6788 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006789 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6790 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006791<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006792declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6793declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6794declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6795declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006796
6797</pre>
6798
6799<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006800declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6801declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6802declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6803declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006804
6805</pre>
6806
6807<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006808declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6809declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6810declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6811declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006812
6813</pre>
6814
6815<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006816declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6817declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6818declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6819declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006820
6821</pre>
6822<h5>Overview:</h5>
6823<p>
6824 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6825 the value stored in memory at <tt>ptr</tt>. It yields the original value
6826 at <tt>ptr</tt>.
6827</p>
6828<h5>Arguments:</h5>
6829<p>
6830
6831 These intrinsics take two arguments, the first a pointer to an integer value
6832 and the second an integer value. The result is also an integer value. These
6833 integer types can have any bit width, but they must all have the same bit
6834 width. The targets may only lower integer representations they support.
6835</p>
6836<h5>Semantics:</h5>
6837<p>
6838 These intrinsics does a series of operations atomically. They first load the
6839 value stored at <tt>ptr</tt>. They then do the bitwise operation
6840 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6841 value stored at <tt>ptr</tt>.
6842</p>
6843
6844<h5>Examples:</h5>
6845<pre>
6846%ptr = malloc i32
6847 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006848%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006849 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006850%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006851 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006852%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006853 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006854%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006855 <i>; yields {i32}:result3 = FF</i>
6856%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6857</pre>
6858</div>
6859
6860
6861<!-- _______________________________________________________________________ -->
6862<div class="doc_subsubsection">
6863 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6864 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6865 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6866 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6867
6868</div>
6869<div class="doc_text">
6870<h5>Syntax:</h5>
6871<p>
6872 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6873 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006874 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6875 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006876 support all bit widths however.</p>
6877<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006878declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6879declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6880declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6881declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006882
6883</pre>
6884
6885<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006886declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6887declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6888declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6889declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006890
6891</pre>
6892
6893<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006894declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6895declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6896declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6897declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006898
6899</pre>
6900
6901<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006902declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6903declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6904declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6905declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006906
6907</pre>
6908<h5>Overview:</h5>
6909<p>
6910 These intrinsics takes the signed or unsigned minimum or maximum of
6911 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6912 original value at <tt>ptr</tt>.
6913</p>
6914<h5>Arguments:</h5>
6915<p>
6916
6917 These intrinsics take two arguments, the first a pointer to an integer value
6918 and the second an integer value. The result is also an integer value. These
6919 integer types can have any bit width, but they must all have the same bit
6920 width. The targets may only lower integer representations they support.
6921</p>
6922<h5>Semantics:</h5>
6923<p>
6924 These intrinsics does a series of operations atomically. They first load the
6925 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6926 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6927 the original value stored at <tt>ptr</tt>.
6928</p>
6929
6930<h5>Examples:</h5>
6931<pre>
6932%ptr = malloc i32
6933 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006934%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006935 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006936%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006937 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006938%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006939 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006940%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006941 <i>; yields {i32}:result3 = 8</i>
6942%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6943</pre>
6944</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006945
6946<!-- ======================================================================= -->
6947<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006948 <a name="int_general">General Intrinsics</a>
6949</div>
6950
6951<div class="doc_text">
6952<p> This class of intrinsics is designed to be generic and has
6953no specific purpose. </p>
6954</div>
6955
6956<!-- _______________________________________________________________________ -->
6957<div class="doc_subsubsection">
6958 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6959</div>
6960
6961<div class="doc_text">
6962
6963<h5>Syntax:</h5>
6964<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006965 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006966</pre>
6967
6968<h5>Overview:</h5>
6969
6970<p>
6971The '<tt>llvm.var.annotation</tt>' intrinsic
6972</p>
6973
6974<h5>Arguments:</h5>
6975
6976<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006977The first argument is a pointer to a value, the second is a pointer to a
6978global string, the third is a pointer to a global string which is the source
6979file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006980</p>
6981
6982<h5>Semantics:</h5>
6983
6984<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006985This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006986This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006987annotations. These have no other defined use, they are ignored by code
6988generation and optimization.
6989</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006990</div>
6991
Tanya Lattnerb6367882007-09-21 22:59:12 +00006992<!-- _______________________________________________________________________ -->
6993<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006994 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006995</div>
6996
6997<div class="doc_text">
6998
6999<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00007000<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7001any integer bit width.
7002</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007003<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00007004 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7005 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7006 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7007 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7008 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00007009</pre>
7010
7011<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00007012
7013<p>
7014The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00007015</p>
7016
7017<h5>Arguments:</h5>
7018
7019<p>
7020The first argument is an integer value (result of some expression),
7021the second is a pointer to a global string, the third is a pointer to a global
7022string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00007023It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00007024</p>
7025
7026<h5>Semantics:</h5>
7027
7028<p>
7029This intrinsic allows annotations to be put on arbitrary expressions
7030with arbitrary strings. This can be useful for special purpose optimizations
7031that want to look for these annotations. These have no other defined use, they
7032are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00007033</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007034</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007035
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007036<!-- _______________________________________________________________________ -->
7037<div class="doc_subsubsection">
7038 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7039</div>
7040
7041<div class="doc_text">
7042
7043<h5>Syntax:</h5>
7044<pre>
7045 declare void @llvm.trap()
7046</pre>
7047
7048<h5>Overview:</h5>
7049
7050<p>
7051The '<tt>llvm.trap</tt>' intrinsic
7052</p>
7053
7054<h5>Arguments:</h5>
7055
7056<p>
7057None
7058</p>
7059
7060<h5>Semantics:</h5>
7061
7062<p>
7063This intrinsics is lowered to the target dependent trap instruction. If the
7064target does not have a trap instruction, this intrinsic will be lowered to the
7065call of the abort() function.
7066</p>
7067</div>
7068
Bill Wendling69e4adb2008-11-19 05:56:17 +00007069<!-- _______________________________________________________________________ -->
7070<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00007071 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00007072</div>
7073<div class="doc_text">
7074<h5>Syntax:</h5>
7075<pre>
7076declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
7077
7078</pre>
7079<h5>Overview:</h5>
7080<p>
7081 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
7082 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
7083 it is placed on the stack before local variables.
7084</p>
7085<h5>Arguments:</h5>
7086<p>
7087 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
7088 first argument is the value loaded from the stack guard
7089 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
7090 has enough space to hold the value of the guard.
7091</p>
7092<h5>Semantics:</h5>
7093<p>
7094 This intrinsic causes the prologue/epilogue inserter to force the position of
7095 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7096 stack. This is to ensure that if a local variable on the stack is overwritten,
7097 it will destroy the value of the guard. When the function exits, the guard on
7098 the stack is checked against the original guard. If they're different, then
7099 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
7100</p>
7101</div>
7102
Chris Lattner00950542001-06-06 20:29:01 +00007103<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00007104<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007105<address>
7106 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007107 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007108 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007109 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007110
7111 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00007112 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007113 Last modified: $Date$
7114</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00007115
Misha Brukman9d0919f2003-11-08 01:05:38 +00007116</body>
7117</html>