blob: adc5d9a143fedec6df73e92ef520ac2eaf12a074 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendling3d10a5a2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling987e7eb2009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
28 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
29 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
30 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
31 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
32 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
33 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_linkonce">'<tt>linkonce_odr</tt>' Linkage</a></li>
35 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
36 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
37 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
38 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendling3d10a5a2009-07-20 01:03:30 +000039 </ol>
40 </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000041 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000042 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000043 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000044 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000045 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000046 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000047 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000048 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000049 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000050 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman556ca272009-07-27 18:07:55 +000051 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000052 </ol>
53 </li>
Chris Lattner00950542001-06-06 20:29:01 +000054 <li><a href="#typesystem">Type System</a>
55 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000056 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000057 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000058 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000059 <li><a href="#t_floating">Floating Point Types</a></li>
60 <li><a href="#t_void">Void Type</a></li>
61 <li><a href="#t_label">Label Type</a></li>
Nick Lewycky7a0370f2009-05-30 05:06:04 +000062 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000063 </ol>
64 </li>
Chris Lattner00950542001-06-06 20:29:01 +000065 <li><a href="#t_derived">Derived Types</a>
66 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000067 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000068 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000069 <li><a href="#t_function">Function Type</a></li>
70 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000071 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000072 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000073 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000074 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000075 </ol>
76 </li>
Chris Lattner242d61d2009-02-02 07:32:36 +000077 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000078 </ol>
79 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000080 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000081 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000082 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner70882792009-02-28 18:32:25 +000083 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000084 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
85 <li><a href="#undefvalues">Undefined Values</a></li>
86 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky21cc4462009-04-04 07:22:01 +000087 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000088 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000089 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000090 <li><a href="#othervalues">Other Values</a>
91 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000092 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000093 </ol>
94 </li>
Chris Lattner857755c2009-07-20 05:55:19 +000095 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
96 <ol>
97 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner401e10c2009-07-20 06:14:25 +000098 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
99 Global Variable</a></li>
Chris Lattner857755c2009-07-20 05:55:19 +0000100 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
101 Global Variable</a></li>
102 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
103 Global Variable</a></li>
104 </ol>
105 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000106 <li><a href="#instref">Instruction Reference</a>
107 <ol>
108 <li><a href="#terminators">Terminator Instructions</a>
109 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000110 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
111 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000112 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
113 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000114 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +0000115 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000116 </ol>
117 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000118 <li><a href="#binaryops">Binary Operations</a>
119 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000120 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000121 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000122 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000123 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000124 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000125 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +0000126 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
127 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
128 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +0000129 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
130 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
131 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000132 </ol>
133 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000134 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
135 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000136 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
137 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
138 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000139 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000140 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000141 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000142 </ol>
143 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000144 <li><a href="#vectorops">Vector Operations</a>
145 <ol>
146 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
147 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
148 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000149 </ol>
150 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000151 <li><a href="#aggregateops">Aggregate Operations</a>
152 <ol>
153 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
154 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
155 </ol>
156 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000157 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000158 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000159 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
160 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
161 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000162 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
163 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
164 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000165 </ol>
166 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000167 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000168 <ol>
169 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
170 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
171 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
172 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
173 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000174 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
175 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
176 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
177 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000178 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
179 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000180 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000181 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000182 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000183 <li><a href="#otherops">Other Operations</a>
184 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000185 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
186 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000187 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000188 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000189 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000190 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000191 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000192 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000193 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000194 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000195 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000196 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000197 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
198 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000199 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
200 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
201 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000202 </ol>
203 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000204 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
205 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000206 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
207 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
208 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000209 </ol>
210 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000211 <li><a href="#int_codegen">Code Generator Intrinsics</a>
212 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000213 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
214 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
215 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
216 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
217 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
218 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
219 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000220 </ol>
221 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000222 <li><a href="#int_libc">Standard C Library Intrinsics</a>
223 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000224 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
225 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
226 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
227 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
228 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000229 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
230 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
231 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000232 </ol>
233 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000234 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000235 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000236 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000237 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
238 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
239 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000240 </ol>
241 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000242 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
243 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000244 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
245 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
246 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
247 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
248 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling41b485c2009-02-08 23:00:09 +0000249 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000250 </ol>
251 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000252 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000253 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000254 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000255 <ol>
256 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000257 </ol>
258 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000259 <li><a href="#int_atomics">Atomic intrinsics</a>
260 <ol>
261 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
262 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
263 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
264 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
265 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
266 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
267 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
268 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
269 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
270 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
271 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
272 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
273 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
274 </ol>
275 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000276 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000277 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000278 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000279 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000280 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000281 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000282 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000283 '<tt>llvm.trap</tt>' Intrinsic</a></li>
284 <li><a href="#int_stackprotector">
285 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000286 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000287 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000288 </ol>
289 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000290</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000291
292<div class="doc_author">
293 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
294 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000295</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000296
Chris Lattner00950542001-06-06 20:29:01 +0000297<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000298<div class="doc_section"> <a name="abstract">Abstract </a></div>
299<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000300
Misha Brukman9d0919f2003-11-08 01:05:38 +0000301<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000302
303<p>This document is a reference manual for the LLVM assembly language. LLVM is
304 a Static Single Assignment (SSA) based representation that provides type
305 safety, low-level operations, flexibility, and the capability of representing
306 'all' high-level languages cleanly. It is the common code representation
307 used throughout all phases of the LLVM compilation strategy.</p>
308
Misha Brukman9d0919f2003-11-08 01:05:38 +0000309</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000310
Chris Lattner00950542001-06-06 20:29:01 +0000311<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000312<div class="doc_section"> <a name="introduction">Introduction</a> </div>
313<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000314
Misha Brukman9d0919f2003-11-08 01:05:38 +0000315<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000316
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000317<p>The LLVM code representation is designed to be used in three different forms:
318 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
319 for fast loading by a Just-In-Time compiler), and as a human readable
320 assembly language representation. This allows LLVM to provide a powerful
321 intermediate representation for efficient compiler transformations and
322 analysis, while providing a natural means to debug and visualize the
323 transformations. The three different forms of LLVM are all equivalent. This
324 document describes the human readable representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000325
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000326<p>The LLVM representation aims to be light-weight and low-level while being
327 expressive, typed, and extensible at the same time. It aims to be a
328 "universal IR" of sorts, by being at a low enough level that high-level ideas
329 may be cleanly mapped to it (similar to how microprocessors are "universal
330 IR's", allowing many source languages to be mapped to them). By providing
331 type information, LLVM can be used as the target of optimizations: for
332 example, through pointer analysis, it can be proven that a C automatic
333 variable is never accessed outside of the current function... allowing it to
334 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000335
Misha Brukman9d0919f2003-11-08 01:05:38 +0000336</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000337
Chris Lattner00950542001-06-06 20:29:01 +0000338<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000339<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000340
Misha Brukman9d0919f2003-11-08 01:05:38 +0000341<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000342
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000343<p>It is important to note that this document describes 'well formed' LLVM
344 assembly language. There is a difference between what the parser accepts and
345 what is considered 'well formed'. For example, the following instruction is
346 syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000347
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000348<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000349<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000350%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000351</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000352</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000353
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000354<p>...because the definition of <tt>%x</tt> does not dominate all of its
355 uses. The LLVM infrastructure provides a verification pass that may be used
356 to verify that an LLVM module is well formed. This pass is automatically run
357 by the parser after parsing input assembly and by the optimizer before it
358 outputs bitcode. The violations pointed out by the verifier pass indicate
359 bugs in transformation passes or input to the parser.</p>
360
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000361</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000362
Chris Lattnercc689392007-10-03 17:34:29 +0000363<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000364
Chris Lattner00950542001-06-06 20:29:01 +0000365<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000366<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000367<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000368
Misha Brukman9d0919f2003-11-08 01:05:38 +0000369<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000370
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000371<p>LLVM identifiers come in two basic types: global and local. Global
372 identifiers (functions, global variables) begin with the <tt>'@'</tt>
373 character. Local identifiers (register names, types) begin with
374 the <tt>'%'</tt> character. Additionally, there are three different formats
375 for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000376
Chris Lattner00950542001-06-06 20:29:01 +0000377<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000378 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000379 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
380 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
381 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
382 other characters in their names can be surrounded with quotes. Special
383 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
384 ASCII code for the character in hexadecimal. In this way, any character
385 can be used in a name value, even quotes themselves.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000386
Reid Spencer2c452282007-08-07 14:34:28 +0000387 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000388 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000389
Reid Spencercc16dc32004-12-09 18:02:53 +0000390 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000391 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000392</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000393
Reid Spencer2c452282007-08-07 14:34:28 +0000394<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000395 don't need to worry about name clashes with reserved words, and the set of
396 reserved words may be expanded in the future without penalty. Additionally,
397 unnamed identifiers allow a compiler to quickly come up with a temporary
398 variable without having to avoid symbol table conflicts.</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000399
Chris Lattner261efe92003-11-25 01:02:51 +0000400<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000401 languages. There are keywords for different opcodes
402 ('<tt><a href="#i_add">add</a></tt>',
403 '<tt><a href="#i_bitcast">bitcast</a></tt>',
404 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
405 ('<tt><a href="#t_void">void</a></tt>',
406 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
407 reserved words cannot conflict with variable names, because none of them
408 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000409
410<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000411 '<tt>%X</tt>' by 8:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000412
Misha Brukman9d0919f2003-11-08 01:05:38 +0000413<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000414
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000415<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000416<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000417%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000418</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000419</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000420
Misha Brukman9d0919f2003-11-08 01:05:38 +0000421<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000422
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000423<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000424<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000425%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000426</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000427</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000428
Misha Brukman9d0919f2003-11-08 01:05:38 +0000429<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000430
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000431<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000432<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000433<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
434<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
435%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000436</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000437</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000438
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000439<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
440 lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000441
Chris Lattner00950542001-06-06 20:29:01 +0000442<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000443 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000444 line.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000445
446 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000447 assigned to a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000448
Misha Brukman9d0919f2003-11-08 01:05:38 +0000449 <li>Unnamed temporaries are numbered sequentially</li>
450</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000451
John Criswelle4c57cc2005-05-12 16:52:32 +0000452<p>...and it also shows a convention that we follow in this document. When
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000453 demonstrating instructions, we will follow an instruction with a comment that
454 defines the type and name of value produced. Comments are shown in italic
455 text.</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000456
Misha Brukman9d0919f2003-11-08 01:05:38 +0000457</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000458
459<!-- *********************************************************************** -->
460<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
461<!-- *********************************************************************** -->
462
463<!-- ======================================================================= -->
464<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
465</div>
466
467<div class="doc_text">
468
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000469<p>LLVM programs are composed of "Module"s, each of which is a translation unit
470 of the input programs. Each module consists of functions, global variables,
471 and symbol table entries. Modules may be combined together with the LLVM
472 linker, which merges function (and global variable) definitions, resolves
473 forward declarations, and merges symbol table entries. Here is an example of
474 the "hello world" module:</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000475
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000476<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000477<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000478<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
479 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000480
481<i>; External declaration of the puts function</i>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000482<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000483
484<i>; Definition of main function</i>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000485define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000486 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000487 %cast210 = <a
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000488 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000489
490 <i>; Call puts function to write out the string to stdout...</i>
491 <a
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000492 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000493 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000494 href="#i_ret">ret</a> i32 0<br>}<br>
495</pre>
496</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000497
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000498<p>This example is made up of a <a href="#globalvars">global variable</a> named
499 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and
500 a <a href="#functionstructure">function definition</a> for
501 "<tt>main</tt>".</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000502
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000503<p>In general, a module is made up of a list of global values, where both
504 functions and global variables are global values. Global values are
505 represented by a pointer to a memory location (in this case, a pointer to an
506 array of char, and a pointer to a function), and have one of the
507 following <a href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000508
Chris Lattnere5d947b2004-12-09 16:36:40 +0000509</div>
510
511<!-- ======================================================================= -->
512<div class="doc_subsection">
513 <a name="linkage">Linkage Types</a>
514</div>
515
516<div class="doc_text">
517
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000518<p>All Global Variables and Functions have one of the following types of
519 linkage:</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000520
521<dl>
Rafael Espindolabb46f522009-01-15 20:18:42 +0000522 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000523 <dd>Global values with private linkage are only directly accessible by objects
524 in the current module. In particular, linking code into a module with an
525 private global value may cause the private to be renamed as necessary to
526 avoid collisions. Because the symbol is private to the module, all
527 references can be updated. This doesn't show up in any symbol table in the
528 object file.</dd>
Rafael Espindolabb46f522009-01-15 20:18:42 +0000529
Bill Wendling3d10a5a2009-07-20 01:03:30 +0000530 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt>: </dt>
Bill Wendling3d10a5a2009-07-20 01:03:30 +0000531 <dd>Similar to private, but the symbol is passed through the assembler and
532 removed by the linker after evaluation.</dd>
533
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000534 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000535 <dd>Similar to private, but the value shows as a local symbol
536 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
537 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000538
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000539 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt>: </dt>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000540 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000541 into the object file corresponding to the LLVM module. They exist to
542 allow inlining and other optimizations to take place given knowledge of
543 the definition of the global, which is known to be somewhere outside the
544 module. Globals with <tt>available_externally</tt> linkage are allowed to
545 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
546 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000547
Chris Lattnerfa730212004-12-09 16:11:40 +0000548 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattner4887bd82007-01-14 06:51:48 +0000549 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000550 the same name when linkage occurs. This is typically used to implement
551 inline functions, templates, or other code which must be generated in each
552 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
553 allowed to be discarded.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000554
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000555 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000556 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
557 linkage, except that unreferenced <tt>common</tt> globals may not be
558 discarded. This is used for globals that may be emitted in multiple
559 translation units, but that are not guaranteed to be emitted into every
560 translation unit that uses them. One example of this is tentative
561 definitions in C, such as "<tt>int X;</tt>" at global scope.</dd>
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000562
Chris Lattnerfa730212004-12-09 16:11:40 +0000563 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000564 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000565 that some targets may choose to emit different assembly sequences for them
566 for target-dependent reasons. This is used for globals that are declared
567 "weak" in C source code.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000568
Chris Lattnerfa730212004-12-09 16:11:40 +0000569 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000570 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000571 pointer to array type. When two global variables with appending linkage
572 are linked together, the two global arrays are appended together. This is
573 the LLVM, typesafe, equivalent of having the system linker append together
574 "sections" with identical names when .o files are linked.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000575
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000576 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000577 <dd>The semantics of this linkage follow the ELF object file model: the symbol
578 is weak until linked, if not linked, the symbol becomes null instead of
579 being an undefined reference.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000580
Duncan Sands667d4b82009-03-07 15:45:40 +0000581 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000582 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000583 <dd>Some languages allow differing globals to be merged, such as two functions
584 with different semantics. Other languages, such as <tt>C++</tt>, ensure
585 that only equivalent globals are ever merged (the "one definition rule" -
586 "ODR"). Such languages can use the <tt>linkonce_odr</tt>
587 and <tt>weak_odr</tt> linkage types to indicate that the global will only
588 be merged with equivalent globals. These linkage types are otherwise the
589 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands667d4b82009-03-07 15:45:40 +0000590
Chris Lattnerfa730212004-12-09 16:11:40 +0000591 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000592 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000593 visible, meaning that it participates in linkage and can be used to
594 resolve external symbol references.</dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000595</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000596
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000597<p>The next two types of linkage are targeted for Microsoft Windows platform
598 only. They are designed to support importing (exporting) symbols from (to)
599 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000600
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000601<dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000602 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000603 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000604 or variable via a global pointer to a pointer that is set up by the DLL
605 exporting the symbol. On Microsoft Windows targets, the pointer name is
606 formed by combining <code>__imp_</code> and the function or variable
607 name.</dd>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000608
609 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000610 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000611 pointer to a pointer in a DLL, so that it can be referenced with the
612 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
613 name is formed by combining <code>__imp_</code> and the function or
614 variable name.</dd>
Chris Lattnerfa730212004-12-09 16:11:40 +0000615</dl>
616
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000617<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
618 another module defined a "<tt>.LC0</tt>" variable and was linked with this
619 one, one of the two would be renamed, preventing a collision. Since
620 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
621 declarations), they are accessible outside of the current module.</p>
622
623<p>It is illegal for a function <i>declaration</i> to have any linkage type
624 other than "externally visible", <tt>dllimport</tt>
625 or <tt>extern_weak</tt>.</p>
626
Duncan Sands667d4b82009-03-07 15:45:40 +0000627<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000628 or <tt>weak_odr</tt> linkages.</p>
629
Chris Lattnerfa730212004-12-09 16:11:40 +0000630</div>
631
632<!-- ======================================================================= -->
633<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000634 <a name="callingconv">Calling Conventions</a>
635</div>
636
637<div class="doc_text">
638
639<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000640 and <a href="#i_invoke">invokes</a> can all have an optional calling
641 convention specified for the call. The calling convention of any pair of
642 dynamic caller/callee must match, or the behavior of the program is
643 undefined. The following calling conventions are supported by LLVM, and more
644 may be added in the future:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000645
646<dl>
647 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000648 <dd>This calling convention (the default if no other calling convention is
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000649 specified) matches the target C calling conventions. This calling
650 convention supports varargs function calls and tolerates some mismatch in
651 the declared prototype and implemented declaration of the function (as
652 does normal C).</dd>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000653
654 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000655 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000656 (e.g. by passing things in registers). This calling convention allows the
657 target to use whatever tricks it wants to produce fast code for the
658 target, without having to conform to an externally specified ABI
659 (Application Binary Interface). Implementations of this convention should
660 allow arbitrary <a href="CodeGenerator.html#tailcallopt">tail call
661 optimization</a> to be supported. This calling convention does not
662 support varargs and requires the prototype of all callees to exactly match
663 the prototype of the function definition.</dd>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000664
665 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000666 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000667 as possible under the assumption that the call is not commonly executed.
668 As such, these calls often preserve all registers so that the call does
669 not break any live ranges in the caller side. This calling convention
670 does not support varargs and requires the prototype of all callees to
671 exactly match the prototype of the function definition.</dd>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000672
Chris Lattnercfe6b372005-05-07 01:46:40 +0000673 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000674 <dd>Any calling convention may be specified by number, allowing
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000675 target-specific calling conventions to be used. Target specific calling
676 conventions start at 64.</dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000677</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000678
679<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000680 support Pascal conventions or any other well-known target-independent
681 convention.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000682
683</div>
684
685<!-- ======================================================================= -->
686<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000687 <a name="visibility">Visibility Styles</a>
688</div>
689
690<div class="doc_text">
691
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000692<p>All Global Variables and Functions have one of the following visibility
693 styles:</p>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000694
695<dl>
696 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000697 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000698 that the declaration is visible to other modules and, in shared libraries,
699 means that the declared entity may be overridden. On Darwin, default
700 visibility means that the declaration is visible to other modules. Default
701 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000702
703 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000704 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000705 object if they are in the same shared object. Usually, hidden visibility
706 indicates that the symbol will not be placed into the dynamic symbol
707 table, so no other module (executable or shared library) can reference it
708 directly.</dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000709
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000710 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000711 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000712 the dynamic symbol table, but that references within the defining module
713 will bind to the local symbol. That is, the symbol cannot be overridden by
714 another module.</dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000715</dl>
716
717</div>
718
719<!-- ======================================================================= -->
720<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000721 <a name="namedtypes">Named Types</a>
722</div>
723
724<div class="doc_text">
725
726<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000727 it easier to read the IR and make the IR more condensed (particularly when
728 recursive types are involved). An example of a name specification is:</p>
Chris Lattnere7886e42009-01-11 20:53:49 +0000729
730<div class="doc_code">
731<pre>
732%mytype = type { %mytype*, i32 }
733</pre>
734</div>
735
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000736<p>You may give a name to any <a href="#typesystem">type</a> except
737 "<a href="t_void">void</a>". Type name aliases may be used anywhere a type
738 is expected with the syntax "%mytype".</p>
Chris Lattnere7886e42009-01-11 20:53:49 +0000739
740<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000741 and that you can therefore specify multiple names for the same type. This
742 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
743 uses structural typing, the name is not part of the type. When printing out
744 LLVM IR, the printer will pick <em>one name</em> to render all types of a
745 particular shape. This means that if you have code where two different
746 source types end up having the same LLVM type, that the dumper will sometimes
747 print the "wrong" or unexpected type. This is an important design point and
748 isn't going to change.</p>
Chris Lattnere7886e42009-01-11 20:53:49 +0000749
750</div>
751
Chris Lattnere7886e42009-01-11 20:53:49 +0000752<!-- ======================================================================= -->
753<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000754 <a name="globalvars">Global Variables</a>
755</div>
756
757<div class="doc_text">
758
Chris Lattner3689a342005-02-12 19:30:21 +0000759<p>Global variables define regions of memory allocated at compilation time
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000760 instead of run-time. Global variables may optionally be initialized, may
761 have an explicit section to be placed in, and may have an optional explicit
762 alignment specified. A variable may be defined as "thread_local", which
763 means that it will not be shared by threads (each thread will have a
764 separated copy of the variable). A variable may be defined as a global
765 "constant," which indicates that the contents of the variable
766 will <b>never</b> be modified (enabling better optimization, allowing the
767 global data to be placed in the read-only section of an executable, etc).
768 Note that variables that need runtime initialization cannot be marked
769 "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000770
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000771<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
772 constant, even if the final definition of the global is not. This capability
773 can be used to enable slightly better optimization of the program, but
774 requires the language definition to guarantee that optimizations based on the
775 'constantness' are valid for the translation units that do not include the
776 definition.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000777
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000778<p>As SSA values, global variables define pointer values that are in scope
779 (i.e. they dominate) all basic blocks in the program. Global variables
780 always define a pointer to their "content" type because they describe a
781 region of memory, and all memory objects in LLVM are accessed through
782 pointers.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000783
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000784<p>A global variable may be declared to reside in a target-specific numbered
785 address space. For targets that support them, address spaces may affect how
786 optimizations are performed and/or what target instructions are used to
787 access the variable. The default address space is zero. The address space
788 qualifier must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000789
Chris Lattner88f6c462005-11-12 00:45:07 +0000790<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000791 supports it, it will emit globals to the section specified.</p>
Chris Lattner88f6c462005-11-12 00:45:07 +0000792
Chris Lattner2cbdc452005-11-06 08:02:57 +0000793<p>An explicit alignment may be specified for a global. If not present, or if
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000794 the alignment is set to zero, the alignment of the global is set by the
795 target to whatever it feels convenient. If an explicit alignment is
796 specified, the global is forced to have at least that much alignment. All
797 alignments must be a power of 2.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +0000798
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000799<p>For example, the following defines a global in a numbered address space with
800 an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000801
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000802<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000803<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000804@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000805</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000806</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000807
Chris Lattnerfa730212004-12-09 16:11:40 +0000808</div>
809
810
811<!-- ======================================================================= -->
812<div class="doc_subsection">
813 <a name="functionstructure">Functions</a>
814</div>
815
816<div class="doc_text">
817
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000818<p>LLVM function definitions consist of the "<tt>define</tt>" keyord, an
819 optional <a href="#linkage">linkage type</a>, an optional
820 <a href="#visibility">visibility style</a>, an optional
821 <a href="#callingconv">calling convention</a>, a return type, an optional
822 <a href="#paramattrs">parameter attribute</a> for the return type, a function
823 name, a (possibly empty) argument list (each with optional
824 <a href="#paramattrs">parameter attributes</a>), optional
825 <a href="#fnattrs">function attributes</a>, an optional section, an optional
826 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
827 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000828
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000829<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
830 optional <a href="#linkage">linkage type</a>, an optional
831 <a href="#visibility">visibility style</a>, an optional
832 <a href="#callingconv">calling convention</a>, a return type, an optional
833 <a href="#paramattrs">parameter attribute</a> for the return type, a function
834 name, a possibly empty list of arguments, an optional alignment, and an
835 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000836
Chris Lattnerd3eda892008-08-05 18:29:16 +0000837<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000838 (Control Flow Graph) for the function. Each basic block may optionally start
839 with a label (giving the basic block a symbol table entry), contains a list
840 of instructions, and ends with a <a href="#terminators">terminator</a>
841 instruction (such as a branch or function return).</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000842
Chris Lattner4a3c9012007-06-08 16:52:14 +0000843<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000844 executed on entrance to the function, and it is not allowed to have
845 predecessor basic blocks (i.e. there can not be any branches to the entry
846 block of a function). Because the block can have no predecessors, it also
847 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000848
Chris Lattner88f6c462005-11-12 00:45:07 +0000849<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000850 supports it, it will emit functions to the section specified.</p>
Chris Lattner88f6c462005-11-12 00:45:07 +0000851
Chris Lattner2cbdc452005-11-06 08:02:57 +0000852<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000853 the alignment is set to zero, the alignment of the function is set by the
854 target to whatever it feels convenient. If an explicit alignment is
855 specified, the function is forced to have at least that much alignment. All
856 alignments must be a power of 2.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +0000857
Bill Wendlingc39e3e02009-07-20 02:39:26 +0000858<h5>Syntax:</h5>
Devang Patel307e8ab2008-10-07 17:48:33 +0000859<div class="doc_code">
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000860<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +0000861define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000862 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
863 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
864 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
865 [<a href="#gc">gc</a>] { ... }
866</pre>
Devang Patel307e8ab2008-10-07 17:48:33 +0000867</div>
868
Chris Lattnerfa730212004-12-09 16:11:40 +0000869</div>
870
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000871<!-- ======================================================================= -->
872<div class="doc_subsection">
873 <a name="aliasstructure">Aliases</a>
874</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000875
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000876<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000877
878<p>Aliases act as "second name" for the aliasee value (which can be either
879 function, global variable, another alias or bitcast of global value). Aliases
880 may have an optional <a href="#linkage">linkage type</a>, and an
881 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000882
Bill Wendlingc39e3e02009-07-20 02:39:26 +0000883<h5>Syntax:</h5>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000884<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000885<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000886@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000887</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000888</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000889
890</div>
891
Chris Lattner4e9aba72006-01-23 23:23:47 +0000892<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000893<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
Reid Spencerca86e162006-12-31 07:07:53 +0000894
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000895<div class="doc_text">
896
897<p>The return type and each parameter of a function type may have a set of
898 <i>parameter attributes</i> associated with them. Parameter attributes are
899 used to communicate additional information about the result or parameters of
900 a function. Parameter attributes are considered to be part of the function,
901 not of the function type, so functions with different parameter attributes
902 can have the same function type.</p>
903
904<p>Parameter attributes are simple keywords that follow the type specified. If
905 multiple parameter attributes are needed, they are space separated. For
906 example:</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000907
908<div class="doc_code">
909<pre>
Nick Lewyckyb6a7d252009-02-15 23:06:14 +0000910declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000911declare i32 @atoi(i8 zeroext)
912declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000913</pre>
914</div>
915
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000916<p>Note that any attributes for the function result (<tt>nounwind</tt>,
917 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000918
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000919<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner47507de2008-01-11 06:20:47 +0000920
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000921<dl>
922 <dt><tt>zeroext</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000923 <dd>This indicates to the code generator that the parameter or return value
924 should be zero-extended to a 32-bit value by the caller (for a parameter)
925 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000926
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000927 <dt><tt>signext</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000928 <dd>This indicates to the code generator that the parameter or return value
929 should be sign-extended to a 32-bit value by the caller (for a parameter)
930 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000931
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000932 <dt><tt>inreg</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000933 <dd>This indicates that this parameter or return value should be treated in a
934 special target-dependent fashion during while emitting code for a function
935 call or return (usually, by putting it in a register as opposed to memory,
936 though some targets use it to distinguish between two different kinds of
937 registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000938
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000939 <dt><tt><a name="byval">byval</a></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000940 <dd>This indicates that the pointer parameter should really be passed by value
941 to the function. The attribute implies that a hidden copy of the pointee
942 is made between the caller and the callee, so the callee is unable to
943 modify the value in the callee. This attribute is only valid on LLVM
944 pointer arguments. It is generally used to pass structs and arrays by
945 value, but is also valid on pointers to scalars. The copy is considered
946 to belong to the caller not the callee (for example,
947 <tt><a href="#readonly">readonly</a></tt> functions should not write to
948 <tt>byval</tt> parameters). This is not a valid attribute for return
949 values. The byval attribute also supports specifying an alignment with
950 the align attribute. This has a target-specific effect on the code
951 generator that usually indicates a desired alignment for the synthesized
952 stack slot.</dd>
953
954 <dt><tt>sret</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000955 <dd>This indicates that the pointer parameter specifies the address of a
956 structure that is the return value of the function in the source program.
957 This pointer must be guaranteed by the caller to be valid: loads and
958 stores to the structure may be assumed by the callee to not to trap. This
959 may only be applied to the first parameter. This is not a valid attribute
960 for return values. </dd>
961
962 <dt><tt>noalias</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000963 <dd>This indicates that the pointer does not alias any global or any other
964 parameter. The caller is responsible for ensuring that this is the
965 case. On a function return value, <tt>noalias</tt> additionally indicates
966 that the pointer does not alias any other pointers visible to the
967 caller. For further details, please see the discussion of the NoAlias
968 response in
969 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
970 analysis</a>.</dd>
971
972 <dt><tt>nocapture</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000973 <dd>This indicates that the callee does not make any copies of the pointer
974 that outlive the callee itself. This is not a valid attribute for return
975 values.</dd>
976
977 <dt><tt>nest</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000978 <dd>This indicates that the pointer parameter can be excised using the
979 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
980 attribute for return values.</dd>
981</dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000982
Reid Spencerca86e162006-12-31 07:07:53 +0000983</div>
984
985<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000986<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000987 <a name="gc">Garbage Collector Names</a>
988</div>
989
990<div class="doc_text">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000991
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000992<p>Each function may specify a garbage collector name, which is simply a
993 string:</p>
994
995<div class="doc_code">
996<pre>
997define void @f() gc "name" { ...
998</pre>
999</div>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001000
1001<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001002 collector which will cause the compiler to alter its output in order to
1003 support the named garbage collection algorithm.</p>
1004
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001005</div>
1006
1007<!-- ======================================================================= -->
1008<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001009 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +00001010</div>
1011
1012<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001013
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001014<p>Function attributes are set to communicate additional information about a
1015 function. Function attributes are considered to be part of the function, not
1016 of the function type, so functions with different parameter attributes can
1017 have the same function type.</p>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001018
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001019<p>Function attributes are simple keywords that follow the type specified. If
1020 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001021
1022<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001023<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001024define void @f() noinline { ... }
1025define void @f() alwaysinline { ... }
1026define void @f() alwaysinline optsize { ... }
1027define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001028</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001029</div>
1030
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001031<dl>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001032 <dt><tt>alwaysinline</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001033 <dd>This attribute indicates that the inliner should attempt to inline this
1034 function into callers whenever possible, ignoring any active inlining size
1035 threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001036
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001037 <dt><tt>noinline</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001038 <dd>This attribute indicates that the inliner should never inline this
1039 function in any situation. This attribute may not be used together with
1040 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001041
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001042 <dt><tt>optsize</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001043 <dd>This attribute suggests that optimization passes and code generator passes
1044 make choices that keep the code size of this function low, and otherwise
1045 do optimizations specifically to reduce code size.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001046
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001047 <dt><tt>noreturn</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001048 <dd>This function attribute indicates that the function never returns
1049 normally. This produces undefined behavior at runtime if the function
1050 ever does dynamically return.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001051
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001052 <dt><tt>nounwind</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001053 <dd>This function attribute indicates that the function never returns with an
1054 unwind or exceptional control flow. If the function does unwind, its
1055 runtime behavior is undefined.</dd>
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001056
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001057 <dt><tt>readnone</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001058 <dd>This attribute indicates that the function computes its result (or decides
1059 to unwind an exception) based strictly on its arguments, without
1060 dereferencing any pointer arguments or otherwise accessing any mutable
1061 state (e.g. memory, control registers, etc) visible to caller functions.
1062 It does not write through any pointer arguments
1063 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1064 changes any state visible to callers. This means that it cannot unwind
1065 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1066 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel5d96fda2009-06-12 19:45:19 +00001067
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001068 <dt><tt><a name="readonly">readonly</a></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001069 <dd>This attribute indicates that the function does not write through any
1070 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1071 arguments) or otherwise modify any state (e.g. memory, control registers,
1072 etc) visible to caller functions. It may dereference pointer arguments
1073 and read state that may be set in the caller. A readonly function always
1074 returns the same value (or unwinds an exception identically) when called
1075 with the same set of arguments and global state. It cannot unwind an
1076 exception by calling the <tt>C++</tt> exception throwing methods, but may
1077 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc5ec8a72009-07-17 18:07:26 +00001078
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001079 <dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001080 <dd>This attribute indicates that the function should emit a stack smashing
1081 protector. It is in the form of a "canary"&mdash;a random value placed on
1082 the stack before the local variables that's checked upon return from the
1083 function to see if it has been overwritten. A heuristic is used to
1084 determine if a function needs stack protectors or not.<br>
1085<br>
1086 If a function that has an <tt>ssp</tt> attribute is inlined into a
1087 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1088 function will have an <tt>ssp</tt> attribute.</dd>
1089
1090 <dt><tt>sspreq</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001091 <dd>This attribute indicates that the function should <em>always</em> emit a
1092 stack smashing protector. This overrides
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001093 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1094<br>
1095 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1096 function that doesn't have an <tt>sspreq</tt> attribute or which has
1097 an <tt>ssp</tt> attribute, then the resulting function will have
1098 an <tt>sspreq</tt> attribute.</dd>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001099
1100 <dt><tt>noredzone</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001101 <dd>This attribute indicates that the code generator should not use a red
1102 zone, even if the target-specific ABI normally permits it.</dd>
1103
1104 <dt><tt>noimplicitfloat</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001105 <dd>This attributes disables implicit floating point instructions.</dd>
1106
1107 <dt><tt>naked</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001108 <dd>This attribute disables prologue / epilogue emission for the function.
1109 This can have very system-specific consequences.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001110</dl>
1111
Devang Patelf8b94812008-09-04 23:05:13 +00001112</div>
1113
1114<!-- ======================================================================= -->
1115<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001116 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001117</div>
1118
1119<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001120
1121<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1122 the GCC "file scope inline asm" blocks. These blocks are internally
1123 concatenated by LLVM and treated as a single unit, but may be separated in
1124 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001125
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001126<div class="doc_code">
1127<pre>
1128module asm "inline asm code goes here"
1129module asm "more can go here"
1130</pre>
1131</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001132
1133<p>The strings can contain any character by escaping non-printable characters.
1134 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001135 for the number.</p>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001136
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001137<p>The inline asm code is simply printed to the machine code .s file when
1138 assembly code is generated.</p>
1139
Chris Lattner4e9aba72006-01-23 23:23:47 +00001140</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001141
Reid Spencerde151942007-02-19 23:54:10 +00001142<!-- ======================================================================= -->
1143<div class="doc_subsection">
1144 <a name="datalayout">Data Layout</a>
1145</div>
1146
1147<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001148
Reid Spencerde151942007-02-19 23:54:10 +00001149<p>A module may specify a target specific data layout string that specifies how
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001150 data is to be laid out in memory. The syntax for the data layout is
1151 simply:</p>
1152
1153<div class="doc_code">
1154<pre>
1155target datalayout = "<i>layout specification</i>"
1156</pre>
1157</div>
1158
1159<p>The <i>layout specification</i> consists of a list of specifications
1160 separated by the minus sign character ('-'). Each specification starts with
1161 a letter and may include other information after the letter to define some
1162 aspect of the data layout. The specifications accepted are as follows:</p>
1163
Reid Spencerde151942007-02-19 23:54:10 +00001164<dl>
1165 <dt><tt>E</tt></dt>
1166 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001167 bits with the most significance have the lowest address location.</dd>
1168
Reid Spencerde151942007-02-19 23:54:10 +00001169 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001170 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001171 the bits with the least significance have the lowest address
1172 location.</dd>
1173
Reid Spencerde151942007-02-19 23:54:10 +00001174 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1175 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001176 <i>preferred</i> alignments. All sizes are in bits. Specifying
1177 the <i>pref</i> alignment is optional. If omitted, the
1178 preceding <tt>:</tt> should be omitted too.</dd>
1179
Reid Spencerde151942007-02-19 23:54:10 +00001180 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1181 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001182 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1183
Reid Spencerde151942007-02-19 23:54:10 +00001184 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1185 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001186 <i>size</i>.</dd>
1187
Reid Spencerde151942007-02-19 23:54:10 +00001188 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1189 <dd>This specifies the alignment for a floating point type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001190 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1191 (double).</dd>
1192
Reid Spencerde151942007-02-19 23:54:10 +00001193 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1194 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001195 <i>size</i>.</dd>
1196
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001197 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1198 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001199 <i>size</i>.</dd>
Reid Spencerde151942007-02-19 23:54:10 +00001200</dl>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001201
Reid Spencerde151942007-02-19 23:54:10 +00001202<p>When constructing the data layout for a given target, LLVM starts with a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001203 default set of specifications which are then (possibly) overriden by the
1204 specifications in the <tt>datalayout</tt> keyword. The default specifications
1205 are given in this list:</p>
1206
Reid Spencerde151942007-02-19 23:54:10 +00001207<ul>
1208 <li><tt>E</tt> - big endian</li>
1209 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1210 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1211 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1212 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1213 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001214 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001215 alignment of 64-bits</li>
1216 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1217 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1218 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1219 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1220 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001221 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencerde151942007-02-19 23:54:10 +00001222</ul>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001223
1224<p>When LLVM is determining the alignment for a given type, it uses the
1225 following rules:</p>
1226
Reid Spencerde151942007-02-19 23:54:10 +00001227<ol>
1228 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001229 specification is used.</li>
1230
Reid Spencerde151942007-02-19 23:54:10 +00001231 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001232 smallest integer type that is larger than the bitwidth of the sought type
1233 is used. If none of the specifications are larger than the bitwidth then
1234 the the largest integer type is used. For example, given the default
1235 specifications above, the i7 type will use the alignment of i8 (next
1236 largest) while both i65 and i256 will use the alignment of i64 (largest
1237 specified).</li>
1238
Reid Spencerde151942007-02-19 23:54:10 +00001239 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001240 largest vector type that is smaller than the sought vector type will be
1241 used as a fall back. This happens because &lt;128 x double&gt; can be
1242 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001243</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001244
Reid Spencerde151942007-02-19 23:54:10 +00001245</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001246
Dan Gohman556ca272009-07-27 18:07:55 +00001247<!-- ======================================================================= -->
1248<div class="doc_subsection">
1249 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1250</div>
1251
1252<div class="doc_text">
1253
1254<p>Any memory access must be done though a pointer value associated
Andreas Bolka99a82052009-07-27 20:37:10 +00001255with an address range of the memory access, otherwise the behavior
Dan Gohman556ca272009-07-27 18:07:55 +00001256is undefined. Pointer values are associated with address ranges
1257according to the following rules:</p>
1258
1259<ul>
1260 <li>A pointer value formed from a <tt>getelementptr</tt> instruction is
1261 associated with the addresses associated with the first operand of
1262 the <tt>getelementptr</tt>.</li>
1263 <li>An addresses of a global variable is associated with the address
1264 range of the variable's storage.</li>
1265 <li>The result value of an allocation instruction is associated with
1266 the address range of the allocated storage.</li>
1267 <li>A null pointer in the default address-space is associated with
1268 no addresses.</li>
1269 <li>A pointer value formed by an <tt>inttoptr</tt> is associated with
1270 all address ranges of all pointer values that contribute (directly
1271 or indirectly) to the computation of the pointer's value.</li>
1272 <li>The result value of a <tt>bitcast</tt> is associated with all
1273 addresses associated with the operand of the <tt>bitcast</tt>.</li>
1274 <li>An integer constant other than zero or a pointer value returned
1275 from a function not defined within LLVM may be associated with address
1276 ranges allocated through mechanisms other than those provided by
1277 LLVM. Such ranges shall not overlap with any ranges of address
1278 allocated by mechanisms provided by LLVM.</li>
1279 </ul>
1280
1281<p>LLVM IR does not associate types with memory. The result type of a
1282<tt>load</tt> merely indicates the size and alignment of the memory from
1283which to load, as well as the interpretation of the value. The first
1284operand of a <tt>store</tt> similarly only indicates the size and
1285alignment of the store.</p>
1286
1287<p>Consequently, type-based alias analysis, aka TBAA, aka
1288<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1289LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1290additional information which specialized optimization passes may use
1291to implement type-based alias analysis.</p>
1292
1293</div>
1294
Chris Lattner00950542001-06-06 20:29:01 +00001295<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001296<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1297<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001298
Misha Brukman9d0919f2003-11-08 01:05:38 +00001299<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001300
Misha Brukman9d0919f2003-11-08 01:05:38 +00001301<p>The LLVM type system is one of the most important features of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001302 intermediate representation. Being typed enables a number of optimizations
1303 to be performed on the intermediate representation directly, without having
1304 to do extra analyses on the side before the transformation. A strong type
1305 system makes it easier to read the generated code and enables novel analyses
1306 and transformations that are not feasible to perform on normal three address
1307 code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001308
1309</div>
1310
Chris Lattner00950542001-06-06 20:29:01 +00001311<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001312<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001313Classifications</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001314
Misha Brukman9d0919f2003-11-08 01:05:38 +00001315<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001316
1317<p>The types fall into a few useful classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001318
1319<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001320 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001321 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001322 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001323 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001324 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001325 </tr>
1326 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001327 <td><a href="#t_floating">floating point</a></td>
1328 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001329 </tr>
1330 <tr>
1331 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001332 <td><a href="#t_integer">integer</a>,
1333 <a href="#t_floating">floating point</a>,
1334 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001335 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001336 <a href="#t_struct">structure</a>,
1337 <a href="#t_array">array</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001338 <a href="#t_label">label</a>,
1339 <a href="#t_metadata">metadata</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001340 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001341 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001342 <tr>
1343 <td><a href="#t_primitive">primitive</a></td>
1344 <td><a href="#t_label">label</a>,
1345 <a href="#t_void">void</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001346 <a href="#t_floating">floating point</a>,
1347 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001348 </tr>
1349 <tr>
1350 <td><a href="#t_derived">derived</a></td>
1351 <td><a href="#t_integer">integer</a>,
1352 <a href="#t_array">array</a>,
1353 <a href="#t_function">function</a>,
1354 <a href="#t_pointer">pointer</a>,
1355 <a href="#t_struct">structure</a>,
1356 <a href="#t_pstruct">packed structure</a>,
1357 <a href="#t_vector">vector</a>,
1358 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001359 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001360 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001361 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001362</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001363
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001364<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1365 important. Values of these types are the only ones which can be produced by
1366 instructions, passed as arguments, or used as operands to instructions.</p>
1367
Misha Brukman9d0919f2003-11-08 01:05:38 +00001368</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001369
Chris Lattner00950542001-06-06 20:29:01 +00001370<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001371<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001372
Chris Lattner4f69f462008-01-04 04:32:38 +00001373<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001374
Chris Lattner4f69f462008-01-04 04:32:38 +00001375<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001376 system.</p>
Chris Lattner4f69f462008-01-04 04:32:38 +00001377
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001378</div>
1379
Chris Lattner4f69f462008-01-04 04:32:38 +00001380<!-- _______________________________________________________________________ -->
1381<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1382
1383<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001384
1385<table>
1386 <tbody>
1387 <tr><th>Type</th><th>Description</th></tr>
1388 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1389 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1390 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1391 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1392 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1393 </tbody>
1394</table>
1395
Chris Lattner4f69f462008-01-04 04:32:38 +00001396</div>
1397
1398<!-- _______________________________________________________________________ -->
1399<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1400
1401<div class="doc_text">
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001402
Chris Lattner4f69f462008-01-04 04:32:38 +00001403<h5>Overview:</h5>
1404<p>The void type does not represent any value and has no size.</p>
1405
1406<h5>Syntax:</h5>
Chris Lattner4f69f462008-01-04 04:32:38 +00001407<pre>
1408 void
1409</pre>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001410
Chris Lattner4f69f462008-01-04 04:32:38 +00001411</div>
1412
1413<!-- _______________________________________________________________________ -->
1414<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1415
1416<div class="doc_text">
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001417
Chris Lattner4f69f462008-01-04 04:32:38 +00001418<h5>Overview:</h5>
1419<p>The label type represents code labels.</p>
1420
1421<h5>Syntax:</h5>
Chris Lattner4f69f462008-01-04 04:32:38 +00001422<pre>
1423 label
1424</pre>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001425
Chris Lattner4f69f462008-01-04 04:32:38 +00001426</div>
1427
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001428<!-- _______________________________________________________________________ -->
1429<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1430
1431<div class="doc_text">
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001432
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001433<h5>Overview:</h5>
1434<p>The metadata type represents embedded metadata. The only derived type that
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001435 may contain metadata is <tt>metadata*</tt> or a function type that returns or
1436 takes metadata typed parameters, but not pointer to metadata types.</p>
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001437
1438<h5>Syntax:</h5>
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001439<pre>
1440 metadata
1441</pre>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001442
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001443</div>
1444
Chris Lattner4f69f462008-01-04 04:32:38 +00001445
1446<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001447<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001448
Misha Brukman9d0919f2003-11-08 01:05:38 +00001449<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001450
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001451<p>The real power in LLVM comes from the derived types in the system. This is
1452 what allows a programmer to represent arrays, functions, pointers, and other
1453 useful types. Note that these derived types may be recursive: For example,
1454 it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001455
Misha Brukman9d0919f2003-11-08 01:05:38 +00001456</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001457
Chris Lattner00950542001-06-06 20:29:01 +00001458<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001459<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1460
1461<div class="doc_text">
1462
1463<h5>Overview:</h5>
1464<p>The integer type is a very simple derived type that simply specifies an
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001465 arbitrary bit width for the integer type desired. Any bit width from 1 bit to
1466 2^23-1 (about 8 million) can be specified.</p>
Reid Spencer2b916312007-05-16 18:44:01 +00001467
1468<h5>Syntax:</h5>
Reid Spencer2b916312007-05-16 18:44:01 +00001469<pre>
1470 iN
1471</pre>
1472
1473<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001474 value.</p>
Reid Spencer2b916312007-05-16 18:44:01 +00001475
1476<h5>Examples:</h5>
1477<table class="layout">
Nick Lewycky86c48642009-05-24 02:46:06 +00001478 <tr class="layout">
1479 <td class="left"><tt>i1</tt></td>
1480 <td class="left">a single-bit integer.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001481 </tr>
Nick Lewycky86c48642009-05-24 02:46:06 +00001482 <tr class="layout">
1483 <td class="left"><tt>i32</tt></td>
1484 <td class="left">a 32-bit integer.</td>
1485 </tr>
1486 <tr class="layout">
1487 <td class="left"><tt>i1942652</tt></td>
1488 <td class="left">a really big integer of over 1 million bits.</td>
1489 </tr>
Reid Spencer2b916312007-05-16 18:44:01 +00001490</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001491
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001492<p>Note that the code generator does not yet support large integer types to be
1493 used as function return types. The specific limit on how large a return type
1494 the code generator can currently handle is target-dependent; currently it's
1495 often 64 bits for 32-bit targets and 128 bits for 64-bit targets.</p>
Dan Gohmand8791e52009-01-24 15:58:40 +00001496
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001497</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001498
1499<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001500<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001501
Misha Brukman9d0919f2003-11-08 01:05:38 +00001502<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001503
Chris Lattner00950542001-06-06 20:29:01 +00001504<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001505<p>The array type is a very simple derived type that arranges elements
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001506 sequentially in memory. The array type requires a size (number of elements)
1507 and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001508
Chris Lattner7faa8832002-04-14 06:13:44 +00001509<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001510<pre>
1511 [&lt;# elements&gt; x &lt;elementtype&gt;]
1512</pre>
1513
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001514<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1515 be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001516
Chris Lattner7faa8832002-04-14 06:13:44 +00001517<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001518<table class="layout">
1519 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001520 <td class="left"><tt>[40 x i32]</tt></td>
1521 <td class="left">Array of 40 32-bit integer values.</td>
1522 </tr>
1523 <tr class="layout">
1524 <td class="left"><tt>[41 x i32]</tt></td>
1525 <td class="left">Array of 41 32-bit integer values.</td>
1526 </tr>
1527 <tr class="layout">
1528 <td class="left"><tt>[4 x i8]</tt></td>
1529 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001530 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001531</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001532<p>Here are some examples of multidimensional arrays:</p>
1533<table class="layout">
1534 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001535 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1536 <td class="left">3x4 array of 32-bit integer values.</td>
1537 </tr>
1538 <tr class="layout">
1539 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1540 <td class="left">12x10 array of single precision floating point values.</td>
1541 </tr>
1542 <tr class="layout">
1543 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1544 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001545 </tr>
1546</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001547
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001548<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1549 length array. Normally, accesses past the end of an array are undefined in
1550 LLVM (e.g. it is illegal to access the 5th element of a 3 element array). As
1551 a special case, however, zero length arrays are recognized to be variable
1552 length. This allows implementation of 'pascal style arrays' with the LLVM
1553 type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001554
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001555<p>Note that the code generator does not yet support large aggregate types to be
1556 used as function return types. The specific limit on how large an aggregate
1557 return type the code generator can currently handle is target-dependent, and
1558 also dependent on the aggregate element types.</p>
Dan Gohmand8791e52009-01-24 15:58:40 +00001559
Misha Brukman9d0919f2003-11-08 01:05:38 +00001560</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001561
Chris Lattner00950542001-06-06 20:29:01 +00001562<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001563<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001564
Misha Brukman9d0919f2003-11-08 01:05:38 +00001565<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001566
Chris Lattner00950542001-06-06 20:29:01 +00001567<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001568<p>The function type can be thought of as a function signature. It consists of
1569 a return type and a list of formal parameter types. The return type of a
1570 function type is a scalar type, a void type, or a struct type. If the return
1571 type is a struct type then all struct elements must be of first class types,
1572 and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001573
Chris Lattner00950542001-06-06 20:29:01 +00001574<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001575<pre>
1576 &lt;returntype list&gt; (&lt;parameter list&gt;)
1577</pre>
1578
John Criswell0ec250c2005-10-24 16:17:18 +00001579<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001580 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1581 which indicates that the function takes a variable number of arguments.
1582 Variable argument functions can access their arguments with
1583 the <a href="#int_varargs">variable argument handling intrinsic</a>
1584 functions. '<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1585 <a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001586
Chris Lattner00950542001-06-06 20:29:01 +00001587<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001588<table class="layout">
1589 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001590 <td class="left"><tt>i32 (i32)</tt></td>
1591 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001592 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001593 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001594 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001595 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001596 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1597 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001598 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001599 <tt>float</tt>.
1600 </td>
1601 </tr><tr class="layout">
1602 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1603 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001604 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001605 which returns an integer. This is the signature for <tt>printf</tt> in
1606 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001607 </td>
Devang Patela582f402008-03-24 05:35:41 +00001608 </tr><tr class="layout">
1609 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001610 <td class="left">A function taking an <tt>i32</tt>, returning two
1611 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001612 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001613 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001614</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001615
Misha Brukman9d0919f2003-11-08 01:05:38 +00001616</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001617
Chris Lattner00950542001-06-06 20:29:01 +00001618<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001619<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001620
Misha Brukman9d0919f2003-11-08 01:05:38 +00001621<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001622
Chris Lattner00950542001-06-06 20:29:01 +00001623<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001624<p>The structure type is used to represent a collection of data members together
1625 in memory. The packing of the field types is defined to match the ABI of the
1626 underlying processor. The elements of a structure may be any type that has a
1627 size.</p>
1628
1629<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1630 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1631 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1632
Chris Lattner00950542001-06-06 20:29:01 +00001633<h5>Syntax:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001634<pre>
1635 { &lt;type list&gt; }
1636</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001637
Chris Lattner00950542001-06-06 20:29:01 +00001638<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001639<table class="layout">
1640 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001641 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1642 <td class="left">A triple of three <tt>i32</tt> values</td>
1643 </tr><tr class="layout">
1644 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1645 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1646 second element is a <a href="#t_pointer">pointer</a> to a
1647 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1648 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001649 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001650</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001651
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001652<p>Note that the code generator does not yet support large aggregate types to be
1653 used as function return types. The specific limit on how large an aggregate
1654 return type the code generator can currently handle is target-dependent, and
1655 also dependent on the aggregate element types.</p>
Dan Gohmand8791e52009-01-24 15:58:40 +00001656
Misha Brukman9d0919f2003-11-08 01:05:38 +00001657</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001658
Chris Lattner00950542001-06-06 20:29:01 +00001659<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001660<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1661</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001662
Andrew Lenharth75e10682006-12-08 17:13:00 +00001663<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001664
Andrew Lenharth75e10682006-12-08 17:13:00 +00001665<h5>Overview:</h5>
1666<p>The packed structure type is used to represent a collection of data members
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001667 together in memory. There is no padding between fields. Further, the
1668 alignment of a packed structure is 1 byte. The elements of a packed
1669 structure may be any type that has a size.</p>
1670
1671<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1672 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1673 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1674
Andrew Lenharth75e10682006-12-08 17:13:00 +00001675<h5>Syntax:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001676<pre>
1677 &lt; { &lt;type list&gt; } &gt;
1678</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001679
Andrew Lenharth75e10682006-12-08 17:13:00 +00001680<h5>Examples:</h5>
1681<table class="layout">
1682 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001683 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1684 <td class="left">A triple of three <tt>i32</tt> values</td>
1685 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001686 <td class="left">
1687<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001688 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1689 second element is a <a href="#t_pointer">pointer</a> to a
1690 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1691 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001692 </tr>
1693</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001694
Andrew Lenharth75e10682006-12-08 17:13:00 +00001695</div>
1696
1697<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001698<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001699
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001700<div class="doc_text">
1701
1702<h5>Overview:</h5>
1703<p>As in many languages, the pointer type represents a pointer or reference to
1704 another object, which must live in memory. Pointer types may have an optional
1705 address space attribute defining the target-specific numbered address space
1706 where the pointed-to object resides. The default address space is zero.</p>
1707
1708<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1709 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001710
Chris Lattner7faa8832002-04-14 06:13:44 +00001711<h5>Syntax:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001712<pre>
1713 &lt;type&gt; *
1714</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001715
Chris Lattner7faa8832002-04-14 06:13:44 +00001716<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001717<table class="layout">
1718 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001719 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001720 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1721 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1722 </tr>
1723 <tr class="layout">
1724 <td class="left"><tt>i32 (i32 *) *</tt></td>
1725 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001726 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001727 <tt>i32</tt>.</td>
1728 </tr>
1729 <tr class="layout">
1730 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1731 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1732 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001733 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001734</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001735
Misha Brukman9d0919f2003-11-08 01:05:38 +00001736</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001737
Chris Lattnera58561b2004-08-12 19:12:28 +00001738<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001739<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001740
Misha Brukman9d0919f2003-11-08 01:05:38 +00001741<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001742
Chris Lattnera58561b2004-08-12 19:12:28 +00001743<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001744<p>A vector type is a simple derived type that represents a vector of elements.
1745 Vector types are used when multiple primitive data are operated in parallel
1746 using a single instruction (SIMD). A vector type requires a size (number of
1747 elements) and an underlying primitive data type. Vectors must have a power
1748 of two length (1, 2, 4, 8, 16 ...). Vector types are considered
1749 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001750
Chris Lattnera58561b2004-08-12 19:12:28 +00001751<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001752<pre>
1753 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1754</pre>
1755
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001756<p>The number of elements is a constant integer value; elementtype may be any
1757 integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001758
Chris Lattnera58561b2004-08-12 19:12:28 +00001759<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001760<table class="layout">
1761 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001762 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1763 <td class="left">Vector of 4 32-bit integer values.</td>
1764 </tr>
1765 <tr class="layout">
1766 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1767 <td class="left">Vector of 8 32-bit floating-point values.</td>
1768 </tr>
1769 <tr class="layout">
1770 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1771 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001772 </tr>
1773</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001774
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001775<p>Note that the code generator does not yet support large vector types to be
1776 used as function return types. The specific limit on how large a vector
1777 return type codegen can currently handle is target-dependent; currently it's
1778 often a few times longer than a hardware vector register.</p>
Dan Gohmand8791e52009-01-24 15:58:40 +00001779
Misha Brukman9d0919f2003-11-08 01:05:38 +00001780</div>
1781
Chris Lattner69c11bb2005-04-25 17:34:15 +00001782<!-- _______________________________________________________________________ -->
1783<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1784<div class="doc_text">
1785
1786<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001787<p>Opaque types are used to represent unknown types in the system. This
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001788 corresponds (for example) to the C notion of a forward declared structure
1789 type. In LLVM, opaque types can eventually be resolved to any type (not just
1790 a structure type).</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001791
1792<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001793<pre>
1794 opaque
1795</pre>
1796
1797<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001798<table class="layout">
1799 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001800 <td class="left"><tt>opaque</tt></td>
1801 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001802 </tr>
1803</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001804
Chris Lattner69c11bb2005-04-25 17:34:15 +00001805</div>
1806
Chris Lattner242d61d2009-02-02 07:32:36 +00001807<!-- ======================================================================= -->
1808<div class="doc_subsection">
1809 <a name="t_uprefs">Type Up-references</a>
1810</div>
1811
1812<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001813
Chris Lattner242d61d2009-02-02 07:32:36 +00001814<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001815<p>An "up reference" allows you to refer to a lexically enclosing type without
1816 requiring it to have a name. For instance, a structure declaration may
1817 contain a pointer to any of the types it is lexically a member of. Example
1818 of up references (with their equivalent as named type declarations)
1819 include:</p>
Chris Lattner242d61d2009-02-02 07:32:36 +00001820
1821<pre>
Chris Lattner3060f5b2009-02-09 10:00:56 +00001822 { \2 * } %x = type { %x* }
Chris Lattner242d61d2009-02-02 07:32:36 +00001823 { \2 }* %y = type { %y }*
1824 \1* %z = type %z*
1825</pre>
1826
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001827<p>An up reference is needed by the asmprinter for printing out cyclic types
1828 when there is no declared name for a type in the cycle. Because the
1829 asmprinter does not want to print out an infinite type string, it needs a
1830 syntax to handle recursive types that have no names (all names are optional
1831 in llvm IR).</p>
Chris Lattner242d61d2009-02-02 07:32:36 +00001832
1833<h5>Syntax:</h5>
1834<pre>
1835 \&lt;level&gt;
1836</pre>
1837
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001838<p>The level is the count of the lexical type that is being referred to.</p>
Chris Lattner242d61d2009-02-02 07:32:36 +00001839
1840<h5>Examples:</h5>
Chris Lattner242d61d2009-02-02 07:32:36 +00001841<table class="layout">
1842 <tr class="layout">
1843 <td class="left"><tt>\1*</tt></td>
1844 <td class="left">Self-referential pointer.</td>
1845 </tr>
1846 <tr class="layout">
1847 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1848 <td class="left">Recursive structure where the upref refers to the out-most
1849 structure.</td>
1850 </tr>
1851</table>
Chris Lattner242d61d2009-02-02 07:32:36 +00001852
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001853</div>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001854
Chris Lattnerc3f59762004-12-09 17:30:23 +00001855<!-- *********************************************************************** -->
1856<div class="doc_section"> <a name="constants">Constants</a> </div>
1857<!-- *********************************************************************** -->
1858
1859<div class="doc_text">
1860
1861<p>LLVM has several different basic types of constants. This section describes
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001862 them all and their syntax.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001863
1864</div>
1865
1866<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001867<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001868
1869<div class="doc_text">
1870
1871<dl>
1872 <dt><b>Boolean constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001873 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001874 constants of the <tt><a href="#t_primitive">i1</a></tt> type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001875
1876 <dt><b>Integer constants</b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001877 <dd>Standard integers (such as '4') are constants of
1878 the <a href="#t_integer">integer</a> type. Negative numbers may be used
1879 with integer types.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001880
1881 <dt><b>Floating point constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001882 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001883 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1884 notation (see below). The assembler requires the exact decimal value of a
1885 floating-point constant. For example, the assembler accepts 1.25 but
1886 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1887 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001888
1889 <dt><b>Null pointer constants</b></dt>
John Criswell9e2485c2004-12-10 15:51:16 +00001890 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001891 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001892</dl>
1893
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001894<p>The one non-intuitive notation for constants is the hexadecimal form of
1895 floating point constants. For example, the form '<tt>double
1896 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
1897 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
1898 constants are required (and the only time that they are generated by the
1899 disassembler) is when a floating point constant must be emitted but it cannot
1900 be represented as a decimal floating point number in a reasonable number of
1901 digits. For example, NaN's, infinities, and other special values are
1902 represented in their IEEE hexadecimal format so that assembly and disassembly
1903 do not cause any bits to change in the constants.</p>
1904
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001905<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001906 represented using the 16-digit form shown above (which matches the IEEE754
1907 representation for double); float values must, however, be exactly
1908 representable as IEE754 single precision. Hexadecimal format is always used
1909 for long double, and there are three forms of long double. The 80-bit format
1910 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
1911 The 128-bit format used by PowerPC (two adjacent doubles) is represented
1912 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
1913 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
1914 currently supported target uses this format. Long doubles will only work if
1915 they match the long double format on your target. All hexadecimal formats
1916 are big-endian (sign bit at the left).</p>
1917
Chris Lattnerc3f59762004-12-09 17:30:23 +00001918</div>
1919
1920<!-- ======================================================================= -->
Chris Lattner70882792009-02-28 18:32:25 +00001921<div class="doc_subsection">
Bill Wendlingd9fe2982009-07-20 02:32:41 +00001922<a name="aggregateconstants"></a> <!-- old anchor -->
1923<a name="complexconstants">Complex Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001924</div>
1925
1926<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001927
Chris Lattner70882792009-02-28 18:32:25 +00001928<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001929 constants and smaller complex constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001930
1931<dl>
1932 <dt><b>Structure constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001933 <dd>Structure constants are represented with notation similar to structure
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001934 type definitions (a comma separated list of elements, surrounded by braces
1935 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1936 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
1937 Structure constants must have <a href="#t_struct">structure type</a>, and
1938 the number and types of elements must match those specified by the
1939 type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001940
1941 <dt><b>Array constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001942 <dd>Array constants are represented with notation similar to array type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001943 definitions (a comma separated list of elements, surrounded by square
1944 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
1945 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
1946 the number and types of elements must match those specified by the
1947 type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001948
Reid Spencer485bad12007-02-15 03:07:05 +00001949 <dt><b>Vector constants</b></dt>
Reid Spencer485bad12007-02-15 03:07:05 +00001950 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001951 definitions (a comma separated list of elements, surrounded by
1952 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
1953 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
1954 have <a href="#t_vector">vector type</a>, and the number and types of
1955 elements must match those specified by the type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001956
1957 <dt><b>Zero initialization</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001958 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001959 value to zero of <em>any</em> type, including scalar and aggregate types.
1960 This is often used to avoid having to print large zero initializers
1961 (e.g. for large arrays) and is always exactly equivalent to using explicit
1962 zero initializers.</dd>
Nick Lewycky21cc4462009-04-04 07:22:01 +00001963
1964 <dt><b>Metadata node</b></dt>
Nick Lewycky1e8c7a62009-05-30 16:08:30 +00001965 <dd>A metadata node is a structure-like constant with
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001966 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
1967 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
1968 be interpreted as part of the instruction stream, metadata is a place to
1969 attach additional information such as debug info.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001970</dl>
1971
1972</div>
1973
1974<!-- ======================================================================= -->
1975<div class="doc_subsection">
1976 <a name="globalconstants">Global Variable and Function Addresses</a>
1977</div>
1978
1979<div class="doc_text">
1980
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001981<p>The addresses of <a href="#globalvars">global variables</a>
1982 and <a href="#functionstructure">functions</a> are always implicitly valid
1983 (link-time) constants. These constants are explicitly referenced when
1984 the <a href="#identifiers">identifier for the global</a> is used and always
1985 have <a href="#t_pointer">pointer</a> type. For example, the following is a
1986 legal LLVM file:</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001987
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001988<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001989<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001990@X = global i32 17
1991@Y = global i32 42
1992@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001993</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001994</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001995
1996</div>
1997
1998<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001999<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002000<div class="doc_text">
2001
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002002<p>The string '<tt>undef</tt>' is recognized as a type-less constant that has no
2003 specific value. Undefined values may be of any type and be used anywhere a
2004 constant is permitted.</p>
2005
2006<p>Undefined values indicate to the compiler that the program is well defined no
2007 matter what value is used, giving the compiler more freedom to optimize.</p>
2008
Chris Lattnerc3f59762004-12-09 17:30:23 +00002009</div>
2010
2011<!-- ======================================================================= -->
2012<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
2013</div>
2014
2015<div class="doc_text">
2016
2017<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002018 to be used as constants. Constant expressions may be of
2019 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2020 operation that does not have side effects (e.g. load and call are not
2021 supported). The following is the syntax for constant expressions:</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002022
2023<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002024 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002025 <dd>Truncate a constant to another type. The bit size of CST must be larger
2026 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002027
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002028 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002029 <dd>Zero extend a constant to another type. The bit size of CST must be
2030 smaller or equal to the bit size of TYPE. Both types must be
2031 integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002032
2033 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002034 <dd>Sign extend a constant to another type. The bit size of CST must be
2035 smaller or equal to the bit size of TYPE. Both types must be
2036 integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002037
2038 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002039 <dd>Truncate a floating point constant to another floating point type. The
2040 size of CST must be larger than the size of TYPE. Both types must be
2041 floating point.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002042
2043 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002044 <dd>Floating point extend a constant to another type. The size of CST must be
2045 smaller or equal to the size of TYPE. Both types must be floating
2046 point.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002047
Reid Spencer1539a1c2007-07-31 14:40:14 +00002048 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002049 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002050 constant. TYPE must be a scalar or vector integer type. CST must be of
2051 scalar or vector floating point type. Both CST and TYPE must be scalars,
2052 or vectors of the same number of elements. If the value won't fit in the
2053 integer type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002054
Reid Spencerd4448792006-11-09 23:03:26 +00002055 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002056 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002057 constant. TYPE must be a scalar or vector integer type. CST must be of
2058 scalar or vector floating point type. Both CST and TYPE must be scalars,
2059 or vectors of the same number of elements. If the value won't fit in the
2060 integer type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002061
Reid Spencerd4448792006-11-09 23:03:26 +00002062 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002063 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002064 constant. TYPE must be a scalar or vector floating point type. CST must be
2065 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2066 vectors of the same number of elements. If the value won't fit in the
2067 floating point type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002068
Reid Spencerd4448792006-11-09 23:03:26 +00002069 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002070 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002071 constant. TYPE must be a scalar or vector floating point type. CST must be
2072 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2073 vectors of the same number of elements. If the value won't fit in the
2074 floating point type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002075
Reid Spencer5c0ef472006-11-11 23:08:07 +00002076 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2077 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002078 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2079 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2080 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5c0ef472006-11-11 23:08:07 +00002081
2082 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002083 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2084 type. CST must be of integer type. The CST value is zero extended,
2085 truncated, or unchanged to make it fit in a pointer size. This one is
2086 <i>really</i> dangerous!</dd>
Reid Spencer5c0ef472006-11-11 23:08:07 +00002087
2088 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner03bbad62009-02-28 18:27:03 +00002089 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2090 are the same as those for the <a href="#i_bitcast">bitcast
2091 instruction</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002092
2093 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Dan Gohmandd8004d2009-07-27 21:53:46 +00002094 <dt><b><tt>getelementptr inbounds ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002095 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002096 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2097 instruction, the index list may have zero or more indexes, which are
2098 required to make sense for the type of "CSTPTR".</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002099
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002100 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002101 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer01c42592006-12-04 19:23:19 +00002102
2103 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2104 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2105
2106 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2107 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002108
2109 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002110 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2111 constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002112
Robert Bocchino05ccd702006-01-15 20:48:27 +00002113 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002114 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2115 constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002116
2117 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002118 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2119 constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002120
Chris Lattnerc3f59762004-12-09 17:30:23 +00002121 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002122 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2123 be any of the <a href="#binaryops">binary</a>
2124 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2125 on operands are the same as those for the corresponding instruction
2126 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002127</dl>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002128
Chris Lattnerc3f59762004-12-09 17:30:23 +00002129</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00002130
Nick Lewycky21cc4462009-04-04 07:22:01 +00002131<!-- ======================================================================= -->
2132<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2133</div>
2134
2135<div class="doc_text">
2136
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002137<p>Embedded metadata provides a way to attach arbitrary data to the instruction
2138 stream without affecting the behaviour of the program. There are two
2139 metadata primitives, strings and nodes. All metadata has the
2140 <tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2141 point ('<tt>!</tt>').</p>
Nick Lewycky21cc4462009-04-04 07:22:01 +00002142
2143<p>A metadata string is a string surrounded by double quotes. It can contain
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002144 any character by escaping non-printable characters with "\xx" where "xx" is
2145 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
Nick Lewycky21cc4462009-04-04 07:22:01 +00002146
2147<p>Metadata nodes are represented with notation similar to structure constants
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002148 (a comma separated list of elements, surrounded by braces and preceeded by an
2149 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2150 10}</tt>".</p>
Nick Lewycky21cc4462009-04-04 07:22:01 +00002151
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002152<p>A metadata node will attempt to track changes to the values it holds. In the
2153 event that a value is deleted, it will be replaced with a typeless
2154 "<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
Nick Lewyckycb337992009-05-10 20:57:05 +00002155
Nick Lewycky21cc4462009-04-04 07:22:01 +00002156<p>Optimizations may rely on metadata to provide additional information about
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002157 the program that isn't available in the instructions, or that isn't easily
2158 computable. Similarly, the code generator may expect a certain metadata
2159 format to be used to express debugging information.</p>
2160
Nick Lewycky21cc4462009-04-04 07:22:01 +00002161</div>
2162
Chris Lattner00950542001-06-06 20:29:01 +00002163<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00002164<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2165<!-- *********************************************************************** -->
2166
2167<!-- ======================================================================= -->
2168<div class="doc_subsection">
2169<a name="inlineasm">Inline Assembler Expressions</a>
2170</div>
2171
2172<div class="doc_text">
2173
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002174<p>LLVM supports inline assembler expressions (as opposed
2175 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2176 a special value. This value represents the inline assembler as a string
2177 (containing the instructions to emit), a list of operand constraints (stored
2178 as a string), and a flag that indicates whether or not the inline asm
2179 expression has side effects. An example inline assembler expression is:</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002180
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002181<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002182<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002183i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002184</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002185</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002186
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002187<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2188 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2189 have:</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002190
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002191<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002192<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002193%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002194</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002195</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002196
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002197<p>Inline asms with side effects not visible in the constraint list must be
2198 marked as having side effects. This is done through the use of the
2199 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002200
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002201<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002202<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002203call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002204</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002205</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002206
2207<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002208 documented here. Constraints on what can be done (e.g. duplication, moving,
2209 etc need to be documented). This is probably best done by reference to
2210 another document that covers inline asm from a holistic perspective.</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002211
2212</div>
2213
Chris Lattner857755c2009-07-20 05:55:19 +00002214
2215<!-- *********************************************************************** -->
2216<div class="doc_section">
2217 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2218</div>
2219<!-- *********************************************************************** -->
2220
2221<p>LLVM has a number of "magic" global variables that contain data that affect
2222code generation or other IR semantics. These are documented here. All globals
Chris Lattner401e10c2009-07-20 06:14:25 +00002223of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2224section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2225by LLVM.</p>
Chris Lattner857755c2009-07-20 05:55:19 +00002226
2227<!-- ======================================================================= -->
2228<div class="doc_subsection">
2229<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2230</div>
2231
2232<div class="doc_text">
2233
2234<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2235href="#linkage_appending">appending linkage</a>. This array contains a list of
2236pointers to global variables and functions which may optionally have a pointer
2237cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2238
2239<pre>
2240 @X = global i8 4
2241 @Y = global i32 123
2242
2243 @llvm.used = appending global [2 x i8*] [
2244 i8* @X,
2245 i8* bitcast (i32* @Y to i8*)
2246 ], section "llvm.metadata"
2247</pre>
2248
2249<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2250compiler, assembler, and linker are required to treat the symbol as if there is
2251a reference to the global that it cannot see. For example, if a variable has
2252internal linkage and no references other than that from the <tt>@llvm.used</tt>
2253list, it cannot be deleted. This is commonly used to represent references from
2254inline asms and other things the compiler cannot "see", and corresponds to
2255"attribute((used))" in GNU C.</p>
2256
2257<p>On some targets, the code generator must emit a directive to the assembler or
2258object file to prevent the assembler and linker from molesting the symbol.</p>
2259
2260</div>
2261
2262<!-- ======================================================================= -->
2263<div class="doc_subsection">
Chris Lattner401e10c2009-07-20 06:14:25 +00002264<a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
2265</div>
2266
2267<div class="doc_text">
2268
2269<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2270<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2271touching the symbol. On targets that support it, this allows an intelligent
2272linker to optimize references to the symbol without being impeded as it would be
2273by <tt>@llvm.used</tt>.</p>
2274
2275<p>This is a rare construct that should only be used in rare circumstances, and
2276should not be exposed to source languages.</p>
2277
2278</div>
2279
2280<!-- ======================================================================= -->
2281<div class="doc_subsection">
Chris Lattner857755c2009-07-20 05:55:19 +00002282<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2283</div>
2284
2285<div class="doc_text">
2286
2287<p>TODO: Describe this.</p>
2288
2289</div>
2290
2291<!-- ======================================================================= -->
2292<div class="doc_subsection">
2293<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2294</div>
2295
2296<div class="doc_text">
2297
2298<p>TODO: Describe this.</p>
2299
2300</div>
2301
2302
Chris Lattnere87d6532006-01-25 23:47:57 +00002303<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00002304<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2305<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002306
Misha Brukman9d0919f2003-11-08 01:05:38 +00002307<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002308
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002309<p>The LLVM instruction set consists of several different classifications of
2310 instructions: <a href="#terminators">terminator
2311 instructions</a>, <a href="#binaryops">binary instructions</a>,
2312 <a href="#bitwiseops">bitwise binary instructions</a>,
2313 <a href="#memoryops">memory instructions</a>, and
2314 <a href="#otherops">other instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002315
Misha Brukman9d0919f2003-11-08 01:05:38 +00002316</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002317
Chris Lattner00950542001-06-06 20:29:01 +00002318<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002319<div class="doc_subsection"> <a name="terminators">Terminator
2320Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002321
Misha Brukman9d0919f2003-11-08 01:05:38 +00002322<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002323
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002324<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2325 in a program ends with a "Terminator" instruction, which indicates which
2326 block should be executed after the current block is finished. These
2327 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2328 control flow, not values (the one exception being the
2329 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2330
2331<p>There are six different terminator instructions: the
2332 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2333 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2334 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
2335 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2336 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2337 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002338
Misha Brukman9d0919f2003-11-08 01:05:38 +00002339</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002340
Chris Lattner00950542001-06-06 20:29:01 +00002341<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002342<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2343Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002344
Misha Brukman9d0919f2003-11-08 01:05:38 +00002345<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002346
Chris Lattner00950542001-06-06 20:29:01 +00002347<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002348<pre>
2349 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002350 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002351</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002352
Chris Lattner00950542001-06-06 20:29:01 +00002353<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002354<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2355 a value) from a function back to the caller.</p>
2356
2357<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2358 value and then causes control flow, and one that just causes control flow to
2359 occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002360
Chris Lattner00950542001-06-06 20:29:01 +00002361<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002362<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2363 return value. The type of the return value must be a
2364 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002365
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002366<p>A function is not <a href="#wellformed">well formed</a> if it it has a
2367 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2368 value or a return value with a type that does not match its type, or if it
2369 has a void return type and contains a '<tt>ret</tt>' instruction with a
2370 return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002371
Chris Lattner00950542001-06-06 20:29:01 +00002372<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002373<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2374 the calling function's context. If the caller is a
2375 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2376 instruction after the call. If the caller was an
2377 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2378 the beginning of the "normal" destination block. If the instruction returns
2379 a value, that value shall set the call or invoke instruction's return
2380 value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002381
Chris Lattner00950542001-06-06 20:29:01 +00002382<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002383<pre>
2384 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002385 ret void <i>; Return from a void function</i>
Bill Wendling0a4bbbf2009-02-28 22:12:54 +00002386 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002387</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002388
Dan Gohmand8791e52009-01-24 15:58:40 +00002389<p>Note that the code generator does not yet fully support large
2390 return values. The specific sizes that are currently supported are
2391 dependent on the target. For integers, on 32-bit targets the limit
2392 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2393 For aggregate types, the current limits are dependent on the element
2394 types; for example targets are often limited to 2 total integer
2395 elements and 2 total floating-point elements.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002396
Misha Brukman9d0919f2003-11-08 01:05:38 +00002397</div>
Chris Lattner00950542001-06-06 20:29:01 +00002398<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002399<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002400
Misha Brukman9d0919f2003-11-08 01:05:38 +00002401<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002402
Chris Lattner00950542001-06-06 20:29:01 +00002403<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002404<pre>
2405 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002406</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002407
Chris Lattner00950542001-06-06 20:29:01 +00002408<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002409<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2410 different basic block in the current function. There are two forms of this
2411 instruction, corresponding to a conditional branch and an unconditional
2412 branch.</p>
2413
Chris Lattner00950542001-06-06 20:29:01 +00002414<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002415<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2416 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2417 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2418 target.</p>
2419
Chris Lattner00950542001-06-06 20:29:01 +00002420<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002421<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002422 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2423 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2424 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2425
Chris Lattner00950542001-06-06 20:29:01 +00002426<h5>Example:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00002427<pre>
2428Test:
2429 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2430 br i1 %cond, label %IfEqual, label %IfUnequal
2431IfEqual:
2432 <a href="#i_ret">ret</a> i32 1
2433IfUnequal:
2434 <a href="#i_ret">ret</a> i32 0
2435</pre>
2436
Misha Brukman9d0919f2003-11-08 01:05:38 +00002437</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002438
Chris Lattner00950542001-06-06 20:29:01 +00002439<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002440<div class="doc_subsubsection">
2441 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2442</div>
2443
Misha Brukman9d0919f2003-11-08 01:05:38 +00002444<div class="doc_text">
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002445
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002446<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002447<pre>
2448 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2449</pre>
2450
Chris Lattner00950542001-06-06 20:29:01 +00002451<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002452<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002453 several different places. It is a generalization of the '<tt>br</tt>'
2454 instruction, allowing a branch to occur to one of many possible
2455 destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002456
Chris Lattner00950542001-06-06 20:29:01 +00002457<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002458<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002459 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2460 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2461 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002462
Chris Lattner00950542001-06-06 20:29:01 +00002463<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002464<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002465 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2466 is searched for the given value. If the value is found, control flow is
2467 transfered to the corresponding destination; otherwise, control flow is
2468 transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002469
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002470<h5>Implementation:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002471<p>Depending on properties of the target machine and the particular
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002472 <tt>switch</tt> instruction, this instruction may be code generated in
2473 different ways. For example, it could be generated as a series of chained
2474 conditional branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002475
2476<h5>Example:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002477<pre>
2478 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002479 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002480 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002481
2482 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002483 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002484
2485 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002486 switch i32 %val, label %otherwise [ i32 0, label %onzero
2487 i32 1, label %onone
2488 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002489</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002490
Misha Brukman9d0919f2003-11-08 01:05:38 +00002491</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002492
Chris Lattner00950542001-06-06 20:29:01 +00002493<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002494<div class="doc_subsubsection">
2495 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2496</div>
2497
Misha Brukman9d0919f2003-11-08 01:05:38 +00002498<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002499
Chris Lattner00950542001-06-06 20:29:01 +00002500<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002501<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002502 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002503 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002504</pre>
2505
Chris Lattner6536cfe2002-05-06 22:08:29 +00002506<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002507<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002508 function, with the possibility of control flow transfer to either the
2509 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
2510 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
2511 control flow will return to the "normal" label. If the callee (or any
2512 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
2513 instruction, control is interrupted and continued at the dynamically nearest
2514 "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002515
Chris Lattner00950542001-06-06 20:29:01 +00002516<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002517<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002518
Chris Lattner00950542001-06-06 20:29:01 +00002519<ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002520 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
2521 convention</a> the call should use. If none is specified, the call
2522 defaults to using C calling conventions.</li>
Devang Patelf642f472008-10-06 18:50:38 +00002523
2524 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002525 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
2526 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patelf642f472008-10-06 18:50:38 +00002527
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002528 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002529 function value being invoked. In most cases, this is a direct function
2530 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
2531 off an arbitrary pointer to function value.</li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002532
2533 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002534 function to be invoked. </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002535
2536 <li>'<tt>function args</tt>': argument list whose types match the function
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002537 signature argument types. If the function signature indicates the
2538 function accepts a variable number of arguments, the extra arguments can
2539 be specified.</li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002540
2541 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002542 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002543
2544 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002545 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002546
Devang Patel307e8ab2008-10-07 17:48:33 +00002547 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002548 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2549 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002550</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002551
Chris Lattner00950542001-06-06 20:29:01 +00002552<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002553<p>This instruction is designed to operate as a standard
2554 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
2555 primary difference is that it establishes an association with a label, which
2556 is used by the runtime library to unwind the stack.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002557
2558<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002559 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2560 exception. Additionally, this is important for implementation of
2561 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002562
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002563<p>For the purposes of the SSA form, the definition of the value returned by the
2564 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
2565 block to the "normal" label. If the callee unwinds then no return value is
2566 available.</p>
Dan Gohmanf96a4992009-05-22 21:47:08 +00002567
Chris Lattner00950542001-06-06 20:29:01 +00002568<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002569<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002570 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002571 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002572 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002573 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002574</pre>
Chris Lattner35eca582004-10-16 18:04:13 +00002575
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002576</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002577
Chris Lattner27f71f22003-09-03 00:41:47 +00002578<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002579
Chris Lattner261efe92003-11-25 01:02:51 +00002580<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2581Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002582
Misha Brukman9d0919f2003-11-08 01:05:38 +00002583<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002584
Chris Lattner27f71f22003-09-03 00:41:47 +00002585<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002586<pre>
2587 unwind
2588</pre>
2589
Chris Lattner27f71f22003-09-03 00:41:47 +00002590<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002591<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002592 at the first callee in the dynamic call stack which used
2593 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
2594 This is primarily used to implement exception handling.</p>
Chris Lattner35eca582004-10-16 18:04:13 +00002595
Chris Lattner27f71f22003-09-03 00:41:47 +00002596<h5>Semantics:</h5>
Chris Lattner72ed2002008-04-19 21:01:16 +00002597<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002598 immediately halt. The dynamic call stack is then searched for the
2599 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
2600 Once found, execution continues at the "exceptional" destination block
2601 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
2602 instruction in the dynamic call chain, undefined behavior results.</p>
2603
Misha Brukman9d0919f2003-11-08 01:05:38 +00002604</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002605
2606<!-- _______________________________________________________________________ -->
2607
2608<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2609Instruction</a> </div>
2610
2611<div class="doc_text">
2612
2613<h5>Syntax:</h5>
2614<pre>
2615 unreachable
2616</pre>
2617
2618<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002619<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002620 instruction is used to inform the optimizer that a particular portion of the
2621 code is not reachable. This can be used to indicate that the code after a
2622 no-return function cannot be reached, and other facts.</p>
Chris Lattner35eca582004-10-16 18:04:13 +00002623
2624<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002625<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002626
Chris Lattner35eca582004-10-16 18:04:13 +00002627</div>
2628
Chris Lattner00950542001-06-06 20:29:01 +00002629<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002630<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002631
Misha Brukman9d0919f2003-11-08 01:05:38 +00002632<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002633
2634<p>Binary operators are used to do most of the computation in a program. They
2635 require two operands of the same type, execute an operation on them, and
2636 produce a single value. The operands might represent multiple data, as is
2637 the case with the <a href="#t_vector">vector</a> data type. The result value
2638 has the same type as its operands.</p>
2639
Misha Brukman9d0919f2003-11-08 01:05:38 +00002640<p>There are several different binary operators:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002641
Misha Brukman9d0919f2003-11-08 01:05:38 +00002642</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002643
Chris Lattner00950542001-06-06 20:29:01 +00002644<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002645<div class="doc_subsubsection">
2646 <a name="i_add">'<tt>add</tt>' Instruction</a>
2647</div>
2648
Misha Brukman9d0919f2003-11-08 01:05:38 +00002649<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002650
Chris Lattner00950542001-06-06 20:29:01 +00002651<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002652<pre>
Dan Gohmancbb38f22009-07-20 22:41:19 +00002653 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman08d012e2009-07-22 22:44:56 +00002654 &lt;result&gt; = nuw add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2655 &lt;result&gt; = nsw add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2656 &lt;result&gt; = nuw nsw add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002657</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002658
Chris Lattner00950542001-06-06 20:29:01 +00002659<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002660<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002661
Chris Lattner00950542001-06-06 20:29:01 +00002662<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002663<p>The two arguments to the '<tt>add</tt>' instruction must
2664 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2665 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002666
Chris Lattner00950542001-06-06 20:29:01 +00002667<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002668<p>The value produced is the integer sum of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002669
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002670<p>If the sum has unsigned overflow, the result returned is the mathematical
2671 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002672
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002673<p>Because LLVM integers use a two's complement representation, this instruction
2674 is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002675
Dan Gohman08d012e2009-07-22 22:44:56 +00002676<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2677 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2678 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
2679 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00002680
Chris Lattner00950542001-06-06 20:29:01 +00002681<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002682<pre>
2683 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002684</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002685
Misha Brukman9d0919f2003-11-08 01:05:38 +00002686</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002687
Chris Lattner00950542001-06-06 20:29:01 +00002688<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002689<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002690 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
2691</div>
2692
2693<div class="doc_text">
2694
2695<h5>Syntax:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002696<pre>
2697 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2698</pre>
2699
2700<h5>Overview:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002701<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
2702
2703<h5>Arguments:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002704<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002705 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2706 floating point values. Both arguments must have identical types.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002707
2708<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002709<p>The value produced is the floating point sum of the two operands.</p>
2710
2711<h5>Example:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002712<pre>
2713 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
2714</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002715
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002716</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002717
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002718<!-- _______________________________________________________________________ -->
2719<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00002720 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2721</div>
2722
Misha Brukman9d0919f2003-11-08 01:05:38 +00002723<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002724
Chris Lattner00950542001-06-06 20:29:01 +00002725<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002726<pre>
Dan Gohman08d012e2009-07-22 22:44:56 +00002727 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2728 &lt;result&gt; = nuw sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2729 &lt;result&gt; = nsw sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2730 &lt;result&gt; = nuw nsw sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002731</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002732
Chris Lattner00950542001-06-06 20:29:01 +00002733<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002734<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002735 operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002736
2737<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002738 '<tt>neg</tt>' instruction present in most other intermediate
2739 representations.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002740
Chris Lattner00950542001-06-06 20:29:01 +00002741<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002742<p>The two arguments to the '<tt>sub</tt>' instruction must
2743 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2744 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002745
Chris Lattner00950542001-06-06 20:29:01 +00002746<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002747<p>The value produced is the integer difference of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002748
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002749<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002750 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
2751 result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002752
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002753<p>Because LLVM integers use a two's complement representation, this instruction
2754 is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002755
Dan Gohman08d012e2009-07-22 22:44:56 +00002756<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2757 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2758 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
2759 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00002760
Chris Lattner00950542001-06-06 20:29:01 +00002761<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002762<pre>
2763 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002764 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002765</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002766
Misha Brukman9d0919f2003-11-08 01:05:38 +00002767</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002768
Chris Lattner00950542001-06-06 20:29:01 +00002769<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002770<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002771 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
2772</div>
2773
2774<div class="doc_text">
2775
2776<h5>Syntax:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002777<pre>
2778 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2779</pre>
2780
2781<h5>Overview:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002782<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002783 operands.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002784
2785<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002786 '<tt>fneg</tt>' instruction present in most other intermediate
2787 representations.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002788
2789<h5>Arguments:</h5>
Bill Wendlingd9fe2982009-07-20 02:32:41 +00002790<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002791 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2792 floating point values. Both arguments must have identical types.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002793
2794<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002795<p>The value produced is the floating point difference of the two operands.</p>
2796
2797<h5>Example:</h5>
2798<pre>
2799 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
2800 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
2801</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002802
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002803</div>
2804
2805<!-- _______________________________________________________________________ -->
2806<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00002807 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2808</div>
2809
Misha Brukman9d0919f2003-11-08 01:05:38 +00002810<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002811
Chris Lattner00950542001-06-06 20:29:01 +00002812<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002813<pre>
Dan Gohman08d012e2009-07-22 22:44:56 +00002814 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2815 &lt;result&gt; = nuw mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2816 &lt;result&gt; = nsw mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2817 &lt;result&gt; = nuw nsw mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002818</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002819
Chris Lattner00950542001-06-06 20:29:01 +00002820<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002821<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002822
Chris Lattner00950542001-06-06 20:29:01 +00002823<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002824<p>The two arguments to the '<tt>mul</tt>' instruction must
2825 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2826 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002827
Chris Lattner00950542001-06-06 20:29:01 +00002828<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002829<p>The value produced is the integer product of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002830
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002831<p>If the result of the multiplication has unsigned overflow, the result
2832 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
2833 width of the result.</p>
2834
2835<p>Because LLVM integers use a two's complement representation, and the result
2836 is the same width as the operands, this instruction returns the correct
2837 result for both signed and unsigned integers. If a full product
2838 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
2839 be sign-extended or zero-extended as appropriate to the width of the full
2840 product.</p>
2841
Dan Gohman08d012e2009-07-22 22:44:56 +00002842<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2843 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2844 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
2845 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00002846
Chris Lattner00950542001-06-06 20:29:01 +00002847<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002848<pre>
2849 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002850</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002851
Misha Brukman9d0919f2003-11-08 01:05:38 +00002852</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002853
Chris Lattner00950542001-06-06 20:29:01 +00002854<!-- _______________________________________________________________________ -->
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002855<div class="doc_subsubsection">
2856 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
2857</div>
2858
2859<div class="doc_text">
2860
2861<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002862<pre>
2863 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002864</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002865
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002866<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002867<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002868
2869<h5>Arguments:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002870<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002871 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2872 floating point values. Both arguments must have identical types.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002873
2874<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002875<p>The value produced is the floating point product of the two operands.</p>
2876
2877<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002878<pre>
2879 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002880</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002881
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002882</div>
2883
2884<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002885<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2886</a></div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002887
Reid Spencer1628cec2006-10-26 06:15:43 +00002888<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002889
Reid Spencer1628cec2006-10-26 06:15:43 +00002890<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002891<pre>
2892 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002893</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002894
Reid Spencer1628cec2006-10-26 06:15:43 +00002895<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002896<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002897
Reid Spencer1628cec2006-10-26 06:15:43 +00002898<h5>Arguments:</h5>
2899<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002900 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2901 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002902
Reid Spencer1628cec2006-10-26 06:15:43 +00002903<h5>Semantics:</h5>
Chris Lattner5ec89832008-01-28 00:36:27 +00002904<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002905
Chris Lattner5ec89832008-01-28 00:36:27 +00002906<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002907 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2908
Chris Lattner5ec89832008-01-28 00:36:27 +00002909<p>Division by zero leads to undefined behavior.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002910
Reid Spencer1628cec2006-10-26 06:15:43 +00002911<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002912<pre>
2913 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002914</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002915
Reid Spencer1628cec2006-10-26 06:15:43 +00002916</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002917
Reid Spencer1628cec2006-10-26 06:15:43 +00002918<!-- _______________________________________________________________________ -->
2919<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2920</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002921
Reid Spencer1628cec2006-10-26 06:15:43 +00002922<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002923
Reid Spencer1628cec2006-10-26 06:15:43 +00002924<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002925<pre>
Dan Gohmancbb38f22009-07-20 22:41:19 +00002926 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2927 &lt;result&gt; = exact sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002928</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002929
Reid Spencer1628cec2006-10-26 06:15:43 +00002930<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002931<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002932
Reid Spencer1628cec2006-10-26 06:15:43 +00002933<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002934<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002935 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2936 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002937
Reid Spencer1628cec2006-10-26 06:15:43 +00002938<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002939<p>The value produced is the signed integer quotient of the two operands rounded
2940 towards zero.</p>
2941
Chris Lattner5ec89832008-01-28 00:36:27 +00002942<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002943 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2944
Chris Lattner5ec89832008-01-28 00:36:27 +00002945<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002946 undefined behavior; this is a rare case, but can occur, for example, by doing
2947 a 32-bit division of -2147483648 by -1.</p>
2948
Dan Gohman9c5beed2009-07-22 00:04:19 +00002949<p>If the <tt>exact</tt> keyword is present, the result value of the
2950 <tt>sdiv</tt> is undefined if the result would be rounded or if overflow
2951 would occur.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00002952
Reid Spencer1628cec2006-10-26 06:15:43 +00002953<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002954<pre>
2955 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002956</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002957
Reid Spencer1628cec2006-10-26 06:15:43 +00002958</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002959
Reid Spencer1628cec2006-10-26 06:15:43 +00002960<!-- _______________________________________________________________________ -->
2961<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002962Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002963
Misha Brukman9d0919f2003-11-08 01:05:38 +00002964<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002965
Chris Lattner00950542001-06-06 20:29:01 +00002966<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002967<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002968 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002969</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002970
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002971<h5>Overview:</h5>
2972<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002973
Chris Lattner261efe92003-11-25 01:02:51 +00002974<h5>Arguments:</h5>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002975<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002976 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2977 floating point values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002978
Chris Lattner261efe92003-11-25 01:02:51 +00002979<h5>Semantics:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002980<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002981
Chris Lattner261efe92003-11-25 01:02:51 +00002982<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002983<pre>
2984 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002985</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002986
Chris Lattner261efe92003-11-25 01:02:51 +00002987</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002988
Chris Lattner261efe92003-11-25 01:02:51 +00002989<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002990<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2991</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002992
Reid Spencer0a783f72006-11-02 01:53:59 +00002993<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002994
Reid Spencer0a783f72006-11-02 01:53:59 +00002995<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002996<pre>
2997 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002998</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002999
Reid Spencer0a783f72006-11-02 01:53:59 +00003000<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003001<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3002 division of its two arguments.</p>
3003
Reid Spencer0a783f72006-11-02 01:53:59 +00003004<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003005<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003006 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3007 values. Both arguments must have identical types.</p>
3008
Reid Spencer0a783f72006-11-02 01:53:59 +00003009<h5>Semantics:</h5>
3010<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003011 This instruction always performs an unsigned division to get the
3012 remainder.</p>
3013
Chris Lattner5ec89832008-01-28 00:36:27 +00003014<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003015 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3016
Chris Lattner5ec89832008-01-28 00:36:27 +00003017<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003018
Reid Spencer0a783f72006-11-02 01:53:59 +00003019<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003020<pre>
3021 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003022</pre>
3023
3024</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003025
Reid Spencer0a783f72006-11-02 01:53:59 +00003026<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00003027<div class="doc_subsubsection">
3028 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3029</div>
3030
Chris Lattner261efe92003-11-25 01:02:51 +00003031<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003032
Chris Lattner261efe92003-11-25 01:02:51 +00003033<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003034<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003035 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003036</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003037
Chris Lattner261efe92003-11-25 01:02:51 +00003038<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003039<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3040 division of its two operands. This instruction can also take
3041 <a href="#t_vector">vector</a> versions of the values in which case the
3042 elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00003043
Chris Lattner261efe92003-11-25 01:02:51 +00003044<h5>Arguments:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00003045<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003046 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3047 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003048
Chris Lattner261efe92003-11-25 01:02:51 +00003049<h5>Semantics:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00003050<p>This instruction returns the <i>remainder</i> of a division (where the result
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003051 has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
3052 operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
3053 a value. For more information about the difference,
3054 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3055 Math Forum</a>. For a table of how this is implemented in various languages,
3056 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3057 Wikipedia: modulo operation</a>.</p>
3058
Chris Lattner5ec89832008-01-28 00:36:27 +00003059<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003060 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3061
Chris Lattner5ec89832008-01-28 00:36:27 +00003062<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003063 Overflow also leads to undefined behavior; this is a rare case, but can
3064 occur, for example, by taking the remainder of a 32-bit division of
3065 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3066 lets srem be implemented using instructions that return both the result of
3067 the division and the remainder.)</p>
3068
Chris Lattner261efe92003-11-25 01:02:51 +00003069<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003070<pre>
3071 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003072</pre>
3073
3074</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003075
Reid Spencer0a783f72006-11-02 01:53:59 +00003076<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00003077<div class="doc_subsubsection">
3078 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
3079
Reid Spencer0a783f72006-11-02 01:53:59 +00003080<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003081
Reid Spencer0a783f72006-11-02 01:53:59 +00003082<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003083<pre>
3084 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003085</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003086
Reid Spencer0a783f72006-11-02 01:53:59 +00003087<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003088<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3089 its two operands.</p>
3090
Reid Spencer0a783f72006-11-02 01:53:59 +00003091<h5>Arguments:</h5>
3092<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003093 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3094 floating point values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003095
Reid Spencer0a783f72006-11-02 01:53:59 +00003096<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003097<p>This instruction returns the <i>remainder</i> of a division. The remainder
3098 has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003099
Reid Spencer0a783f72006-11-02 01:53:59 +00003100<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003101<pre>
3102 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003103</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003104
Misha Brukman9d0919f2003-11-08 01:05:38 +00003105</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00003106
Reid Spencer8e11bf82007-02-02 13:57:07 +00003107<!-- ======================================================================= -->
3108<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
3109Operations</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003110
Reid Spencer8e11bf82007-02-02 13:57:07 +00003111<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003112
3113<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3114 program. They are generally very efficient instructions and can commonly be
3115 strength reduced from other instructions. They require two operands of the
3116 same type, execute an operation on them, and produce a single value. The
3117 resulting value is the same type as its operands.</p>
3118
Reid Spencer8e11bf82007-02-02 13:57:07 +00003119</div>
3120
Reid Spencer569f2fa2007-01-31 21:39:12 +00003121<!-- _______________________________________________________________________ -->
3122<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
3123Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003124
Reid Spencer569f2fa2007-01-31 21:39:12 +00003125<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003126
Reid Spencer569f2fa2007-01-31 21:39:12 +00003127<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003128<pre>
3129 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003130</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003131
Reid Spencer569f2fa2007-01-31 21:39:12 +00003132<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003133<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3134 a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003135
Reid Spencer569f2fa2007-01-31 21:39:12 +00003136<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003137<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3138 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3139 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003140
Reid Spencer569f2fa2007-01-31 21:39:12 +00003141<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003142<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3143 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3144 is (statically or dynamically) negative or equal to or larger than the number
3145 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3146 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3147 shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003148
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003149<h5>Example:</h5>
3150<pre>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003151 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3152 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3153 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003154 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003155 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003156</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003157
Reid Spencer569f2fa2007-01-31 21:39:12 +00003158</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003159
Reid Spencer569f2fa2007-01-31 21:39:12 +00003160<!-- _______________________________________________________________________ -->
3161<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
3162Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003163
Reid Spencer569f2fa2007-01-31 21:39:12 +00003164<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003165
Reid Spencer569f2fa2007-01-31 21:39:12 +00003166<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003167<pre>
3168 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003169</pre>
3170
3171<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003172<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3173 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003174
3175<h5>Arguments:</h5>
3176<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003177 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3178 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003179
3180<h5>Semantics:</h5>
3181<p>This instruction always performs a logical shift right operation. The most
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003182 significant bits of the result will be filled with zero bits after the shift.
3183 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3184 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3185 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3186 shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003187
3188<h5>Example:</h5>
3189<pre>
3190 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3191 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3192 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3193 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003194 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003195 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003196</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003197
Reid Spencer569f2fa2007-01-31 21:39:12 +00003198</div>
3199
Reid Spencer8e11bf82007-02-02 13:57:07 +00003200<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00003201<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3202Instruction</a> </div>
3203<div class="doc_text">
3204
3205<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003206<pre>
3207 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003208</pre>
3209
3210<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003211<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3212 operand shifted to the right a specified number of bits with sign
3213 extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003214
3215<h5>Arguments:</h5>
3216<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003217 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3218 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003219
3220<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003221<p>This instruction always performs an arithmetic shift right operation, The
3222 most significant bits of the result will be filled with the sign bit
3223 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3224 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3225 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3226 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003227
3228<h5>Example:</h5>
3229<pre>
3230 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3231 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3232 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3233 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003234 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003235 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003236</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003237
Reid Spencer569f2fa2007-01-31 21:39:12 +00003238</div>
3239
Chris Lattner00950542001-06-06 20:29:01 +00003240<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003241<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3242Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00003243
Misha Brukman9d0919f2003-11-08 01:05:38 +00003244<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003245
Chris Lattner00950542001-06-06 20:29:01 +00003246<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003247<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003248 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003249</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003250
Chris Lattner00950542001-06-06 20:29:01 +00003251<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003252<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3253 operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003254
Chris Lattner00950542001-06-06 20:29:01 +00003255<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003256<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003257 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3258 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003259
Chris Lattner00950542001-06-06 20:29:01 +00003260<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003261<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003262
Misha Brukman9d0919f2003-11-08 01:05:38 +00003263<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00003264 <tbody>
3265 <tr>
3266 <td>In0</td>
3267 <td>In1</td>
3268 <td>Out</td>
3269 </tr>
3270 <tr>
3271 <td>0</td>
3272 <td>0</td>
3273 <td>0</td>
3274 </tr>
3275 <tr>
3276 <td>0</td>
3277 <td>1</td>
3278 <td>0</td>
3279 </tr>
3280 <tr>
3281 <td>1</td>
3282 <td>0</td>
3283 <td>0</td>
3284 </tr>
3285 <tr>
3286 <td>1</td>
3287 <td>1</td>
3288 <td>1</td>
3289 </tr>
3290 </tbody>
3291</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003292
Chris Lattner00950542001-06-06 20:29:01 +00003293<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003294<pre>
3295 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003296 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3297 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00003298</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003299</div>
Chris Lattner00950542001-06-06 20:29:01 +00003300<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003301<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00003302
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003303<div class="doc_text">
3304
3305<h5>Syntax:</h5>
3306<pre>
3307 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3308</pre>
3309
3310<h5>Overview:</h5>
3311<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3312 two operands.</p>
3313
3314<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003315<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003316 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3317 values. Both arguments must have identical types.</p>
3318
Chris Lattner00950542001-06-06 20:29:01 +00003319<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003320<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003321
Chris Lattner261efe92003-11-25 01:02:51 +00003322<table border="1" cellspacing="0" cellpadding="4">
3323 <tbody>
3324 <tr>
3325 <td>In0</td>
3326 <td>In1</td>
3327 <td>Out</td>
3328 </tr>
3329 <tr>
3330 <td>0</td>
3331 <td>0</td>
3332 <td>0</td>
3333 </tr>
3334 <tr>
3335 <td>0</td>
3336 <td>1</td>
3337 <td>1</td>
3338 </tr>
3339 <tr>
3340 <td>1</td>
3341 <td>0</td>
3342 <td>1</td>
3343 </tr>
3344 <tr>
3345 <td>1</td>
3346 <td>1</td>
3347 <td>1</td>
3348 </tr>
3349 </tbody>
3350</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003351
Chris Lattner00950542001-06-06 20:29:01 +00003352<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003353<pre>
3354 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003355 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3356 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00003357</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003358
Misha Brukman9d0919f2003-11-08 01:05:38 +00003359</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003360
Chris Lattner00950542001-06-06 20:29:01 +00003361<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003362<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3363Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003364
Misha Brukman9d0919f2003-11-08 01:05:38 +00003365<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003366
Chris Lattner00950542001-06-06 20:29:01 +00003367<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003368<pre>
3369 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003370</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003371
Chris Lattner00950542001-06-06 20:29:01 +00003372<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003373<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3374 its two operands. The <tt>xor</tt> is used to implement the "one's
3375 complement" operation, which is the "~" operator in C.</p>
3376
Chris Lattner00950542001-06-06 20:29:01 +00003377<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003378<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003379 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3380 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003381
Chris Lattner00950542001-06-06 20:29:01 +00003382<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003383<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003384
Chris Lattner261efe92003-11-25 01:02:51 +00003385<table border="1" cellspacing="0" cellpadding="4">
3386 <tbody>
3387 <tr>
3388 <td>In0</td>
3389 <td>In1</td>
3390 <td>Out</td>
3391 </tr>
3392 <tr>
3393 <td>0</td>
3394 <td>0</td>
3395 <td>0</td>
3396 </tr>
3397 <tr>
3398 <td>0</td>
3399 <td>1</td>
3400 <td>1</td>
3401 </tr>
3402 <tr>
3403 <td>1</td>
3404 <td>0</td>
3405 <td>1</td>
3406 </tr>
3407 <tr>
3408 <td>1</td>
3409 <td>1</td>
3410 <td>0</td>
3411 </tr>
3412 </tbody>
3413</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003414
Chris Lattner00950542001-06-06 20:29:01 +00003415<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003416<pre>
3417 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003418 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3419 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3420 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00003421</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003422
Misha Brukman9d0919f2003-11-08 01:05:38 +00003423</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003424
Chris Lattner00950542001-06-06 20:29:01 +00003425<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003426<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00003427 <a name="vectorops">Vector Operations</a>
3428</div>
3429
3430<div class="doc_text">
3431
3432<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003433 target-independent manner. These instructions cover the element-access and
3434 vector-specific operations needed to process vectors effectively. While LLVM
3435 does directly support these vector operations, many sophisticated algorithms
3436 will want to use target-specific intrinsics to take full advantage of a
3437 specific target.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003438
3439</div>
3440
3441<!-- _______________________________________________________________________ -->
3442<div class="doc_subsubsection">
3443 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3444</div>
3445
3446<div class="doc_text">
3447
3448<h5>Syntax:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003449<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003450 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003451</pre>
3452
3453<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003454<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
3455 from a vector at a specified index.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003456
3457
3458<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003459<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
3460 of <a href="#t_vector">vector</a> type. The second operand is an index
3461 indicating the position from which to extract the element. The index may be
3462 a variable.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003463
3464<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003465<p>The result is a scalar of the same type as the element type of
3466 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3467 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3468 results are undefined.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003469
3470<h5>Example:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003471<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003472 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003473</pre>
Chris Lattner3df241e2006-04-08 23:07:04 +00003474
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003475</div>
Chris Lattner3df241e2006-04-08 23:07:04 +00003476
3477<!-- _______________________________________________________________________ -->
3478<div class="doc_subsubsection">
3479 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3480</div>
3481
3482<div class="doc_text">
3483
3484<h5>Syntax:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003485<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00003486 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003487</pre>
3488
3489<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003490<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
3491 vector at a specified index.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003492
3493<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003494<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
3495 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
3496 whose type must equal the element type of the first operand. The third
3497 operand is an index indicating the position at which to insert the value.
3498 The index may be a variable.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003499
3500<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003501<p>The result is a vector of the same type as <tt>val</tt>. Its element values
3502 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
3503 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3504 results are undefined.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003505
3506<h5>Example:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003507<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003508 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003509</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003510
Chris Lattner3df241e2006-04-08 23:07:04 +00003511</div>
3512
3513<!-- _______________________________________________________________________ -->
3514<div class="doc_subsubsection">
3515 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3516</div>
3517
3518<div class="doc_text">
3519
3520<h5>Syntax:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003521<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003522 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003523</pre>
3524
3525<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003526<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
3527 from two input vectors, returning a vector with the same element type as the
3528 input and length that is the same as the shuffle mask.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003529
3530<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003531<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3532 with types that match each other. The third argument is a shuffle mask whose
3533 element type is always 'i32'. The result of the instruction is a vector
3534 whose length is the same as the shuffle mask and whose element type is the
3535 same as the element type of the first two operands.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003536
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003537<p>The shuffle mask operand is required to be a constant vector with either
3538 constant integer or undef values.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003539
3540<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003541<p>The elements of the two input vectors are numbered from left to right across
3542 both of the vectors. The shuffle mask operand specifies, for each element of
3543 the result vector, which element of the two input vectors the result element
3544 gets. The element selector may be undef (meaning "don't care") and the
3545 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003546
3547<h5>Example:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003548<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003549 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003550 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003551 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3552 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003553 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3554 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3555 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3556 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003557</pre>
Chris Lattner3df241e2006-04-08 23:07:04 +00003558
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003559</div>
Tanya Lattner09474292006-04-14 19:24:33 +00003560
Chris Lattner3df241e2006-04-08 23:07:04 +00003561<!-- ======================================================================= -->
3562<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003563 <a name="aggregateops">Aggregate Operations</a>
3564</div>
3565
3566<div class="doc_text">
3567
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003568<p>LLVM supports several instructions for working with aggregate values.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003569
3570</div>
3571
3572<!-- _______________________________________________________________________ -->
3573<div class="doc_subsubsection">
3574 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3575</div>
3576
3577<div class="doc_text">
3578
3579<h5>Syntax:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003580<pre>
3581 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3582</pre>
3583
3584<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003585<p>The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3586 or array element from an aggregate value.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003587
3588<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003589<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
3590 of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
3591 operands are constant indices to specify which value to extract in a similar
3592 manner as indices in a
3593 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003594
3595<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003596<p>The result is the value at the position in the aggregate specified by the
3597 index operands.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003598
3599<h5>Example:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003600<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003601 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003602</pre>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003603
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003604</div>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003605
3606<!-- _______________________________________________________________________ -->
3607<div class="doc_subsubsection">
3608 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3609</div>
3610
3611<div class="doc_text">
3612
3613<h5>Syntax:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003614<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003615 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003616</pre>
3617
3618<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003619<p>The '<tt>insertvalue</tt>' instruction inserts a value into a struct field or
3620 array element in an aggregate.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003621
3622
3623<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003624<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
3625 of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
3626 second operand is a first-class value to insert. The following operands are
3627 constant indices indicating the position at which to insert the value in a
3628 similar manner as indices in a
3629 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. The
3630 value to insert must have the same type as the value identified by the
3631 indices.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003632
3633<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003634<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
3635 that of <tt>val</tt> except that the value at the position specified by the
3636 indices is that of <tt>elt</tt>.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003637
3638<h5>Example:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003639<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003640 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003641</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003642
Dan Gohmana334d5f2008-05-12 23:51:09 +00003643</div>
3644
3645
3646<!-- ======================================================================= -->
3647<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003648 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003649</div>
3650
Misha Brukman9d0919f2003-11-08 01:05:38 +00003651<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003652
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003653<p>A key design point of an SSA-based representation is how it represents
3654 memory. In LLVM, no memory locations are in SSA form, which makes things
3655 very simple. This section describes how to read, write, allocate, and free
3656 memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003657
Misha Brukman9d0919f2003-11-08 01:05:38 +00003658</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003659
Chris Lattner00950542001-06-06 20:29:01 +00003660<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003661<div class="doc_subsubsection">
3662 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3663</div>
3664
Misha Brukman9d0919f2003-11-08 01:05:38 +00003665<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003666
Chris Lattner00950542001-06-06 20:29:01 +00003667<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003668<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003669 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003670</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003671
Chris Lattner00950542001-06-06 20:29:01 +00003672<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003673<p>The '<tt>malloc</tt>' instruction allocates memory from the system heap and
3674 returns a pointer to it. The object is always allocated in the generic
3675 address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003676
Chris Lattner00950542001-06-06 20:29:01 +00003677<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003678<p>The '<tt>malloc</tt>' instruction allocates
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003679 <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory from the operating
3680 system and returns a pointer of the appropriate type to the program. If
3681 "NumElements" is specified, it is the number of elements allocated, otherwise
3682 "NumElements" is defaulted to be one. If a constant alignment is specified,
3683 the value result of the allocation is guaranteed to be aligned to at least
3684 that boundary. If not specified, or if zero, the target can choose to align
3685 the allocation on any convenient boundary compatible with the type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003686
Misha Brukman9d0919f2003-11-08 01:05:38 +00003687<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003688
Chris Lattner00950542001-06-06 20:29:01 +00003689<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003690<p>Memory is allocated using the system "<tt>malloc</tt>" function, and a
3691 pointer is returned. The result of a zero byte allocation is undefined. The
3692 result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003693
Chris Lattner2cbdc452005-11-06 08:02:57 +00003694<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003695<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003696 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003697
Bill Wendlingaac388b2007-05-29 09:42:13 +00003698 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3699 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3700 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3701 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3702 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003703</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003704
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003705<p>Note that the code generator does not yet respect the alignment value.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003706
Misha Brukman9d0919f2003-11-08 01:05:38 +00003707</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003708
Chris Lattner00950542001-06-06 20:29:01 +00003709<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003710<div class="doc_subsubsection">
3711 <a name="i_free">'<tt>free</tt>' Instruction</a>
3712</div>
3713
Misha Brukman9d0919f2003-11-08 01:05:38 +00003714<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003715
Chris Lattner00950542001-06-06 20:29:01 +00003716<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003717<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003718 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003719</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003720
Chris Lattner00950542001-06-06 20:29:01 +00003721<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003722<p>The '<tt>free</tt>' instruction returns memory back to the unused memory heap
3723 to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003724
Chris Lattner00950542001-06-06 20:29:01 +00003725<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003726<p>'<tt>value</tt>' shall be a pointer value that points to a value that was
3727 allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003728
Chris Lattner00950542001-06-06 20:29:01 +00003729<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003730<p>Access to the memory pointed to by the pointer is no longer defined after
3731 this instruction executes. If the pointer is null, the operation is a
3732 noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003733
Chris Lattner00950542001-06-06 20:29:01 +00003734<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003735<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003736 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003737 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003738</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003739
Misha Brukman9d0919f2003-11-08 01:05:38 +00003740</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003741
Chris Lattner00950542001-06-06 20:29:01 +00003742<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003743<div class="doc_subsubsection">
3744 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3745</div>
3746
Misha Brukman9d0919f2003-11-08 01:05:38 +00003747<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003748
Chris Lattner00950542001-06-06 20:29:01 +00003749<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003750<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003751 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003752</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003753
Chris Lattner00950542001-06-06 20:29:01 +00003754<h5>Overview:</h5>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003755<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003756 currently executing function, to be automatically released when this function
3757 returns to its caller. The object is always allocated in the generic address
3758 space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003759
Chris Lattner00950542001-06-06 20:29:01 +00003760<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003761<p>The '<tt>alloca</tt>' instruction
3762 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
3763 runtime stack, returning a pointer of the appropriate type to the program.
3764 If "NumElements" is specified, it is the number of elements allocated,
3765 otherwise "NumElements" is defaulted to be one. If a constant alignment is
3766 specified, the value result of the allocation is guaranteed to be aligned to
3767 at least that boundary. If not specified, or if zero, the target can choose
3768 to align the allocation on any convenient boundary compatible with the
3769 type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003770
Misha Brukman9d0919f2003-11-08 01:05:38 +00003771<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003772
Chris Lattner00950542001-06-06 20:29:01 +00003773<h5>Semantics:</h5>
Bill Wendling871eb0a2009-05-08 20:49:29 +00003774<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003775 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
3776 memory is automatically released when the function returns. The
3777 '<tt>alloca</tt>' instruction is commonly used to represent automatic
3778 variables that must have an address available. When the function returns
3779 (either with the <tt><a href="#i_ret">ret</a></tt>
3780 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
3781 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003782
Chris Lattner00950542001-06-06 20:29:01 +00003783<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003784<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003785 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3786 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3787 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3788 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003789</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003790
Misha Brukman9d0919f2003-11-08 01:05:38 +00003791</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003792
Chris Lattner00950542001-06-06 20:29:01 +00003793<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003794<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3795Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003796
Misha Brukman9d0919f2003-11-08 01:05:38 +00003797<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003798
Chris Lattner2b7d3202002-05-06 03:03:22 +00003799<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003800<pre>
3801 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
3802 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
3803</pre>
3804
Chris Lattner2b7d3202002-05-06 03:03:22 +00003805<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003806<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003807
Chris Lattner2b7d3202002-05-06 03:03:22 +00003808<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003809<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
3810 from which to load. The pointer must point to
3811 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
3812 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
3813 number or order of execution of this <tt>load</tt> with other
3814 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3815 instructions. </p>
3816
3817<p>The optional constant "align" argument specifies the alignment of the
3818 operation (that is, the alignment of the memory address). A value of 0 or an
3819 omitted "align" argument means that the operation has the preferential
3820 alignment for the target. It is the responsibility of the code emitter to
3821 ensure that the alignment information is correct. Overestimating the
3822 alignment results in an undefined behavior. Underestimating the alignment may
3823 produce less efficient code. An alignment of 1 is always safe.</p>
3824
Chris Lattner2b7d3202002-05-06 03:03:22 +00003825<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003826<p>The location of memory pointed to is loaded. If the value being loaded is of
3827 scalar type then the number of bytes read does not exceed the minimum number
3828 of bytes needed to hold all bits of the type. For example, loading an
3829 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
3830 <tt>i20</tt> with a size that is not an integral number of bytes, the result
3831 is undefined if the value was not originally written using a store of the
3832 same type.</p>
3833
Chris Lattner2b7d3202002-05-06 03:03:22 +00003834<h5>Examples:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003835<pre>
3836 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
3837 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003838 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003839</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003840
Misha Brukman9d0919f2003-11-08 01:05:38 +00003841</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003842
Chris Lattner2b7d3202002-05-06 03:03:22 +00003843<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003844<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3845Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003846
Reid Spencer035ab572006-11-09 21:18:01 +00003847<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003848
Chris Lattner2b7d3202002-05-06 03:03:22 +00003849<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003850<pre>
3851 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003852 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003853</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003854
Chris Lattner2b7d3202002-05-06 03:03:22 +00003855<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003856<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003857
Chris Lattner2b7d3202002-05-06 03:03:22 +00003858<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003859<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
3860 and an address at which to store it. The type of the
3861 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
3862 the <a href="#t_firstclass">first class</a> type of the
3863 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked
3864 as <tt>volatile</tt>, then the optimizer is not allowed to modify the number
3865 or order of execution of this <tt>store</tt> with other
3866 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3867 instructions.</p>
3868
3869<p>The optional constant "align" argument specifies the alignment of the
3870 operation (that is, the alignment of the memory address). A value of 0 or an
3871 omitted "align" argument means that the operation has the preferential
3872 alignment for the target. It is the responsibility of the code emitter to
3873 ensure that the alignment information is correct. Overestimating the
3874 alignment results in an undefined behavior. Underestimating the alignment may
3875 produce less efficient code. An alignment of 1 is always safe.</p>
3876
Chris Lattner261efe92003-11-25 01:02:51 +00003877<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003878<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
3879 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
3880 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
3881 does not exceed the minimum number of bytes needed to hold all bits of the
3882 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
3883 writing a value of a type like <tt>i20</tt> with a size that is not an
3884 integral number of bytes, it is unspecified what happens to the extra bits
3885 that do not belong to the type, but they will typically be overwritten.</p>
3886
Chris Lattner2b7d3202002-05-06 03:03:22 +00003887<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003888<pre>
3889 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003890 store i32 3, i32* %ptr <i>; yields {void}</i>
3891 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003892</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003893
Reid Spencer47ce1792006-11-09 21:15:49 +00003894</div>
3895
Chris Lattner2b7d3202002-05-06 03:03:22 +00003896<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003897<div class="doc_subsubsection">
3898 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3899</div>
3900
Misha Brukman9d0919f2003-11-08 01:05:38 +00003901<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003902
Chris Lattner7faa8832002-04-14 06:13:44 +00003903<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003904<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003905 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohmandd8004d2009-07-27 21:53:46 +00003906 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003907</pre>
3908
Chris Lattner7faa8832002-04-14 06:13:44 +00003909<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003910<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
3911 subelement of an aggregate data structure. It performs address calculation
3912 only and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003913
Chris Lattner7faa8832002-04-14 06:13:44 +00003914<h5>Arguments:</h5>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003915<p>The first argument is always a pointer, and forms the basis of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003916 calculation. The remaining arguments are indices, that indicate which of the
3917 elements of the aggregate object are indexed. The interpretation of each
3918 index is dependent on the type being indexed into. The first index always
3919 indexes the pointer value given as the first argument, the second index
3920 indexes a value of the type pointed to (not necessarily the value directly
3921 pointed to, since the first index can be non-zero), etc. The first type
3922 indexed into must be a pointer value, subsequent types can be arrays, vectors
3923 and structs. Note that subsequent types being indexed into can never be
3924 pointers, since that would require loading the pointer before continuing
3925 calculation.</p>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003926
3927<p>The type of each index argument depends on the type it is indexing into.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003928 When indexing into a (packed) structure, only <tt>i32</tt> integer
3929 <b>constants</b> are allowed. When indexing into an array, pointer or
3930 vector, integers of any width are allowed (also non-constants).</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003931
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003932<p>For example, let's consider a C code fragment and how it gets compiled to
3933 LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003934
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003935<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003936<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003937struct RT {
3938 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003939 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003940 char C;
3941};
3942struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003943 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003944 double Y;
3945 struct RT Z;
3946};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003947
Chris Lattnercabc8462007-05-29 15:43:56 +00003948int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003949 return &amp;s[1].Z.B[5][13];
3950}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003951</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003952</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003953
Misha Brukman9d0919f2003-11-08 01:05:38 +00003954<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003955
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003956<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003957<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00003958%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3959%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003960
Dan Gohman4df605b2009-07-25 02:23:48 +00003961define i32* @foo(%ST* %s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003962entry:
3963 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3964 ret i32* %reg
3965}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003966</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003967</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003968
Chris Lattner7faa8832002-04-14 06:13:44 +00003969<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003970<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003971 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
3972 }</tt>' type, a structure. The second index indexes into the third element
3973 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3974 i8 }</tt>' type, another structure. The third index indexes into the second
3975 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
3976 array. The two dimensions of the array are subscripted into, yielding an
3977 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
3978 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003979
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003980<p>Note that it is perfectly legal to index partially through a structure,
3981 returning a pointer to an inner element. Because of this, the LLVM code for
3982 the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003983
3984<pre>
Dan Gohman4df605b2009-07-25 02:23:48 +00003985 define i32* @foo(%ST* %s) {
Reid Spencerca86e162006-12-31 07:07:53 +00003986 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003987 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3988 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003989 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3990 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3991 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003992 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003993</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003994
Dan Gohmandd8004d2009-07-27 21:53:46 +00003995<p>If the <tt>inbounds</tt> keyword is present, the result value of the
3996 <tt>getelementptr</tt> is undefined if the base pointer is not pointing
3997 into an allocated object, or if any of the addresses formed by successive
3998 addition of the offsets implied by the indices to the base address is
3999 outside of the allocated object into which the base pointer points.</p>
4000
4001<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4002 the base address with silently-wrapping two's complement arithmetic, and
4003 the result value of the <tt>getelementptr</tt> may be outside the object
4004 pointed to by the base pointer. The result value may not necessarily be
4005 used to access memory though, even if it happens to point into allocated
4006 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4007 section for more information.</p>
4008
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004009<p>The getelementptr instruction is often confusing. For some more insight into
4010 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner884a9702006-08-15 00:45:58 +00004011
Chris Lattner7faa8832002-04-14 06:13:44 +00004012<h5>Example:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004013<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004014 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004015 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4016 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004017 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004018 <i>; yields i8*:eptr</i>
4019 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta9f805c22009-04-25 07:27:44 +00004020 <i>; yields i32*:iptr</i>
Sanjiv Gupta16ffa802009-04-24 16:38:13 +00004021 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004022</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004023
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004024</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00004025
Chris Lattner00950542001-06-06 20:29:01 +00004026<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00004027<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004028</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004029
Misha Brukman9d0919f2003-11-08 01:05:38 +00004030<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004031
Reid Spencer2fd21e62006-11-08 01:18:52 +00004032<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004033 which all take a single operand and a type. They perform various bit
4034 conversions on the operand.</p>
4035
Misha Brukman9d0919f2003-11-08 01:05:38 +00004036</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004037
Chris Lattner6536cfe2002-05-06 22:08:29 +00004038<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00004039<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004040 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4041</div>
4042<div class="doc_text">
4043
4044<h5>Syntax:</h5>
4045<pre>
4046 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4047</pre>
4048
4049<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004050<p>The '<tt>trunc</tt>' instruction truncates its operand to the
4051 type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004052
4053<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004054<p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
4055 be an <a href="#t_integer">integer</a> type, and a type that specifies the
4056 size and type of the result, which must be
4057 an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must
4058 be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
4059 allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004060
4061<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004062<p>The '<tt>trunc</tt>' instruction truncates the high order bits
4063 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4064 source size must be larger than the destination size, <tt>trunc</tt> cannot
4065 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004066
4067<h5>Example:</h5>
4068<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004069 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00004070 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
4071 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004072</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004073
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004074</div>
4075
4076<!-- _______________________________________________________________________ -->
4077<div class="doc_subsubsection">
4078 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4079</div>
4080<div class="doc_text">
4081
4082<h5>Syntax:</h5>
4083<pre>
4084 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4085</pre>
4086
4087<h5>Overview:</h5>
4088<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004089 <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004090
4091
4092<h5>Arguments:</h5>
4093<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004094 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4095 also be of <a href="#t_integer">integer</a> type. The bit size of the
4096 <tt>value</tt> must be smaller than the bit size of the destination type,
4097 <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004098
4099<h5>Semantics:</h5>
4100<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004101 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004102
Reid Spencerb5929522007-01-12 15:46:11 +00004103<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004104
4105<h5>Example:</h5>
4106<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004107 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00004108 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004109</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004110
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004111</div>
4112
4113<!-- _______________________________________________________________________ -->
4114<div class="doc_subsubsection">
4115 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4116</div>
4117<div class="doc_text">
4118
4119<h5>Syntax:</h5>
4120<pre>
4121 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4122</pre>
4123
4124<h5>Overview:</h5>
4125<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4126
4127<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004128<p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of
4129 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4130 also be of <a href="#t_integer">integer</a> type. The bit size of the
4131 <tt>value</tt> must be smaller than the bit size of the destination type,
4132 <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004133
4134<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004135<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4136 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4137 of the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004138
Reid Spencerc78f3372007-01-12 03:35:51 +00004139<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004140
4141<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004142<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004143 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00004144 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004145</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004146
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004147</div>
4148
4149<!-- _______________________________________________________________________ -->
4150<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00004151 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4152</div>
4153
4154<div class="doc_text">
4155
4156<h5>Syntax:</h5>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004157<pre>
4158 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4159</pre>
4160
4161<h5>Overview:</h5>
4162<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004163 <tt>ty2</tt>.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004164
4165<h5>Arguments:</h5>
4166<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004167 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4168 to cast it to. The size of <tt>value</tt> must be larger than the size of
4169 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4170 <i>no-op cast</i>.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004171
4172<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004173<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4174 <a href="#t_floating">floating point</a> type to a smaller
4175 <a href="#t_floating">floating point</a> type. If the value cannot fit
4176 within the destination type, <tt>ty2</tt>, then the results are
4177 undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004178
4179<h5>Example:</h5>
4180<pre>
4181 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4182 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4183</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004184
Reid Spencer3fa91b02006-11-09 21:48:10 +00004185</div>
4186
4187<!-- _______________________________________________________________________ -->
4188<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004189 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4190</div>
4191<div class="doc_text">
4192
4193<h5>Syntax:</h5>
4194<pre>
4195 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4196</pre>
4197
4198<h5>Overview:</h5>
4199<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004200 floating point value.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004201
4202<h5>Arguments:</h5>
4203<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004204 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4205 a <a href="#t_floating">floating point</a> type to cast it to. The source
4206 type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004207
4208<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004209<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004210 <a href="#t_floating">floating point</a> type to a larger
4211 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4212 used to make a <i>no-op cast</i> because it always changes bits. Use
4213 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004214
4215<h5>Example:</h5>
4216<pre>
4217 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4218 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4219</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004220
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004221</div>
4222
4223<!-- _______________________________________________________________________ -->
4224<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00004225 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004226</div>
4227<div class="doc_text">
4228
4229<h5>Syntax:</h5>
4230<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004231 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004232</pre>
4233
4234<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004235<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004236 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004237
4238<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004239<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4240 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4241 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4242 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4243 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004244
4245<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004246<p>The '<tt>fptoui</tt>' instruction converts its
4247 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4248 towards zero) unsigned integer value. If the value cannot fit
4249 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004250
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004251<h5>Example:</h5>
4252<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004253 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004254 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004255 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004256</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004257
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004258</div>
4259
4260<!-- _______________________________________________________________________ -->
4261<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004262 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004263</div>
4264<div class="doc_text">
4265
4266<h5>Syntax:</h5>
4267<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004268 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004269</pre>
4270
4271<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004272<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004273 <a href="#t_floating">floating point</a> <tt>value</tt> to
4274 type <tt>ty2</tt>.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004275
Chris Lattner6536cfe2002-05-06 22:08:29 +00004276<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004277<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4278 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4279 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4280 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4281 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004282
Chris Lattner6536cfe2002-05-06 22:08:29 +00004283<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004284<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004285 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4286 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4287 the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004288
Chris Lattner33ba0d92001-07-09 00:26:23 +00004289<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004290<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004291 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004292 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004293 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004294</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004295
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004296</div>
4297
4298<!-- _______________________________________________________________________ -->
4299<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004300 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004301</div>
4302<div class="doc_text">
4303
4304<h5>Syntax:</h5>
4305<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004306 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004307</pre>
4308
4309<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004310<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004311 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004312
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004313<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004314<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004315 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4316 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4317 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4318 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004319
4320<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004321<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004322 integer quantity and converts it to the corresponding floating point
4323 value. If the value cannot fit in the floating point value, the results are
4324 undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004325
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004326<h5>Example:</h5>
4327<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004328 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004329 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004330</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004331
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004332</div>
4333
4334<!-- _______________________________________________________________________ -->
4335<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004336 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004337</div>
4338<div class="doc_text">
4339
4340<h5>Syntax:</h5>
4341<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004342 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004343</pre>
4344
4345<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004346<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4347 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004348
4349<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004350<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004351 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4352 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4353 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4354 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004355
4356<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004357<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4358 quantity and converts it to the corresponding floating point value. If the
4359 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004360
4361<h5>Example:</h5>
4362<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004363 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004364 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004365</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004366
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004367</div>
4368
4369<!-- _______________________________________________________________________ -->
4370<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00004371 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4372</div>
4373<div class="doc_text">
4374
4375<h5>Syntax:</h5>
4376<pre>
4377 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4378</pre>
4379
4380<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004381<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4382 the integer type <tt>ty2</tt>.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004383
4384<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004385<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4386 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4387 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004388
4389<h5>Semantics:</h5>
4390<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004391 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4392 truncating or zero extending that value to the size of the integer type. If
4393 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4394 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4395 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4396 change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004397
4398<h5>Example:</h5>
4399<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004400 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4401 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004402</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004403
Reid Spencer72679252006-11-11 21:00:47 +00004404</div>
4405
4406<!-- _______________________________________________________________________ -->
4407<div class="doc_subsubsection">
4408 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4409</div>
4410<div class="doc_text">
4411
4412<h5>Syntax:</h5>
4413<pre>
4414 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4415</pre>
4416
4417<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004418<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4419 pointer type, <tt>ty2</tt>.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004420
4421<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00004422<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004423 value to cast, and a type to cast it to, which must be a
4424 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004425
4426<h5>Semantics:</h5>
4427<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004428 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4429 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4430 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
4431 than the size of a pointer then a zero extension is done. If they are the
4432 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencer72679252006-11-11 21:00:47 +00004433
4434<h5>Example:</h5>
4435<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004436 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4437 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4438 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004439</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004440
Reid Spencer72679252006-11-11 21:00:47 +00004441</div>
4442
4443<!-- _______________________________________________________________________ -->
4444<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00004445 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004446</div>
4447<div class="doc_text">
4448
4449<h5>Syntax:</h5>
4450<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004451 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004452</pre>
4453
4454<h5>Overview:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004455<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004456 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004457
4458<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004459<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
4460 non-aggregate first class value, and a type to cast it to, which must also be
4461 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
4462 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
4463 identical. If the source type is a pointer, the destination type must also be
4464 a pointer. This instruction supports bitwise conversion of vectors to
4465 integers and to vectors of other types (as long as they have the same
4466 size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004467
4468<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004469<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004470 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4471 this conversion. The conversion is done as if the <tt>value</tt> had been
4472 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
4473 be converted to other pointer types with this instruction. To convert
4474 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
4475 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004476
4477<h5>Example:</h5>
4478<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004479 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004480 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004481 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00004482</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004483
Misha Brukman9d0919f2003-11-08 01:05:38 +00004484</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004485
Reid Spencer2fd21e62006-11-08 01:18:52 +00004486<!-- ======================================================================= -->
4487<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004488
Reid Spencer2fd21e62006-11-08 01:18:52 +00004489<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004490
4491<p>The instructions in this category are the "miscellaneous" instructions, which
4492 defy better classification.</p>
4493
Reid Spencer2fd21e62006-11-08 01:18:52 +00004494</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004495
4496<!-- _______________________________________________________________________ -->
4497<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4498</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004499
Reid Spencerf3a70a62006-11-18 21:50:54 +00004500<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004501
Reid Spencerf3a70a62006-11-18 21:50:54 +00004502<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004503<pre>
4504 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004505</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004506
Reid Spencerf3a70a62006-11-18 21:50:54 +00004507<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004508<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
4509 boolean values based on comparison of its two integer, integer vector, or
4510 pointer operands.</p>
4511
Reid Spencerf3a70a62006-11-18 21:50:54 +00004512<h5>Arguments:</h5>
4513<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004514 the condition code indicating the kind of comparison to perform. It is not a
4515 value, just a keyword. The possible condition code are:</p>
4516
Reid Spencerf3a70a62006-11-18 21:50:54 +00004517<ol>
4518 <li><tt>eq</tt>: equal</li>
4519 <li><tt>ne</tt>: not equal </li>
4520 <li><tt>ugt</tt>: unsigned greater than</li>
4521 <li><tt>uge</tt>: unsigned greater or equal</li>
4522 <li><tt>ult</tt>: unsigned less than</li>
4523 <li><tt>ule</tt>: unsigned less or equal</li>
4524 <li><tt>sgt</tt>: signed greater than</li>
4525 <li><tt>sge</tt>: signed greater or equal</li>
4526 <li><tt>slt</tt>: signed less than</li>
4527 <li><tt>sle</tt>: signed less or equal</li>
4528</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004529
Chris Lattner3b19d652007-01-15 01:54:13 +00004530<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004531 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
4532 typed. They must also be identical types.</p>
4533
Reid Spencerf3a70a62006-11-18 21:50:54 +00004534<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004535<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
4536 condition code given as <tt>cond</tt>. The comparison performed always yields
4537 either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt>
4538 result, as follows:</p>
4539
Reid Spencerf3a70a62006-11-18 21:50:54 +00004540<ol>
4541 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004542 <tt>false</tt> otherwise. No sign interpretation is necessary or
4543 performed.</li>
4544
Reid Spencerf3a70a62006-11-18 21:50:54 +00004545 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004546 <tt>false</tt> otherwise. No sign interpretation is necessary or
4547 performed.</li>
4548
Reid Spencerf3a70a62006-11-18 21:50:54 +00004549 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004550 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4551
Reid Spencerf3a70a62006-11-18 21:50:54 +00004552 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004553 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4554 to <tt>op2</tt>.</li>
4555
Reid Spencerf3a70a62006-11-18 21:50:54 +00004556 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004557 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4558
Reid Spencerf3a70a62006-11-18 21:50:54 +00004559 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004560 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4561
Reid Spencerf3a70a62006-11-18 21:50:54 +00004562 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004563 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4564
Reid Spencerf3a70a62006-11-18 21:50:54 +00004565 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004566 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4567 to <tt>op2</tt>.</li>
4568
Reid Spencerf3a70a62006-11-18 21:50:54 +00004569 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004570 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4571
Reid Spencerf3a70a62006-11-18 21:50:54 +00004572 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004573 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004574</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004575
Reid Spencerf3a70a62006-11-18 21:50:54 +00004576<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004577 values are compared as if they were integers.</p>
4578
4579<p>If the operands are integer vectors, then they are compared element by
4580 element. The result is an <tt>i1</tt> vector with the same number of elements
4581 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004582
4583<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004584<pre>
4585 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004586 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4587 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4588 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4589 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4590 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004591</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004592
4593<p>Note that the code generator does not yet support vector types with
4594 the <tt>icmp</tt> instruction.</p>
4595
Reid Spencerf3a70a62006-11-18 21:50:54 +00004596</div>
4597
4598<!-- _______________________________________________________________________ -->
4599<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4600</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004601
Reid Spencerf3a70a62006-11-18 21:50:54 +00004602<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004603
Reid Spencerf3a70a62006-11-18 21:50:54 +00004604<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004605<pre>
4606 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004607</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004608
Reid Spencerf3a70a62006-11-18 21:50:54 +00004609<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004610<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
4611 values based on comparison of its operands.</p>
4612
4613<p>If the operands are floating point scalars, then the result type is a boolean
4614(<a href="#t_primitive"><tt>i1</tt></a>).</p>
4615
4616<p>If the operands are floating point vectors, then the result type is a vector
4617 of boolean with the same number of elements as the operands being
4618 compared.</p>
4619
Reid Spencerf3a70a62006-11-18 21:50:54 +00004620<h5>Arguments:</h5>
4621<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004622 the condition code indicating the kind of comparison to perform. It is not a
4623 value, just a keyword. The possible condition code are:</p>
4624
Reid Spencerf3a70a62006-11-18 21:50:54 +00004625<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004626 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004627 <li><tt>oeq</tt>: ordered and equal</li>
4628 <li><tt>ogt</tt>: ordered and greater than </li>
4629 <li><tt>oge</tt>: ordered and greater than or equal</li>
4630 <li><tt>olt</tt>: ordered and less than </li>
4631 <li><tt>ole</tt>: ordered and less than or equal</li>
4632 <li><tt>one</tt>: ordered and not equal</li>
4633 <li><tt>ord</tt>: ordered (no nans)</li>
4634 <li><tt>ueq</tt>: unordered or equal</li>
4635 <li><tt>ugt</tt>: unordered or greater than </li>
4636 <li><tt>uge</tt>: unordered or greater than or equal</li>
4637 <li><tt>ult</tt>: unordered or less than </li>
4638 <li><tt>ule</tt>: unordered or less than or equal</li>
4639 <li><tt>une</tt>: unordered or not equal</li>
4640 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004641 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004642</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004643
Jeff Cohenb627eab2007-04-29 01:07:00 +00004644<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004645 <i>unordered</i> means that either operand may be a QNAN.</p>
4646
4647<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
4648 a <a href="#t_floating">floating point</a> type or
4649 a <a href="#t_vector">vector</a> of floating point type. They must have
4650 identical types.</p>
4651
Reid Spencerf3a70a62006-11-18 21:50:54 +00004652<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004653<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004654 according to the condition code given as <tt>cond</tt>. If the operands are
4655 vectors, then the vectors are compared element by element. Each comparison
4656 performed always yields an <a href="#t_primitive">i1</a> result, as
4657 follows:</p>
4658
Reid Spencerf3a70a62006-11-18 21:50:54 +00004659<ol>
4660 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004661
Reid Spencerb7f26282006-11-19 03:00:14 +00004662 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004663 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4664
Reid Spencerb7f26282006-11-19 03:00:14 +00004665 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004666 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
4667
Reid Spencerb7f26282006-11-19 03:00:14 +00004668 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004669 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4670
Reid Spencerb7f26282006-11-19 03:00:14 +00004671 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004672 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4673
Reid Spencerb7f26282006-11-19 03:00:14 +00004674 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004675 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4676
Reid Spencerb7f26282006-11-19 03:00:14 +00004677 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004678 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4679
Reid Spencerb7f26282006-11-19 03:00:14 +00004680 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004681
Reid Spencerb7f26282006-11-19 03:00:14 +00004682 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004683 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4684
Reid Spencerb7f26282006-11-19 03:00:14 +00004685 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004686 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4687
Reid Spencerb7f26282006-11-19 03:00:14 +00004688 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004689 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4690
Reid Spencerb7f26282006-11-19 03:00:14 +00004691 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004692 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4693
Reid Spencerb7f26282006-11-19 03:00:14 +00004694 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004695 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4696
Reid Spencerb7f26282006-11-19 03:00:14 +00004697 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004698 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4699
Reid Spencerb7f26282006-11-19 03:00:14 +00004700 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004701
Reid Spencerf3a70a62006-11-18 21:50:54 +00004702 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4703</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004704
4705<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004706<pre>
4707 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004708 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4709 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4710 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004711</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004712
4713<p>Note that the code generator does not yet support vector types with
4714 the <tt>fcmp</tt> instruction.</p>
4715
Reid Spencerf3a70a62006-11-18 21:50:54 +00004716</div>
4717
Reid Spencer2fd21e62006-11-08 01:18:52 +00004718<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004719<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00004720 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4721</div>
4722
Reid Spencer2fd21e62006-11-08 01:18:52 +00004723<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004724
Reid Spencer2fd21e62006-11-08 01:18:52 +00004725<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004726<pre>
4727 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
4728</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004729
Reid Spencer2fd21e62006-11-08 01:18:52 +00004730<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004731<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
4732 SSA graph representing the function.</p>
4733
Reid Spencer2fd21e62006-11-08 01:18:52 +00004734<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004735<p>The type of the incoming values is specified with the first type field. After
4736 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
4737 one pair for each predecessor basic block of the current block. Only values
4738 of <a href="#t_firstclass">first class</a> type may be used as the value
4739 arguments to the PHI node. Only labels may be used as the label
4740 arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004741
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004742<p>There must be no non-phi instructions between the start of a basic block and
4743 the PHI instructions: i.e. PHI instructions must be first in a basic
4744 block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004745
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004746<p>For the purposes of the SSA form, the use of each incoming value is deemed to
4747 occur on the edge from the corresponding predecessor block to the current
4748 block (but after any definition of an '<tt>invoke</tt>' instruction's return
4749 value on the same edge).</p>
Jay Foadd2449092009-06-03 10:20:10 +00004750
Reid Spencer2fd21e62006-11-08 01:18:52 +00004751<h5>Semantics:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004752<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004753 specified by the pair corresponding to the predecessor basic block that
4754 executed just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004755
Reid Spencer2fd21e62006-11-08 01:18:52 +00004756<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004757<pre>
4758Loop: ; Infinite loop that counts from 0 on up...
4759 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4760 %nextindvar = add i32 %indvar, 1
4761 br label %Loop
4762</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004763
Reid Spencer2fd21e62006-11-08 01:18:52 +00004764</div>
4765
Chris Lattnercc37aae2004-03-12 05:50:16 +00004766<!-- _______________________________________________________________________ -->
4767<div class="doc_subsubsection">
4768 <a name="i_select">'<tt>select</tt>' Instruction</a>
4769</div>
4770
4771<div class="doc_text">
4772
4773<h5>Syntax:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004774<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004775 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4776
Dan Gohman0e451ce2008-10-14 16:51:45 +00004777 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004778</pre>
4779
4780<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004781<p>The '<tt>select</tt>' instruction is used to choose one value based on a
4782 condition, without branching.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004783
4784
4785<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004786<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
4787 values indicating the condition, and two values of the
4788 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
4789 vectors and the condition is a scalar, then entire vectors are selected, not
4790 individual elements.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004791
4792<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004793<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
4794 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004795
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004796<p>If the condition is a vector of i1, then the value arguments must be vectors
4797 of the same size, and the selection is done element by element.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004798
4799<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004800<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004801 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004802</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004803
4804<p>Note that the code generator does not yet support conditions
4805 with vector type.</p>
4806
Chris Lattnercc37aae2004-03-12 05:50:16 +00004807</div>
4808
Robert Bocchino05ccd702006-01-15 20:48:27 +00004809<!-- _______________________________________________________________________ -->
4810<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004811 <a name="i_call">'<tt>call</tt>' Instruction</a>
4812</div>
4813
Misha Brukman9d0919f2003-11-08 01:05:38 +00004814<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004815
Chris Lattner00950542001-06-06 20:29:01 +00004816<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004817<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004818 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004819</pre>
4820
Chris Lattner00950542001-06-06 20:29:01 +00004821<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004822<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004823
Chris Lattner00950542001-06-06 20:29:01 +00004824<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004825<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004826
Chris Lattner6536cfe2002-05-06 22:08:29 +00004827<ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004828 <li>The optional "tail" marker indicates whether the callee function accesses
4829 any allocas or varargs in the caller. If the "tail" marker is present,
4830 the function call is eligible for tail call optimization. Note that calls
4831 may be marked "tail" even if they do not occur before
4832 a <a href="#i_ret"><tt>ret</tt></a> instruction.</li>
Devang Patelf642f472008-10-06 18:50:38 +00004833
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004834 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
4835 convention</a> the call should use. If none is specified, the call
4836 defaults to using C calling conventions.</li>
Devang Patelf642f472008-10-06 18:50:38 +00004837
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004838 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4839 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
4840 '<tt>inreg</tt>' attributes are valid here.</li>
4841
4842 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
4843 type of the return value. Functions that return no value are marked
4844 <tt><a href="#t_void">void</a></tt>.</li>
4845
4846 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
4847 being invoked. The argument types must match the types implied by this
4848 signature. This type can be omitted if the function is not varargs and if
4849 the function type does not return a pointer to a function.</li>
4850
4851 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4852 be invoked. In most cases, this is a direct function invocation, but
4853 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
4854 to function value.</li>
4855
4856 <li>'<tt>function args</tt>': argument list whose types match the function
4857 signature argument types. All arguments must be of
4858 <a href="#t_firstclass">first class</a> type. If the function signature
4859 indicates the function accepts a variable number of arguments, the extra
4860 arguments can be specified.</li>
4861
4862 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
4863 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4864 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004865</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004866
Chris Lattner00950542001-06-06 20:29:01 +00004867<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004868<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
4869 a specified function, with its incoming arguments bound to the specified
4870 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
4871 function, control flow continues with the instruction after the function
4872 call, and the return value of the function is bound to the result
4873 argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004874
Chris Lattner00950542001-06-06 20:29:01 +00004875<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004876<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004877 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004878 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4879 %X = tail call i32 @foo() <i>; yields i32</i>
4880 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4881 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004882
4883 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004884 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004885 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4886 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004887 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004888 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004889</pre>
4890
Misha Brukman9d0919f2003-11-08 01:05:38 +00004891</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004892
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004893<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004894<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004895 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004896</div>
4897
Misha Brukman9d0919f2003-11-08 01:05:38 +00004898<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004899
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004900<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004901<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004902 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004903</pre>
4904
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004905<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004906<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004907 the "variable argument" area of a function call. It is used to implement the
4908 <tt>va_arg</tt> macro in C.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004909
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004910<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004911<p>This instruction takes a <tt>va_list*</tt> value and the type of the
4912 argument. It returns a value of the specified argument type and increments
4913 the <tt>va_list</tt> to point to the next argument. The actual type
4914 of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004915
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004916<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004917<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
4918 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
4919 to the next argument. For more information, see the variable argument
4920 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004921
4922<p>It is legal for this instruction to be called in a function which does not
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004923 take a variable number of arguments, for example, the <tt>vfprintf</tt>
4924 function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004925
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004926<p><tt>va_arg</tt> is an LLVM instruction instead of
4927 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
4928 argument.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004929
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004930<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004931<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4932
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004933<p>Note that the code generator does not yet fully support va_arg on many
4934 targets. Also, it does not currently support va_arg with aggregate types on
4935 any target.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00004936
Misha Brukman9d0919f2003-11-08 01:05:38 +00004937</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004938
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004939<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004940<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4941<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004942
Misha Brukman9d0919f2003-11-08 01:05:38 +00004943<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004944
4945<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004946 well known names and semantics and are required to follow certain
4947 restrictions. Overall, these intrinsics represent an extension mechanism for
4948 the LLVM language that does not require changing all of the transformations
4949 in LLVM when adding to the language (or the bitcode reader/writer, the
4950 parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004951
John Criswellfc6b8952005-05-16 16:17:45 +00004952<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004953 prefix is reserved in LLVM for intrinsic names; thus, function names may not
4954 begin with this prefix. Intrinsic functions must always be external
4955 functions: you cannot define the body of intrinsic functions. Intrinsic
4956 functions may only be used in call or invoke instructions: it is illegal to
4957 take the address of an intrinsic function. Additionally, because intrinsic
4958 functions are part of the LLVM language, it is required if any are added that
4959 they be documented here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004960
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004961<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
4962 family of functions that perform the same operation but on different data
4963 types. Because LLVM can represent over 8 million different integer types,
4964 overloading is used commonly to allow an intrinsic function to operate on any
4965 integer type. One or more of the argument types or the result type can be
4966 overloaded to accept any integer type. Argument types may also be defined as
4967 exactly matching a previous argument's type or the result type. This allows
4968 an intrinsic function which accepts multiple arguments, but needs all of them
4969 to be of the same type, to only be overloaded with respect to a single
4970 argument or the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004971
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004972<p>Overloaded intrinsics will have the names of its overloaded argument types
4973 encoded into its function name, each preceded by a period. Only those types
4974 which are overloaded result in a name suffix. Arguments whose type is matched
4975 against another type do not. For example, the <tt>llvm.ctpop</tt> function
4976 can take an integer of any width and returns an integer of exactly the same
4977 integer width. This leads to a family of functions such as
4978 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
4979 %val)</tt>. Only one type, the return type, is overloaded, and only one type
4980 suffix is required. Because the argument's type is matched against the return
4981 type, it does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004982
4983<p>To learn how to add an intrinsic function, please see the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004984 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004985
Misha Brukman9d0919f2003-11-08 01:05:38 +00004986</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004987
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004988<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004989<div class="doc_subsection">
4990 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4991</div>
4992
Misha Brukman9d0919f2003-11-08 01:05:38 +00004993<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004994
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004995<p>Variable argument support is defined in LLVM with
4996 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
4997 intrinsic functions. These functions are related to the similarly named
4998 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004999
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005000<p>All of these functions operate on arguments that use a target-specific value
5001 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5002 not define what this type is, so all transformations should be prepared to
5003 handle these functions regardless of the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005004
Chris Lattner374ab302006-05-15 17:26:46 +00005005<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005006 instruction and the variable argument handling intrinsic functions are
5007 used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005008
Bill Wendling2f7a8b02007-05-29 09:04:49 +00005009<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005010<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005011define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00005012 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00005013 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00005014 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005015 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005016
5017 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00005018 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00005019
5020 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00005021 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00005022 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00005023 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005024 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005025
5026 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005027 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00005028 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00005029}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005030
5031declare void @llvm.va_start(i8*)
5032declare void @llvm.va_copy(i8*, i8*)
5033declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005034</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005035</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005036
Bill Wendling2f7a8b02007-05-29 09:04:49 +00005037</div>
5038
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005039<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005040<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005041 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00005042</div>
5043
5044
Misha Brukman9d0919f2003-11-08 01:05:38 +00005045<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005046
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005047<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005048<pre>
5049 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5050</pre>
5051
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005052<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005053<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5054 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005055
5056<h5>Arguments:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005057<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005058
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005059<h5>Semantics:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005060<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005061 macro available in C. In a target-dependent way, it initializes
5062 the <tt>va_list</tt> element to which the argument points, so that the next
5063 call to <tt>va_arg</tt> will produce the first variable argument passed to
5064 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5065 need to know the last argument of the function as the compiler can figure
5066 that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005067
Misha Brukman9d0919f2003-11-08 01:05:38 +00005068</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005069
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005070<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005071<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005072 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00005073</div>
5074
Misha Brukman9d0919f2003-11-08 01:05:38 +00005075<div class="doc_text">
Chris Lattnerb75137d2007-01-08 07:55:15 +00005076
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005077<h5>Syntax:</h5>
5078<pre>
5079 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5080</pre>
5081
5082<h5>Overview:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005083<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005084 which has been initialized previously
5085 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5086 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005087
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005088<h5>Arguments:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005089<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005090
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005091<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005092<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005093 macro available in C. In a target-dependent way, it destroys
5094 the <tt>va_list</tt> element to which the argument points. Calls
5095 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5096 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5097 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005098
Misha Brukman9d0919f2003-11-08 01:05:38 +00005099</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005100
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005101<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005102<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005103 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00005104</div>
5105
Misha Brukman9d0919f2003-11-08 01:05:38 +00005106<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00005107
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005108<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005109<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005110 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00005111</pre>
5112
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005113<h5>Overview:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005114<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005115 from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005116
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005117<h5>Arguments:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005118<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005119 The second argument is a pointer to a <tt>va_list</tt> element to copy
5120 from.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005121
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005122<h5>Semantics:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005123<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005124 macro available in C. In a target-dependent way, it copies the
5125 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5126 element. This intrinsic is necessary because
5127 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5128 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005129
Misha Brukman9d0919f2003-11-08 01:05:38 +00005130</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005131
Chris Lattner33aec9e2004-02-12 17:01:32 +00005132<!-- ======================================================================= -->
5133<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00005134 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5135</div>
5136
5137<div class="doc_text">
5138
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005139<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00005140Collection</a> (GC) requires the implementation and generation of these
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005141intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5142roots on the stack</a>, as well as garbage collector implementations that
5143require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5144barriers. Front-ends for type-safe garbage collected languages should generate
5145these intrinsics to make use of the LLVM garbage collectors. For more details,
5146see <a href="GarbageCollection.html">Accurate Garbage Collection with
5147LLVM</a>.</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00005148
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005149<p>The garbage collection intrinsics only operate on objects in the generic
5150 address space (address space zero).</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00005151
Chris Lattnerd7923912004-05-23 21:06:01 +00005152</div>
5153
5154<!-- _______________________________________________________________________ -->
5155<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005156 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005157</div>
5158
5159<div class="doc_text">
5160
5161<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005162<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005163 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00005164</pre>
5165
5166<h5>Overview:</h5>
John Criswell9e2485c2004-12-10 15:51:16 +00005167<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005168 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005169
5170<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005171<p>The first argument specifies the address of a stack object that contains the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005172 root pointer. The second pointer (which must be either a constant or a
5173 global value address) contains the meta-data to be associated with the
5174 root.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005175
5176<h5>Semantics:</h5>
Chris Lattner05d67092008-04-24 05:59:56 +00005177<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005178 location. At compile-time, the code generator generates information to allow
5179 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5180 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5181 algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005182
5183</div>
5184
Chris Lattnerd7923912004-05-23 21:06:01 +00005185<!-- _______________________________________________________________________ -->
5186<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005187 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005188</div>
5189
5190<div class="doc_text">
5191
5192<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005193<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005194 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00005195</pre>
5196
5197<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005198<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005199 locations, allowing garbage collector implementations that require read
5200 barriers.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005201
5202<h5>Arguments:</h5>
Chris Lattner80626e92006-03-14 20:02:51 +00005203<p>The second argument is the address to read from, which should be an address
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005204 allocated from the garbage collector. The first object is a pointer to the
5205 start of the referenced object, if needed by the language runtime (otherwise
5206 null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005207
5208<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005209<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005210 instruction, but may be replaced with substantially more complex code by the
5211 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5212 may only be used in a function which <a href="#gc">specifies a GC
5213 algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005214
5215</div>
5216
Chris Lattnerd7923912004-05-23 21:06:01 +00005217<!-- _______________________________________________________________________ -->
5218<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005219 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005220</div>
5221
5222<div class="doc_text">
5223
5224<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005225<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005226 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00005227</pre>
5228
5229<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005230<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005231 locations, allowing garbage collector implementations that require write
5232 barriers (such as generational or reference counting collectors).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005233
5234<h5>Arguments:</h5>
Chris Lattner80626e92006-03-14 20:02:51 +00005235<p>The first argument is the reference to store, the second is the start of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005236 object to store it to, and the third is the address of the field of Obj to
5237 store to. If the runtime does not require a pointer to the object, Obj may
5238 be null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005239
5240<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005241<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005242 instruction, but may be replaced with substantially more complex code by the
5243 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5244 may only be used in a function which <a href="#gc">specifies a GC
5245 algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005246
5247</div>
5248
Chris Lattnerd7923912004-05-23 21:06:01 +00005249<!-- ======================================================================= -->
5250<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00005251 <a name="int_codegen">Code Generator Intrinsics</a>
5252</div>
5253
5254<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005255
5256<p>These intrinsics are provided by LLVM to expose special features that may
5257 only be implemented with code generator support.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005258
5259</div>
5260
5261<!-- _______________________________________________________________________ -->
5262<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005263 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005264</div>
5265
5266<div class="doc_text">
5267
5268<h5>Syntax:</h5>
5269<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005270 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005271</pre>
5272
5273<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005274<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5275 target-specific value indicating the return address of the current function
5276 or one of its callers.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005277
5278<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005279<p>The argument to this intrinsic indicates which function to return the address
5280 for. Zero indicates the calling function, one indicates its caller, etc.
5281 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005282
5283<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005284<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5285 indicating the return address of the specified call frame, or zero if it
5286 cannot be identified. The value returned by this intrinsic is likely to be
5287 incorrect or 0 for arguments other than zero, so it should only be used for
5288 debugging purposes.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005289
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005290<p>Note that calling this intrinsic does not prevent function inlining or other
5291 aggressive transformations, so the value returned may not be that of the
5292 obvious source-language caller.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005293
Chris Lattner10610642004-02-14 04:08:35 +00005294</div>
5295
Chris Lattner10610642004-02-14 04:08:35 +00005296<!-- _______________________________________________________________________ -->
5297<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005298 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005299</div>
5300
5301<div class="doc_text">
5302
5303<h5>Syntax:</h5>
5304<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005305 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005306</pre>
5307
5308<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005309<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5310 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005311
5312<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005313<p>The argument to this intrinsic indicates which function to return the frame
5314 pointer for. Zero indicates the calling function, one indicates its caller,
5315 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005316
5317<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005318<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5319 indicating the frame address of the specified call frame, or zero if it
5320 cannot be identified. The value returned by this intrinsic is likely to be
5321 incorrect or 0 for arguments other than zero, so it should only be used for
5322 debugging purposes.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005323
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005324<p>Note that calling this intrinsic does not prevent function inlining or other
5325 aggressive transformations, so the value returned may not be that of the
5326 obvious source-language caller.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005327
Chris Lattner10610642004-02-14 04:08:35 +00005328</div>
5329
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005330<!-- _______________________________________________________________________ -->
5331<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005332 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005333</div>
5334
5335<div class="doc_text">
5336
5337<h5>Syntax:</h5>
5338<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005339 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00005340</pre>
5341
5342<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005343<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5344 of the function stack, for use
5345 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5346 useful for implementing language features like scoped automatic variable
5347 sized arrays in C99.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00005348
5349<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005350<p>This intrinsic returns a opaque pointer value that can be passed
5351 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5352 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5353 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5354 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5355 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5356 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00005357
5358</div>
5359
5360<!-- _______________________________________________________________________ -->
5361<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005362 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005363</div>
5364
5365<div class="doc_text">
5366
5367<h5>Syntax:</h5>
5368<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005369 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005370</pre>
5371
5372<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005373<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5374 the function stack to the state it was in when the
5375 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5376 executed. This is useful for implementing language features like scoped
5377 automatic variable sized arrays in C99.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00005378
5379<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005380<p>See the description
5381 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00005382
5383</div>
5384
Chris Lattner57e1f392006-01-13 02:03:13 +00005385<!-- _______________________________________________________________________ -->
5386<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005387 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005388</div>
5389
5390<div class="doc_text">
5391
5392<h5>Syntax:</h5>
5393<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005394 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005395</pre>
5396
5397<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005398<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
5399 insert a prefetch instruction if supported; otherwise, it is a noop.
5400 Prefetches have no effect on the behavior of the program but can change its
5401 performance characteristics.</p>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005402
5403<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005404<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
5405 specifier determining if the fetch should be for a read (0) or write (1),
5406 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5407 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
5408 and <tt>locality</tt> arguments must be constant integers.</p>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005409
5410<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005411<p>This intrinsic does not modify the behavior of the program. In particular,
5412 prefetches cannot trap and do not produce a value. On targets that support
5413 this intrinsic, the prefetch can provide hints to the processor cache for
5414 better performance.</p>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005415
5416</div>
5417
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005418<!-- _______________________________________________________________________ -->
5419<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005420 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005421</div>
5422
5423<div class="doc_text">
5424
5425<h5>Syntax:</h5>
5426<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005427 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005428</pre>
5429
5430<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005431<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
5432 Counter (PC) in a region of code to simulators and other tools. The method
5433 is target specific, but it is expected that the marker will use exported
5434 symbols to transmit the PC of the marker. The marker makes no guarantees
5435 that it will remain with any specific instruction after optimizations. It is
5436 possible that the presence of a marker will inhibit optimizations. The
5437 intended use is to be inserted after optimizations to allow correlations of
5438 simulation runs.</p>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005439
5440<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005441<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005442
5443<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005444<p>This intrinsic does not modify the behavior of the program. Backends that do
5445 not support this intrinisic may ignore it.</p>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005446
5447</div>
5448
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005449<!-- _______________________________________________________________________ -->
5450<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005451 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005452</div>
5453
5454<div class="doc_text">
5455
5456<h5>Syntax:</h5>
5457<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005458 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005459</pre>
5460
5461<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005462<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5463 counter register (or similar low latency, high accuracy clocks) on those
5464 targets that support it. On X86, it should map to RDTSC. On Alpha, it
5465 should map to RPCC. As the backing counters overflow quickly (on the order
5466 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005467
5468<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005469<p>When directly supported, reading the cycle counter should not modify any
5470 memory. Implementations are allowed to either return a application specific
5471 value or a system wide value. On backends without support, this is lowered
5472 to a constant 0.</p>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005473
5474</div>
5475
Chris Lattner10610642004-02-14 04:08:35 +00005476<!-- ======================================================================= -->
5477<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005478 <a name="int_libc">Standard C Library Intrinsics</a>
5479</div>
5480
5481<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005482
5483<p>LLVM provides intrinsics for a few important standard C library functions.
5484 These intrinsics allow source-language front-ends to pass information about
5485 the alignment of the pointer arguments to the code generator, providing
5486 opportunity for more efficient code generation.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005487
5488</div>
5489
5490<!-- _______________________________________________________________________ -->
5491<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005492 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005493</div>
5494
5495<div class="doc_text">
5496
5497<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005498<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
5499 integer bit width. Not all targets support all bit widths however.</p>
5500
Chris Lattner33aec9e2004-02-12 17:01:32 +00005501<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005502 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005503 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner824b9582008-11-21 16:42:48 +00005504 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5505 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005506 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005507 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005508 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005509 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005510</pre>
5511
5512<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005513<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5514 source location to the destination location.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005515
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005516<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5517 intrinsics do not return a value, and takes an extra alignment argument.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005518
5519<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005520<p>The first argument is a pointer to the destination, the second is a pointer
5521 to the source. The third argument is an integer argument specifying the
5522 number of bytes to copy, and the fourth argument is the alignment of the
5523 source and destination locations.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005524
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005525<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5526 then the caller guarantees that both the source and destination pointers are
5527 aligned to that boundary.</p>
Chris Lattner3301ced2004-02-12 21:18:15 +00005528
Chris Lattner33aec9e2004-02-12 17:01:32 +00005529<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005530<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5531 source location to the destination location, which are not allowed to
5532 overlap. It copies "len" bytes of memory over. If the argument is known to
5533 be aligned to some boundary, this can be specified as the fourth argument,
5534 otherwise it should be set to 0 or 1.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005535
Chris Lattner33aec9e2004-02-12 17:01:32 +00005536</div>
5537
Chris Lattner0eb51b42004-02-12 18:10:10 +00005538<!-- _______________________________________________________________________ -->
5539<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005540 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005541</div>
5542
5543<div class="doc_text">
5544
5545<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005546<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005547 width. Not all targets support all bit widths however.</p>
5548
Chris Lattner0eb51b42004-02-12 18:10:10 +00005549<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005550 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005551 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner824b9582008-11-21 16:42:48 +00005552 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5553 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005554 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005555 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005556 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005557 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005558</pre>
5559
5560<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005561<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
5562 source location to the destination location. It is similar to the
5563 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
5564 overlap.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005565
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005566<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5567 intrinsics do not return a value, and takes an extra alignment argument.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005568
5569<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005570<p>The first argument is a pointer to the destination, the second is a pointer
5571 to the source. The third argument is an integer argument specifying the
5572 number of bytes to copy, and the fourth argument is the alignment of the
5573 source and destination locations.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005574
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005575<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5576 then the caller guarantees that the source and destination pointers are
5577 aligned to that boundary.</p>
Chris Lattner3301ced2004-02-12 21:18:15 +00005578
Chris Lattner0eb51b42004-02-12 18:10:10 +00005579<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005580<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
5581 source location to the destination location, which may overlap. It copies
5582 "len" bytes of memory over. If the argument is known to be aligned to some
5583 boundary, this can be specified as the fourth argument, otherwise it should
5584 be set to 0 or 1.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005585
Chris Lattner0eb51b42004-02-12 18:10:10 +00005586</div>
5587
Chris Lattner10610642004-02-14 04:08:35 +00005588<!-- _______________________________________________________________________ -->
5589<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005590 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005591</div>
5592
5593<div class="doc_text">
5594
5595<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005596<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005597 width. Not all targets support all bit widths however.</p>
5598
Chris Lattner10610642004-02-14 04:08:35 +00005599<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005600 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005601 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner824b9582008-11-21 16:42:48 +00005602 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5603 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005604 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005605 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005606 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005607 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005608</pre>
5609
5610<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005611<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
5612 particular byte value.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005613
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005614<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
5615 intrinsic does not return a value, and takes an extra alignment argument.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005616
5617<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005618<p>The first argument is a pointer to the destination to fill, the second is the
5619 byte value to fill it with, the third argument is an integer argument
5620 specifying the number of bytes to fill, and the fourth argument is the known
5621 alignment of destination location.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005622
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005623<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5624 then the caller guarantees that the destination pointer is aligned to that
5625 boundary.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005626
5627<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005628<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
5629 at the destination location. If the argument is known to be aligned to some
5630 boundary, this can be specified as the fourth argument, otherwise it should
5631 be set to 0 or 1.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005632
Chris Lattner10610642004-02-14 04:08:35 +00005633</div>
5634
Chris Lattner32006282004-06-11 02:28:03 +00005635<!-- _______________________________________________________________________ -->
5636<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005637 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005638</div>
5639
5640<div class="doc_text">
5641
5642<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005643<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
5644 floating point or vector of floating point type. Not all targets support all
5645 types however.</p>
5646
Chris Lattnera4d74142005-07-21 01:29:16 +00005647<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005648 declare float @llvm.sqrt.f32(float %Val)
5649 declare double @llvm.sqrt.f64(double %Val)
5650 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5651 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5652 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005653</pre>
5654
5655<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005656<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
5657 returning the same value as the libm '<tt>sqrt</tt>' functions would.
5658 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
5659 behavior for negative numbers other than -0.0 (which allows for better
5660 optimization, because there is no need to worry about errno being
5661 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005662
5663<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005664<p>The argument and return value are floating point numbers of the same
5665 type.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005666
5667<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005668<p>This function returns the sqrt of the specified operand if it is a
5669 nonnegative floating point number.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005670
Chris Lattnera4d74142005-07-21 01:29:16 +00005671</div>
5672
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005673<!-- _______________________________________________________________________ -->
5674<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005675 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005676</div>
5677
5678<div class="doc_text">
5679
5680<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005681<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
5682 floating point or vector of floating point type. Not all targets support all
5683 types however.</p>
5684
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005685<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005686 declare float @llvm.powi.f32(float %Val, i32 %power)
5687 declare double @llvm.powi.f64(double %Val, i32 %power)
5688 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5689 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5690 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005691</pre>
5692
5693<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005694<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5695 specified (positive or negative) power. The order of evaluation of
5696 multiplications is not defined. When a vector of floating point type is
5697 used, the second argument remains a scalar integer value.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005698
5699<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005700<p>The second argument is an integer power, and the first is a value to raise to
5701 that power.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005702
5703<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005704<p>This function returns the first value raised to the second power with an
5705 unspecified sequence of rounding operations.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005706
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005707</div>
5708
Dan Gohman91c284c2007-10-15 20:30:11 +00005709<!-- _______________________________________________________________________ -->
5710<div class="doc_subsubsection">
5711 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5712</div>
5713
5714<div class="doc_text">
5715
5716<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005717<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5718 floating point or vector of floating point type. Not all targets support all
5719 types however.</p>
5720
Dan Gohman91c284c2007-10-15 20:30:11 +00005721<pre>
5722 declare float @llvm.sin.f32(float %Val)
5723 declare double @llvm.sin.f64(double %Val)
5724 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5725 declare fp128 @llvm.sin.f128(fp128 %Val)
5726 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5727</pre>
5728
5729<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005730<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005731
5732<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005733<p>The argument and return value are floating point numbers of the same
5734 type.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005735
5736<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005737<p>This function returns the sine of the specified operand, returning the same
5738 values as the libm <tt>sin</tt> functions would, and handles error conditions
5739 in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005740
Dan Gohman91c284c2007-10-15 20:30:11 +00005741</div>
5742
5743<!-- _______________________________________________________________________ -->
5744<div class="doc_subsubsection">
5745 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5746</div>
5747
5748<div class="doc_text">
5749
5750<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005751<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5752 floating point or vector of floating point type. Not all targets support all
5753 types however.</p>
5754
Dan Gohman91c284c2007-10-15 20:30:11 +00005755<pre>
5756 declare float @llvm.cos.f32(float %Val)
5757 declare double @llvm.cos.f64(double %Val)
5758 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5759 declare fp128 @llvm.cos.f128(fp128 %Val)
5760 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5761</pre>
5762
5763<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005764<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005765
5766<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005767<p>The argument and return value are floating point numbers of the same
5768 type.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005769
5770<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005771<p>This function returns the cosine of the specified operand, returning the same
5772 values as the libm <tt>cos</tt> functions would, and handles error conditions
5773 in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005774
Dan Gohman91c284c2007-10-15 20:30:11 +00005775</div>
5776
5777<!-- _______________________________________________________________________ -->
5778<div class="doc_subsubsection">
5779 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5780</div>
5781
5782<div class="doc_text">
5783
5784<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005785<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5786 floating point or vector of floating point type. Not all targets support all
5787 types however.</p>
5788
Dan Gohman91c284c2007-10-15 20:30:11 +00005789<pre>
5790 declare float @llvm.pow.f32(float %Val, float %Power)
5791 declare double @llvm.pow.f64(double %Val, double %Power)
5792 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5793 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5794 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5795</pre>
5796
5797<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005798<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5799 specified (positive or negative) power.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005800
5801<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005802<p>The second argument is a floating point power, and the first is a value to
5803 raise to that power.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005804
5805<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005806<p>This function returns the first value raised to the second power, returning
5807 the same values as the libm <tt>pow</tt> functions would, and handles error
5808 conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005809
Dan Gohman91c284c2007-10-15 20:30:11 +00005810</div>
5811
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005812<!-- ======================================================================= -->
5813<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005814 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005815</div>
5816
5817<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005818
5819<p>LLVM provides intrinsics for a few important bit manipulation operations.
5820 These allow efficient code generation for some algorithms.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005821
5822</div>
5823
5824<!-- _______________________________________________________________________ -->
5825<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005826 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005827</div>
5828
5829<div class="doc_text">
5830
5831<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005832<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005833 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
5834
Nate Begeman7e36c472006-01-13 23:26:38 +00005835<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005836 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5837 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5838 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005839</pre>
5840
5841<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005842<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
5843 values with an even number of bytes (positive multiple of 16 bits). These
5844 are useful for performing operations on data that is not in the target's
5845 native byte order.</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005846
5847<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005848<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
5849 and low byte of the input i16 swapped. Similarly,
5850 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
5851 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
5852 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
5853 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
5854 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
5855 more, respectively).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005856
5857</div>
5858
5859<!-- _______________________________________________________________________ -->
5860<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005861 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005862</div>
5863
5864<div class="doc_text">
5865
5866<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005867<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005868 width. Not all targets support all bit widths however.</p>
5869
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005870<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005871 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005872 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005873 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005874 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5875 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005876</pre>
5877
5878<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005879<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
5880 in a value.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005881
5882<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005883<p>The only argument is the value to be counted. The argument may be of any
5884 integer type. The return type must match the argument type.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005885
5886<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005887<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005888
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005889</div>
5890
5891<!-- _______________________________________________________________________ -->
5892<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005893 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005894</div>
5895
5896<div class="doc_text">
5897
5898<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005899<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5900 integer bit width. Not all targets support all bit widths however.</p>
5901
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005902<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005903 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5904 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005905 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005906 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5907 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005908</pre>
5909
5910<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005911<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5912 leading zeros in a variable.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005913
5914<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005915<p>The only argument is the value to be counted. The argument may be of any
5916 integer type. The return type must match the argument type.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005917
5918<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005919<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
5920 zeros in a variable. If the src == 0 then the result is the size in bits of
5921 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005922
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005923</div>
Chris Lattner32006282004-06-11 02:28:03 +00005924
Chris Lattnereff29ab2005-05-15 19:39:26 +00005925<!-- _______________________________________________________________________ -->
5926<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005927 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005928</div>
5929
5930<div class="doc_text">
5931
5932<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005933<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5934 integer bit width. Not all targets support all bit widths however.</p>
5935
Chris Lattnereff29ab2005-05-15 19:39:26 +00005936<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005937 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5938 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005939 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005940 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5941 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005942</pre>
5943
5944<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005945<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5946 trailing zeros.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005947
5948<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005949<p>The only argument is the value to be counted. The argument may be of any
5950 integer type. The return type must match the argument type.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005951
5952<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005953<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
5954 zeros in a variable. If the src == 0 then the result is the size in bits of
5955 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005956
Chris Lattnereff29ab2005-05-15 19:39:26 +00005957</div>
5958
Bill Wendlingda01af72009-02-08 04:04:40 +00005959<!-- ======================================================================= -->
5960<div class="doc_subsection">
5961 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
5962</div>
5963
5964<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005965
5966<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingda01af72009-02-08 04:04:40 +00005967
5968</div>
5969
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005970<!-- _______________________________________________________________________ -->
5971<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00005972 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005973</div>
5974
5975<div class="doc_text">
5976
5977<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005978<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005979 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005980
5981<pre>
5982 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
5983 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
5984 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
5985</pre>
5986
5987<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005988<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005989 a signed addition of the two arguments, and indicate whether an overflow
5990 occurred during the signed summation.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005991
5992<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005993<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005994 be of integer types of any bit width, but they must have the same bit
5995 width. The second element of the result structure must be of
5996 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
5997 undergo signed addition.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005998
5999<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006000<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006001 a signed addition of the two variables. They return a structure &mdash; the
6002 first element of which is the signed summation, and the second element of
6003 which is a bit specifying if the signed summation resulted in an
6004 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006005
6006<h5>Examples:</h5>
6007<pre>
6008 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6009 %sum = extractvalue {i32, i1} %res, 0
6010 %obit = extractvalue {i32, i1} %res, 1
6011 br i1 %obit, label %overflow, label %normal
6012</pre>
6013
6014</div>
6015
6016<!-- _______________________________________________________________________ -->
6017<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006018 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006019</div>
6020
6021<div class="doc_text">
6022
6023<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006024<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006025 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006026
6027<pre>
6028 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6029 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6030 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6031</pre>
6032
6033<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006034<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006035 an unsigned addition of the two arguments, and indicate whether a carry
6036 occurred during the unsigned summation.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006037
6038<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006039<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006040 be of integer types of any bit width, but they must have the same bit
6041 width. The second element of the result structure must be of
6042 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6043 undergo unsigned addition.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006044
6045<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006046<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006047 an unsigned addition of the two arguments. They return a structure &mdash;
6048 the first element of which is the sum, and the second element of which is a
6049 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006050
6051<h5>Examples:</h5>
6052<pre>
6053 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6054 %sum = extractvalue {i32, i1} %res, 0
6055 %obit = extractvalue {i32, i1} %res, 1
6056 br i1 %obit, label %carry, label %normal
6057</pre>
6058
6059</div>
6060
6061<!-- _______________________________________________________________________ -->
6062<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006063 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006064</div>
6065
6066<div class="doc_text">
6067
6068<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006069<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006070 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006071
6072<pre>
6073 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6074 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6075 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6076</pre>
6077
6078<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006079<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006080 a signed subtraction of the two arguments, and indicate whether an overflow
6081 occurred during the signed subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006082
6083<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006084<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006085 be of integer types of any bit width, but they must have the same bit
6086 width. The second element of the result structure must be of
6087 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6088 undergo signed subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006089
6090<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006091<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006092 a signed subtraction of the two arguments. They return a structure &mdash;
6093 the first element of which is the subtraction, and the second element of
6094 which is a bit specifying if the signed subtraction resulted in an
6095 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006096
6097<h5>Examples:</h5>
6098<pre>
6099 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6100 %sum = extractvalue {i32, i1} %res, 0
6101 %obit = extractvalue {i32, i1} %res, 1
6102 br i1 %obit, label %overflow, label %normal
6103</pre>
6104
6105</div>
6106
6107<!-- _______________________________________________________________________ -->
6108<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006109 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006110</div>
6111
6112<div class="doc_text">
6113
6114<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006115<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006116 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006117
6118<pre>
6119 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6120 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6121 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6122</pre>
6123
6124<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006125<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006126 an unsigned subtraction of the two arguments, and indicate whether an
6127 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006128
6129<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006130<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006131 be of integer types of any bit width, but they must have the same bit
6132 width. The second element of the result structure must be of
6133 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6134 undergo unsigned subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006135
6136<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006137<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006138 an unsigned subtraction of the two arguments. They return a structure &mdash;
6139 the first element of which is the subtraction, and the second element of
6140 which is a bit specifying if the unsigned subtraction resulted in an
6141 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006142
6143<h5>Examples:</h5>
6144<pre>
6145 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6146 %sum = extractvalue {i32, i1} %res, 0
6147 %obit = extractvalue {i32, i1} %res, 1
6148 br i1 %obit, label %overflow, label %normal
6149</pre>
6150
6151</div>
6152
6153<!-- _______________________________________________________________________ -->
6154<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006155 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006156</div>
6157
6158<div class="doc_text">
6159
6160<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006161<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006162 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006163
6164<pre>
6165 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6166 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6167 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6168</pre>
6169
6170<h5>Overview:</h5>
6171
6172<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006173 a signed multiplication of the two arguments, and indicate whether an
6174 overflow occurred during the signed multiplication.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006175
6176<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006177<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006178 be of integer types of any bit width, but they must have the same bit
6179 width. The second element of the result structure must be of
6180 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6181 undergo signed multiplication.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006182
6183<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006184<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006185 a signed multiplication of the two arguments. They return a structure &mdash;
6186 the first element of which is the multiplication, and the second element of
6187 which is a bit specifying if the signed multiplication resulted in an
6188 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006189
6190<h5>Examples:</h5>
6191<pre>
6192 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6193 %sum = extractvalue {i32, i1} %res, 0
6194 %obit = extractvalue {i32, i1} %res, 1
6195 br i1 %obit, label %overflow, label %normal
6196</pre>
6197
Reid Spencerf86037f2007-04-11 23:23:49 +00006198</div>
6199
Bill Wendling41b485c2009-02-08 23:00:09 +00006200<!-- _______________________________________________________________________ -->
6201<div class="doc_subsubsection">
6202 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6203</div>
6204
6205<div class="doc_text">
6206
6207<h5>Syntax:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006208<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006209 on any integer bit width.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006210
6211<pre>
6212 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6213 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6214 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6215</pre>
6216
6217<h5>Overview:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006218<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006219 a unsigned multiplication of the two arguments, and indicate whether an
6220 overflow occurred during the unsigned multiplication.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006221
6222<h5>Arguments:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006223<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006224 be of integer types of any bit width, but they must have the same bit
6225 width. The second element of the result structure must be of
6226 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6227 undergo unsigned multiplication.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006228
6229<h5>Semantics:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006230<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006231 an unsigned multiplication of the two arguments. They return a structure
6232 &mdash; the first element of which is the multiplication, and the second
6233 element of which is a bit specifying if the unsigned multiplication resulted
6234 in an overflow.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006235
6236<h5>Examples:</h5>
6237<pre>
6238 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6239 %sum = extractvalue {i32, i1} %res, 0
6240 %obit = extractvalue {i32, i1} %res, 1
6241 br i1 %obit, label %overflow, label %normal
6242</pre>
6243
6244</div>
6245
Chris Lattner8ff75902004-01-06 05:31:32 +00006246<!-- ======================================================================= -->
6247<div class="doc_subsection">
6248 <a name="int_debugger">Debugger Intrinsics</a>
6249</div>
6250
6251<div class="doc_text">
Chris Lattner8ff75902004-01-06 05:31:32 +00006252
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006253<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
6254 prefix), are described in
6255 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6256 Level Debugging</a> document.</p>
6257
6258</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00006259
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006260<!-- ======================================================================= -->
6261<div class="doc_subsection">
6262 <a name="int_eh">Exception Handling Intrinsics</a>
6263</div>
6264
6265<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006266
6267<p>The LLVM exception handling intrinsics (which all start with
6268 <tt>llvm.eh.</tt> prefix), are described in
6269 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6270 Handling</a> document.</p>
6271
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006272</div>
6273
Tanya Lattner6d806e92007-06-15 20:50:54 +00006274<!-- ======================================================================= -->
6275<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00006276 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00006277</div>
6278
6279<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006280
6281<p>This intrinsic makes it possible to excise one parameter, marked with
6282 the <tt>nest</tt> attribute, from a function. The result is a callable
6283 function pointer lacking the nest parameter - the caller does not need to
6284 provide a value for it. Instead, the value to use is stored in advance in a
6285 "trampoline", a block of memory usually allocated on the stack, which also
6286 contains code to splice the nest value into the argument list. This is used
6287 to implement the GCC nested function address extension.</p>
6288
6289<p>For example, if the function is
6290 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6291 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
6292 follows:</p>
6293
6294<div class="doc_code">
Duncan Sands36397f52007-07-27 12:58:54 +00006295<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006296 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6297 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6298 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6299 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00006300</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006301</div>
6302
6303<p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6304 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
6305
Duncan Sands36397f52007-07-27 12:58:54 +00006306</div>
6307
6308<!-- _______________________________________________________________________ -->
6309<div class="doc_subsubsection">
6310 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6311</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006312
Duncan Sands36397f52007-07-27 12:58:54 +00006313<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006314
Duncan Sands36397f52007-07-27 12:58:54 +00006315<h5>Syntax:</h5>
6316<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006317 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00006318</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006319
Duncan Sands36397f52007-07-27 12:58:54 +00006320<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006321<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
6322 function pointer suitable for executing it.</p>
6323
Duncan Sands36397f52007-07-27 12:58:54 +00006324<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006325<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6326 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
6327 sufficiently aligned block of memory; this memory is written to by the
6328 intrinsic. Note that the size and the alignment are target-specific - LLVM
6329 currently provides no portable way of determining them, so a front-end that
6330 generates this intrinsic needs to have some target-specific knowledge.
6331 The <tt>func</tt> argument must hold a function bitcast to
6332 an <tt>i8*</tt>.</p>
6333
Duncan Sands36397f52007-07-27 12:58:54 +00006334<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006335<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
6336 dependent code, turning it into a function. A pointer to this function is
6337 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
6338 function pointer type</a> before being called. The new function's signature
6339 is the same as that of <tt>func</tt> with any arguments marked with
6340 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
6341 is allowed, and it must be of pointer type. Calling the new function is
6342 equivalent to calling <tt>func</tt> with the same argument list, but
6343 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
6344 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
6345 by <tt>tramp</tt> is modified, then the effect of any later call to the
6346 returned function pointer is undefined.</p>
6347
Duncan Sands36397f52007-07-27 12:58:54 +00006348</div>
6349
6350<!-- ======================================================================= -->
6351<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006352 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6353</div>
6354
6355<div class="doc_text">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006356
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006357<p>These intrinsic functions expand the "universal IR" of LLVM to represent
6358 hardware constructs for atomic operations and memory synchronization. This
6359 provides an interface to the hardware, not an interface to the programmer. It
6360 is aimed at a low enough level to allow any programming models or APIs
6361 (Application Programming Interfaces) which need atomic behaviors to map
6362 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
6363 hardware provides a "universal IR" for source languages, it also provides a
6364 starting point for developing a "universal" atomic operation and
6365 synchronization IR.</p>
6366
6367<p>These do <em>not</em> form an API such as high-level threading libraries,
6368 software transaction memory systems, atomic primitives, and intrinsic
6369 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6370 application libraries. The hardware interface provided by LLVM should allow
6371 a clean implementation of all of these APIs and parallel programming models.
6372 No one model or paradigm should be selected above others unless the hardware
6373 itself ubiquitously does so.</p>
6374
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006375</div>
6376
6377<!-- _______________________________________________________________________ -->
6378<div class="doc_subsubsection">
6379 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6380</div>
6381<div class="doc_text">
6382<h5>Syntax:</h5>
6383<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006384 declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt; )
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006385</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006386
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006387<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006388<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6389 specific pairs of memory access types.</p>
6390
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006391<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006392<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6393 The first four arguments enables a specific barrier as listed below. The
6394 fith argument specifies that the barrier applies to io or device or uncached
6395 memory.</p>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006396
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006397<ul>
6398 <li><tt>ll</tt>: load-load barrier</li>
6399 <li><tt>ls</tt>: load-store barrier</li>
6400 <li><tt>sl</tt>: store-load barrier</li>
6401 <li><tt>ss</tt>: store-store barrier</li>
6402 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
6403</ul>
6404
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006405<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006406<p>This intrinsic causes the system to enforce some ordering constraints upon
6407 the loads and stores of the program. This barrier does not
6408 indicate <em>when</em> any events will occur, it only enforces
6409 an <em>order</em> in which they occur. For any of the specified pairs of load
6410 and store operations (f.ex. load-load, or store-load), all of the first
6411 operations preceding the barrier will complete before any of the second
6412 operations succeeding the barrier begin. Specifically the semantics for each
6413 pairing is as follows:</p>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006414
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006415<ul>
6416 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6417 after the barrier begins.</li>
6418 <li><tt>ls</tt>: All loads before the barrier must complete before any
6419 store after the barrier begins.</li>
6420 <li><tt>ss</tt>: All stores before the barrier must complete before any
6421 store after the barrier begins.</li>
6422 <li><tt>sl</tt>: All stores before the barrier must complete before any
6423 load after the barrier begins.</li>
6424</ul>
6425
6426<p>These semantics are applied with a logical "and" behavior when more than one
6427 is enabled in a single memory barrier intrinsic.</p>
6428
6429<p>Backends may implement stronger barriers than those requested when they do
6430 not support as fine grained a barrier as requested. Some architectures do
6431 not need all types of barriers and on such architectures, these become
6432 noops.</p>
6433
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006434<h5>Example:</h5>
6435<pre>
6436%ptr = malloc i32
6437 store i32 4, %ptr
6438
6439%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6440 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6441 <i>; guarantee the above finishes</i>
6442 store i32 8, %ptr <i>; before this begins</i>
6443</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006444
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006445</div>
6446
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006447<!-- _______________________________________________________________________ -->
6448<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006449 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006450</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006451
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006452<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006453
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006454<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006455<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6456 any integer bit width and for different address spaces. Not all targets
6457 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006458
6459<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006460 declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6461 declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6462 declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6463 declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006464</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006465
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006466<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006467<p>This loads a value in memory and compares it to a given value. If they are
6468 equal, it stores a new value into the memory.</p>
6469
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006470<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006471<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
6472 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6473 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6474 this integer type. While any bit width integer may be used, targets may only
6475 lower representations they support in hardware.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006476
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006477<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006478<p>This entire intrinsic must be executed atomically. It first loads the value
6479 in memory pointed to by <tt>ptr</tt> and compares it with the
6480 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
6481 memory. The loaded value is yielded in all cases. This provides the
6482 equivalent of an atomic compare-and-swap operation within the SSA
6483 framework.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006484
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006485<h5>Examples:</h5>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006486<pre>
6487%ptr = malloc i32
6488 store i32 4, %ptr
6489
6490%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006491%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006492 <i>; yields {i32}:result1 = 4</i>
6493%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6494%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6495
6496%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006497%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006498 <i>; yields {i32}:result2 = 8</i>
6499%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6500
6501%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6502</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006503
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006504</div>
6505
6506<!-- _______________________________________________________________________ -->
6507<div class="doc_subsubsection">
6508 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6509</div>
6510<div class="doc_text">
6511<h5>Syntax:</h5>
6512
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006513<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6514 integer bit width. Not all targets support all bit widths however.</p>
6515
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006516<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006517 declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6518 declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6519 declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6520 declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006521</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006522
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006523<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006524<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6525 the value from memory. It then stores the value in <tt>val</tt> in the memory
6526 at <tt>ptr</tt>.</p>
6527
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006528<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006529<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
6530 the <tt>val</tt> argument and the result must be integers of the same bit
6531 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6532 integer type. The targets may only lower integer representations they
6533 support.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006534
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006535<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006536<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6537 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6538 equivalent of an atomic swap operation within the SSA framework.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006539
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006540<h5>Examples:</h5>
6541<pre>
6542%ptr = malloc i32
6543 store i32 4, %ptr
6544
6545%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006546%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006547 <i>; yields {i32}:result1 = 4</i>
6548%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6549%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6550
6551%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006552%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006553 <i>; yields {i32}:result2 = 8</i>
6554
6555%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6556%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6557</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006558
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006559</div>
6560
6561<!-- _______________________________________________________________________ -->
6562<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006563 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006564
6565</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006566
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006567<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006568
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006569<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006570<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
6571 any integer bit width. Not all targets support all bit widths however.</p>
6572
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006573<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006574 declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6575 declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6576 declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6577 declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006578</pre>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006579
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006580<h5>Overview:</h5>
6581<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
6582 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6583
6584<h5>Arguments:</h5>
6585<p>The intrinsic takes two arguments, the first a pointer to an integer value
6586 and the second an integer value. The result is also an integer value. These
6587 integer types can have any bit width, but they must all have the same bit
6588 width. The targets may only lower integer representations they support.</p>
6589
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006590<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006591<p>This intrinsic does a series of operations atomically. It first loads the
6592 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6593 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006594
6595<h5>Examples:</h5>
6596<pre>
6597%ptr = malloc i32
6598 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006599%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006600 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006601%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006602 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006603%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006604 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006605%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006606</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006607
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006608</div>
6609
Mon P Wang28873102008-06-25 08:15:39 +00006610<!-- _______________________________________________________________________ -->
6611<div class="doc_subsubsection">
6612 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6613
6614</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006615
Mon P Wang28873102008-06-25 08:15:39 +00006616<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006617
Mon P Wang28873102008-06-25 08:15:39 +00006618<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006619<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
6620 any integer bit width and for different address spaces. Not all targets
6621 support all bit widths however.</p>
6622
Mon P Wang28873102008-06-25 08:15:39 +00006623<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006624 declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6625 declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6626 declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6627 declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006628</pre>
Mon P Wang28873102008-06-25 08:15:39 +00006629
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006630<h5>Overview:</h5>
6631<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6632 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6633
6634<h5>Arguments:</h5>
6635<p>The intrinsic takes two arguments, the first a pointer to an integer value
6636 and the second an integer value. The result is also an integer value. These
6637 integer types can have any bit width, but they must all have the same bit
6638 width. The targets may only lower integer representations they support.</p>
6639
Mon P Wang28873102008-06-25 08:15:39 +00006640<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006641<p>This intrinsic does a series of operations atomically. It first loads the
6642 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6643 result to <tt>ptr</tt>. It yields the original value stored
6644 at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006645
6646<h5>Examples:</h5>
6647<pre>
6648%ptr = malloc i32
6649 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006650%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006651 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006652%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006653 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006654%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006655 <i>; yields {i32}:result3 = 2</i>
6656%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6657</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006658
Mon P Wang28873102008-06-25 08:15:39 +00006659</div>
6660
6661<!-- _______________________________________________________________________ -->
6662<div class="doc_subsubsection">
6663 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6664 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6665 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6666 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
Mon P Wang28873102008-06-25 08:15:39 +00006667</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006668
Mon P Wang28873102008-06-25 08:15:39 +00006669<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006670
Mon P Wang28873102008-06-25 08:15:39 +00006671<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006672<p>These are overloaded intrinsics. You can
6673 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
6674 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
6675 bit width and for different address spaces. Not all targets support all bit
6676 widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006677
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006678<pre>
6679 declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6680 declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6681 declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6682 declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006683</pre>
6684
6685<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006686 declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6687 declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6688 declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6689 declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006690</pre>
6691
6692<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006693 declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6694 declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6695 declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6696 declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006697</pre>
6698
6699<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006700 declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6701 declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6702 declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6703 declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006704</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006705
Mon P Wang28873102008-06-25 08:15:39 +00006706<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006707<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6708 the value stored in memory at <tt>ptr</tt>. It yields the original value
6709 at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006710
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006711<h5>Arguments:</h5>
6712<p>These intrinsics take two arguments, the first a pointer to an integer value
6713 and the second an integer value. The result is also an integer value. These
6714 integer types can have any bit width, but they must all have the same bit
6715 width. The targets may only lower integer representations they support.</p>
6716
Mon P Wang28873102008-06-25 08:15:39 +00006717<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006718<p>These intrinsics does a series of operations atomically. They first load the
6719 value stored at <tt>ptr</tt>. They then do the bitwise
6720 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
6721 original value stored at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006722
6723<h5>Examples:</h5>
6724<pre>
6725%ptr = malloc i32
6726 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006727%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006728 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006729%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006730 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006731%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006732 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006733%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006734 <i>; yields {i32}:result3 = FF</i>
6735%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6736</pre>
Mon P Wang28873102008-06-25 08:15:39 +00006737
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006738</div>
Mon P Wang28873102008-06-25 08:15:39 +00006739
6740<!-- _______________________________________________________________________ -->
6741<div class="doc_subsubsection">
6742 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6743 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6744 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6745 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
Mon P Wang28873102008-06-25 08:15:39 +00006746</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006747
Mon P Wang28873102008-06-25 08:15:39 +00006748<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006749
Mon P Wang28873102008-06-25 08:15:39 +00006750<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006751<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6752 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
6753 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6754 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006755
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006756<pre>
6757 declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6758 declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6759 declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6760 declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006761</pre>
6762
6763<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006764 declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6765 declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6766 declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6767 declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006768</pre>
6769
6770<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006771 declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6772 declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6773 declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6774 declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006775</pre>
6776
6777<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006778 declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6779 declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6780 declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6781 declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006782</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006783
Mon P Wang28873102008-06-25 08:15:39 +00006784<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006785<p>These intrinsics takes the signed or unsigned minimum or maximum of
6786 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6787 original value at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006788
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006789<h5>Arguments:</h5>
6790<p>These intrinsics take two arguments, the first a pointer to an integer value
6791 and the second an integer value. The result is also an integer value. These
6792 integer types can have any bit width, but they must all have the same bit
6793 width. The targets may only lower integer representations they support.</p>
6794
Mon P Wang28873102008-06-25 08:15:39 +00006795<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006796<p>These intrinsics does a series of operations atomically. They first load the
6797 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
6798 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
6799 yield the original value stored at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006800
6801<h5>Examples:</h5>
6802<pre>
6803%ptr = malloc i32
6804 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006805%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006806 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006807%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006808 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006809%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006810 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006811%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006812 <i>; yields {i32}:result3 = 8</i>
6813%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6814</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006815
Mon P Wang28873102008-06-25 08:15:39 +00006816</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006817
6818<!-- ======================================================================= -->
6819<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006820 <a name="int_general">General Intrinsics</a>
6821</div>
6822
6823<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006824
6825<p>This class of intrinsics is designed to be generic and has no specific
6826 purpose.</p>
6827
Tanya Lattner6d806e92007-06-15 20:50:54 +00006828</div>
6829
6830<!-- _______________________________________________________________________ -->
6831<div class="doc_subsubsection">
6832 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6833</div>
6834
6835<div class="doc_text">
6836
6837<h5>Syntax:</h5>
6838<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006839 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006840</pre>
6841
6842<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006843<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006844
6845<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006846<p>The first argument is a pointer to a value, the second is a pointer to a
6847 global string, the third is a pointer to a global string which is the source
6848 file name, and the last argument is the line number.</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006849
6850<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006851<p>This intrinsic allows annotation of local variables with arbitrary strings.
6852 This can be useful for special purpose optimizations that want to look for
6853 these annotations. These have no other defined use, they are ignored by code
6854 generation and optimization.</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006855
Tanya Lattner6d806e92007-06-15 20:50:54 +00006856</div>
6857
Tanya Lattnerb6367882007-09-21 22:59:12 +00006858<!-- _______________________________________________________________________ -->
6859<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006860 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006861</div>
6862
6863<div class="doc_text">
6864
6865<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006866<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6867 any integer bit width.</p>
6868
Tanya Lattnerb6367882007-09-21 22:59:12 +00006869<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006870 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6871 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6872 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6873 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6874 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006875</pre>
6876
6877<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006878<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006879
6880<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006881<p>The first argument is an integer value (result of some expression), the
6882 second is a pointer to a global string, the third is a pointer to a global
6883 string which is the source file name, and the last argument is the line
6884 number. It returns the value of the first argument.</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006885
6886<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006887<p>This intrinsic allows annotations to be put on arbitrary expressions with
6888 arbitrary strings. This can be useful for special purpose optimizations that
6889 want to look for these annotations. These have no other defined use, they
6890 are ignored by code generation and optimization.</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006891
Tanya Lattnerb6367882007-09-21 22:59:12 +00006892</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006893
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006894<!-- _______________________________________________________________________ -->
6895<div class="doc_subsubsection">
6896 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6897</div>
6898
6899<div class="doc_text">
6900
6901<h5>Syntax:</h5>
6902<pre>
6903 declare void @llvm.trap()
6904</pre>
6905
6906<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006907<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006908
6909<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006910<p>None.</p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006911
6912<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006913<p>This intrinsics is lowered to the target dependent trap instruction. If the
6914 target does not have a trap instruction, this intrinsic will be lowered to
6915 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006916
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006917</div>
6918
Bill Wendling69e4adb2008-11-19 05:56:17 +00006919<!-- _______________________________________________________________________ -->
6920<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00006921 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00006922</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006923
Bill Wendling69e4adb2008-11-19 05:56:17 +00006924<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006925
Bill Wendling69e4adb2008-11-19 05:56:17 +00006926<h5>Syntax:</h5>
6927<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006928 declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
Bill Wendling69e4adb2008-11-19 05:56:17 +00006929</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006930
Bill Wendling69e4adb2008-11-19 05:56:17 +00006931<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006932<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
6933 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
6934 ensure that it is placed on the stack before local variables.</p>
6935
Bill Wendling69e4adb2008-11-19 05:56:17 +00006936<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006937<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
6938 arguments. The first argument is the value loaded from the stack
6939 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
6940 that has enough space to hold the value of the guard.</p>
6941
Bill Wendling69e4adb2008-11-19 05:56:17 +00006942<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006943<p>This intrinsic causes the prologue/epilogue inserter to force the position of
6944 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6945 stack. This is to ensure that if a local variable on the stack is
6946 overwritten, it will destroy the value of the guard. When the function exits,
6947 the guard on the stack is checked against the original guard. If they're
6948 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
6949 function.</p>
6950
Bill Wendling69e4adb2008-11-19 05:56:17 +00006951</div>
6952
Chris Lattner00950542001-06-06 20:29:01 +00006953<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006954<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006955<address>
6956 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00006957 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006958 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00006959 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006960
6961 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006962 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006963 Last modified: $Date$
6964</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006965
Misha Brukman9d0919f2003-11-08 01:05:38 +00006966</body>
6967</html>