blob: deb89153e41831adf301d6579bb9ebc63311ce53 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner00950542001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000040 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Nick Lewycky7a0370f2009-05-30 05:06:04 +000044 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000045 </ol>
46 </li>
Chris Lattner00950542001-06-06 20:29:01 +000047 <li><a href="#t_derived">Derived Types</a>
48 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000049 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000050 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000051 <li><a href="#t_function">Function Type</a></li>
52 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000053 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000054 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000055 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000056 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000057 </ol>
58 </li>
Chris Lattner242d61d2009-02-02 07:32:36 +000059 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000060 </ol>
61 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000062 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000063 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000064 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner70882792009-02-28 18:32:25 +000065 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000066 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
67 <li><a href="#undefvalues">Undefined Values</a></li>
68 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky21cc4462009-04-04 07:22:01 +000069 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000070 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000071 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000072 <li><a href="#othervalues">Other Values</a>
73 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000074 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000075 </ol>
76 </li>
Chris Lattner00950542001-06-06 20:29:01 +000077 <li><a href="#instref">Instruction Reference</a>
78 <ol>
79 <li><a href="#terminators">Terminator Instructions</a>
80 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
82 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000083 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
84 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000085 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000086 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000087 </ol>
88 </li>
Chris Lattner00950542001-06-06 20:29:01 +000089 <li><a href="#binaryops">Binary Operations</a>
90 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000091 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000092 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000093 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000094 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000095 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000096 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000097 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
98 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
99 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +0000100 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
101 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
102 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000103 </ol>
104 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000105 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
106 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000107 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
108 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
109 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000110 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000111 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000112 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000113 </ol>
114 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000115 <li><a href="#vectorops">Vector Operations</a>
116 <ol>
117 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
118 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
119 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000120 </ol>
121 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000122 <li><a href="#aggregateops">Aggregate Operations</a>
123 <ol>
124 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
125 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
126 </ol>
127 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000128 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000129 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000130 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
131 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
132 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000133 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
134 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
135 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000136 </ol>
137 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000138 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000139 <ol>
140 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
141 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
142 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
143 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
144 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000145 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
146 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
147 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
148 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000149 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
150 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000151 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000152 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000153 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000154 <li><a href="#otherops">Other Operations</a>
155 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000156 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
157 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000158 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
159 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000161 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000162 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000163 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000164 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000165 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000166 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000167 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000168 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000169 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000170 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
171 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000172 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
173 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
174 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000175 </ol>
176 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000177 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
178 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000179 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
180 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
181 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000182 </ol>
183 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000184 <li><a href="#int_codegen">Code Generator Intrinsics</a>
185 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000186 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
187 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
188 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
189 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
190 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
191 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
192 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000193 </ol>
194 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000195 <li><a href="#int_libc">Standard C Library Intrinsics</a>
196 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000197 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
200 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
201 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000202 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
203 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
204 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000205 </ol>
206 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000207 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000208 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000209 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000210 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
211 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
212 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000213 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
214 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000215 </ol>
216 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000217 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
218 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000219 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
220 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
221 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
222 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
223 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling41b485c2009-02-08 23:00:09 +0000224 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000225 </ol>
226 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000227 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000228 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000229 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000230 <ol>
231 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000232 </ol>
233 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000234 <li><a href="#int_atomics">Atomic intrinsics</a>
235 <ol>
236 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
237 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
238 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
239 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
240 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
241 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
242 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
243 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
244 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
245 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
246 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
247 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
248 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
249 </ol>
250 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000251 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000252 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000253 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000254 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000255 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000256 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000257 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000258 '<tt>llvm.trap</tt>' Intrinsic</a></li>
259 <li><a href="#int_stackprotector">
260 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000261 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000262 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000263 </ol>
264 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000265</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000266
267<div class="doc_author">
268 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
269 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000270</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Chris Lattner00950542001-06-06 20:29:01 +0000272<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000273<div class="doc_section"> <a name="abstract">Abstract </a></div>
274<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000275
Misha Brukman9d0919f2003-11-08 01:05:38 +0000276<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000277<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000278LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000279type safety, low-level operations, flexibility, and the capability of
280representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000281representation used throughout all phases of the LLVM compilation
282strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000283</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000284
Chris Lattner00950542001-06-06 20:29:01 +0000285<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000286<div class="doc_section"> <a name="introduction">Introduction</a> </div>
287<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000288
Misha Brukman9d0919f2003-11-08 01:05:38 +0000289<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000290
Chris Lattner261efe92003-11-25 01:02:51 +0000291<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000292different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000293representation (suitable for fast loading by a Just-In-Time compiler),
294and as a human readable assembly language representation. This allows
295LLVM to provide a powerful intermediate representation for efficient
296compiler transformations and analysis, while providing a natural means
297to debug and visualize the transformations. The three different forms
298of LLVM are all equivalent. This document describes the human readable
299representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000300
John Criswellc1f786c2005-05-13 22:25:59 +0000301<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000302while being expressive, typed, and extensible at the same time. It
303aims to be a "universal IR" of sorts, by being at a low enough level
304that high-level ideas may be cleanly mapped to it (similar to how
305microprocessors are "universal IR's", allowing many source languages to
306be mapped to them). By providing type information, LLVM can be used as
307the target of optimizations: for example, through pointer analysis, it
308can be proven that a C automatic variable is never accessed outside of
309the current function... allowing it to be promoted to a simple SSA
310value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000311
Misha Brukman9d0919f2003-11-08 01:05:38 +0000312</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000313
Chris Lattner00950542001-06-06 20:29:01 +0000314<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000315<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000316
Misha Brukman9d0919f2003-11-08 01:05:38 +0000317<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000318
Chris Lattner261efe92003-11-25 01:02:51 +0000319<p>It is important to note that this document describes 'well formed'
320LLVM assembly language. There is a difference between what the parser
321accepts and what is considered 'well formed'. For example, the
322following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000323
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000324<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000325<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000326%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000327</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000328</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000329
Chris Lattner261efe92003-11-25 01:02:51 +0000330<p>...because the definition of <tt>%x</tt> does not dominate all of
331its uses. The LLVM infrastructure provides a verification pass that may
332be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000333automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000334the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000335by the verifier pass indicate bugs in transformation passes or input to
336the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000337</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000338
Chris Lattnercc689392007-10-03 17:34:29 +0000339<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000340
Chris Lattner00950542001-06-06 20:29:01 +0000341<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000342<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000343<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000344
Misha Brukman9d0919f2003-11-08 01:05:38 +0000345<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000346
Reid Spencer2c452282007-08-07 14:34:28 +0000347 <p>LLVM identifiers come in two basic types: global and local. Global
348 identifiers (functions, global variables) begin with the @ character. Local
349 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000350 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000351
Chris Lattner00950542001-06-06 20:29:01 +0000352<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000353 <li>Named values are represented as a string of characters with their prefix.
354 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
355 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000356 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000357 with quotes. Special characters may be escaped using "\xx" where xx is the
358 ASCII code for the character in hexadecimal. In this way, any character can
359 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000360
Reid Spencer2c452282007-08-07 14:34:28 +0000361 <li>Unnamed values are represented as an unsigned numeric value with their
362 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000363
Reid Spencercc16dc32004-12-09 18:02:53 +0000364 <li>Constants, which are described in a <a href="#constants">section about
365 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000366</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000367
Reid Spencer2c452282007-08-07 14:34:28 +0000368<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000369don't need to worry about name clashes with reserved words, and the set of
370reserved words may be expanded in the future without penalty. Additionally,
371unnamed identifiers allow a compiler to quickly come up with a temporary
372variable without having to avoid symbol table conflicts.</p>
373
Chris Lattner261efe92003-11-25 01:02:51 +0000374<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000375languages. There are keywords for different opcodes
376('<tt><a href="#i_add">add</a></tt>',
377 '<tt><a href="#i_bitcast">bitcast</a></tt>',
378 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000379href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000380and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000381none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000382
383<p>Here is an example of LLVM code to multiply the integer variable
384'<tt>%X</tt>' by 8:</p>
385
Misha Brukman9d0919f2003-11-08 01:05:38 +0000386<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000387
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000388<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000389<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000390%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000391</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000392</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000393
Misha Brukman9d0919f2003-11-08 01:05:38 +0000394<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000395
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000396<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000397<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000398%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000399</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000400</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000401
Misha Brukman9d0919f2003-11-08 01:05:38 +0000402<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000403
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000404<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000405<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000406<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
407<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
408%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000409</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000410</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000411
Chris Lattner261efe92003-11-25 01:02:51 +0000412<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
413important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000414
Chris Lattner00950542001-06-06 20:29:01 +0000415<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000416
417 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
418 line.</li>
419
420 <li>Unnamed temporaries are created when the result of a computation is not
421 assigned to a named value.</li>
422
Misha Brukman9d0919f2003-11-08 01:05:38 +0000423 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000424
Misha Brukman9d0919f2003-11-08 01:05:38 +0000425</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000426
John Criswelle4c57cc2005-05-12 16:52:32 +0000427<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000428demonstrating instructions, we will follow an instruction with a comment that
429defines the type and name of value produced. Comments are shown in italic
430text.</p>
431
Misha Brukman9d0919f2003-11-08 01:05:38 +0000432</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000433
434<!-- *********************************************************************** -->
435<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
436<!-- *********************************************************************** -->
437
438<!-- ======================================================================= -->
439<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
440</div>
441
442<div class="doc_text">
443
444<p>LLVM programs are composed of "Module"s, each of which is a
445translation unit of the input programs. Each module consists of
446functions, global variables, and symbol table entries. Modules may be
447combined together with the LLVM linker, which merges function (and
448global variable) definitions, resolves forward declarations, and merges
449symbol table entries. Here is an example of the "hello world" module:</p>
450
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000451<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000452<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000453<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
454 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000455
456<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000457<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000458
459<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000460define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000461 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000462 %cast210 = <a
Dan Gohman2a08c532009-01-04 23:44:43 +0000463 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000464
465 <i>; Call puts function to write out the string to stdout...</i>
466 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000467 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000468 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000469 href="#i_ret">ret</a> i32 0<br>}<br>
470</pre>
471</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000472
473<p>This example is made up of a <a href="#globalvars">global variable</a>
474named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
475function, and a <a href="#functionstructure">function definition</a>
476for "<tt>main</tt>".</p>
477
Chris Lattnere5d947b2004-12-09 16:36:40 +0000478<p>In general, a module is made up of a list of global values,
479where both functions and global variables are global values. Global values are
480represented by a pointer to a memory location (in this case, a pointer to an
481array of char, and a pointer to a function), and have one of the following <a
482href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000483
Chris Lattnere5d947b2004-12-09 16:36:40 +0000484</div>
485
486<!-- ======================================================================= -->
487<div class="doc_subsection">
488 <a name="linkage">Linkage Types</a>
489</div>
490
491<div class="doc_text">
492
493<p>
494All Global Variables and Functions have one of the following types of linkage:
495</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000496
497<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000498
Rafael Espindolabb46f522009-01-15 20:18:42 +0000499 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
500
501 <dd>Global values with private linkage are only directly accessible by
502 objects in the current module. In particular, linking code into a module with
503 an private global value may cause the private to be renamed as necessary to
504 avoid collisions. Because the symbol is private to the module, all
505 references can be updated. This doesn't show up in any symbol table in the
506 object file.
507 </dd>
508
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000509 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000510
Duncan Sands81d05c22009-01-16 09:29:46 +0000511 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindolabb46f522009-01-15 20:18:42 +0000512 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000513 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000514 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000515
Chris Lattner266c7bb2009-04-13 05:44:34 +0000516 <dt><tt><b><a name="available_externally">available_externally</a></b></tt>:
517 </dt>
518
519 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
520 into the object file corresponding to the LLVM module. They exist to
521 allow inlining and other optimizations to take place given knowledge of the
522 definition of the global, which is known to be somewhere outside the module.
523 Globals with <tt>available_externally</tt> linkage are allowed to be discarded
524 at will, and are otherwise the same as <tt>linkonce_odr</tt>. This linkage
525 type is only allowed on definitions, not declarations.</dd>
526
Chris Lattnerfa730212004-12-09 16:11:40 +0000527 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000528
Chris Lattner4887bd82007-01-14 06:51:48 +0000529 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
530 the same name when linkage occurs. This is typically used to implement
531 inline functions, templates, or other code which must be generated in each
532 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
533 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000534 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000535
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000536 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
537
538 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
539 linkage, except that unreferenced <tt>common</tt> globals may not be
540 discarded. This is used for globals that may be emitted in multiple
541 translation units, but that are not guaranteed to be emitted into every
542 translation unit that uses them. One example of this is tentative
543 definitions in C, such as "<tt>int X;</tt>" at global scope.
544 </dd>
545
Chris Lattnerfa730212004-12-09 16:11:40 +0000546 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000547
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000548 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
549 that some targets may choose to emit different assembly sequences for them
550 for target-dependent reasons. This is used for globals that are declared
551 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000552 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000553
Chris Lattnerfa730212004-12-09 16:11:40 +0000554 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000555
556 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
557 pointer to array type. When two global variables with appending linkage are
558 linked together, the two global arrays are appended together. This is the
559 LLVM, typesafe, equivalent of having the system linker append together
560 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000561 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000562
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000563 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000564
Chris Lattnerd3eda892008-08-05 18:29:16 +0000565 <dd>The semantics of this linkage follow the ELF object file model: the
566 symbol is weak until linked, if not linked, the symbol becomes null instead
567 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000568 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000569
Duncan Sands667d4b82009-03-07 15:45:40 +0000570 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000571 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000572 <dd>Some languages allow differing globals to be merged, such as two
Duncan Sands667d4b82009-03-07 15:45:40 +0000573 functions with different semantics. Other languages, such as <tt>C++</tt>,
574 ensure that only equivalent globals are ever merged (the "one definition
Chris Lattner266c7bb2009-04-13 05:44:34 +0000575 rule" - "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Duncan Sands4dc2b392009-03-11 20:14:15 +0000576 and <tt>weak_odr</tt> linkage types to indicate that the global will only
577 be merged with equivalent globals. These linkage types are otherwise the
578 same as their non-<tt>odr</tt> versions.
Duncan Sands667d4b82009-03-07 15:45:40 +0000579 </dd>
580
Chris Lattnerfa730212004-12-09 16:11:40 +0000581 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000582
583 <dd>If none of the above identifiers are used, the global is externally
584 visible, meaning that it participates in linkage and can be used to resolve
585 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000586 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000587</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000588
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000589 <p>
590 The next two types of linkage are targeted for Microsoft Windows platform
591 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000592 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000593 </p>
594
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000595 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000596 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
597
598 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
599 or variable via a global pointer to a pointer that is set up by the DLL
600 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman79564122009-01-12 21:35:55 +0000601 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000602 </dd>
603
604 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
605
606 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
607 pointer to a pointer in a DLL, so that it can be referenced with the
608 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman79564122009-01-12 21:35:55 +0000609 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000610 name.
611 </dd>
612
Chris Lattnerfa730212004-12-09 16:11:40 +0000613</dl>
614
Dan Gohmanf0032762008-11-24 17:18:39 +0000615<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000616variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
617variable and was linked with this one, one of the two would be renamed,
618preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
619external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000620outside of the current module.</p>
621<p>It is illegal for a function <i>declaration</i>
Duncan Sands5f4ee1f2009-03-11 08:08:06 +0000622to have any linkage type other than "externally visible", <tt>dllimport</tt>
623or <tt>extern_weak</tt>.</p>
Duncan Sands667d4b82009-03-07 15:45:40 +0000624<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
625or <tt>weak_odr</tt> linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000626</div>
627
628<!-- ======================================================================= -->
629<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000630 <a name="callingconv">Calling Conventions</a>
631</div>
632
633<div class="doc_text">
634
635<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
636and <a href="#i_invoke">invokes</a> can all have an optional calling convention
637specified for the call. The calling convention of any pair of dynamic
638caller/callee must match, or the behavior of the program is undefined. The
639following calling conventions are supported by LLVM, and more may be added in
640the future:</p>
641
642<dl>
643 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
644
645 <dd>This calling convention (the default if no other calling convention is
646 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000647 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000648 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000649 </dd>
650
651 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
652
653 <dd>This calling convention attempts to make calls as fast as possible
654 (e.g. by passing things in registers). This calling convention allows the
655 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000656 without having to conform to an externally specified ABI (Application Binary
657 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000658 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
659 supported. This calling convention does not support varargs and requires the
660 prototype of all callees to exactly match the prototype of the function
661 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000662 </dd>
663
664 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
665
666 <dd>This calling convention attempts to make code in the caller as efficient
667 as possible under the assumption that the call is not commonly executed. As
668 such, these calls often preserve all registers so that the call does not break
669 any live ranges in the caller side. This calling convention does not support
670 varargs and requires the prototype of all callees to exactly match the
671 prototype of the function definition.
672 </dd>
673
Chris Lattnercfe6b372005-05-07 01:46:40 +0000674 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000675
676 <dd>Any calling convention may be specified by number, allowing
677 target-specific calling conventions to be used. Target specific calling
678 conventions start at 64.
679 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000680</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000681
682<p>More calling conventions can be added/defined on an as-needed basis, to
683support pascal conventions or any other well-known target-independent
684convention.</p>
685
686</div>
687
688<!-- ======================================================================= -->
689<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000690 <a name="visibility">Visibility Styles</a>
691</div>
692
693<div class="doc_text">
694
695<p>
696All Global Variables and Functions have one of the following visibility styles:
697</p>
698
699<dl>
700 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
701
Chris Lattnerd3eda892008-08-05 18:29:16 +0000702 <dd>On targets that use the ELF object file format, default visibility means
703 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000704 modules and, in shared libraries, means that the declared entity may be
705 overridden. On Darwin, default visibility means that the declaration is
706 visible to other modules. Default visibility corresponds to "external
707 linkage" in the language.
708 </dd>
709
710 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
711
712 <dd>Two declarations of an object with hidden visibility refer to the same
713 object if they are in the same shared object. Usually, hidden visibility
714 indicates that the symbol will not be placed into the dynamic symbol table,
715 so no other module (executable or shared library) can reference it
716 directly.
717 </dd>
718
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000719 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
720
721 <dd>On ELF, protected visibility indicates that the symbol will be placed in
722 the dynamic symbol table, but that references within the defining module will
723 bind to the local symbol. That is, the symbol cannot be overridden by another
724 module.
725 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000726</dl>
727
728</div>
729
730<!-- ======================================================================= -->
731<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000732 <a name="namedtypes">Named Types</a>
733</div>
734
735<div class="doc_text">
736
737<p>LLVM IR allows you to specify name aliases for certain types. This can make
738it easier to read the IR and make the IR more condensed (particularly when
739recursive types are involved). An example of a name specification is:
740</p>
741
742<div class="doc_code">
743<pre>
744%mytype = type { %mytype*, i32 }
745</pre>
746</div>
747
748<p>You may give a name to any <a href="#typesystem">type</a> except "<a
749href="t_void">void</a>". Type name aliases may be used anywhere a type is
750expected with the syntax "%mytype".</p>
751
752<p>Note that type names are aliases for the structural type that they indicate,
753and that you can therefore specify multiple names for the same type. This often
754leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
755structural typing, the name is not part of the type. When printing out LLVM IR,
756the printer will pick <em>one name</em> to render all types of a particular
757shape. This means that if you have code where two different source types end up
758having the same LLVM type, that the dumper will sometimes print the "wrong" or
759unexpected type. This is an important design point and isn't going to
760change.</p>
761
762</div>
763
Chris Lattnere7886e42009-01-11 20:53:49 +0000764<!-- ======================================================================= -->
765<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000766 <a name="globalvars">Global Variables</a>
767</div>
768
769<div class="doc_text">
770
Chris Lattner3689a342005-02-12 19:30:21 +0000771<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000772instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000773an explicit section to be placed in, and may have an optional explicit alignment
774specified. A variable may be defined as "thread_local", which means that it
775will not be shared by threads (each thread will have a separated copy of the
776variable). A variable may be defined as a global "constant," which indicates
777that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000778optimization, allowing the global data to be placed in the read-only section of
779an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000780cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000781
782<p>
783LLVM explicitly allows <em>declarations</em> of global variables to be marked
784constant, even if the final definition of the global is not. This capability
785can be used to enable slightly better optimization of the program, but requires
786the language definition to guarantee that optimizations based on the
787'constantness' are valid for the translation units that do not include the
788definition.
789</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000790
791<p>As SSA values, global variables define pointer values that are in
792scope (i.e. they dominate) all basic blocks in the program. Global
793variables always define a pointer to their "content" type because they
794describe a region of memory, and all memory objects in LLVM are
795accessed through pointers.</p>
796
Christopher Lamb284d9922007-12-11 09:31:00 +0000797<p>A global variable may be declared to reside in a target-specifc numbered
798address space. For targets that support them, address spaces may affect how
799optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000800the variable. The default address space is zero. The address space qualifier
801must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000802
Chris Lattner88f6c462005-11-12 00:45:07 +0000803<p>LLVM allows an explicit section to be specified for globals. If the target
804supports it, it will emit globals to the section specified.</p>
805
Chris Lattner2cbdc452005-11-06 08:02:57 +0000806<p>An explicit alignment may be specified for a global. If not present, or if
807the alignment is set to zero, the alignment of the global is set by the target
808to whatever it feels convenient. If an explicit alignment is specified, the
809global is forced to have at least that much alignment. All alignments must be
810a power of 2.</p>
811
Christopher Lamb284d9922007-12-11 09:31:00 +0000812<p>For example, the following defines a global in a numbered address space with
813an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000814
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000815<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000816<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000817@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000818</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000819</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000820
Chris Lattnerfa730212004-12-09 16:11:40 +0000821</div>
822
823
824<!-- ======================================================================= -->
825<div class="doc_subsection">
826 <a name="functionstructure">Functions</a>
827</div>
828
829<div class="doc_text">
830
Reid Spencerca86e162006-12-31 07:07:53 +0000831<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
832an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000833<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000834<a href="#callingconv">calling convention</a>, a return type, an optional
835<a href="#paramattrs">parameter attribute</a> for the return type, a function
836name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000837<a href="#paramattrs">parameter attributes</a>), optional
838<a href="#fnattrs">function attributes</a>, an optional section,
839an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000840an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000841
842LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
843optional <a href="#linkage">linkage type</a>, an optional
844<a href="#visibility">visibility style</a>, an optional
845<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000846<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000847name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000848<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000849
Chris Lattnerd3eda892008-08-05 18:29:16 +0000850<p>A function definition contains a list of basic blocks, forming the CFG
851(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000852the function. Each basic block may optionally start with a label (giving the
853basic block a symbol table entry), contains a list of instructions, and ends
854with a <a href="#terminators">terminator</a> instruction (such as a branch or
855function return).</p>
856
Chris Lattner4a3c9012007-06-08 16:52:14 +0000857<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000858executed on entrance to the function, and it is not allowed to have predecessor
859basic blocks (i.e. there can not be any branches to the entry block of a
860function). Because the block can have no predecessors, it also cannot have any
861<a href="#i_phi">PHI nodes</a>.</p>
862
Chris Lattner88f6c462005-11-12 00:45:07 +0000863<p>LLVM allows an explicit section to be specified for functions. If the target
864supports it, it will emit functions to the section specified.</p>
865
Chris Lattner2cbdc452005-11-06 08:02:57 +0000866<p>An explicit alignment may be specified for a function. If not present, or if
867the alignment is set to zero, the alignment of the function is set by the target
868to whatever it feels convenient. If an explicit alignment is specified, the
869function is forced to have at least that much alignment. All alignments must be
870a power of 2.</p>
871
Devang Patel307e8ab2008-10-07 17:48:33 +0000872 <h5>Syntax:</h5>
873
874<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000875<tt>
876define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
877 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
878 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
879 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
880 [<a href="#gc">gc</a>] { ... }
881</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000882</div>
883
Chris Lattnerfa730212004-12-09 16:11:40 +0000884</div>
885
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000886
887<!-- ======================================================================= -->
888<div class="doc_subsection">
889 <a name="aliasstructure">Aliases</a>
890</div>
891<div class="doc_text">
892 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000893 function, global variable, another alias or bitcast of global value). Aliases
894 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000895 optional <a href="#visibility">visibility style</a>.</p>
896
897 <h5>Syntax:</h5>
898
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000899<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000900<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000901@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000902</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000903</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000904
905</div>
906
907
908
Chris Lattner4e9aba72006-01-23 23:23:47 +0000909<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000910<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
911<div class="doc_text">
912 <p>The return type and each parameter of a function type may have a set of
913 <i>parameter attributes</i> associated with them. Parameter attributes are
914 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000915 a function. Parameter attributes are considered to be part of the function,
916 not of the function type, so functions with different parameter attributes
917 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000918
Reid Spencer950e9f82007-01-15 18:27:39 +0000919 <p>Parameter attributes are simple keywords that follow the type specified. If
920 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000921 example:</p>
922
923<div class="doc_code">
924<pre>
Nick Lewyckyb6a7d252009-02-15 23:06:14 +0000925declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000926declare i32 @atoi(i8 zeroext)
927declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000928</pre>
929</div>
930
Duncan Sandsdc024672007-11-27 13:23:08 +0000931 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
932 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000933
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000934 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000935 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000936 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000937 <dd>This indicates to the code generator that the parameter or return value
938 should be zero-extended to a 32-bit value by the caller (for a parameter)
939 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000940
Reid Spencer9445e9a2007-07-19 23:13:04 +0000941 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000942 <dd>This indicates to the code generator that the parameter or return value
943 should be sign-extended to a 32-bit value by the caller (for a parameter)
944 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000945
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000946 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000947 <dd>This indicates that this parameter or return value should be treated
948 in a special target-dependent fashion during while emitting code for a
949 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000950 to memory, though some targets use it to distinguish between two different
951 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000952
Duncan Sandsedb05df2008-10-06 08:14:18 +0000953 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000954 <dd>This indicates that the pointer parameter should really be passed by
955 value to the function. The attribute implies that a hidden copy of the
956 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000957 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000958 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000959 value, but is also valid on pointers to scalars. The copy is considered to
960 belong to the caller not the callee (for example,
961 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000962 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerce459b12009-02-05 05:42:28 +0000963 values. The byval attribute also supports specifying an alignment with the
964 align attribute. This has a target-specific effect on the code generator
965 that usually indicates a desired alignment for the synthesized stack
966 slot.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000967
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000968 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000969 <dd>This indicates that the pointer parameter specifies the address of a
970 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000971 This pointer must be guaranteed by the caller to be valid: loads and stores
972 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000973 be applied to the first parameter. This is not a valid attribute for
974 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000975
Zhou Shengfebca342007-06-05 05:28:26 +0000976 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000977 <dd>This indicates that the pointer does not alias any global or any other
978 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000979 case. On a function return value, <tt>noalias</tt> additionally indicates
980 that the pointer does not alias any other pointers visible to the
Nick Lewyckyf23d0d32008-12-19 06:39:12 +0000981 caller. For further details, please see the discussion of the NoAlias
982 response in
983 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
984 analysis</a>.</dd>
985
986 <dt><tt>nocapture</tt></dt>
987 <dd>This indicates that the callee does not make any copies of the pointer
988 that outlive the callee itself. This is not a valid attribute for return
989 values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000990
Duncan Sands50f19f52007-07-27 19:57:41 +0000991 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000992 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000993 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
994 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000995 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000996
Reid Spencerca86e162006-12-31 07:07:53 +0000997</div>
998
999<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +00001000<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001001 <a name="gc">Garbage Collector Names</a>
1002</div>
1003
1004<div class="doc_text">
1005<p>Each function may specify a garbage collector name, which is simply a
1006string.</p>
1007
1008<div class="doc_code"><pre
1009>define void @f() gc "name" { ...</pre></div>
1010
1011<p>The compiler declares the supported values of <i>name</i>. Specifying a
1012collector which will cause the compiler to alter its output in order to support
1013the named garbage collection algorithm.</p>
1014</div>
1015
1016<!-- ======================================================================= -->
1017<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001018 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +00001019</div>
1020
1021<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001022
1023<p>Function attributes are set to communicate additional information about
1024 a function. Function attributes are considered to be part of the function,
1025 not of the function type, so functions with different parameter attributes
1026 can have the same function type.</p>
1027
1028 <p>Function attributes are simple keywords that follow the type specified. If
1029 multiple attributes are needed, they are space separated. For
1030 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001031
1032<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001033<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001034define void @f() noinline { ... }
1035define void @f() alwaysinline { ... }
1036define void @f() alwaysinline optsize { ... }
1037define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001038</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001039</div>
1040
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001041<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001042<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001043<dd>This attribute indicates that the inliner should attempt to inline this
1044function into callers whenever possible, ignoring any active inlining size
1045threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001046
Devang Patel2c9c3e72008-09-26 23:51:19 +00001047<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001048<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +00001049in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +00001050<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001051
Devang Patel2c9c3e72008-09-26 23:51:19 +00001052<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +00001053<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +00001054make choices that keep the code size of this function low, and otherwise do
1055optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001056
Devang Patel2c9c3e72008-09-26 23:51:19 +00001057<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001058<dd>This function attribute indicates that the function never returns normally.
1059This produces undefined behavior at runtime if the function ever does
1060dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001061
1062<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001063<dd>This function attribute indicates that the function never returns with an
1064unwind or exceptional control flow. If the function does unwind, its runtime
1065behavior is undefined.</dd>
1066
1067<dt><tt>readnone</tt></dt>
Duncan Sands7af1c782009-05-06 06:49:50 +00001068<dd>This attribute indicates that the function computes its result (or decides to
1069unwind an exception) based strictly on its arguments, without dereferencing any
Duncan Sandsedb05df2008-10-06 08:14:18 +00001070pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1071registers, etc) visible to caller functions. It does not write through any
1072pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
Duncan Sands7af1c782009-05-06 06:49:50 +00001073never changes any state visible to callers. This means that it cannot unwind
1074exceptions by calling the <tt>C++</tt> exception throwing methods, but could
1075use the <tt>unwind</tt> instruction.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001076
Duncan Sandsedb05df2008-10-06 08:14:18 +00001077<dt><tt><a name="readonly">readonly</a></tt></dt>
1078<dd>This attribute indicates that the function does not write through any
1079pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1080or otherwise modify any state (e.g. memory, control registers, etc) visible to
1081caller functions. It may dereference pointer arguments and read state that may
Duncan Sands7af1c782009-05-06 06:49:50 +00001082be set in the caller. A readonly function always returns the same value (or
1083unwinds an exception identically) when called with the same set of arguments
1084and global state. It cannot unwind an exception by calling the <tt>C++</tt>
1085exception throwing methods, but may use the <tt>unwind</tt> instruction.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001086
1087<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001088<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +00001089protector. It is in the form of a "canary"&mdash;a random value placed on the
1090stack before the local variables that's checked upon return from the function to
1091see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001092needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001093
Devang Patel5d96fda2009-06-12 19:45:19 +00001094<br><br>If a function that has an <tt>ssp</tt> attribute is inlined into a function
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001095that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
Devang Patel5d96fda2009-06-12 19:45:19 +00001096have an <tt>ssp</tt> attribute.</dd>
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001097
1098<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001099<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001100stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001101function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001102
Devang Patel5d96fda2009-06-12 19:45:19 +00001103If a function that has an <tt>sspreq</tt> attribute is inlined into a
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001104function that doesn't have an <tt>sspreq</tt> attribute or which has
1105an <tt>ssp</tt> attribute, then the resulting function will have
Devang Patel5d96fda2009-06-12 19:45:19 +00001106an <tt>sspreq</tt> attribute.</dd>
1107
1108<dt><tt>noredzone</tt></dt>
1109<dd>This attribute indicates that the code generator should not enforce red zone
1110mandated by target specific ABI.</dd>
1111
1112<dt><tt>noimplicitfloat</tt></dt>
1113<dd>This attributes disables implicit floating point instructions.</dd>
1114
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001115</dl>
1116
Devang Patelf8b94812008-09-04 23:05:13 +00001117</div>
1118
1119<!-- ======================================================================= -->
1120<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001121 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001122</div>
1123
1124<div class="doc_text">
1125<p>
1126Modules may contain "module-level inline asm" blocks, which corresponds to the
1127GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1128LLVM and treated as a single unit, but may be separated in the .ll file if
1129desired. The syntax is very simple:
1130</p>
1131
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001132<div class="doc_code">
1133<pre>
1134module asm "inline asm code goes here"
1135module asm "more can go here"
1136</pre>
1137</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001138
1139<p>The strings can contain any character by escaping non-printable characters.
1140 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1141 for the number.
1142</p>
1143
1144<p>
1145 The inline asm code is simply printed to the machine code .s file when
1146 assembly code is generated.
1147</p>
1148</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001149
Reid Spencerde151942007-02-19 23:54:10 +00001150<!-- ======================================================================= -->
1151<div class="doc_subsection">
1152 <a name="datalayout">Data Layout</a>
1153</div>
1154
1155<div class="doc_text">
1156<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001157data is to be laid out in memory. The syntax for the data layout is simply:</p>
1158<pre> target datalayout = "<i>layout specification</i>"</pre>
1159<p>The <i>layout specification</i> consists of a list of specifications
1160separated by the minus sign character ('-'). Each specification starts with a
1161letter and may include other information after the letter to define some
1162aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001163<dl>
1164 <dt><tt>E</tt></dt>
1165 <dd>Specifies that the target lays out data in big-endian form. That is, the
1166 bits with the most significance have the lowest address location.</dd>
1167 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001168 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001169 the bits with the least significance have the lowest address location.</dd>
1170 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1171 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1172 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1173 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1174 too.</dd>
1175 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1176 <dd>This specifies the alignment for an integer type of a given bit
1177 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1178 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1179 <dd>This specifies the alignment for a vector type of a given bit
1180 <i>size</i>.</dd>
1181 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1182 <dd>This specifies the alignment for a floating point type of a given bit
1183 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1184 (double).</dd>
1185 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1186 <dd>This specifies the alignment for an aggregate type of a given bit
1187 <i>size</i>.</dd>
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001188 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1189 <dd>This specifies the alignment for a stack object of a given bit
1190 <i>size</i>.</dd>
Reid Spencerde151942007-02-19 23:54:10 +00001191</dl>
1192<p>When constructing the data layout for a given target, LLVM starts with a
1193default set of specifications which are then (possibly) overriden by the
1194specifications in the <tt>datalayout</tt> keyword. The default specifications
1195are given in this list:</p>
1196<ul>
1197 <li><tt>E</tt> - big endian</li>
1198 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1199 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1200 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1201 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1202 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001203 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001204 alignment of 64-bits</li>
1205 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1206 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1207 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1208 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1209 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001210 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencerde151942007-02-19 23:54:10 +00001211</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001212<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001213following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001214<ol>
1215 <li>If the type sought is an exact match for one of the specifications, that
1216 specification is used.</li>
1217 <li>If no match is found, and the type sought is an integer type, then the
1218 smallest integer type that is larger than the bitwidth of the sought type is
1219 used. If none of the specifications are larger than the bitwidth then the the
1220 largest integer type is used. For example, given the default specifications
1221 above, the i7 type will use the alignment of i8 (next largest) while both
1222 i65 and i256 will use the alignment of i64 (largest specified).</li>
1223 <li>If no match is found, and the type sought is a vector type, then the
1224 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001225 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1226 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001227</ol>
1228</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001229
Chris Lattner00950542001-06-06 20:29:01 +00001230<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001231<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1232<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001233
Misha Brukman9d0919f2003-11-08 01:05:38 +00001234<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001235
Misha Brukman9d0919f2003-11-08 01:05:38 +00001236<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001237intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001238optimizations to be performed on the intermediate representation directly,
1239without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001240extra analyses on the side before the transformation. A strong type
1241system makes it easier to read the generated code and enables novel
1242analyses and transformations that are not feasible to perform on normal
1243three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001244
1245</div>
1246
Chris Lattner00950542001-06-06 20:29:01 +00001247<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001248<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001249Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001250<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001251<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001252classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001253
1254<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001255 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001256 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001257 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001258 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001259 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001260 </tr>
1261 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001262 <td><a href="#t_floating">floating point</a></td>
1263 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001264 </tr>
1265 <tr>
1266 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001267 <td><a href="#t_integer">integer</a>,
1268 <a href="#t_floating">floating point</a>,
1269 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001270 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001271 <a href="#t_struct">structure</a>,
1272 <a href="#t_array">array</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001273 <a href="#t_label">label</a>,
1274 <a href="#t_metadata">metadata</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001275 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001276 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001277 <tr>
1278 <td><a href="#t_primitive">primitive</a></td>
1279 <td><a href="#t_label">label</a>,
1280 <a href="#t_void">void</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001281 <a href="#t_floating">floating point</a>,
1282 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001283 </tr>
1284 <tr>
1285 <td><a href="#t_derived">derived</a></td>
1286 <td><a href="#t_integer">integer</a>,
1287 <a href="#t_array">array</a>,
1288 <a href="#t_function">function</a>,
1289 <a href="#t_pointer">pointer</a>,
1290 <a href="#t_struct">structure</a>,
1291 <a href="#t_pstruct">packed structure</a>,
1292 <a href="#t_vector">vector</a>,
1293 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001294 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001295 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001296 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001297</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001298
Chris Lattner261efe92003-11-25 01:02:51 +00001299<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1300most important. Values of these types are the only ones which can be
1301produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001302instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001303</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001304
Chris Lattner00950542001-06-06 20:29:01 +00001305<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001306<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001307
Chris Lattner4f69f462008-01-04 04:32:38 +00001308<div class="doc_text">
1309<p>The primitive types are the fundamental building blocks of the LLVM
1310system.</p>
1311
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001312</div>
1313
Chris Lattner4f69f462008-01-04 04:32:38 +00001314<!-- _______________________________________________________________________ -->
1315<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1316
1317<div class="doc_text">
1318 <table>
1319 <tbody>
1320 <tr><th>Type</th><th>Description</th></tr>
1321 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1322 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1323 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1324 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1325 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1326 </tbody>
1327 </table>
1328</div>
1329
1330<!-- _______________________________________________________________________ -->
1331<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1332
1333<div class="doc_text">
1334<h5>Overview:</h5>
1335<p>The void type does not represent any value and has no size.</p>
1336
1337<h5>Syntax:</h5>
1338
1339<pre>
1340 void
1341</pre>
1342</div>
1343
1344<!-- _______________________________________________________________________ -->
1345<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1346
1347<div class="doc_text">
1348<h5>Overview:</h5>
1349<p>The label type represents code labels.</p>
1350
1351<h5>Syntax:</h5>
1352
1353<pre>
1354 label
1355</pre>
1356</div>
1357
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001358<!-- _______________________________________________________________________ -->
1359<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1360
1361<div class="doc_text">
1362<h5>Overview:</h5>
1363<p>The metadata type represents embedded metadata. The only derived type that
1364may contain metadata is <tt>metadata*</tt> or a function type that returns or
1365takes metadata typed parameters, but not pointer to metadata types.</p>
1366
1367<h5>Syntax:</h5>
1368
1369<pre>
1370 metadata
1371</pre>
1372</div>
1373
Chris Lattner4f69f462008-01-04 04:32:38 +00001374
1375<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001376<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001377
Misha Brukman9d0919f2003-11-08 01:05:38 +00001378<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001379
Chris Lattner261efe92003-11-25 01:02:51 +00001380<p>The real power in LLVM comes from the derived types in the system.
1381This is what allows a programmer to represent arrays, functions,
1382pointers, and other useful types. Note that these derived types may be
1383recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001384
Misha Brukman9d0919f2003-11-08 01:05:38 +00001385</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001386
Chris Lattner00950542001-06-06 20:29:01 +00001387<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001388<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1389
1390<div class="doc_text">
1391
1392<h5>Overview:</h5>
1393<p>The integer type is a very simple derived type that simply specifies an
1394arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13952^23-1 (about 8 million) can be specified.</p>
1396
1397<h5>Syntax:</h5>
1398
1399<pre>
1400 iN
1401</pre>
1402
1403<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1404value.</p>
1405
1406<h5>Examples:</h5>
1407<table class="layout">
Nick Lewycky86c48642009-05-24 02:46:06 +00001408 <tr class="layout">
1409 <td class="left"><tt>i1</tt></td>
1410 <td class="left">a single-bit integer.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001411 </tr>
Nick Lewycky86c48642009-05-24 02:46:06 +00001412 <tr class="layout">
1413 <td class="left"><tt>i32</tt></td>
1414 <td class="left">a 32-bit integer.</td>
1415 </tr>
1416 <tr class="layout">
1417 <td class="left"><tt>i1942652</tt></td>
1418 <td class="left">a really big integer of over 1 million bits.</td>
1419 </tr>
Reid Spencer2b916312007-05-16 18:44:01 +00001420</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001421
1422<p>Note that the code generator does not yet support large integer types
1423to be used as function return types. The specific limit on how large a
1424return type the code generator can currently handle is target-dependent;
1425currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1426targets.</p>
1427
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001428</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001429
1430<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001431<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001432
Misha Brukman9d0919f2003-11-08 01:05:38 +00001433<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001434
Chris Lattner00950542001-06-06 20:29:01 +00001435<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001436
Misha Brukman9d0919f2003-11-08 01:05:38 +00001437<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001438sequentially in memory. The array type requires a size (number of
1439elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001440
Chris Lattner7faa8832002-04-14 06:13:44 +00001441<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001442
1443<pre>
1444 [&lt;# elements&gt; x &lt;elementtype&gt;]
1445</pre>
1446
John Criswelle4c57cc2005-05-12 16:52:32 +00001447<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001448be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001449
Chris Lattner7faa8832002-04-14 06:13:44 +00001450<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001451<table class="layout">
1452 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001453 <td class="left"><tt>[40 x i32]</tt></td>
1454 <td class="left">Array of 40 32-bit integer values.</td>
1455 </tr>
1456 <tr class="layout">
1457 <td class="left"><tt>[41 x i32]</tt></td>
1458 <td class="left">Array of 41 32-bit integer values.</td>
1459 </tr>
1460 <tr class="layout">
1461 <td class="left"><tt>[4 x i8]</tt></td>
1462 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001463 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001464</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001465<p>Here are some examples of multidimensional arrays:</p>
1466<table class="layout">
1467 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001468 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1469 <td class="left">3x4 array of 32-bit integer values.</td>
1470 </tr>
1471 <tr class="layout">
1472 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1473 <td class="left">12x10 array of single precision floating point values.</td>
1474 </tr>
1475 <tr class="layout">
1476 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1477 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001478 </tr>
1479</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001480
John Criswell0ec250c2005-10-24 16:17:18 +00001481<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1482length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001483LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1484As a special case, however, zero length arrays are recognized to be variable
1485length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001486type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001487
Dan Gohmand8791e52009-01-24 15:58:40 +00001488<p>Note that the code generator does not yet support large aggregate types
1489to be used as function return types. The specific limit on how large an
1490aggregate return type the code generator can currently handle is
1491target-dependent, and also dependent on the aggregate element types.</p>
1492
Misha Brukman9d0919f2003-11-08 01:05:38 +00001493</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001494
Chris Lattner00950542001-06-06 20:29:01 +00001495<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001496<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001497<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001498
Chris Lattner00950542001-06-06 20:29:01 +00001499<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001500
Chris Lattner261efe92003-11-25 01:02:51 +00001501<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001502consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001503return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001504If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001505class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001506
Chris Lattner00950542001-06-06 20:29:01 +00001507<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001508
1509<pre>
1510 &lt;returntype list&gt; (&lt;parameter list&gt;)
1511</pre>
1512
John Criswell0ec250c2005-10-24 16:17:18 +00001513<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001514specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001515which indicates that the function takes a variable number of arguments.
1516Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001517 href="#int_varargs">variable argument handling intrinsic</a> functions.
1518'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1519<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001520
Chris Lattner00950542001-06-06 20:29:01 +00001521<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001522<table class="layout">
1523 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001524 <td class="left"><tt>i32 (i32)</tt></td>
1525 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001526 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001527 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001528 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001529 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001530 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1531 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001532 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001533 <tt>float</tt>.
1534 </td>
1535 </tr><tr class="layout">
1536 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1537 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001538 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001539 which returns an integer. This is the signature for <tt>printf</tt> in
1540 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001541 </td>
Devang Patela582f402008-03-24 05:35:41 +00001542 </tr><tr class="layout">
1543 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001544 <td class="left">A function taking an <tt>i32</tt>, returning two
1545 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001546 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001547 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001548</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001549
Misha Brukman9d0919f2003-11-08 01:05:38 +00001550</div>
Chris Lattner00950542001-06-06 20:29:01 +00001551<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001552<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001553<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001554<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001555<p>The structure type is used to represent a collection of data members
1556together in memory. The packing of the field types is defined to match
1557the ABI of the underlying processor. The elements of a structure may
1558be any type that has a size.</p>
1559<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1560and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1561field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1562instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001563<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001564<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001565<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001566<table class="layout">
1567 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001568 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1569 <td class="left">A triple of three <tt>i32</tt> values</td>
1570 </tr><tr class="layout">
1571 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1572 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1573 second element is a <a href="#t_pointer">pointer</a> to a
1574 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1575 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001576 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001577</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001578
1579<p>Note that the code generator does not yet support large aggregate types
1580to be used as function return types. The specific limit on how large an
1581aggregate return type the code generator can currently handle is
1582target-dependent, and also dependent on the aggregate element types.</p>
1583
Misha Brukman9d0919f2003-11-08 01:05:38 +00001584</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001585
Chris Lattner00950542001-06-06 20:29:01 +00001586<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001587<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1588</div>
1589<div class="doc_text">
1590<h5>Overview:</h5>
1591<p>The packed structure type is used to represent a collection of data members
1592together in memory. There is no padding between fields. Further, the alignment
1593of a packed structure is 1 byte. The elements of a packed structure may
1594be any type that has a size.</p>
1595<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1596and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1597field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1598instruction.</p>
1599<h5>Syntax:</h5>
1600<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1601<h5>Examples:</h5>
1602<table class="layout">
1603 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001604 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1605 <td class="left">A triple of three <tt>i32</tt> values</td>
1606 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001607 <td class="left">
1608<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001609 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1610 second element is a <a href="#t_pointer">pointer</a> to a
1611 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1612 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001613 </tr>
1614</table>
1615</div>
1616
1617<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001618<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001619<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001620<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001621<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001622reference to another object, which must live in memory. Pointer types may have
1623an optional address space attribute defining the target-specific numbered
1624address space where the pointed-to object resides. The default address space is
1625zero.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001626
1627<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
Chris Lattnere220e8c2009-02-08 22:21:28 +00001628it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001629
Chris Lattner7faa8832002-04-14 06:13:44 +00001630<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001631<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001632<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001633<table class="layout">
1634 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001635 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001636 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1637 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1638 </tr>
1639 <tr class="layout">
1640 <td class="left"><tt>i32 (i32 *) *</tt></td>
1641 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001642 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001643 <tt>i32</tt>.</td>
1644 </tr>
1645 <tr class="layout">
1646 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1647 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1648 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001649 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001650</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001651</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001652
Chris Lattnera58561b2004-08-12 19:12:28 +00001653<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001654<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001655<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001656
Chris Lattnera58561b2004-08-12 19:12:28 +00001657<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001658
Reid Spencer485bad12007-02-15 03:07:05 +00001659<p>A vector type is a simple derived type that represents a vector
1660of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001661are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001662A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001663elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001664of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001665considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001666
Chris Lattnera58561b2004-08-12 19:12:28 +00001667<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001668
1669<pre>
1670 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1671</pre>
1672
John Criswellc1f786c2005-05-13 22:25:59 +00001673<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001674be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001675
Chris Lattnera58561b2004-08-12 19:12:28 +00001676<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001677
Reid Spencerd3f876c2004-11-01 08:19:36 +00001678<table class="layout">
1679 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001680 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1681 <td class="left">Vector of 4 32-bit integer values.</td>
1682 </tr>
1683 <tr class="layout">
1684 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1685 <td class="left">Vector of 8 32-bit floating-point values.</td>
1686 </tr>
1687 <tr class="layout">
1688 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1689 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001690 </tr>
1691</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001692
1693<p>Note that the code generator does not yet support large vector types
1694to be used as function return types. The specific limit on how large a
1695vector return type codegen can currently handle is target-dependent;
1696currently it's often a few times longer than a hardware vector register.</p>
1697
Misha Brukman9d0919f2003-11-08 01:05:38 +00001698</div>
1699
Chris Lattner69c11bb2005-04-25 17:34:15 +00001700<!-- _______________________________________________________________________ -->
1701<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1702<div class="doc_text">
1703
1704<h5>Overview:</h5>
1705
1706<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001707corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001708In LLVM, opaque types can eventually be resolved to any type (not just a
1709structure type).</p>
1710
1711<h5>Syntax:</h5>
1712
1713<pre>
1714 opaque
1715</pre>
1716
1717<h5>Examples:</h5>
1718
1719<table class="layout">
1720 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001721 <td class="left"><tt>opaque</tt></td>
1722 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001723 </tr>
1724</table>
1725</div>
1726
Chris Lattner242d61d2009-02-02 07:32:36 +00001727<!-- ======================================================================= -->
1728<div class="doc_subsection">
1729 <a name="t_uprefs">Type Up-references</a>
1730</div>
1731
1732<div class="doc_text">
1733<h5>Overview:</h5>
1734<p>
1735An "up reference" allows you to refer to a lexically enclosing type without
1736requiring it to have a name. For instance, a structure declaration may contain a
1737pointer to any of the types it is lexically a member of. Example of up
1738references (with their equivalent as named type declarations) include:</p>
1739
1740<pre>
Chris Lattner3060f5b2009-02-09 10:00:56 +00001741 { \2 * } %x = type { %x* }
Chris Lattner242d61d2009-02-02 07:32:36 +00001742 { \2 }* %y = type { %y }*
1743 \1* %z = type %z*
1744</pre>
1745
1746<p>
1747An up reference is needed by the asmprinter for printing out cyclic types when
1748there is no declared name for a type in the cycle. Because the asmprinter does
1749not want to print out an infinite type string, it needs a syntax to handle
1750recursive types that have no names (all names are optional in llvm IR).
1751</p>
1752
1753<h5>Syntax:</h5>
1754<pre>
1755 \&lt;level&gt;
1756</pre>
1757
1758<p>
1759The level is the count of the lexical type that is being referred to.
1760</p>
1761
1762<h5>Examples:</h5>
1763
1764<table class="layout">
1765 <tr class="layout">
1766 <td class="left"><tt>\1*</tt></td>
1767 <td class="left">Self-referential pointer.</td>
1768 </tr>
1769 <tr class="layout">
1770 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1771 <td class="left">Recursive structure where the upref refers to the out-most
1772 structure.</td>
1773 </tr>
1774</table>
1775</div>
1776
Chris Lattner69c11bb2005-04-25 17:34:15 +00001777
Chris Lattnerc3f59762004-12-09 17:30:23 +00001778<!-- *********************************************************************** -->
1779<div class="doc_section"> <a name="constants">Constants</a> </div>
1780<!-- *********************************************************************** -->
1781
1782<div class="doc_text">
1783
1784<p>LLVM has several different basic types of constants. This section describes
1785them all and their syntax.</p>
1786
1787</div>
1788
1789<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001790<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001791
1792<div class="doc_text">
1793
1794<dl>
1795 <dt><b>Boolean constants</b></dt>
1796
1797 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001798 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001799 </dd>
1800
1801 <dt><b>Integer constants</b></dt>
1802
Reid Spencercc16dc32004-12-09 18:02:53 +00001803 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001804 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001805 integer types.
1806 </dd>
1807
1808 <dt><b>Floating point constants</b></dt>
1809
1810 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1811 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001812 notation (see below). The assembler requires the exact decimal value of
1813 a floating-point constant. For example, the assembler accepts 1.25 but
1814 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1815 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001816
1817 <dt><b>Null pointer constants</b></dt>
1818
John Criswell9e2485c2004-12-10 15:51:16 +00001819 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001820 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1821
1822</dl>
1823
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001824<p>The one non-intuitive notation for constants is the hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001825of floating point constants. For example, the form '<tt>double
18260x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
18274.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001828(and the only time that they are generated by the disassembler) is when a
1829floating point constant must be emitted but it cannot be represented as a
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001830decimal floating point number in a reasonable number of digits. For example,
1831NaN's, infinities, and other
Reid Spencercc16dc32004-12-09 18:02:53 +00001832special values are represented in their IEEE hexadecimal format so that
1833assembly and disassembly do not cause any bits to change in the constants.</p>
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001834<p>When using the hexadecimal form, constants of types float and double are
1835represented using the 16-digit form shown above (which matches the IEEE754
1836representation for double); float values must, however, be exactly representable
1837as IEE754 single precision.
1838Hexadecimal format is always used for long
1839double, and there are three forms of long double. The 80-bit
1840format used by x86 is represented as <tt>0xK</tt>
1841followed by 20 hexadecimal digits.
1842The 128-bit format used by PowerPC (two adjacent doubles) is represented
1843by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
1844format is represented
1845by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
1846target uses this format. Long doubles will only work if they match
1847the long double format on your target. All hexadecimal formats are big-endian
1848(sign bit at the left).</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001849</div>
1850
1851<!-- ======================================================================= -->
Chris Lattner70882792009-02-28 18:32:25 +00001852<div class="doc_subsection">
1853<a name="aggregateconstants"> <!-- old anchor -->
1854<a name="complexconstants">Complex Constants</a></a>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001855</div>
1856
1857<div class="doc_text">
Chris Lattner70882792009-02-28 18:32:25 +00001858<p>Complex constants are a (potentially recursive) combination of simple
1859constants and smaller complex constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001860
1861<dl>
1862 <dt><b>Structure constants</b></dt>
1863
1864 <dd>Structure constants are represented with notation similar to structure
1865 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001866 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1867 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001868 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001869 types of elements must match those specified by the type.
1870 </dd>
1871
1872 <dt><b>Array constants</b></dt>
1873
1874 <dd>Array constants are represented with notation similar to array type
1875 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001876 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001877 constants must have <a href="#t_array">array type</a>, and the number and
1878 types of elements must match those specified by the type.
1879 </dd>
1880
Reid Spencer485bad12007-02-15 03:07:05 +00001881 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001882
Reid Spencer485bad12007-02-15 03:07:05 +00001883 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001884 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001885 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001886 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001887 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001888 match those specified by the type.
1889 </dd>
1890
1891 <dt><b>Zero initialization</b></dt>
1892
1893 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1894 value to zero of <em>any</em> type, including scalar and aggregate types.
1895 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001896 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001897 initializers.
1898 </dd>
Nick Lewycky21cc4462009-04-04 07:22:01 +00001899
1900 <dt><b>Metadata node</b></dt>
1901
Nick Lewycky1e8c7a62009-05-30 16:08:30 +00001902 <dd>A metadata node is a structure-like constant with
1903 <a href="#t_metadata">metadata type</a>. For example:
1904 "<tt>metadata !{ i32 0, metadata !"test" }</tt>". Unlike other constants
1905 that are meant to be interpreted as part of the instruction stream, metadata
1906 is a place to attach additional information such as debug info.
Nick Lewycky21cc4462009-04-04 07:22:01 +00001907 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001908</dl>
1909
1910</div>
1911
1912<!-- ======================================================================= -->
1913<div class="doc_subsection">
1914 <a name="globalconstants">Global Variable and Function Addresses</a>
1915</div>
1916
1917<div class="doc_text">
1918
1919<p>The addresses of <a href="#globalvars">global variables</a> and <a
1920href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001921constants. These constants are explicitly referenced when the <a
1922href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001923href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1924file:</p>
1925
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001926<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001927<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001928@X = global i32 17
1929@Y = global i32 42
1930@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001931</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001932</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001933
1934</div>
1935
1936<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001937<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001938<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001939 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001940 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001941 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001942
Reid Spencer2dc45b82004-12-09 18:13:12 +00001943 <p>Undefined values indicate to the compiler that the program is well defined
1944 no matter what value is used, giving the compiler more freedom to optimize.
1945 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001946</div>
1947
1948<!-- ======================================================================= -->
1949<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1950</div>
1951
1952<div class="doc_text">
1953
1954<p>Constant expressions are used to allow expressions involving other constants
1955to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001956href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001957that does not have side effects (e.g. load and call are not supported). The
1958following is the syntax for constant expressions:</p>
1959
1960<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001961 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1962 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001963 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001964
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001965 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1966 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001967 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001968
1969 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1970 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001971 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001972
1973 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1974 <dd>Truncate a floating point constant to another floating point type. The
1975 size of CST must be larger than the size of TYPE. Both types must be
1976 floating point.</dd>
1977
1978 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1979 <dd>Floating point extend a constant to another type. The size of CST must be
1980 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1981
Reid Spencer1539a1c2007-07-31 14:40:14 +00001982 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001983 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001984 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1985 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1986 of the same number of elements. If the value won't fit in the integer type,
1987 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001988
Reid Spencerd4448792006-11-09 23:03:26 +00001989 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001990 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001991 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1992 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1993 of the same number of elements. If the value won't fit in the integer type,
1994 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001995
Reid Spencerd4448792006-11-09 23:03:26 +00001996 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001997 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001998 constant. TYPE must be a scalar or vector floating point type. CST must be of
1999 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
2000 of the same number of elements. If the value won't fit in the floating point
2001 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002002
Reid Spencerd4448792006-11-09 23:03:26 +00002003 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002004 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00002005 constant. TYPE must be a scalar or vector floating point type. CST must be of
2006 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
2007 of the same number of elements. If the value won't fit in the floating point
2008 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002009
Reid Spencer5c0ef472006-11-11 23:08:07 +00002010 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2011 <dd>Convert a pointer typed constant to the corresponding integer constant
2012 TYPE must be an integer type. CST must be of pointer type. The CST value is
2013 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
2014
2015 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
2016 <dd>Convert a integer constant to a pointer constant. TYPE must be a
2017 pointer type. CST must be of integer type. The CST value is zero extended,
2018 truncated, or unchanged to make it fit in a pointer size. This one is
2019 <i>really</i> dangerous!</dd>
2020
2021 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner03bbad62009-02-28 18:27:03 +00002022 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2023 are the same as those for the <a href="#i_bitcast">bitcast
2024 instruction</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002025
2026 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
2027
2028 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2029 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2030 instruction, the index list may have zero or more indexes, which are required
2031 to make sense for the type of "CSTPTR".</dd>
2032
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002033 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
2034
2035 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00002036 constants.</dd>
2037
2038 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2039 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2040
2041 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2042 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002043
Nate Begemanac80ade2008-05-12 19:01:56 +00002044 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
2045 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
2046
2047 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
2048 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
2049
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002050 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
2051
2052 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00002053 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002054
Robert Bocchino05ccd702006-01-15 20:48:27 +00002055 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
2056
2057 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00002058 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00002059
Chris Lattnerc1989542006-04-08 00:13:41 +00002060
2061 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
2062
2063 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00002064 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002065
Chris Lattnerc3f59762004-12-09 17:30:23 +00002066 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
2067
Reid Spencer2dc45b82004-12-09 18:13:12 +00002068 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2069 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00002070 binary</a> operations. The constraints on operands are the same as those for
2071 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00002072 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002073</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002074</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00002075
Nick Lewycky21cc4462009-04-04 07:22:01 +00002076<!-- ======================================================================= -->
2077<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2078</div>
2079
2080<div class="doc_text">
2081
2082<p>Embedded metadata provides a way to attach arbitrary data to the
2083instruction stream without affecting the behaviour of the program. There are
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002084two metadata primitives, strings and nodes. All metadata has the
2085<tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2086point ('<tt>!</tt>').
Nick Lewycky21cc4462009-04-04 07:22:01 +00002087</p>
2088
2089<p>A metadata string is a string surrounded by double quotes. It can contain
2090any character by escaping non-printable characters with "\xx" where "xx" is
2091the two digit hex code. For example: "<tt>!"test\00"</tt>".
2092</p>
2093
2094<p>Metadata nodes are represented with notation similar to structure constants
2095(a comma separated list of elements, surrounded by braces and preceeded by an
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002096exclamation point). For example: "<tt>!{ metadata !"test\00", i32 10}</tt>".
Nick Lewycky21cc4462009-04-04 07:22:01 +00002097</p>
2098
Nick Lewyckycb337992009-05-10 20:57:05 +00002099<p>A metadata node will attempt to track changes to the values it holds. In
2100the event that a value is deleted, it will be replaced with a typeless
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002101"<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
Nick Lewyckycb337992009-05-10 20:57:05 +00002102
Nick Lewycky21cc4462009-04-04 07:22:01 +00002103<p>Optimizations may rely on metadata to provide additional information about
2104the program that isn't available in the instructions, or that isn't easily
2105computable. Similarly, the code generator may expect a certain metadata format
2106to be used to express debugging information.</p>
2107</div>
2108
Chris Lattner00950542001-06-06 20:29:01 +00002109<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00002110<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2111<!-- *********************************************************************** -->
2112
2113<!-- ======================================================================= -->
2114<div class="doc_subsection">
2115<a name="inlineasm">Inline Assembler Expressions</a>
2116</div>
2117
2118<div class="doc_text">
2119
2120<p>
2121LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2122Module-Level Inline Assembly</a>) through the use of a special value. This
2123value represents the inline assembler as a string (containing the instructions
2124to emit), a list of operand constraints (stored as a string), and a flag that
2125indicates whether or not the inline asm expression has side effects. An example
2126inline assembler expression is:
2127</p>
2128
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002129<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002130<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002131i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002132</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002133</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002134
2135<p>
2136Inline assembler expressions may <b>only</b> be used as the callee operand of
2137a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2138</p>
2139
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002140<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002141<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002142%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002143</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002144</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002145
2146<p>
2147Inline asms with side effects not visible in the constraint list must be marked
2148as having side effects. This is done through the use of the
2149'<tt>sideeffect</tt>' keyword, like so:
2150</p>
2151
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002152<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002153<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002154call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002155</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002156</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002157
2158<p>TODO: The format of the asm and constraints string still need to be
2159documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00002160need to be documented). This is probably best done by reference to another
2161document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00002162</p>
2163
2164</div>
2165
2166<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00002167<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2168<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002169
Misha Brukman9d0919f2003-11-08 01:05:38 +00002170<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002171
Chris Lattner261efe92003-11-25 01:02:51 +00002172<p>The LLVM instruction set consists of several different
2173classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00002174instructions</a>, <a href="#binaryops">binary instructions</a>,
2175<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00002176 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2177instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002178
Misha Brukman9d0919f2003-11-08 01:05:38 +00002179</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002180
Chris Lattner00950542001-06-06 20:29:01 +00002181<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002182<div class="doc_subsection"> <a name="terminators">Terminator
2183Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002184
Misha Brukman9d0919f2003-11-08 01:05:38 +00002185<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002186
Chris Lattner261efe92003-11-25 01:02:51 +00002187<p>As mentioned <a href="#functionstructure">previously</a>, every
2188basic block in a program ends with a "Terminator" instruction, which
2189indicates which block should be executed after the current block is
2190finished. These terminator instructions typically yield a '<tt>void</tt>'
2191value: they produce control flow, not values (the one exception being
2192the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00002193<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00002194 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2195instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00002196the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2197 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2198 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002199
Misha Brukman9d0919f2003-11-08 01:05:38 +00002200</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002201
Chris Lattner00950542001-06-06 20:29:01 +00002202<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002203<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2204Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002205<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002206<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002207<pre>
2208 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002209 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002210</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002211
Chris Lattner00950542001-06-06 20:29:01 +00002212<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002213
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002214<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2215optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00002216<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002217returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00002218control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002219
Chris Lattner00950542001-06-06 20:29:01 +00002220<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002221
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002222<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2223the return value. The type of the return value must be a
2224'<a href="#t_firstclass">first class</a>' type.</p>
2225
2226<p>A function is not <a href="#wellformed">well formed</a> if
2227it it has a non-void return type and contains a '<tt>ret</tt>'
2228instruction with no return value or a return value with a type that
2229does not match its type, or if it has a void return type and contains
2230a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002231
Chris Lattner00950542001-06-06 20:29:01 +00002232<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002233
Chris Lattner261efe92003-11-25 01:02:51 +00002234<p>When the '<tt>ret</tt>' instruction is executed, control flow
2235returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00002236 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00002237the instruction after the call. If the caller was an "<a
2238 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00002239at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00002240returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00002241return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002242
Chris Lattner00950542001-06-06 20:29:01 +00002243<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002244
2245<pre>
2246 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002247 ret void <i>; Return from a void function</i>
Bill Wendling0a4bbbf2009-02-28 22:12:54 +00002248 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002249</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002250
Dan Gohmand8791e52009-01-24 15:58:40 +00002251<p>Note that the code generator does not yet fully support large
2252 return values. The specific sizes that are currently supported are
2253 dependent on the target. For integers, on 32-bit targets the limit
2254 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2255 For aggregate types, the current limits are dependent on the element
2256 types; for example targets are often limited to 2 total integer
2257 elements and 2 total floating-point elements.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002258
Misha Brukman9d0919f2003-11-08 01:05:38 +00002259</div>
Chris Lattner00950542001-06-06 20:29:01 +00002260<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002261<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002262<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002263<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002264<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002265</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002266<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002267<p>The '<tt>br</tt>' instruction is used to cause control flow to
2268transfer to a different basic block in the current function. There are
2269two forms of this instruction, corresponding to a conditional branch
2270and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002271<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002272<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002273single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002274unconditional form of the '<tt>br</tt>' instruction takes a single
2275'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002276<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002277<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002278argument is evaluated. If the value is <tt>true</tt>, control flows
2279to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2280control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002281<h5>Example:</h5>
Chris Lattner60150a32009-05-09 18:11:50 +00002282<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002283 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002284</div>
Chris Lattner00950542001-06-06 20:29:01 +00002285<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002286<div class="doc_subsubsection">
2287 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2288</div>
2289
Misha Brukman9d0919f2003-11-08 01:05:38 +00002290<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002291<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002292
2293<pre>
2294 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2295</pre>
2296
Chris Lattner00950542001-06-06 20:29:01 +00002297<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002298
2299<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2300several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002301instruction, allowing a branch to occur to one of many possible
2302destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002303
2304
Chris Lattner00950542001-06-06 20:29:01 +00002305<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002306
2307<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2308comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2309an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2310table is not allowed to contain duplicate constant entries.</p>
2311
Chris Lattner00950542001-06-06 20:29:01 +00002312<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002313
Chris Lattner261efe92003-11-25 01:02:51 +00002314<p>The <tt>switch</tt> instruction specifies a table of values and
2315destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002316table is searched for the given value. If the value is found, control flow is
2317transfered to the corresponding destination; otherwise, control flow is
2318transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002319
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002320<h5>Implementation:</h5>
2321
2322<p>Depending on properties of the target machine and the particular
2323<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002324ways. For example, it could be generated as a series of chained conditional
2325branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002326
2327<h5>Example:</h5>
2328
2329<pre>
2330 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002331 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002332 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002333
2334 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002335 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002336
2337 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002338 switch i32 %val, label %otherwise [ i32 0, label %onzero
2339 i32 1, label %onone
2340 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002341</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002342</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002343
Chris Lattner00950542001-06-06 20:29:01 +00002344<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002345<div class="doc_subsubsection">
2346 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2347</div>
2348
Misha Brukman9d0919f2003-11-08 01:05:38 +00002349<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002350
Chris Lattner00950542001-06-06 20:29:01 +00002351<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002352
2353<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002354 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002355 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002356</pre>
2357
Chris Lattner6536cfe2002-05-06 22:08:29 +00002358<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002359
2360<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2361function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002362'<tt>normal</tt>' label or the
2363'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002364"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2365"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002366href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002367continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002368
Chris Lattner00950542001-06-06 20:29:01 +00002369<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002370
Misha Brukman9d0919f2003-11-08 01:05:38 +00002371<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002372
Chris Lattner00950542001-06-06 20:29:01 +00002373<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002374 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002375 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002376 convention</a> the call should use. If none is specified, the call defaults
2377 to using C calling conventions.
2378 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002379
2380 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2381 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2382 and '<tt>inreg</tt>' attributes are valid here.</li>
2383
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002384 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2385 function value being invoked. In most cases, this is a direct function
2386 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2387 an arbitrary pointer to function value.
2388 </li>
2389
2390 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2391 function to be invoked. </li>
2392
2393 <li>'<tt>function args</tt>': argument list whose types match the function
2394 signature argument types. If the function signature indicates the function
2395 accepts a variable number of arguments, the extra arguments can be
2396 specified. </li>
2397
2398 <li>'<tt>normal label</tt>': the label reached when the called function
2399 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2400
2401 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2402 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2403
Devang Patel307e8ab2008-10-07 17:48:33 +00002404 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002405 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2406 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002407</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002408
Chris Lattner00950542001-06-06 20:29:01 +00002409<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002410
Misha Brukman9d0919f2003-11-08 01:05:38 +00002411<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002412href="#i_call">call</a></tt>' instruction in most regards. The primary
2413difference is that it establishes an association with a label, which is used by
2414the runtime library to unwind the stack.</p>
2415
2416<p>This instruction is used in languages with destructors to ensure that proper
2417cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2418exception. Additionally, this is important for implementation of
2419'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2420
Jay Foadd2449092009-06-03 10:20:10 +00002421<p>For the purposes of the SSA form, the definition of the value
2422returned by the '<tt>invoke</tt>' instruction is deemed to occur on
2423the edge from the current block to the "normal" label. If the callee
2424unwinds then no return value is available.</p>
Dan Gohmanf96a4992009-05-22 21:47:08 +00002425
Chris Lattner00950542001-06-06 20:29:01 +00002426<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002427<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002428 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002429 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002430 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002431 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002432</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002433</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002434
2435
Chris Lattner27f71f22003-09-03 00:41:47 +00002436<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002437
Chris Lattner261efe92003-11-25 01:02:51 +00002438<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2439Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002440
Misha Brukman9d0919f2003-11-08 01:05:38 +00002441<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002442
Chris Lattner27f71f22003-09-03 00:41:47 +00002443<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002444<pre>
2445 unwind
2446</pre>
2447
Chris Lattner27f71f22003-09-03 00:41:47 +00002448<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002449
2450<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2451at the first callee in the dynamic call stack which used an <a
2452href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2453primarily used to implement exception handling.</p>
2454
Chris Lattner27f71f22003-09-03 00:41:47 +00002455<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002456
Chris Lattner72ed2002008-04-19 21:01:16 +00002457<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002458immediately halt. The dynamic call stack is then searched for the first <a
2459href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2460execution continues at the "exceptional" destination block specified by the
2461<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2462dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002463</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002464
2465<!-- _______________________________________________________________________ -->
2466
2467<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2468Instruction</a> </div>
2469
2470<div class="doc_text">
2471
2472<h5>Syntax:</h5>
2473<pre>
2474 unreachable
2475</pre>
2476
2477<h5>Overview:</h5>
2478
2479<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2480instruction is used to inform the optimizer that a particular portion of the
2481code is not reachable. This can be used to indicate that the code after a
2482no-return function cannot be reached, and other facts.</p>
2483
2484<h5>Semantics:</h5>
2485
2486<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2487</div>
2488
2489
2490
Chris Lattner00950542001-06-06 20:29:01 +00002491<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002492<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002493<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002494<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002495program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002496produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002497multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002498The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002499<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002500</div>
Chris Lattner00950542001-06-06 20:29:01 +00002501<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002502<div class="doc_subsubsection">
2503 <a name="i_add">'<tt>add</tt>' Instruction</a>
2504</div>
2505
Misha Brukman9d0919f2003-11-08 01:05:38 +00002506<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002507
Chris Lattner00950542001-06-06 20:29:01 +00002508<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002509
2510<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002511 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002512</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002513
Chris Lattner00950542001-06-06 20:29:01 +00002514<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002515
Misha Brukman9d0919f2003-11-08 01:05:38 +00002516<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002517
Chris Lattner00950542001-06-06 20:29:01 +00002518<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002519
2520<p>The two arguments to the '<tt>add</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002521 href="#t_integer">integer</a> or
2522 <a href="#t_vector">vector</a> of integer values. Both arguments must
2523 have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002524
Chris Lattner00950542001-06-06 20:29:01 +00002525<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002526
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002527<p>The value produced is the integer sum of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002528
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002529<p>If the sum has unsigned overflow, the result returned is the
Chris Lattner5ec89832008-01-28 00:36:27 +00002530mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2531the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002532
Chris Lattner5ec89832008-01-28 00:36:27 +00002533<p>Because LLVM integers use a two's complement representation, this
2534instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002535
Chris Lattner00950542001-06-06 20:29:01 +00002536<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002537
2538<pre>
2539 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002540</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002541</div>
Chris Lattner00950542001-06-06 20:29:01 +00002542<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002543<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002544 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
2545</div>
2546
2547<div class="doc_text">
2548
2549<h5>Syntax:</h5>
2550
2551<pre>
2552 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2553</pre>
2554
2555<h5>Overview:</h5>
2556
2557<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
2558
2559<h5>Arguments:</h5>
2560
2561<p>The two arguments to the '<tt>fadd</tt>' instruction must be
2562<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2563floating point values. Both arguments must have identical types.</p>
2564
2565<h5>Semantics:</h5>
2566
2567<p>The value produced is the floating point sum of the two operands.</p>
2568
2569<h5>Example:</h5>
2570
2571<pre>
2572 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
2573</pre>
2574</div>
2575<!-- _______________________________________________________________________ -->
2576<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00002577 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2578</div>
2579
Misha Brukman9d0919f2003-11-08 01:05:38 +00002580<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002581
Chris Lattner00950542001-06-06 20:29:01 +00002582<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002583
2584<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002585 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002586</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002587
Chris Lattner00950542001-06-06 20:29:01 +00002588<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002589
Misha Brukman9d0919f2003-11-08 01:05:38 +00002590<p>The '<tt>sub</tt>' instruction returns the difference of its two
2591operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002592
2593<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2594'<tt>neg</tt>' instruction present in most other intermediate
2595representations.</p>
2596
Chris Lattner00950542001-06-06 20:29:01 +00002597<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002598
2599<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002600 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2601 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002602
Chris Lattner00950542001-06-06 20:29:01 +00002603<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002604
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002605<p>The value produced is the integer difference of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002606
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002607<p>If the difference has unsigned overflow, the result returned is the
Chris Lattner5ec89832008-01-28 00:36:27 +00002608mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2609the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002610
Chris Lattner5ec89832008-01-28 00:36:27 +00002611<p>Because LLVM integers use a two's complement representation, this
2612instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002613
Chris Lattner00950542001-06-06 20:29:01 +00002614<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002615<pre>
2616 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002617 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002618</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002619</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002620
Chris Lattner00950542001-06-06 20:29:01 +00002621<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002622<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002623 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
2624</div>
2625
2626<div class="doc_text">
2627
2628<h5>Syntax:</h5>
2629
2630<pre>
2631 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2632</pre>
2633
2634<h5>Overview:</h5>
2635
2636<p>The '<tt>fsub</tt>' instruction returns the difference of its two
2637operands.</p>
2638
2639<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
2640'<tt>fneg</tt>' instruction present in most other intermediate
2641representations.</p>
2642
2643<h5>Arguments:</h5>
2644
2645<p>The two arguments to the '<tt>fsub</tt>' instruction must be <a
2646 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2647 of floating point values. Both arguments must have identical types.</p>
2648
2649<h5>Semantics:</h5>
2650
2651<p>The value produced is the floating point difference of the two operands.</p>
2652
2653<h5>Example:</h5>
2654<pre>
2655 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
2656 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
2657</pre>
2658</div>
2659
2660<!-- _______________________________________________________________________ -->
2661<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00002662 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2663</div>
2664
Misha Brukman9d0919f2003-11-08 01:05:38 +00002665<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002666
Chris Lattner00950542001-06-06 20:29:01 +00002667<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002668<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002669</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002670<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002671<p>The '<tt>mul</tt>' instruction returns the product of its two
2672operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002673
Chris Lattner00950542001-06-06 20:29:01 +00002674<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002675
2676<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002677href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2678values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002679
Chris Lattner00950542001-06-06 20:29:01 +00002680<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002681
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002682<p>The value produced is the integer product of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002683
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002684<p>If the result of the multiplication has unsigned overflow,
Chris Lattner5ec89832008-01-28 00:36:27 +00002685the result returned is the mathematical result modulo
26862<sup>n</sup>, where n is the bit width of the result.</p>
2687<p>Because LLVM integers use a two's complement representation, and the
2688result is the same width as the operands, this instruction returns the
2689correct result for both signed and unsigned integers. If a full product
2690(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2691should be sign-extended or zero-extended as appropriate to the
2692width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002693<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002694<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002695</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002696</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002697
Chris Lattner00950542001-06-06 20:29:01 +00002698<!-- _______________________________________________________________________ -->
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002699<div class="doc_subsubsection">
2700 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
2701</div>
2702
2703<div class="doc_text">
2704
2705<h5>Syntax:</h5>
2706<pre> &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2707</pre>
2708<h5>Overview:</h5>
2709<p>The '<tt>fmul</tt>' instruction returns the product of its two
2710operands.</p>
2711
2712<h5>Arguments:</h5>
2713
2714<p>The two arguments to the '<tt>fmul</tt>' instruction must be
2715<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2716of floating point values. Both arguments must have identical types.</p>
2717
2718<h5>Semantics:</h5>
2719
2720<p>The value produced is the floating point product of the two operands.</p>
2721
2722<h5>Example:</h5>
2723<pre> &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
2724</pre>
2725</div>
2726
2727<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002728<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2729</a></div>
2730<div class="doc_text">
2731<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002732<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002733</pre>
2734<h5>Overview:</h5>
2735<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2736operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002737
Reid Spencer1628cec2006-10-26 06:15:43 +00002738<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002739
Reid Spencer1628cec2006-10-26 06:15:43 +00002740<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002741<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2742values. Both arguments must have identical types.</p>
2743
Reid Spencer1628cec2006-10-26 06:15:43 +00002744<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002745
Chris Lattner5ec89832008-01-28 00:36:27 +00002746<p>The value produced is the unsigned integer quotient of the two operands.</p>
2747<p>Note that unsigned integer division and signed integer division are distinct
2748operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2749<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002750<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002751<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002752</pre>
2753</div>
2754<!-- _______________________________________________________________________ -->
2755<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2756</a> </div>
2757<div class="doc_text">
2758<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002759<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002760 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002761</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002762
Reid Spencer1628cec2006-10-26 06:15:43 +00002763<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002764
Reid Spencer1628cec2006-10-26 06:15:43 +00002765<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2766operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002767
Reid Spencer1628cec2006-10-26 06:15:43 +00002768<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002769
2770<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2771<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2772values. Both arguments must have identical types.</p>
2773
Reid Spencer1628cec2006-10-26 06:15:43 +00002774<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002775<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002776<p>Note that signed integer division and unsigned integer division are distinct
2777operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2778<p>Division by zero leads to undefined behavior. Overflow also leads to
2779undefined behavior; this is a rare case, but can occur, for example,
2780by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002781<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002782<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002783</pre>
2784</div>
2785<!-- _______________________________________________________________________ -->
2786<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002787Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002788<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002789<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002790<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002791 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002792</pre>
2793<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002794
Reid Spencer1628cec2006-10-26 06:15:43 +00002795<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002796operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002797
Chris Lattner261efe92003-11-25 01:02:51 +00002798<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002799
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002800<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002801<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2802of floating point values. Both arguments must have identical types.</p>
2803
Chris Lattner261efe92003-11-25 01:02:51 +00002804<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002805
Reid Spencer1628cec2006-10-26 06:15:43 +00002806<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002807
Chris Lattner261efe92003-11-25 01:02:51 +00002808<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002809
2810<pre>
2811 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002812</pre>
2813</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002814
Chris Lattner261efe92003-11-25 01:02:51 +00002815<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002816<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2817</div>
2818<div class="doc_text">
2819<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002820<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002821</pre>
2822<h5>Overview:</h5>
2823<p>The '<tt>urem</tt>' instruction returns the remainder from the
2824unsigned division of its two arguments.</p>
2825<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002826<p>The two arguments to the '<tt>urem</tt>' instruction must be
2827<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2828values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002829<h5>Semantics:</h5>
2830<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002831This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002832<p>Note that unsigned integer remainder and signed integer remainder are
2833distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2834<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002835<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002836<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002837</pre>
2838
2839</div>
2840<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002841<div class="doc_subsubsection">
2842 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2843</div>
2844
Chris Lattner261efe92003-11-25 01:02:51 +00002845<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002846
Chris Lattner261efe92003-11-25 01:02:51 +00002847<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002848
2849<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002850 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002851</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002852
Chris Lattner261efe92003-11-25 01:02:51 +00002853<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002854
Reid Spencer0a783f72006-11-02 01:53:59 +00002855<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002856signed division of its two operands. This instruction can also take
2857<a href="#t_vector">vector</a> versions of the values in which case
2858the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002859
Chris Lattner261efe92003-11-25 01:02:51 +00002860<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002861
Reid Spencer0a783f72006-11-02 01:53:59 +00002862<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002863<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2864values. Both arguments must have identical types.</p>
2865
Chris Lattner261efe92003-11-25 01:02:51 +00002866<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002867
Reid Spencer0a783f72006-11-02 01:53:59 +00002868<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002869has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2870operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002871a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002872 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002873Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002874please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002875Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002876<p>Note that signed integer remainder and unsigned integer remainder are
2877distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2878<p>Taking the remainder of a division by zero leads to undefined behavior.
2879Overflow also leads to undefined behavior; this is a rare case, but can occur,
2880for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2881(The remainder doesn't actually overflow, but this rule lets srem be
2882implemented using instructions that return both the result of the division
2883and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002884<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002885<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002886</pre>
2887
2888</div>
2889<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002890<div class="doc_subsubsection">
2891 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2892
Reid Spencer0a783f72006-11-02 01:53:59 +00002893<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002894
Reid Spencer0a783f72006-11-02 01:53:59 +00002895<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002896<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002897</pre>
2898<h5>Overview:</h5>
2899<p>The '<tt>frem</tt>' instruction returns the remainder from the
2900division of its two operands.</p>
2901<h5>Arguments:</h5>
2902<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002903<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2904of floating point values. Both arguments must have identical types.</p>
2905
Reid Spencer0a783f72006-11-02 01:53:59 +00002906<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002907
Chris Lattnera73afe02008-04-01 18:45:27 +00002908<p>This instruction returns the <i>remainder</i> of a division.
2909The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002910
Reid Spencer0a783f72006-11-02 01:53:59 +00002911<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002912
2913<pre>
2914 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002915</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002916</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002917
Reid Spencer8e11bf82007-02-02 13:57:07 +00002918<!-- ======================================================================= -->
2919<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2920Operations</a> </div>
2921<div class="doc_text">
2922<p>Bitwise binary operators are used to do various forms of
2923bit-twiddling in a program. They are generally very efficient
2924instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002925instructions. They require two operands of the same type, execute an operation on them,
2926and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002927</div>
2928
Reid Spencer569f2fa2007-01-31 21:39:12 +00002929<!-- _______________________________________________________________________ -->
2930<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2931Instruction</a> </div>
2932<div class="doc_text">
2933<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002934<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002935</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002936
Reid Spencer569f2fa2007-01-31 21:39:12 +00002937<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002938
Reid Spencer569f2fa2007-01-31 21:39:12 +00002939<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2940the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002941
Reid Spencer569f2fa2007-01-31 21:39:12 +00002942<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002943
Reid Spencer569f2fa2007-01-31 21:39:12 +00002944<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002945 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002946type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002947
Reid Spencer569f2fa2007-01-31 21:39:12 +00002948<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002949
Gabor Greiffb224a22008-08-07 21:46:00 +00002950<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2951where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang01f8d092008-12-10 08:55:09 +00002952equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2953If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2954corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002955
Reid Spencer569f2fa2007-01-31 21:39:12 +00002956<h5>Example:</h5><pre>
2957 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2958 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2959 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002960 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002961 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002962</pre>
2963</div>
2964<!-- _______________________________________________________________________ -->
2965<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2966Instruction</a> </div>
2967<div class="doc_text">
2968<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002969<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002970</pre>
2971
2972<h5>Overview:</h5>
2973<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002974operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002975
2976<h5>Arguments:</h5>
2977<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002978<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002979type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002980
2981<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002982
Reid Spencer569f2fa2007-01-31 21:39:12 +00002983<p>This instruction always performs a logical shift right operation. The most
2984significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002985shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang01f8d092008-12-10 08:55:09 +00002986the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2987vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2988amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002989
2990<h5>Example:</h5>
2991<pre>
2992 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2993 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2994 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2995 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002996 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002997 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002998</pre>
2999</div>
3000
Reid Spencer8e11bf82007-02-02 13:57:07 +00003001<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00003002<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3003Instruction</a> </div>
3004<div class="doc_text">
3005
3006<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003007<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003008</pre>
3009
3010<h5>Overview:</h5>
3011<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003012operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003013
3014<h5>Arguments:</h5>
3015<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00003016<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00003017type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003018
3019<h5>Semantics:</h5>
3020<p>This instruction always performs an arithmetic shift right operation,
3021The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00003022of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang01f8d092008-12-10 08:55:09 +00003023larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
3024arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
3025corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003026
3027<h5>Example:</h5>
3028<pre>
3029 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3030 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3031 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3032 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003033 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003034 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003035</pre>
3036</div>
3037
Chris Lattner00950542001-06-06 20:29:01 +00003038<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003039<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3040Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00003041
Misha Brukman9d0919f2003-11-08 01:05:38 +00003042<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003043
Chris Lattner00950542001-06-06 20:29:01 +00003044<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003045
3046<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003047 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003048</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003049
Chris Lattner00950542001-06-06 20:29:01 +00003050<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003051
Chris Lattner261efe92003-11-25 01:02:51 +00003052<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
3053its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003054
Chris Lattner00950542001-06-06 20:29:01 +00003055<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003056
3057<p>The two arguments to the '<tt>and</tt>' instruction must be
3058<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3059values. Both arguments must have identical types.</p>
3060
Chris Lattner00950542001-06-06 20:29:01 +00003061<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003062<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003063<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003064<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003065<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00003066 <tbody>
3067 <tr>
3068 <td>In0</td>
3069 <td>In1</td>
3070 <td>Out</td>
3071 </tr>
3072 <tr>
3073 <td>0</td>
3074 <td>0</td>
3075 <td>0</td>
3076 </tr>
3077 <tr>
3078 <td>0</td>
3079 <td>1</td>
3080 <td>0</td>
3081 </tr>
3082 <tr>
3083 <td>1</td>
3084 <td>0</td>
3085 <td>0</td>
3086 </tr>
3087 <tr>
3088 <td>1</td>
3089 <td>1</td>
3090 <td>1</td>
3091 </tr>
3092 </tbody>
3093</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003094</div>
Chris Lattner00950542001-06-06 20:29:01 +00003095<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003096<pre>
3097 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003098 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3099 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00003100</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003101</div>
Chris Lattner00950542001-06-06 20:29:01 +00003102<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003103<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003104<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00003105<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003106<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003107</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00003108<h5>Overview:</h5>
3109<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
3110or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003111<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003112
3113<p>The two arguments to the '<tt>or</tt>' instruction must be
3114<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3115values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003116<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003117<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003118<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003119<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003120<table border="1" cellspacing="0" cellpadding="4">
3121 <tbody>
3122 <tr>
3123 <td>In0</td>
3124 <td>In1</td>
3125 <td>Out</td>
3126 </tr>
3127 <tr>
3128 <td>0</td>
3129 <td>0</td>
3130 <td>0</td>
3131 </tr>
3132 <tr>
3133 <td>0</td>
3134 <td>1</td>
3135 <td>1</td>
3136 </tr>
3137 <tr>
3138 <td>1</td>
3139 <td>0</td>
3140 <td>1</td>
3141 </tr>
3142 <tr>
3143 <td>1</td>
3144 <td>1</td>
3145 <td>1</td>
3146 </tr>
3147 </tbody>
3148</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003149</div>
Chris Lattner00950542001-06-06 20:29:01 +00003150<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003151<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
3152 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3153 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00003154</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003155</div>
Chris Lattner00950542001-06-06 20:29:01 +00003156<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003157<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3158Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003159<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00003160<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003161<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003162</pre>
Chris Lattner00950542001-06-06 20:29:01 +00003163<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003164<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
3165or of its two operands. The <tt>xor</tt> is used to implement the
3166"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003167<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003168<p>The two arguments to the '<tt>xor</tt>' instruction must be
3169<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3170values. Both arguments must have identical types.</p>
3171
Chris Lattner00950542001-06-06 20:29:01 +00003172<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003173
Misha Brukman9d0919f2003-11-08 01:05:38 +00003174<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003175<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003176<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003177<table border="1" cellspacing="0" cellpadding="4">
3178 <tbody>
3179 <tr>
3180 <td>In0</td>
3181 <td>In1</td>
3182 <td>Out</td>
3183 </tr>
3184 <tr>
3185 <td>0</td>
3186 <td>0</td>
3187 <td>0</td>
3188 </tr>
3189 <tr>
3190 <td>0</td>
3191 <td>1</td>
3192 <td>1</td>
3193 </tr>
3194 <tr>
3195 <td>1</td>
3196 <td>0</td>
3197 <td>1</td>
3198 </tr>
3199 <tr>
3200 <td>1</td>
3201 <td>1</td>
3202 <td>0</td>
3203 </tr>
3204 </tbody>
3205</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003206</div>
Chris Lattner261efe92003-11-25 01:02:51 +00003207<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00003208<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003209<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3210 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3211 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3212 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00003213</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003214</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003215
Chris Lattner00950542001-06-06 20:29:01 +00003216<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003217<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00003218 <a name="vectorops">Vector Operations</a>
3219</div>
3220
3221<div class="doc_text">
3222
3223<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003224target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00003225vector-specific operations needed to process vectors effectively. While LLVM
3226does directly support these vector operations, many sophisticated algorithms
3227will want to use target-specific intrinsics to take full advantage of a specific
3228target.</p>
3229
3230</div>
3231
3232<!-- _______________________________________________________________________ -->
3233<div class="doc_subsubsection">
3234 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3235</div>
3236
3237<div class="doc_text">
3238
3239<h5>Syntax:</h5>
3240
3241<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003242 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003243</pre>
3244
3245<h5>Overview:</h5>
3246
3247<p>
3248The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003249element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003250</p>
3251
3252
3253<h5>Arguments:</h5>
3254
3255<p>
3256The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003257value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00003258an index indicating the position from which to extract the element.
3259The index may be a variable.</p>
3260
3261<h5>Semantics:</h5>
3262
3263<p>
3264The result is a scalar of the same type as the element type of
3265<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3266<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3267results are undefined.
3268</p>
3269
3270<h5>Example:</h5>
3271
3272<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003273 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003274</pre>
3275</div>
3276
3277
3278<!-- _______________________________________________________________________ -->
3279<div class="doc_subsubsection">
3280 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3281</div>
3282
3283<div class="doc_text">
3284
3285<h5>Syntax:</h5>
3286
3287<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00003288 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003289</pre>
3290
3291<h5>Overview:</h5>
3292
3293<p>
3294The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003295element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003296</p>
3297
3298
3299<h5>Arguments:</h5>
3300
3301<p>
3302The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003303value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00003304scalar value whose type must equal the element type of the first
3305operand. The third operand is an index indicating the position at
3306which to insert the value. The index may be a variable.</p>
3307
3308<h5>Semantics:</h5>
3309
3310<p>
Reid Spencer485bad12007-02-15 03:07:05 +00003311The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00003312element values are those of <tt>val</tt> except at position
3313<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3314exceeds the length of <tt>val</tt>, the results are undefined.
3315</p>
3316
3317<h5>Example:</h5>
3318
3319<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003320 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003321</pre>
3322</div>
3323
3324<!-- _______________________________________________________________________ -->
3325<div class="doc_subsubsection">
3326 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3327</div>
3328
3329<div class="doc_text">
3330
3331<h5>Syntax:</h5>
3332
3333<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003334 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003335</pre>
3336
3337<h5>Overview:</h5>
3338
3339<p>
3340The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00003341from two input vectors, returning a vector with the same element type as
3342the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00003343</p>
3344
3345<h5>Arguments:</h5>
3346
3347<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003348The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3349with types that match each other. The third argument is a shuffle mask whose
3350element type is always 'i32'. The result of the instruction is a vector whose
3351length is the same as the shuffle mask and whose element type is the same as
3352the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00003353</p>
3354
3355<p>
3356The shuffle mask operand is required to be a constant vector with either
3357constant integer or undef values.
3358</p>
3359
3360<h5>Semantics:</h5>
3361
3362<p>
3363The elements of the two input vectors are numbered from left to right across
3364both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00003365the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00003366gets. The element selector may be undef (meaning "don't care") and the second
3367operand may be undef if performing a shuffle from only one vector.
3368</p>
3369
3370<h5>Example:</h5>
3371
3372<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003373 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003374 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003375 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3376 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003377 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3378 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3379 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3380 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003381</pre>
3382</div>
3383
Tanya Lattner09474292006-04-14 19:24:33 +00003384
Chris Lattner3df241e2006-04-08 23:07:04 +00003385<!-- ======================================================================= -->
3386<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003387 <a name="aggregateops">Aggregate Operations</a>
3388</div>
3389
3390<div class="doc_text">
3391
3392<p>LLVM supports several instructions for working with aggregate values.
3393</p>
3394
3395</div>
3396
3397<!-- _______________________________________________________________________ -->
3398<div class="doc_subsubsection">
3399 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3400</div>
3401
3402<div class="doc_text">
3403
3404<h5>Syntax:</h5>
3405
3406<pre>
3407 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3408</pre>
3409
3410<h5>Overview:</h5>
3411
3412<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003413The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3414or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003415</p>
3416
3417
3418<h5>Arguments:</h5>
3419
3420<p>
3421The first operand of an '<tt>extractvalue</tt>' instruction is a
3422value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003423type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003424in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003425'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3426</p>
3427
3428<h5>Semantics:</h5>
3429
3430<p>
3431The result is the value at the position in the aggregate specified by
3432the index operands.
3433</p>
3434
3435<h5>Example:</h5>
3436
3437<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003438 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003439</pre>
3440</div>
3441
3442
3443<!-- _______________________________________________________________________ -->
3444<div class="doc_subsubsection">
3445 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3446</div>
3447
3448<div class="doc_text">
3449
3450<h5>Syntax:</h5>
3451
3452<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003453 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003454</pre>
3455
3456<h5>Overview:</h5>
3457
3458<p>
3459The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003460into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003461</p>
3462
3463
3464<h5>Arguments:</h5>
3465
3466<p>
3467The first operand of an '<tt>insertvalue</tt>' instruction is a
3468value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3469The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003470The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003471indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003472indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003473'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3474The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003475by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003476</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003477
3478<h5>Semantics:</h5>
3479
3480<p>
3481The result is an aggregate of the same type as <tt>val</tt>. Its
3482value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003483specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003484</p>
3485
3486<h5>Example:</h5>
3487
3488<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003489 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003490</pre>
3491</div>
3492
3493
3494<!-- ======================================================================= -->
3495<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003496 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003497</div>
3498
Misha Brukman9d0919f2003-11-08 01:05:38 +00003499<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003500
Chris Lattner261efe92003-11-25 01:02:51 +00003501<p>A key design point of an SSA-based representation is how it
3502represents memory. In LLVM, no memory locations are in SSA form, which
3503makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003504allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003505
Misha Brukman9d0919f2003-11-08 01:05:38 +00003506</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003507
Chris Lattner00950542001-06-06 20:29:01 +00003508<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003509<div class="doc_subsubsection">
3510 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3511</div>
3512
Misha Brukman9d0919f2003-11-08 01:05:38 +00003513<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003514
Chris Lattner00950542001-06-06 20:29:01 +00003515<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003516
3517<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003518 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003519</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003520
Chris Lattner00950542001-06-06 20:29:01 +00003521<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003522
Chris Lattner261efe92003-11-25 01:02:51 +00003523<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003524heap and returns a pointer to it. The object is always allocated in the generic
3525address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003526
Chris Lattner00950542001-06-06 20:29:01 +00003527<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003528
3529<p>The '<tt>malloc</tt>' instruction allocates
3530<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003531bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003532appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003533number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003534If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003535be aligned to at least that boundary. If not specified, or if zero, the target can
3536choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003537
Misha Brukman9d0919f2003-11-08 01:05:38 +00003538<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003539
Chris Lattner00950542001-06-06 20:29:01 +00003540<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003541
Chris Lattner261efe92003-11-25 01:02:51 +00003542<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003543a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003544result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003545
Chris Lattner2cbdc452005-11-06 08:02:57 +00003546<h5>Example:</h5>
3547
3548<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003549 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003550
Bill Wendlingaac388b2007-05-29 09:42:13 +00003551 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3552 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3553 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3554 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3555 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003556</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003557
3558<p>Note that the code generator does not yet respect the
3559 alignment value.</p>
3560
Misha Brukman9d0919f2003-11-08 01:05:38 +00003561</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003562
Chris Lattner00950542001-06-06 20:29:01 +00003563<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003564<div class="doc_subsubsection">
3565 <a name="i_free">'<tt>free</tt>' Instruction</a>
3566</div>
3567
Misha Brukman9d0919f2003-11-08 01:05:38 +00003568<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003569
Chris Lattner00950542001-06-06 20:29:01 +00003570<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003571
3572<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003573 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003574</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003575
Chris Lattner00950542001-06-06 20:29:01 +00003576<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003577
Chris Lattner261efe92003-11-25 01:02:51 +00003578<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003579memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003580
Chris Lattner00950542001-06-06 20:29:01 +00003581<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003582
Chris Lattner261efe92003-11-25 01:02:51 +00003583<p>'<tt>value</tt>' shall be a pointer value that points to a value
3584that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3585instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003586
Chris Lattner00950542001-06-06 20:29:01 +00003587<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003588
John Criswell9e2485c2004-12-10 15:51:16 +00003589<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003590after this instruction executes. If the pointer is null, the operation
3591is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003592
Chris Lattner00950542001-06-06 20:29:01 +00003593<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003594
3595<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003596 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003597 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003598</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003599</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003600
Chris Lattner00950542001-06-06 20:29:01 +00003601<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003602<div class="doc_subsubsection">
3603 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3604</div>
3605
Misha Brukman9d0919f2003-11-08 01:05:38 +00003606<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003607
Chris Lattner00950542001-06-06 20:29:01 +00003608<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003609
3610<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003611 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003612</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003613
Chris Lattner00950542001-06-06 20:29:01 +00003614<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003615
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003616<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3617currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003618returns to its caller. The object is always allocated in the generic address
3619space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003620
Chris Lattner00950542001-06-06 20:29:01 +00003621<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003622
John Criswell9e2485c2004-12-10 15:51:16 +00003623<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003624bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003625appropriate type to the program. If "NumElements" is specified, it is the
3626number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003627If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003628to be aligned to at least that boundary. If not specified, or if zero, the target
3629can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003630
Misha Brukman9d0919f2003-11-08 01:05:38 +00003631<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003632
Chris Lattner00950542001-06-06 20:29:01 +00003633<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003634
Bill Wendling871eb0a2009-05-08 20:49:29 +00003635<p>Memory is allocated; a pointer is returned. The operation is undefined if
Chris Lattner72ed2002008-04-19 21:01:16 +00003636there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003637memory is automatically released when the function returns. The '<tt>alloca</tt>'
3638instruction is commonly used to represent automatic variables that must
3639have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003640 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003641instructions), the memory is reclaimed. Allocating zero bytes
3642is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003643
Chris Lattner00950542001-06-06 20:29:01 +00003644<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003645
3646<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003647 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3648 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3649 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3650 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003651</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003652</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003653
Chris Lattner00950542001-06-06 20:29:01 +00003654<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003655<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3656Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003657<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003658<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003659<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003660<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003661<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003662<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003663<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003664address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003665 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003666marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003667the number or order of execution of this <tt>load</tt> with other
3668volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3669instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003670<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003671The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003672(that is, the alignment of the memory address). A value of 0 or an
3673omitted "align" argument means that the operation has the preferential
3674alignment for the target. It is the responsibility of the code emitter
3675to ensure that the alignment information is correct. Overestimating
3676the alignment results in an undefined behavior. Underestimating the
3677alignment may produce less efficient code. An alignment of 1 is always
3678safe.
3679</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003680<h5>Semantics:</h5>
Duncan Sands19527c62009-03-22 11:33:16 +00003681<p>The location of memory pointed to is loaded. If the value being loaded
3682is of scalar type then the number of bytes read does not exceed the minimum
3683number of bytes needed to hold all bits of the type. For example, loading an
3684<tt>i24</tt> reads at most three bytes. When loading a value of a type like
3685<tt>i20</tt> with a size that is not an integral number of bytes, the result
3686is undefined if the value was not originally written using a store of the
3687same type.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003688<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003689<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003690 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003691 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3692 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003693</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003694</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003695<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003696<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3697Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003698<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003699<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003700<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3701 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003702</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003703<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003704<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003705<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003706<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003707to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003708operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3709of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003710operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003711optimizer is not allowed to modify the number or order of execution of
3712this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3713 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003714<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003715The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003716(that is, the alignment of the memory address). A value of 0 or an
3717omitted "align" argument means that the operation has the preferential
3718alignment for the target. It is the responsibility of the code emitter
3719to ensure that the alignment information is correct. Overestimating
3720the alignment results in an undefined behavior. Underestimating the
3721alignment may produce less efficient code. An alignment of 1 is always
3722safe.
3723</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003724<h5>Semantics:</h5>
3725<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
Duncan Sands19527c62009-03-22 11:33:16 +00003726at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.
3727If '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes
3728written does not exceed the minimum number of bytes needed to hold all
3729bits of the type. For example, storing an <tt>i24</tt> writes at most
3730three bytes. When writing a value of a type like <tt>i20</tt> with a
3731size that is not an integral number of bytes, it is unspecified what
3732happens to the extra bits that do not belong to the type, but they will
3733typically be overwritten.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003734<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003735<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003736 store i32 3, i32* %ptr <i>; yields {void}</i>
3737 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003738</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003739</div>
3740
Chris Lattner2b7d3202002-05-06 03:03:22 +00003741<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003742<div class="doc_subsubsection">
3743 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3744</div>
3745
Misha Brukman9d0919f2003-11-08 01:05:38 +00003746<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003747<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003748<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003749 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003750</pre>
3751
Chris Lattner7faa8832002-04-14 06:13:44 +00003752<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003753
3754<p>
3755The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003756subelement of an aggregate data structure. It performs address calculation only
3757and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003758
Chris Lattner7faa8832002-04-14 06:13:44 +00003759<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003760
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003761<p>The first argument is always a pointer, and forms the basis of the
3762calculation. The remaining arguments are indices, that indicate which of the
3763elements of the aggregate object are indexed. The interpretation of each index
3764is dependent on the type being indexed into. The first index always indexes the
3765pointer value given as the first argument, the second index indexes a value of
3766the type pointed to (not necessarily the value directly pointed to, since the
3767first index can be non-zero), etc. The first type indexed into must be a pointer
3768value, subsequent types can be arrays, vectors and structs. Note that subsequent
3769types being indexed into can never be pointers, since that would require loading
3770the pointer before continuing calculation.</p>
3771
3772<p>The type of each index argument depends on the type it is indexing into.
3773When indexing into a (packed) structure, only <tt>i32</tt> integer
3774<b>constants</b> are allowed. When indexing into an array, pointer or vector,
Sanjiv Gupta23c70f42009-04-27 03:21:00 +00003775integers of any width are allowed (also non-constants).</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003776
Chris Lattner261efe92003-11-25 01:02:51 +00003777<p>For example, let's consider a C code fragment and how it gets
3778compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003779
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003780<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003781<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003782struct RT {
3783 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003784 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003785 char C;
3786};
3787struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003788 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003789 double Y;
3790 struct RT Z;
3791};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003792
Chris Lattnercabc8462007-05-29 15:43:56 +00003793int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003794 return &amp;s[1].Z.B[5][13];
3795}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003796</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003797</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003798
Misha Brukman9d0919f2003-11-08 01:05:38 +00003799<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003800
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003801<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003802<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00003803%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3804%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003805
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003806define i32* %foo(%ST* %s) {
3807entry:
3808 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3809 ret i32* %reg
3810}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003811</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003812</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003813
Chris Lattner7faa8832002-04-14 06:13:44 +00003814<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003815
Misha Brukman9d0919f2003-11-08 01:05:38 +00003816<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003817type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003818}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003819the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3820i8 }</tt>' type, another structure. The third index indexes into the second
3821element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003822array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003823'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3824to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003825
Chris Lattner261efe92003-11-25 01:02:51 +00003826<p>Note that it is perfectly legal to index partially through a
3827structure, returning a pointer to an inner element. Because of this,
3828the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003829
3830<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003831 define i32* %foo(%ST* %s) {
3832 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003833 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3834 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003835 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3836 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3837 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003838 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003839</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003840
Chris Lattner8c0e62c2009-03-09 20:55:18 +00003841<p>Note that it is undefined to access an array out of bounds: array
3842and pointer indexes must always be within the defined bounds of the
3843array type when accessed with an instruction that dereferences the
3844pointer (e.g. a load or store instruction). The one exception for
3845this rule is zero length arrays. These arrays are defined to be
3846accessible as variable length arrays, which requires access beyond the
3847zero'th element.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00003848
Chris Lattner884a9702006-08-15 00:45:58 +00003849<p>The getelementptr instruction is often confusing. For some more insight
3850into how it works, see <a href="GetElementPtr.html">the getelementptr
3851FAQ</a>.</p>
3852
Chris Lattner7faa8832002-04-14 06:13:44 +00003853<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003854
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003855<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003856 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003857 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3858 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003859 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003860 <i>; yields i8*:eptr</i>
3861 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta9f805c22009-04-25 07:27:44 +00003862 <i>; yields i32*:iptr</i>
Sanjiv Gupta16ffa802009-04-24 16:38:13 +00003863 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003864</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003865</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003866
Chris Lattner00950542001-06-06 20:29:01 +00003867<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003868<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003869</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003870<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003871<p>The instructions in this category are the conversion instructions (casting)
3872which all take a single operand and a type. They perform various bit conversions
3873on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003874</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003875
Chris Lattner6536cfe2002-05-06 22:08:29 +00003876<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003877<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003878 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3879</div>
3880<div class="doc_text">
3881
3882<h5>Syntax:</h5>
3883<pre>
3884 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3885</pre>
3886
3887<h5>Overview:</h5>
3888<p>
3889The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3890</p>
3891
3892<h5>Arguments:</h5>
3893<p>
3894The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3895be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003896and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003897type. The bit size of <tt>value</tt> must be larger than the bit size of
3898<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003899
3900<h5>Semantics:</h5>
3901<p>
3902The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003903and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3904larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3905It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003906
3907<h5>Example:</h5>
3908<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003909 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003910 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3911 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003912</pre>
3913</div>
3914
3915<!-- _______________________________________________________________________ -->
3916<div class="doc_subsubsection">
3917 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3918</div>
3919<div class="doc_text">
3920
3921<h5>Syntax:</h5>
3922<pre>
3923 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3924</pre>
3925
3926<h5>Overview:</h5>
3927<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3928<tt>ty2</tt>.</p>
3929
3930
3931<h5>Arguments:</h5>
3932<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003933<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3934also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003935<tt>value</tt> must be smaller than the bit size of the destination type,
3936<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003937
3938<h5>Semantics:</h5>
3939<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003940bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003941
Reid Spencerb5929522007-01-12 15:46:11 +00003942<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003943
3944<h5>Example:</h5>
3945<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003946 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003947 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003948</pre>
3949</div>
3950
3951<!-- _______________________________________________________________________ -->
3952<div class="doc_subsubsection">
3953 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3954</div>
3955<div class="doc_text">
3956
3957<h5>Syntax:</h5>
3958<pre>
3959 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3960</pre>
3961
3962<h5>Overview:</h5>
3963<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3964
3965<h5>Arguments:</h5>
3966<p>
3967The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003968<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3969also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003970<tt>value</tt> must be smaller than the bit size of the destination type,
3971<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003972
3973<h5>Semantics:</h5>
3974<p>
3975The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3976bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003977the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003978
Reid Spencerc78f3372007-01-12 03:35:51 +00003979<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003980
3981<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003982<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003983 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003984 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003985</pre>
3986</div>
3987
3988<!-- _______________________________________________________________________ -->
3989<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003990 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3991</div>
3992
3993<div class="doc_text">
3994
3995<h5>Syntax:</h5>
3996
3997<pre>
3998 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3999</pre>
4000
4001<h5>Overview:</h5>
4002<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
4003<tt>ty2</tt>.</p>
4004
4005
4006<h5>Arguments:</h5>
4007<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
4008 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
4009cast it to. The size of <tt>value</tt> must be larger than the size of
4010<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4011<i>no-op cast</i>.</p>
4012
4013<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004014<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4015<a href="#t_floating">floating point</a> type to a smaller
4016<a href="#t_floating">floating point</a> type. If the value cannot fit within
4017the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004018
4019<h5>Example:</h5>
4020<pre>
4021 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4022 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4023</pre>
4024</div>
4025
4026<!-- _______________________________________________________________________ -->
4027<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004028 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4029</div>
4030<div class="doc_text">
4031
4032<h5>Syntax:</h5>
4033<pre>
4034 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4035</pre>
4036
4037<h5>Overview:</h5>
4038<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
4039floating point value.</p>
4040
4041<h5>Arguments:</h5>
4042<p>The '<tt>fpext</tt>' instruction takes a
4043<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00004044and a <a href="#t_floating">floating point</a> type to cast it to. The source
4045type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004046
4047<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004048<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00004049<a href="#t_floating">floating point</a> type to a larger
4050<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00004051used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00004052<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004053
4054<h5>Example:</h5>
4055<pre>
4056 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4057 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4058</pre>
4059</div>
4060
4061<!-- _______________________________________________________________________ -->
4062<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00004063 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004064</div>
4065<div class="doc_text">
4066
4067<h5>Syntax:</h5>
4068<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004069 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004070</pre>
4071
4072<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004073<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004074unsigned integer equivalent of type <tt>ty2</tt>.
4075</p>
4076
4077<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004078<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00004079scalar or vector <a href="#t_floating">floating point</a> value, and a type
4080to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4081type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4082vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004083
4084<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004085<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004086<a href="#t_floating">floating point</a> operand into the nearest (rounding
4087towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
4088the results are undefined.</p>
4089
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004090<h5>Example:</h5>
4091<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004092 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004093 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004094 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004095</pre>
4096</div>
4097
4098<!-- _______________________________________________________________________ -->
4099<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004100 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004101</div>
4102<div class="doc_text">
4103
4104<h5>Syntax:</h5>
4105<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004106 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004107</pre>
4108
4109<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004110<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004111<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004112</p>
4113
Chris Lattner6536cfe2002-05-06 22:08:29 +00004114<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004115<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00004116scalar or vector <a href="#t_floating">floating point</a> value, and a type
4117to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4118type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4119vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004120
Chris Lattner6536cfe2002-05-06 22:08:29 +00004121<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004122<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004123<a href="#t_floating">floating point</a> operand into the nearest (rounding
4124towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4125the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004126
Chris Lattner33ba0d92001-07-09 00:26:23 +00004127<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004128<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004129 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004130 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004131 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004132</pre>
4133</div>
4134
4135<!-- _______________________________________________________________________ -->
4136<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004137 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004138</div>
4139<div class="doc_text">
4140
4141<h5>Syntax:</h5>
4142<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004143 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004144</pre>
4145
4146<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004147<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004148integer and converts that value to the <tt>ty2</tt> type.</p>
4149
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004150<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004151<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4152scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4153to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4154type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4155floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004156
4157<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004158<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004159integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00004160the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004161
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004162<h5>Example:</h5>
4163<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004164 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004165 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004166</pre>
4167</div>
4168
4169<!-- _______________________________________________________________________ -->
4170<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004171 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004172</div>
4173<div class="doc_text">
4174
4175<h5>Syntax:</h5>
4176<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004177 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004178</pre>
4179
4180<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004181<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004182integer and converts that value to the <tt>ty2</tt> type.</p>
4183
4184<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004185<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4186scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4187to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4188type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4189floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004190
4191<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004192<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004193integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00004194the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004195
4196<h5>Example:</h5>
4197<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004198 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004199 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004200</pre>
4201</div>
4202
4203<!-- _______________________________________________________________________ -->
4204<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00004205 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4206</div>
4207<div class="doc_text">
4208
4209<h5>Syntax:</h5>
4210<pre>
4211 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4212</pre>
4213
4214<h5>Overview:</h5>
4215<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4216the integer type <tt>ty2</tt>.</p>
4217
4218<h5>Arguments:</h5>
4219<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00004220must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00004221<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004222
4223<h5>Semantics:</h5>
4224<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4225<tt>ty2</tt> by interpreting the pointer value as an integer and either
4226truncating or zero extending that value to the size of the integer type. If
4227<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4228<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00004229are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4230change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004231
4232<h5>Example:</h5>
4233<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004234 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4235 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004236</pre>
4237</div>
4238
4239<!-- _______________________________________________________________________ -->
4240<div class="doc_subsubsection">
4241 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4242</div>
4243<div class="doc_text">
4244
4245<h5>Syntax:</h5>
4246<pre>
4247 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4248</pre>
4249
4250<h5>Overview:</h5>
4251<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4252a pointer type, <tt>ty2</tt>.</p>
4253
4254<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00004255<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00004256value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004257<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004258
4259<h5>Semantics:</h5>
4260<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4261<tt>ty2</tt> by applying either a zero extension or a truncation depending on
4262the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4263size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4264the size of a pointer then a zero extension is done. If they are the same size,
4265nothing is done (<i>no-op cast</i>).</p>
4266
4267<h5>Example:</h5>
4268<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004269 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4270 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4271 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004272</pre>
4273</div>
4274
4275<!-- _______________________________________________________________________ -->
4276<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00004277 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004278</div>
4279<div class="doc_text">
4280
4281<h5>Syntax:</h5>
4282<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004283 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004284</pre>
4285
4286<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004287
Reid Spencer5c0ef472006-11-11 23:08:07 +00004288<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004289<tt>ty2</tt> without changing any bits.</p>
4290
4291<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004292
Reid Spencer5c0ef472006-11-11 23:08:07 +00004293<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00004294a non-aggregate first class value, and a type to cast it to, which must also be
4295a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4296<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00004297and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00004298type is a pointer, the destination type must also be a pointer. This
4299instruction supports bitwise conversion of vectors to integers and to vectors
4300of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004301
4302<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004303<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00004304<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4305this conversion. The conversion is done as if the <tt>value</tt> had been
4306stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4307converted to other pointer types with this instruction. To convert pointers to
4308other types, use the <a href="#i_inttoptr">inttoptr</a> or
4309<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004310
4311<h5>Example:</h5>
4312<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004313 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004314 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004315 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00004316</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004317</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004318
Reid Spencer2fd21e62006-11-08 01:18:52 +00004319<!-- ======================================================================= -->
4320<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4321<div class="doc_text">
4322<p>The instructions in this category are the "miscellaneous"
4323instructions, which defy better classification.</p>
4324</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004325
4326<!-- _______________________________________________________________________ -->
4327<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4328</div>
4329<div class="doc_text">
4330<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004331<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004332</pre>
4333<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004334<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4335a vector of boolean values based on comparison
4336of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004337<h5>Arguments:</h5>
4338<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004339the condition code indicating the kind of comparison to perform. It is not
4340a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004341</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004342<ol>
4343 <li><tt>eq</tt>: equal</li>
4344 <li><tt>ne</tt>: not equal </li>
4345 <li><tt>ugt</tt>: unsigned greater than</li>
4346 <li><tt>uge</tt>: unsigned greater or equal</li>
4347 <li><tt>ult</tt>: unsigned less than</li>
4348 <li><tt>ule</tt>: unsigned less or equal</li>
4349 <li><tt>sgt</tt>: signed greater than</li>
4350 <li><tt>sge</tt>: signed greater or equal</li>
4351 <li><tt>slt</tt>: signed less than</li>
4352 <li><tt>sle</tt>: signed less or equal</li>
4353</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00004354<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00004355<a href="#t_pointer">pointer</a>
4356or integer <a href="#t_vector">vector</a> typed.
4357They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004358<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004359<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00004360the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00004361yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004362</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004363<ol>
4364 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4365 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4366 </li>
4367 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00004368 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004369 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004370 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004371 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004372 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004373 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004374 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004375 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004376 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004377 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004378 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004379 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004380 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004381 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004382 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004383 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004384 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004385</ol>
4386<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00004387values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004388<p>If the operands are integer vectors, then they are compared
4389element by element. The result is an <tt>i1</tt> vector with
4390the same number of elements as the values being compared.
4391Otherwise, the result is an <tt>i1</tt>.
4392</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004393
4394<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004395<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4396 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4397 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4398 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4399 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4400 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004401</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004402
4403<p>Note that the code generator does not yet support vector types with
4404 the <tt>icmp</tt> instruction.</p>
4405
Reid Spencerf3a70a62006-11-18 21:50:54 +00004406</div>
4407
4408<!-- _______________________________________________________________________ -->
4409<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4410</div>
4411<div class="doc_text">
4412<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004413<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004414</pre>
4415<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004416<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4417or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004418of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004419<p>
4420If the operands are floating point scalars, then the result
4421type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4422</p>
4423<p>If the operands are floating point vectors, then the result type
4424is a vector of boolean with the same number of elements as the
4425operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004426<h5>Arguments:</h5>
4427<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004428the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004429a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004430<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004431 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004432 <li><tt>oeq</tt>: ordered and equal</li>
4433 <li><tt>ogt</tt>: ordered and greater than </li>
4434 <li><tt>oge</tt>: ordered and greater than or equal</li>
4435 <li><tt>olt</tt>: ordered and less than </li>
4436 <li><tt>ole</tt>: ordered and less than or equal</li>
4437 <li><tt>one</tt>: ordered and not equal</li>
4438 <li><tt>ord</tt>: ordered (no nans)</li>
4439 <li><tt>ueq</tt>: unordered or equal</li>
4440 <li><tt>ugt</tt>: unordered or greater than </li>
4441 <li><tt>uge</tt>: unordered or greater than or equal</li>
4442 <li><tt>ult</tt>: unordered or less than </li>
4443 <li><tt>ule</tt>: unordered or less than or equal</li>
4444 <li><tt>une</tt>: unordered or not equal</li>
4445 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004446 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004447</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004448<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004449<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004450<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4451either a <a href="#t_floating">floating point</a> type
4452or a <a href="#t_vector">vector</a> of floating point type.
4453They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004454<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004455<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004456according to the condition code given as <tt>cond</tt>.
4457If the operands are vectors, then the vectors are compared
4458element by element.
4459Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004460always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004461<ol>
4462 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004463 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004464 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004465 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004466 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004467 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004468 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004469 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004470 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004471 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004472 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004473 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004474 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004475 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4476 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004477 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004478 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004479 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004480 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004481 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004482 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004483 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004484 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004485 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004486 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004487 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004488 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004489 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4490</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004491
4492<h5>Example:</h5>
4493<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004494 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4495 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4496 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004497</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004498
4499<p>Note that the code generator does not yet support vector types with
4500 the <tt>fcmp</tt> instruction.</p>
4501
Reid Spencerf3a70a62006-11-18 21:50:54 +00004502</div>
4503
Reid Spencer2fd21e62006-11-08 01:18:52 +00004504<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004505<div class="doc_subsubsection">
4506 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4507</div>
4508<div class="doc_text">
4509<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004510<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004511</pre>
4512<h5>Overview:</h5>
4513<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4514element-wise comparison of its two integer vector operands.</p>
4515<h5>Arguments:</h5>
4516<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4517the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004518a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004519<ol>
4520 <li><tt>eq</tt>: equal</li>
4521 <li><tt>ne</tt>: not equal </li>
4522 <li><tt>ugt</tt>: unsigned greater than</li>
4523 <li><tt>uge</tt>: unsigned greater or equal</li>
4524 <li><tt>ult</tt>: unsigned less than</li>
4525 <li><tt>ule</tt>: unsigned less or equal</li>
4526 <li><tt>sgt</tt>: signed greater than</li>
4527 <li><tt>sge</tt>: signed greater or equal</li>
4528 <li><tt>slt</tt>: signed less than</li>
4529 <li><tt>sle</tt>: signed less or equal</li>
4530</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004531<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004532<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4533<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004534<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004535according to the condition code given as <tt>cond</tt>. The comparison yields a
4536<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4537identical type as the values being compared. The most significant bit in each
4538element is 1 if the element-wise comparison evaluates to true, and is 0
4539otherwise. All other bits of the result are undefined. The condition codes
4540are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman0e451ce2008-10-14 16:51:45 +00004541instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004542
4543<h5>Example:</h5>
4544<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004545 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4546 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004547</pre>
4548</div>
4549
4550<!-- _______________________________________________________________________ -->
4551<div class="doc_subsubsection">
4552 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4553</div>
4554<div class="doc_text">
4555<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004556<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004557<h5>Overview:</h5>
4558<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4559element-wise comparison of its two floating point vector operands. The output
4560elements have the same width as the input elements.</p>
4561<h5>Arguments:</h5>
4562<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4563the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004564a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004565<ol>
4566 <li><tt>false</tt>: no comparison, always returns false</li>
4567 <li><tt>oeq</tt>: ordered and equal</li>
4568 <li><tt>ogt</tt>: ordered and greater than </li>
4569 <li><tt>oge</tt>: ordered and greater than or equal</li>
4570 <li><tt>olt</tt>: ordered and less than </li>
4571 <li><tt>ole</tt>: ordered and less than or equal</li>
4572 <li><tt>one</tt>: ordered and not equal</li>
4573 <li><tt>ord</tt>: ordered (no nans)</li>
4574 <li><tt>ueq</tt>: unordered or equal</li>
4575 <li><tt>ugt</tt>: unordered or greater than </li>
4576 <li><tt>uge</tt>: unordered or greater than or equal</li>
4577 <li><tt>ult</tt>: unordered or less than </li>
4578 <li><tt>ule</tt>: unordered or less than or equal</li>
4579 <li><tt>une</tt>: unordered or not equal</li>
4580 <li><tt>uno</tt>: unordered (either nans)</li>
4581 <li><tt>true</tt>: no comparison, always returns true</li>
4582</ol>
4583<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4584<a href="#t_floating">floating point</a> typed. They must also be identical
4585types.</p>
4586<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004587<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004588according to the condition code given as <tt>cond</tt>. The comparison yields a
4589<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4590an identical number of elements as the values being compared, and each element
4591having identical with to the width of the floating point elements. The most
4592significant bit in each element is 1 if the element-wise comparison evaluates to
4593true, and is 0 otherwise. All other bits of the result are undefined. The
4594condition codes are evaluated identically to the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004595<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004596
4597<h5>Example:</h5>
4598<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +00004599 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4600 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4601
4602 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4603 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemanac80ade2008-05-12 19:01:56 +00004604</pre>
4605</div>
4606
4607<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004608<div class="doc_subsubsection">
4609 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4610</div>
4611
Reid Spencer2fd21e62006-11-08 01:18:52 +00004612<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004613
Reid Spencer2fd21e62006-11-08 01:18:52 +00004614<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004615
Reid Spencer2fd21e62006-11-08 01:18:52 +00004616<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4617<h5>Overview:</h5>
4618<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4619the SSA graph representing the function.</p>
4620<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004621
Jeff Cohenb627eab2007-04-29 01:07:00 +00004622<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004623field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4624as arguments, with one pair for each predecessor basic block of the
4625current block. Only values of <a href="#t_firstclass">first class</a>
4626type may be used as the value arguments to the PHI node. Only labels
4627may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004628
Reid Spencer2fd21e62006-11-08 01:18:52 +00004629<p>There must be no non-phi instructions between the start of a basic
4630block and the PHI instructions: i.e. PHI instructions must be first in
4631a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004632
Jay Foadd2449092009-06-03 10:20:10 +00004633<p>For the purposes of the SSA form, the use of each incoming value is
4634deemed to occur on the edge from the corresponding predecessor block
4635to the current block (but after any definition of an '<tt>invoke</tt>'
4636instruction's return value on the same edge).</p>
4637
Reid Spencer2fd21e62006-11-08 01:18:52 +00004638<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004639
Jeff Cohenb627eab2007-04-29 01:07:00 +00004640<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4641specified by the pair corresponding to the predecessor basic block that executed
4642just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004643
Reid Spencer2fd21e62006-11-08 01:18:52 +00004644<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004645<pre>
4646Loop: ; Infinite loop that counts from 0 on up...
4647 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4648 %nextindvar = add i32 %indvar, 1
4649 br label %Loop
4650</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004651</div>
4652
Chris Lattnercc37aae2004-03-12 05:50:16 +00004653<!-- _______________________________________________________________________ -->
4654<div class="doc_subsubsection">
4655 <a name="i_select">'<tt>select</tt>' Instruction</a>
4656</div>
4657
4658<div class="doc_text">
4659
4660<h5>Syntax:</h5>
4661
4662<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004663 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4664
Dan Gohman0e451ce2008-10-14 16:51:45 +00004665 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004666</pre>
4667
4668<h5>Overview:</h5>
4669
4670<p>
4671The '<tt>select</tt>' instruction is used to choose one value based on a
4672condition, without branching.
4673</p>
4674
4675
4676<h5>Arguments:</h5>
4677
4678<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004679The '<tt>select</tt>' instruction requires an 'i1' value or
4680a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004681condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004682type. If the val1/val2 are vectors and
4683the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004684individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004685</p>
4686
4687<h5>Semantics:</h5>
4688
4689<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004690If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004691value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004692</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004693<p>
4694If the condition is a vector of i1, then the value arguments must
4695be vectors of the same size, and the selection is done element
4696by element.
4697</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004698
4699<h5>Example:</h5>
4700
4701<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004702 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004703</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004704
4705<p>Note that the code generator does not yet support conditions
4706 with vector type.</p>
4707
Chris Lattnercc37aae2004-03-12 05:50:16 +00004708</div>
4709
Robert Bocchino05ccd702006-01-15 20:48:27 +00004710
4711<!-- _______________________________________________________________________ -->
4712<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004713 <a name="i_call">'<tt>call</tt>' Instruction</a>
4714</div>
4715
Misha Brukman9d0919f2003-11-08 01:05:38 +00004716<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004717
Chris Lattner00950542001-06-06 20:29:01 +00004718<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004719<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004720 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004721</pre>
4722
Chris Lattner00950542001-06-06 20:29:01 +00004723<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004724
Misha Brukman9d0919f2003-11-08 01:05:38 +00004725<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004726
Chris Lattner00950542001-06-06 20:29:01 +00004727<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004728
Misha Brukman9d0919f2003-11-08 01:05:38 +00004729<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004730
Chris Lattner6536cfe2002-05-06 22:08:29 +00004731<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004732 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004733 <p>The optional "tail" marker indicates whether the callee function accesses
4734 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004735 function call is eligible for tail call optimization. Note that calls may
4736 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004737 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004738 </li>
4739 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004740 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004741 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004742 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004743 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004744
4745 <li>
4746 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4747 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4748 and '<tt>inreg</tt>' attributes are valid here.</p>
4749 </li>
4750
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004751 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004752 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4753 the type of the return value. Functions that return no value are marked
4754 <tt><a href="#t_void">void</a></tt>.</p>
4755 </li>
4756 <li>
4757 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4758 value being invoked. The argument types must match the types implied by
4759 this signature. This type can be omitted if the function is not varargs
4760 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004761 </li>
4762 <li>
4763 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4764 be invoked. In most cases, this is a direct function invocation, but
4765 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004766 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004767 </li>
4768 <li>
4769 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004770 function signature argument types. All arguments must be of
4771 <a href="#t_firstclass">first class</a> type. If the function signature
4772 indicates the function accepts a variable number of arguments, the extra
4773 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004774 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004775 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004776 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004777 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4778 '<tt>readnone</tt>' attributes are valid here.</p>
4779 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004780</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004781
Chris Lattner00950542001-06-06 20:29:01 +00004782<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004783
Chris Lattner261efe92003-11-25 01:02:51 +00004784<p>The '<tt>call</tt>' instruction is used to cause control flow to
4785transfer to a specified function, with its incoming arguments bound to
4786the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4787instruction in the called function, control flow continues with the
4788instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004789function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004790
Chris Lattner00950542001-06-06 20:29:01 +00004791<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004792
4793<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004794 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004795 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4796 %X = tail call i32 @foo() <i>; yields i32</i>
4797 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4798 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004799
4800 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004801 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004802 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4803 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004804 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004805 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004806</pre>
4807
Misha Brukman9d0919f2003-11-08 01:05:38 +00004808</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004809
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004810<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004811<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004812 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004813</div>
4814
Misha Brukman9d0919f2003-11-08 01:05:38 +00004815<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004816
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004817<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004818
4819<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004820 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004821</pre>
4822
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004823<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004824
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004825<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004826the "variable argument" area of a function call. It is used to implement the
4827<tt>va_arg</tt> macro in C.</p>
4828
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004829<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004830
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004831<p>This instruction takes a <tt>va_list*</tt> value and the type of
4832the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004833increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004834actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004835
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004836<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004837
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004838<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4839type from the specified <tt>va_list</tt> and causes the
4840<tt>va_list</tt> to point to the next argument. For more information,
4841see the variable argument handling <a href="#int_varargs">Intrinsic
4842Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004843
4844<p>It is legal for this instruction to be called in a function which does not
4845take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004846function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004847
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004848<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004849href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004850argument.</p>
4851
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004852<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004853
4854<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4855
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00004856<p>Note that the code generator does not yet fully support va_arg
4857 on many targets. Also, it does not currently support va_arg with
4858 aggregate types on any target.</p>
4859
Misha Brukman9d0919f2003-11-08 01:05:38 +00004860</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004861
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004862<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004863<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4864<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004865
Misha Brukman9d0919f2003-11-08 01:05:38 +00004866<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004867
4868<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004869well known names and semantics and are required to follow certain restrictions.
4870Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004871language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004872adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004873
John Criswellfc6b8952005-05-16 16:17:45 +00004874<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004875prefix is reserved in LLVM for intrinsic names; thus, function names may not
4876begin with this prefix. Intrinsic functions must always be external functions:
4877you cannot define the body of intrinsic functions. Intrinsic functions may
4878only be used in call or invoke instructions: it is illegal to take the address
4879of an intrinsic function. Additionally, because intrinsic functions are part
4880of the LLVM language, it is required if any are added that they be documented
4881here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004882
Chandler Carruth69940402007-08-04 01:51:18 +00004883<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4884a family of functions that perform the same operation but on different data
4885types. Because LLVM can represent over 8 million different integer types,
4886overloading is used commonly to allow an intrinsic function to operate on any
4887integer type. One or more of the argument types or the result type can be
4888overloaded to accept any integer type. Argument types may also be defined as
4889exactly matching a previous argument's type or the result type. This allows an
4890intrinsic function which accepts multiple arguments, but needs all of them to
4891be of the same type, to only be overloaded with respect to a single argument or
4892the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004893
Chandler Carruth69940402007-08-04 01:51:18 +00004894<p>Overloaded intrinsics will have the names of its overloaded argument types
4895encoded into its function name, each preceded by a period. Only those types
4896which are overloaded result in a name suffix. Arguments whose type is matched
4897against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4898take an integer of any width and returns an integer of exactly the same integer
4899width. This leads to a family of functions such as
4900<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4901Only one type, the return type, is overloaded, and only one type suffix is
4902required. Because the argument's type is matched against the return type, it
4903does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004904
4905<p>To learn how to add an intrinsic function, please see the
4906<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004907</p>
4908
Misha Brukman9d0919f2003-11-08 01:05:38 +00004909</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004910
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004911<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004912<div class="doc_subsection">
4913 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4914</div>
4915
Misha Brukman9d0919f2003-11-08 01:05:38 +00004916<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004917
Misha Brukman9d0919f2003-11-08 01:05:38 +00004918<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004919 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004920intrinsic functions. These functions are related to the similarly
4921named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004922
Chris Lattner261efe92003-11-25 01:02:51 +00004923<p>All of these functions operate on arguments that use a
4924target-specific value type "<tt>va_list</tt>". The LLVM assembly
4925language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004926transformations should be prepared to handle these functions regardless of
4927the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004928
Chris Lattner374ab302006-05-15 17:26:46 +00004929<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004930instruction and the variable argument handling intrinsic functions are
4931used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004932
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004933<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004934<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004935define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004936 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004937 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004938 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004939 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004940
4941 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004942 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004943
4944 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004945 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004946 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004947 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004948 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004949
4950 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004951 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004952 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004953}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004954
4955declare void @llvm.va_start(i8*)
4956declare void @llvm.va_copy(i8*, i8*)
4957declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004958</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004959</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004960
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004961</div>
4962
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004963<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004964<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004965 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004966</div>
4967
4968
Misha Brukman9d0919f2003-11-08 01:05:38 +00004969<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004970<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004971<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004972<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004973<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004974<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4975href="#i_va_arg">va_arg</a></tt>.</p>
4976
4977<h5>Arguments:</h5>
4978
Dan Gohman0e451ce2008-10-14 16:51:45 +00004979<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004980
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004981<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004982
Dan Gohman0e451ce2008-10-14 16:51:45 +00004983<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004984macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004985<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004986<tt>va_arg</tt> will produce the first variable argument passed to the function.
4987Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004988last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004989
Misha Brukman9d0919f2003-11-08 01:05:38 +00004990</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004991
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004992<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004993<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004994 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004995</div>
4996
Misha Brukman9d0919f2003-11-08 01:05:38 +00004997<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004998<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004999<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005000<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005001
Jeff Cohenb627eab2007-04-29 01:07:00 +00005002<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00005003which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00005004or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005005
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005006<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005007
Jeff Cohenb627eab2007-04-29 01:07:00 +00005008<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005009
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005010<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005011
Misha Brukman9d0919f2003-11-08 01:05:38 +00005012<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005013macro available in C. In a target-dependent way, it destroys the
5014<tt>va_list</tt> element to which the argument points. Calls to <a
5015href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
5016<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
5017<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005018
Misha Brukman9d0919f2003-11-08 01:05:38 +00005019</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005020
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005021<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005022<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005023 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00005024</div>
5025
Misha Brukman9d0919f2003-11-08 01:05:38 +00005026<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00005027
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005028<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005029
5030<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005031 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00005032</pre>
5033
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005034<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005035
Jeff Cohenb627eab2007-04-29 01:07:00 +00005036<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
5037from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005038
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005039<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005040
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005041<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00005042The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005043
Chris Lattnerd7923912004-05-23 21:06:01 +00005044
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005045<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005046
Jeff Cohenb627eab2007-04-29 01:07:00 +00005047<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
5048macro available in C. In a target-dependent way, it copies the source
5049<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
5050intrinsic is necessary because the <tt><a href="#int_va_start">
5051llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
5052example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005053
Misha Brukman9d0919f2003-11-08 01:05:38 +00005054</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005055
Chris Lattner33aec9e2004-02-12 17:01:32 +00005056<!-- ======================================================================= -->
5057<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00005058 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5059</div>
5060
5061<div class="doc_text">
5062
5063<p>
5064LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00005065Collection</a> (GC) requires the implementation and generation of these
5066intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00005067These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00005068stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005069href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00005070Front-ends for type-safe garbage collected languages should generate these
5071intrinsics to make use of the LLVM garbage collectors. For more details, see <a
5072href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
5073</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00005074
5075<p>The garbage collection intrinsics only operate on objects in the generic
5076 address space (address space zero).</p>
5077
Chris Lattnerd7923912004-05-23 21:06:01 +00005078</div>
5079
5080<!-- _______________________________________________________________________ -->
5081<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005082 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005083</div>
5084
5085<div class="doc_text">
5086
5087<h5>Syntax:</h5>
5088
5089<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005090 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00005091</pre>
5092
5093<h5>Overview:</h5>
5094
John Criswell9e2485c2004-12-10 15:51:16 +00005095<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00005096the code generator, and allows some metadata to be associated with it.</p>
5097
5098<h5>Arguments:</h5>
5099
5100<p>The first argument specifies the address of a stack object that contains the
5101root pointer. The second pointer (which must be either a constant or a global
5102value address) contains the meta-data to be associated with the root.</p>
5103
5104<h5>Semantics:</h5>
5105
Chris Lattner05d67092008-04-24 05:59:56 +00005106<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00005107location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00005108the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5109intrinsic may only be used in a function which <a href="#gc">specifies a GC
5110algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005111
5112</div>
5113
5114
5115<!-- _______________________________________________________________________ -->
5116<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005117 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005118</div>
5119
5120<div class="doc_text">
5121
5122<h5>Syntax:</h5>
5123
5124<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005125 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00005126</pre>
5127
5128<h5>Overview:</h5>
5129
5130<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
5131locations, allowing garbage collector implementations that require read
5132barriers.</p>
5133
5134<h5>Arguments:</h5>
5135
Chris Lattner80626e92006-03-14 20:02:51 +00005136<p>The second argument is the address to read from, which should be an address
5137allocated from the garbage collector. The first object is a pointer to the
5138start of the referenced object, if needed by the language runtime (otherwise
5139null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005140
5141<h5>Semantics:</h5>
5142
5143<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
5144instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00005145garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5146may only be used in a function which <a href="#gc">specifies a GC
5147algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005148
5149</div>
5150
5151
5152<!-- _______________________________________________________________________ -->
5153<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005154 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005155</div>
5156
5157<div class="doc_text">
5158
5159<h5>Syntax:</h5>
5160
5161<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005162 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00005163</pre>
5164
5165<h5>Overview:</h5>
5166
5167<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5168locations, allowing garbage collector implementations that require write
5169barriers (such as generational or reference counting collectors).</p>
5170
5171<h5>Arguments:</h5>
5172
Chris Lattner80626e92006-03-14 20:02:51 +00005173<p>The first argument is the reference to store, the second is the start of the
5174object to store it to, and the third is the address of the field of Obj to
5175store to. If the runtime does not require a pointer to the object, Obj may be
5176null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005177
5178<h5>Semantics:</h5>
5179
5180<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5181instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00005182garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5183may only be used in a function which <a href="#gc">specifies a GC
5184algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005185
5186</div>
5187
5188
5189
5190<!-- ======================================================================= -->
5191<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00005192 <a name="int_codegen">Code Generator Intrinsics</a>
5193</div>
5194
5195<div class="doc_text">
5196<p>
5197These intrinsics are provided by LLVM to expose special features that may only
5198be implemented with code generator support.
5199</p>
5200
5201</div>
5202
5203<!-- _______________________________________________________________________ -->
5204<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005205 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005206</div>
5207
5208<div class="doc_text">
5209
5210<h5>Syntax:</h5>
5211<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005212 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005213</pre>
5214
5215<h5>Overview:</h5>
5216
5217<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005218The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5219target-specific value indicating the return address of the current function
5220or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00005221</p>
5222
5223<h5>Arguments:</h5>
5224
5225<p>
5226The argument to this intrinsic indicates which function to return the address
5227for. Zero indicates the calling function, one indicates its caller, etc. The
5228argument is <b>required</b> to be a constant integer value.
5229</p>
5230
5231<h5>Semantics:</h5>
5232
5233<p>
5234The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
5235the return address of the specified call frame, or zero if it cannot be
5236identified. The value returned by this intrinsic is likely to be incorrect or 0
5237for arguments other than zero, so it should only be used for debugging purposes.
5238</p>
5239
5240<p>
5241Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005242aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005243source-language caller.
5244</p>
5245</div>
5246
5247
5248<!-- _______________________________________________________________________ -->
5249<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005250 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005251</div>
5252
5253<div class="doc_text">
5254
5255<h5>Syntax:</h5>
5256<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005257 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005258</pre>
5259
5260<h5>Overview:</h5>
5261
5262<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005263The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5264target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00005265</p>
5266
5267<h5>Arguments:</h5>
5268
5269<p>
5270The argument to this intrinsic indicates which function to return the frame
5271pointer for. Zero indicates the calling function, one indicates its caller,
5272etc. The argument is <b>required</b> to be a constant integer value.
5273</p>
5274
5275<h5>Semantics:</h5>
5276
5277<p>
5278The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5279the frame address of the specified call frame, or zero if it cannot be
5280identified. The value returned by this intrinsic is likely to be incorrect or 0
5281for arguments other than zero, so it should only be used for debugging purposes.
5282</p>
5283
5284<p>
5285Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005286aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005287source-language caller.
5288</p>
5289</div>
5290
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005291<!-- _______________________________________________________________________ -->
5292<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005293 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005294</div>
5295
5296<div class="doc_text">
5297
5298<h5>Syntax:</h5>
5299<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005300 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00005301</pre>
5302
5303<h5>Overview:</h5>
5304
5305<p>
5306The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00005307the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00005308<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5309features like scoped automatic variable sized arrays in C99.
5310</p>
5311
5312<h5>Semantics:</h5>
5313
5314<p>
5315This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005316href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00005317<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5318<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5319state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5320practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5321that were allocated after the <tt>llvm.stacksave</tt> was executed.
5322</p>
5323
5324</div>
5325
5326<!-- _______________________________________________________________________ -->
5327<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005328 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005329</div>
5330
5331<div class="doc_text">
5332
5333<h5>Syntax:</h5>
5334<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005335 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005336</pre>
5337
5338<h5>Overview:</h5>
5339
5340<p>
5341The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5342the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005343href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00005344useful for implementing language features like scoped automatic variable sized
5345arrays in C99.
5346</p>
5347
5348<h5>Semantics:</h5>
5349
5350<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00005351See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00005352</p>
5353
5354</div>
5355
5356
5357<!-- _______________________________________________________________________ -->
5358<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005359 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005360</div>
5361
5362<div class="doc_text">
5363
5364<h5>Syntax:</h5>
5365<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005366 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005367</pre>
5368
5369<h5>Overview:</h5>
5370
5371
5372<p>
5373The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00005374a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5375no
5376effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00005377characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005378</p>
5379
5380<h5>Arguments:</h5>
5381
5382<p>
5383<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5384determining if the fetch should be for a read (0) or write (1), and
5385<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00005386locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005387<tt>locality</tt> arguments must be constant integers.
5388</p>
5389
5390<h5>Semantics:</h5>
5391
5392<p>
5393This intrinsic does not modify the behavior of the program. In particular,
5394prefetches cannot trap and do not produce a value. On targets that support this
5395intrinsic, the prefetch can provide hints to the processor cache for better
5396performance.
5397</p>
5398
5399</div>
5400
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005401<!-- _______________________________________________________________________ -->
5402<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005403 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005404</div>
5405
5406<div class="doc_text">
5407
5408<h5>Syntax:</h5>
5409<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005410 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005411</pre>
5412
5413<h5>Overview:</h5>
5414
5415
5416<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005417The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005418(PC) in a region of
5419code to simulators and other tools. The method is target specific, but it is
5420expected that the marker will use exported symbols to transmit the PC of the
5421marker.
5422The marker makes no guarantees that it will remain with any specific instruction
5423after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005424optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005425correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005426</p>
5427
5428<h5>Arguments:</h5>
5429
5430<p>
5431<tt>id</tt> is a numerical id identifying the marker.
5432</p>
5433
5434<h5>Semantics:</h5>
5435
5436<p>
5437This intrinsic does not modify the behavior of the program. Backends that do not
5438support this intrinisic may ignore it.
5439</p>
5440
5441</div>
5442
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005443<!-- _______________________________________________________________________ -->
5444<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005445 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005446</div>
5447
5448<div class="doc_text">
5449
5450<h5>Syntax:</h5>
5451<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005452 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005453</pre>
5454
5455<h5>Overview:</h5>
5456
5457
5458<p>
5459The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5460counter register (or similar low latency, high accuracy clocks) on those targets
5461that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5462As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5463should only be used for small timings.
5464</p>
5465
5466<h5>Semantics:</h5>
5467
5468<p>
5469When directly supported, reading the cycle counter should not modify any memory.
5470Implementations are allowed to either return a application specific value or a
5471system wide value. On backends without support, this is lowered to a constant 0.
5472</p>
5473
5474</div>
5475
Chris Lattner10610642004-02-14 04:08:35 +00005476<!-- ======================================================================= -->
5477<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005478 <a name="int_libc">Standard C Library Intrinsics</a>
5479</div>
5480
5481<div class="doc_text">
5482<p>
Chris Lattner10610642004-02-14 04:08:35 +00005483LLVM provides intrinsics for a few important standard C library functions.
5484These intrinsics allow source-language front-ends to pass information about the
5485alignment of the pointer arguments to the code generator, providing opportunity
5486for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005487</p>
5488
5489</div>
5490
5491<!-- _______________________________________________________________________ -->
5492<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005493 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005494</div>
5495
5496<div class="doc_text">
5497
5498<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005499<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5500width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005501<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005502 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5503 i8 &lt;len&gt;, i32 &lt;align&gt;)
5504 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5505 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005506 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005507 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005508 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005509 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005510</pre>
5511
5512<h5>Overview:</h5>
5513
5514<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005515The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005516location to the destination location.
5517</p>
5518
5519<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005520Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5521intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005522</p>
5523
5524<h5>Arguments:</h5>
5525
5526<p>
5527The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005528the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005529specifying the number of bytes to copy, and the fourth argument is the alignment
5530of the source and destination locations.
5531</p>
5532
Chris Lattner3301ced2004-02-12 21:18:15 +00005533<p>
5534If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005535the caller guarantees that both the source and destination pointers are aligned
5536to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005537</p>
5538
Chris Lattner33aec9e2004-02-12 17:01:32 +00005539<h5>Semantics:</h5>
5540
5541<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005542The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005543location to the destination location, which are not allowed to overlap. It
5544copies "len" bytes of memory over. If the argument is known to be aligned to
5545some boundary, this can be specified as the fourth argument, otherwise it should
5546be set to 0 or 1.
5547</p>
5548</div>
5549
5550
Chris Lattner0eb51b42004-02-12 18:10:10 +00005551<!-- _______________________________________________________________________ -->
5552<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005553 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005554</div>
5555
5556<div class="doc_text">
5557
5558<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005559<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5560width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005561<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005562 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5563 i8 &lt;len&gt;, i32 &lt;align&gt;)
5564 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5565 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005566 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005567 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005568 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005569 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005570</pre>
5571
5572<h5>Overview:</h5>
5573
5574<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005575The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5576location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005577'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005578</p>
5579
5580<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005581Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5582intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005583</p>
5584
5585<h5>Arguments:</h5>
5586
5587<p>
5588The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005589the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005590specifying the number of bytes to copy, and the fourth argument is the alignment
5591of the source and destination locations.
5592</p>
5593
Chris Lattner3301ced2004-02-12 21:18:15 +00005594<p>
5595If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005596the caller guarantees that the source and destination pointers are aligned to
5597that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005598</p>
5599
Chris Lattner0eb51b42004-02-12 18:10:10 +00005600<h5>Semantics:</h5>
5601
5602<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005603The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005604location to the destination location, which may overlap. It
5605copies "len" bytes of memory over. If the argument is known to be aligned to
5606some boundary, this can be specified as the fourth argument, otherwise it should
5607be set to 0 or 1.
5608</p>
5609</div>
5610
Chris Lattner8ff75902004-01-06 05:31:32 +00005611
Chris Lattner10610642004-02-14 04:08:35 +00005612<!-- _______________________________________________________________________ -->
5613<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005614 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005615</div>
5616
5617<div class="doc_text">
5618
5619<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005620<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5621width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005622<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005623 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5624 i8 &lt;len&gt;, i32 &lt;align&gt;)
5625 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5626 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005627 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005628 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005629 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005630 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005631</pre>
5632
5633<h5>Overview:</h5>
5634
5635<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005636The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005637byte value.
5638</p>
5639
5640<p>
5641Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5642does not return a value, and takes an extra alignment argument.
5643</p>
5644
5645<h5>Arguments:</h5>
5646
5647<p>
5648The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005649byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005650argument specifying the number of bytes to fill, and the fourth argument is the
5651known alignment of destination location.
5652</p>
5653
5654<p>
5655If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005656the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005657</p>
5658
5659<h5>Semantics:</h5>
5660
5661<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005662The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5663the
Chris Lattner10610642004-02-14 04:08:35 +00005664destination location. If the argument is known to be aligned to some boundary,
5665this can be specified as the fourth argument, otherwise it should be set to 0 or
56661.
5667</p>
5668</div>
5669
5670
Chris Lattner32006282004-06-11 02:28:03 +00005671<!-- _______________________________________________________________________ -->
5672<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005673 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005674</div>
5675
5676<div class="doc_text">
5677
5678<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005679<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005680floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005681types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005682<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005683 declare float @llvm.sqrt.f32(float %Val)
5684 declare double @llvm.sqrt.f64(double %Val)
5685 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5686 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5687 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005688</pre>
5689
5690<h5>Overview:</h5>
5691
5692<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005693The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005694returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005695<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005696negative numbers other than -0.0 (which allows for better optimization, because
5697there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5698defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005699</p>
5700
5701<h5>Arguments:</h5>
5702
5703<p>
5704The argument and return value are floating point numbers of the same type.
5705</p>
5706
5707<h5>Semantics:</h5>
5708
5709<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005710This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005711floating point number.
5712</p>
5713</div>
5714
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005715<!-- _______________________________________________________________________ -->
5716<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005717 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005718</div>
5719
5720<div class="doc_text">
5721
5722<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005723<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005724floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005725types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005726<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005727 declare float @llvm.powi.f32(float %Val, i32 %power)
5728 declare double @llvm.powi.f64(double %Val, i32 %power)
5729 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5730 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5731 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005732</pre>
5733
5734<h5>Overview:</h5>
5735
5736<p>
5737The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5738specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005739multiplications is not defined. When a vector of floating point type is
5740used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005741</p>
5742
5743<h5>Arguments:</h5>
5744
5745<p>
5746The second argument is an integer power, and the first is a value to raise to
5747that power.
5748</p>
5749
5750<h5>Semantics:</h5>
5751
5752<p>
5753This function returns the first value raised to the second power with an
5754unspecified sequence of rounding operations.</p>
5755</div>
5756
Dan Gohman91c284c2007-10-15 20:30:11 +00005757<!-- _______________________________________________________________________ -->
5758<div class="doc_subsubsection">
5759 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5760</div>
5761
5762<div class="doc_text">
5763
5764<h5>Syntax:</h5>
5765<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5766floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005767types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005768<pre>
5769 declare float @llvm.sin.f32(float %Val)
5770 declare double @llvm.sin.f64(double %Val)
5771 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5772 declare fp128 @llvm.sin.f128(fp128 %Val)
5773 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5774</pre>
5775
5776<h5>Overview:</h5>
5777
5778<p>
5779The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5780</p>
5781
5782<h5>Arguments:</h5>
5783
5784<p>
5785The argument and return value are floating point numbers of the same type.
5786</p>
5787
5788<h5>Semantics:</h5>
5789
5790<p>
5791This function returns the sine of the specified operand, returning the
5792same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005793conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005794</div>
5795
5796<!-- _______________________________________________________________________ -->
5797<div class="doc_subsubsection">
5798 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5799</div>
5800
5801<div class="doc_text">
5802
5803<h5>Syntax:</h5>
5804<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5805floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005806types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005807<pre>
5808 declare float @llvm.cos.f32(float %Val)
5809 declare double @llvm.cos.f64(double %Val)
5810 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5811 declare fp128 @llvm.cos.f128(fp128 %Val)
5812 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5813</pre>
5814
5815<h5>Overview:</h5>
5816
5817<p>
5818The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5819</p>
5820
5821<h5>Arguments:</h5>
5822
5823<p>
5824The argument and return value are floating point numbers of the same type.
5825</p>
5826
5827<h5>Semantics:</h5>
5828
5829<p>
5830This function returns the cosine of the specified operand, returning the
5831same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005832conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005833</div>
5834
5835<!-- _______________________________________________________________________ -->
5836<div class="doc_subsubsection">
5837 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5838</div>
5839
5840<div class="doc_text">
5841
5842<h5>Syntax:</h5>
5843<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5844floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005845types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005846<pre>
5847 declare float @llvm.pow.f32(float %Val, float %Power)
5848 declare double @llvm.pow.f64(double %Val, double %Power)
5849 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5850 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5851 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5852</pre>
5853
5854<h5>Overview:</h5>
5855
5856<p>
5857The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5858specified (positive or negative) power.
5859</p>
5860
5861<h5>Arguments:</h5>
5862
5863<p>
5864The second argument is a floating point power, and the first is a value to
5865raise to that power.
5866</p>
5867
5868<h5>Semantics:</h5>
5869
5870<p>
5871This function returns the first value raised to the second power,
5872returning the
5873same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005874conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005875</div>
5876
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005877
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005878<!-- ======================================================================= -->
5879<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005880 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005881</div>
5882
5883<div class="doc_text">
5884<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005885LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005886These allow efficient code generation for some algorithms.
5887</p>
5888
5889</div>
5890
5891<!-- _______________________________________________________________________ -->
5892<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005893 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005894</div>
5895
5896<div class="doc_text">
5897
5898<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005899<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005900type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005901<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005902 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5903 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5904 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005905</pre>
5906
5907<h5>Overview:</h5>
5908
5909<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005910The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005911values with an even number of bytes (positive multiple of 16 bits). These are
5912useful for performing operations on data that is not in the target's native
5913byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005914</p>
5915
5916<h5>Semantics:</h5>
5917
5918<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005919The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005920and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5921intrinsic returns an i32 value that has the four bytes of the input i32
5922swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005923i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5924<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005925additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005926</p>
5927
5928</div>
5929
5930<!-- _______________________________________________________________________ -->
5931<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005932 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005933</div>
5934
5935<div class="doc_text">
5936
5937<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005938<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005939width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005940<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005941 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005942 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005943 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005944 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5945 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005946</pre>
5947
5948<h5>Overview:</h5>
5949
5950<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005951The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5952value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005953</p>
5954
5955<h5>Arguments:</h5>
5956
5957<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005958The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005959integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005960</p>
5961
5962<h5>Semantics:</h5>
5963
5964<p>
5965The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5966</p>
5967</div>
5968
5969<!-- _______________________________________________________________________ -->
5970<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005971 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005972</div>
5973
5974<div class="doc_text">
5975
5976<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005977<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005978integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005979<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005980 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5981 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005982 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005983 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5984 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005985</pre>
5986
5987<h5>Overview:</h5>
5988
5989<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005990The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5991leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005992</p>
5993
5994<h5>Arguments:</h5>
5995
5996<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005997The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005998integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005999</p>
6000
6001<h5>Semantics:</h5>
6002
6003<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006004The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
6005in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00006006of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006007</p>
6008</div>
Chris Lattner32006282004-06-11 02:28:03 +00006009
6010
Chris Lattnereff29ab2005-05-15 19:39:26 +00006011
6012<!-- _______________________________________________________________________ -->
6013<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00006014 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006015</div>
6016
6017<div class="doc_text">
6018
6019<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00006020<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00006021integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006022<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006023 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6024 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00006025 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006026 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6027 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00006028</pre>
6029
6030<h5>Overview:</h5>
6031
6032<p>
Reid Spencer0b118202006-01-16 21:12:35 +00006033The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6034trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00006035</p>
6036
6037<h5>Arguments:</h5>
6038
6039<p>
6040The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00006041integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00006042</p>
6043
6044<h5>Semantics:</h5>
6045
6046<p>
6047The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
6048in a variable. If the src == 0 then the result is the size in bits of the type
6049of src. For example, <tt>llvm.cttz(2) = 1</tt>.
6050</p>
6051</div>
6052
Reid Spencer497d93e2007-04-01 08:27:01 +00006053<!-- _______________________________________________________________________ -->
6054<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00006055 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006056</div>
6057
6058<div class="doc_text">
6059
6060<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00006061<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006062on any integer bit width.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006063<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006064 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
6065 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00006066</pre>
6067
6068<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00006069<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00006070range of bits from an integer value and returns them in the same bit width as
6071the original value.</p>
6072
6073<h5>Arguments:</h5>
6074<p>The first argument, <tt>%val</tt> and the result may be integer types of
6075any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00006076arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006077
6078<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00006079<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00006080of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
6081<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
6082operates in forward mode.</p>
6083<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
6084right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00006085only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
6086<ol>
6087 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
6088 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
6089 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
6090 to determine the number of bits to retain.</li>
6091 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006092 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006093</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00006094<p>In reverse mode, a similar computation is made except that the bits are
6095returned in the reverse order. So, for example, if <tt>X</tt> has the value
6096<tt>i16 0x0ACF (101011001111)</tt> and we apply
6097<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
6098<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006099</div>
6100
Reid Spencerf86037f2007-04-11 23:23:49 +00006101<div class="doc_subsubsection">
6102 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
6103</div>
6104
6105<div class="doc_text">
6106
6107<h5>Syntax:</h5>
6108<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006109on any integer bit width.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00006110<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006111 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
6112 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00006113</pre>
6114
6115<h5>Overview:</h5>
6116<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
6117of bits in an integer value with another integer value. It returns the integer
6118with the replaced bits.</p>
6119
6120<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006121<p>The first argument, <tt>%val</tt>, and the result may be integer types of
6122any bit width, but they must have the same bit width. <tt>%val</tt> is the value
Reid Spencerf86037f2007-04-11 23:23:49 +00006123whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
6124integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
6125type since they specify only a bit index.</p>
6126
6127<h5>Semantics:</h5>
6128<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
6129of operation: forwards and reverse. If <tt>%lo</tt> is greater than
6130<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
6131operates in forward mode.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006132
Reid Spencerf86037f2007-04-11 23:23:49 +00006133<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
6134truncating it down to the size of the replacement area or zero extending it
6135up to that size.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006136
Reid Spencerf86037f2007-04-11 23:23:49 +00006137<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
6138are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
6139in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman0e451ce2008-10-14 16:51:45 +00006140to the <tt>%hi</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006141
Reid Spencerc6749c42007-05-14 16:50:20 +00006142<p>In reverse mode, a similar computation is made except that the bits are
6143reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman0e451ce2008-10-14 16:51:45 +00006144<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006145
Reid Spencerf86037f2007-04-11 23:23:49 +00006146<h5>Examples:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006147
Reid Spencerf86037f2007-04-11 23:23:49 +00006148<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00006149 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00006150 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
6151 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
6152 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00006153 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00006154</pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006155
6156</div>
6157
Bill Wendlingda01af72009-02-08 04:04:40 +00006158<!-- ======================================================================= -->
6159<div class="doc_subsection">
6160 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6161</div>
6162
6163<div class="doc_text">
6164<p>
6165LLVM provides intrinsics for some arithmetic with overflow operations.
6166</p>
6167
6168</div>
6169
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006170<!-- _______________________________________________________________________ -->
6171<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006172 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006173</div>
6174
6175<div class="doc_text">
6176
6177<h5>Syntax:</h5>
6178
6179<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006180on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006181
6182<pre>
6183 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6184 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6185 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6186</pre>
6187
6188<h5>Overview:</h5>
6189
6190<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6191a signed addition of the two arguments, and indicate whether an overflow
6192occurred during the signed summation.</p>
6193
6194<h5>Arguments:</h5>
6195
6196<p>The arguments (%a and %b) and the first element of the result structure may
6197be of integer types of any bit width, but they must have the same bit width. The
6198second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6199and <tt>%b</tt> are the two values that will undergo signed addition.</p>
6200
6201<h5>Semantics:</h5>
6202
6203<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6204a signed addition of the two variables. They return a structure &mdash; the
6205first element of which is the signed summation, and the second element of which
6206is a bit specifying if the signed summation resulted in an overflow.</p>
6207
6208<h5>Examples:</h5>
6209<pre>
6210 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6211 %sum = extractvalue {i32, i1} %res, 0
6212 %obit = extractvalue {i32, i1} %res, 1
6213 br i1 %obit, label %overflow, label %normal
6214</pre>
6215
6216</div>
6217
6218<!-- _______________________________________________________________________ -->
6219<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006220 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006221</div>
6222
6223<div class="doc_text">
6224
6225<h5>Syntax:</h5>
6226
6227<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006228on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006229
6230<pre>
6231 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6232 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6233 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6234</pre>
6235
6236<h5>Overview:</h5>
6237
6238<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6239an unsigned addition of the two arguments, and indicate whether a carry occurred
6240during the unsigned summation.</p>
6241
6242<h5>Arguments:</h5>
6243
6244<p>The arguments (%a and %b) and the first element of the result structure may
6245be of integer types of any bit width, but they must have the same bit width. The
6246second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6247and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6248
6249<h5>Semantics:</h5>
6250
6251<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6252an unsigned addition of the two arguments. They return a structure &mdash; the
6253first element of which is the sum, and the second element of which is a bit
6254specifying if the unsigned summation resulted in a carry.</p>
6255
6256<h5>Examples:</h5>
6257<pre>
6258 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6259 %sum = extractvalue {i32, i1} %res, 0
6260 %obit = extractvalue {i32, i1} %res, 1
6261 br i1 %obit, label %carry, label %normal
6262</pre>
6263
6264</div>
6265
6266<!-- _______________________________________________________________________ -->
6267<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006268 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006269</div>
6270
6271<div class="doc_text">
6272
6273<h5>Syntax:</h5>
6274
6275<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006276on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006277
6278<pre>
6279 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6280 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6281 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6282</pre>
6283
6284<h5>Overview:</h5>
6285
6286<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6287a signed subtraction of the two arguments, and indicate whether an overflow
6288occurred during the signed subtraction.</p>
6289
6290<h5>Arguments:</h5>
6291
6292<p>The arguments (%a and %b) and the first element of the result structure may
6293be of integer types of any bit width, but they must have the same bit width. The
6294second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6295and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6296
6297<h5>Semantics:</h5>
6298
6299<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6300a signed subtraction of the two arguments. They return a structure &mdash; the
6301first element of which is the subtraction, and the second element of which is a bit
6302specifying if the signed subtraction resulted in an overflow.</p>
6303
6304<h5>Examples:</h5>
6305<pre>
6306 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6307 %sum = extractvalue {i32, i1} %res, 0
6308 %obit = extractvalue {i32, i1} %res, 1
6309 br i1 %obit, label %overflow, label %normal
6310</pre>
6311
6312</div>
6313
6314<!-- _______________________________________________________________________ -->
6315<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006316 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006317</div>
6318
6319<div class="doc_text">
6320
6321<h5>Syntax:</h5>
6322
6323<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006324on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006325
6326<pre>
6327 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6328 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6329 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6330</pre>
6331
6332<h5>Overview:</h5>
6333
6334<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6335an unsigned subtraction of the two arguments, and indicate whether an overflow
6336occurred during the unsigned subtraction.</p>
6337
6338<h5>Arguments:</h5>
6339
6340<p>The arguments (%a and %b) and the first element of the result structure may
6341be of integer types of any bit width, but they must have the same bit width. The
6342second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6343and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6344
6345<h5>Semantics:</h5>
6346
6347<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6348an unsigned subtraction of the two arguments. They return a structure &mdash; the
6349first element of which is the subtraction, and the second element of which is a bit
6350specifying if the unsigned subtraction resulted in an overflow.</p>
6351
6352<h5>Examples:</h5>
6353<pre>
6354 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6355 %sum = extractvalue {i32, i1} %res, 0
6356 %obit = extractvalue {i32, i1} %res, 1
6357 br i1 %obit, label %overflow, label %normal
6358</pre>
6359
6360</div>
6361
6362<!-- _______________________________________________________________________ -->
6363<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006364 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006365</div>
6366
6367<div class="doc_text">
6368
6369<h5>Syntax:</h5>
6370
6371<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006372on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006373
6374<pre>
6375 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6376 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6377 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6378</pre>
6379
6380<h5>Overview:</h5>
6381
6382<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6383a signed multiplication of the two arguments, and indicate whether an overflow
6384occurred during the signed multiplication.</p>
6385
6386<h5>Arguments:</h5>
6387
6388<p>The arguments (%a and %b) and the first element of the result structure may
6389be of integer types of any bit width, but they must have the same bit width. The
6390second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6391and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6392
6393<h5>Semantics:</h5>
6394
6395<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6396a signed multiplication of the two arguments. They return a structure &mdash;
6397the first element of which is the multiplication, and the second element of
6398which is a bit specifying if the signed multiplication resulted in an
6399overflow.</p>
6400
6401<h5>Examples:</h5>
6402<pre>
6403 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6404 %sum = extractvalue {i32, i1} %res, 0
6405 %obit = extractvalue {i32, i1} %res, 1
6406 br i1 %obit, label %overflow, label %normal
6407</pre>
6408
Reid Spencerf86037f2007-04-11 23:23:49 +00006409</div>
6410
Bill Wendling41b485c2009-02-08 23:00:09 +00006411<!-- _______________________________________________________________________ -->
6412<div class="doc_subsubsection">
6413 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6414</div>
6415
6416<div class="doc_text">
6417
6418<h5>Syntax:</h5>
6419
6420<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6421on any integer bit width.</p>
6422
6423<pre>
6424 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6425 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6426 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6427</pre>
6428
6429<h5>Overview:</h5>
6430
6431<p><i><b>Warning:</b> '<tt>llvm.umul.with.overflow</tt>' is badly broken. It is
6432actively being fixed, but it should not currently be used!</i></p>
6433
6434<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6435a unsigned multiplication of the two arguments, and indicate whether an overflow
6436occurred during the unsigned multiplication.</p>
6437
6438<h5>Arguments:</h5>
6439
6440<p>The arguments (%a and %b) and the first element of the result structure may
6441be of integer types of any bit width, but they must have the same bit width. The
6442second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6443and <tt>%b</tt> are the two values that will undergo unsigned
6444multiplication.</p>
6445
6446<h5>Semantics:</h5>
6447
6448<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6449an unsigned multiplication of the two arguments. They return a structure &mdash;
6450the first element of which is the multiplication, and the second element of
6451which is a bit specifying if the unsigned multiplication resulted in an
6452overflow.</p>
6453
6454<h5>Examples:</h5>
6455<pre>
6456 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6457 %sum = extractvalue {i32, i1} %res, 0
6458 %obit = extractvalue {i32, i1} %res, 1
6459 br i1 %obit, label %overflow, label %normal
6460</pre>
6461
6462</div>
6463
Chris Lattner8ff75902004-01-06 05:31:32 +00006464<!-- ======================================================================= -->
6465<div class="doc_subsection">
6466 <a name="int_debugger">Debugger Intrinsics</a>
6467</div>
6468
6469<div class="doc_text">
6470<p>
6471The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6472are described in the <a
6473href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6474Debugging</a> document.
6475</p>
6476</div>
6477
6478
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006479<!-- ======================================================================= -->
6480<div class="doc_subsection">
6481 <a name="int_eh">Exception Handling Intrinsics</a>
6482</div>
6483
6484<div class="doc_text">
6485<p> The LLVM exception handling intrinsics (which all start with
6486<tt>llvm.eh.</tt> prefix), are described in the <a
6487href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6488Handling</a> document. </p>
6489</div>
6490
Tanya Lattner6d806e92007-06-15 20:50:54 +00006491<!-- ======================================================================= -->
6492<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00006493 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00006494</div>
6495
6496<div class="doc_text">
6497<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006498 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00006499 the <tt>nest</tt> attribute, from a function. The result is a callable
6500 function pointer lacking the nest parameter - the caller does not need
6501 to provide a value for it. Instead, the value to use is stored in
6502 advance in a "trampoline", a block of memory usually allocated
6503 on the stack, which also contains code to splice the nest value into the
6504 argument list. This is used to implement the GCC nested function address
6505 extension.
6506</p>
6507<p>
6508 For example, if the function is
6509 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00006510 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006511<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006512 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6513 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6514 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6515 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00006516</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00006517 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6518 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006519</div>
6520
6521<!-- _______________________________________________________________________ -->
6522<div class="doc_subsubsection">
6523 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6524</div>
6525<div class="doc_text">
6526<h5>Syntax:</h5>
6527<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006528declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00006529</pre>
6530<h5>Overview:</h5>
6531<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006532 This fills the memory pointed to by <tt>tramp</tt> with code
6533 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00006534</p>
6535<h5>Arguments:</h5>
6536<p>
6537 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6538 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6539 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00006540 intrinsic. Note that the size and the alignment are target-specific - LLVM
6541 currently provides no portable way of determining them, so a front-end that
6542 generates this intrinsic needs to have some target-specific knowledge.
6543 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00006544</p>
6545<h5>Semantics:</h5>
6546<p>
6547 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00006548 dependent code, turning it into a function. A pointer to this function is
6549 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00006550 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006551 before being called. The new function's signature is the same as that of
6552 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6553 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6554 of pointer type. Calling the new function is equivalent to calling
6555 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6556 missing <tt>nest</tt> argument. If, after calling
6557 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6558 modified, then the effect of any later call to the returned function pointer is
6559 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00006560</p>
6561</div>
6562
6563<!-- ======================================================================= -->
6564<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006565 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6566</div>
6567
6568<div class="doc_text">
6569<p>
6570 These intrinsic functions expand the "universal IR" of LLVM to represent
6571 hardware constructs for atomic operations and memory synchronization. This
6572 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00006573 is aimed at a low enough level to allow any programming models or APIs
6574 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006575 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6576 hardware behavior. Just as hardware provides a "universal IR" for source
6577 languages, it also provides a starting point for developing a "universal"
6578 atomic operation and synchronization IR.
6579</p>
6580<p>
6581 These do <em>not</em> form an API such as high-level threading libraries,
6582 software transaction memory systems, atomic primitives, and intrinsic
6583 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6584 application libraries. The hardware interface provided by LLVM should allow
6585 a clean implementation of all of these APIs and parallel programming models.
6586 No one model or paradigm should be selected above others unless the hardware
6587 itself ubiquitously does so.
6588
6589</p>
6590</div>
6591
6592<!-- _______________________________________________________________________ -->
6593<div class="doc_subsubsection">
6594 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6595</div>
6596<div class="doc_text">
6597<h5>Syntax:</h5>
6598<pre>
6599declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
6600i1 &lt;device&gt; )
6601
6602</pre>
6603<h5>Overview:</h5>
6604<p>
6605 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6606 specific pairs of memory access types.
6607</p>
6608<h5>Arguments:</h5>
6609<p>
6610 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6611 The first four arguments enables a specific barrier as listed below. The fith
6612 argument specifies that the barrier applies to io or device or uncached memory.
6613
6614</p>
6615 <ul>
6616 <li><tt>ll</tt>: load-load barrier</li>
6617 <li><tt>ls</tt>: load-store barrier</li>
6618 <li><tt>sl</tt>: store-load barrier</li>
6619 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006620 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006621 </ul>
6622<h5>Semantics:</h5>
6623<p>
6624 This intrinsic causes the system to enforce some ordering constraints upon
6625 the loads and stores of the program. This barrier does not indicate
6626 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6627 which they occur. For any of the specified pairs of load and store operations
6628 (f.ex. load-load, or store-load), all of the first operations preceding the
6629 barrier will complete before any of the second operations succeeding the
6630 barrier begin. Specifically the semantics for each pairing is as follows:
6631</p>
6632 <ul>
6633 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6634 after the barrier begins.</li>
6635
6636 <li><tt>ls</tt>: All loads before the barrier must complete before any
6637 store after the barrier begins.</li>
6638 <li><tt>ss</tt>: All stores before the barrier must complete before any
6639 store after the barrier begins.</li>
6640 <li><tt>sl</tt>: All stores before the barrier must complete before any
6641 load after the barrier begins.</li>
6642 </ul>
6643<p>
6644 These semantics are applied with a logical "and" behavior when more than one
6645 is enabled in a single memory barrier intrinsic.
6646</p>
6647<p>
6648 Backends may implement stronger barriers than those requested when they do not
6649 support as fine grained a barrier as requested. Some architectures do not
6650 need all types of barriers and on such architectures, these become noops.
6651</p>
6652<h5>Example:</h5>
6653<pre>
6654%ptr = malloc i32
6655 store i32 4, %ptr
6656
6657%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6658 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6659 <i>; guarantee the above finishes</i>
6660 store i32 8, %ptr <i>; before this begins</i>
6661</pre>
6662</div>
6663
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006664<!-- _______________________________________________________________________ -->
6665<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006666 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006667</div>
6668<div class="doc_text">
6669<h5>Syntax:</h5>
6670<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00006671 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6672 any integer bit width and for different address spaces. Not all targets
6673 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006674
6675<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006676declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6677declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6678declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6679declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006680
6681</pre>
6682<h5>Overview:</h5>
6683<p>
6684 This loads a value in memory and compares it to a given value. If they are
6685 equal, it stores a new value into the memory.
6686</p>
6687<h5>Arguments:</h5>
6688<p>
Mon P Wang28873102008-06-25 08:15:39 +00006689 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006690 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6691 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6692 this integer type. While any bit width integer may be used, targets may only
6693 lower representations they support in hardware.
6694
6695</p>
6696<h5>Semantics:</h5>
6697<p>
6698 This entire intrinsic must be executed atomically. It first loads the value
6699 in memory pointed to by <tt>ptr</tt> and compares it with the value
6700 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6701 loaded value is yielded in all cases. This provides the equivalent of an
6702 atomic compare-and-swap operation within the SSA framework.
6703</p>
6704<h5>Examples:</h5>
6705
6706<pre>
6707%ptr = malloc i32
6708 store i32 4, %ptr
6709
6710%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006711%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006712 <i>; yields {i32}:result1 = 4</i>
6713%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6714%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6715
6716%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006717%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006718 <i>; yields {i32}:result2 = 8</i>
6719%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6720
6721%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6722</pre>
6723</div>
6724
6725<!-- _______________________________________________________________________ -->
6726<div class="doc_subsubsection">
6727 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6728</div>
6729<div class="doc_text">
6730<h5>Syntax:</h5>
6731
6732<p>
6733 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6734 integer bit width. Not all targets support all bit widths however.</p>
6735<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006736declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6737declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6738declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6739declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006740
6741</pre>
6742<h5>Overview:</h5>
6743<p>
6744 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6745 the value from memory. It then stores the value in <tt>val</tt> in the memory
6746 at <tt>ptr</tt>.
6747</p>
6748<h5>Arguments:</h5>
6749
6750<p>
Mon P Wang28873102008-06-25 08:15:39 +00006751 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006752 <tt>val</tt> argument and the result must be integers of the same bit width.
6753 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6754 integer type. The targets may only lower integer representations they
6755 support.
6756</p>
6757<h5>Semantics:</h5>
6758<p>
6759 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6760 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6761 equivalent of an atomic swap operation within the SSA framework.
6762
6763</p>
6764<h5>Examples:</h5>
6765<pre>
6766%ptr = malloc i32
6767 store i32 4, %ptr
6768
6769%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006770%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006771 <i>; yields {i32}:result1 = 4</i>
6772%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6773%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6774
6775%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006776%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006777 <i>; yields {i32}:result2 = 8</i>
6778
6779%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6780%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6781</pre>
6782</div>
6783
6784<!-- _______________________________________________________________________ -->
6785<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006786 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006787
6788</div>
6789<div class="doc_text">
6790<h5>Syntax:</h5>
6791<p>
Mon P Wang28873102008-06-25 08:15:39 +00006792 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006793 integer bit width. Not all targets support all bit widths however.</p>
6794<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006795declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6796declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6797declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6798declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006799
6800</pre>
6801<h5>Overview:</h5>
6802<p>
6803 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6804 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6805</p>
6806<h5>Arguments:</h5>
6807<p>
6808
6809 The intrinsic takes two arguments, the first a pointer to an integer value
6810 and the second an integer value. The result is also an integer value. These
6811 integer types can have any bit width, but they must all have the same bit
6812 width. The targets may only lower integer representations they support.
6813</p>
6814<h5>Semantics:</h5>
6815<p>
6816 This intrinsic does a series of operations atomically. It first loads the
6817 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6818 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6819</p>
6820
6821<h5>Examples:</h5>
6822<pre>
6823%ptr = malloc i32
6824 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006825%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006826 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006827%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006828 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006829%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006830 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006831%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006832</pre>
6833</div>
6834
Mon P Wang28873102008-06-25 08:15:39 +00006835<!-- _______________________________________________________________________ -->
6836<div class="doc_subsubsection">
6837 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6838
6839</div>
6840<div class="doc_text">
6841<h5>Syntax:</h5>
6842<p>
6843 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006844 any integer bit width and for different address spaces. Not all targets
6845 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006846<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006847declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6848declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6849declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6850declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006851
6852</pre>
6853<h5>Overview:</h5>
6854<p>
6855 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6856 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6857</p>
6858<h5>Arguments:</h5>
6859<p>
6860
6861 The intrinsic takes two arguments, the first a pointer to an integer value
6862 and the second an integer value. The result is also an integer value. These
6863 integer types can have any bit width, but they must all have the same bit
6864 width. The targets may only lower integer representations they support.
6865</p>
6866<h5>Semantics:</h5>
6867<p>
6868 This intrinsic does a series of operations atomically. It first loads the
6869 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6870 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6871</p>
6872
6873<h5>Examples:</h5>
6874<pre>
6875%ptr = malloc i32
6876 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006877%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006878 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006879%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006880 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006881%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006882 <i>; yields {i32}:result3 = 2</i>
6883%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6884</pre>
6885</div>
6886
6887<!-- _______________________________________________________________________ -->
6888<div class="doc_subsubsection">
6889 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6890 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6891 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6892 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6893
6894</div>
6895<div class="doc_text">
6896<h5>Syntax:</h5>
6897<p>
6898 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6899 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006900 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6901 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006902<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006903declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6904declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6905declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6906declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006907
6908</pre>
6909
6910<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006911declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6912declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6913declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6914declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006915
6916</pre>
6917
6918<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006919declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6920declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6921declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6922declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006923
6924</pre>
6925
6926<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006927declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6928declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6929declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6930declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006931
6932</pre>
6933<h5>Overview:</h5>
6934<p>
6935 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6936 the value stored in memory at <tt>ptr</tt>. It yields the original value
6937 at <tt>ptr</tt>.
6938</p>
6939<h5>Arguments:</h5>
6940<p>
6941
6942 These intrinsics take two arguments, the first a pointer to an integer value
6943 and the second an integer value. The result is also an integer value. These
6944 integer types can have any bit width, but they must all have the same bit
6945 width. The targets may only lower integer representations they support.
6946</p>
6947<h5>Semantics:</h5>
6948<p>
6949 These intrinsics does a series of operations atomically. They first load the
6950 value stored at <tt>ptr</tt>. They then do the bitwise operation
6951 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6952 value stored at <tt>ptr</tt>.
6953</p>
6954
6955<h5>Examples:</h5>
6956<pre>
6957%ptr = malloc i32
6958 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006959%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006960 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006961%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006962 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006963%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006964 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006965%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006966 <i>; yields {i32}:result3 = FF</i>
6967%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6968</pre>
6969</div>
6970
6971
6972<!-- _______________________________________________________________________ -->
6973<div class="doc_subsubsection">
6974 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6975 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6976 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6977 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6978
6979</div>
6980<div class="doc_text">
6981<h5>Syntax:</h5>
6982<p>
6983 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6984 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006985 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6986 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006987 support all bit widths however.</p>
6988<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006989declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6990declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6991declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6992declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006993
6994</pre>
6995
6996<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006997declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6998declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6999declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7000declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007001
7002</pre>
7003
7004<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00007005declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7006declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7007declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7008declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007009
7010</pre>
7011
7012<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00007013declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7014declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7015declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7016declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007017
7018</pre>
7019<h5>Overview:</h5>
7020<p>
7021 These intrinsics takes the signed or unsigned minimum or maximum of
7022 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7023 original value at <tt>ptr</tt>.
7024</p>
7025<h5>Arguments:</h5>
7026<p>
7027
7028 These intrinsics take two arguments, the first a pointer to an integer value
7029 and the second an integer value. The result is also an integer value. These
7030 integer types can have any bit width, but they must all have the same bit
7031 width. The targets may only lower integer representations they support.
7032</p>
7033<h5>Semantics:</h5>
7034<p>
7035 These intrinsics does a series of operations atomically. They first load the
7036 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
7037 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
7038 the original value stored at <tt>ptr</tt>.
7039</p>
7040
7041<h5>Examples:</h5>
7042<pre>
7043%ptr = malloc i32
7044 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00007045%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00007046 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007047%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00007048 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007049%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00007050 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007051%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00007052 <i>; yields {i32}:result3 = 8</i>
7053%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7054</pre>
7055</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007056
7057<!-- ======================================================================= -->
7058<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00007059 <a name="int_general">General Intrinsics</a>
7060</div>
7061
7062<div class="doc_text">
7063<p> This class of intrinsics is designed to be generic and has
7064no specific purpose. </p>
7065</div>
7066
7067<!-- _______________________________________________________________________ -->
7068<div class="doc_subsubsection">
7069 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7070</div>
7071
7072<div class="doc_text">
7073
7074<h5>Syntax:</h5>
7075<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00007076 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00007077</pre>
7078
7079<h5>Overview:</h5>
7080
7081<p>
7082The '<tt>llvm.var.annotation</tt>' intrinsic
7083</p>
7084
7085<h5>Arguments:</h5>
7086
7087<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00007088The first argument is a pointer to a value, the second is a pointer to a
7089global string, the third is a pointer to a global string which is the source
7090file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00007091</p>
7092
7093<h5>Semantics:</h5>
7094
7095<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007096This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00007097This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007098annotations. These have no other defined use, they are ignored by code
7099generation and optimization.
7100</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007101</div>
7102
Tanya Lattnerb6367882007-09-21 22:59:12 +00007103<!-- _______________________________________________________________________ -->
7104<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00007105 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007106</div>
7107
7108<div class="doc_text">
7109
7110<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00007111<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7112any integer bit width.
7113</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007114<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00007115 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7116 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7117 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7118 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7119 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00007120</pre>
7121
7122<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00007123
7124<p>
7125The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00007126</p>
7127
7128<h5>Arguments:</h5>
7129
7130<p>
7131The first argument is an integer value (result of some expression),
7132the second is a pointer to a global string, the third is a pointer to a global
7133string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00007134It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00007135</p>
7136
7137<h5>Semantics:</h5>
7138
7139<p>
7140This intrinsic allows annotations to be put on arbitrary expressions
7141with arbitrary strings. This can be useful for special purpose optimizations
7142that want to look for these annotations. These have no other defined use, they
7143are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00007144</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007145</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007146
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007147<!-- _______________________________________________________________________ -->
7148<div class="doc_subsubsection">
7149 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7150</div>
7151
7152<div class="doc_text">
7153
7154<h5>Syntax:</h5>
7155<pre>
7156 declare void @llvm.trap()
7157</pre>
7158
7159<h5>Overview:</h5>
7160
7161<p>
7162The '<tt>llvm.trap</tt>' intrinsic
7163</p>
7164
7165<h5>Arguments:</h5>
7166
7167<p>
7168None
7169</p>
7170
7171<h5>Semantics:</h5>
7172
7173<p>
7174This intrinsics is lowered to the target dependent trap instruction. If the
7175target does not have a trap instruction, this intrinsic will be lowered to the
7176call of the abort() function.
7177</p>
7178</div>
7179
Bill Wendling69e4adb2008-11-19 05:56:17 +00007180<!-- _______________________________________________________________________ -->
7181<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00007182 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00007183</div>
7184<div class="doc_text">
7185<h5>Syntax:</h5>
7186<pre>
7187declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
7188
7189</pre>
7190<h5>Overview:</h5>
7191<p>
7192 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
7193 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
7194 it is placed on the stack before local variables.
7195</p>
7196<h5>Arguments:</h5>
7197<p>
7198 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
7199 first argument is the value loaded from the stack guard
7200 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
7201 has enough space to hold the value of the guard.
7202</p>
7203<h5>Semantics:</h5>
7204<p>
7205 This intrinsic causes the prologue/epilogue inserter to force the position of
7206 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7207 stack. This is to ensure that if a local variable on the stack is overwritten,
7208 it will destroy the value of the guard. When the function exits, the guard on
7209 the stack is checked against the original guard. If they're different, then
7210 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
7211</p>
7212</div>
7213
Chris Lattner00950542001-06-06 20:29:01 +00007214<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00007215<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007216<address>
7217 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007218 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007219 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007220 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007221
7222 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00007223 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007224 Last modified: $Date$
7225</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00007226
Misha Brukman9d0919f2003-11-08 01:05:38 +00007227</body>
7228</html>