blob: c4255ba296e685e3780af115b8afe5cfd808a9d7 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner00950542001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000040 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Nick Lewycky7a0370f2009-05-30 05:06:04 +000044 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000045 </ol>
46 </li>
Chris Lattner00950542001-06-06 20:29:01 +000047 <li><a href="#t_derived">Derived Types</a>
48 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000049 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000050 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000051 <li><a href="#t_function">Function Type</a></li>
52 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000053 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000054 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000055 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000056 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000057 </ol>
58 </li>
Chris Lattner242d61d2009-02-02 07:32:36 +000059 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000060 </ol>
61 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000062 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000063 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000064 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner70882792009-02-28 18:32:25 +000065 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000066 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
67 <li><a href="#undefvalues">Undefined Values</a></li>
68 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky21cc4462009-04-04 07:22:01 +000069 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000070 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000071 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000072 <li><a href="#othervalues">Other Values</a>
73 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000074 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000075 </ol>
76 </li>
Chris Lattner00950542001-06-06 20:29:01 +000077 <li><a href="#instref">Instruction Reference</a>
78 <ol>
79 <li><a href="#terminators">Terminator Instructions</a>
80 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
82 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000083 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
84 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000085 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000086 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000087 </ol>
88 </li>
Chris Lattner00950542001-06-06 20:29:01 +000089 <li><a href="#binaryops">Binary Operations</a>
90 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000091 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000092 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000093 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000094 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000095 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000096 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000097 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
98 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
99 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +0000100 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
101 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
102 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000103 </ol>
104 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000105 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
106 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000107 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
108 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
109 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000110 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000111 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000112 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000113 </ol>
114 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000115 <li><a href="#vectorops">Vector Operations</a>
116 <ol>
117 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
118 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
119 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000120 </ol>
121 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000122 <li><a href="#aggregateops">Aggregate Operations</a>
123 <ol>
124 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
125 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
126 </ol>
127 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000128 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000129 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000130 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
131 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
132 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000133 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
134 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
135 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000136 </ol>
137 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000138 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000139 <ol>
140 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
141 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
142 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
143 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
144 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000145 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
146 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
147 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
148 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000149 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
150 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000151 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000152 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000153 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000154 <li><a href="#otherops">Other Operations</a>
155 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000156 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
157 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000158 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
159 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000161 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000162 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000163 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000164 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000165 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000166 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000167 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000168 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000169 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000170 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
171 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000172 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
173 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
174 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000175 </ol>
176 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000177 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
178 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000179 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
180 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
181 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000182 </ol>
183 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000184 <li><a href="#int_codegen">Code Generator Intrinsics</a>
185 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000186 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
187 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
188 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
189 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
190 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
191 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
192 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000193 </ol>
194 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000195 <li><a href="#int_libc">Standard C Library Intrinsics</a>
196 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000197 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
200 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
201 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000202 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
203 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
204 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000205 </ol>
206 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000207 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000208 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000209 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000210 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
211 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
212 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000213 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
214 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000215 </ol>
216 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000217 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
218 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000219 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
220 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
221 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
222 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
223 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling41b485c2009-02-08 23:00:09 +0000224 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000225 </ol>
226 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000227 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000228 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000229 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000230 <ol>
231 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000232 </ol>
233 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000234 <li><a href="#int_atomics">Atomic intrinsics</a>
235 <ol>
236 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
237 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
238 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
239 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
240 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
241 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
242 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
243 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
244 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
245 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
246 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
247 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
248 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
249 </ol>
250 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000251 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000252 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000253 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000254 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000255 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000256 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000257 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000258 '<tt>llvm.trap</tt>' Intrinsic</a></li>
259 <li><a href="#int_stackprotector">
260 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000261 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000262 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000263 </ol>
264 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000265</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000266
267<div class="doc_author">
268 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
269 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000270</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Chris Lattner00950542001-06-06 20:29:01 +0000272<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000273<div class="doc_section"> <a name="abstract">Abstract </a></div>
274<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000275
Misha Brukman9d0919f2003-11-08 01:05:38 +0000276<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000277<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000278LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000279type safety, low-level operations, flexibility, and the capability of
280representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000281representation used throughout all phases of the LLVM compilation
282strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000283</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000284
Chris Lattner00950542001-06-06 20:29:01 +0000285<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000286<div class="doc_section"> <a name="introduction">Introduction</a> </div>
287<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000288
Misha Brukman9d0919f2003-11-08 01:05:38 +0000289<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000290
Chris Lattner261efe92003-11-25 01:02:51 +0000291<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000292different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000293representation (suitable for fast loading by a Just-In-Time compiler),
294and as a human readable assembly language representation. This allows
295LLVM to provide a powerful intermediate representation for efficient
296compiler transformations and analysis, while providing a natural means
297to debug and visualize the transformations. The three different forms
298of LLVM are all equivalent. This document describes the human readable
299representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000300
John Criswellc1f786c2005-05-13 22:25:59 +0000301<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000302while being expressive, typed, and extensible at the same time. It
303aims to be a "universal IR" of sorts, by being at a low enough level
304that high-level ideas may be cleanly mapped to it (similar to how
305microprocessors are "universal IR's", allowing many source languages to
306be mapped to them). By providing type information, LLVM can be used as
307the target of optimizations: for example, through pointer analysis, it
308can be proven that a C automatic variable is never accessed outside of
309the current function... allowing it to be promoted to a simple SSA
310value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000311
Misha Brukman9d0919f2003-11-08 01:05:38 +0000312</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000313
Chris Lattner00950542001-06-06 20:29:01 +0000314<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000315<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000316
Misha Brukman9d0919f2003-11-08 01:05:38 +0000317<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000318
Chris Lattner261efe92003-11-25 01:02:51 +0000319<p>It is important to note that this document describes 'well formed'
320LLVM assembly language. There is a difference between what the parser
321accepts and what is considered 'well formed'. For example, the
322following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000323
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000324<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000325<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000326%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000327</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000328</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000329
Chris Lattner261efe92003-11-25 01:02:51 +0000330<p>...because the definition of <tt>%x</tt> does not dominate all of
331its uses. The LLVM infrastructure provides a verification pass that may
332be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000333automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000334the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000335by the verifier pass indicate bugs in transformation passes or input to
336the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000337</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000338
Chris Lattnercc689392007-10-03 17:34:29 +0000339<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000340
Chris Lattner00950542001-06-06 20:29:01 +0000341<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000342<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000343<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000344
Misha Brukman9d0919f2003-11-08 01:05:38 +0000345<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000346
Reid Spencer2c452282007-08-07 14:34:28 +0000347 <p>LLVM identifiers come in two basic types: global and local. Global
348 identifiers (functions, global variables) begin with the @ character. Local
349 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000350 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000351
Chris Lattner00950542001-06-06 20:29:01 +0000352<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000353 <li>Named values are represented as a string of characters with their prefix.
354 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
355 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000356 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000357 with quotes. Special characters may be escaped using "\xx" where xx is the
358 ASCII code for the character in hexadecimal. In this way, any character can
359 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000360
Reid Spencer2c452282007-08-07 14:34:28 +0000361 <li>Unnamed values are represented as an unsigned numeric value with their
362 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000363
Reid Spencercc16dc32004-12-09 18:02:53 +0000364 <li>Constants, which are described in a <a href="#constants">section about
365 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000366</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000367
Reid Spencer2c452282007-08-07 14:34:28 +0000368<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000369don't need to worry about name clashes with reserved words, and the set of
370reserved words may be expanded in the future without penalty. Additionally,
371unnamed identifiers allow a compiler to quickly come up with a temporary
372variable without having to avoid symbol table conflicts.</p>
373
Chris Lattner261efe92003-11-25 01:02:51 +0000374<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000375languages. There are keywords for different opcodes
376('<tt><a href="#i_add">add</a></tt>',
377 '<tt><a href="#i_bitcast">bitcast</a></tt>',
378 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000379href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000380and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000381none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000382
383<p>Here is an example of LLVM code to multiply the integer variable
384'<tt>%X</tt>' by 8:</p>
385
Misha Brukman9d0919f2003-11-08 01:05:38 +0000386<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000387
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000388<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000389<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000390%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000391</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000392</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000393
Misha Brukman9d0919f2003-11-08 01:05:38 +0000394<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000395
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000396<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000397<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000398%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000399</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000400</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000401
Misha Brukman9d0919f2003-11-08 01:05:38 +0000402<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000403
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000404<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000405<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000406<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
407<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
408%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000409</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000410</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000411
Chris Lattner261efe92003-11-25 01:02:51 +0000412<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
413important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000414
Chris Lattner00950542001-06-06 20:29:01 +0000415<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000416
417 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
418 line.</li>
419
420 <li>Unnamed temporaries are created when the result of a computation is not
421 assigned to a named value.</li>
422
Misha Brukman9d0919f2003-11-08 01:05:38 +0000423 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000424
Misha Brukman9d0919f2003-11-08 01:05:38 +0000425</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000426
John Criswelle4c57cc2005-05-12 16:52:32 +0000427<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000428demonstrating instructions, we will follow an instruction with a comment that
429defines the type and name of value produced. Comments are shown in italic
430text.</p>
431
Misha Brukman9d0919f2003-11-08 01:05:38 +0000432</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000433
434<!-- *********************************************************************** -->
435<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
436<!-- *********************************************************************** -->
437
438<!-- ======================================================================= -->
439<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
440</div>
441
442<div class="doc_text">
443
444<p>LLVM programs are composed of "Module"s, each of which is a
445translation unit of the input programs. Each module consists of
446functions, global variables, and symbol table entries. Modules may be
447combined together with the LLVM linker, which merges function (and
448global variable) definitions, resolves forward declarations, and merges
449symbol table entries. Here is an example of the "hello world" module:</p>
450
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000451<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000452<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000453<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
454 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000455
456<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000457<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000458
459<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000460define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000461 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000462 %cast210 = <a
Dan Gohman2a08c532009-01-04 23:44:43 +0000463 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000464
465 <i>; Call puts function to write out the string to stdout...</i>
466 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000467 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000468 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000469 href="#i_ret">ret</a> i32 0<br>}<br>
470</pre>
471</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000472
473<p>This example is made up of a <a href="#globalvars">global variable</a>
474named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
475function, and a <a href="#functionstructure">function definition</a>
476for "<tt>main</tt>".</p>
477
Chris Lattnere5d947b2004-12-09 16:36:40 +0000478<p>In general, a module is made up of a list of global values,
479where both functions and global variables are global values. Global values are
480represented by a pointer to a memory location (in this case, a pointer to an
481array of char, and a pointer to a function), and have one of the following <a
482href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000483
Chris Lattnere5d947b2004-12-09 16:36:40 +0000484</div>
485
486<!-- ======================================================================= -->
487<div class="doc_subsection">
488 <a name="linkage">Linkage Types</a>
489</div>
490
491<div class="doc_text">
492
493<p>
494All Global Variables and Functions have one of the following types of linkage:
495</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000496
497<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000498
Rafael Espindolabb46f522009-01-15 20:18:42 +0000499 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
500
501 <dd>Global values with private linkage are only directly accessible by
502 objects in the current module. In particular, linking code into a module with
503 an private global value may cause the private to be renamed as necessary to
504 avoid collisions. Because the symbol is private to the module, all
505 references can be updated. This doesn't show up in any symbol table in the
506 object file.
507 </dd>
508
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000509 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000510
Duncan Sands81d05c22009-01-16 09:29:46 +0000511 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindolabb46f522009-01-15 20:18:42 +0000512 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000513 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000514 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000515
Chris Lattner266c7bb2009-04-13 05:44:34 +0000516 <dt><tt><b><a name="available_externally">available_externally</a></b></tt>:
517 </dt>
518
519 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
520 into the object file corresponding to the LLVM module. They exist to
521 allow inlining and other optimizations to take place given knowledge of the
522 definition of the global, which is known to be somewhere outside the module.
523 Globals with <tt>available_externally</tt> linkage are allowed to be discarded
524 at will, and are otherwise the same as <tt>linkonce_odr</tt>. This linkage
525 type is only allowed on definitions, not declarations.</dd>
526
Chris Lattnerfa730212004-12-09 16:11:40 +0000527 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000528
Chris Lattner4887bd82007-01-14 06:51:48 +0000529 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
530 the same name when linkage occurs. This is typically used to implement
531 inline functions, templates, or other code which must be generated in each
532 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
533 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000534 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000535
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000536 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
537
538 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
539 linkage, except that unreferenced <tt>common</tt> globals may not be
540 discarded. This is used for globals that may be emitted in multiple
541 translation units, but that are not guaranteed to be emitted into every
542 translation unit that uses them. One example of this is tentative
543 definitions in C, such as "<tt>int X;</tt>" at global scope.
544 </dd>
545
Chris Lattnerfa730212004-12-09 16:11:40 +0000546 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000547
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000548 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
549 that some targets may choose to emit different assembly sequences for them
550 for target-dependent reasons. This is used for globals that are declared
551 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000552 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000553
Chris Lattnerfa730212004-12-09 16:11:40 +0000554 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000555
556 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
557 pointer to array type. When two global variables with appending linkage are
558 linked together, the two global arrays are appended together. This is the
559 LLVM, typesafe, equivalent of having the system linker append together
560 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000561 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000562
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000563 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000564
Chris Lattnerd3eda892008-08-05 18:29:16 +0000565 <dd>The semantics of this linkage follow the ELF object file model: the
566 symbol is weak until linked, if not linked, the symbol becomes null instead
567 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000568 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000569
Duncan Sands667d4b82009-03-07 15:45:40 +0000570 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000571 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000572 <dd>Some languages allow differing globals to be merged, such as two
Duncan Sands667d4b82009-03-07 15:45:40 +0000573 functions with different semantics. Other languages, such as <tt>C++</tt>,
574 ensure that only equivalent globals are ever merged (the "one definition
Chris Lattner266c7bb2009-04-13 05:44:34 +0000575 rule" - "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Duncan Sands4dc2b392009-03-11 20:14:15 +0000576 and <tt>weak_odr</tt> linkage types to indicate that the global will only
577 be merged with equivalent globals. These linkage types are otherwise the
578 same as their non-<tt>odr</tt> versions.
Duncan Sands667d4b82009-03-07 15:45:40 +0000579 </dd>
580
Chris Lattnerfa730212004-12-09 16:11:40 +0000581 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000582
583 <dd>If none of the above identifiers are used, the global is externally
584 visible, meaning that it participates in linkage and can be used to resolve
585 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000586 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000587</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000588
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000589 <p>
590 The next two types of linkage are targeted for Microsoft Windows platform
591 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000592 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000593 </p>
594
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000595 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000596 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
597
598 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
599 or variable via a global pointer to a pointer that is set up by the DLL
600 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman79564122009-01-12 21:35:55 +0000601 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000602 </dd>
603
604 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
605
606 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
607 pointer to a pointer in a DLL, so that it can be referenced with the
608 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman79564122009-01-12 21:35:55 +0000609 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000610 name.
611 </dd>
612
Chris Lattnerfa730212004-12-09 16:11:40 +0000613</dl>
614
Dan Gohmanf0032762008-11-24 17:18:39 +0000615<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000616variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
617variable and was linked with this one, one of the two would be renamed,
618preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
619external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000620outside of the current module.</p>
621<p>It is illegal for a function <i>declaration</i>
Duncan Sands5f4ee1f2009-03-11 08:08:06 +0000622to have any linkage type other than "externally visible", <tt>dllimport</tt>
623or <tt>extern_weak</tt>.</p>
Duncan Sands667d4b82009-03-07 15:45:40 +0000624<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
625or <tt>weak_odr</tt> linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000626</div>
627
628<!-- ======================================================================= -->
629<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000630 <a name="callingconv">Calling Conventions</a>
631</div>
632
633<div class="doc_text">
634
635<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
636and <a href="#i_invoke">invokes</a> can all have an optional calling convention
637specified for the call. The calling convention of any pair of dynamic
638caller/callee must match, or the behavior of the program is undefined. The
639following calling conventions are supported by LLVM, and more may be added in
640the future:</p>
641
642<dl>
643 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
644
645 <dd>This calling convention (the default if no other calling convention is
646 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000647 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000648 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000649 </dd>
650
651 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
652
653 <dd>This calling convention attempts to make calls as fast as possible
654 (e.g. by passing things in registers). This calling convention allows the
655 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000656 without having to conform to an externally specified ABI (Application Binary
657 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000658 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
659 supported. This calling convention does not support varargs and requires the
660 prototype of all callees to exactly match the prototype of the function
661 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000662 </dd>
663
664 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
665
666 <dd>This calling convention attempts to make code in the caller as efficient
667 as possible under the assumption that the call is not commonly executed. As
668 such, these calls often preserve all registers so that the call does not break
669 any live ranges in the caller side. This calling convention does not support
670 varargs and requires the prototype of all callees to exactly match the
671 prototype of the function definition.
672 </dd>
673
Chris Lattnercfe6b372005-05-07 01:46:40 +0000674 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000675
676 <dd>Any calling convention may be specified by number, allowing
677 target-specific calling conventions to be used. Target specific calling
678 conventions start at 64.
679 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000680</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000681
682<p>More calling conventions can be added/defined on an as-needed basis, to
683support pascal conventions or any other well-known target-independent
684convention.</p>
685
686</div>
687
688<!-- ======================================================================= -->
689<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000690 <a name="visibility">Visibility Styles</a>
691</div>
692
693<div class="doc_text">
694
695<p>
696All Global Variables and Functions have one of the following visibility styles:
697</p>
698
699<dl>
700 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
701
Chris Lattnerd3eda892008-08-05 18:29:16 +0000702 <dd>On targets that use the ELF object file format, default visibility means
703 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000704 modules and, in shared libraries, means that the declared entity may be
705 overridden. On Darwin, default visibility means that the declaration is
706 visible to other modules. Default visibility corresponds to "external
707 linkage" in the language.
708 </dd>
709
710 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
711
712 <dd>Two declarations of an object with hidden visibility refer to the same
713 object if they are in the same shared object. Usually, hidden visibility
714 indicates that the symbol will not be placed into the dynamic symbol table,
715 so no other module (executable or shared library) can reference it
716 directly.
717 </dd>
718
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000719 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
720
721 <dd>On ELF, protected visibility indicates that the symbol will be placed in
722 the dynamic symbol table, but that references within the defining module will
723 bind to the local symbol. That is, the symbol cannot be overridden by another
724 module.
725 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000726</dl>
727
728</div>
729
730<!-- ======================================================================= -->
731<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000732 <a name="namedtypes">Named Types</a>
733</div>
734
735<div class="doc_text">
736
737<p>LLVM IR allows you to specify name aliases for certain types. This can make
738it easier to read the IR and make the IR more condensed (particularly when
739recursive types are involved). An example of a name specification is:
740</p>
741
742<div class="doc_code">
743<pre>
744%mytype = type { %mytype*, i32 }
745</pre>
746</div>
747
748<p>You may give a name to any <a href="#typesystem">type</a> except "<a
749href="t_void">void</a>". Type name aliases may be used anywhere a type is
750expected with the syntax "%mytype".</p>
751
752<p>Note that type names are aliases for the structural type that they indicate,
753and that you can therefore specify multiple names for the same type. This often
754leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
755structural typing, the name is not part of the type. When printing out LLVM IR,
756the printer will pick <em>one name</em> to render all types of a particular
757shape. This means that if you have code where two different source types end up
758having the same LLVM type, that the dumper will sometimes print the "wrong" or
759unexpected type. This is an important design point and isn't going to
760change.</p>
761
762</div>
763
Chris Lattnere7886e42009-01-11 20:53:49 +0000764<!-- ======================================================================= -->
765<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000766 <a name="globalvars">Global Variables</a>
767</div>
768
769<div class="doc_text">
770
Chris Lattner3689a342005-02-12 19:30:21 +0000771<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000772instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000773an explicit section to be placed in, and may have an optional explicit alignment
774specified. A variable may be defined as "thread_local", which means that it
775will not be shared by threads (each thread will have a separated copy of the
776variable). A variable may be defined as a global "constant," which indicates
777that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000778optimization, allowing the global data to be placed in the read-only section of
779an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000780cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000781
782<p>
783LLVM explicitly allows <em>declarations</em> of global variables to be marked
784constant, even if the final definition of the global is not. This capability
785can be used to enable slightly better optimization of the program, but requires
786the language definition to guarantee that optimizations based on the
787'constantness' are valid for the translation units that do not include the
788definition.
789</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000790
791<p>As SSA values, global variables define pointer values that are in
792scope (i.e. they dominate) all basic blocks in the program. Global
793variables always define a pointer to their "content" type because they
794describe a region of memory, and all memory objects in LLVM are
795accessed through pointers.</p>
796
Christopher Lamb284d9922007-12-11 09:31:00 +0000797<p>A global variable may be declared to reside in a target-specifc numbered
798address space. For targets that support them, address spaces may affect how
799optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000800the variable. The default address space is zero. The address space qualifier
801must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000802
Chris Lattner88f6c462005-11-12 00:45:07 +0000803<p>LLVM allows an explicit section to be specified for globals. If the target
804supports it, it will emit globals to the section specified.</p>
805
Chris Lattner2cbdc452005-11-06 08:02:57 +0000806<p>An explicit alignment may be specified for a global. If not present, or if
807the alignment is set to zero, the alignment of the global is set by the target
808to whatever it feels convenient. If an explicit alignment is specified, the
809global is forced to have at least that much alignment. All alignments must be
810a power of 2.</p>
811
Christopher Lamb284d9922007-12-11 09:31:00 +0000812<p>For example, the following defines a global in a numbered address space with
813an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000814
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000815<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000816<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000817@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000818</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000819</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000820
Chris Lattnerfa730212004-12-09 16:11:40 +0000821</div>
822
823
824<!-- ======================================================================= -->
825<div class="doc_subsection">
826 <a name="functionstructure">Functions</a>
827</div>
828
829<div class="doc_text">
830
Reid Spencerca86e162006-12-31 07:07:53 +0000831<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
832an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000833<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000834<a href="#callingconv">calling convention</a>, a return type, an optional
835<a href="#paramattrs">parameter attribute</a> for the return type, a function
836name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000837<a href="#paramattrs">parameter attributes</a>), optional
838<a href="#fnattrs">function attributes</a>, an optional section,
839an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000840an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000841
842LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
843optional <a href="#linkage">linkage type</a>, an optional
844<a href="#visibility">visibility style</a>, an optional
845<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000846<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000847name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000848<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000849
Chris Lattnerd3eda892008-08-05 18:29:16 +0000850<p>A function definition contains a list of basic blocks, forming the CFG
851(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000852the function. Each basic block may optionally start with a label (giving the
853basic block a symbol table entry), contains a list of instructions, and ends
854with a <a href="#terminators">terminator</a> instruction (such as a branch or
855function return).</p>
856
Chris Lattner4a3c9012007-06-08 16:52:14 +0000857<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000858executed on entrance to the function, and it is not allowed to have predecessor
859basic blocks (i.e. there can not be any branches to the entry block of a
860function). Because the block can have no predecessors, it also cannot have any
861<a href="#i_phi">PHI nodes</a>.</p>
862
Chris Lattner88f6c462005-11-12 00:45:07 +0000863<p>LLVM allows an explicit section to be specified for functions. If the target
864supports it, it will emit functions to the section specified.</p>
865
Chris Lattner2cbdc452005-11-06 08:02:57 +0000866<p>An explicit alignment may be specified for a function. If not present, or if
867the alignment is set to zero, the alignment of the function is set by the target
868to whatever it feels convenient. If an explicit alignment is specified, the
869function is forced to have at least that much alignment. All alignments must be
870a power of 2.</p>
871
Devang Patel307e8ab2008-10-07 17:48:33 +0000872 <h5>Syntax:</h5>
873
874<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000875<tt>
876define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
877 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
878 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
879 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
880 [<a href="#gc">gc</a>] { ... }
881</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000882</div>
883
Chris Lattnerfa730212004-12-09 16:11:40 +0000884</div>
885
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000886
887<!-- ======================================================================= -->
888<div class="doc_subsection">
889 <a name="aliasstructure">Aliases</a>
890</div>
891<div class="doc_text">
892 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000893 function, global variable, another alias or bitcast of global value). Aliases
894 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000895 optional <a href="#visibility">visibility style</a>.</p>
896
897 <h5>Syntax:</h5>
898
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000899<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000900<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000901@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000902</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000903</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000904
905</div>
906
907
908
Chris Lattner4e9aba72006-01-23 23:23:47 +0000909<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000910<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
911<div class="doc_text">
912 <p>The return type and each parameter of a function type may have a set of
913 <i>parameter attributes</i> associated with them. Parameter attributes are
914 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000915 a function. Parameter attributes are considered to be part of the function,
916 not of the function type, so functions with different parameter attributes
917 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000918
Reid Spencer950e9f82007-01-15 18:27:39 +0000919 <p>Parameter attributes are simple keywords that follow the type specified. If
920 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000921 example:</p>
922
923<div class="doc_code">
924<pre>
Nick Lewyckyb6a7d252009-02-15 23:06:14 +0000925declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000926declare i32 @atoi(i8 zeroext)
927declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000928</pre>
929</div>
930
Duncan Sandsdc024672007-11-27 13:23:08 +0000931 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
932 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000933
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000934 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000935 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000936 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000937 <dd>This indicates to the code generator that the parameter or return value
938 should be zero-extended to a 32-bit value by the caller (for a parameter)
939 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000940
Reid Spencer9445e9a2007-07-19 23:13:04 +0000941 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000942 <dd>This indicates to the code generator that the parameter or return value
943 should be sign-extended to a 32-bit value by the caller (for a parameter)
944 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000945
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000946 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000947 <dd>This indicates that this parameter or return value should be treated
948 in a special target-dependent fashion during while emitting code for a
949 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000950 to memory, though some targets use it to distinguish between two different
951 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000952
Duncan Sandsedb05df2008-10-06 08:14:18 +0000953 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000954 <dd>This indicates that the pointer parameter should really be passed by
955 value to the function. The attribute implies that a hidden copy of the
956 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000957 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000958 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000959 value, but is also valid on pointers to scalars. The copy is considered to
960 belong to the caller not the callee (for example,
961 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000962 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerce459b12009-02-05 05:42:28 +0000963 values. The byval attribute also supports specifying an alignment with the
964 align attribute. This has a target-specific effect on the code generator
965 that usually indicates a desired alignment for the synthesized stack
966 slot.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000967
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000968 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000969 <dd>This indicates that the pointer parameter specifies the address of a
970 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000971 This pointer must be guaranteed by the caller to be valid: loads and stores
972 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000973 be applied to the first parameter. This is not a valid attribute for
974 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000975
Zhou Shengfebca342007-06-05 05:28:26 +0000976 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000977 <dd>This indicates that the pointer does not alias any global or any other
978 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000979 case. On a function return value, <tt>noalias</tt> additionally indicates
980 that the pointer does not alias any other pointers visible to the
Nick Lewyckyf23d0d32008-12-19 06:39:12 +0000981 caller. For further details, please see the discussion of the NoAlias
982 response in
983 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
984 analysis</a>.</dd>
985
986 <dt><tt>nocapture</tt></dt>
987 <dd>This indicates that the callee does not make any copies of the pointer
988 that outlive the callee itself. This is not a valid attribute for return
989 values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000990
Duncan Sands50f19f52007-07-27 19:57:41 +0000991 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000992 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000993 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
994 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000995 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000996
Reid Spencerca86e162006-12-31 07:07:53 +0000997</div>
998
999<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +00001000<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001001 <a name="gc">Garbage Collector Names</a>
1002</div>
1003
1004<div class="doc_text">
1005<p>Each function may specify a garbage collector name, which is simply a
1006string.</p>
1007
1008<div class="doc_code"><pre
1009>define void @f() gc "name" { ...</pre></div>
1010
1011<p>The compiler declares the supported values of <i>name</i>. Specifying a
1012collector which will cause the compiler to alter its output in order to support
1013the named garbage collection algorithm.</p>
1014</div>
1015
1016<!-- ======================================================================= -->
1017<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001018 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +00001019</div>
1020
1021<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001022
1023<p>Function attributes are set to communicate additional information about
1024 a function. Function attributes are considered to be part of the function,
1025 not of the function type, so functions with different parameter attributes
1026 can have the same function type.</p>
1027
1028 <p>Function attributes are simple keywords that follow the type specified. If
1029 multiple attributes are needed, they are space separated. For
1030 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001031
1032<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001033<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001034define void @f() noinline { ... }
1035define void @f() alwaysinline { ... }
1036define void @f() alwaysinline optsize { ... }
1037define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001038</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001039</div>
1040
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001041<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001042<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001043<dd>This attribute indicates that the inliner should attempt to inline this
1044function into callers whenever possible, ignoring any active inlining size
1045threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001046
Devang Patel2c9c3e72008-09-26 23:51:19 +00001047<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001048<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +00001049in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +00001050<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001051
Devang Patel2c9c3e72008-09-26 23:51:19 +00001052<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +00001053<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +00001054make choices that keep the code size of this function low, and otherwise do
1055optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001056
Devang Patel2c9c3e72008-09-26 23:51:19 +00001057<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001058<dd>This function attribute indicates that the function never returns normally.
1059This produces undefined behavior at runtime if the function ever does
1060dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001061
1062<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001063<dd>This function attribute indicates that the function never returns with an
1064unwind or exceptional control flow. If the function does unwind, its runtime
1065behavior is undefined.</dd>
1066
1067<dt><tt>readnone</tt></dt>
Duncan Sands7af1c782009-05-06 06:49:50 +00001068<dd>This attribute indicates that the function computes its result (or decides to
1069unwind an exception) based strictly on its arguments, without dereferencing any
Duncan Sandsedb05df2008-10-06 08:14:18 +00001070pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1071registers, etc) visible to caller functions. It does not write through any
1072pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
Duncan Sands7af1c782009-05-06 06:49:50 +00001073never changes any state visible to callers. This means that it cannot unwind
1074exceptions by calling the <tt>C++</tt> exception throwing methods, but could
1075use the <tt>unwind</tt> instruction.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001076
Duncan Sandsedb05df2008-10-06 08:14:18 +00001077<dt><tt><a name="readonly">readonly</a></tt></dt>
1078<dd>This attribute indicates that the function does not write through any
1079pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1080or otherwise modify any state (e.g. memory, control registers, etc) visible to
1081caller functions. It may dereference pointer arguments and read state that may
Duncan Sands7af1c782009-05-06 06:49:50 +00001082be set in the caller. A readonly function always returns the same value (or
1083unwinds an exception identically) when called with the same set of arguments
1084and global state. It cannot unwind an exception by calling the <tt>C++</tt>
1085exception throwing methods, but may use the <tt>unwind</tt> instruction.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001086
1087<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001088<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +00001089protector. It is in the form of a "canary"&mdash;a random value placed on the
1090stack before the local variables that's checked upon return from the function to
1091see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001092needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001093
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001094<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
1095that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
1096have an <tt>ssp</tt> attribute.</p></dd>
1097
1098<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001099<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001100stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001101function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001102
1103<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
1104function that doesn't have an <tt>sspreq</tt> attribute or which has
1105an <tt>ssp</tt> attribute, then the resulting function will have
1106an <tt>sspreq</tt> attribute.</p></dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001107</dl>
1108
Devang Patelf8b94812008-09-04 23:05:13 +00001109</div>
1110
1111<!-- ======================================================================= -->
1112<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001113 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001114</div>
1115
1116<div class="doc_text">
1117<p>
1118Modules may contain "module-level inline asm" blocks, which corresponds to the
1119GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1120LLVM and treated as a single unit, but may be separated in the .ll file if
1121desired. The syntax is very simple:
1122</p>
1123
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001124<div class="doc_code">
1125<pre>
1126module asm "inline asm code goes here"
1127module asm "more can go here"
1128</pre>
1129</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001130
1131<p>The strings can contain any character by escaping non-printable characters.
1132 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1133 for the number.
1134</p>
1135
1136<p>
1137 The inline asm code is simply printed to the machine code .s file when
1138 assembly code is generated.
1139</p>
1140</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001141
Reid Spencerde151942007-02-19 23:54:10 +00001142<!-- ======================================================================= -->
1143<div class="doc_subsection">
1144 <a name="datalayout">Data Layout</a>
1145</div>
1146
1147<div class="doc_text">
1148<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001149data is to be laid out in memory. The syntax for the data layout is simply:</p>
1150<pre> target datalayout = "<i>layout specification</i>"</pre>
1151<p>The <i>layout specification</i> consists of a list of specifications
1152separated by the minus sign character ('-'). Each specification starts with a
1153letter and may include other information after the letter to define some
1154aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001155<dl>
1156 <dt><tt>E</tt></dt>
1157 <dd>Specifies that the target lays out data in big-endian form. That is, the
1158 bits with the most significance have the lowest address location.</dd>
1159 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001160 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001161 the bits with the least significance have the lowest address location.</dd>
1162 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1163 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1164 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1165 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1166 too.</dd>
1167 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1168 <dd>This specifies the alignment for an integer type of a given bit
1169 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1170 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1171 <dd>This specifies the alignment for a vector type of a given bit
1172 <i>size</i>.</dd>
1173 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1174 <dd>This specifies the alignment for a floating point type of a given bit
1175 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1176 (double).</dd>
1177 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1178 <dd>This specifies the alignment for an aggregate type of a given bit
1179 <i>size</i>.</dd>
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001180 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1181 <dd>This specifies the alignment for a stack object of a given bit
1182 <i>size</i>.</dd>
Reid Spencerde151942007-02-19 23:54:10 +00001183</dl>
1184<p>When constructing the data layout for a given target, LLVM starts with a
1185default set of specifications which are then (possibly) overriden by the
1186specifications in the <tt>datalayout</tt> keyword. The default specifications
1187are given in this list:</p>
1188<ul>
1189 <li><tt>E</tt> - big endian</li>
1190 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1191 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1192 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1193 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1194 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001195 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001196 alignment of 64-bits</li>
1197 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1198 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1199 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1200 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1201 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001202 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencerde151942007-02-19 23:54:10 +00001203</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001204<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001205following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001206<ol>
1207 <li>If the type sought is an exact match for one of the specifications, that
1208 specification is used.</li>
1209 <li>If no match is found, and the type sought is an integer type, then the
1210 smallest integer type that is larger than the bitwidth of the sought type is
1211 used. If none of the specifications are larger than the bitwidth then the the
1212 largest integer type is used. For example, given the default specifications
1213 above, the i7 type will use the alignment of i8 (next largest) while both
1214 i65 and i256 will use the alignment of i64 (largest specified).</li>
1215 <li>If no match is found, and the type sought is a vector type, then the
1216 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001217 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1218 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001219</ol>
1220</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001221
Chris Lattner00950542001-06-06 20:29:01 +00001222<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001223<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1224<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001225
Misha Brukman9d0919f2003-11-08 01:05:38 +00001226<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001227
Misha Brukman9d0919f2003-11-08 01:05:38 +00001228<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001229intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001230optimizations to be performed on the intermediate representation directly,
1231without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001232extra analyses on the side before the transformation. A strong type
1233system makes it easier to read the generated code and enables novel
1234analyses and transformations that are not feasible to perform on normal
1235three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001236
1237</div>
1238
Chris Lattner00950542001-06-06 20:29:01 +00001239<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001240<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001241Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001242<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001243<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001244classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001245
1246<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001247 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001248 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001249 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001250 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001251 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001252 </tr>
1253 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001254 <td><a href="#t_floating">floating point</a></td>
1255 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001256 </tr>
1257 <tr>
1258 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001259 <td><a href="#t_integer">integer</a>,
1260 <a href="#t_floating">floating point</a>,
1261 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001262 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001263 <a href="#t_struct">structure</a>,
1264 <a href="#t_array">array</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001265 <a href="#t_label">label</a>,
1266 <a href="#t_metadata">metadata</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001267 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001268 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001269 <tr>
1270 <td><a href="#t_primitive">primitive</a></td>
1271 <td><a href="#t_label">label</a>,
1272 <a href="#t_void">void</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001273 <a href="#t_floating">floating point</a>,
1274 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001275 </tr>
1276 <tr>
1277 <td><a href="#t_derived">derived</a></td>
1278 <td><a href="#t_integer">integer</a>,
1279 <a href="#t_array">array</a>,
1280 <a href="#t_function">function</a>,
1281 <a href="#t_pointer">pointer</a>,
1282 <a href="#t_struct">structure</a>,
1283 <a href="#t_pstruct">packed structure</a>,
1284 <a href="#t_vector">vector</a>,
1285 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001286 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001287 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001288 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001289</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001290
Chris Lattner261efe92003-11-25 01:02:51 +00001291<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1292most important. Values of these types are the only ones which can be
1293produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001294instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001295</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001296
Chris Lattner00950542001-06-06 20:29:01 +00001297<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001298<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001299
Chris Lattner4f69f462008-01-04 04:32:38 +00001300<div class="doc_text">
1301<p>The primitive types are the fundamental building blocks of the LLVM
1302system.</p>
1303
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001304</div>
1305
Chris Lattner4f69f462008-01-04 04:32:38 +00001306<!-- _______________________________________________________________________ -->
1307<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1308
1309<div class="doc_text">
1310 <table>
1311 <tbody>
1312 <tr><th>Type</th><th>Description</th></tr>
1313 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1314 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1315 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1316 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1317 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1318 </tbody>
1319 </table>
1320</div>
1321
1322<!-- _______________________________________________________________________ -->
1323<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1324
1325<div class="doc_text">
1326<h5>Overview:</h5>
1327<p>The void type does not represent any value and has no size.</p>
1328
1329<h5>Syntax:</h5>
1330
1331<pre>
1332 void
1333</pre>
1334</div>
1335
1336<!-- _______________________________________________________________________ -->
1337<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1338
1339<div class="doc_text">
1340<h5>Overview:</h5>
1341<p>The label type represents code labels.</p>
1342
1343<h5>Syntax:</h5>
1344
1345<pre>
1346 label
1347</pre>
1348</div>
1349
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001350<!-- _______________________________________________________________________ -->
1351<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1352
1353<div class="doc_text">
1354<h5>Overview:</h5>
1355<p>The metadata type represents embedded metadata. The only derived type that
1356may contain metadata is <tt>metadata*</tt> or a function type that returns or
1357takes metadata typed parameters, but not pointer to metadata types.</p>
1358
1359<h5>Syntax:</h5>
1360
1361<pre>
1362 metadata
1363</pre>
1364</div>
1365
Chris Lattner4f69f462008-01-04 04:32:38 +00001366
1367<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001368<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001369
Misha Brukman9d0919f2003-11-08 01:05:38 +00001370<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001371
Chris Lattner261efe92003-11-25 01:02:51 +00001372<p>The real power in LLVM comes from the derived types in the system.
1373This is what allows a programmer to represent arrays, functions,
1374pointers, and other useful types. Note that these derived types may be
1375recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001376
Misha Brukman9d0919f2003-11-08 01:05:38 +00001377</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001378
Chris Lattner00950542001-06-06 20:29:01 +00001379<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001380<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1381
1382<div class="doc_text">
1383
1384<h5>Overview:</h5>
1385<p>The integer type is a very simple derived type that simply specifies an
1386arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13872^23-1 (about 8 million) can be specified.</p>
1388
1389<h5>Syntax:</h5>
1390
1391<pre>
1392 iN
1393</pre>
1394
1395<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1396value.</p>
1397
1398<h5>Examples:</h5>
1399<table class="layout">
Nick Lewycky86c48642009-05-24 02:46:06 +00001400 <tr class="layout">
1401 <td class="left"><tt>i1</tt></td>
1402 <td class="left">a single-bit integer.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001403 </tr>
Nick Lewycky86c48642009-05-24 02:46:06 +00001404 <tr class="layout">
1405 <td class="left"><tt>i32</tt></td>
1406 <td class="left">a 32-bit integer.</td>
1407 </tr>
1408 <tr class="layout">
1409 <td class="left"><tt>i1942652</tt></td>
1410 <td class="left">a really big integer of over 1 million bits.</td>
1411 </tr>
Reid Spencer2b916312007-05-16 18:44:01 +00001412</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001413
1414<p>Note that the code generator does not yet support large integer types
1415to be used as function return types. The specific limit on how large a
1416return type the code generator can currently handle is target-dependent;
1417currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1418targets.</p>
1419
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001420</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001421
1422<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001423<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001424
Misha Brukman9d0919f2003-11-08 01:05:38 +00001425<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001426
Chris Lattner00950542001-06-06 20:29:01 +00001427<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001428
Misha Brukman9d0919f2003-11-08 01:05:38 +00001429<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001430sequentially in memory. The array type requires a size (number of
1431elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001432
Chris Lattner7faa8832002-04-14 06:13:44 +00001433<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001434
1435<pre>
1436 [&lt;# elements&gt; x &lt;elementtype&gt;]
1437</pre>
1438
John Criswelle4c57cc2005-05-12 16:52:32 +00001439<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001440be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001441
Chris Lattner7faa8832002-04-14 06:13:44 +00001442<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001443<table class="layout">
1444 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001445 <td class="left"><tt>[40 x i32]</tt></td>
1446 <td class="left">Array of 40 32-bit integer values.</td>
1447 </tr>
1448 <tr class="layout">
1449 <td class="left"><tt>[41 x i32]</tt></td>
1450 <td class="left">Array of 41 32-bit integer values.</td>
1451 </tr>
1452 <tr class="layout">
1453 <td class="left"><tt>[4 x i8]</tt></td>
1454 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001455 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001456</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001457<p>Here are some examples of multidimensional arrays:</p>
1458<table class="layout">
1459 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001460 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1461 <td class="left">3x4 array of 32-bit integer values.</td>
1462 </tr>
1463 <tr class="layout">
1464 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1465 <td class="left">12x10 array of single precision floating point values.</td>
1466 </tr>
1467 <tr class="layout">
1468 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1469 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001470 </tr>
1471</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001472
John Criswell0ec250c2005-10-24 16:17:18 +00001473<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1474length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001475LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1476As a special case, however, zero length arrays are recognized to be variable
1477length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001478type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001479
Dan Gohmand8791e52009-01-24 15:58:40 +00001480<p>Note that the code generator does not yet support large aggregate types
1481to be used as function return types. The specific limit on how large an
1482aggregate return type the code generator can currently handle is
1483target-dependent, and also dependent on the aggregate element types.</p>
1484
Misha Brukman9d0919f2003-11-08 01:05:38 +00001485</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001486
Chris Lattner00950542001-06-06 20:29:01 +00001487<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001488<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001489<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001490
Chris Lattner00950542001-06-06 20:29:01 +00001491<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001492
Chris Lattner261efe92003-11-25 01:02:51 +00001493<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001494consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001495return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001496If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001497class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001498
Chris Lattner00950542001-06-06 20:29:01 +00001499<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001500
1501<pre>
1502 &lt;returntype list&gt; (&lt;parameter list&gt;)
1503</pre>
1504
John Criswell0ec250c2005-10-24 16:17:18 +00001505<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001506specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001507which indicates that the function takes a variable number of arguments.
1508Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001509 href="#int_varargs">variable argument handling intrinsic</a> functions.
1510'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1511<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001512
Chris Lattner00950542001-06-06 20:29:01 +00001513<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001514<table class="layout">
1515 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001516 <td class="left"><tt>i32 (i32)</tt></td>
1517 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001518 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001519 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001520 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001521 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001522 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1523 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001524 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001525 <tt>float</tt>.
1526 </td>
1527 </tr><tr class="layout">
1528 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1529 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001530 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001531 which returns an integer. This is the signature for <tt>printf</tt> in
1532 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001533 </td>
Devang Patela582f402008-03-24 05:35:41 +00001534 </tr><tr class="layout">
1535 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001536 <td class="left">A function taking an <tt>i32</tt>, returning two
1537 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001538 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001539 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001540</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001541
Misha Brukman9d0919f2003-11-08 01:05:38 +00001542</div>
Chris Lattner00950542001-06-06 20:29:01 +00001543<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001544<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001545<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001546<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001547<p>The structure type is used to represent a collection of data members
1548together in memory. The packing of the field types is defined to match
1549the ABI of the underlying processor. The elements of a structure may
1550be any type that has a size.</p>
1551<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1552and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1553field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1554instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001555<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001556<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001557<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001558<table class="layout">
1559 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001560 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1561 <td class="left">A triple of three <tt>i32</tt> values</td>
1562 </tr><tr class="layout">
1563 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1564 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1565 second element is a <a href="#t_pointer">pointer</a> to a
1566 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1567 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001568 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001569</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001570
1571<p>Note that the code generator does not yet support large aggregate types
1572to be used as function return types. The specific limit on how large an
1573aggregate return type the code generator can currently handle is
1574target-dependent, and also dependent on the aggregate element types.</p>
1575
Misha Brukman9d0919f2003-11-08 01:05:38 +00001576</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001577
Chris Lattner00950542001-06-06 20:29:01 +00001578<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001579<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1580</div>
1581<div class="doc_text">
1582<h5>Overview:</h5>
1583<p>The packed structure type is used to represent a collection of data members
1584together in memory. There is no padding between fields. Further, the alignment
1585of a packed structure is 1 byte. The elements of a packed structure may
1586be any type that has a size.</p>
1587<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1588and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1589field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1590instruction.</p>
1591<h5>Syntax:</h5>
1592<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1593<h5>Examples:</h5>
1594<table class="layout">
1595 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001596 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1597 <td class="left">A triple of three <tt>i32</tt> values</td>
1598 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001599 <td class="left">
1600<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001601 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1602 second element is a <a href="#t_pointer">pointer</a> to a
1603 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1604 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001605 </tr>
1606</table>
1607</div>
1608
1609<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001610<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001611<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001612<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001613<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001614reference to another object, which must live in memory. Pointer types may have
1615an optional address space attribute defining the target-specific numbered
1616address space where the pointed-to object resides. The default address space is
1617zero.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001618
1619<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
Chris Lattnere220e8c2009-02-08 22:21:28 +00001620it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001621
Chris Lattner7faa8832002-04-14 06:13:44 +00001622<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001623<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001624<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001625<table class="layout">
1626 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001627 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001628 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1629 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1630 </tr>
1631 <tr class="layout">
1632 <td class="left"><tt>i32 (i32 *) *</tt></td>
1633 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001634 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001635 <tt>i32</tt>.</td>
1636 </tr>
1637 <tr class="layout">
1638 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1639 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1640 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001641 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001642</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001643</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001644
Chris Lattnera58561b2004-08-12 19:12:28 +00001645<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001646<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001647<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001648
Chris Lattnera58561b2004-08-12 19:12:28 +00001649<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001650
Reid Spencer485bad12007-02-15 03:07:05 +00001651<p>A vector type is a simple derived type that represents a vector
1652of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001653are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001654A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001655elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001656of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001657considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001658
Chris Lattnera58561b2004-08-12 19:12:28 +00001659<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001660
1661<pre>
1662 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1663</pre>
1664
John Criswellc1f786c2005-05-13 22:25:59 +00001665<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001666be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001667
Chris Lattnera58561b2004-08-12 19:12:28 +00001668<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001669
Reid Spencerd3f876c2004-11-01 08:19:36 +00001670<table class="layout">
1671 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001672 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1673 <td class="left">Vector of 4 32-bit integer values.</td>
1674 </tr>
1675 <tr class="layout">
1676 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1677 <td class="left">Vector of 8 32-bit floating-point values.</td>
1678 </tr>
1679 <tr class="layout">
1680 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1681 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001682 </tr>
1683</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001684
1685<p>Note that the code generator does not yet support large vector types
1686to be used as function return types. The specific limit on how large a
1687vector return type codegen can currently handle is target-dependent;
1688currently it's often a few times longer than a hardware vector register.</p>
1689
Misha Brukman9d0919f2003-11-08 01:05:38 +00001690</div>
1691
Chris Lattner69c11bb2005-04-25 17:34:15 +00001692<!-- _______________________________________________________________________ -->
1693<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1694<div class="doc_text">
1695
1696<h5>Overview:</h5>
1697
1698<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001699corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001700In LLVM, opaque types can eventually be resolved to any type (not just a
1701structure type).</p>
1702
1703<h5>Syntax:</h5>
1704
1705<pre>
1706 opaque
1707</pre>
1708
1709<h5>Examples:</h5>
1710
1711<table class="layout">
1712 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001713 <td class="left"><tt>opaque</tt></td>
1714 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001715 </tr>
1716</table>
1717</div>
1718
Chris Lattner242d61d2009-02-02 07:32:36 +00001719<!-- ======================================================================= -->
1720<div class="doc_subsection">
1721 <a name="t_uprefs">Type Up-references</a>
1722</div>
1723
1724<div class="doc_text">
1725<h5>Overview:</h5>
1726<p>
1727An "up reference" allows you to refer to a lexically enclosing type without
1728requiring it to have a name. For instance, a structure declaration may contain a
1729pointer to any of the types it is lexically a member of. Example of up
1730references (with their equivalent as named type declarations) include:</p>
1731
1732<pre>
Chris Lattner3060f5b2009-02-09 10:00:56 +00001733 { \2 * } %x = type { %x* }
Chris Lattner242d61d2009-02-02 07:32:36 +00001734 { \2 }* %y = type { %y }*
1735 \1* %z = type %z*
1736</pre>
1737
1738<p>
1739An up reference is needed by the asmprinter for printing out cyclic types when
1740there is no declared name for a type in the cycle. Because the asmprinter does
1741not want to print out an infinite type string, it needs a syntax to handle
1742recursive types that have no names (all names are optional in llvm IR).
1743</p>
1744
1745<h5>Syntax:</h5>
1746<pre>
1747 \&lt;level&gt;
1748</pre>
1749
1750<p>
1751The level is the count of the lexical type that is being referred to.
1752</p>
1753
1754<h5>Examples:</h5>
1755
1756<table class="layout">
1757 <tr class="layout">
1758 <td class="left"><tt>\1*</tt></td>
1759 <td class="left">Self-referential pointer.</td>
1760 </tr>
1761 <tr class="layout">
1762 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1763 <td class="left">Recursive structure where the upref refers to the out-most
1764 structure.</td>
1765 </tr>
1766</table>
1767</div>
1768
Chris Lattner69c11bb2005-04-25 17:34:15 +00001769
Chris Lattnerc3f59762004-12-09 17:30:23 +00001770<!-- *********************************************************************** -->
1771<div class="doc_section"> <a name="constants">Constants</a> </div>
1772<!-- *********************************************************************** -->
1773
1774<div class="doc_text">
1775
1776<p>LLVM has several different basic types of constants. This section describes
1777them all and their syntax.</p>
1778
1779</div>
1780
1781<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001782<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001783
1784<div class="doc_text">
1785
1786<dl>
1787 <dt><b>Boolean constants</b></dt>
1788
1789 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001790 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001791 </dd>
1792
1793 <dt><b>Integer constants</b></dt>
1794
Reid Spencercc16dc32004-12-09 18:02:53 +00001795 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001796 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001797 integer types.
1798 </dd>
1799
1800 <dt><b>Floating point constants</b></dt>
1801
1802 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1803 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001804 notation (see below). The assembler requires the exact decimal value of
1805 a floating-point constant. For example, the assembler accepts 1.25 but
1806 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1807 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001808
1809 <dt><b>Null pointer constants</b></dt>
1810
John Criswell9e2485c2004-12-10 15:51:16 +00001811 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001812 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1813
1814</dl>
1815
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001816<p>The one non-intuitive notation for constants is the hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001817of floating point constants. For example, the form '<tt>double
18180x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
18194.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001820(and the only time that they are generated by the disassembler) is when a
1821floating point constant must be emitted but it cannot be represented as a
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001822decimal floating point number in a reasonable number of digits. For example,
1823NaN's, infinities, and other
Reid Spencercc16dc32004-12-09 18:02:53 +00001824special values are represented in their IEEE hexadecimal format so that
1825assembly and disassembly do not cause any bits to change in the constants.</p>
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001826<p>When using the hexadecimal form, constants of types float and double are
1827represented using the 16-digit form shown above (which matches the IEEE754
1828representation for double); float values must, however, be exactly representable
1829as IEE754 single precision.
1830Hexadecimal format is always used for long
1831double, and there are three forms of long double. The 80-bit
1832format used by x86 is represented as <tt>0xK</tt>
1833followed by 20 hexadecimal digits.
1834The 128-bit format used by PowerPC (two adjacent doubles) is represented
1835by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
1836format is represented
1837by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
1838target uses this format. Long doubles will only work if they match
1839the long double format on your target. All hexadecimal formats are big-endian
1840(sign bit at the left).</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001841</div>
1842
1843<!-- ======================================================================= -->
Chris Lattner70882792009-02-28 18:32:25 +00001844<div class="doc_subsection">
1845<a name="aggregateconstants"> <!-- old anchor -->
1846<a name="complexconstants">Complex Constants</a></a>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001847</div>
1848
1849<div class="doc_text">
Chris Lattner70882792009-02-28 18:32:25 +00001850<p>Complex constants are a (potentially recursive) combination of simple
1851constants and smaller complex constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001852
1853<dl>
1854 <dt><b>Structure constants</b></dt>
1855
1856 <dd>Structure constants are represented with notation similar to structure
1857 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001858 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1859 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001860 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001861 types of elements must match those specified by the type.
1862 </dd>
1863
1864 <dt><b>Array constants</b></dt>
1865
1866 <dd>Array constants are represented with notation similar to array type
1867 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001868 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001869 constants must have <a href="#t_array">array type</a>, and the number and
1870 types of elements must match those specified by the type.
1871 </dd>
1872
Reid Spencer485bad12007-02-15 03:07:05 +00001873 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001874
Reid Spencer485bad12007-02-15 03:07:05 +00001875 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001876 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001877 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001878 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001879 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001880 match those specified by the type.
1881 </dd>
1882
1883 <dt><b>Zero initialization</b></dt>
1884
1885 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1886 value to zero of <em>any</em> type, including scalar and aggregate types.
1887 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001888 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001889 initializers.
1890 </dd>
Nick Lewycky21cc4462009-04-04 07:22:01 +00001891
1892 <dt><b>Metadata node</b></dt>
1893
Nick Lewycky1e8c7a62009-05-30 16:08:30 +00001894 <dd>A metadata node is a structure-like constant with
1895 <a href="#t_metadata">metadata type</a>. For example:
1896 "<tt>metadata !{ i32 0, metadata !"test" }</tt>". Unlike other constants
1897 that are meant to be interpreted as part of the instruction stream, metadata
1898 is a place to attach additional information such as debug info.
Nick Lewycky21cc4462009-04-04 07:22:01 +00001899 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001900</dl>
1901
1902</div>
1903
1904<!-- ======================================================================= -->
1905<div class="doc_subsection">
1906 <a name="globalconstants">Global Variable and Function Addresses</a>
1907</div>
1908
1909<div class="doc_text">
1910
1911<p>The addresses of <a href="#globalvars">global variables</a> and <a
1912href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001913constants. These constants are explicitly referenced when the <a
1914href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001915href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1916file:</p>
1917
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001918<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001919<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001920@X = global i32 17
1921@Y = global i32 42
1922@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001923</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001924</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001925
1926</div>
1927
1928<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001929<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001930<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001931 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001932 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001933 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001934
Reid Spencer2dc45b82004-12-09 18:13:12 +00001935 <p>Undefined values indicate to the compiler that the program is well defined
1936 no matter what value is used, giving the compiler more freedom to optimize.
1937 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001938</div>
1939
1940<!-- ======================================================================= -->
1941<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1942</div>
1943
1944<div class="doc_text">
1945
1946<p>Constant expressions are used to allow expressions involving other constants
1947to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001948href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001949that does not have side effects (e.g. load and call are not supported). The
1950following is the syntax for constant expressions:</p>
1951
1952<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001953 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1954 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001955 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001956
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001957 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1958 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001959 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001960
1961 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1962 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001963 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001964
1965 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1966 <dd>Truncate a floating point constant to another floating point type. The
1967 size of CST must be larger than the size of TYPE. Both types must be
1968 floating point.</dd>
1969
1970 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1971 <dd>Floating point extend a constant to another type. The size of CST must be
1972 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1973
Reid Spencer1539a1c2007-07-31 14:40:14 +00001974 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001975 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001976 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1977 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1978 of the same number of elements. If the value won't fit in the integer type,
1979 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001980
Reid Spencerd4448792006-11-09 23:03:26 +00001981 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001982 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001983 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1984 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1985 of the same number of elements. If the value won't fit in the integer type,
1986 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001987
Reid Spencerd4448792006-11-09 23:03:26 +00001988 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001989 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001990 constant. TYPE must be a scalar or vector floating point type. CST must be of
1991 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1992 of the same number of elements. If the value won't fit in the floating point
1993 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001994
Reid Spencerd4448792006-11-09 23:03:26 +00001995 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001996 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001997 constant. TYPE must be a scalar or vector floating point type. CST must be of
1998 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1999 of the same number of elements. If the value won't fit in the floating point
2000 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002001
Reid Spencer5c0ef472006-11-11 23:08:07 +00002002 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2003 <dd>Convert a pointer typed constant to the corresponding integer constant
2004 TYPE must be an integer type. CST must be of pointer type. The CST value is
2005 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
2006
2007 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
2008 <dd>Convert a integer constant to a pointer constant. TYPE must be a
2009 pointer type. CST must be of integer type. The CST value is zero extended,
2010 truncated, or unchanged to make it fit in a pointer size. This one is
2011 <i>really</i> dangerous!</dd>
2012
2013 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner03bbad62009-02-28 18:27:03 +00002014 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2015 are the same as those for the <a href="#i_bitcast">bitcast
2016 instruction</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002017
2018 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
2019
2020 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2021 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2022 instruction, the index list may have zero or more indexes, which are required
2023 to make sense for the type of "CSTPTR".</dd>
2024
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002025 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
2026
2027 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00002028 constants.</dd>
2029
2030 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2031 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2032
2033 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2034 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002035
Nate Begemanac80ade2008-05-12 19:01:56 +00002036 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
2037 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
2038
2039 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
2040 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
2041
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002042 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
2043
2044 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00002045 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002046
Robert Bocchino05ccd702006-01-15 20:48:27 +00002047 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
2048
2049 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00002050 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00002051
Chris Lattnerc1989542006-04-08 00:13:41 +00002052
2053 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
2054
2055 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00002056 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002057
Chris Lattnerc3f59762004-12-09 17:30:23 +00002058 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
2059
Reid Spencer2dc45b82004-12-09 18:13:12 +00002060 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2061 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00002062 binary</a> operations. The constraints on operands are the same as those for
2063 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00002064 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002065</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002066</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00002067
Nick Lewycky21cc4462009-04-04 07:22:01 +00002068<!-- ======================================================================= -->
2069<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2070</div>
2071
2072<div class="doc_text">
2073
2074<p>Embedded metadata provides a way to attach arbitrary data to the
2075instruction stream without affecting the behaviour of the program. There are
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002076two metadata primitives, strings and nodes. All metadata has the
2077<tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2078point ('<tt>!</tt>').
Nick Lewycky21cc4462009-04-04 07:22:01 +00002079</p>
2080
2081<p>A metadata string is a string surrounded by double quotes. It can contain
2082any character by escaping non-printable characters with "\xx" where "xx" is
2083the two digit hex code. For example: "<tt>!"test\00"</tt>".
2084</p>
2085
2086<p>Metadata nodes are represented with notation similar to structure constants
2087(a comma separated list of elements, surrounded by braces and preceeded by an
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002088exclamation point). For example: "<tt>!{ metadata !"test\00", i32 10}</tt>".
Nick Lewycky21cc4462009-04-04 07:22:01 +00002089</p>
2090
Nick Lewyckycb337992009-05-10 20:57:05 +00002091<p>A metadata node will attempt to track changes to the values it holds. In
2092the event that a value is deleted, it will be replaced with a typeless
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002093"<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
Nick Lewyckycb337992009-05-10 20:57:05 +00002094
Nick Lewycky21cc4462009-04-04 07:22:01 +00002095<p>Optimizations may rely on metadata to provide additional information about
2096the program that isn't available in the instructions, or that isn't easily
2097computable. Similarly, the code generator may expect a certain metadata format
2098to be used to express debugging information.</p>
2099</div>
2100
Chris Lattner00950542001-06-06 20:29:01 +00002101<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00002102<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2103<!-- *********************************************************************** -->
2104
2105<!-- ======================================================================= -->
2106<div class="doc_subsection">
2107<a name="inlineasm">Inline Assembler Expressions</a>
2108</div>
2109
2110<div class="doc_text">
2111
2112<p>
2113LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2114Module-Level Inline Assembly</a>) through the use of a special value. This
2115value represents the inline assembler as a string (containing the instructions
2116to emit), a list of operand constraints (stored as a string), and a flag that
2117indicates whether or not the inline asm expression has side effects. An example
2118inline assembler expression is:
2119</p>
2120
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002121<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002122<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002123i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002124</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002125</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002126
2127<p>
2128Inline assembler expressions may <b>only</b> be used as the callee operand of
2129a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2130</p>
2131
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002132<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002133<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002134%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002135</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002136</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002137
2138<p>
2139Inline asms with side effects not visible in the constraint list must be marked
2140as having side effects. This is done through the use of the
2141'<tt>sideeffect</tt>' keyword, like so:
2142</p>
2143
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002144<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002145<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002146call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002147</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002148</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002149
2150<p>TODO: The format of the asm and constraints string still need to be
2151documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00002152need to be documented). This is probably best done by reference to another
2153document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00002154</p>
2155
2156</div>
2157
2158<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00002159<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2160<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002161
Misha Brukman9d0919f2003-11-08 01:05:38 +00002162<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002163
Chris Lattner261efe92003-11-25 01:02:51 +00002164<p>The LLVM instruction set consists of several different
2165classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00002166instructions</a>, <a href="#binaryops">binary instructions</a>,
2167<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00002168 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2169instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002170
Misha Brukman9d0919f2003-11-08 01:05:38 +00002171</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002172
Chris Lattner00950542001-06-06 20:29:01 +00002173<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002174<div class="doc_subsection"> <a name="terminators">Terminator
2175Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002176
Misha Brukman9d0919f2003-11-08 01:05:38 +00002177<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002178
Chris Lattner261efe92003-11-25 01:02:51 +00002179<p>As mentioned <a href="#functionstructure">previously</a>, every
2180basic block in a program ends with a "Terminator" instruction, which
2181indicates which block should be executed after the current block is
2182finished. These terminator instructions typically yield a '<tt>void</tt>'
2183value: they produce control flow, not values (the one exception being
2184the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00002185<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00002186 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2187instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00002188the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2189 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2190 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002191
Misha Brukman9d0919f2003-11-08 01:05:38 +00002192</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002193
Chris Lattner00950542001-06-06 20:29:01 +00002194<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002195<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2196Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002197<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002198<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002199<pre>
2200 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002201 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002202</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002203
Chris Lattner00950542001-06-06 20:29:01 +00002204<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002205
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002206<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2207optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00002208<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002209returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00002210control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002211
Chris Lattner00950542001-06-06 20:29:01 +00002212<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002213
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002214<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2215the return value. The type of the return value must be a
2216'<a href="#t_firstclass">first class</a>' type.</p>
2217
2218<p>A function is not <a href="#wellformed">well formed</a> if
2219it it has a non-void return type and contains a '<tt>ret</tt>'
2220instruction with no return value or a return value with a type that
2221does not match its type, or if it has a void return type and contains
2222a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002223
Chris Lattner00950542001-06-06 20:29:01 +00002224<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002225
Chris Lattner261efe92003-11-25 01:02:51 +00002226<p>When the '<tt>ret</tt>' instruction is executed, control flow
2227returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00002228 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00002229the instruction after the call. If the caller was an "<a
2230 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00002231at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00002232returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00002233return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002234
Chris Lattner00950542001-06-06 20:29:01 +00002235<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002236
2237<pre>
2238 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002239 ret void <i>; Return from a void function</i>
Bill Wendling0a4bbbf2009-02-28 22:12:54 +00002240 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002241</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002242
Dan Gohmand8791e52009-01-24 15:58:40 +00002243<p>Note that the code generator does not yet fully support large
2244 return values. The specific sizes that are currently supported are
2245 dependent on the target. For integers, on 32-bit targets the limit
2246 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2247 For aggregate types, the current limits are dependent on the element
2248 types; for example targets are often limited to 2 total integer
2249 elements and 2 total floating-point elements.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002250
Misha Brukman9d0919f2003-11-08 01:05:38 +00002251</div>
Chris Lattner00950542001-06-06 20:29:01 +00002252<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002253<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002254<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002255<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002256<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002257</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002258<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002259<p>The '<tt>br</tt>' instruction is used to cause control flow to
2260transfer to a different basic block in the current function. There are
2261two forms of this instruction, corresponding to a conditional branch
2262and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002263<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002264<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002265single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002266unconditional form of the '<tt>br</tt>' instruction takes a single
2267'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002268<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002269<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002270argument is evaluated. If the value is <tt>true</tt>, control flows
2271to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2272control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002273<h5>Example:</h5>
Chris Lattner60150a32009-05-09 18:11:50 +00002274<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002275 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002276</div>
Chris Lattner00950542001-06-06 20:29:01 +00002277<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002278<div class="doc_subsubsection">
2279 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2280</div>
2281
Misha Brukman9d0919f2003-11-08 01:05:38 +00002282<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002283<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002284
2285<pre>
2286 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2287</pre>
2288
Chris Lattner00950542001-06-06 20:29:01 +00002289<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002290
2291<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2292several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002293instruction, allowing a branch to occur to one of many possible
2294destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002295
2296
Chris Lattner00950542001-06-06 20:29:01 +00002297<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002298
2299<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2300comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2301an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2302table is not allowed to contain duplicate constant entries.</p>
2303
Chris Lattner00950542001-06-06 20:29:01 +00002304<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002305
Chris Lattner261efe92003-11-25 01:02:51 +00002306<p>The <tt>switch</tt> instruction specifies a table of values and
2307destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002308table is searched for the given value. If the value is found, control flow is
2309transfered to the corresponding destination; otherwise, control flow is
2310transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002311
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002312<h5>Implementation:</h5>
2313
2314<p>Depending on properties of the target machine and the particular
2315<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002316ways. For example, it could be generated as a series of chained conditional
2317branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002318
2319<h5>Example:</h5>
2320
2321<pre>
2322 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002323 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002324 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002325
2326 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002327 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002328
2329 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002330 switch i32 %val, label %otherwise [ i32 0, label %onzero
2331 i32 1, label %onone
2332 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002333</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002334</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002335
Chris Lattner00950542001-06-06 20:29:01 +00002336<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002337<div class="doc_subsubsection">
2338 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2339</div>
2340
Misha Brukman9d0919f2003-11-08 01:05:38 +00002341<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002342
Chris Lattner00950542001-06-06 20:29:01 +00002343<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002344
2345<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002346 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002347 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002348</pre>
2349
Chris Lattner6536cfe2002-05-06 22:08:29 +00002350<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002351
2352<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2353function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002354'<tt>normal</tt>' label or the
2355'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002356"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2357"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002358href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002359continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002360
Chris Lattner00950542001-06-06 20:29:01 +00002361<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002362
Misha Brukman9d0919f2003-11-08 01:05:38 +00002363<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002364
Chris Lattner00950542001-06-06 20:29:01 +00002365<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002366 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002367 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002368 convention</a> the call should use. If none is specified, the call defaults
2369 to using C calling conventions.
2370 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002371
2372 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2373 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2374 and '<tt>inreg</tt>' attributes are valid here.</li>
2375
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002376 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2377 function value being invoked. In most cases, this is a direct function
2378 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2379 an arbitrary pointer to function value.
2380 </li>
2381
2382 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2383 function to be invoked. </li>
2384
2385 <li>'<tt>function args</tt>': argument list whose types match the function
2386 signature argument types. If the function signature indicates the function
2387 accepts a variable number of arguments, the extra arguments can be
2388 specified. </li>
2389
2390 <li>'<tt>normal label</tt>': the label reached when the called function
2391 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2392
2393 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2394 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2395
Devang Patel307e8ab2008-10-07 17:48:33 +00002396 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002397 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2398 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002399</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002400
Chris Lattner00950542001-06-06 20:29:01 +00002401<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002402
Misha Brukman9d0919f2003-11-08 01:05:38 +00002403<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002404href="#i_call">call</a></tt>' instruction in most regards. The primary
2405difference is that it establishes an association with a label, which is used by
2406the runtime library to unwind the stack.</p>
2407
2408<p>This instruction is used in languages with destructors to ensure that proper
2409cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2410exception. Additionally, this is important for implementation of
2411'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2412
Jay Foadd2449092009-06-03 10:20:10 +00002413<p>For the purposes of the SSA form, the definition of the value
2414returned by the '<tt>invoke</tt>' instruction is deemed to occur on
2415the edge from the current block to the "normal" label. If the callee
2416unwinds then no return value is available.</p>
Dan Gohmanf96a4992009-05-22 21:47:08 +00002417
Chris Lattner00950542001-06-06 20:29:01 +00002418<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002419<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002420 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002421 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002422 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002423 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002424</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002425</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002426
2427
Chris Lattner27f71f22003-09-03 00:41:47 +00002428<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002429
Chris Lattner261efe92003-11-25 01:02:51 +00002430<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2431Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002432
Misha Brukman9d0919f2003-11-08 01:05:38 +00002433<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002434
Chris Lattner27f71f22003-09-03 00:41:47 +00002435<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002436<pre>
2437 unwind
2438</pre>
2439
Chris Lattner27f71f22003-09-03 00:41:47 +00002440<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002441
2442<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2443at the first callee in the dynamic call stack which used an <a
2444href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2445primarily used to implement exception handling.</p>
2446
Chris Lattner27f71f22003-09-03 00:41:47 +00002447<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002448
Chris Lattner72ed2002008-04-19 21:01:16 +00002449<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002450immediately halt. The dynamic call stack is then searched for the first <a
2451href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2452execution continues at the "exceptional" destination block specified by the
2453<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2454dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002455</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002456
2457<!-- _______________________________________________________________________ -->
2458
2459<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2460Instruction</a> </div>
2461
2462<div class="doc_text">
2463
2464<h5>Syntax:</h5>
2465<pre>
2466 unreachable
2467</pre>
2468
2469<h5>Overview:</h5>
2470
2471<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2472instruction is used to inform the optimizer that a particular portion of the
2473code is not reachable. This can be used to indicate that the code after a
2474no-return function cannot be reached, and other facts.</p>
2475
2476<h5>Semantics:</h5>
2477
2478<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2479</div>
2480
2481
2482
Chris Lattner00950542001-06-06 20:29:01 +00002483<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002484<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002485<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002486<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002487program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002488produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002489multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002490The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002491<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002492</div>
Chris Lattner00950542001-06-06 20:29:01 +00002493<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002494<div class="doc_subsubsection">
2495 <a name="i_add">'<tt>add</tt>' Instruction</a>
2496</div>
2497
Misha Brukman9d0919f2003-11-08 01:05:38 +00002498<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002499
Chris Lattner00950542001-06-06 20:29:01 +00002500<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002501
2502<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002503 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002504</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002505
Chris Lattner00950542001-06-06 20:29:01 +00002506<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002507
Misha Brukman9d0919f2003-11-08 01:05:38 +00002508<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002509
Chris Lattner00950542001-06-06 20:29:01 +00002510<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002511
2512<p>The two arguments to the '<tt>add</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002513 href="#t_integer">integer</a> or
2514 <a href="#t_vector">vector</a> of integer values. Both arguments must
2515 have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002516
Chris Lattner00950542001-06-06 20:29:01 +00002517<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002518
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002519<p>The value produced is the integer sum of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002520
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002521<p>If the sum has unsigned overflow, the result returned is the
Chris Lattner5ec89832008-01-28 00:36:27 +00002522mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2523the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002524
Chris Lattner5ec89832008-01-28 00:36:27 +00002525<p>Because LLVM integers use a two's complement representation, this
2526instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002527
Chris Lattner00950542001-06-06 20:29:01 +00002528<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002529
2530<pre>
2531 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002532</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002533</div>
Chris Lattner00950542001-06-06 20:29:01 +00002534<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002535<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002536 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
2537</div>
2538
2539<div class="doc_text">
2540
2541<h5>Syntax:</h5>
2542
2543<pre>
2544 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2545</pre>
2546
2547<h5>Overview:</h5>
2548
2549<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
2550
2551<h5>Arguments:</h5>
2552
2553<p>The two arguments to the '<tt>fadd</tt>' instruction must be
2554<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2555floating point values. Both arguments must have identical types.</p>
2556
2557<h5>Semantics:</h5>
2558
2559<p>The value produced is the floating point sum of the two operands.</p>
2560
2561<h5>Example:</h5>
2562
2563<pre>
2564 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
2565</pre>
2566</div>
2567<!-- _______________________________________________________________________ -->
2568<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00002569 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2570</div>
2571
Misha Brukman9d0919f2003-11-08 01:05:38 +00002572<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002573
Chris Lattner00950542001-06-06 20:29:01 +00002574<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002575
2576<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002577 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002578</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002579
Chris Lattner00950542001-06-06 20:29:01 +00002580<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002581
Misha Brukman9d0919f2003-11-08 01:05:38 +00002582<p>The '<tt>sub</tt>' instruction returns the difference of its two
2583operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002584
2585<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2586'<tt>neg</tt>' instruction present in most other intermediate
2587representations.</p>
2588
Chris Lattner00950542001-06-06 20:29:01 +00002589<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002590
2591<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002592 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2593 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002594
Chris Lattner00950542001-06-06 20:29:01 +00002595<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002596
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002597<p>The value produced is the integer difference of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002598
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002599<p>If the difference has unsigned overflow, the result returned is the
Chris Lattner5ec89832008-01-28 00:36:27 +00002600mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2601the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002602
Chris Lattner5ec89832008-01-28 00:36:27 +00002603<p>Because LLVM integers use a two's complement representation, this
2604instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002605
Chris Lattner00950542001-06-06 20:29:01 +00002606<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002607<pre>
2608 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002609 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002610</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002611</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002612
Chris Lattner00950542001-06-06 20:29:01 +00002613<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002614<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002615 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
2616</div>
2617
2618<div class="doc_text">
2619
2620<h5>Syntax:</h5>
2621
2622<pre>
2623 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2624</pre>
2625
2626<h5>Overview:</h5>
2627
2628<p>The '<tt>fsub</tt>' instruction returns the difference of its two
2629operands.</p>
2630
2631<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
2632'<tt>fneg</tt>' instruction present in most other intermediate
2633representations.</p>
2634
2635<h5>Arguments:</h5>
2636
2637<p>The two arguments to the '<tt>fsub</tt>' instruction must be <a
2638 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2639 of floating point values. Both arguments must have identical types.</p>
2640
2641<h5>Semantics:</h5>
2642
2643<p>The value produced is the floating point difference of the two operands.</p>
2644
2645<h5>Example:</h5>
2646<pre>
2647 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
2648 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
2649</pre>
2650</div>
2651
2652<!-- _______________________________________________________________________ -->
2653<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00002654 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2655</div>
2656
Misha Brukman9d0919f2003-11-08 01:05:38 +00002657<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002658
Chris Lattner00950542001-06-06 20:29:01 +00002659<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002660<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002661</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002662<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002663<p>The '<tt>mul</tt>' instruction returns the product of its two
2664operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002665
Chris Lattner00950542001-06-06 20:29:01 +00002666<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002667
2668<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002669href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2670values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002671
Chris Lattner00950542001-06-06 20:29:01 +00002672<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002673
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002674<p>The value produced is the integer product of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002675
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002676<p>If the result of the multiplication has unsigned overflow,
Chris Lattner5ec89832008-01-28 00:36:27 +00002677the result returned is the mathematical result modulo
26782<sup>n</sup>, where n is the bit width of the result.</p>
2679<p>Because LLVM integers use a two's complement representation, and the
2680result is the same width as the operands, this instruction returns the
2681correct result for both signed and unsigned integers. If a full product
2682(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2683should be sign-extended or zero-extended as appropriate to the
2684width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002685<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002686<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002687</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002688</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002689
Chris Lattner00950542001-06-06 20:29:01 +00002690<!-- _______________________________________________________________________ -->
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002691<div class="doc_subsubsection">
2692 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
2693</div>
2694
2695<div class="doc_text">
2696
2697<h5>Syntax:</h5>
2698<pre> &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2699</pre>
2700<h5>Overview:</h5>
2701<p>The '<tt>fmul</tt>' instruction returns the product of its two
2702operands.</p>
2703
2704<h5>Arguments:</h5>
2705
2706<p>The two arguments to the '<tt>fmul</tt>' instruction must be
2707<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2708of floating point values. Both arguments must have identical types.</p>
2709
2710<h5>Semantics:</h5>
2711
2712<p>The value produced is the floating point product of the two operands.</p>
2713
2714<h5>Example:</h5>
2715<pre> &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
2716</pre>
2717</div>
2718
2719<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002720<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2721</a></div>
2722<div class="doc_text">
2723<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002724<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002725</pre>
2726<h5>Overview:</h5>
2727<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2728operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002729
Reid Spencer1628cec2006-10-26 06:15:43 +00002730<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002731
Reid Spencer1628cec2006-10-26 06:15:43 +00002732<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002733<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2734values. Both arguments must have identical types.</p>
2735
Reid Spencer1628cec2006-10-26 06:15:43 +00002736<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002737
Chris Lattner5ec89832008-01-28 00:36:27 +00002738<p>The value produced is the unsigned integer quotient of the two operands.</p>
2739<p>Note that unsigned integer division and signed integer division are distinct
2740operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2741<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002742<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002743<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002744</pre>
2745</div>
2746<!-- _______________________________________________________________________ -->
2747<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2748</a> </div>
2749<div class="doc_text">
2750<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002751<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002752 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002753</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002754
Reid Spencer1628cec2006-10-26 06:15:43 +00002755<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002756
Reid Spencer1628cec2006-10-26 06:15:43 +00002757<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2758operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002759
Reid Spencer1628cec2006-10-26 06:15:43 +00002760<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002761
2762<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2763<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2764values. Both arguments must have identical types.</p>
2765
Reid Spencer1628cec2006-10-26 06:15:43 +00002766<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002767<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002768<p>Note that signed integer division and unsigned integer division are distinct
2769operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2770<p>Division by zero leads to undefined behavior. Overflow also leads to
2771undefined behavior; this is a rare case, but can occur, for example,
2772by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002773<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002774<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002775</pre>
2776</div>
2777<!-- _______________________________________________________________________ -->
2778<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002779Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002780<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002781<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002782<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002783 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002784</pre>
2785<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002786
Reid Spencer1628cec2006-10-26 06:15:43 +00002787<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002788operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002789
Chris Lattner261efe92003-11-25 01:02:51 +00002790<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002791
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002792<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002793<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2794of floating point values. Both arguments must have identical types.</p>
2795
Chris Lattner261efe92003-11-25 01:02:51 +00002796<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002797
Reid Spencer1628cec2006-10-26 06:15:43 +00002798<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002799
Chris Lattner261efe92003-11-25 01:02:51 +00002800<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002801
2802<pre>
2803 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002804</pre>
2805</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002806
Chris Lattner261efe92003-11-25 01:02:51 +00002807<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002808<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2809</div>
2810<div class="doc_text">
2811<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002812<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002813</pre>
2814<h5>Overview:</h5>
2815<p>The '<tt>urem</tt>' instruction returns the remainder from the
2816unsigned division of its two arguments.</p>
2817<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002818<p>The two arguments to the '<tt>urem</tt>' instruction must be
2819<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2820values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002821<h5>Semantics:</h5>
2822<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002823This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002824<p>Note that unsigned integer remainder and signed integer remainder are
2825distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2826<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002827<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002828<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002829</pre>
2830
2831</div>
2832<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002833<div class="doc_subsubsection">
2834 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2835</div>
2836
Chris Lattner261efe92003-11-25 01:02:51 +00002837<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002838
Chris Lattner261efe92003-11-25 01:02:51 +00002839<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002840
2841<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002842 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002843</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002844
Chris Lattner261efe92003-11-25 01:02:51 +00002845<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002846
Reid Spencer0a783f72006-11-02 01:53:59 +00002847<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002848signed division of its two operands. This instruction can also take
2849<a href="#t_vector">vector</a> versions of the values in which case
2850the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002851
Chris Lattner261efe92003-11-25 01:02:51 +00002852<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002853
Reid Spencer0a783f72006-11-02 01:53:59 +00002854<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002855<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2856values. Both arguments must have identical types.</p>
2857
Chris Lattner261efe92003-11-25 01:02:51 +00002858<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002859
Reid Spencer0a783f72006-11-02 01:53:59 +00002860<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002861has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2862operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002863a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002864 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002865Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002866please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002867Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002868<p>Note that signed integer remainder and unsigned integer remainder are
2869distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2870<p>Taking the remainder of a division by zero leads to undefined behavior.
2871Overflow also leads to undefined behavior; this is a rare case, but can occur,
2872for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2873(The remainder doesn't actually overflow, but this rule lets srem be
2874implemented using instructions that return both the result of the division
2875and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002876<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002877<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002878</pre>
2879
2880</div>
2881<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002882<div class="doc_subsubsection">
2883 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2884
Reid Spencer0a783f72006-11-02 01:53:59 +00002885<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002886
Reid Spencer0a783f72006-11-02 01:53:59 +00002887<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002888<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002889</pre>
2890<h5>Overview:</h5>
2891<p>The '<tt>frem</tt>' instruction returns the remainder from the
2892division of its two operands.</p>
2893<h5>Arguments:</h5>
2894<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002895<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2896of floating point values. Both arguments must have identical types.</p>
2897
Reid Spencer0a783f72006-11-02 01:53:59 +00002898<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002899
Chris Lattnera73afe02008-04-01 18:45:27 +00002900<p>This instruction returns the <i>remainder</i> of a division.
2901The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002902
Reid Spencer0a783f72006-11-02 01:53:59 +00002903<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002904
2905<pre>
2906 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002907</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002908</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002909
Reid Spencer8e11bf82007-02-02 13:57:07 +00002910<!-- ======================================================================= -->
2911<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2912Operations</a> </div>
2913<div class="doc_text">
2914<p>Bitwise binary operators are used to do various forms of
2915bit-twiddling in a program. They are generally very efficient
2916instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002917instructions. They require two operands of the same type, execute an operation on them,
2918and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002919</div>
2920
Reid Spencer569f2fa2007-01-31 21:39:12 +00002921<!-- _______________________________________________________________________ -->
2922<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2923Instruction</a> </div>
2924<div class="doc_text">
2925<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002926<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002927</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002928
Reid Spencer569f2fa2007-01-31 21:39:12 +00002929<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002930
Reid Spencer569f2fa2007-01-31 21:39:12 +00002931<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2932the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002933
Reid Spencer569f2fa2007-01-31 21:39:12 +00002934<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002935
Reid Spencer569f2fa2007-01-31 21:39:12 +00002936<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002937 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002938type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002939
Reid Spencer569f2fa2007-01-31 21:39:12 +00002940<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002941
Gabor Greiffb224a22008-08-07 21:46:00 +00002942<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2943where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang01f8d092008-12-10 08:55:09 +00002944equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2945If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2946corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002947
Reid Spencer569f2fa2007-01-31 21:39:12 +00002948<h5>Example:</h5><pre>
2949 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2950 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2951 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002952 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002953 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002954</pre>
2955</div>
2956<!-- _______________________________________________________________________ -->
2957<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2958Instruction</a> </div>
2959<div class="doc_text">
2960<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002961<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002962</pre>
2963
2964<h5>Overview:</h5>
2965<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002966operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002967
2968<h5>Arguments:</h5>
2969<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002970<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002971type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002972
2973<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002974
Reid Spencer569f2fa2007-01-31 21:39:12 +00002975<p>This instruction always performs a logical shift right operation. The most
2976significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002977shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang01f8d092008-12-10 08:55:09 +00002978the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2979vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2980amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002981
2982<h5>Example:</h5>
2983<pre>
2984 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2985 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2986 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2987 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002988 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002989 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002990</pre>
2991</div>
2992
Reid Spencer8e11bf82007-02-02 13:57:07 +00002993<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002994<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2995Instruction</a> </div>
2996<div class="doc_text">
2997
2998<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002999<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003000</pre>
3001
3002<h5>Overview:</h5>
3003<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003004operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003005
3006<h5>Arguments:</h5>
3007<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00003008<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00003009type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003010
3011<h5>Semantics:</h5>
3012<p>This instruction always performs an arithmetic shift right operation,
3013The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00003014of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang01f8d092008-12-10 08:55:09 +00003015larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
3016arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
3017corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003018
3019<h5>Example:</h5>
3020<pre>
3021 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3022 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3023 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3024 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003025 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003026 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003027</pre>
3028</div>
3029
Chris Lattner00950542001-06-06 20:29:01 +00003030<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003031<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3032Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00003033
Misha Brukman9d0919f2003-11-08 01:05:38 +00003034<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003035
Chris Lattner00950542001-06-06 20:29:01 +00003036<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003037
3038<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003039 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003040</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003041
Chris Lattner00950542001-06-06 20:29:01 +00003042<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003043
Chris Lattner261efe92003-11-25 01:02:51 +00003044<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
3045its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003046
Chris Lattner00950542001-06-06 20:29:01 +00003047<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003048
3049<p>The two arguments to the '<tt>and</tt>' instruction must be
3050<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3051values. Both arguments must have identical types.</p>
3052
Chris Lattner00950542001-06-06 20:29:01 +00003053<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003054<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003055<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003056<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003057<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00003058 <tbody>
3059 <tr>
3060 <td>In0</td>
3061 <td>In1</td>
3062 <td>Out</td>
3063 </tr>
3064 <tr>
3065 <td>0</td>
3066 <td>0</td>
3067 <td>0</td>
3068 </tr>
3069 <tr>
3070 <td>0</td>
3071 <td>1</td>
3072 <td>0</td>
3073 </tr>
3074 <tr>
3075 <td>1</td>
3076 <td>0</td>
3077 <td>0</td>
3078 </tr>
3079 <tr>
3080 <td>1</td>
3081 <td>1</td>
3082 <td>1</td>
3083 </tr>
3084 </tbody>
3085</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003086</div>
Chris Lattner00950542001-06-06 20:29:01 +00003087<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003088<pre>
3089 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003090 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3091 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00003092</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003093</div>
Chris Lattner00950542001-06-06 20:29:01 +00003094<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003095<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003096<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00003097<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003098<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003099</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00003100<h5>Overview:</h5>
3101<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
3102or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003103<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003104
3105<p>The two arguments to the '<tt>or</tt>' instruction must be
3106<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3107values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003108<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003109<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003110<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003111<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003112<table border="1" cellspacing="0" cellpadding="4">
3113 <tbody>
3114 <tr>
3115 <td>In0</td>
3116 <td>In1</td>
3117 <td>Out</td>
3118 </tr>
3119 <tr>
3120 <td>0</td>
3121 <td>0</td>
3122 <td>0</td>
3123 </tr>
3124 <tr>
3125 <td>0</td>
3126 <td>1</td>
3127 <td>1</td>
3128 </tr>
3129 <tr>
3130 <td>1</td>
3131 <td>0</td>
3132 <td>1</td>
3133 </tr>
3134 <tr>
3135 <td>1</td>
3136 <td>1</td>
3137 <td>1</td>
3138 </tr>
3139 </tbody>
3140</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003141</div>
Chris Lattner00950542001-06-06 20:29:01 +00003142<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003143<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
3144 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3145 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00003146</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003147</div>
Chris Lattner00950542001-06-06 20:29:01 +00003148<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003149<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3150Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003151<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00003152<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003153<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003154</pre>
Chris Lattner00950542001-06-06 20:29:01 +00003155<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003156<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
3157or of its two operands. The <tt>xor</tt> is used to implement the
3158"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003159<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003160<p>The two arguments to the '<tt>xor</tt>' instruction must be
3161<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3162values. Both arguments must have identical types.</p>
3163
Chris Lattner00950542001-06-06 20:29:01 +00003164<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003165
Misha Brukman9d0919f2003-11-08 01:05:38 +00003166<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003167<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003168<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003169<table border="1" cellspacing="0" cellpadding="4">
3170 <tbody>
3171 <tr>
3172 <td>In0</td>
3173 <td>In1</td>
3174 <td>Out</td>
3175 </tr>
3176 <tr>
3177 <td>0</td>
3178 <td>0</td>
3179 <td>0</td>
3180 </tr>
3181 <tr>
3182 <td>0</td>
3183 <td>1</td>
3184 <td>1</td>
3185 </tr>
3186 <tr>
3187 <td>1</td>
3188 <td>0</td>
3189 <td>1</td>
3190 </tr>
3191 <tr>
3192 <td>1</td>
3193 <td>1</td>
3194 <td>0</td>
3195 </tr>
3196 </tbody>
3197</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003198</div>
Chris Lattner261efe92003-11-25 01:02:51 +00003199<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00003200<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003201<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3202 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3203 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3204 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00003205</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003206</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003207
Chris Lattner00950542001-06-06 20:29:01 +00003208<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003209<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00003210 <a name="vectorops">Vector Operations</a>
3211</div>
3212
3213<div class="doc_text">
3214
3215<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003216target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00003217vector-specific operations needed to process vectors effectively. While LLVM
3218does directly support these vector operations, many sophisticated algorithms
3219will want to use target-specific intrinsics to take full advantage of a specific
3220target.</p>
3221
3222</div>
3223
3224<!-- _______________________________________________________________________ -->
3225<div class="doc_subsubsection">
3226 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3227</div>
3228
3229<div class="doc_text">
3230
3231<h5>Syntax:</h5>
3232
3233<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003234 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003235</pre>
3236
3237<h5>Overview:</h5>
3238
3239<p>
3240The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003241element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003242</p>
3243
3244
3245<h5>Arguments:</h5>
3246
3247<p>
3248The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003249value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00003250an index indicating the position from which to extract the element.
3251The index may be a variable.</p>
3252
3253<h5>Semantics:</h5>
3254
3255<p>
3256The result is a scalar of the same type as the element type of
3257<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3258<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3259results are undefined.
3260</p>
3261
3262<h5>Example:</h5>
3263
3264<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003265 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003266</pre>
3267</div>
3268
3269
3270<!-- _______________________________________________________________________ -->
3271<div class="doc_subsubsection">
3272 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3273</div>
3274
3275<div class="doc_text">
3276
3277<h5>Syntax:</h5>
3278
3279<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00003280 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003281</pre>
3282
3283<h5>Overview:</h5>
3284
3285<p>
3286The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003287element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003288</p>
3289
3290
3291<h5>Arguments:</h5>
3292
3293<p>
3294The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003295value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00003296scalar value whose type must equal the element type of the first
3297operand. The third operand is an index indicating the position at
3298which to insert the value. The index may be a variable.</p>
3299
3300<h5>Semantics:</h5>
3301
3302<p>
Reid Spencer485bad12007-02-15 03:07:05 +00003303The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00003304element values are those of <tt>val</tt> except at position
3305<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3306exceeds the length of <tt>val</tt>, the results are undefined.
3307</p>
3308
3309<h5>Example:</h5>
3310
3311<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003312 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003313</pre>
3314</div>
3315
3316<!-- _______________________________________________________________________ -->
3317<div class="doc_subsubsection">
3318 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3319</div>
3320
3321<div class="doc_text">
3322
3323<h5>Syntax:</h5>
3324
3325<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003326 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003327</pre>
3328
3329<h5>Overview:</h5>
3330
3331<p>
3332The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00003333from two input vectors, returning a vector with the same element type as
3334the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00003335</p>
3336
3337<h5>Arguments:</h5>
3338
3339<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003340The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3341with types that match each other. The third argument is a shuffle mask whose
3342element type is always 'i32'. The result of the instruction is a vector whose
3343length is the same as the shuffle mask and whose element type is the same as
3344the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00003345</p>
3346
3347<p>
3348The shuffle mask operand is required to be a constant vector with either
3349constant integer or undef values.
3350</p>
3351
3352<h5>Semantics:</h5>
3353
3354<p>
3355The elements of the two input vectors are numbered from left to right across
3356both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00003357the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00003358gets. The element selector may be undef (meaning "don't care") and the second
3359operand may be undef if performing a shuffle from only one vector.
3360</p>
3361
3362<h5>Example:</h5>
3363
3364<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003365 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003366 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003367 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3368 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003369 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3370 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3371 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3372 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003373</pre>
3374</div>
3375
Tanya Lattner09474292006-04-14 19:24:33 +00003376
Chris Lattner3df241e2006-04-08 23:07:04 +00003377<!-- ======================================================================= -->
3378<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003379 <a name="aggregateops">Aggregate Operations</a>
3380</div>
3381
3382<div class="doc_text">
3383
3384<p>LLVM supports several instructions for working with aggregate values.
3385</p>
3386
3387</div>
3388
3389<!-- _______________________________________________________________________ -->
3390<div class="doc_subsubsection">
3391 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3392</div>
3393
3394<div class="doc_text">
3395
3396<h5>Syntax:</h5>
3397
3398<pre>
3399 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3400</pre>
3401
3402<h5>Overview:</h5>
3403
3404<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003405The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3406or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003407</p>
3408
3409
3410<h5>Arguments:</h5>
3411
3412<p>
3413The first operand of an '<tt>extractvalue</tt>' instruction is a
3414value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003415type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003416in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003417'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3418</p>
3419
3420<h5>Semantics:</h5>
3421
3422<p>
3423The result is the value at the position in the aggregate specified by
3424the index operands.
3425</p>
3426
3427<h5>Example:</h5>
3428
3429<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003430 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003431</pre>
3432</div>
3433
3434
3435<!-- _______________________________________________________________________ -->
3436<div class="doc_subsubsection">
3437 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3438</div>
3439
3440<div class="doc_text">
3441
3442<h5>Syntax:</h5>
3443
3444<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003445 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003446</pre>
3447
3448<h5>Overview:</h5>
3449
3450<p>
3451The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003452into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003453</p>
3454
3455
3456<h5>Arguments:</h5>
3457
3458<p>
3459The first operand of an '<tt>insertvalue</tt>' instruction is a
3460value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3461The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003462The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003463indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003464indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003465'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3466The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003467by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003468</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003469
3470<h5>Semantics:</h5>
3471
3472<p>
3473The result is an aggregate of the same type as <tt>val</tt>. Its
3474value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003475specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003476</p>
3477
3478<h5>Example:</h5>
3479
3480<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003481 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003482</pre>
3483</div>
3484
3485
3486<!-- ======================================================================= -->
3487<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003488 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003489</div>
3490
Misha Brukman9d0919f2003-11-08 01:05:38 +00003491<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003492
Chris Lattner261efe92003-11-25 01:02:51 +00003493<p>A key design point of an SSA-based representation is how it
3494represents memory. In LLVM, no memory locations are in SSA form, which
3495makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003496allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003497
Misha Brukman9d0919f2003-11-08 01:05:38 +00003498</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003499
Chris Lattner00950542001-06-06 20:29:01 +00003500<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003501<div class="doc_subsubsection">
3502 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3503</div>
3504
Misha Brukman9d0919f2003-11-08 01:05:38 +00003505<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003506
Chris Lattner00950542001-06-06 20:29:01 +00003507<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003508
3509<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003510 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003511</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003512
Chris Lattner00950542001-06-06 20:29:01 +00003513<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003514
Chris Lattner261efe92003-11-25 01:02:51 +00003515<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003516heap and returns a pointer to it. The object is always allocated in the generic
3517address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003518
Chris Lattner00950542001-06-06 20:29:01 +00003519<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003520
3521<p>The '<tt>malloc</tt>' instruction allocates
3522<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003523bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003524appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003525number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003526If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003527be aligned to at least that boundary. If not specified, or if zero, the target can
3528choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003529
Misha Brukman9d0919f2003-11-08 01:05:38 +00003530<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003531
Chris Lattner00950542001-06-06 20:29:01 +00003532<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003533
Chris Lattner261efe92003-11-25 01:02:51 +00003534<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003535a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003536result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003537
Chris Lattner2cbdc452005-11-06 08:02:57 +00003538<h5>Example:</h5>
3539
3540<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003541 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003542
Bill Wendlingaac388b2007-05-29 09:42:13 +00003543 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3544 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3545 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3546 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3547 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003548</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003549
3550<p>Note that the code generator does not yet respect the
3551 alignment value.</p>
3552
Misha Brukman9d0919f2003-11-08 01:05:38 +00003553</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003554
Chris Lattner00950542001-06-06 20:29:01 +00003555<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003556<div class="doc_subsubsection">
3557 <a name="i_free">'<tt>free</tt>' Instruction</a>
3558</div>
3559
Misha Brukman9d0919f2003-11-08 01:05:38 +00003560<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003561
Chris Lattner00950542001-06-06 20:29:01 +00003562<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003563
3564<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003565 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003566</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003567
Chris Lattner00950542001-06-06 20:29:01 +00003568<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003569
Chris Lattner261efe92003-11-25 01:02:51 +00003570<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003571memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003572
Chris Lattner00950542001-06-06 20:29:01 +00003573<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003574
Chris Lattner261efe92003-11-25 01:02:51 +00003575<p>'<tt>value</tt>' shall be a pointer value that points to a value
3576that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3577instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003578
Chris Lattner00950542001-06-06 20:29:01 +00003579<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003580
John Criswell9e2485c2004-12-10 15:51:16 +00003581<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003582after this instruction executes. If the pointer is null, the operation
3583is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003584
Chris Lattner00950542001-06-06 20:29:01 +00003585<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003586
3587<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003588 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003589 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003590</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003591</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003592
Chris Lattner00950542001-06-06 20:29:01 +00003593<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003594<div class="doc_subsubsection">
3595 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3596</div>
3597
Misha Brukman9d0919f2003-11-08 01:05:38 +00003598<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003599
Chris Lattner00950542001-06-06 20:29:01 +00003600<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003601
3602<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003603 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003604</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003605
Chris Lattner00950542001-06-06 20:29:01 +00003606<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003607
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003608<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3609currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003610returns to its caller. The object is always allocated in the generic address
3611space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003612
Chris Lattner00950542001-06-06 20:29:01 +00003613<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003614
John Criswell9e2485c2004-12-10 15:51:16 +00003615<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003616bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003617appropriate type to the program. If "NumElements" is specified, it is the
3618number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003619If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003620to be aligned to at least that boundary. If not specified, or if zero, the target
3621can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003622
Misha Brukman9d0919f2003-11-08 01:05:38 +00003623<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003624
Chris Lattner00950542001-06-06 20:29:01 +00003625<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003626
Bill Wendling871eb0a2009-05-08 20:49:29 +00003627<p>Memory is allocated; a pointer is returned. The operation is undefined if
Chris Lattner72ed2002008-04-19 21:01:16 +00003628there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003629memory is automatically released when the function returns. The '<tt>alloca</tt>'
3630instruction is commonly used to represent automatic variables that must
3631have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003632 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003633instructions), the memory is reclaimed. Allocating zero bytes
3634is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003635
Chris Lattner00950542001-06-06 20:29:01 +00003636<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003637
3638<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003639 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3640 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3641 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3642 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003643</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003644</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003645
Chris Lattner00950542001-06-06 20:29:01 +00003646<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003647<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3648Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003649<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003650<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003651<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003652<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003653<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003654<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003655<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003656address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003657 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003658marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003659the number or order of execution of this <tt>load</tt> with other
3660volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3661instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003662<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003663The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003664(that is, the alignment of the memory address). A value of 0 or an
3665omitted "align" argument means that the operation has the preferential
3666alignment for the target. It is the responsibility of the code emitter
3667to ensure that the alignment information is correct. Overestimating
3668the alignment results in an undefined behavior. Underestimating the
3669alignment may produce less efficient code. An alignment of 1 is always
3670safe.
3671</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003672<h5>Semantics:</h5>
Duncan Sands19527c62009-03-22 11:33:16 +00003673<p>The location of memory pointed to is loaded. If the value being loaded
3674is of scalar type then the number of bytes read does not exceed the minimum
3675number of bytes needed to hold all bits of the type. For example, loading an
3676<tt>i24</tt> reads at most three bytes. When loading a value of a type like
3677<tt>i20</tt> with a size that is not an integral number of bytes, the result
3678is undefined if the value was not originally written using a store of the
3679same type.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003680<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003681<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003682 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003683 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3684 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003685</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003686</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003687<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003688<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3689Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003690<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003691<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003692<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3693 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003694</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003695<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003696<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003697<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003698<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003699to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003700operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3701of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003702operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003703optimizer is not allowed to modify the number or order of execution of
3704this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3705 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003706<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003707The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003708(that is, the alignment of the memory address). A value of 0 or an
3709omitted "align" argument means that the operation has the preferential
3710alignment for the target. It is the responsibility of the code emitter
3711to ensure that the alignment information is correct. Overestimating
3712the alignment results in an undefined behavior. Underestimating the
3713alignment may produce less efficient code. An alignment of 1 is always
3714safe.
3715</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003716<h5>Semantics:</h5>
3717<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
Duncan Sands19527c62009-03-22 11:33:16 +00003718at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.
3719If '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes
3720written does not exceed the minimum number of bytes needed to hold all
3721bits of the type. For example, storing an <tt>i24</tt> writes at most
3722three bytes. When writing a value of a type like <tt>i20</tt> with a
3723size that is not an integral number of bytes, it is unspecified what
3724happens to the extra bits that do not belong to the type, but they will
3725typically be overwritten.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003726<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003727<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003728 store i32 3, i32* %ptr <i>; yields {void}</i>
3729 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003730</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003731</div>
3732
Chris Lattner2b7d3202002-05-06 03:03:22 +00003733<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003734<div class="doc_subsubsection">
3735 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3736</div>
3737
Misha Brukman9d0919f2003-11-08 01:05:38 +00003738<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003739<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003740<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003741 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003742</pre>
3743
Chris Lattner7faa8832002-04-14 06:13:44 +00003744<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003745
3746<p>
3747The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003748subelement of an aggregate data structure. It performs address calculation only
3749and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003750
Chris Lattner7faa8832002-04-14 06:13:44 +00003751<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003752
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003753<p>The first argument is always a pointer, and forms the basis of the
3754calculation. The remaining arguments are indices, that indicate which of the
3755elements of the aggregate object are indexed. The interpretation of each index
3756is dependent on the type being indexed into. The first index always indexes the
3757pointer value given as the first argument, the second index indexes a value of
3758the type pointed to (not necessarily the value directly pointed to, since the
3759first index can be non-zero), etc. The first type indexed into must be a pointer
3760value, subsequent types can be arrays, vectors and structs. Note that subsequent
3761types being indexed into can never be pointers, since that would require loading
3762the pointer before continuing calculation.</p>
3763
3764<p>The type of each index argument depends on the type it is indexing into.
3765When indexing into a (packed) structure, only <tt>i32</tt> integer
3766<b>constants</b> are allowed. When indexing into an array, pointer or vector,
Sanjiv Gupta23c70f42009-04-27 03:21:00 +00003767integers of any width are allowed (also non-constants).</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003768
Chris Lattner261efe92003-11-25 01:02:51 +00003769<p>For example, let's consider a C code fragment and how it gets
3770compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003771
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003772<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003773<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003774struct RT {
3775 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003776 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003777 char C;
3778};
3779struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003780 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003781 double Y;
3782 struct RT Z;
3783};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003784
Chris Lattnercabc8462007-05-29 15:43:56 +00003785int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003786 return &amp;s[1].Z.B[5][13];
3787}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003788</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003789</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003790
Misha Brukman9d0919f2003-11-08 01:05:38 +00003791<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003792
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003793<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003794<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00003795%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3796%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003797
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003798define i32* %foo(%ST* %s) {
3799entry:
3800 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3801 ret i32* %reg
3802}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003803</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003804</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003805
Chris Lattner7faa8832002-04-14 06:13:44 +00003806<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003807
Misha Brukman9d0919f2003-11-08 01:05:38 +00003808<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003809type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003810}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003811the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3812i8 }</tt>' type, another structure. The third index indexes into the second
3813element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003814array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003815'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3816to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003817
Chris Lattner261efe92003-11-25 01:02:51 +00003818<p>Note that it is perfectly legal to index partially through a
3819structure, returning a pointer to an inner element. Because of this,
3820the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003821
3822<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003823 define i32* %foo(%ST* %s) {
3824 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003825 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3826 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003827 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3828 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3829 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003830 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003831</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003832
Chris Lattner8c0e62c2009-03-09 20:55:18 +00003833<p>Note that it is undefined to access an array out of bounds: array
3834and pointer indexes must always be within the defined bounds of the
3835array type when accessed with an instruction that dereferences the
3836pointer (e.g. a load or store instruction). The one exception for
3837this rule is zero length arrays. These arrays are defined to be
3838accessible as variable length arrays, which requires access beyond the
3839zero'th element.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00003840
Chris Lattner884a9702006-08-15 00:45:58 +00003841<p>The getelementptr instruction is often confusing. For some more insight
3842into how it works, see <a href="GetElementPtr.html">the getelementptr
3843FAQ</a>.</p>
3844
Chris Lattner7faa8832002-04-14 06:13:44 +00003845<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003846
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003847<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003848 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003849 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3850 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003851 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003852 <i>; yields i8*:eptr</i>
3853 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta9f805c22009-04-25 07:27:44 +00003854 <i>; yields i32*:iptr</i>
Sanjiv Gupta16ffa802009-04-24 16:38:13 +00003855 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003856</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003857</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003858
Chris Lattner00950542001-06-06 20:29:01 +00003859<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003860<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003861</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003862<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003863<p>The instructions in this category are the conversion instructions (casting)
3864which all take a single operand and a type. They perform various bit conversions
3865on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003866</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003867
Chris Lattner6536cfe2002-05-06 22:08:29 +00003868<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003869<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003870 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3871</div>
3872<div class="doc_text">
3873
3874<h5>Syntax:</h5>
3875<pre>
3876 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3877</pre>
3878
3879<h5>Overview:</h5>
3880<p>
3881The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3882</p>
3883
3884<h5>Arguments:</h5>
3885<p>
3886The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3887be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003888and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003889type. The bit size of <tt>value</tt> must be larger than the bit size of
3890<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003891
3892<h5>Semantics:</h5>
3893<p>
3894The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003895and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3896larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3897It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003898
3899<h5>Example:</h5>
3900<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003901 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003902 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3903 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003904</pre>
3905</div>
3906
3907<!-- _______________________________________________________________________ -->
3908<div class="doc_subsubsection">
3909 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3910</div>
3911<div class="doc_text">
3912
3913<h5>Syntax:</h5>
3914<pre>
3915 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3916</pre>
3917
3918<h5>Overview:</h5>
3919<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3920<tt>ty2</tt>.</p>
3921
3922
3923<h5>Arguments:</h5>
3924<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003925<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3926also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003927<tt>value</tt> must be smaller than the bit size of the destination type,
3928<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003929
3930<h5>Semantics:</h5>
3931<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003932bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003933
Reid Spencerb5929522007-01-12 15:46:11 +00003934<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003935
3936<h5>Example:</h5>
3937<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003938 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003939 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003940</pre>
3941</div>
3942
3943<!-- _______________________________________________________________________ -->
3944<div class="doc_subsubsection">
3945 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3946</div>
3947<div class="doc_text">
3948
3949<h5>Syntax:</h5>
3950<pre>
3951 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3952</pre>
3953
3954<h5>Overview:</h5>
3955<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3956
3957<h5>Arguments:</h5>
3958<p>
3959The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003960<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3961also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003962<tt>value</tt> must be smaller than the bit size of the destination type,
3963<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003964
3965<h5>Semantics:</h5>
3966<p>
3967The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3968bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003969the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003970
Reid Spencerc78f3372007-01-12 03:35:51 +00003971<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003972
3973<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003974<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003975 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003976 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003977</pre>
3978</div>
3979
3980<!-- _______________________________________________________________________ -->
3981<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003982 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3983</div>
3984
3985<div class="doc_text">
3986
3987<h5>Syntax:</h5>
3988
3989<pre>
3990 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3991</pre>
3992
3993<h5>Overview:</h5>
3994<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3995<tt>ty2</tt>.</p>
3996
3997
3998<h5>Arguments:</h5>
3999<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
4000 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
4001cast it to. The size of <tt>value</tt> must be larger than the size of
4002<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4003<i>no-op cast</i>.</p>
4004
4005<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004006<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4007<a href="#t_floating">floating point</a> type to a smaller
4008<a href="#t_floating">floating point</a> type. If the value cannot fit within
4009the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004010
4011<h5>Example:</h5>
4012<pre>
4013 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4014 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4015</pre>
4016</div>
4017
4018<!-- _______________________________________________________________________ -->
4019<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004020 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4021</div>
4022<div class="doc_text">
4023
4024<h5>Syntax:</h5>
4025<pre>
4026 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4027</pre>
4028
4029<h5>Overview:</h5>
4030<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
4031floating point value.</p>
4032
4033<h5>Arguments:</h5>
4034<p>The '<tt>fpext</tt>' instruction takes a
4035<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00004036and a <a href="#t_floating">floating point</a> type to cast it to. The source
4037type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004038
4039<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004040<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00004041<a href="#t_floating">floating point</a> type to a larger
4042<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00004043used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00004044<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004045
4046<h5>Example:</h5>
4047<pre>
4048 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4049 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4050</pre>
4051</div>
4052
4053<!-- _______________________________________________________________________ -->
4054<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00004055 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004056</div>
4057<div class="doc_text">
4058
4059<h5>Syntax:</h5>
4060<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004061 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004062</pre>
4063
4064<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004065<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004066unsigned integer equivalent of type <tt>ty2</tt>.
4067</p>
4068
4069<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004070<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00004071scalar or vector <a href="#t_floating">floating point</a> value, and a type
4072to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4073type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4074vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004075
4076<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004077<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004078<a href="#t_floating">floating point</a> operand into the nearest (rounding
4079towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
4080the results are undefined.</p>
4081
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004082<h5>Example:</h5>
4083<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004084 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004085 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004086 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004087</pre>
4088</div>
4089
4090<!-- _______________________________________________________________________ -->
4091<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004092 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004093</div>
4094<div class="doc_text">
4095
4096<h5>Syntax:</h5>
4097<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004098 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004099</pre>
4100
4101<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004102<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004103<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004104</p>
4105
Chris Lattner6536cfe2002-05-06 22:08:29 +00004106<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004107<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00004108scalar or vector <a href="#t_floating">floating point</a> value, and a type
4109to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4110type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4111vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004112
Chris Lattner6536cfe2002-05-06 22:08:29 +00004113<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004114<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004115<a href="#t_floating">floating point</a> operand into the nearest (rounding
4116towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4117the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004118
Chris Lattner33ba0d92001-07-09 00:26:23 +00004119<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004120<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004121 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004122 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004123 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004124</pre>
4125</div>
4126
4127<!-- _______________________________________________________________________ -->
4128<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004129 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004130</div>
4131<div class="doc_text">
4132
4133<h5>Syntax:</h5>
4134<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004135 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004136</pre>
4137
4138<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004139<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004140integer and converts that value to the <tt>ty2</tt> type.</p>
4141
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004142<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004143<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4144scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4145to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4146type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4147floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004148
4149<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004150<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004151integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00004152the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004153
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004154<h5>Example:</h5>
4155<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004156 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004157 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004158</pre>
4159</div>
4160
4161<!-- _______________________________________________________________________ -->
4162<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004163 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004164</div>
4165<div class="doc_text">
4166
4167<h5>Syntax:</h5>
4168<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004169 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004170</pre>
4171
4172<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004173<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004174integer and converts that value to the <tt>ty2</tt> type.</p>
4175
4176<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004177<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4178scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4179to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4180type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4181floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004182
4183<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004184<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004185integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00004186the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004187
4188<h5>Example:</h5>
4189<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004190 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004191 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004192</pre>
4193</div>
4194
4195<!-- _______________________________________________________________________ -->
4196<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00004197 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4198</div>
4199<div class="doc_text">
4200
4201<h5>Syntax:</h5>
4202<pre>
4203 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4204</pre>
4205
4206<h5>Overview:</h5>
4207<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4208the integer type <tt>ty2</tt>.</p>
4209
4210<h5>Arguments:</h5>
4211<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00004212must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00004213<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004214
4215<h5>Semantics:</h5>
4216<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4217<tt>ty2</tt> by interpreting the pointer value as an integer and either
4218truncating or zero extending that value to the size of the integer type. If
4219<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4220<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00004221are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4222change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004223
4224<h5>Example:</h5>
4225<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004226 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4227 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004228</pre>
4229</div>
4230
4231<!-- _______________________________________________________________________ -->
4232<div class="doc_subsubsection">
4233 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4234</div>
4235<div class="doc_text">
4236
4237<h5>Syntax:</h5>
4238<pre>
4239 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4240</pre>
4241
4242<h5>Overview:</h5>
4243<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4244a pointer type, <tt>ty2</tt>.</p>
4245
4246<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00004247<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00004248value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004249<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004250
4251<h5>Semantics:</h5>
4252<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4253<tt>ty2</tt> by applying either a zero extension or a truncation depending on
4254the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4255size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4256the size of a pointer then a zero extension is done. If they are the same size,
4257nothing is done (<i>no-op cast</i>).</p>
4258
4259<h5>Example:</h5>
4260<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004261 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4262 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4263 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004264</pre>
4265</div>
4266
4267<!-- _______________________________________________________________________ -->
4268<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00004269 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004270</div>
4271<div class="doc_text">
4272
4273<h5>Syntax:</h5>
4274<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004275 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004276</pre>
4277
4278<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004279
Reid Spencer5c0ef472006-11-11 23:08:07 +00004280<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004281<tt>ty2</tt> without changing any bits.</p>
4282
4283<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004284
Reid Spencer5c0ef472006-11-11 23:08:07 +00004285<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00004286a non-aggregate first class value, and a type to cast it to, which must also be
4287a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4288<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00004289and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00004290type is a pointer, the destination type must also be a pointer. This
4291instruction supports bitwise conversion of vectors to integers and to vectors
4292of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004293
4294<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004295<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00004296<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4297this conversion. The conversion is done as if the <tt>value</tt> had been
4298stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4299converted to other pointer types with this instruction. To convert pointers to
4300other types, use the <a href="#i_inttoptr">inttoptr</a> or
4301<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004302
4303<h5>Example:</h5>
4304<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004305 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004306 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004307 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00004308</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004309</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004310
Reid Spencer2fd21e62006-11-08 01:18:52 +00004311<!-- ======================================================================= -->
4312<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4313<div class="doc_text">
4314<p>The instructions in this category are the "miscellaneous"
4315instructions, which defy better classification.</p>
4316</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004317
4318<!-- _______________________________________________________________________ -->
4319<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4320</div>
4321<div class="doc_text">
4322<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004323<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004324</pre>
4325<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004326<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4327a vector of boolean values based on comparison
4328of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004329<h5>Arguments:</h5>
4330<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004331the condition code indicating the kind of comparison to perform. It is not
4332a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004333</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004334<ol>
4335 <li><tt>eq</tt>: equal</li>
4336 <li><tt>ne</tt>: not equal </li>
4337 <li><tt>ugt</tt>: unsigned greater than</li>
4338 <li><tt>uge</tt>: unsigned greater or equal</li>
4339 <li><tt>ult</tt>: unsigned less than</li>
4340 <li><tt>ule</tt>: unsigned less or equal</li>
4341 <li><tt>sgt</tt>: signed greater than</li>
4342 <li><tt>sge</tt>: signed greater or equal</li>
4343 <li><tt>slt</tt>: signed less than</li>
4344 <li><tt>sle</tt>: signed less or equal</li>
4345</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00004346<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00004347<a href="#t_pointer">pointer</a>
4348or integer <a href="#t_vector">vector</a> typed.
4349They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004350<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004351<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00004352the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00004353yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004354</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004355<ol>
4356 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4357 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4358 </li>
4359 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00004360 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004361 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004362 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004363 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004364 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004365 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004366 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004367 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004368 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004369 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004370 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004371 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004372 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004373 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004374 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004375 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004376 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004377</ol>
4378<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00004379values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004380<p>If the operands are integer vectors, then they are compared
4381element by element. The result is an <tt>i1</tt> vector with
4382the same number of elements as the values being compared.
4383Otherwise, the result is an <tt>i1</tt>.
4384</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004385
4386<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004387<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4388 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4389 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4390 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4391 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4392 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004393</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004394
4395<p>Note that the code generator does not yet support vector types with
4396 the <tt>icmp</tt> instruction.</p>
4397
Reid Spencerf3a70a62006-11-18 21:50:54 +00004398</div>
4399
4400<!-- _______________________________________________________________________ -->
4401<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4402</div>
4403<div class="doc_text">
4404<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004405<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004406</pre>
4407<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004408<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4409or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004410of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004411<p>
4412If the operands are floating point scalars, then the result
4413type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4414</p>
4415<p>If the operands are floating point vectors, then the result type
4416is a vector of boolean with the same number of elements as the
4417operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004418<h5>Arguments:</h5>
4419<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004420the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004421a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004422<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004423 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004424 <li><tt>oeq</tt>: ordered and equal</li>
4425 <li><tt>ogt</tt>: ordered and greater than </li>
4426 <li><tt>oge</tt>: ordered and greater than or equal</li>
4427 <li><tt>olt</tt>: ordered and less than </li>
4428 <li><tt>ole</tt>: ordered and less than or equal</li>
4429 <li><tt>one</tt>: ordered and not equal</li>
4430 <li><tt>ord</tt>: ordered (no nans)</li>
4431 <li><tt>ueq</tt>: unordered or equal</li>
4432 <li><tt>ugt</tt>: unordered or greater than </li>
4433 <li><tt>uge</tt>: unordered or greater than or equal</li>
4434 <li><tt>ult</tt>: unordered or less than </li>
4435 <li><tt>ule</tt>: unordered or less than or equal</li>
4436 <li><tt>une</tt>: unordered or not equal</li>
4437 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004438 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004439</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004440<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004441<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004442<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4443either a <a href="#t_floating">floating point</a> type
4444or a <a href="#t_vector">vector</a> of floating point type.
4445They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004446<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004447<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004448according to the condition code given as <tt>cond</tt>.
4449If the operands are vectors, then the vectors are compared
4450element by element.
4451Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004452always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004453<ol>
4454 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004455 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004456 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004457 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004458 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004459 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004460 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004461 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004462 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004463 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004464 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004465 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004466 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004467 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4468 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004469 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004470 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004471 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004472 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004473 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004474 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004475 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004476 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004477 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004478 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004479 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004480 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004481 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4482</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004483
4484<h5>Example:</h5>
4485<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004486 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4487 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4488 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004489</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004490
4491<p>Note that the code generator does not yet support vector types with
4492 the <tt>fcmp</tt> instruction.</p>
4493
Reid Spencerf3a70a62006-11-18 21:50:54 +00004494</div>
4495
Reid Spencer2fd21e62006-11-08 01:18:52 +00004496<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004497<div class="doc_subsubsection">
4498 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4499</div>
4500<div class="doc_text">
4501<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004502<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004503</pre>
4504<h5>Overview:</h5>
4505<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4506element-wise comparison of its two integer vector operands.</p>
4507<h5>Arguments:</h5>
4508<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4509the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004510a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004511<ol>
4512 <li><tt>eq</tt>: equal</li>
4513 <li><tt>ne</tt>: not equal </li>
4514 <li><tt>ugt</tt>: unsigned greater than</li>
4515 <li><tt>uge</tt>: unsigned greater or equal</li>
4516 <li><tt>ult</tt>: unsigned less than</li>
4517 <li><tt>ule</tt>: unsigned less or equal</li>
4518 <li><tt>sgt</tt>: signed greater than</li>
4519 <li><tt>sge</tt>: signed greater or equal</li>
4520 <li><tt>slt</tt>: signed less than</li>
4521 <li><tt>sle</tt>: signed less or equal</li>
4522</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004523<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004524<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4525<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004526<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004527according to the condition code given as <tt>cond</tt>. The comparison yields a
4528<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4529identical type as the values being compared. The most significant bit in each
4530element is 1 if the element-wise comparison evaluates to true, and is 0
4531otherwise. All other bits of the result are undefined. The condition codes
4532are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman0e451ce2008-10-14 16:51:45 +00004533instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004534
4535<h5>Example:</h5>
4536<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004537 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4538 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004539</pre>
4540</div>
4541
4542<!-- _______________________________________________________________________ -->
4543<div class="doc_subsubsection">
4544 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4545</div>
4546<div class="doc_text">
4547<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004548<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004549<h5>Overview:</h5>
4550<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4551element-wise comparison of its two floating point vector operands. The output
4552elements have the same width as the input elements.</p>
4553<h5>Arguments:</h5>
4554<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4555the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004556a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004557<ol>
4558 <li><tt>false</tt>: no comparison, always returns false</li>
4559 <li><tt>oeq</tt>: ordered and equal</li>
4560 <li><tt>ogt</tt>: ordered and greater than </li>
4561 <li><tt>oge</tt>: ordered and greater than or equal</li>
4562 <li><tt>olt</tt>: ordered and less than </li>
4563 <li><tt>ole</tt>: ordered and less than or equal</li>
4564 <li><tt>one</tt>: ordered and not equal</li>
4565 <li><tt>ord</tt>: ordered (no nans)</li>
4566 <li><tt>ueq</tt>: unordered or equal</li>
4567 <li><tt>ugt</tt>: unordered or greater than </li>
4568 <li><tt>uge</tt>: unordered or greater than or equal</li>
4569 <li><tt>ult</tt>: unordered or less than </li>
4570 <li><tt>ule</tt>: unordered or less than or equal</li>
4571 <li><tt>une</tt>: unordered or not equal</li>
4572 <li><tt>uno</tt>: unordered (either nans)</li>
4573 <li><tt>true</tt>: no comparison, always returns true</li>
4574</ol>
4575<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4576<a href="#t_floating">floating point</a> typed. They must also be identical
4577types.</p>
4578<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004579<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004580according to the condition code given as <tt>cond</tt>. The comparison yields a
4581<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4582an identical number of elements as the values being compared, and each element
4583having identical with to the width of the floating point elements. The most
4584significant bit in each element is 1 if the element-wise comparison evaluates to
4585true, and is 0 otherwise. All other bits of the result are undefined. The
4586condition codes are evaluated identically to the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004587<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004588
4589<h5>Example:</h5>
4590<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +00004591 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4592 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4593
4594 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4595 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemanac80ade2008-05-12 19:01:56 +00004596</pre>
4597</div>
4598
4599<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004600<div class="doc_subsubsection">
4601 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4602</div>
4603
Reid Spencer2fd21e62006-11-08 01:18:52 +00004604<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004605
Reid Spencer2fd21e62006-11-08 01:18:52 +00004606<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004607
Reid Spencer2fd21e62006-11-08 01:18:52 +00004608<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4609<h5>Overview:</h5>
4610<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4611the SSA graph representing the function.</p>
4612<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004613
Jeff Cohenb627eab2007-04-29 01:07:00 +00004614<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004615field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4616as arguments, with one pair for each predecessor basic block of the
4617current block. Only values of <a href="#t_firstclass">first class</a>
4618type may be used as the value arguments to the PHI node. Only labels
4619may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004620
Reid Spencer2fd21e62006-11-08 01:18:52 +00004621<p>There must be no non-phi instructions between the start of a basic
4622block and the PHI instructions: i.e. PHI instructions must be first in
4623a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004624
Jay Foadd2449092009-06-03 10:20:10 +00004625<p>For the purposes of the SSA form, the use of each incoming value is
4626deemed to occur on the edge from the corresponding predecessor block
4627to the current block (but after any definition of an '<tt>invoke</tt>'
4628instruction's return value on the same edge).</p>
4629
Reid Spencer2fd21e62006-11-08 01:18:52 +00004630<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004631
Jeff Cohenb627eab2007-04-29 01:07:00 +00004632<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4633specified by the pair corresponding to the predecessor basic block that executed
4634just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004635
Reid Spencer2fd21e62006-11-08 01:18:52 +00004636<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004637<pre>
4638Loop: ; Infinite loop that counts from 0 on up...
4639 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4640 %nextindvar = add i32 %indvar, 1
4641 br label %Loop
4642</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004643</div>
4644
Chris Lattnercc37aae2004-03-12 05:50:16 +00004645<!-- _______________________________________________________________________ -->
4646<div class="doc_subsubsection">
4647 <a name="i_select">'<tt>select</tt>' Instruction</a>
4648</div>
4649
4650<div class="doc_text">
4651
4652<h5>Syntax:</h5>
4653
4654<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004655 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4656
Dan Gohman0e451ce2008-10-14 16:51:45 +00004657 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004658</pre>
4659
4660<h5>Overview:</h5>
4661
4662<p>
4663The '<tt>select</tt>' instruction is used to choose one value based on a
4664condition, without branching.
4665</p>
4666
4667
4668<h5>Arguments:</h5>
4669
4670<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004671The '<tt>select</tt>' instruction requires an 'i1' value or
4672a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004673condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004674type. If the val1/val2 are vectors and
4675the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004676individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004677</p>
4678
4679<h5>Semantics:</h5>
4680
4681<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004682If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004683value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004684</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004685<p>
4686If the condition is a vector of i1, then the value arguments must
4687be vectors of the same size, and the selection is done element
4688by element.
4689</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004690
4691<h5>Example:</h5>
4692
4693<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004694 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004695</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004696
4697<p>Note that the code generator does not yet support conditions
4698 with vector type.</p>
4699
Chris Lattnercc37aae2004-03-12 05:50:16 +00004700</div>
4701
Robert Bocchino05ccd702006-01-15 20:48:27 +00004702
4703<!-- _______________________________________________________________________ -->
4704<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004705 <a name="i_call">'<tt>call</tt>' Instruction</a>
4706</div>
4707
Misha Brukman9d0919f2003-11-08 01:05:38 +00004708<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004709
Chris Lattner00950542001-06-06 20:29:01 +00004710<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004711<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004712 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004713</pre>
4714
Chris Lattner00950542001-06-06 20:29:01 +00004715<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004716
Misha Brukman9d0919f2003-11-08 01:05:38 +00004717<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004718
Chris Lattner00950542001-06-06 20:29:01 +00004719<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004720
Misha Brukman9d0919f2003-11-08 01:05:38 +00004721<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004722
Chris Lattner6536cfe2002-05-06 22:08:29 +00004723<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004724 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004725 <p>The optional "tail" marker indicates whether the callee function accesses
4726 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004727 function call is eligible for tail call optimization. Note that calls may
4728 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004729 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004730 </li>
4731 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004732 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004733 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004734 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004735 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004736
4737 <li>
4738 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4739 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4740 and '<tt>inreg</tt>' attributes are valid here.</p>
4741 </li>
4742
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004743 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004744 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4745 the type of the return value. Functions that return no value are marked
4746 <tt><a href="#t_void">void</a></tt>.</p>
4747 </li>
4748 <li>
4749 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4750 value being invoked. The argument types must match the types implied by
4751 this signature. This type can be omitted if the function is not varargs
4752 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004753 </li>
4754 <li>
4755 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4756 be invoked. In most cases, this is a direct function invocation, but
4757 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004758 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004759 </li>
4760 <li>
4761 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004762 function signature argument types. All arguments must be of
4763 <a href="#t_firstclass">first class</a> type. If the function signature
4764 indicates the function accepts a variable number of arguments, the extra
4765 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004766 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004767 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004768 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004769 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4770 '<tt>readnone</tt>' attributes are valid here.</p>
4771 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004772</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004773
Chris Lattner00950542001-06-06 20:29:01 +00004774<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004775
Chris Lattner261efe92003-11-25 01:02:51 +00004776<p>The '<tt>call</tt>' instruction is used to cause control flow to
4777transfer to a specified function, with its incoming arguments bound to
4778the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4779instruction in the called function, control flow continues with the
4780instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004781function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004782
Chris Lattner00950542001-06-06 20:29:01 +00004783<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004784
4785<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004786 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004787 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4788 %X = tail call i32 @foo() <i>; yields i32</i>
4789 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4790 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004791
4792 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004793 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004794 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4795 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004796 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004797 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004798</pre>
4799
Misha Brukman9d0919f2003-11-08 01:05:38 +00004800</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004801
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004802<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004803<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004804 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004805</div>
4806
Misha Brukman9d0919f2003-11-08 01:05:38 +00004807<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004808
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004809<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004810
4811<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004812 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004813</pre>
4814
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004815<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004816
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004817<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004818the "variable argument" area of a function call. It is used to implement the
4819<tt>va_arg</tt> macro in C.</p>
4820
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004821<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004822
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004823<p>This instruction takes a <tt>va_list*</tt> value and the type of
4824the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004825increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004826actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004827
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004828<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004829
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004830<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4831type from the specified <tt>va_list</tt> and causes the
4832<tt>va_list</tt> to point to the next argument. For more information,
4833see the variable argument handling <a href="#int_varargs">Intrinsic
4834Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004835
4836<p>It is legal for this instruction to be called in a function which does not
4837take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004838function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004839
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004840<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004841href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004842argument.</p>
4843
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004844<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004845
4846<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4847
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00004848<p>Note that the code generator does not yet fully support va_arg
4849 on many targets. Also, it does not currently support va_arg with
4850 aggregate types on any target.</p>
4851
Misha Brukman9d0919f2003-11-08 01:05:38 +00004852</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004853
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004854<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004855<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4856<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004857
Misha Brukman9d0919f2003-11-08 01:05:38 +00004858<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004859
4860<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004861well known names and semantics and are required to follow certain restrictions.
4862Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004863language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004864adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004865
John Criswellfc6b8952005-05-16 16:17:45 +00004866<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004867prefix is reserved in LLVM for intrinsic names; thus, function names may not
4868begin with this prefix. Intrinsic functions must always be external functions:
4869you cannot define the body of intrinsic functions. Intrinsic functions may
4870only be used in call or invoke instructions: it is illegal to take the address
4871of an intrinsic function. Additionally, because intrinsic functions are part
4872of the LLVM language, it is required if any are added that they be documented
4873here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004874
Chandler Carruth69940402007-08-04 01:51:18 +00004875<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4876a family of functions that perform the same operation but on different data
4877types. Because LLVM can represent over 8 million different integer types,
4878overloading is used commonly to allow an intrinsic function to operate on any
4879integer type. One or more of the argument types or the result type can be
4880overloaded to accept any integer type. Argument types may also be defined as
4881exactly matching a previous argument's type or the result type. This allows an
4882intrinsic function which accepts multiple arguments, but needs all of them to
4883be of the same type, to only be overloaded with respect to a single argument or
4884the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004885
Chandler Carruth69940402007-08-04 01:51:18 +00004886<p>Overloaded intrinsics will have the names of its overloaded argument types
4887encoded into its function name, each preceded by a period. Only those types
4888which are overloaded result in a name suffix. Arguments whose type is matched
4889against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4890take an integer of any width and returns an integer of exactly the same integer
4891width. This leads to a family of functions such as
4892<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4893Only one type, the return type, is overloaded, and only one type suffix is
4894required. Because the argument's type is matched against the return type, it
4895does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004896
4897<p>To learn how to add an intrinsic function, please see the
4898<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004899</p>
4900
Misha Brukman9d0919f2003-11-08 01:05:38 +00004901</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004902
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004903<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004904<div class="doc_subsection">
4905 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4906</div>
4907
Misha Brukman9d0919f2003-11-08 01:05:38 +00004908<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004909
Misha Brukman9d0919f2003-11-08 01:05:38 +00004910<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004911 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004912intrinsic functions. These functions are related to the similarly
4913named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004914
Chris Lattner261efe92003-11-25 01:02:51 +00004915<p>All of these functions operate on arguments that use a
4916target-specific value type "<tt>va_list</tt>". The LLVM assembly
4917language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004918transformations should be prepared to handle these functions regardless of
4919the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004920
Chris Lattner374ab302006-05-15 17:26:46 +00004921<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004922instruction and the variable argument handling intrinsic functions are
4923used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004924
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004925<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004926<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004927define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004928 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004929 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004930 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004931 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004932
4933 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004934 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004935
4936 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004937 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004938 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004939 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004940 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004941
4942 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004943 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004944 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004945}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004946
4947declare void @llvm.va_start(i8*)
4948declare void @llvm.va_copy(i8*, i8*)
4949declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004950</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004951</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004952
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004953</div>
4954
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004955<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004956<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004957 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004958</div>
4959
4960
Misha Brukman9d0919f2003-11-08 01:05:38 +00004961<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004962<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004963<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004964<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004965<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004966<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4967href="#i_va_arg">va_arg</a></tt>.</p>
4968
4969<h5>Arguments:</h5>
4970
Dan Gohman0e451ce2008-10-14 16:51:45 +00004971<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004972
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004973<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004974
Dan Gohman0e451ce2008-10-14 16:51:45 +00004975<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004976macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004977<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004978<tt>va_arg</tt> will produce the first variable argument passed to the function.
4979Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004980last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004981
Misha Brukman9d0919f2003-11-08 01:05:38 +00004982</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004983
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004984<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004985<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004986 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004987</div>
4988
Misha Brukman9d0919f2003-11-08 01:05:38 +00004989<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004990<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004991<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004992<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004993
Jeff Cohenb627eab2007-04-29 01:07:00 +00004994<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004995which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004996or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004997
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004998<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004999
Jeff Cohenb627eab2007-04-29 01:07:00 +00005000<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005001
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005002<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005003
Misha Brukman9d0919f2003-11-08 01:05:38 +00005004<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005005macro available in C. In a target-dependent way, it destroys the
5006<tt>va_list</tt> element to which the argument points. Calls to <a
5007href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
5008<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
5009<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005010
Misha Brukman9d0919f2003-11-08 01:05:38 +00005011</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005012
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005013<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005014<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005015 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00005016</div>
5017
Misha Brukman9d0919f2003-11-08 01:05:38 +00005018<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00005019
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005020<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005021
5022<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005023 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00005024</pre>
5025
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005026<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005027
Jeff Cohenb627eab2007-04-29 01:07:00 +00005028<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
5029from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005030
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005031<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005032
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005033<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00005034The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005035
Chris Lattnerd7923912004-05-23 21:06:01 +00005036
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005037<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005038
Jeff Cohenb627eab2007-04-29 01:07:00 +00005039<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
5040macro available in C. In a target-dependent way, it copies the source
5041<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
5042intrinsic is necessary because the <tt><a href="#int_va_start">
5043llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
5044example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005045
Misha Brukman9d0919f2003-11-08 01:05:38 +00005046</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005047
Chris Lattner33aec9e2004-02-12 17:01:32 +00005048<!-- ======================================================================= -->
5049<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00005050 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5051</div>
5052
5053<div class="doc_text">
5054
5055<p>
5056LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00005057Collection</a> (GC) requires the implementation and generation of these
5058intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00005059These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00005060stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005061href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00005062Front-ends for type-safe garbage collected languages should generate these
5063intrinsics to make use of the LLVM garbage collectors. For more details, see <a
5064href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
5065</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00005066
5067<p>The garbage collection intrinsics only operate on objects in the generic
5068 address space (address space zero).</p>
5069
Chris Lattnerd7923912004-05-23 21:06:01 +00005070</div>
5071
5072<!-- _______________________________________________________________________ -->
5073<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005074 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005075</div>
5076
5077<div class="doc_text">
5078
5079<h5>Syntax:</h5>
5080
5081<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005082 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00005083</pre>
5084
5085<h5>Overview:</h5>
5086
John Criswell9e2485c2004-12-10 15:51:16 +00005087<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00005088the code generator, and allows some metadata to be associated with it.</p>
5089
5090<h5>Arguments:</h5>
5091
5092<p>The first argument specifies the address of a stack object that contains the
5093root pointer. The second pointer (which must be either a constant or a global
5094value address) contains the meta-data to be associated with the root.</p>
5095
5096<h5>Semantics:</h5>
5097
Chris Lattner05d67092008-04-24 05:59:56 +00005098<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00005099location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00005100the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5101intrinsic may only be used in a function which <a href="#gc">specifies a GC
5102algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005103
5104</div>
5105
5106
5107<!-- _______________________________________________________________________ -->
5108<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005109 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005110</div>
5111
5112<div class="doc_text">
5113
5114<h5>Syntax:</h5>
5115
5116<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005117 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00005118</pre>
5119
5120<h5>Overview:</h5>
5121
5122<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
5123locations, allowing garbage collector implementations that require read
5124barriers.</p>
5125
5126<h5>Arguments:</h5>
5127
Chris Lattner80626e92006-03-14 20:02:51 +00005128<p>The second argument is the address to read from, which should be an address
5129allocated from the garbage collector. The first object is a pointer to the
5130start of the referenced object, if needed by the language runtime (otherwise
5131null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005132
5133<h5>Semantics:</h5>
5134
5135<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
5136instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00005137garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5138may only be used in a function which <a href="#gc">specifies a GC
5139algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005140
5141</div>
5142
5143
5144<!-- _______________________________________________________________________ -->
5145<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005146 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005147</div>
5148
5149<div class="doc_text">
5150
5151<h5>Syntax:</h5>
5152
5153<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005154 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00005155</pre>
5156
5157<h5>Overview:</h5>
5158
5159<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5160locations, allowing garbage collector implementations that require write
5161barriers (such as generational or reference counting collectors).</p>
5162
5163<h5>Arguments:</h5>
5164
Chris Lattner80626e92006-03-14 20:02:51 +00005165<p>The first argument is the reference to store, the second is the start of the
5166object to store it to, and the third is the address of the field of Obj to
5167store to. If the runtime does not require a pointer to the object, Obj may be
5168null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005169
5170<h5>Semantics:</h5>
5171
5172<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5173instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00005174garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5175may only be used in a function which <a href="#gc">specifies a GC
5176algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005177
5178</div>
5179
5180
5181
5182<!-- ======================================================================= -->
5183<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00005184 <a name="int_codegen">Code Generator Intrinsics</a>
5185</div>
5186
5187<div class="doc_text">
5188<p>
5189These intrinsics are provided by LLVM to expose special features that may only
5190be implemented with code generator support.
5191</p>
5192
5193</div>
5194
5195<!-- _______________________________________________________________________ -->
5196<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005197 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005198</div>
5199
5200<div class="doc_text">
5201
5202<h5>Syntax:</h5>
5203<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005204 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005205</pre>
5206
5207<h5>Overview:</h5>
5208
5209<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005210The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5211target-specific value indicating the return address of the current function
5212or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00005213</p>
5214
5215<h5>Arguments:</h5>
5216
5217<p>
5218The argument to this intrinsic indicates which function to return the address
5219for. Zero indicates the calling function, one indicates its caller, etc. The
5220argument is <b>required</b> to be a constant integer value.
5221</p>
5222
5223<h5>Semantics:</h5>
5224
5225<p>
5226The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
5227the return address of the specified call frame, or zero if it cannot be
5228identified. The value returned by this intrinsic is likely to be incorrect or 0
5229for arguments other than zero, so it should only be used for debugging purposes.
5230</p>
5231
5232<p>
5233Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005234aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005235source-language caller.
5236</p>
5237</div>
5238
5239
5240<!-- _______________________________________________________________________ -->
5241<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005242 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005243</div>
5244
5245<div class="doc_text">
5246
5247<h5>Syntax:</h5>
5248<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005249 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005250</pre>
5251
5252<h5>Overview:</h5>
5253
5254<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005255The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5256target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00005257</p>
5258
5259<h5>Arguments:</h5>
5260
5261<p>
5262The argument to this intrinsic indicates which function to return the frame
5263pointer for. Zero indicates the calling function, one indicates its caller,
5264etc. The argument is <b>required</b> to be a constant integer value.
5265</p>
5266
5267<h5>Semantics:</h5>
5268
5269<p>
5270The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5271the frame address of the specified call frame, or zero if it cannot be
5272identified. The value returned by this intrinsic is likely to be incorrect or 0
5273for arguments other than zero, so it should only be used for debugging purposes.
5274</p>
5275
5276<p>
5277Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005278aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005279source-language caller.
5280</p>
5281</div>
5282
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005283<!-- _______________________________________________________________________ -->
5284<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005285 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005286</div>
5287
5288<div class="doc_text">
5289
5290<h5>Syntax:</h5>
5291<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005292 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00005293</pre>
5294
5295<h5>Overview:</h5>
5296
5297<p>
5298The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00005299the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00005300<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5301features like scoped automatic variable sized arrays in C99.
5302</p>
5303
5304<h5>Semantics:</h5>
5305
5306<p>
5307This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005308href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00005309<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5310<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5311state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5312practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5313that were allocated after the <tt>llvm.stacksave</tt> was executed.
5314</p>
5315
5316</div>
5317
5318<!-- _______________________________________________________________________ -->
5319<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005320 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005321</div>
5322
5323<div class="doc_text">
5324
5325<h5>Syntax:</h5>
5326<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005327 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005328</pre>
5329
5330<h5>Overview:</h5>
5331
5332<p>
5333The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5334the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005335href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00005336useful for implementing language features like scoped automatic variable sized
5337arrays in C99.
5338</p>
5339
5340<h5>Semantics:</h5>
5341
5342<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00005343See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00005344</p>
5345
5346</div>
5347
5348
5349<!-- _______________________________________________________________________ -->
5350<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005351 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005352</div>
5353
5354<div class="doc_text">
5355
5356<h5>Syntax:</h5>
5357<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005358 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005359</pre>
5360
5361<h5>Overview:</h5>
5362
5363
5364<p>
5365The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00005366a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5367no
5368effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00005369characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005370</p>
5371
5372<h5>Arguments:</h5>
5373
5374<p>
5375<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5376determining if the fetch should be for a read (0) or write (1), and
5377<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00005378locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005379<tt>locality</tt> arguments must be constant integers.
5380</p>
5381
5382<h5>Semantics:</h5>
5383
5384<p>
5385This intrinsic does not modify the behavior of the program. In particular,
5386prefetches cannot trap and do not produce a value. On targets that support this
5387intrinsic, the prefetch can provide hints to the processor cache for better
5388performance.
5389</p>
5390
5391</div>
5392
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005393<!-- _______________________________________________________________________ -->
5394<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005395 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005396</div>
5397
5398<div class="doc_text">
5399
5400<h5>Syntax:</h5>
5401<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005402 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005403</pre>
5404
5405<h5>Overview:</h5>
5406
5407
5408<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005409The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005410(PC) in a region of
5411code to simulators and other tools. The method is target specific, but it is
5412expected that the marker will use exported symbols to transmit the PC of the
5413marker.
5414The marker makes no guarantees that it will remain with any specific instruction
5415after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005416optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005417correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005418</p>
5419
5420<h5>Arguments:</h5>
5421
5422<p>
5423<tt>id</tt> is a numerical id identifying the marker.
5424</p>
5425
5426<h5>Semantics:</h5>
5427
5428<p>
5429This intrinsic does not modify the behavior of the program. Backends that do not
5430support this intrinisic may ignore it.
5431</p>
5432
5433</div>
5434
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005435<!-- _______________________________________________________________________ -->
5436<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005437 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005438</div>
5439
5440<div class="doc_text">
5441
5442<h5>Syntax:</h5>
5443<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005444 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005445</pre>
5446
5447<h5>Overview:</h5>
5448
5449
5450<p>
5451The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5452counter register (or similar low latency, high accuracy clocks) on those targets
5453that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5454As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5455should only be used for small timings.
5456</p>
5457
5458<h5>Semantics:</h5>
5459
5460<p>
5461When directly supported, reading the cycle counter should not modify any memory.
5462Implementations are allowed to either return a application specific value or a
5463system wide value. On backends without support, this is lowered to a constant 0.
5464</p>
5465
5466</div>
5467
Chris Lattner10610642004-02-14 04:08:35 +00005468<!-- ======================================================================= -->
5469<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005470 <a name="int_libc">Standard C Library Intrinsics</a>
5471</div>
5472
5473<div class="doc_text">
5474<p>
Chris Lattner10610642004-02-14 04:08:35 +00005475LLVM provides intrinsics for a few important standard C library functions.
5476These intrinsics allow source-language front-ends to pass information about the
5477alignment of the pointer arguments to the code generator, providing opportunity
5478for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005479</p>
5480
5481</div>
5482
5483<!-- _______________________________________________________________________ -->
5484<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005485 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005486</div>
5487
5488<div class="doc_text">
5489
5490<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005491<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5492width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005493<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005494 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5495 i8 &lt;len&gt;, i32 &lt;align&gt;)
5496 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5497 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005498 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005499 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005500 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005501 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005502</pre>
5503
5504<h5>Overview:</h5>
5505
5506<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005507The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005508location to the destination location.
5509</p>
5510
5511<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005512Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5513intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005514</p>
5515
5516<h5>Arguments:</h5>
5517
5518<p>
5519The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005520the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005521specifying the number of bytes to copy, and the fourth argument is the alignment
5522of the source and destination locations.
5523</p>
5524
Chris Lattner3301ced2004-02-12 21:18:15 +00005525<p>
5526If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005527the caller guarantees that both the source and destination pointers are aligned
5528to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005529</p>
5530
Chris Lattner33aec9e2004-02-12 17:01:32 +00005531<h5>Semantics:</h5>
5532
5533<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005534The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005535location to the destination location, which are not allowed to overlap. It
5536copies "len" bytes of memory over. If the argument is known to be aligned to
5537some boundary, this can be specified as the fourth argument, otherwise it should
5538be set to 0 or 1.
5539</p>
5540</div>
5541
5542
Chris Lattner0eb51b42004-02-12 18:10:10 +00005543<!-- _______________________________________________________________________ -->
5544<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005545 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005546</div>
5547
5548<div class="doc_text">
5549
5550<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005551<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5552width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005553<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005554 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5555 i8 &lt;len&gt;, i32 &lt;align&gt;)
5556 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5557 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005558 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005559 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005560 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005561 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005562</pre>
5563
5564<h5>Overview:</h5>
5565
5566<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005567The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5568location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005569'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005570</p>
5571
5572<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005573Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5574intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005575</p>
5576
5577<h5>Arguments:</h5>
5578
5579<p>
5580The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005581the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005582specifying the number of bytes to copy, and the fourth argument is the alignment
5583of the source and destination locations.
5584</p>
5585
Chris Lattner3301ced2004-02-12 21:18:15 +00005586<p>
5587If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005588the caller guarantees that the source and destination pointers are aligned to
5589that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005590</p>
5591
Chris Lattner0eb51b42004-02-12 18:10:10 +00005592<h5>Semantics:</h5>
5593
5594<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005595The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005596location to the destination location, which may overlap. It
5597copies "len" bytes of memory over. If the argument is known to be aligned to
5598some boundary, this can be specified as the fourth argument, otherwise it should
5599be set to 0 or 1.
5600</p>
5601</div>
5602
Chris Lattner8ff75902004-01-06 05:31:32 +00005603
Chris Lattner10610642004-02-14 04:08:35 +00005604<!-- _______________________________________________________________________ -->
5605<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005606 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005607</div>
5608
5609<div class="doc_text">
5610
5611<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005612<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5613width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005614<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005615 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5616 i8 &lt;len&gt;, i32 &lt;align&gt;)
5617 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5618 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005619 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005620 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005621 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005622 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005623</pre>
5624
5625<h5>Overview:</h5>
5626
5627<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005628The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005629byte value.
5630</p>
5631
5632<p>
5633Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5634does not return a value, and takes an extra alignment argument.
5635</p>
5636
5637<h5>Arguments:</h5>
5638
5639<p>
5640The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005641byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005642argument specifying the number of bytes to fill, and the fourth argument is the
5643known alignment of destination location.
5644</p>
5645
5646<p>
5647If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005648the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005649</p>
5650
5651<h5>Semantics:</h5>
5652
5653<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005654The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5655the
Chris Lattner10610642004-02-14 04:08:35 +00005656destination location. If the argument is known to be aligned to some boundary,
5657this can be specified as the fourth argument, otherwise it should be set to 0 or
56581.
5659</p>
5660</div>
5661
5662
Chris Lattner32006282004-06-11 02:28:03 +00005663<!-- _______________________________________________________________________ -->
5664<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005665 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005666</div>
5667
5668<div class="doc_text">
5669
5670<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005671<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005672floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005673types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005674<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005675 declare float @llvm.sqrt.f32(float %Val)
5676 declare double @llvm.sqrt.f64(double %Val)
5677 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5678 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5679 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005680</pre>
5681
5682<h5>Overview:</h5>
5683
5684<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005685The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005686returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005687<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005688negative numbers other than -0.0 (which allows for better optimization, because
5689there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5690defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005691</p>
5692
5693<h5>Arguments:</h5>
5694
5695<p>
5696The argument and return value are floating point numbers of the same type.
5697</p>
5698
5699<h5>Semantics:</h5>
5700
5701<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005702This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005703floating point number.
5704</p>
5705</div>
5706
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005707<!-- _______________________________________________________________________ -->
5708<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005709 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005710</div>
5711
5712<div class="doc_text">
5713
5714<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005715<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005716floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005717types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005718<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005719 declare float @llvm.powi.f32(float %Val, i32 %power)
5720 declare double @llvm.powi.f64(double %Val, i32 %power)
5721 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5722 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5723 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005724</pre>
5725
5726<h5>Overview:</h5>
5727
5728<p>
5729The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5730specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005731multiplications is not defined. When a vector of floating point type is
5732used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005733</p>
5734
5735<h5>Arguments:</h5>
5736
5737<p>
5738The second argument is an integer power, and the first is a value to raise to
5739that power.
5740</p>
5741
5742<h5>Semantics:</h5>
5743
5744<p>
5745This function returns the first value raised to the second power with an
5746unspecified sequence of rounding operations.</p>
5747</div>
5748
Dan Gohman91c284c2007-10-15 20:30:11 +00005749<!-- _______________________________________________________________________ -->
5750<div class="doc_subsubsection">
5751 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5752</div>
5753
5754<div class="doc_text">
5755
5756<h5>Syntax:</h5>
5757<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5758floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005759types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005760<pre>
5761 declare float @llvm.sin.f32(float %Val)
5762 declare double @llvm.sin.f64(double %Val)
5763 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5764 declare fp128 @llvm.sin.f128(fp128 %Val)
5765 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5766</pre>
5767
5768<h5>Overview:</h5>
5769
5770<p>
5771The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5772</p>
5773
5774<h5>Arguments:</h5>
5775
5776<p>
5777The argument and return value are floating point numbers of the same type.
5778</p>
5779
5780<h5>Semantics:</h5>
5781
5782<p>
5783This function returns the sine of the specified operand, returning the
5784same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005785conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005786</div>
5787
5788<!-- _______________________________________________________________________ -->
5789<div class="doc_subsubsection">
5790 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5791</div>
5792
5793<div class="doc_text">
5794
5795<h5>Syntax:</h5>
5796<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5797floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005798types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005799<pre>
5800 declare float @llvm.cos.f32(float %Val)
5801 declare double @llvm.cos.f64(double %Val)
5802 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5803 declare fp128 @llvm.cos.f128(fp128 %Val)
5804 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5805</pre>
5806
5807<h5>Overview:</h5>
5808
5809<p>
5810The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5811</p>
5812
5813<h5>Arguments:</h5>
5814
5815<p>
5816The argument and return value are floating point numbers of the same type.
5817</p>
5818
5819<h5>Semantics:</h5>
5820
5821<p>
5822This function returns the cosine of the specified operand, returning the
5823same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005824conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005825</div>
5826
5827<!-- _______________________________________________________________________ -->
5828<div class="doc_subsubsection">
5829 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5830</div>
5831
5832<div class="doc_text">
5833
5834<h5>Syntax:</h5>
5835<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5836floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005837types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005838<pre>
5839 declare float @llvm.pow.f32(float %Val, float %Power)
5840 declare double @llvm.pow.f64(double %Val, double %Power)
5841 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5842 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5843 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5844</pre>
5845
5846<h5>Overview:</h5>
5847
5848<p>
5849The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5850specified (positive or negative) power.
5851</p>
5852
5853<h5>Arguments:</h5>
5854
5855<p>
5856The second argument is a floating point power, and the first is a value to
5857raise to that power.
5858</p>
5859
5860<h5>Semantics:</h5>
5861
5862<p>
5863This function returns the first value raised to the second power,
5864returning the
5865same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005866conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005867</div>
5868
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005869
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005870<!-- ======================================================================= -->
5871<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005872 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005873</div>
5874
5875<div class="doc_text">
5876<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005877LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005878These allow efficient code generation for some algorithms.
5879</p>
5880
5881</div>
5882
5883<!-- _______________________________________________________________________ -->
5884<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005885 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005886</div>
5887
5888<div class="doc_text">
5889
5890<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005891<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005892type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005893<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005894 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5895 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5896 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005897</pre>
5898
5899<h5>Overview:</h5>
5900
5901<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005902The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005903values with an even number of bytes (positive multiple of 16 bits). These are
5904useful for performing operations on data that is not in the target's native
5905byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005906</p>
5907
5908<h5>Semantics:</h5>
5909
5910<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005911The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005912and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5913intrinsic returns an i32 value that has the four bytes of the input i32
5914swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005915i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5916<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005917additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005918</p>
5919
5920</div>
5921
5922<!-- _______________________________________________________________________ -->
5923<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005924 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005925</div>
5926
5927<div class="doc_text">
5928
5929<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005930<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005931width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005932<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005933 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005934 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005935 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005936 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5937 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005938</pre>
5939
5940<h5>Overview:</h5>
5941
5942<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005943The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5944value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005945</p>
5946
5947<h5>Arguments:</h5>
5948
5949<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005950The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005951integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005952</p>
5953
5954<h5>Semantics:</h5>
5955
5956<p>
5957The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5958</p>
5959</div>
5960
5961<!-- _______________________________________________________________________ -->
5962<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005963 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005964</div>
5965
5966<div class="doc_text">
5967
5968<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005969<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005970integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005971<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005972 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5973 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005974 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005975 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5976 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005977</pre>
5978
5979<h5>Overview:</h5>
5980
5981<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005982The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5983leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005984</p>
5985
5986<h5>Arguments:</h5>
5987
5988<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005989The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005990integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005991</p>
5992
5993<h5>Semantics:</h5>
5994
5995<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005996The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5997in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005998of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005999</p>
6000</div>
Chris Lattner32006282004-06-11 02:28:03 +00006001
6002
Chris Lattnereff29ab2005-05-15 19:39:26 +00006003
6004<!-- _______________________________________________________________________ -->
6005<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00006006 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006007</div>
6008
6009<div class="doc_text">
6010
6011<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00006012<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00006013integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006014<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006015 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6016 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00006017 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006018 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6019 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00006020</pre>
6021
6022<h5>Overview:</h5>
6023
6024<p>
Reid Spencer0b118202006-01-16 21:12:35 +00006025The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6026trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00006027</p>
6028
6029<h5>Arguments:</h5>
6030
6031<p>
6032The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00006033integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00006034</p>
6035
6036<h5>Semantics:</h5>
6037
6038<p>
6039The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
6040in a variable. If the src == 0 then the result is the size in bits of the type
6041of src. For example, <tt>llvm.cttz(2) = 1</tt>.
6042</p>
6043</div>
6044
Reid Spencer497d93e2007-04-01 08:27:01 +00006045<!-- _______________________________________________________________________ -->
6046<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00006047 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006048</div>
6049
6050<div class="doc_text">
6051
6052<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00006053<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006054on any integer bit width.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006055<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006056 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
6057 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00006058</pre>
6059
6060<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00006061<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00006062range of bits from an integer value and returns them in the same bit width as
6063the original value.</p>
6064
6065<h5>Arguments:</h5>
6066<p>The first argument, <tt>%val</tt> and the result may be integer types of
6067any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00006068arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006069
6070<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00006071<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00006072of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
6073<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
6074operates in forward mode.</p>
6075<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
6076right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00006077only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
6078<ol>
6079 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
6080 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
6081 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
6082 to determine the number of bits to retain.</li>
6083 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006084 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006085</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00006086<p>In reverse mode, a similar computation is made except that the bits are
6087returned in the reverse order. So, for example, if <tt>X</tt> has the value
6088<tt>i16 0x0ACF (101011001111)</tt> and we apply
6089<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
6090<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006091</div>
6092
Reid Spencerf86037f2007-04-11 23:23:49 +00006093<div class="doc_subsubsection">
6094 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
6095</div>
6096
6097<div class="doc_text">
6098
6099<h5>Syntax:</h5>
6100<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006101on any integer bit width.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00006102<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006103 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
6104 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00006105</pre>
6106
6107<h5>Overview:</h5>
6108<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
6109of bits in an integer value with another integer value. It returns the integer
6110with the replaced bits.</p>
6111
6112<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006113<p>The first argument, <tt>%val</tt>, and the result may be integer types of
6114any bit width, but they must have the same bit width. <tt>%val</tt> is the value
Reid Spencerf86037f2007-04-11 23:23:49 +00006115whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
6116integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
6117type since they specify only a bit index.</p>
6118
6119<h5>Semantics:</h5>
6120<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
6121of operation: forwards and reverse. If <tt>%lo</tt> is greater than
6122<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
6123operates in forward mode.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006124
Reid Spencerf86037f2007-04-11 23:23:49 +00006125<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
6126truncating it down to the size of the replacement area or zero extending it
6127up to that size.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006128
Reid Spencerf86037f2007-04-11 23:23:49 +00006129<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
6130are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
6131in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman0e451ce2008-10-14 16:51:45 +00006132to the <tt>%hi</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006133
Reid Spencerc6749c42007-05-14 16:50:20 +00006134<p>In reverse mode, a similar computation is made except that the bits are
6135reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman0e451ce2008-10-14 16:51:45 +00006136<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006137
Reid Spencerf86037f2007-04-11 23:23:49 +00006138<h5>Examples:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006139
Reid Spencerf86037f2007-04-11 23:23:49 +00006140<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00006141 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00006142 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
6143 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
6144 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00006145 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00006146</pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006147
6148</div>
6149
Bill Wendlingda01af72009-02-08 04:04:40 +00006150<!-- ======================================================================= -->
6151<div class="doc_subsection">
6152 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6153</div>
6154
6155<div class="doc_text">
6156<p>
6157LLVM provides intrinsics for some arithmetic with overflow operations.
6158</p>
6159
6160</div>
6161
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006162<!-- _______________________________________________________________________ -->
6163<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006164 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006165</div>
6166
6167<div class="doc_text">
6168
6169<h5>Syntax:</h5>
6170
6171<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006172on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006173
6174<pre>
6175 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6176 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6177 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6178</pre>
6179
6180<h5>Overview:</h5>
6181
6182<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6183a signed addition of the two arguments, and indicate whether an overflow
6184occurred during the signed summation.</p>
6185
6186<h5>Arguments:</h5>
6187
6188<p>The arguments (%a and %b) and the first element of the result structure may
6189be of integer types of any bit width, but they must have the same bit width. The
6190second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6191and <tt>%b</tt> are the two values that will undergo signed addition.</p>
6192
6193<h5>Semantics:</h5>
6194
6195<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6196a signed addition of the two variables. They return a structure &mdash; the
6197first element of which is the signed summation, and the second element of which
6198is a bit specifying if the signed summation resulted in an overflow.</p>
6199
6200<h5>Examples:</h5>
6201<pre>
6202 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6203 %sum = extractvalue {i32, i1} %res, 0
6204 %obit = extractvalue {i32, i1} %res, 1
6205 br i1 %obit, label %overflow, label %normal
6206</pre>
6207
6208</div>
6209
6210<!-- _______________________________________________________________________ -->
6211<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006212 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006213</div>
6214
6215<div class="doc_text">
6216
6217<h5>Syntax:</h5>
6218
6219<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006220on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006221
6222<pre>
6223 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6224 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6225 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6226</pre>
6227
6228<h5>Overview:</h5>
6229
6230<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6231an unsigned addition of the two arguments, and indicate whether a carry occurred
6232during the unsigned summation.</p>
6233
6234<h5>Arguments:</h5>
6235
6236<p>The arguments (%a and %b) and the first element of the result structure may
6237be of integer types of any bit width, but they must have the same bit width. The
6238second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6239and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6240
6241<h5>Semantics:</h5>
6242
6243<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6244an unsigned addition of the two arguments. They return a structure &mdash; the
6245first element of which is the sum, and the second element of which is a bit
6246specifying if the unsigned summation resulted in a carry.</p>
6247
6248<h5>Examples:</h5>
6249<pre>
6250 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6251 %sum = extractvalue {i32, i1} %res, 0
6252 %obit = extractvalue {i32, i1} %res, 1
6253 br i1 %obit, label %carry, label %normal
6254</pre>
6255
6256</div>
6257
6258<!-- _______________________________________________________________________ -->
6259<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006260 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006261</div>
6262
6263<div class="doc_text">
6264
6265<h5>Syntax:</h5>
6266
6267<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006268on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006269
6270<pre>
6271 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6272 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6273 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6274</pre>
6275
6276<h5>Overview:</h5>
6277
6278<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6279a signed subtraction of the two arguments, and indicate whether an overflow
6280occurred during the signed subtraction.</p>
6281
6282<h5>Arguments:</h5>
6283
6284<p>The arguments (%a and %b) and the first element of the result structure may
6285be of integer types of any bit width, but they must have the same bit width. The
6286second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6287and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6288
6289<h5>Semantics:</h5>
6290
6291<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6292a signed subtraction of the two arguments. They return a structure &mdash; the
6293first element of which is the subtraction, and the second element of which is a bit
6294specifying if the signed subtraction resulted in an overflow.</p>
6295
6296<h5>Examples:</h5>
6297<pre>
6298 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6299 %sum = extractvalue {i32, i1} %res, 0
6300 %obit = extractvalue {i32, i1} %res, 1
6301 br i1 %obit, label %overflow, label %normal
6302</pre>
6303
6304</div>
6305
6306<!-- _______________________________________________________________________ -->
6307<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006308 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006309</div>
6310
6311<div class="doc_text">
6312
6313<h5>Syntax:</h5>
6314
6315<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006316on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006317
6318<pre>
6319 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6320 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6321 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6322</pre>
6323
6324<h5>Overview:</h5>
6325
6326<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6327an unsigned subtraction of the two arguments, and indicate whether an overflow
6328occurred during the unsigned subtraction.</p>
6329
6330<h5>Arguments:</h5>
6331
6332<p>The arguments (%a and %b) and the first element of the result structure may
6333be of integer types of any bit width, but they must have the same bit width. The
6334second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6335and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6336
6337<h5>Semantics:</h5>
6338
6339<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6340an unsigned subtraction of the two arguments. They return a structure &mdash; the
6341first element of which is the subtraction, and the second element of which is a bit
6342specifying if the unsigned subtraction resulted in an overflow.</p>
6343
6344<h5>Examples:</h5>
6345<pre>
6346 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6347 %sum = extractvalue {i32, i1} %res, 0
6348 %obit = extractvalue {i32, i1} %res, 1
6349 br i1 %obit, label %overflow, label %normal
6350</pre>
6351
6352</div>
6353
6354<!-- _______________________________________________________________________ -->
6355<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006356 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006357</div>
6358
6359<div class="doc_text">
6360
6361<h5>Syntax:</h5>
6362
6363<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006364on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006365
6366<pre>
6367 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6368 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6369 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6370</pre>
6371
6372<h5>Overview:</h5>
6373
6374<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6375a signed multiplication of the two arguments, and indicate whether an overflow
6376occurred during the signed multiplication.</p>
6377
6378<h5>Arguments:</h5>
6379
6380<p>The arguments (%a and %b) and the first element of the result structure may
6381be of integer types of any bit width, but they must have the same bit width. The
6382second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6383and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6384
6385<h5>Semantics:</h5>
6386
6387<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6388a signed multiplication of the two arguments. They return a structure &mdash;
6389the first element of which is the multiplication, and the second element of
6390which is a bit specifying if the signed multiplication resulted in an
6391overflow.</p>
6392
6393<h5>Examples:</h5>
6394<pre>
6395 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6396 %sum = extractvalue {i32, i1} %res, 0
6397 %obit = extractvalue {i32, i1} %res, 1
6398 br i1 %obit, label %overflow, label %normal
6399</pre>
6400
Reid Spencerf86037f2007-04-11 23:23:49 +00006401</div>
6402
Bill Wendling41b485c2009-02-08 23:00:09 +00006403<!-- _______________________________________________________________________ -->
6404<div class="doc_subsubsection">
6405 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6406</div>
6407
6408<div class="doc_text">
6409
6410<h5>Syntax:</h5>
6411
6412<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6413on any integer bit width.</p>
6414
6415<pre>
6416 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6417 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6418 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6419</pre>
6420
6421<h5>Overview:</h5>
6422
6423<p><i><b>Warning:</b> '<tt>llvm.umul.with.overflow</tt>' is badly broken. It is
6424actively being fixed, but it should not currently be used!</i></p>
6425
6426<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6427a unsigned multiplication of the two arguments, and indicate whether an overflow
6428occurred during the unsigned multiplication.</p>
6429
6430<h5>Arguments:</h5>
6431
6432<p>The arguments (%a and %b) and the first element of the result structure may
6433be of integer types of any bit width, but they must have the same bit width. The
6434second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6435and <tt>%b</tt> are the two values that will undergo unsigned
6436multiplication.</p>
6437
6438<h5>Semantics:</h5>
6439
6440<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6441an unsigned multiplication of the two arguments. They return a structure &mdash;
6442the first element of which is the multiplication, and the second element of
6443which is a bit specifying if the unsigned multiplication resulted in an
6444overflow.</p>
6445
6446<h5>Examples:</h5>
6447<pre>
6448 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6449 %sum = extractvalue {i32, i1} %res, 0
6450 %obit = extractvalue {i32, i1} %res, 1
6451 br i1 %obit, label %overflow, label %normal
6452</pre>
6453
6454</div>
6455
Chris Lattner8ff75902004-01-06 05:31:32 +00006456<!-- ======================================================================= -->
6457<div class="doc_subsection">
6458 <a name="int_debugger">Debugger Intrinsics</a>
6459</div>
6460
6461<div class="doc_text">
6462<p>
6463The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6464are described in the <a
6465href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6466Debugging</a> document.
6467</p>
6468</div>
6469
6470
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006471<!-- ======================================================================= -->
6472<div class="doc_subsection">
6473 <a name="int_eh">Exception Handling Intrinsics</a>
6474</div>
6475
6476<div class="doc_text">
6477<p> The LLVM exception handling intrinsics (which all start with
6478<tt>llvm.eh.</tt> prefix), are described in the <a
6479href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6480Handling</a> document. </p>
6481</div>
6482
Tanya Lattner6d806e92007-06-15 20:50:54 +00006483<!-- ======================================================================= -->
6484<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00006485 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00006486</div>
6487
6488<div class="doc_text">
6489<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006490 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00006491 the <tt>nest</tt> attribute, from a function. The result is a callable
6492 function pointer lacking the nest parameter - the caller does not need
6493 to provide a value for it. Instead, the value to use is stored in
6494 advance in a "trampoline", a block of memory usually allocated
6495 on the stack, which also contains code to splice the nest value into the
6496 argument list. This is used to implement the GCC nested function address
6497 extension.
6498</p>
6499<p>
6500 For example, if the function is
6501 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00006502 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006503<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006504 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6505 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6506 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6507 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00006508</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00006509 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6510 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006511</div>
6512
6513<!-- _______________________________________________________________________ -->
6514<div class="doc_subsubsection">
6515 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6516</div>
6517<div class="doc_text">
6518<h5>Syntax:</h5>
6519<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006520declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00006521</pre>
6522<h5>Overview:</h5>
6523<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006524 This fills the memory pointed to by <tt>tramp</tt> with code
6525 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00006526</p>
6527<h5>Arguments:</h5>
6528<p>
6529 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6530 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6531 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00006532 intrinsic. Note that the size and the alignment are target-specific - LLVM
6533 currently provides no portable way of determining them, so a front-end that
6534 generates this intrinsic needs to have some target-specific knowledge.
6535 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00006536</p>
6537<h5>Semantics:</h5>
6538<p>
6539 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00006540 dependent code, turning it into a function. A pointer to this function is
6541 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00006542 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006543 before being called. The new function's signature is the same as that of
6544 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6545 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6546 of pointer type. Calling the new function is equivalent to calling
6547 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6548 missing <tt>nest</tt> argument. If, after calling
6549 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6550 modified, then the effect of any later call to the returned function pointer is
6551 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00006552</p>
6553</div>
6554
6555<!-- ======================================================================= -->
6556<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006557 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6558</div>
6559
6560<div class="doc_text">
6561<p>
6562 These intrinsic functions expand the "universal IR" of LLVM to represent
6563 hardware constructs for atomic operations and memory synchronization. This
6564 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00006565 is aimed at a low enough level to allow any programming models or APIs
6566 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006567 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6568 hardware behavior. Just as hardware provides a "universal IR" for source
6569 languages, it also provides a starting point for developing a "universal"
6570 atomic operation and synchronization IR.
6571</p>
6572<p>
6573 These do <em>not</em> form an API such as high-level threading libraries,
6574 software transaction memory systems, atomic primitives, and intrinsic
6575 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6576 application libraries. The hardware interface provided by LLVM should allow
6577 a clean implementation of all of these APIs and parallel programming models.
6578 No one model or paradigm should be selected above others unless the hardware
6579 itself ubiquitously does so.
6580
6581</p>
6582</div>
6583
6584<!-- _______________________________________________________________________ -->
6585<div class="doc_subsubsection">
6586 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6587</div>
6588<div class="doc_text">
6589<h5>Syntax:</h5>
6590<pre>
6591declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
6592i1 &lt;device&gt; )
6593
6594</pre>
6595<h5>Overview:</h5>
6596<p>
6597 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6598 specific pairs of memory access types.
6599</p>
6600<h5>Arguments:</h5>
6601<p>
6602 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6603 The first four arguments enables a specific barrier as listed below. The fith
6604 argument specifies that the barrier applies to io or device or uncached memory.
6605
6606</p>
6607 <ul>
6608 <li><tt>ll</tt>: load-load barrier</li>
6609 <li><tt>ls</tt>: load-store barrier</li>
6610 <li><tt>sl</tt>: store-load barrier</li>
6611 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006612 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006613 </ul>
6614<h5>Semantics:</h5>
6615<p>
6616 This intrinsic causes the system to enforce some ordering constraints upon
6617 the loads and stores of the program. This barrier does not indicate
6618 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6619 which they occur. For any of the specified pairs of load and store operations
6620 (f.ex. load-load, or store-load), all of the first operations preceding the
6621 barrier will complete before any of the second operations succeeding the
6622 barrier begin. Specifically the semantics for each pairing is as follows:
6623</p>
6624 <ul>
6625 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6626 after the barrier begins.</li>
6627
6628 <li><tt>ls</tt>: All loads before the barrier must complete before any
6629 store after the barrier begins.</li>
6630 <li><tt>ss</tt>: All stores before the barrier must complete before any
6631 store after the barrier begins.</li>
6632 <li><tt>sl</tt>: All stores before the barrier must complete before any
6633 load after the barrier begins.</li>
6634 </ul>
6635<p>
6636 These semantics are applied with a logical "and" behavior when more than one
6637 is enabled in a single memory barrier intrinsic.
6638</p>
6639<p>
6640 Backends may implement stronger barriers than those requested when they do not
6641 support as fine grained a barrier as requested. Some architectures do not
6642 need all types of barriers and on such architectures, these become noops.
6643</p>
6644<h5>Example:</h5>
6645<pre>
6646%ptr = malloc i32
6647 store i32 4, %ptr
6648
6649%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6650 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6651 <i>; guarantee the above finishes</i>
6652 store i32 8, %ptr <i>; before this begins</i>
6653</pre>
6654</div>
6655
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006656<!-- _______________________________________________________________________ -->
6657<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006658 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006659</div>
6660<div class="doc_text">
6661<h5>Syntax:</h5>
6662<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00006663 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6664 any integer bit width and for different address spaces. Not all targets
6665 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006666
6667<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006668declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6669declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6670declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6671declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006672
6673</pre>
6674<h5>Overview:</h5>
6675<p>
6676 This loads a value in memory and compares it to a given value. If they are
6677 equal, it stores a new value into the memory.
6678</p>
6679<h5>Arguments:</h5>
6680<p>
Mon P Wang28873102008-06-25 08:15:39 +00006681 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006682 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6683 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6684 this integer type. While any bit width integer may be used, targets may only
6685 lower representations they support in hardware.
6686
6687</p>
6688<h5>Semantics:</h5>
6689<p>
6690 This entire intrinsic must be executed atomically. It first loads the value
6691 in memory pointed to by <tt>ptr</tt> and compares it with the value
6692 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6693 loaded value is yielded in all cases. This provides the equivalent of an
6694 atomic compare-and-swap operation within the SSA framework.
6695</p>
6696<h5>Examples:</h5>
6697
6698<pre>
6699%ptr = malloc i32
6700 store i32 4, %ptr
6701
6702%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006703%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006704 <i>; yields {i32}:result1 = 4</i>
6705%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6706%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6707
6708%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006709%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006710 <i>; yields {i32}:result2 = 8</i>
6711%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6712
6713%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6714</pre>
6715</div>
6716
6717<!-- _______________________________________________________________________ -->
6718<div class="doc_subsubsection">
6719 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6720</div>
6721<div class="doc_text">
6722<h5>Syntax:</h5>
6723
6724<p>
6725 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6726 integer bit width. Not all targets support all bit widths however.</p>
6727<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006728declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6729declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6730declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6731declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006732
6733</pre>
6734<h5>Overview:</h5>
6735<p>
6736 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6737 the value from memory. It then stores the value in <tt>val</tt> in the memory
6738 at <tt>ptr</tt>.
6739</p>
6740<h5>Arguments:</h5>
6741
6742<p>
Mon P Wang28873102008-06-25 08:15:39 +00006743 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006744 <tt>val</tt> argument and the result must be integers of the same bit width.
6745 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6746 integer type. The targets may only lower integer representations they
6747 support.
6748</p>
6749<h5>Semantics:</h5>
6750<p>
6751 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6752 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6753 equivalent of an atomic swap operation within the SSA framework.
6754
6755</p>
6756<h5>Examples:</h5>
6757<pre>
6758%ptr = malloc i32
6759 store i32 4, %ptr
6760
6761%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006762%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006763 <i>; yields {i32}:result1 = 4</i>
6764%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6765%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6766
6767%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006768%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006769 <i>; yields {i32}:result2 = 8</i>
6770
6771%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6772%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6773</pre>
6774</div>
6775
6776<!-- _______________________________________________________________________ -->
6777<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006778 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006779
6780</div>
6781<div class="doc_text">
6782<h5>Syntax:</h5>
6783<p>
Mon P Wang28873102008-06-25 08:15:39 +00006784 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006785 integer bit width. Not all targets support all bit widths however.</p>
6786<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006787declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6788declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6789declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6790declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006791
6792</pre>
6793<h5>Overview:</h5>
6794<p>
6795 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6796 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6797</p>
6798<h5>Arguments:</h5>
6799<p>
6800
6801 The intrinsic takes two arguments, the first a pointer to an integer value
6802 and the second an integer value. The result is also an integer value. These
6803 integer types can have any bit width, but they must all have the same bit
6804 width. The targets may only lower integer representations they support.
6805</p>
6806<h5>Semantics:</h5>
6807<p>
6808 This intrinsic does a series of operations atomically. It first loads the
6809 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6810 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6811</p>
6812
6813<h5>Examples:</h5>
6814<pre>
6815%ptr = malloc i32
6816 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006817%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006818 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006819%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006820 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006821%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006822 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006823%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006824</pre>
6825</div>
6826
Mon P Wang28873102008-06-25 08:15:39 +00006827<!-- _______________________________________________________________________ -->
6828<div class="doc_subsubsection">
6829 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6830
6831</div>
6832<div class="doc_text">
6833<h5>Syntax:</h5>
6834<p>
6835 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006836 any integer bit width and for different address spaces. Not all targets
6837 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006838<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006839declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6840declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6841declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6842declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006843
6844</pre>
6845<h5>Overview:</h5>
6846<p>
6847 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6848 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6849</p>
6850<h5>Arguments:</h5>
6851<p>
6852
6853 The intrinsic takes two arguments, the first a pointer to an integer value
6854 and the second an integer value. The result is also an integer value. These
6855 integer types can have any bit width, but they must all have the same bit
6856 width. The targets may only lower integer representations they support.
6857</p>
6858<h5>Semantics:</h5>
6859<p>
6860 This intrinsic does a series of operations atomically. It first loads the
6861 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6862 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6863</p>
6864
6865<h5>Examples:</h5>
6866<pre>
6867%ptr = malloc i32
6868 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006869%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006870 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006871%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006872 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006873%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006874 <i>; yields {i32}:result3 = 2</i>
6875%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6876</pre>
6877</div>
6878
6879<!-- _______________________________________________________________________ -->
6880<div class="doc_subsubsection">
6881 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6882 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6883 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6884 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6885
6886</div>
6887<div class="doc_text">
6888<h5>Syntax:</h5>
6889<p>
6890 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6891 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006892 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6893 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006894<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006895declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6896declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6897declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6898declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006899
6900</pre>
6901
6902<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006903declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6904declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6905declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6906declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006907
6908</pre>
6909
6910<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006911declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6912declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6913declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6914declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006915
6916</pre>
6917
6918<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006919declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6920declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6921declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6922declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006923
6924</pre>
6925<h5>Overview:</h5>
6926<p>
6927 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6928 the value stored in memory at <tt>ptr</tt>. It yields the original value
6929 at <tt>ptr</tt>.
6930</p>
6931<h5>Arguments:</h5>
6932<p>
6933
6934 These intrinsics take two arguments, the first a pointer to an integer value
6935 and the second an integer value. The result is also an integer value. These
6936 integer types can have any bit width, but they must all have the same bit
6937 width. The targets may only lower integer representations they support.
6938</p>
6939<h5>Semantics:</h5>
6940<p>
6941 These intrinsics does a series of operations atomically. They first load the
6942 value stored at <tt>ptr</tt>. They then do the bitwise operation
6943 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6944 value stored at <tt>ptr</tt>.
6945</p>
6946
6947<h5>Examples:</h5>
6948<pre>
6949%ptr = malloc i32
6950 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006951%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006952 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006953%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006954 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006955%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006956 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006957%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006958 <i>; yields {i32}:result3 = FF</i>
6959%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6960</pre>
6961</div>
6962
6963
6964<!-- _______________________________________________________________________ -->
6965<div class="doc_subsubsection">
6966 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6967 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6968 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6969 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6970
6971</div>
6972<div class="doc_text">
6973<h5>Syntax:</h5>
6974<p>
6975 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6976 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006977 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6978 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006979 support all bit widths however.</p>
6980<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006981declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6982declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6983declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6984declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006985
6986</pre>
6987
6988<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006989declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6990declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6991declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6992declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006993
6994</pre>
6995
6996<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006997declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6998declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6999declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7000declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007001
7002</pre>
7003
7004<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00007005declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7006declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7007declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7008declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007009
7010</pre>
7011<h5>Overview:</h5>
7012<p>
7013 These intrinsics takes the signed or unsigned minimum or maximum of
7014 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7015 original value at <tt>ptr</tt>.
7016</p>
7017<h5>Arguments:</h5>
7018<p>
7019
7020 These intrinsics take two arguments, the first a pointer to an integer value
7021 and the second an integer value. The result is also an integer value. These
7022 integer types can have any bit width, but they must all have the same bit
7023 width. The targets may only lower integer representations they support.
7024</p>
7025<h5>Semantics:</h5>
7026<p>
7027 These intrinsics does a series of operations atomically. They first load the
7028 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
7029 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
7030 the original value stored at <tt>ptr</tt>.
7031</p>
7032
7033<h5>Examples:</h5>
7034<pre>
7035%ptr = malloc i32
7036 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00007037%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00007038 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007039%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00007040 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007041%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00007042 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007043%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00007044 <i>; yields {i32}:result3 = 8</i>
7045%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7046</pre>
7047</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007048
7049<!-- ======================================================================= -->
7050<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00007051 <a name="int_general">General Intrinsics</a>
7052</div>
7053
7054<div class="doc_text">
7055<p> This class of intrinsics is designed to be generic and has
7056no specific purpose. </p>
7057</div>
7058
7059<!-- _______________________________________________________________________ -->
7060<div class="doc_subsubsection">
7061 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7062</div>
7063
7064<div class="doc_text">
7065
7066<h5>Syntax:</h5>
7067<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00007068 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00007069</pre>
7070
7071<h5>Overview:</h5>
7072
7073<p>
7074The '<tt>llvm.var.annotation</tt>' intrinsic
7075</p>
7076
7077<h5>Arguments:</h5>
7078
7079<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00007080The first argument is a pointer to a value, the second is a pointer to a
7081global string, the third is a pointer to a global string which is the source
7082file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00007083</p>
7084
7085<h5>Semantics:</h5>
7086
7087<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007088This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00007089This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007090annotations. These have no other defined use, they are ignored by code
7091generation and optimization.
7092</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007093</div>
7094
Tanya Lattnerb6367882007-09-21 22:59:12 +00007095<!-- _______________________________________________________________________ -->
7096<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00007097 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007098</div>
7099
7100<div class="doc_text">
7101
7102<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00007103<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7104any integer bit width.
7105</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007106<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00007107 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7108 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7109 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7110 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7111 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00007112</pre>
7113
7114<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00007115
7116<p>
7117The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00007118</p>
7119
7120<h5>Arguments:</h5>
7121
7122<p>
7123The first argument is an integer value (result of some expression),
7124the second is a pointer to a global string, the third is a pointer to a global
7125string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00007126It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00007127</p>
7128
7129<h5>Semantics:</h5>
7130
7131<p>
7132This intrinsic allows annotations to be put on arbitrary expressions
7133with arbitrary strings. This can be useful for special purpose optimizations
7134that want to look for these annotations. These have no other defined use, they
7135are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00007136</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007137</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007138
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007139<!-- _______________________________________________________________________ -->
7140<div class="doc_subsubsection">
7141 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7142</div>
7143
7144<div class="doc_text">
7145
7146<h5>Syntax:</h5>
7147<pre>
7148 declare void @llvm.trap()
7149</pre>
7150
7151<h5>Overview:</h5>
7152
7153<p>
7154The '<tt>llvm.trap</tt>' intrinsic
7155</p>
7156
7157<h5>Arguments:</h5>
7158
7159<p>
7160None
7161</p>
7162
7163<h5>Semantics:</h5>
7164
7165<p>
7166This intrinsics is lowered to the target dependent trap instruction. If the
7167target does not have a trap instruction, this intrinsic will be lowered to the
7168call of the abort() function.
7169</p>
7170</div>
7171
Bill Wendling69e4adb2008-11-19 05:56:17 +00007172<!-- _______________________________________________________________________ -->
7173<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00007174 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00007175</div>
7176<div class="doc_text">
7177<h5>Syntax:</h5>
7178<pre>
7179declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
7180
7181</pre>
7182<h5>Overview:</h5>
7183<p>
7184 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
7185 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
7186 it is placed on the stack before local variables.
7187</p>
7188<h5>Arguments:</h5>
7189<p>
7190 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
7191 first argument is the value loaded from the stack guard
7192 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
7193 has enough space to hold the value of the guard.
7194</p>
7195<h5>Semantics:</h5>
7196<p>
7197 This intrinsic causes the prologue/epilogue inserter to force the position of
7198 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7199 stack. This is to ensure that if a local variable on the stack is overwritten,
7200 it will destroy the value of the guard. When the function exits, the guard on
7201 the stack is checked against the original guard. If they're different, then
7202 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
7203</p>
7204</div>
7205
Chris Lattner00950542001-06-06 20:29:01 +00007206<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00007207<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007208<address>
7209 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007210 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007211 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007212 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007213
7214 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00007215 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007216 Last modified: $Date$
7217</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00007218
Misha Brukman9d0919f2003-11-08 01:05:38 +00007219</body>
7220</html>