blob: 4885a84192a37b17eff498fa257bcaaedf532caa [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner00950542001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000040 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Nick Lewycky7a0370f2009-05-30 05:06:04 +000044 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000045 </ol>
46 </li>
Chris Lattner00950542001-06-06 20:29:01 +000047 <li><a href="#t_derived">Derived Types</a>
48 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000049 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000050 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000051 <li><a href="#t_function">Function Type</a></li>
52 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000053 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000054 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000055 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000056 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000057 </ol>
58 </li>
Chris Lattner242d61d2009-02-02 07:32:36 +000059 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000060 </ol>
61 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000062 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000063 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000064 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner70882792009-02-28 18:32:25 +000065 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000066 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
67 <li><a href="#undefvalues">Undefined Values</a></li>
68 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky21cc4462009-04-04 07:22:01 +000069 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000070 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000071 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000072 <li><a href="#othervalues">Other Values</a>
73 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000074 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000075 </ol>
76 </li>
Chris Lattner00950542001-06-06 20:29:01 +000077 <li><a href="#instref">Instruction Reference</a>
78 <ol>
79 <li><a href="#terminators">Terminator Instructions</a>
80 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
82 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000083 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
84 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000085 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000086 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000087 </ol>
88 </li>
Chris Lattner00950542001-06-06 20:29:01 +000089 <li><a href="#binaryops">Binary Operations</a>
90 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000091 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000092 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000093 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000094 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000095 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000096 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000097 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
98 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
99 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +0000100 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
101 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
102 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000103 </ol>
104 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000105 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
106 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000107 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
108 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
109 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000110 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000111 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000112 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000113 </ol>
114 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000115 <li><a href="#vectorops">Vector Operations</a>
116 <ol>
117 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
118 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
119 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000120 </ol>
121 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000122 <li><a href="#aggregateops">Aggregate Operations</a>
123 <ol>
124 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
125 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
126 </ol>
127 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000128 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000129 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000130 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
131 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
132 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000133 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
134 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
135 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000136 </ol>
137 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000138 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000139 <ol>
140 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
141 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
142 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
143 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
144 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000145 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
146 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
147 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
148 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000149 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
150 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000151 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000152 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000153 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000154 <li><a href="#otherops">Other Operations</a>
155 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000156 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
157 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000158 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000159 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000161 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000162 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000163 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000164 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000165 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000166 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000167 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000168 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
169 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000170 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
171 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
172 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000173 </ol>
174 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000175 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
176 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000177 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
178 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
179 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000180 </ol>
181 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000182 <li><a href="#int_codegen">Code Generator Intrinsics</a>
183 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000184 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
185 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
186 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
187 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
188 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
189 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
190 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000191 </ol>
192 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000193 <li><a href="#int_libc">Standard C Library Intrinsics</a>
194 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000195 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000200 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
201 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
202 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000203 </ol>
204 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000205 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000206 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000207 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000208 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
209 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
210 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000211 </ol>
212 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000213 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
214 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000215 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
216 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
217 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
218 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
219 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling41b485c2009-02-08 23:00:09 +0000220 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000221 </ol>
222 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000223 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000224 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000225 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000226 <ol>
227 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000228 </ol>
229 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000230 <li><a href="#int_atomics">Atomic intrinsics</a>
231 <ol>
232 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
233 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
234 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
235 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
236 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
237 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
238 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
239 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
240 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
241 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
242 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
243 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
244 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
245 </ol>
246 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000247 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000248 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000249 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000250 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000251 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000252 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000253 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000254 '<tt>llvm.trap</tt>' Intrinsic</a></li>
255 <li><a href="#int_stackprotector">
256 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000257 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000258 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000259 </ol>
260 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000261</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000262
263<div class="doc_author">
264 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
265 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000266</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000267
Chris Lattner00950542001-06-06 20:29:01 +0000268<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000269<div class="doc_section"> <a name="abstract">Abstract </a></div>
270<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Misha Brukman9d0919f2003-11-08 01:05:38 +0000272<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000273<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000274LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000275type safety, low-level operations, flexibility, and the capability of
276representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000277representation used throughout all phases of the LLVM compilation
278strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000279</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000280
Chris Lattner00950542001-06-06 20:29:01 +0000281<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000282<div class="doc_section"> <a name="introduction">Introduction</a> </div>
283<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000284
Misha Brukman9d0919f2003-11-08 01:05:38 +0000285<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000286
Chris Lattner261efe92003-11-25 01:02:51 +0000287<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000288different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000289representation (suitable for fast loading by a Just-In-Time compiler),
290and as a human readable assembly language representation. This allows
291LLVM to provide a powerful intermediate representation for efficient
292compiler transformations and analysis, while providing a natural means
293to debug and visualize the transformations. The three different forms
294of LLVM are all equivalent. This document describes the human readable
295representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000296
John Criswellc1f786c2005-05-13 22:25:59 +0000297<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000298while being expressive, typed, and extensible at the same time. It
299aims to be a "universal IR" of sorts, by being at a low enough level
300that high-level ideas may be cleanly mapped to it (similar to how
301microprocessors are "universal IR's", allowing many source languages to
302be mapped to them). By providing type information, LLVM can be used as
303the target of optimizations: for example, through pointer analysis, it
304can be proven that a C automatic variable is never accessed outside of
305the current function... allowing it to be promoted to a simple SSA
306value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000307
Misha Brukman9d0919f2003-11-08 01:05:38 +0000308</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000309
Chris Lattner00950542001-06-06 20:29:01 +0000310<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000311<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000312
Misha Brukman9d0919f2003-11-08 01:05:38 +0000313<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000314
Chris Lattner261efe92003-11-25 01:02:51 +0000315<p>It is important to note that this document describes 'well formed'
316LLVM assembly language. There is a difference between what the parser
317accepts and what is considered 'well formed'. For example, the
318following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000319
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000320<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000321<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000322%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000323</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000324</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000325
Chris Lattner261efe92003-11-25 01:02:51 +0000326<p>...because the definition of <tt>%x</tt> does not dominate all of
327its uses. The LLVM infrastructure provides a verification pass that may
328be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000329automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000330the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000331by the verifier pass indicate bugs in transformation passes or input to
332the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000333</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000334
Chris Lattnercc689392007-10-03 17:34:29 +0000335<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000336
Chris Lattner00950542001-06-06 20:29:01 +0000337<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000338<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000339<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000340
Misha Brukman9d0919f2003-11-08 01:05:38 +0000341<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000342
Reid Spencer2c452282007-08-07 14:34:28 +0000343 <p>LLVM identifiers come in two basic types: global and local. Global
344 identifiers (functions, global variables) begin with the @ character. Local
345 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000346 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000347
Chris Lattner00950542001-06-06 20:29:01 +0000348<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000349 <li>Named values are represented as a string of characters with their prefix.
350 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
351 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000352 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000353 with quotes. Special characters may be escaped using "\xx" where xx is the
354 ASCII code for the character in hexadecimal. In this way, any character can
355 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000356
Reid Spencer2c452282007-08-07 14:34:28 +0000357 <li>Unnamed values are represented as an unsigned numeric value with their
358 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000359
Reid Spencercc16dc32004-12-09 18:02:53 +0000360 <li>Constants, which are described in a <a href="#constants">section about
361 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000362</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000363
Reid Spencer2c452282007-08-07 14:34:28 +0000364<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000365don't need to worry about name clashes with reserved words, and the set of
366reserved words may be expanded in the future without penalty. Additionally,
367unnamed identifiers allow a compiler to quickly come up with a temporary
368variable without having to avoid symbol table conflicts.</p>
369
Chris Lattner261efe92003-11-25 01:02:51 +0000370<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000371languages. There are keywords for different opcodes
372('<tt><a href="#i_add">add</a></tt>',
373 '<tt><a href="#i_bitcast">bitcast</a></tt>',
374 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000375href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000376and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000377none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000378
379<p>Here is an example of LLVM code to multiply the integer variable
380'<tt>%X</tt>' by 8:</p>
381
Misha Brukman9d0919f2003-11-08 01:05:38 +0000382<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000383
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000384<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000385<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000386%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000387</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000388</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000389
Misha Brukman9d0919f2003-11-08 01:05:38 +0000390<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000391
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000392<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000393<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000394%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000395</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000396</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000397
Misha Brukman9d0919f2003-11-08 01:05:38 +0000398<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000399
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000400<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000401<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000402<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
403<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
404%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000405</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000406</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000407
Chris Lattner261efe92003-11-25 01:02:51 +0000408<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
409important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000410
Chris Lattner00950542001-06-06 20:29:01 +0000411<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000412
413 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
414 line.</li>
415
416 <li>Unnamed temporaries are created when the result of a computation is not
417 assigned to a named value.</li>
418
Misha Brukman9d0919f2003-11-08 01:05:38 +0000419 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000420
Misha Brukman9d0919f2003-11-08 01:05:38 +0000421</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000422
John Criswelle4c57cc2005-05-12 16:52:32 +0000423<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000424demonstrating instructions, we will follow an instruction with a comment that
425defines the type and name of value produced. Comments are shown in italic
426text.</p>
427
Misha Brukman9d0919f2003-11-08 01:05:38 +0000428</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000429
430<!-- *********************************************************************** -->
431<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
432<!-- *********************************************************************** -->
433
434<!-- ======================================================================= -->
435<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
436</div>
437
438<div class="doc_text">
439
440<p>LLVM programs are composed of "Module"s, each of which is a
441translation unit of the input programs. Each module consists of
442functions, global variables, and symbol table entries. Modules may be
443combined together with the LLVM linker, which merges function (and
444global variable) definitions, resolves forward declarations, and merges
445symbol table entries. Here is an example of the "hello world" module:</p>
446
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000447<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000448<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000449<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
450 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000451
452<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000453<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000454
455<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000456define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000457 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000458 %cast210 = <a
Dan Gohman2a08c532009-01-04 23:44:43 +0000459 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000460
461 <i>; Call puts function to write out the string to stdout...</i>
462 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000463 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000464 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000465 href="#i_ret">ret</a> i32 0<br>}<br>
466</pre>
467</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000468
469<p>This example is made up of a <a href="#globalvars">global variable</a>
470named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
471function, and a <a href="#functionstructure">function definition</a>
472for "<tt>main</tt>".</p>
473
Chris Lattnere5d947b2004-12-09 16:36:40 +0000474<p>In general, a module is made up of a list of global values,
475where both functions and global variables are global values. Global values are
476represented by a pointer to a memory location (in this case, a pointer to an
477array of char, and a pointer to a function), and have one of the following <a
478href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000479
Chris Lattnere5d947b2004-12-09 16:36:40 +0000480</div>
481
482<!-- ======================================================================= -->
483<div class="doc_subsection">
484 <a name="linkage">Linkage Types</a>
485</div>
486
487<div class="doc_text">
488
489<p>
490All Global Variables and Functions have one of the following types of linkage:
491</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000492
493<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000494
Rafael Espindolabb46f522009-01-15 20:18:42 +0000495 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
496
497 <dd>Global values with private linkage are only directly accessible by
498 objects in the current module. In particular, linking code into a module with
499 an private global value may cause the private to be renamed as necessary to
500 avoid collisions. Because the symbol is private to the module, all
501 references can be updated. This doesn't show up in any symbol table in the
502 object file.
503 </dd>
504
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000505 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000506
Duncan Sands81d05c22009-01-16 09:29:46 +0000507 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindolabb46f522009-01-15 20:18:42 +0000508 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000509 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000510 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000511
Chris Lattner266c7bb2009-04-13 05:44:34 +0000512 <dt><tt><b><a name="available_externally">available_externally</a></b></tt>:
513 </dt>
514
515 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
516 into the object file corresponding to the LLVM module. They exist to
517 allow inlining and other optimizations to take place given knowledge of the
518 definition of the global, which is known to be somewhere outside the module.
519 Globals with <tt>available_externally</tt> linkage are allowed to be discarded
520 at will, and are otherwise the same as <tt>linkonce_odr</tt>. This linkage
521 type is only allowed on definitions, not declarations.</dd>
522
Chris Lattnerfa730212004-12-09 16:11:40 +0000523 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000524
Chris Lattner4887bd82007-01-14 06:51:48 +0000525 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
526 the same name when linkage occurs. This is typically used to implement
527 inline functions, templates, or other code which must be generated in each
528 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
529 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000530 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000531
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000532 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
533
534 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
535 linkage, except that unreferenced <tt>common</tt> globals may not be
536 discarded. This is used for globals that may be emitted in multiple
537 translation units, but that are not guaranteed to be emitted into every
538 translation unit that uses them. One example of this is tentative
539 definitions in C, such as "<tt>int X;</tt>" at global scope.
540 </dd>
541
Chris Lattnerfa730212004-12-09 16:11:40 +0000542 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000543
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000544 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
545 that some targets may choose to emit different assembly sequences for them
546 for target-dependent reasons. This is used for globals that are declared
547 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000548 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000549
Chris Lattnerfa730212004-12-09 16:11:40 +0000550 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000551
552 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
553 pointer to array type. When two global variables with appending linkage are
554 linked together, the two global arrays are appended together. This is the
555 LLVM, typesafe, equivalent of having the system linker append together
556 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000557 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000558
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000559 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000560
Chris Lattnerd3eda892008-08-05 18:29:16 +0000561 <dd>The semantics of this linkage follow the ELF object file model: the
562 symbol is weak until linked, if not linked, the symbol becomes null instead
563 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000564 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000565
Duncan Sands667d4b82009-03-07 15:45:40 +0000566 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000567 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000568 <dd>Some languages allow differing globals to be merged, such as two
Duncan Sands667d4b82009-03-07 15:45:40 +0000569 functions with different semantics. Other languages, such as <tt>C++</tt>,
570 ensure that only equivalent globals are ever merged (the "one definition
Chris Lattner266c7bb2009-04-13 05:44:34 +0000571 rule" - "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Duncan Sands4dc2b392009-03-11 20:14:15 +0000572 and <tt>weak_odr</tt> linkage types to indicate that the global will only
573 be merged with equivalent globals. These linkage types are otherwise the
574 same as their non-<tt>odr</tt> versions.
Duncan Sands667d4b82009-03-07 15:45:40 +0000575 </dd>
576
Chris Lattnerfa730212004-12-09 16:11:40 +0000577 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000578
579 <dd>If none of the above identifiers are used, the global is externally
580 visible, meaning that it participates in linkage and can be used to resolve
581 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000582 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000583</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000584
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000585 <p>
586 The next two types of linkage are targeted for Microsoft Windows platform
587 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000588 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000589 </p>
590
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000591 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000592 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
593
594 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
595 or variable via a global pointer to a pointer that is set up by the DLL
596 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman79564122009-01-12 21:35:55 +0000597 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000598 </dd>
599
600 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
601
602 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
603 pointer to a pointer in a DLL, so that it can be referenced with the
604 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman79564122009-01-12 21:35:55 +0000605 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000606 name.
607 </dd>
608
Chris Lattnerfa730212004-12-09 16:11:40 +0000609</dl>
610
Dan Gohmanf0032762008-11-24 17:18:39 +0000611<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000612variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
613variable and was linked with this one, one of the two would be renamed,
614preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
615external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000616outside of the current module.</p>
617<p>It is illegal for a function <i>declaration</i>
Duncan Sands5f4ee1f2009-03-11 08:08:06 +0000618to have any linkage type other than "externally visible", <tt>dllimport</tt>
619or <tt>extern_weak</tt>.</p>
Duncan Sands667d4b82009-03-07 15:45:40 +0000620<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
621or <tt>weak_odr</tt> linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000622</div>
623
624<!-- ======================================================================= -->
625<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000626 <a name="callingconv">Calling Conventions</a>
627</div>
628
629<div class="doc_text">
630
631<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
632and <a href="#i_invoke">invokes</a> can all have an optional calling convention
633specified for the call. The calling convention of any pair of dynamic
634caller/callee must match, or the behavior of the program is undefined. The
635following calling conventions are supported by LLVM, and more may be added in
636the future:</p>
637
638<dl>
639 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
640
641 <dd>This calling convention (the default if no other calling convention is
642 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000643 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000644 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000645 </dd>
646
647 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
648
649 <dd>This calling convention attempts to make calls as fast as possible
650 (e.g. by passing things in registers). This calling convention allows the
651 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000652 without having to conform to an externally specified ABI (Application Binary
653 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000654 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
655 supported. This calling convention does not support varargs and requires the
656 prototype of all callees to exactly match the prototype of the function
657 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000658 </dd>
659
660 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
661
662 <dd>This calling convention attempts to make code in the caller as efficient
663 as possible under the assumption that the call is not commonly executed. As
664 such, these calls often preserve all registers so that the call does not break
665 any live ranges in the caller side. This calling convention does not support
666 varargs and requires the prototype of all callees to exactly match the
667 prototype of the function definition.
668 </dd>
669
Chris Lattnercfe6b372005-05-07 01:46:40 +0000670 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000671
672 <dd>Any calling convention may be specified by number, allowing
673 target-specific calling conventions to be used. Target specific calling
674 conventions start at 64.
675 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000676</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000677
678<p>More calling conventions can be added/defined on an as-needed basis, to
679support pascal conventions or any other well-known target-independent
680convention.</p>
681
682</div>
683
684<!-- ======================================================================= -->
685<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000686 <a name="visibility">Visibility Styles</a>
687</div>
688
689<div class="doc_text">
690
691<p>
692All Global Variables and Functions have one of the following visibility styles:
693</p>
694
695<dl>
696 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
697
Chris Lattnerd3eda892008-08-05 18:29:16 +0000698 <dd>On targets that use the ELF object file format, default visibility means
699 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000700 modules and, in shared libraries, means that the declared entity may be
701 overridden. On Darwin, default visibility means that the declaration is
702 visible to other modules. Default visibility corresponds to "external
703 linkage" in the language.
704 </dd>
705
706 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
707
708 <dd>Two declarations of an object with hidden visibility refer to the same
709 object if they are in the same shared object. Usually, hidden visibility
710 indicates that the symbol will not be placed into the dynamic symbol table,
711 so no other module (executable or shared library) can reference it
712 directly.
713 </dd>
714
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000715 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
716
717 <dd>On ELF, protected visibility indicates that the symbol will be placed in
718 the dynamic symbol table, but that references within the defining module will
719 bind to the local symbol. That is, the symbol cannot be overridden by another
720 module.
721 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000722</dl>
723
724</div>
725
726<!-- ======================================================================= -->
727<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000728 <a name="namedtypes">Named Types</a>
729</div>
730
731<div class="doc_text">
732
733<p>LLVM IR allows you to specify name aliases for certain types. This can make
734it easier to read the IR and make the IR more condensed (particularly when
735recursive types are involved). An example of a name specification is:
736</p>
737
738<div class="doc_code">
739<pre>
740%mytype = type { %mytype*, i32 }
741</pre>
742</div>
743
744<p>You may give a name to any <a href="#typesystem">type</a> except "<a
745href="t_void">void</a>". Type name aliases may be used anywhere a type is
746expected with the syntax "%mytype".</p>
747
748<p>Note that type names are aliases for the structural type that they indicate,
749and that you can therefore specify multiple names for the same type. This often
750leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
751structural typing, the name is not part of the type. When printing out LLVM IR,
752the printer will pick <em>one name</em> to render all types of a particular
753shape. This means that if you have code where two different source types end up
754having the same LLVM type, that the dumper will sometimes print the "wrong" or
755unexpected type. This is an important design point and isn't going to
756change.</p>
757
758</div>
759
Chris Lattnere7886e42009-01-11 20:53:49 +0000760<!-- ======================================================================= -->
761<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000762 <a name="globalvars">Global Variables</a>
763</div>
764
765<div class="doc_text">
766
Chris Lattner3689a342005-02-12 19:30:21 +0000767<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000768instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000769an explicit section to be placed in, and may have an optional explicit alignment
770specified. A variable may be defined as "thread_local", which means that it
771will not be shared by threads (each thread will have a separated copy of the
772variable). A variable may be defined as a global "constant," which indicates
773that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000774optimization, allowing the global data to be placed in the read-only section of
775an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000776cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000777
778<p>
779LLVM explicitly allows <em>declarations</em> of global variables to be marked
780constant, even if the final definition of the global is not. This capability
781can be used to enable slightly better optimization of the program, but requires
782the language definition to guarantee that optimizations based on the
783'constantness' are valid for the translation units that do not include the
784definition.
785</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000786
787<p>As SSA values, global variables define pointer values that are in
788scope (i.e. they dominate) all basic blocks in the program. Global
789variables always define a pointer to their "content" type because they
790describe a region of memory, and all memory objects in LLVM are
791accessed through pointers.</p>
792
Christopher Lamb284d9922007-12-11 09:31:00 +0000793<p>A global variable may be declared to reside in a target-specifc numbered
794address space. For targets that support them, address spaces may affect how
795optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000796the variable. The default address space is zero. The address space qualifier
797must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000798
Chris Lattner88f6c462005-11-12 00:45:07 +0000799<p>LLVM allows an explicit section to be specified for globals. If the target
800supports it, it will emit globals to the section specified.</p>
801
Chris Lattner2cbdc452005-11-06 08:02:57 +0000802<p>An explicit alignment may be specified for a global. If not present, or if
803the alignment is set to zero, the alignment of the global is set by the target
804to whatever it feels convenient. If an explicit alignment is specified, the
805global is forced to have at least that much alignment. All alignments must be
806a power of 2.</p>
807
Christopher Lamb284d9922007-12-11 09:31:00 +0000808<p>For example, the following defines a global in a numbered address space with
809an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000810
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000811<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000812<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000813@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000814</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000815</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000816
Chris Lattnerfa730212004-12-09 16:11:40 +0000817</div>
818
819
820<!-- ======================================================================= -->
821<div class="doc_subsection">
822 <a name="functionstructure">Functions</a>
823</div>
824
825<div class="doc_text">
826
Reid Spencerca86e162006-12-31 07:07:53 +0000827<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
828an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000829<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000830<a href="#callingconv">calling convention</a>, a return type, an optional
831<a href="#paramattrs">parameter attribute</a> for the return type, a function
832name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000833<a href="#paramattrs">parameter attributes</a>), optional
834<a href="#fnattrs">function attributes</a>, an optional section,
835an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000836an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000837
838LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
839optional <a href="#linkage">linkage type</a>, an optional
840<a href="#visibility">visibility style</a>, an optional
841<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000842<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000843name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000844<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000845
Chris Lattnerd3eda892008-08-05 18:29:16 +0000846<p>A function definition contains a list of basic blocks, forming the CFG
847(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000848the function. Each basic block may optionally start with a label (giving the
849basic block a symbol table entry), contains a list of instructions, and ends
850with a <a href="#terminators">terminator</a> instruction (such as a branch or
851function return).</p>
852
Chris Lattner4a3c9012007-06-08 16:52:14 +0000853<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000854executed on entrance to the function, and it is not allowed to have predecessor
855basic blocks (i.e. there can not be any branches to the entry block of a
856function). Because the block can have no predecessors, it also cannot have any
857<a href="#i_phi">PHI nodes</a>.</p>
858
Chris Lattner88f6c462005-11-12 00:45:07 +0000859<p>LLVM allows an explicit section to be specified for functions. If the target
860supports it, it will emit functions to the section specified.</p>
861
Chris Lattner2cbdc452005-11-06 08:02:57 +0000862<p>An explicit alignment may be specified for a function. If not present, or if
863the alignment is set to zero, the alignment of the function is set by the target
864to whatever it feels convenient. If an explicit alignment is specified, the
865function is forced to have at least that much alignment. All alignments must be
866a power of 2.</p>
867
Devang Patel307e8ab2008-10-07 17:48:33 +0000868 <h5>Syntax:</h5>
869
870<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000871<tt>
872define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
873 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
874 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
875 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
876 [<a href="#gc">gc</a>] { ... }
877</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000878</div>
879
Chris Lattnerfa730212004-12-09 16:11:40 +0000880</div>
881
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000882
883<!-- ======================================================================= -->
884<div class="doc_subsection">
885 <a name="aliasstructure">Aliases</a>
886</div>
887<div class="doc_text">
888 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000889 function, global variable, another alias or bitcast of global value). Aliases
890 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000891 optional <a href="#visibility">visibility style</a>.</p>
892
893 <h5>Syntax:</h5>
894
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000895<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000896<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000897@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000898</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000899</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000900
901</div>
902
903
904
Chris Lattner4e9aba72006-01-23 23:23:47 +0000905<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000906<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
907<div class="doc_text">
908 <p>The return type and each parameter of a function type may have a set of
909 <i>parameter attributes</i> associated with them. Parameter attributes are
910 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000911 a function. Parameter attributes are considered to be part of the function,
912 not of the function type, so functions with different parameter attributes
913 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000914
Reid Spencer950e9f82007-01-15 18:27:39 +0000915 <p>Parameter attributes are simple keywords that follow the type specified. If
916 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000917 example:</p>
918
919<div class="doc_code">
920<pre>
Nick Lewyckyb6a7d252009-02-15 23:06:14 +0000921declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000922declare i32 @atoi(i8 zeroext)
923declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000924</pre>
925</div>
926
Duncan Sandsdc024672007-11-27 13:23:08 +0000927 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
928 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000929
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000930 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000931 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000932 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000933 <dd>This indicates to the code generator that the parameter or return value
934 should be zero-extended to a 32-bit value by the caller (for a parameter)
935 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000936
Reid Spencer9445e9a2007-07-19 23:13:04 +0000937 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000938 <dd>This indicates to the code generator that the parameter or return value
939 should be sign-extended to a 32-bit value by the caller (for a parameter)
940 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000941
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000942 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000943 <dd>This indicates that this parameter or return value should be treated
944 in a special target-dependent fashion during while emitting code for a
945 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000946 to memory, though some targets use it to distinguish between two different
947 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000948
Duncan Sandsedb05df2008-10-06 08:14:18 +0000949 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000950 <dd>This indicates that the pointer parameter should really be passed by
951 value to the function. The attribute implies that a hidden copy of the
952 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000953 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000954 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000955 value, but is also valid on pointers to scalars. The copy is considered to
956 belong to the caller not the callee (for example,
957 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000958 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerce459b12009-02-05 05:42:28 +0000959 values. The byval attribute also supports specifying an alignment with the
960 align attribute. This has a target-specific effect on the code generator
961 that usually indicates a desired alignment for the synthesized stack
962 slot.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000963
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000964 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000965 <dd>This indicates that the pointer parameter specifies the address of a
966 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000967 This pointer must be guaranteed by the caller to be valid: loads and stores
968 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000969 be applied to the first parameter. This is not a valid attribute for
970 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000971
Zhou Shengfebca342007-06-05 05:28:26 +0000972 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000973 <dd>This indicates that the pointer does not alias any global or any other
974 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000975 case. On a function return value, <tt>noalias</tt> additionally indicates
976 that the pointer does not alias any other pointers visible to the
Nick Lewyckyf23d0d32008-12-19 06:39:12 +0000977 caller. For further details, please see the discussion of the NoAlias
978 response in
979 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
980 analysis</a>.</dd>
981
982 <dt><tt>nocapture</tt></dt>
983 <dd>This indicates that the callee does not make any copies of the pointer
984 that outlive the callee itself. This is not a valid attribute for return
985 values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000986
Duncan Sands50f19f52007-07-27 19:57:41 +0000987 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000988 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000989 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
990 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000991 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000992
Reid Spencerca86e162006-12-31 07:07:53 +0000993</div>
994
995<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000996<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000997 <a name="gc">Garbage Collector Names</a>
998</div>
999
1000<div class="doc_text">
1001<p>Each function may specify a garbage collector name, which is simply a
1002string.</p>
1003
1004<div class="doc_code"><pre
1005>define void @f() gc "name" { ...</pre></div>
1006
1007<p>The compiler declares the supported values of <i>name</i>. Specifying a
1008collector which will cause the compiler to alter its output in order to support
1009the named garbage collection algorithm.</p>
1010</div>
1011
1012<!-- ======================================================================= -->
1013<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001014 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +00001015</div>
1016
1017<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001018
1019<p>Function attributes are set to communicate additional information about
1020 a function. Function attributes are considered to be part of the function,
1021 not of the function type, so functions with different parameter attributes
1022 can have the same function type.</p>
1023
1024 <p>Function attributes are simple keywords that follow the type specified. If
1025 multiple attributes are needed, they are space separated. For
1026 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001027
1028<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001029<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001030define void @f() noinline { ... }
1031define void @f() alwaysinline { ... }
1032define void @f() alwaysinline optsize { ... }
1033define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001034</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001035</div>
1036
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001037<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001038<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001039<dd>This attribute indicates that the inliner should attempt to inline this
1040function into callers whenever possible, ignoring any active inlining size
1041threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001042
Devang Patel2c9c3e72008-09-26 23:51:19 +00001043<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001044<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +00001045in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +00001046<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001047
Devang Patel2c9c3e72008-09-26 23:51:19 +00001048<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +00001049<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +00001050make choices that keep the code size of this function low, and otherwise do
1051optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001052
Devang Patel2c9c3e72008-09-26 23:51:19 +00001053<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001054<dd>This function attribute indicates that the function never returns normally.
1055This produces undefined behavior at runtime if the function ever does
1056dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001057
1058<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001059<dd>This function attribute indicates that the function never returns with an
1060unwind or exceptional control flow. If the function does unwind, its runtime
1061behavior is undefined.</dd>
1062
1063<dt><tt>readnone</tt></dt>
Duncan Sands7af1c782009-05-06 06:49:50 +00001064<dd>This attribute indicates that the function computes its result (or decides to
1065unwind an exception) based strictly on its arguments, without dereferencing any
Duncan Sandsedb05df2008-10-06 08:14:18 +00001066pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1067registers, etc) visible to caller functions. It does not write through any
1068pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
Duncan Sands7af1c782009-05-06 06:49:50 +00001069never changes any state visible to callers. This means that it cannot unwind
1070exceptions by calling the <tt>C++</tt> exception throwing methods, but could
1071use the <tt>unwind</tt> instruction.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001072
Duncan Sandsedb05df2008-10-06 08:14:18 +00001073<dt><tt><a name="readonly">readonly</a></tt></dt>
1074<dd>This attribute indicates that the function does not write through any
1075pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1076or otherwise modify any state (e.g. memory, control registers, etc) visible to
1077caller functions. It may dereference pointer arguments and read state that may
Duncan Sands7af1c782009-05-06 06:49:50 +00001078be set in the caller. A readonly function always returns the same value (or
1079unwinds an exception identically) when called with the same set of arguments
1080and global state. It cannot unwind an exception by calling the <tt>C++</tt>
1081exception throwing methods, but may use the <tt>unwind</tt> instruction.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001082
1083<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001084<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +00001085protector. It is in the form of a "canary"&mdash;a random value placed on the
1086stack before the local variables that's checked upon return from the function to
1087see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001088needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001089
Devang Patel5d96fda2009-06-12 19:45:19 +00001090<br><br>If a function that has an <tt>ssp</tt> attribute is inlined into a function
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001091that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
Devang Patel5d96fda2009-06-12 19:45:19 +00001092have an <tt>ssp</tt> attribute.</dd>
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001093
1094<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001095<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001096stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001097function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001098
Devang Patel5d96fda2009-06-12 19:45:19 +00001099If a function that has an <tt>sspreq</tt> attribute is inlined into a
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001100function that doesn't have an <tt>sspreq</tt> attribute or which has
1101an <tt>ssp</tt> attribute, then the resulting function will have
Devang Patel5d96fda2009-06-12 19:45:19 +00001102an <tt>sspreq</tt> attribute.</dd>
1103
1104<dt><tt>noredzone</tt></dt>
Dan Gohman2185f9e2009-06-15 17:37:09 +00001105<dd>This attribute indicates that the code generator should not use a
Dan Gohman125473b2009-06-15 21:18:01 +00001106red zone, even if the target-specific ABI normally permits it.
Dan Gohman2185f9e2009-06-15 17:37:09 +00001107</dd>
Devang Patel5d96fda2009-06-12 19:45:19 +00001108
1109<dt><tt>noimplicitfloat</tt></dt>
1110<dd>This attributes disables implicit floating point instructions.</dd>
1111
Anton Korobeynikovc5ec8a72009-07-17 18:07:26 +00001112<dt><tt>naked</tt></dt>
1113<dd>This attribute disables prologue / epilogue emission for the function</dd>
1114
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001115</dl>
1116
Devang Patelf8b94812008-09-04 23:05:13 +00001117</div>
1118
1119<!-- ======================================================================= -->
1120<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001121 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001122</div>
1123
1124<div class="doc_text">
1125<p>
1126Modules may contain "module-level inline asm" blocks, which corresponds to the
1127GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1128LLVM and treated as a single unit, but may be separated in the .ll file if
1129desired. The syntax is very simple:
1130</p>
1131
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001132<div class="doc_code">
1133<pre>
1134module asm "inline asm code goes here"
1135module asm "more can go here"
1136</pre>
1137</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001138
1139<p>The strings can contain any character by escaping non-printable characters.
1140 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1141 for the number.
1142</p>
1143
1144<p>
1145 The inline asm code is simply printed to the machine code .s file when
1146 assembly code is generated.
1147</p>
1148</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001149
Reid Spencerde151942007-02-19 23:54:10 +00001150<!-- ======================================================================= -->
1151<div class="doc_subsection">
1152 <a name="datalayout">Data Layout</a>
1153</div>
1154
1155<div class="doc_text">
1156<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001157data is to be laid out in memory. The syntax for the data layout is simply:</p>
1158<pre> target datalayout = "<i>layout specification</i>"</pre>
1159<p>The <i>layout specification</i> consists of a list of specifications
1160separated by the minus sign character ('-'). Each specification starts with a
1161letter and may include other information after the letter to define some
1162aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001163<dl>
1164 <dt><tt>E</tt></dt>
1165 <dd>Specifies that the target lays out data in big-endian form. That is, the
1166 bits with the most significance have the lowest address location.</dd>
1167 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001168 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001169 the bits with the least significance have the lowest address location.</dd>
1170 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1171 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1172 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1173 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1174 too.</dd>
1175 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1176 <dd>This specifies the alignment for an integer type of a given bit
1177 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1178 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1179 <dd>This specifies the alignment for a vector type of a given bit
1180 <i>size</i>.</dd>
1181 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1182 <dd>This specifies the alignment for a floating point type of a given bit
1183 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1184 (double).</dd>
1185 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1186 <dd>This specifies the alignment for an aggregate type of a given bit
1187 <i>size</i>.</dd>
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001188 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1189 <dd>This specifies the alignment for a stack object of a given bit
1190 <i>size</i>.</dd>
Reid Spencerde151942007-02-19 23:54:10 +00001191</dl>
1192<p>When constructing the data layout for a given target, LLVM starts with a
1193default set of specifications which are then (possibly) overriden by the
1194specifications in the <tt>datalayout</tt> keyword. The default specifications
1195are given in this list:</p>
1196<ul>
1197 <li><tt>E</tt> - big endian</li>
1198 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1199 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1200 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1201 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1202 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001203 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001204 alignment of 64-bits</li>
1205 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1206 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1207 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1208 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1209 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001210 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencerde151942007-02-19 23:54:10 +00001211</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001212<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001213following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001214<ol>
1215 <li>If the type sought is an exact match for one of the specifications, that
1216 specification is used.</li>
1217 <li>If no match is found, and the type sought is an integer type, then the
1218 smallest integer type that is larger than the bitwidth of the sought type is
1219 used. If none of the specifications are larger than the bitwidth then the the
1220 largest integer type is used. For example, given the default specifications
1221 above, the i7 type will use the alignment of i8 (next largest) while both
1222 i65 and i256 will use the alignment of i64 (largest specified).</li>
1223 <li>If no match is found, and the type sought is a vector type, then the
1224 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001225 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1226 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001227</ol>
1228</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001229
Chris Lattner00950542001-06-06 20:29:01 +00001230<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001231<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1232<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001233
Misha Brukman9d0919f2003-11-08 01:05:38 +00001234<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001235
Misha Brukman9d0919f2003-11-08 01:05:38 +00001236<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001237intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001238optimizations to be performed on the intermediate representation directly,
1239without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001240extra analyses on the side before the transformation. A strong type
1241system makes it easier to read the generated code and enables novel
1242analyses and transformations that are not feasible to perform on normal
1243three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001244
1245</div>
1246
Chris Lattner00950542001-06-06 20:29:01 +00001247<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001248<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001249Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001250<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001251<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001252classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001253
1254<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001255 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001256 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001257 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001258 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001259 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001260 </tr>
1261 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001262 <td><a href="#t_floating">floating point</a></td>
1263 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001264 </tr>
1265 <tr>
1266 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001267 <td><a href="#t_integer">integer</a>,
1268 <a href="#t_floating">floating point</a>,
1269 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001270 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001271 <a href="#t_struct">structure</a>,
1272 <a href="#t_array">array</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001273 <a href="#t_label">label</a>,
1274 <a href="#t_metadata">metadata</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001275 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001276 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001277 <tr>
1278 <td><a href="#t_primitive">primitive</a></td>
1279 <td><a href="#t_label">label</a>,
1280 <a href="#t_void">void</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001281 <a href="#t_floating">floating point</a>,
1282 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001283 </tr>
1284 <tr>
1285 <td><a href="#t_derived">derived</a></td>
1286 <td><a href="#t_integer">integer</a>,
1287 <a href="#t_array">array</a>,
1288 <a href="#t_function">function</a>,
1289 <a href="#t_pointer">pointer</a>,
1290 <a href="#t_struct">structure</a>,
1291 <a href="#t_pstruct">packed structure</a>,
1292 <a href="#t_vector">vector</a>,
1293 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001294 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001295 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001296 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001297</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001298
Chris Lattner261efe92003-11-25 01:02:51 +00001299<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1300most important. Values of these types are the only ones which can be
1301produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001302instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001303</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001304
Chris Lattner00950542001-06-06 20:29:01 +00001305<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001306<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001307
Chris Lattner4f69f462008-01-04 04:32:38 +00001308<div class="doc_text">
1309<p>The primitive types are the fundamental building blocks of the LLVM
1310system.</p>
1311
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001312</div>
1313
Chris Lattner4f69f462008-01-04 04:32:38 +00001314<!-- _______________________________________________________________________ -->
1315<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1316
1317<div class="doc_text">
1318 <table>
1319 <tbody>
1320 <tr><th>Type</th><th>Description</th></tr>
1321 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1322 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1323 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1324 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1325 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1326 </tbody>
1327 </table>
1328</div>
1329
1330<!-- _______________________________________________________________________ -->
1331<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1332
1333<div class="doc_text">
1334<h5>Overview:</h5>
1335<p>The void type does not represent any value and has no size.</p>
1336
1337<h5>Syntax:</h5>
1338
1339<pre>
1340 void
1341</pre>
1342</div>
1343
1344<!-- _______________________________________________________________________ -->
1345<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1346
1347<div class="doc_text">
1348<h5>Overview:</h5>
1349<p>The label type represents code labels.</p>
1350
1351<h5>Syntax:</h5>
1352
1353<pre>
1354 label
1355</pre>
1356</div>
1357
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001358<!-- _______________________________________________________________________ -->
1359<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1360
1361<div class="doc_text">
1362<h5>Overview:</h5>
1363<p>The metadata type represents embedded metadata. The only derived type that
1364may contain metadata is <tt>metadata*</tt> or a function type that returns or
1365takes metadata typed parameters, but not pointer to metadata types.</p>
1366
1367<h5>Syntax:</h5>
1368
1369<pre>
1370 metadata
1371</pre>
1372</div>
1373
Chris Lattner4f69f462008-01-04 04:32:38 +00001374
1375<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001376<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001377
Misha Brukman9d0919f2003-11-08 01:05:38 +00001378<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001379
Chris Lattner261efe92003-11-25 01:02:51 +00001380<p>The real power in LLVM comes from the derived types in the system.
1381This is what allows a programmer to represent arrays, functions,
1382pointers, and other useful types. Note that these derived types may be
1383recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001384
Misha Brukman9d0919f2003-11-08 01:05:38 +00001385</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001386
Chris Lattner00950542001-06-06 20:29:01 +00001387<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001388<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1389
1390<div class="doc_text">
1391
1392<h5>Overview:</h5>
1393<p>The integer type is a very simple derived type that simply specifies an
1394arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13952^23-1 (about 8 million) can be specified.</p>
1396
1397<h5>Syntax:</h5>
1398
1399<pre>
1400 iN
1401</pre>
1402
1403<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1404value.</p>
1405
1406<h5>Examples:</h5>
1407<table class="layout">
Nick Lewycky86c48642009-05-24 02:46:06 +00001408 <tr class="layout">
1409 <td class="left"><tt>i1</tt></td>
1410 <td class="left">a single-bit integer.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001411 </tr>
Nick Lewycky86c48642009-05-24 02:46:06 +00001412 <tr class="layout">
1413 <td class="left"><tt>i32</tt></td>
1414 <td class="left">a 32-bit integer.</td>
1415 </tr>
1416 <tr class="layout">
1417 <td class="left"><tt>i1942652</tt></td>
1418 <td class="left">a really big integer of over 1 million bits.</td>
1419 </tr>
Reid Spencer2b916312007-05-16 18:44:01 +00001420</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001421
1422<p>Note that the code generator does not yet support large integer types
1423to be used as function return types. The specific limit on how large a
1424return type the code generator can currently handle is target-dependent;
1425currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1426targets.</p>
1427
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001428</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001429
1430<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001431<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001432
Misha Brukman9d0919f2003-11-08 01:05:38 +00001433<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001434
Chris Lattner00950542001-06-06 20:29:01 +00001435<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001436
Misha Brukman9d0919f2003-11-08 01:05:38 +00001437<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001438sequentially in memory. The array type requires a size (number of
1439elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001440
Chris Lattner7faa8832002-04-14 06:13:44 +00001441<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001442
1443<pre>
1444 [&lt;# elements&gt; x &lt;elementtype&gt;]
1445</pre>
1446
John Criswelle4c57cc2005-05-12 16:52:32 +00001447<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001448be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001449
Chris Lattner7faa8832002-04-14 06:13:44 +00001450<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001451<table class="layout">
1452 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001453 <td class="left"><tt>[40 x i32]</tt></td>
1454 <td class="left">Array of 40 32-bit integer values.</td>
1455 </tr>
1456 <tr class="layout">
1457 <td class="left"><tt>[41 x i32]</tt></td>
1458 <td class="left">Array of 41 32-bit integer values.</td>
1459 </tr>
1460 <tr class="layout">
1461 <td class="left"><tt>[4 x i8]</tt></td>
1462 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001463 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001464</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001465<p>Here are some examples of multidimensional arrays:</p>
1466<table class="layout">
1467 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001468 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1469 <td class="left">3x4 array of 32-bit integer values.</td>
1470 </tr>
1471 <tr class="layout">
1472 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1473 <td class="left">12x10 array of single precision floating point values.</td>
1474 </tr>
1475 <tr class="layout">
1476 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1477 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001478 </tr>
1479</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001480
John Criswell0ec250c2005-10-24 16:17:18 +00001481<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1482length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001483LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1484As a special case, however, zero length arrays are recognized to be variable
1485length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001486type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001487
Dan Gohmand8791e52009-01-24 15:58:40 +00001488<p>Note that the code generator does not yet support large aggregate types
1489to be used as function return types. The specific limit on how large an
1490aggregate return type the code generator can currently handle is
1491target-dependent, and also dependent on the aggregate element types.</p>
1492
Misha Brukman9d0919f2003-11-08 01:05:38 +00001493</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001494
Chris Lattner00950542001-06-06 20:29:01 +00001495<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001496<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001497<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001498
Chris Lattner00950542001-06-06 20:29:01 +00001499<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001500
Chris Lattner261efe92003-11-25 01:02:51 +00001501<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001502consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001503return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001504If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001505class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001506
Chris Lattner00950542001-06-06 20:29:01 +00001507<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001508
1509<pre>
1510 &lt;returntype list&gt; (&lt;parameter list&gt;)
1511</pre>
1512
John Criswell0ec250c2005-10-24 16:17:18 +00001513<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001514specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001515which indicates that the function takes a variable number of arguments.
1516Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001517 href="#int_varargs">variable argument handling intrinsic</a> functions.
1518'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1519<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001520
Chris Lattner00950542001-06-06 20:29:01 +00001521<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001522<table class="layout">
1523 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001524 <td class="left"><tt>i32 (i32)</tt></td>
1525 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001526 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001527 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001528 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001529 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001530 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1531 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001532 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001533 <tt>float</tt>.
1534 </td>
1535 </tr><tr class="layout">
1536 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1537 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001538 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001539 which returns an integer. This is the signature for <tt>printf</tt> in
1540 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001541 </td>
Devang Patela582f402008-03-24 05:35:41 +00001542 </tr><tr class="layout">
1543 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001544 <td class="left">A function taking an <tt>i32</tt>, returning two
1545 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001546 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001547 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001548</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001549
Misha Brukman9d0919f2003-11-08 01:05:38 +00001550</div>
Chris Lattner00950542001-06-06 20:29:01 +00001551<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001552<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001553<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001554<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001555<p>The structure type is used to represent a collection of data members
1556together in memory. The packing of the field types is defined to match
1557the ABI of the underlying processor. The elements of a structure may
1558be any type that has a size.</p>
1559<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1560and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1561field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1562instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001563<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001564<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001565<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001566<table class="layout">
1567 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001568 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1569 <td class="left">A triple of three <tt>i32</tt> values</td>
1570 </tr><tr class="layout">
1571 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1572 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1573 second element is a <a href="#t_pointer">pointer</a> to a
1574 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1575 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001576 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001577</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001578
1579<p>Note that the code generator does not yet support large aggregate types
1580to be used as function return types. The specific limit on how large an
1581aggregate return type the code generator can currently handle is
1582target-dependent, and also dependent on the aggregate element types.</p>
1583
Misha Brukman9d0919f2003-11-08 01:05:38 +00001584</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001585
Chris Lattner00950542001-06-06 20:29:01 +00001586<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001587<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1588</div>
1589<div class="doc_text">
1590<h5>Overview:</h5>
1591<p>The packed structure type is used to represent a collection of data members
1592together in memory. There is no padding between fields. Further, the alignment
1593of a packed structure is 1 byte. The elements of a packed structure may
1594be any type that has a size.</p>
1595<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1596and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1597field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1598instruction.</p>
1599<h5>Syntax:</h5>
1600<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1601<h5>Examples:</h5>
1602<table class="layout">
1603 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001604 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1605 <td class="left">A triple of three <tt>i32</tt> values</td>
1606 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001607 <td class="left">
1608<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001609 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1610 second element is a <a href="#t_pointer">pointer</a> to a
1611 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1612 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001613 </tr>
1614</table>
1615</div>
1616
1617<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001618<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001619<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001620<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001621<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001622reference to another object, which must live in memory. Pointer types may have
1623an optional address space attribute defining the target-specific numbered
1624address space where the pointed-to object resides. The default address space is
1625zero.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001626
1627<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
Chris Lattnere220e8c2009-02-08 22:21:28 +00001628it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001629
Chris Lattner7faa8832002-04-14 06:13:44 +00001630<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001631<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001632<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001633<table class="layout">
1634 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001635 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001636 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1637 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1638 </tr>
1639 <tr class="layout">
1640 <td class="left"><tt>i32 (i32 *) *</tt></td>
1641 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001642 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001643 <tt>i32</tt>.</td>
1644 </tr>
1645 <tr class="layout">
1646 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1647 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1648 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001649 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001650</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001651</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001652
Chris Lattnera58561b2004-08-12 19:12:28 +00001653<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001654<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001655<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001656
Chris Lattnera58561b2004-08-12 19:12:28 +00001657<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001658
Reid Spencer485bad12007-02-15 03:07:05 +00001659<p>A vector type is a simple derived type that represents a vector
1660of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001661are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001662A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001663elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001664of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001665considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001666
Chris Lattnera58561b2004-08-12 19:12:28 +00001667<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001668
1669<pre>
1670 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1671</pre>
1672
John Criswellc1f786c2005-05-13 22:25:59 +00001673<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001674be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001675
Chris Lattnera58561b2004-08-12 19:12:28 +00001676<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001677
Reid Spencerd3f876c2004-11-01 08:19:36 +00001678<table class="layout">
1679 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001680 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1681 <td class="left">Vector of 4 32-bit integer values.</td>
1682 </tr>
1683 <tr class="layout">
1684 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1685 <td class="left">Vector of 8 32-bit floating-point values.</td>
1686 </tr>
1687 <tr class="layout">
1688 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1689 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001690 </tr>
1691</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001692
1693<p>Note that the code generator does not yet support large vector types
1694to be used as function return types. The specific limit on how large a
1695vector return type codegen can currently handle is target-dependent;
1696currently it's often a few times longer than a hardware vector register.</p>
1697
Misha Brukman9d0919f2003-11-08 01:05:38 +00001698</div>
1699
Chris Lattner69c11bb2005-04-25 17:34:15 +00001700<!-- _______________________________________________________________________ -->
1701<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1702<div class="doc_text">
1703
1704<h5>Overview:</h5>
1705
1706<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001707corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001708In LLVM, opaque types can eventually be resolved to any type (not just a
1709structure type).</p>
1710
1711<h5>Syntax:</h5>
1712
1713<pre>
1714 opaque
1715</pre>
1716
1717<h5>Examples:</h5>
1718
1719<table class="layout">
1720 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001721 <td class="left"><tt>opaque</tt></td>
1722 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001723 </tr>
1724</table>
1725</div>
1726
Chris Lattner242d61d2009-02-02 07:32:36 +00001727<!-- ======================================================================= -->
1728<div class="doc_subsection">
1729 <a name="t_uprefs">Type Up-references</a>
1730</div>
1731
1732<div class="doc_text">
1733<h5>Overview:</h5>
1734<p>
1735An "up reference" allows you to refer to a lexically enclosing type without
1736requiring it to have a name. For instance, a structure declaration may contain a
1737pointer to any of the types it is lexically a member of. Example of up
1738references (with their equivalent as named type declarations) include:</p>
1739
1740<pre>
Chris Lattner3060f5b2009-02-09 10:00:56 +00001741 { \2 * } %x = type { %x* }
Chris Lattner242d61d2009-02-02 07:32:36 +00001742 { \2 }* %y = type { %y }*
1743 \1* %z = type %z*
1744</pre>
1745
1746<p>
1747An up reference is needed by the asmprinter for printing out cyclic types when
1748there is no declared name for a type in the cycle. Because the asmprinter does
1749not want to print out an infinite type string, it needs a syntax to handle
1750recursive types that have no names (all names are optional in llvm IR).
1751</p>
1752
1753<h5>Syntax:</h5>
1754<pre>
1755 \&lt;level&gt;
1756</pre>
1757
1758<p>
1759The level is the count of the lexical type that is being referred to.
1760</p>
1761
1762<h5>Examples:</h5>
1763
1764<table class="layout">
1765 <tr class="layout">
1766 <td class="left"><tt>\1*</tt></td>
1767 <td class="left">Self-referential pointer.</td>
1768 </tr>
1769 <tr class="layout">
1770 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1771 <td class="left">Recursive structure where the upref refers to the out-most
1772 structure.</td>
1773 </tr>
1774</table>
1775</div>
1776
Chris Lattner69c11bb2005-04-25 17:34:15 +00001777
Chris Lattnerc3f59762004-12-09 17:30:23 +00001778<!-- *********************************************************************** -->
1779<div class="doc_section"> <a name="constants">Constants</a> </div>
1780<!-- *********************************************************************** -->
1781
1782<div class="doc_text">
1783
1784<p>LLVM has several different basic types of constants. This section describes
1785them all and their syntax.</p>
1786
1787</div>
1788
1789<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001790<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001791
1792<div class="doc_text">
1793
1794<dl>
1795 <dt><b>Boolean constants</b></dt>
1796
1797 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001798 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001799 </dd>
1800
1801 <dt><b>Integer constants</b></dt>
1802
Reid Spencercc16dc32004-12-09 18:02:53 +00001803 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001804 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001805 integer types.
1806 </dd>
1807
1808 <dt><b>Floating point constants</b></dt>
1809
1810 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1811 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001812 notation (see below). The assembler requires the exact decimal value of
1813 a floating-point constant. For example, the assembler accepts 1.25 but
1814 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1815 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001816
1817 <dt><b>Null pointer constants</b></dt>
1818
John Criswell9e2485c2004-12-10 15:51:16 +00001819 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001820 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1821
1822</dl>
1823
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001824<p>The one non-intuitive notation for constants is the hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001825of floating point constants. For example, the form '<tt>double
18260x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
18274.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001828(and the only time that they are generated by the disassembler) is when a
1829floating point constant must be emitted but it cannot be represented as a
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001830decimal floating point number in a reasonable number of digits. For example,
1831NaN's, infinities, and other
Reid Spencercc16dc32004-12-09 18:02:53 +00001832special values are represented in their IEEE hexadecimal format so that
1833assembly and disassembly do not cause any bits to change in the constants.</p>
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001834<p>When using the hexadecimal form, constants of types float and double are
1835represented using the 16-digit form shown above (which matches the IEEE754
1836representation for double); float values must, however, be exactly representable
1837as IEE754 single precision.
1838Hexadecimal format is always used for long
1839double, and there are three forms of long double. The 80-bit
1840format used by x86 is represented as <tt>0xK</tt>
1841followed by 20 hexadecimal digits.
1842The 128-bit format used by PowerPC (two adjacent doubles) is represented
1843by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
1844format is represented
1845by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
1846target uses this format. Long doubles will only work if they match
1847the long double format on your target. All hexadecimal formats are big-endian
1848(sign bit at the left).</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001849</div>
1850
1851<!-- ======================================================================= -->
Chris Lattner70882792009-02-28 18:32:25 +00001852<div class="doc_subsection">
1853<a name="aggregateconstants"> <!-- old anchor -->
1854<a name="complexconstants">Complex Constants</a></a>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001855</div>
1856
1857<div class="doc_text">
Chris Lattner70882792009-02-28 18:32:25 +00001858<p>Complex constants are a (potentially recursive) combination of simple
1859constants and smaller complex constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001860
1861<dl>
1862 <dt><b>Structure constants</b></dt>
1863
1864 <dd>Structure constants are represented with notation similar to structure
1865 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001866 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1867 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001868 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001869 types of elements must match those specified by the type.
1870 </dd>
1871
1872 <dt><b>Array constants</b></dt>
1873
1874 <dd>Array constants are represented with notation similar to array type
1875 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001876 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001877 constants must have <a href="#t_array">array type</a>, and the number and
1878 types of elements must match those specified by the type.
1879 </dd>
1880
Reid Spencer485bad12007-02-15 03:07:05 +00001881 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001882
Reid Spencer485bad12007-02-15 03:07:05 +00001883 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001884 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001885 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001886 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001887 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001888 match those specified by the type.
1889 </dd>
1890
1891 <dt><b>Zero initialization</b></dt>
1892
1893 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1894 value to zero of <em>any</em> type, including scalar and aggregate types.
1895 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001896 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001897 initializers.
1898 </dd>
Nick Lewycky21cc4462009-04-04 07:22:01 +00001899
1900 <dt><b>Metadata node</b></dt>
1901
Nick Lewycky1e8c7a62009-05-30 16:08:30 +00001902 <dd>A metadata node is a structure-like constant with
1903 <a href="#t_metadata">metadata type</a>. For example:
1904 "<tt>metadata !{ i32 0, metadata !"test" }</tt>". Unlike other constants
1905 that are meant to be interpreted as part of the instruction stream, metadata
1906 is a place to attach additional information such as debug info.
Nick Lewycky21cc4462009-04-04 07:22:01 +00001907 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001908</dl>
1909
1910</div>
1911
1912<!-- ======================================================================= -->
1913<div class="doc_subsection">
1914 <a name="globalconstants">Global Variable and Function Addresses</a>
1915</div>
1916
1917<div class="doc_text">
1918
1919<p>The addresses of <a href="#globalvars">global variables</a> and <a
1920href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001921constants. These constants are explicitly referenced when the <a
1922href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001923href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1924file:</p>
1925
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001926<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001927<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001928@X = global i32 17
1929@Y = global i32 42
1930@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001931</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001932</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001933
1934</div>
1935
1936<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001937<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001938<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001939 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001940 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001941 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001942
Reid Spencer2dc45b82004-12-09 18:13:12 +00001943 <p>Undefined values indicate to the compiler that the program is well defined
1944 no matter what value is used, giving the compiler more freedom to optimize.
1945 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001946</div>
1947
1948<!-- ======================================================================= -->
1949<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1950</div>
1951
1952<div class="doc_text">
1953
1954<p>Constant expressions are used to allow expressions involving other constants
1955to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001956href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001957that does not have side effects (e.g. load and call are not supported). The
1958following is the syntax for constant expressions:</p>
1959
1960<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001961 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1962 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001963 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001964
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001965 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1966 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001967 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001968
1969 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1970 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001971 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001972
1973 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1974 <dd>Truncate a floating point constant to another floating point type. The
1975 size of CST must be larger than the size of TYPE. Both types must be
1976 floating point.</dd>
1977
1978 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1979 <dd>Floating point extend a constant to another type. The size of CST must be
1980 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1981
Reid Spencer1539a1c2007-07-31 14:40:14 +00001982 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001983 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001984 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1985 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1986 of the same number of elements. If the value won't fit in the integer type,
1987 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001988
Reid Spencerd4448792006-11-09 23:03:26 +00001989 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001990 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001991 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1992 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1993 of the same number of elements. If the value won't fit in the integer type,
1994 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001995
Reid Spencerd4448792006-11-09 23:03:26 +00001996 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001997 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001998 constant. TYPE must be a scalar or vector floating point type. CST must be of
1999 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
2000 of the same number of elements. If the value won't fit in the floating point
2001 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002002
Reid Spencerd4448792006-11-09 23:03:26 +00002003 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002004 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00002005 constant. TYPE must be a scalar or vector floating point type. CST must be of
2006 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
2007 of the same number of elements. If the value won't fit in the floating point
2008 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002009
Reid Spencer5c0ef472006-11-11 23:08:07 +00002010 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2011 <dd>Convert a pointer typed constant to the corresponding integer constant
2012 TYPE must be an integer type. CST must be of pointer type. The CST value is
2013 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
2014
2015 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
2016 <dd>Convert a integer constant to a pointer constant. TYPE must be a
2017 pointer type. CST must be of integer type. The CST value is zero extended,
2018 truncated, or unchanged to make it fit in a pointer size. This one is
2019 <i>really</i> dangerous!</dd>
2020
2021 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner03bbad62009-02-28 18:27:03 +00002022 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2023 are the same as those for the <a href="#i_bitcast">bitcast
2024 instruction</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002025
2026 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
2027
2028 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2029 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2030 instruction, the index list may have zero or more indexes, which are required
2031 to make sense for the type of "CSTPTR".</dd>
2032
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002033 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
2034
2035 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00002036 constants.</dd>
2037
2038 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2039 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2040
2041 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2042 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002043
2044 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
2045
2046 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00002047 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002048
Robert Bocchino05ccd702006-01-15 20:48:27 +00002049 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
2050
2051 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00002052 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00002053
Chris Lattnerc1989542006-04-08 00:13:41 +00002054
2055 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
2056
2057 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00002058 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002059
Chris Lattnerc3f59762004-12-09 17:30:23 +00002060 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
2061
Reid Spencer2dc45b82004-12-09 18:13:12 +00002062 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2063 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00002064 binary</a> operations. The constraints on operands are the same as those for
2065 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00002066 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002067</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002068</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00002069
Nick Lewycky21cc4462009-04-04 07:22:01 +00002070<!-- ======================================================================= -->
2071<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2072</div>
2073
2074<div class="doc_text">
2075
2076<p>Embedded metadata provides a way to attach arbitrary data to the
2077instruction stream without affecting the behaviour of the program. There are
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002078two metadata primitives, strings and nodes. All metadata has the
2079<tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2080point ('<tt>!</tt>').
Nick Lewycky21cc4462009-04-04 07:22:01 +00002081</p>
2082
2083<p>A metadata string is a string surrounded by double quotes. It can contain
2084any character by escaping non-printable characters with "\xx" where "xx" is
2085the two digit hex code. For example: "<tt>!"test\00"</tt>".
2086</p>
2087
2088<p>Metadata nodes are represented with notation similar to structure constants
2089(a comma separated list of elements, surrounded by braces and preceeded by an
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002090exclamation point). For example: "<tt>!{ metadata !"test\00", i32 10}</tt>".
Nick Lewycky21cc4462009-04-04 07:22:01 +00002091</p>
2092
Nick Lewyckycb337992009-05-10 20:57:05 +00002093<p>A metadata node will attempt to track changes to the values it holds. In
2094the event that a value is deleted, it will be replaced with a typeless
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002095"<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
Nick Lewyckycb337992009-05-10 20:57:05 +00002096
Nick Lewycky21cc4462009-04-04 07:22:01 +00002097<p>Optimizations may rely on metadata to provide additional information about
2098the program that isn't available in the instructions, or that isn't easily
2099computable. Similarly, the code generator may expect a certain metadata format
2100to be used to express debugging information.</p>
2101</div>
2102
Chris Lattner00950542001-06-06 20:29:01 +00002103<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00002104<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2105<!-- *********************************************************************** -->
2106
2107<!-- ======================================================================= -->
2108<div class="doc_subsection">
2109<a name="inlineasm">Inline Assembler Expressions</a>
2110</div>
2111
2112<div class="doc_text">
2113
2114<p>
2115LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2116Module-Level Inline Assembly</a>) through the use of a special value. This
2117value represents the inline assembler as a string (containing the instructions
2118to emit), a list of operand constraints (stored as a string), and a flag that
2119indicates whether or not the inline asm expression has side effects. An example
2120inline assembler expression is:
2121</p>
2122
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002123<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002124<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002125i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002126</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002127</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002128
2129<p>
2130Inline assembler expressions may <b>only</b> be used as the callee operand of
2131a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2132</p>
2133
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002134<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002135<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002136%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002137</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002138</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002139
2140<p>
2141Inline asms with side effects not visible in the constraint list must be marked
2142as having side effects. This is done through the use of the
2143'<tt>sideeffect</tt>' keyword, like so:
2144</p>
2145
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002146<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002147<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002148call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002149</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002150</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002151
2152<p>TODO: The format of the asm and constraints string still need to be
2153documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00002154need to be documented). This is probably best done by reference to another
2155document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00002156</p>
2157
2158</div>
2159
2160<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00002161<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2162<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002163
Misha Brukman9d0919f2003-11-08 01:05:38 +00002164<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002165
Chris Lattner261efe92003-11-25 01:02:51 +00002166<p>The LLVM instruction set consists of several different
2167classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00002168instructions</a>, <a href="#binaryops">binary instructions</a>,
2169<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00002170 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2171instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002172
Misha Brukman9d0919f2003-11-08 01:05:38 +00002173</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002174
Chris Lattner00950542001-06-06 20:29:01 +00002175<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002176<div class="doc_subsection"> <a name="terminators">Terminator
2177Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002178
Misha Brukman9d0919f2003-11-08 01:05:38 +00002179<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002180
Chris Lattner261efe92003-11-25 01:02:51 +00002181<p>As mentioned <a href="#functionstructure">previously</a>, every
2182basic block in a program ends with a "Terminator" instruction, which
2183indicates which block should be executed after the current block is
2184finished. These terminator instructions typically yield a '<tt>void</tt>'
2185value: they produce control flow, not values (the one exception being
2186the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00002187<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00002188 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2189instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00002190the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2191 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2192 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002193
Misha Brukman9d0919f2003-11-08 01:05:38 +00002194</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002195
Chris Lattner00950542001-06-06 20:29:01 +00002196<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002197<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2198Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002199<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002200<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002201<pre>
2202 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002203 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002204</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002205
Chris Lattner00950542001-06-06 20:29:01 +00002206<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002207
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002208<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2209optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00002210<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002211returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00002212control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002213
Chris Lattner00950542001-06-06 20:29:01 +00002214<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002215
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002216<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2217the return value. The type of the return value must be a
2218'<a href="#t_firstclass">first class</a>' type.</p>
2219
2220<p>A function is not <a href="#wellformed">well formed</a> if
2221it it has a non-void return type and contains a '<tt>ret</tt>'
2222instruction with no return value or a return value with a type that
2223does not match its type, or if it has a void return type and contains
2224a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002225
Chris Lattner00950542001-06-06 20:29:01 +00002226<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002227
Chris Lattner261efe92003-11-25 01:02:51 +00002228<p>When the '<tt>ret</tt>' instruction is executed, control flow
2229returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00002230 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00002231the instruction after the call. If the caller was an "<a
2232 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00002233at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00002234returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00002235return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002236
Chris Lattner00950542001-06-06 20:29:01 +00002237<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002238
2239<pre>
2240 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002241 ret void <i>; Return from a void function</i>
Bill Wendling0a4bbbf2009-02-28 22:12:54 +00002242 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002243</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002244
Dan Gohmand8791e52009-01-24 15:58:40 +00002245<p>Note that the code generator does not yet fully support large
2246 return values. The specific sizes that are currently supported are
2247 dependent on the target. For integers, on 32-bit targets the limit
2248 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2249 For aggregate types, the current limits are dependent on the element
2250 types; for example targets are often limited to 2 total integer
2251 elements and 2 total floating-point elements.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002252
Misha Brukman9d0919f2003-11-08 01:05:38 +00002253</div>
Chris Lattner00950542001-06-06 20:29:01 +00002254<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002255<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002256<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002257<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002258<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002259</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002260<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002261<p>The '<tt>br</tt>' instruction is used to cause control flow to
2262transfer to a different basic block in the current function. There are
2263two forms of this instruction, corresponding to a conditional branch
2264and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002265<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002266<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002267single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002268unconditional form of the '<tt>br</tt>' instruction takes a single
2269'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002270<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002271<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002272argument is evaluated. If the value is <tt>true</tt>, control flows
2273to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2274control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002275<h5>Example:</h5>
Chris Lattner60150a32009-05-09 18:11:50 +00002276<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002277 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002278</div>
Chris Lattner00950542001-06-06 20:29:01 +00002279<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002280<div class="doc_subsubsection">
2281 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2282</div>
2283
Misha Brukman9d0919f2003-11-08 01:05:38 +00002284<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002285<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002286
2287<pre>
2288 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2289</pre>
2290
Chris Lattner00950542001-06-06 20:29:01 +00002291<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002292
2293<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2294several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002295instruction, allowing a branch to occur to one of many possible
2296destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002297
2298
Chris Lattner00950542001-06-06 20:29:01 +00002299<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002300
2301<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2302comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2303an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2304table is not allowed to contain duplicate constant entries.</p>
2305
Chris Lattner00950542001-06-06 20:29:01 +00002306<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002307
Chris Lattner261efe92003-11-25 01:02:51 +00002308<p>The <tt>switch</tt> instruction specifies a table of values and
2309destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002310table is searched for the given value. If the value is found, control flow is
2311transfered to the corresponding destination; otherwise, control flow is
2312transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002313
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002314<h5>Implementation:</h5>
2315
2316<p>Depending on properties of the target machine and the particular
2317<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002318ways. For example, it could be generated as a series of chained conditional
2319branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002320
2321<h5>Example:</h5>
2322
2323<pre>
2324 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002325 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002326 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002327
2328 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002329 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002330
2331 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002332 switch i32 %val, label %otherwise [ i32 0, label %onzero
2333 i32 1, label %onone
2334 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002335</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002336</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002337
Chris Lattner00950542001-06-06 20:29:01 +00002338<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002339<div class="doc_subsubsection">
2340 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2341</div>
2342
Misha Brukman9d0919f2003-11-08 01:05:38 +00002343<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002344
Chris Lattner00950542001-06-06 20:29:01 +00002345<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002346
2347<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002348 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002349 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002350</pre>
2351
Chris Lattner6536cfe2002-05-06 22:08:29 +00002352<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002353
2354<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2355function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002356'<tt>normal</tt>' label or the
2357'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002358"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2359"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002360href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002361continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002362
Chris Lattner00950542001-06-06 20:29:01 +00002363<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002364
Misha Brukman9d0919f2003-11-08 01:05:38 +00002365<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002366
Chris Lattner00950542001-06-06 20:29:01 +00002367<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002368 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002369 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002370 convention</a> the call should use. If none is specified, the call defaults
2371 to using C calling conventions.
2372 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002373
2374 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2375 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2376 and '<tt>inreg</tt>' attributes are valid here.</li>
2377
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002378 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2379 function value being invoked. In most cases, this is a direct function
2380 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2381 an arbitrary pointer to function value.
2382 </li>
2383
2384 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2385 function to be invoked. </li>
2386
2387 <li>'<tt>function args</tt>': argument list whose types match the function
2388 signature argument types. If the function signature indicates the function
2389 accepts a variable number of arguments, the extra arguments can be
2390 specified. </li>
2391
2392 <li>'<tt>normal label</tt>': the label reached when the called function
2393 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2394
2395 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2396 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2397
Devang Patel307e8ab2008-10-07 17:48:33 +00002398 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002399 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2400 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002401</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002402
Chris Lattner00950542001-06-06 20:29:01 +00002403<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002404
Misha Brukman9d0919f2003-11-08 01:05:38 +00002405<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002406href="#i_call">call</a></tt>' instruction in most regards. The primary
2407difference is that it establishes an association with a label, which is used by
2408the runtime library to unwind the stack.</p>
2409
2410<p>This instruction is used in languages with destructors to ensure that proper
2411cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2412exception. Additionally, this is important for implementation of
2413'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2414
Jay Foadd2449092009-06-03 10:20:10 +00002415<p>For the purposes of the SSA form, the definition of the value
2416returned by the '<tt>invoke</tt>' instruction is deemed to occur on
2417the edge from the current block to the "normal" label. If the callee
2418unwinds then no return value is available.</p>
Dan Gohmanf96a4992009-05-22 21:47:08 +00002419
Chris Lattner00950542001-06-06 20:29:01 +00002420<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002421<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002422 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002423 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002424 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002425 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002426</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002427</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002428
2429
Chris Lattner27f71f22003-09-03 00:41:47 +00002430<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002431
Chris Lattner261efe92003-11-25 01:02:51 +00002432<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2433Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002434
Misha Brukman9d0919f2003-11-08 01:05:38 +00002435<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002436
Chris Lattner27f71f22003-09-03 00:41:47 +00002437<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002438<pre>
2439 unwind
2440</pre>
2441
Chris Lattner27f71f22003-09-03 00:41:47 +00002442<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002443
2444<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2445at the first callee in the dynamic call stack which used an <a
2446href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2447primarily used to implement exception handling.</p>
2448
Chris Lattner27f71f22003-09-03 00:41:47 +00002449<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002450
Chris Lattner72ed2002008-04-19 21:01:16 +00002451<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002452immediately halt. The dynamic call stack is then searched for the first <a
2453href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2454execution continues at the "exceptional" destination block specified by the
2455<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2456dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002457</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002458
2459<!-- _______________________________________________________________________ -->
2460
2461<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2462Instruction</a> </div>
2463
2464<div class="doc_text">
2465
2466<h5>Syntax:</h5>
2467<pre>
2468 unreachable
2469</pre>
2470
2471<h5>Overview:</h5>
2472
2473<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2474instruction is used to inform the optimizer that a particular portion of the
2475code is not reachable. This can be used to indicate that the code after a
2476no-return function cannot be reached, and other facts.</p>
2477
2478<h5>Semantics:</h5>
2479
2480<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2481</div>
2482
2483
2484
Chris Lattner00950542001-06-06 20:29:01 +00002485<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002486<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002487<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002488<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002489program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002490produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002491multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002492The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002493<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002494</div>
Chris Lattner00950542001-06-06 20:29:01 +00002495<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002496<div class="doc_subsubsection">
2497 <a name="i_add">'<tt>add</tt>' Instruction</a>
2498</div>
2499
Misha Brukman9d0919f2003-11-08 01:05:38 +00002500<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002501
Chris Lattner00950542001-06-06 20:29:01 +00002502<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002503
2504<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002505 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002506</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002507
Chris Lattner00950542001-06-06 20:29:01 +00002508<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002509
Misha Brukman9d0919f2003-11-08 01:05:38 +00002510<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002511
Chris Lattner00950542001-06-06 20:29:01 +00002512<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002513
2514<p>The two arguments to the '<tt>add</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002515 href="#t_integer">integer</a> or
2516 <a href="#t_vector">vector</a> of integer values. Both arguments must
2517 have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002518
Chris Lattner00950542001-06-06 20:29:01 +00002519<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002520
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002521<p>The value produced is the integer sum of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002522
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002523<p>If the sum has unsigned overflow, the result returned is the
Chris Lattner5ec89832008-01-28 00:36:27 +00002524mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2525the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002526
Chris Lattner5ec89832008-01-28 00:36:27 +00002527<p>Because LLVM integers use a two's complement representation, this
2528instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002529
Chris Lattner00950542001-06-06 20:29:01 +00002530<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002531
2532<pre>
2533 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002534</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002535</div>
Chris Lattner00950542001-06-06 20:29:01 +00002536<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002537<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002538 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
2539</div>
2540
2541<div class="doc_text">
2542
2543<h5>Syntax:</h5>
2544
2545<pre>
2546 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2547</pre>
2548
2549<h5>Overview:</h5>
2550
2551<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
2552
2553<h5>Arguments:</h5>
2554
2555<p>The two arguments to the '<tt>fadd</tt>' instruction must be
2556<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2557floating point values. Both arguments must have identical types.</p>
2558
2559<h5>Semantics:</h5>
2560
2561<p>The value produced is the floating point sum of the two operands.</p>
2562
2563<h5>Example:</h5>
2564
2565<pre>
2566 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
2567</pre>
2568</div>
2569<!-- _______________________________________________________________________ -->
2570<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00002571 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2572</div>
2573
Misha Brukman9d0919f2003-11-08 01:05:38 +00002574<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002575
Chris Lattner00950542001-06-06 20:29:01 +00002576<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002577
2578<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002579 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002580</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002581
Chris Lattner00950542001-06-06 20:29:01 +00002582<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002583
Misha Brukman9d0919f2003-11-08 01:05:38 +00002584<p>The '<tt>sub</tt>' instruction returns the difference of its two
2585operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002586
2587<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2588'<tt>neg</tt>' instruction present in most other intermediate
2589representations.</p>
2590
Chris Lattner00950542001-06-06 20:29:01 +00002591<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002592
2593<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002594 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2595 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002596
Chris Lattner00950542001-06-06 20:29:01 +00002597<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002598
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002599<p>The value produced is the integer difference of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002600
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002601<p>If the difference has unsigned overflow, the result returned is the
Chris Lattner5ec89832008-01-28 00:36:27 +00002602mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2603the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002604
Chris Lattner5ec89832008-01-28 00:36:27 +00002605<p>Because LLVM integers use a two's complement representation, this
2606instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002607
Chris Lattner00950542001-06-06 20:29:01 +00002608<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002609<pre>
2610 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002611 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002612</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002613</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002614
Chris Lattner00950542001-06-06 20:29:01 +00002615<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002616<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002617 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
2618</div>
2619
2620<div class="doc_text">
2621
2622<h5>Syntax:</h5>
2623
2624<pre>
2625 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2626</pre>
2627
2628<h5>Overview:</h5>
2629
2630<p>The '<tt>fsub</tt>' instruction returns the difference of its two
2631operands.</p>
2632
2633<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
2634'<tt>fneg</tt>' instruction present in most other intermediate
2635representations.</p>
2636
2637<h5>Arguments:</h5>
2638
2639<p>The two arguments to the '<tt>fsub</tt>' instruction must be <a
2640 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2641 of floating point values. Both arguments must have identical types.</p>
2642
2643<h5>Semantics:</h5>
2644
2645<p>The value produced is the floating point difference of the two operands.</p>
2646
2647<h5>Example:</h5>
2648<pre>
2649 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
2650 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
2651</pre>
2652</div>
2653
2654<!-- _______________________________________________________________________ -->
2655<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00002656 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2657</div>
2658
Misha Brukman9d0919f2003-11-08 01:05:38 +00002659<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002660
Chris Lattner00950542001-06-06 20:29:01 +00002661<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002662<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002663</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002664<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002665<p>The '<tt>mul</tt>' instruction returns the product of its two
2666operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002667
Chris Lattner00950542001-06-06 20:29:01 +00002668<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002669
2670<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002671href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2672values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002673
Chris Lattner00950542001-06-06 20:29:01 +00002674<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002675
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002676<p>The value produced is the integer product of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002677
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002678<p>If the result of the multiplication has unsigned overflow,
Chris Lattner5ec89832008-01-28 00:36:27 +00002679the result returned is the mathematical result modulo
26802<sup>n</sup>, where n is the bit width of the result.</p>
2681<p>Because LLVM integers use a two's complement representation, and the
2682result is the same width as the operands, this instruction returns the
2683correct result for both signed and unsigned integers. If a full product
2684(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2685should be sign-extended or zero-extended as appropriate to the
2686width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002687<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002688<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002689</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002690</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002691
Chris Lattner00950542001-06-06 20:29:01 +00002692<!-- _______________________________________________________________________ -->
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002693<div class="doc_subsubsection">
2694 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
2695</div>
2696
2697<div class="doc_text">
2698
2699<h5>Syntax:</h5>
2700<pre> &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2701</pre>
2702<h5>Overview:</h5>
2703<p>The '<tt>fmul</tt>' instruction returns the product of its two
2704operands.</p>
2705
2706<h5>Arguments:</h5>
2707
2708<p>The two arguments to the '<tt>fmul</tt>' instruction must be
2709<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2710of floating point values. Both arguments must have identical types.</p>
2711
2712<h5>Semantics:</h5>
2713
2714<p>The value produced is the floating point product of the two operands.</p>
2715
2716<h5>Example:</h5>
2717<pre> &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
2718</pre>
2719</div>
2720
2721<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002722<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2723</a></div>
2724<div class="doc_text">
2725<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002726<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002727</pre>
2728<h5>Overview:</h5>
2729<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2730operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002731
Reid Spencer1628cec2006-10-26 06:15:43 +00002732<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002733
Reid Spencer1628cec2006-10-26 06:15:43 +00002734<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002735<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2736values. Both arguments must have identical types.</p>
2737
Reid Spencer1628cec2006-10-26 06:15:43 +00002738<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002739
Chris Lattner5ec89832008-01-28 00:36:27 +00002740<p>The value produced is the unsigned integer quotient of the two operands.</p>
2741<p>Note that unsigned integer division and signed integer division are distinct
2742operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2743<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002744<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002745<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002746</pre>
2747</div>
2748<!-- _______________________________________________________________________ -->
2749<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2750</a> </div>
2751<div class="doc_text">
2752<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002753<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002754 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002755</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002756
Reid Spencer1628cec2006-10-26 06:15:43 +00002757<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002758
Reid Spencer1628cec2006-10-26 06:15:43 +00002759<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2760operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002761
Reid Spencer1628cec2006-10-26 06:15:43 +00002762<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002763
2764<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2765<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2766values. Both arguments must have identical types.</p>
2767
Reid Spencer1628cec2006-10-26 06:15:43 +00002768<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002769<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002770<p>Note that signed integer division and unsigned integer division are distinct
2771operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2772<p>Division by zero leads to undefined behavior. Overflow also leads to
2773undefined behavior; this is a rare case, but can occur, for example,
2774by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002775<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002776<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002777</pre>
2778</div>
2779<!-- _______________________________________________________________________ -->
2780<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002781Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002782<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002783<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002784<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002785 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002786</pre>
2787<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002788
Reid Spencer1628cec2006-10-26 06:15:43 +00002789<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002790operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002791
Chris Lattner261efe92003-11-25 01:02:51 +00002792<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002793
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002794<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002795<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2796of floating point values. Both arguments must have identical types.</p>
2797
Chris Lattner261efe92003-11-25 01:02:51 +00002798<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002799
Reid Spencer1628cec2006-10-26 06:15:43 +00002800<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002801
Chris Lattner261efe92003-11-25 01:02:51 +00002802<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002803
2804<pre>
2805 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002806</pre>
2807</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002808
Chris Lattner261efe92003-11-25 01:02:51 +00002809<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002810<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2811</div>
2812<div class="doc_text">
2813<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002814<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002815</pre>
2816<h5>Overview:</h5>
2817<p>The '<tt>urem</tt>' instruction returns the remainder from the
2818unsigned division of its two arguments.</p>
2819<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002820<p>The two arguments to the '<tt>urem</tt>' instruction must be
2821<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2822values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002823<h5>Semantics:</h5>
2824<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002825This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002826<p>Note that unsigned integer remainder and signed integer remainder are
2827distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2828<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002829<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002830<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002831</pre>
2832
2833</div>
2834<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002835<div class="doc_subsubsection">
2836 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2837</div>
2838
Chris Lattner261efe92003-11-25 01:02:51 +00002839<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002840
Chris Lattner261efe92003-11-25 01:02:51 +00002841<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002842
2843<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002844 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002845</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002846
Chris Lattner261efe92003-11-25 01:02:51 +00002847<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002848
Reid Spencer0a783f72006-11-02 01:53:59 +00002849<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002850signed division of its two operands. This instruction can also take
2851<a href="#t_vector">vector</a> versions of the values in which case
2852the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002853
Chris Lattner261efe92003-11-25 01:02:51 +00002854<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002855
Reid Spencer0a783f72006-11-02 01:53:59 +00002856<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002857<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2858values. Both arguments must have identical types.</p>
2859
Chris Lattner261efe92003-11-25 01:02:51 +00002860<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002861
Reid Spencer0a783f72006-11-02 01:53:59 +00002862<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002863has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2864operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002865a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002866 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002867Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002868please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002869Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002870<p>Note that signed integer remainder and unsigned integer remainder are
2871distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2872<p>Taking the remainder of a division by zero leads to undefined behavior.
2873Overflow also leads to undefined behavior; this is a rare case, but can occur,
2874for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2875(The remainder doesn't actually overflow, but this rule lets srem be
2876implemented using instructions that return both the result of the division
2877and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002878<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002879<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002880</pre>
2881
2882</div>
2883<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002884<div class="doc_subsubsection">
2885 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2886
Reid Spencer0a783f72006-11-02 01:53:59 +00002887<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002888
Reid Spencer0a783f72006-11-02 01:53:59 +00002889<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002890<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002891</pre>
2892<h5>Overview:</h5>
2893<p>The '<tt>frem</tt>' instruction returns the remainder from the
2894division of its two operands.</p>
2895<h5>Arguments:</h5>
2896<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002897<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2898of floating point values. Both arguments must have identical types.</p>
2899
Reid Spencer0a783f72006-11-02 01:53:59 +00002900<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002901
Chris Lattnera73afe02008-04-01 18:45:27 +00002902<p>This instruction returns the <i>remainder</i> of a division.
2903The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002904
Reid Spencer0a783f72006-11-02 01:53:59 +00002905<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002906
2907<pre>
2908 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002909</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002910</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002911
Reid Spencer8e11bf82007-02-02 13:57:07 +00002912<!-- ======================================================================= -->
2913<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2914Operations</a> </div>
2915<div class="doc_text">
2916<p>Bitwise binary operators are used to do various forms of
2917bit-twiddling in a program. They are generally very efficient
2918instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002919instructions. They require two operands of the same type, execute an operation on them,
2920and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002921</div>
2922
Reid Spencer569f2fa2007-01-31 21:39:12 +00002923<!-- _______________________________________________________________________ -->
2924<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2925Instruction</a> </div>
2926<div class="doc_text">
2927<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002928<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002929</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002930
Reid Spencer569f2fa2007-01-31 21:39:12 +00002931<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002932
Reid Spencer569f2fa2007-01-31 21:39:12 +00002933<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2934the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002935
Reid Spencer569f2fa2007-01-31 21:39:12 +00002936<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002937
Reid Spencer569f2fa2007-01-31 21:39:12 +00002938<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002939 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002940type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002941
Reid Spencer569f2fa2007-01-31 21:39:12 +00002942<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002943
Gabor Greiffb224a22008-08-07 21:46:00 +00002944<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2945where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang01f8d092008-12-10 08:55:09 +00002946equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2947If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2948corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002949
Reid Spencer569f2fa2007-01-31 21:39:12 +00002950<h5>Example:</h5><pre>
2951 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2952 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2953 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002954 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002955 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002956</pre>
2957</div>
2958<!-- _______________________________________________________________________ -->
2959<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2960Instruction</a> </div>
2961<div class="doc_text">
2962<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002963<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002964</pre>
2965
2966<h5>Overview:</h5>
2967<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002968operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002969
2970<h5>Arguments:</h5>
2971<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002972<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002973type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002974
2975<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002976
Reid Spencer569f2fa2007-01-31 21:39:12 +00002977<p>This instruction always performs a logical shift right operation. The most
2978significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002979shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang01f8d092008-12-10 08:55:09 +00002980the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2981vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2982amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002983
2984<h5>Example:</h5>
2985<pre>
2986 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2987 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2988 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2989 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002990 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002991 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002992</pre>
2993</div>
2994
Reid Spencer8e11bf82007-02-02 13:57:07 +00002995<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002996<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2997Instruction</a> </div>
2998<div class="doc_text">
2999
3000<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003001<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003002</pre>
3003
3004<h5>Overview:</h5>
3005<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003006operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003007
3008<h5>Arguments:</h5>
3009<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00003010<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00003011type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003012
3013<h5>Semantics:</h5>
3014<p>This instruction always performs an arithmetic shift right operation,
3015The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00003016of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang01f8d092008-12-10 08:55:09 +00003017larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
3018arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
3019corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003020
3021<h5>Example:</h5>
3022<pre>
3023 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3024 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3025 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3026 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003027 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003028 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003029</pre>
3030</div>
3031
Chris Lattner00950542001-06-06 20:29:01 +00003032<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003033<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3034Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00003035
Misha Brukman9d0919f2003-11-08 01:05:38 +00003036<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003037
Chris Lattner00950542001-06-06 20:29:01 +00003038<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003039
3040<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003041 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003042</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003043
Chris Lattner00950542001-06-06 20:29:01 +00003044<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003045
Chris Lattner261efe92003-11-25 01:02:51 +00003046<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
3047its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003048
Chris Lattner00950542001-06-06 20:29:01 +00003049<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003050
3051<p>The two arguments to the '<tt>and</tt>' instruction must be
3052<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3053values. Both arguments must have identical types.</p>
3054
Chris Lattner00950542001-06-06 20:29:01 +00003055<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003056<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003057<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003058<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003059<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00003060 <tbody>
3061 <tr>
3062 <td>In0</td>
3063 <td>In1</td>
3064 <td>Out</td>
3065 </tr>
3066 <tr>
3067 <td>0</td>
3068 <td>0</td>
3069 <td>0</td>
3070 </tr>
3071 <tr>
3072 <td>0</td>
3073 <td>1</td>
3074 <td>0</td>
3075 </tr>
3076 <tr>
3077 <td>1</td>
3078 <td>0</td>
3079 <td>0</td>
3080 </tr>
3081 <tr>
3082 <td>1</td>
3083 <td>1</td>
3084 <td>1</td>
3085 </tr>
3086 </tbody>
3087</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003088</div>
Chris Lattner00950542001-06-06 20:29:01 +00003089<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003090<pre>
3091 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003092 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3093 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00003094</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003095</div>
Chris Lattner00950542001-06-06 20:29:01 +00003096<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003097<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003098<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00003099<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003100<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003101</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00003102<h5>Overview:</h5>
3103<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
3104or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003105<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003106
3107<p>The two arguments to the '<tt>or</tt>' instruction must be
3108<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3109values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003110<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003111<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003112<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003113<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003114<table border="1" cellspacing="0" cellpadding="4">
3115 <tbody>
3116 <tr>
3117 <td>In0</td>
3118 <td>In1</td>
3119 <td>Out</td>
3120 </tr>
3121 <tr>
3122 <td>0</td>
3123 <td>0</td>
3124 <td>0</td>
3125 </tr>
3126 <tr>
3127 <td>0</td>
3128 <td>1</td>
3129 <td>1</td>
3130 </tr>
3131 <tr>
3132 <td>1</td>
3133 <td>0</td>
3134 <td>1</td>
3135 </tr>
3136 <tr>
3137 <td>1</td>
3138 <td>1</td>
3139 <td>1</td>
3140 </tr>
3141 </tbody>
3142</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003143</div>
Chris Lattner00950542001-06-06 20:29:01 +00003144<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003145<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
3146 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3147 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00003148</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003149</div>
Chris Lattner00950542001-06-06 20:29:01 +00003150<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003151<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3152Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003153<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00003154<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003155<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003156</pre>
Chris Lattner00950542001-06-06 20:29:01 +00003157<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003158<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
3159or of its two operands. The <tt>xor</tt> is used to implement the
3160"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003161<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003162<p>The two arguments to the '<tt>xor</tt>' instruction must be
3163<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3164values. Both arguments must have identical types.</p>
3165
Chris Lattner00950542001-06-06 20:29:01 +00003166<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003167
Misha Brukman9d0919f2003-11-08 01:05:38 +00003168<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003169<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003170<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003171<table border="1" cellspacing="0" cellpadding="4">
3172 <tbody>
3173 <tr>
3174 <td>In0</td>
3175 <td>In1</td>
3176 <td>Out</td>
3177 </tr>
3178 <tr>
3179 <td>0</td>
3180 <td>0</td>
3181 <td>0</td>
3182 </tr>
3183 <tr>
3184 <td>0</td>
3185 <td>1</td>
3186 <td>1</td>
3187 </tr>
3188 <tr>
3189 <td>1</td>
3190 <td>0</td>
3191 <td>1</td>
3192 </tr>
3193 <tr>
3194 <td>1</td>
3195 <td>1</td>
3196 <td>0</td>
3197 </tr>
3198 </tbody>
3199</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003200</div>
Chris Lattner261efe92003-11-25 01:02:51 +00003201<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00003202<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003203<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3204 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3205 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3206 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00003207</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003208</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003209
Chris Lattner00950542001-06-06 20:29:01 +00003210<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003211<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00003212 <a name="vectorops">Vector Operations</a>
3213</div>
3214
3215<div class="doc_text">
3216
3217<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003218target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00003219vector-specific operations needed to process vectors effectively. While LLVM
3220does directly support these vector operations, many sophisticated algorithms
3221will want to use target-specific intrinsics to take full advantage of a specific
3222target.</p>
3223
3224</div>
3225
3226<!-- _______________________________________________________________________ -->
3227<div class="doc_subsubsection">
3228 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3229</div>
3230
3231<div class="doc_text">
3232
3233<h5>Syntax:</h5>
3234
3235<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003236 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003237</pre>
3238
3239<h5>Overview:</h5>
3240
3241<p>
3242The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003243element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003244</p>
3245
3246
3247<h5>Arguments:</h5>
3248
3249<p>
3250The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003251value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00003252an index indicating the position from which to extract the element.
3253The index may be a variable.</p>
3254
3255<h5>Semantics:</h5>
3256
3257<p>
3258The result is a scalar of the same type as the element type of
3259<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3260<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3261results are undefined.
3262</p>
3263
3264<h5>Example:</h5>
3265
3266<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003267 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003268</pre>
3269</div>
3270
3271
3272<!-- _______________________________________________________________________ -->
3273<div class="doc_subsubsection">
3274 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3275</div>
3276
3277<div class="doc_text">
3278
3279<h5>Syntax:</h5>
3280
3281<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00003282 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003283</pre>
3284
3285<h5>Overview:</h5>
3286
3287<p>
3288The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003289element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003290</p>
3291
3292
3293<h5>Arguments:</h5>
3294
3295<p>
3296The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003297value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00003298scalar value whose type must equal the element type of the first
3299operand. The third operand is an index indicating the position at
3300which to insert the value. The index may be a variable.</p>
3301
3302<h5>Semantics:</h5>
3303
3304<p>
Reid Spencer485bad12007-02-15 03:07:05 +00003305The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00003306element values are those of <tt>val</tt> except at position
3307<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3308exceeds the length of <tt>val</tt>, the results are undefined.
3309</p>
3310
3311<h5>Example:</h5>
3312
3313<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003314 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003315</pre>
3316</div>
3317
3318<!-- _______________________________________________________________________ -->
3319<div class="doc_subsubsection">
3320 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3321</div>
3322
3323<div class="doc_text">
3324
3325<h5>Syntax:</h5>
3326
3327<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003328 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003329</pre>
3330
3331<h5>Overview:</h5>
3332
3333<p>
3334The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00003335from two input vectors, returning a vector with the same element type as
3336the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00003337</p>
3338
3339<h5>Arguments:</h5>
3340
3341<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003342The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3343with types that match each other. The third argument is a shuffle mask whose
3344element type is always 'i32'. The result of the instruction is a vector whose
3345length is the same as the shuffle mask and whose element type is the same as
3346the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00003347</p>
3348
3349<p>
3350The shuffle mask operand is required to be a constant vector with either
3351constant integer or undef values.
3352</p>
3353
3354<h5>Semantics:</h5>
3355
3356<p>
3357The elements of the two input vectors are numbered from left to right across
3358both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00003359the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00003360gets. The element selector may be undef (meaning "don't care") and the second
3361operand may be undef if performing a shuffle from only one vector.
3362</p>
3363
3364<h5>Example:</h5>
3365
3366<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003367 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003368 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003369 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3370 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003371 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3372 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3373 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3374 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003375</pre>
3376</div>
3377
Tanya Lattner09474292006-04-14 19:24:33 +00003378
Chris Lattner3df241e2006-04-08 23:07:04 +00003379<!-- ======================================================================= -->
3380<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003381 <a name="aggregateops">Aggregate Operations</a>
3382</div>
3383
3384<div class="doc_text">
3385
3386<p>LLVM supports several instructions for working with aggregate values.
3387</p>
3388
3389</div>
3390
3391<!-- _______________________________________________________________________ -->
3392<div class="doc_subsubsection">
3393 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3394</div>
3395
3396<div class="doc_text">
3397
3398<h5>Syntax:</h5>
3399
3400<pre>
3401 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3402</pre>
3403
3404<h5>Overview:</h5>
3405
3406<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003407The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3408or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003409</p>
3410
3411
3412<h5>Arguments:</h5>
3413
3414<p>
3415The first operand of an '<tt>extractvalue</tt>' instruction is a
3416value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003417type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003418in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003419'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3420</p>
3421
3422<h5>Semantics:</h5>
3423
3424<p>
3425The result is the value at the position in the aggregate specified by
3426the index operands.
3427</p>
3428
3429<h5>Example:</h5>
3430
3431<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003432 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003433</pre>
3434</div>
3435
3436
3437<!-- _______________________________________________________________________ -->
3438<div class="doc_subsubsection">
3439 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3440</div>
3441
3442<div class="doc_text">
3443
3444<h5>Syntax:</h5>
3445
3446<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003447 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003448</pre>
3449
3450<h5>Overview:</h5>
3451
3452<p>
3453The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003454into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003455</p>
3456
3457
3458<h5>Arguments:</h5>
3459
3460<p>
3461The first operand of an '<tt>insertvalue</tt>' instruction is a
3462value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3463The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003464The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003465indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003466indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003467'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3468The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003469by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003470</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003471
3472<h5>Semantics:</h5>
3473
3474<p>
3475The result is an aggregate of the same type as <tt>val</tt>. Its
3476value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003477specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003478</p>
3479
3480<h5>Example:</h5>
3481
3482<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003483 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003484</pre>
3485</div>
3486
3487
3488<!-- ======================================================================= -->
3489<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003490 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003491</div>
3492
Misha Brukman9d0919f2003-11-08 01:05:38 +00003493<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003494
Chris Lattner261efe92003-11-25 01:02:51 +00003495<p>A key design point of an SSA-based representation is how it
3496represents memory. In LLVM, no memory locations are in SSA form, which
3497makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003498allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003499
Misha Brukman9d0919f2003-11-08 01:05:38 +00003500</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003501
Chris Lattner00950542001-06-06 20:29:01 +00003502<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003503<div class="doc_subsubsection">
3504 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3505</div>
3506
Misha Brukman9d0919f2003-11-08 01:05:38 +00003507<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003508
Chris Lattner00950542001-06-06 20:29:01 +00003509<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003510
3511<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003512 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003513</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003514
Chris Lattner00950542001-06-06 20:29:01 +00003515<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003516
Chris Lattner261efe92003-11-25 01:02:51 +00003517<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003518heap and returns a pointer to it. The object is always allocated in the generic
3519address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003520
Chris Lattner00950542001-06-06 20:29:01 +00003521<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003522
3523<p>The '<tt>malloc</tt>' instruction allocates
3524<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003525bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003526appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003527number of elements allocated, otherwise "NumElements" is defaulted to be one.
Duncan Sands434ca802009-06-20 13:26:06 +00003528If a constant alignment is specified, the value result of the allocation is
3529guaranteed to be aligned to at least that boundary. If not specified, or if
3530zero, the target can choose to align the allocation on any convenient boundary
3531compatible with the type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003532
Misha Brukman9d0919f2003-11-08 01:05:38 +00003533<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003534
Chris Lattner00950542001-06-06 20:29:01 +00003535<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003536
Chris Lattner261efe92003-11-25 01:02:51 +00003537<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003538a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003539result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003540
Chris Lattner2cbdc452005-11-06 08:02:57 +00003541<h5>Example:</h5>
3542
3543<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003544 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003545
Bill Wendlingaac388b2007-05-29 09:42:13 +00003546 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3547 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3548 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3549 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3550 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003551</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003552
3553<p>Note that the code generator does not yet respect the
3554 alignment value.</p>
3555
Misha Brukman9d0919f2003-11-08 01:05:38 +00003556</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003557
Chris Lattner00950542001-06-06 20:29:01 +00003558<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003559<div class="doc_subsubsection">
3560 <a name="i_free">'<tt>free</tt>' Instruction</a>
3561</div>
3562
Misha Brukman9d0919f2003-11-08 01:05:38 +00003563<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003564
Chris Lattner00950542001-06-06 20:29:01 +00003565<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003566
3567<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003568 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003569</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003570
Chris Lattner00950542001-06-06 20:29:01 +00003571<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003572
Chris Lattner261efe92003-11-25 01:02:51 +00003573<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003574memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003575
Chris Lattner00950542001-06-06 20:29:01 +00003576<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003577
Chris Lattner261efe92003-11-25 01:02:51 +00003578<p>'<tt>value</tt>' shall be a pointer value that points to a value
3579that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3580instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003581
Chris Lattner00950542001-06-06 20:29:01 +00003582<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003583
John Criswell9e2485c2004-12-10 15:51:16 +00003584<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003585after this instruction executes. If the pointer is null, the operation
3586is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003587
Chris Lattner00950542001-06-06 20:29:01 +00003588<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003589
3590<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003591 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003592 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003593</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003594</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003595
Chris Lattner00950542001-06-06 20:29:01 +00003596<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003597<div class="doc_subsubsection">
3598 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3599</div>
3600
Misha Brukman9d0919f2003-11-08 01:05:38 +00003601<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003602
Chris Lattner00950542001-06-06 20:29:01 +00003603<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003604
3605<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003606 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003607</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003608
Chris Lattner00950542001-06-06 20:29:01 +00003609<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003610
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003611<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3612currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003613returns to its caller. The object is always allocated in the generic address
3614space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003615
Chris Lattner00950542001-06-06 20:29:01 +00003616<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003617
John Criswell9e2485c2004-12-10 15:51:16 +00003618<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003619bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003620appropriate type to the program. If "NumElements" is specified, it is the
3621number of elements allocated, otherwise "NumElements" is defaulted to be one.
Duncan Sands434ca802009-06-20 13:26:06 +00003622If a constant alignment is specified, the value result of the allocation is
3623guaranteed to be aligned to at least that boundary. If not specified, or if
3624zero, the target can choose to align the allocation on any convenient boundary
3625compatible with the type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003626
Misha Brukman9d0919f2003-11-08 01:05:38 +00003627<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003628
Chris Lattner00950542001-06-06 20:29:01 +00003629<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003630
Bill Wendling871eb0a2009-05-08 20:49:29 +00003631<p>Memory is allocated; a pointer is returned. The operation is undefined if
Chris Lattner72ed2002008-04-19 21:01:16 +00003632there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003633memory is automatically released when the function returns. The '<tt>alloca</tt>'
3634instruction is commonly used to represent automatic variables that must
3635have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003636 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003637instructions), the memory is reclaimed. Allocating zero bytes
3638is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003639
Chris Lattner00950542001-06-06 20:29:01 +00003640<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003641
3642<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003643 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3644 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3645 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3646 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003647</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003648</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003649
Chris Lattner00950542001-06-06 20:29:01 +00003650<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003651<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3652Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003653<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003654<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003655<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003656<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003657<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003658<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003659<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003660address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003661 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003662marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003663the number or order of execution of this <tt>load</tt> with other
3664volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3665instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003666<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003667The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003668(that is, the alignment of the memory address). A value of 0 or an
3669omitted "align" argument means that the operation has the preferential
3670alignment for the target. It is the responsibility of the code emitter
3671to ensure that the alignment information is correct. Overestimating
3672the alignment results in an undefined behavior. Underestimating the
3673alignment may produce less efficient code. An alignment of 1 is always
3674safe.
3675</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003676<h5>Semantics:</h5>
Duncan Sands19527c62009-03-22 11:33:16 +00003677<p>The location of memory pointed to is loaded. If the value being loaded
3678is of scalar type then the number of bytes read does not exceed the minimum
3679number of bytes needed to hold all bits of the type. For example, loading an
3680<tt>i24</tt> reads at most three bytes. When loading a value of a type like
3681<tt>i20</tt> with a size that is not an integral number of bytes, the result
3682is undefined if the value was not originally written using a store of the
3683same type.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003684<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003685<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003686 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003687 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3688 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003689</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003690</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003691<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003692<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3693Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003694<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003695<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003696<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3697 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003698</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003699<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003700<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003701<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003702<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003703to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003704operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3705of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003706operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003707optimizer is not allowed to modify the number or order of execution of
3708this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3709 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003710<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003711The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003712(that is, the alignment of the memory address). A value of 0 or an
3713omitted "align" argument means that the operation has the preferential
3714alignment for the target. It is the responsibility of the code emitter
3715to ensure that the alignment information is correct. Overestimating
3716the alignment results in an undefined behavior. Underestimating the
3717alignment may produce less efficient code. An alignment of 1 is always
3718safe.
3719</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003720<h5>Semantics:</h5>
3721<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
Duncan Sands19527c62009-03-22 11:33:16 +00003722at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.
3723If '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes
3724written does not exceed the minimum number of bytes needed to hold all
3725bits of the type. For example, storing an <tt>i24</tt> writes at most
3726three bytes. When writing a value of a type like <tt>i20</tt> with a
3727size that is not an integral number of bytes, it is unspecified what
3728happens to the extra bits that do not belong to the type, but they will
3729typically be overwritten.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003730<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003731<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003732 store i32 3, i32* %ptr <i>; yields {void}</i>
3733 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003734</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003735</div>
3736
Chris Lattner2b7d3202002-05-06 03:03:22 +00003737<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003738<div class="doc_subsubsection">
3739 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3740</div>
3741
Misha Brukman9d0919f2003-11-08 01:05:38 +00003742<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003743<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003744<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003745 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003746</pre>
3747
Chris Lattner7faa8832002-04-14 06:13:44 +00003748<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003749
3750<p>
3751The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003752subelement of an aggregate data structure. It performs address calculation only
3753and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003754
Chris Lattner7faa8832002-04-14 06:13:44 +00003755<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003756
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003757<p>The first argument is always a pointer, and forms the basis of the
3758calculation. The remaining arguments are indices, that indicate which of the
3759elements of the aggregate object are indexed. The interpretation of each index
3760is dependent on the type being indexed into. The first index always indexes the
3761pointer value given as the first argument, the second index indexes a value of
3762the type pointed to (not necessarily the value directly pointed to, since the
3763first index can be non-zero), etc. The first type indexed into must be a pointer
3764value, subsequent types can be arrays, vectors and structs. Note that subsequent
3765types being indexed into can never be pointers, since that would require loading
3766the pointer before continuing calculation.</p>
3767
3768<p>The type of each index argument depends on the type it is indexing into.
3769When indexing into a (packed) structure, only <tt>i32</tt> integer
3770<b>constants</b> are allowed. When indexing into an array, pointer or vector,
Sanjiv Gupta23c70f42009-04-27 03:21:00 +00003771integers of any width are allowed (also non-constants).</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003772
Chris Lattner261efe92003-11-25 01:02:51 +00003773<p>For example, let's consider a C code fragment and how it gets
3774compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003775
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003776<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003777<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003778struct RT {
3779 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003780 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003781 char C;
3782};
3783struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003784 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003785 double Y;
3786 struct RT Z;
3787};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003788
Chris Lattnercabc8462007-05-29 15:43:56 +00003789int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003790 return &amp;s[1].Z.B[5][13];
3791}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003792</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003793</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003794
Misha Brukman9d0919f2003-11-08 01:05:38 +00003795<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003796
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003797<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003798<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00003799%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3800%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003801
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003802define i32* %foo(%ST* %s) {
3803entry:
3804 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3805 ret i32* %reg
3806}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003807</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003808</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003809
Chris Lattner7faa8832002-04-14 06:13:44 +00003810<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003811
Misha Brukman9d0919f2003-11-08 01:05:38 +00003812<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003813type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003814}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003815the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3816i8 }</tt>' type, another structure. The third index indexes into the second
3817element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003818array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003819'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3820to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003821
Chris Lattner261efe92003-11-25 01:02:51 +00003822<p>Note that it is perfectly legal to index partially through a
3823structure, returning a pointer to an inner element. Because of this,
3824the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003825
3826<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003827 define i32* %foo(%ST* %s) {
3828 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003829 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3830 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003831 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3832 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3833 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003834 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003835</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003836
Chris Lattner8c0e62c2009-03-09 20:55:18 +00003837<p>Note that it is undefined to access an array out of bounds: array
3838and pointer indexes must always be within the defined bounds of the
3839array type when accessed with an instruction that dereferences the
3840pointer (e.g. a load or store instruction). The one exception for
3841this rule is zero length arrays. These arrays are defined to be
3842accessible as variable length arrays, which requires access beyond the
3843zero'th element.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00003844
Chris Lattner884a9702006-08-15 00:45:58 +00003845<p>The getelementptr instruction is often confusing. For some more insight
3846into how it works, see <a href="GetElementPtr.html">the getelementptr
3847FAQ</a>.</p>
3848
Chris Lattner7faa8832002-04-14 06:13:44 +00003849<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003850
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003851<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003852 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003853 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3854 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003855 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003856 <i>; yields i8*:eptr</i>
3857 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta9f805c22009-04-25 07:27:44 +00003858 <i>; yields i32*:iptr</i>
Sanjiv Gupta16ffa802009-04-24 16:38:13 +00003859 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003860</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003861</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003862
Chris Lattner00950542001-06-06 20:29:01 +00003863<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003864<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003865</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003866<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003867<p>The instructions in this category are the conversion instructions (casting)
3868which all take a single operand and a type. They perform various bit conversions
3869on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003870</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003871
Chris Lattner6536cfe2002-05-06 22:08:29 +00003872<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003873<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003874 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3875</div>
3876<div class="doc_text">
3877
3878<h5>Syntax:</h5>
3879<pre>
3880 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3881</pre>
3882
3883<h5>Overview:</h5>
3884<p>
3885The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3886</p>
3887
3888<h5>Arguments:</h5>
3889<p>
3890The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3891be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003892and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003893type. The bit size of <tt>value</tt> must be larger than the bit size of
3894<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003895
3896<h5>Semantics:</h5>
3897<p>
3898The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003899and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3900larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3901It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003902
3903<h5>Example:</h5>
3904<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003905 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003906 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3907 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003908</pre>
3909</div>
3910
3911<!-- _______________________________________________________________________ -->
3912<div class="doc_subsubsection">
3913 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3914</div>
3915<div class="doc_text">
3916
3917<h5>Syntax:</h5>
3918<pre>
3919 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3920</pre>
3921
3922<h5>Overview:</h5>
3923<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3924<tt>ty2</tt>.</p>
3925
3926
3927<h5>Arguments:</h5>
3928<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003929<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3930also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003931<tt>value</tt> must be smaller than the bit size of the destination type,
3932<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003933
3934<h5>Semantics:</h5>
3935<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003936bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003937
Reid Spencerb5929522007-01-12 15:46:11 +00003938<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003939
3940<h5>Example:</h5>
3941<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003942 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003943 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003944</pre>
3945</div>
3946
3947<!-- _______________________________________________________________________ -->
3948<div class="doc_subsubsection">
3949 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3950</div>
3951<div class="doc_text">
3952
3953<h5>Syntax:</h5>
3954<pre>
3955 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3956</pre>
3957
3958<h5>Overview:</h5>
3959<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3960
3961<h5>Arguments:</h5>
3962<p>
3963The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003964<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3965also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003966<tt>value</tt> must be smaller than the bit size of the destination type,
3967<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003968
3969<h5>Semantics:</h5>
3970<p>
3971The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3972bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003973the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003974
Reid Spencerc78f3372007-01-12 03:35:51 +00003975<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003976
3977<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003978<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003979 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003980 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003981</pre>
3982</div>
3983
3984<!-- _______________________________________________________________________ -->
3985<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003986 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3987</div>
3988
3989<div class="doc_text">
3990
3991<h5>Syntax:</h5>
3992
3993<pre>
3994 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3995</pre>
3996
3997<h5>Overview:</h5>
3998<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3999<tt>ty2</tt>.</p>
4000
4001
4002<h5>Arguments:</h5>
4003<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
4004 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
4005cast it to. The size of <tt>value</tt> must be larger than the size of
4006<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4007<i>no-op cast</i>.</p>
4008
4009<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004010<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4011<a href="#t_floating">floating point</a> type to a smaller
4012<a href="#t_floating">floating point</a> type. If the value cannot fit within
4013the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004014
4015<h5>Example:</h5>
4016<pre>
4017 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4018 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4019</pre>
4020</div>
4021
4022<!-- _______________________________________________________________________ -->
4023<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004024 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4025</div>
4026<div class="doc_text">
4027
4028<h5>Syntax:</h5>
4029<pre>
4030 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4031</pre>
4032
4033<h5>Overview:</h5>
4034<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
4035floating point value.</p>
4036
4037<h5>Arguments:</h5>
4038<p>The '<tt>fpext</tt>' instruction takes a
4039<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00004040and a <a href="#t_floating">floating point</a> type to cast it to. The source
4041type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004042
4043<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004044<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00004045<a href="#t_floating">floating point</a> type to a larger
4046<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00004047used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00004048<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004049
4050<h5>Example:</h5>
4051<pre>
4052 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4053 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4054</pre>
4055</div>
4056
4057<!-- _______________________________________________________________________ -->
4058<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00004059 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004060</div>
4061<div class="doc_text">
4062
4063<h5>Syntax:</h5>
4064<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004065 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004066</pre>
4067
4068<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004069<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004070unsigned integer equivalent of type <tt>ty2</tt>.
4071</p>
4072
4073<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004074<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00004075scalar or vector <a href="#t_floating">floating point</a> value, and a type
4076to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4077type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4078vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004079
4080<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004081<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004082<a href="#t_floating">floating point</a> operand into the nearest (rounding
4083towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
4084the results are undefined.</p>
4085
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004086<h5>Example:</h5>
4087<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004088 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004089 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004090 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004091</pre>
4092</div>
4093
4094<!-- _______________________________________________________________________ -->
4095<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004096 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004097</div>
4098<div class="doc_text">
4099
4100<h5>Syntax:</h5>
4101<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004102 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004103</pre>
4104
4105<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004106<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004107<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004108</p>
4109
Chris Lattner6536cfe2002-05-06 22:08:29 +00004110<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004111<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00004112scalar or vector <a href="#t_floating">floating point</a> value, and a type
4113to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4114type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4115vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004116
Chris Lattner6536cfe2002-05-06 22:08:29 +00004117<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004118<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004119<a href="#t_floating">floating point</a> operand into the nearest (rounding
4120towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4121the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004122
Chris Lattner33ba0d92001-07-09 00:26:23 +00004123<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004124<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004125 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004126 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004127 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004128</pre>
4129</div>
4130
4131<!-- _______________________________________________________________________ -->
4132<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004133 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004134</div>
4135<div class="doc_text">
4136
4137<h5>Syntax:</h5>
4138<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004139 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004140</pre>
4141
4142<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004143<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004144integer and converts that value to the <tt>ty2</tt> type.</p>
4145
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004146<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004147<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4148scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4149to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4150type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4151floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004152
4153<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004154<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004155integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00004156the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004157
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004158<h5>Example:</h5>
4159<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004160 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004161 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004162</pre>
4163</div>
4164
4165<!-- _______________________________________________________________________ -->
4166<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004167 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004168</div>
4169<div class="doc_text">
4170
4171<h5>Syntax:</h5>
4172<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004173 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004174</pre>
4175
4176<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004177<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004178integer and converts that value to the <tt>ty2</tt> type.</p>
4179
4180<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004181<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4182scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4183to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4184type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4185floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004186
4187<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004188<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004189integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00004190the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004191
4192<h5>Example:</h5>
4193<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004194 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004195 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004196</pre>
4197</div>
4198
4199<!-- _______________________________________________________________________ -->
4200<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00004201 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4202</div>
4203<div class="doc_text">
4204
4205<h5>Syntax:</h5>
4206<pre>
4207 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4208</pre>
4209
4210<h5>Overview:</h5>
4211<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4212the integer type <tt>ty2</tt>.</p>
4213
4214<h5>Arguments:</h5>
4215<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00004216must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00004217<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004218
4219<h5>Semantics:</h5>
4220<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4221<tt>ty2</tt> by interpreting the pointer value as an integer and either
4222truncating or zero extending that value to the size of the integer type. If
4223<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4224<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00004225are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4226change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004227
4228<h5>Example:</h5>
4229<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004230 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4231 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004232</pre>
4233</div>
4234
4235<!-- _______________________________________________________________________ -->
4236<div class="doc_subsubsection">
4237 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4238</div>
4239<div class="doc_text">
4240
4241<h5>Syntax:</h5>
4242<pre>
4243 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4244</pre>
4245
4246<h5>Overview:</h5>
4247<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4248a pointer type, <tt>ty2</tt>.</p>
4249
4250<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00004251<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00004252value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004253<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004254
4255<h5>Semantics:</h5>
4256<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4257<tt>ty2</tt> by applying either a zero extension or a truncation depending on
4258the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4259size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4260the size of a pointer then a zero extension is done. If they are the same size,
4261nothing is done (<i>no-op cast</i>).</p>
4262
4263<h5>Example:</h5>
4264<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004265 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4266 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4267 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004268</pre>
4269</div>
4270
4271<!-- _______________________________________________________________________ -->
4272<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00004273 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004274</div>
4275<div class="doc_text">
4276
4277<h5>Syntax:</h5>
4278<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004279 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004280</pre>
4281
4282<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004283
Reid Spencer5c0ef472006-11-11 23:08:07 +00004284<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004285<tt>ty2</tt> without changing any bits.</p>
4286
4287<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004288
Reid Spencer5c0ef472006-11-11 23:08:07 +00004289<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00004290a non-aggregate first class value, and a type to cast it to, which must also be
4291a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4292<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00004293and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00004294type is a pointer, the destination type must also be a pointer. This
4295instruction supports bitwise conversion of vectors to integers and to vectors
4296of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004297
4298<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004299<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00004300<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4301this conversion. The conversion is done as if the <tt>value</tt> had been
4302stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4303converted to other pointer types with this instruction. To convert pointers to
4304other types, use the <a href="#i_inttoptr">inttoptr</a> or
4305<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004306
4307<h5>Example:</h5>
4308<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004309 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004310 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004311 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00004312</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004313</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004314
Reid Spencer2fd21e62006-11-08 01:18:52 +00004315<!-- ======================================================================= -->
4316<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4317<div class="doc_text">
4318<p>The instructions in this category are the "miscellaneous"
4319instructions, which defy better classification.</p>
4320</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004321
4322<!-- _______________________________________________________________________ -->
4323<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4324</div>
4325<div class="doc_text">
4326<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004327<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004328</pre>
4329<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004330<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4331a vector of boolean values based on comparison
4332of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004333<h5>Arguments:</h5>
4334<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004335the condition code indicating the kind of comparison to perform. It is not
4336a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004337</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004338<ol>
4339 <li><tt>eq</tt>: equal</li>
4340 <li><tt>ne</tt>: not equal </li>
4341 <li><tt>ugt</tt>: unsigned greater than</li>
4342 <li><tt>uge</tt>: unsigned greater or equal</li>
4343 <li><tt>ult</tt>: unsigned less than</li>
4344 <li><tt>ule</tt>: unsigned less or equal</li>
4345 <li><tt>sgt</tt>: signed greater than</li>
4346 <li><tt>sge</tt>: signed greater or equal</li>
4347 <li><tt>slt</tt>: signed less than</li>
4348 <li><tt>sle</tt>: signed less or equal</li>
4349</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00004350<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00004351<a href="#t_pointer">pointer</a>
4352or integer <a href="#t_vector">vector</a> typed.
4353They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004354<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004355<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00004356the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00004357yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004358</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004359<ol>
4360 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4361 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4362 </li>
4363 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00004364 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004365 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004366 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004367 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004368 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004369 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004370 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004371 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004372 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004373 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004374 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004375 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004376 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004377 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004378 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004379 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004380 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004381</ol>
4382<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00004383values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004384<p>If the operands are integer vectors, then they are compared
4385element by element. The result is an <tt>i1</tt> vector with
4386the same number of elements as the values being compared.
4387Otherwise, the result is an <tt>i1</tt>.
4388</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004389
4390<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004391<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4392 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4393 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4394 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4395 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4396 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004397</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004398
4399<p>Note that the code generator does not yet support vector types with
4400 the <tt>icmp</tt> instruction.</p>
4401
Reid Spencerf3a70a62006-11-18 21:50:54 +00004402</div>
4403
4404<!-- _______________________________________________________________________ -->
4405<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4406</div>
4407<div class="doc_text">
4408<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004409<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004410</pre>
4411<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004412<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4413or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004414of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004415<p>
4416If the operands are floating point scalars, then the result
4417type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4418</p>
4419<p>If the operands are floating point vectors, then the result type
4420is a vector of boolean with the same number of elements as the
4421operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004422<h5>Arguments:</h5>
4423<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004424the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004425a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004426<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004427 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004428 <li><tt>oeq</tt>: ordered and equal</li>
4429 <li><tt>ogt</tt>: ordered and greater than </li>
4430 <li><tt>oge</tt>: ordered and greater than or equal</li>
4431 <li><tt>olt</tt>: ordered and less than </li>
4432 <li><tt>ole</tt>: ordered and less than or equal</li>
4433 <li><tt>one</tt>: ordered and not equal</li>
4434 <li><tt>ord</tt>: ordered (no nans)</li>
4435 <li><tt>ueq</tt>: unordered or equal</li>
4436 <li><tt>ugt</tt>: unordered or greater than </li>
4437 <li><tt>uge</tt>: unordered or greater than or equal</li>
4438 <li><tt>ult</tt>: unordered or less than </li>
4439 <li><tt>ule</tt>: unordered or less than or equal</li>
4440 <li><tt>une</tt>: unordered or not equal</li>
4441 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004442 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004443</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004444<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004445<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004446<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4447either a <a href="#t_floating">floating point</a> type
4448or a <a href="#t_vector">vector</a> of floating point type.
4449They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004450<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004451<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004452according to the condition code given as <tt>cond</tt>.
4453If the operands are vectors, then the vectors are compared
4454element by element.
4455Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004456always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004457<ol>
4458 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004459 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004460 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004461 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004462 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004463 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004464 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004465 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004466 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004467 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004468 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004469 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004470 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004471 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4472 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004473 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004474 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004475 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004476 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004477 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004478 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004479 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004480 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004481 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004482 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004483 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004484 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004485 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4486</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004487
4488<h5>Example:</h5>
4489<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004490 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4491 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4492 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004493</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004494
4495<p>Note that the code generator does not yet support vector types with
4496 the <tt>fcmp</tt> instruction.</p>
4497
Reid Spencerf3a70a62006-11-18 21:50:54 +00004498</div>
4499
Reid Spencer2fd21e62006-11-08 01:18:52 +00004500<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004501<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00004502 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4503</div>
4504
Reid Spencer2fd21e62006-11-08 01:18:52 +00004505<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004506
Reid Spencer2fd21e62006-11-08 01:18:52 +00004507<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004508
Reid Spencer2fd21e62006-11-08 01:18:52 +00004509<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4510<h5>Overview:</h5>
4511<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4512the SSA graph representing the function.</p>
4513<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004514
Jeff Cohenb627eab2007-04-29 01:07:00 +00004515<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004516field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4517as arguments, with one pair for each predecessor basic block of the
4518current block. Only values of <a href="#t_firstclass">first class</a>
4519type may be used as the value arguments to the PHI node. Only labels
4520may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004521
Reid Spencer2fd21e62006-11-08 01:18:52 +00004522<p>There must be no non-phi instructions between the start of a basic
4523block and the PHI instructions: i.e. PHI instructions must be first in
4524a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004525
Jay Foadd2449092009-06-03 10:20:10 +00004526<p>For the purposes of the SSA form, the use of each incoming value is
4527deemed to occur on the edge from the corresponding predecessor block
4528to the current block (but after any definition of an '<tt>invoke</tt>'
4529instruction's return value on the same edge).</p>
4530
Reid Spencer2fd21e62006-11-08 01:18:52 +00004531<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004532
Jeff Cohenb627eab2007-04-29 01:07:00 +00004533<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4534specified by the pair corresponding to the predecessor basic block that executed
4535just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004536
Reid Spencer2fd21e62006-11-08 01:18:52 +00004537<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004538<pre>
4539Loop: ; Infinite loop that counts from 0 on up...
4540 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4541 %nextindvar = add i32 %indvar, 1
4542 br label %Loop
4543</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004544</div>
4545
Chris Lattnercc37aae2004-03-12 05:50:16 +00004546<!-- _______________________________________________________________________ -->
4547<div class="doc_subsubsection">
4548 <a name="i_select">'<tt>select</tt>' Instruction</a>
4549</div>
4550
4551<div class="doc_text">
4552
4553<h5>Syntax:</h5>
4554
4555<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004556 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4557
Dan Gohman0e451ce2008-10-14 16:51:45 +00004558 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004559</pre>
4560
4561<h5>Overview:</h5>
4562
4563<p>
4564The '<tt>select</tt>' instruction is used to choose one value based on a
4565condition, without branching.
4566</p>
4567
4568
4569<h5>Arguments:</h5>
4570
4571<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004572The '<tt>select</tt>' instruction requires an 'i1' value or
4573a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004574condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004575type. If the val1/val2 are vectors and
4576the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004577individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004578</p>
4579
4580<h5>Semantics:</h5>
4581
4582<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004583If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004584value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004585</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004586<p>
4587If the condition is a vector of i1, then the value arguments must
4588be vectors of the same size, and the selection is done element
4589by element.
4590</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004591
4592<h5>Example:</h5>
4593
4594<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004595 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004596</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004597
4598<p>Note that the code generator does not yet support conditions
4599 with vector type.</p>
4600
Chris Lattnercc37aae2004-03-12 05:50:16 +00004601</div>
4602
Robert Bocchino05ccd702006-01-15 20:48:27 +00004603
4604<!-- _______________________________________________________________________ -->
4605<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004606 <a name="i_call">'<tt>call</tt>' Instruction</a>
4607</div>
4608
Misha Brukman9d0919f2003-11-08 01:05:38 +00004609<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004610
Chris Lattner00950542001-06-06 20:29:01 +00004611<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004612<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004613 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004614</pre>
4615
Chris Lattner00950542001-06-06 20:29:01 +00004616<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004617
Misha Brukman9d0919f2003-11-08 01:05:38 +00004618<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004619
Chris Lattner00950542001-06-06 20:29:01 +00004620<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004621
Misha Brukman9d0919f2003-11-08 01:05:38 +00004622<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004623
Chris Lattner6536cfe2002-05-06 22:08:29 +00004624<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004625 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004626 <p>The optional "tail" marker indicates whether the callee function accesses
4627 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004628 function call is eligible for tail call optimization. Note that calls may
4629 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004630 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004631 </li>
4632 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004633 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004634 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004635 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004636 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004637
4638 <li>
4639 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4640 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4641 and '<tt>inreg</tt>' attributes are valid here.</p>
4642 </li>
4643
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004644 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004645 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4646 the type of the return value. Functions that return no value are marked
4647 <tt><a href="#t_void">void</a></tt>.</p>
4648 </li>
4649 <li>
4650 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4651 value being invoked. The argument types must match the types implied by
4652 this signature. This type can be omitted if the function is not varargs
4653 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004654 </li>
4655 <li>
4656 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4657 be invoked. In most cases, this is a direct function invocation, but
4658 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004659 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004660 </li>
4661 <li>
4662 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004663 function signature argument types. All arguments must be of
4664 <a href="#t_firstclass">first class</a> type. If the function signature
4665 indicates the function accepts a variable number of arguments, the extra
4666 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004667 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004668 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004669 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004670 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4671 '<tt>readnone</tt>' attributes are valid here.</p>
4672 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004673</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004674
Chris Lattner00950542001-06-06 20:29:01 +00004675<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004676
Chris Lattner261efe92003-11-25 01:02:51 +00004677<p>The '<tt>call</tt>' instruction is used to cause control flow to
4678transfer to a specified function, with its incoming arguments bound to
4679the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4680instruction in the called function, control flow continues with the
4681instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004682function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004683
Chris Lattner00950542001-06-06 20:29:01 +00004684<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004685
4686<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004687 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004688 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4689 %X = tail call i32 @foo() <i>; yields i32</i>
4690 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4691 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004692
4693 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004694 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004695 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4696 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004697 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004698 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004699</pre>
4700
Misha Brukman9d0919f2003-11-08 01:05:38 +00004701</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004702
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004703<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004704<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004705 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004706</div>
4707
Misha Brukman9d0919f2003-11-08 01:05:38 +00004708<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004709
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004710<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004711
4712<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004713 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004714</pre>
4715
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004716<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004717
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004718<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004719the "variable argument" area of a function call. It is used to implement the
4720<tt>va_arg</tt> macro in C.</p>
4721
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004722<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004723
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004724<p>This instruction takes a <tt>va_list*</tt> value and the type of
4725the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004726increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004727actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004728
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004729<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004730
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004731<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4732type from the specified <tt>va_list</tt> and causes the
4733<tt>va_list</tt> to point to the next argument. For more information,
4734see the variable argument handling <a href="#int_varargs">Intrinsic
4735Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004736
4737<p>It is legal for this instruction to be called in a function which does not
4738take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004739function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004740
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004741<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004742href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004743argument.</p>
4744
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004745<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004746
4747<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4748
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00004749<p>Note that the code generator does not yet fully support va_arg
4750 on many targets. Also, it does not currently support va_arg with
4751 aggregate types on any target.</p>
4752
Misha Brukman9d0919f2003-11-08 01:05:38 +00004753</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004754
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004755<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004756<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4757<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004758
Misha Brukman9d0919f2003-11-08 01:05:38 +00004759<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004760
4761<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004762well known names and semantics and are required to follow certain restrictions.
4763Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004764language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004765adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004766
John Criswellfc6b8952005-05-16 16:17:45 +00004767<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004768prefix is reserved in LLVM for intrinsic names; thus, function names may not
4769begin with this prefix. Intrinsic functions must always be external functions:
4770you cannot define the body of intrinsic functions. Intrinsic functions may
4771only be used in call or invoke instructions: it is illegal to take the address
4772of an intrinsic function. Additionally, because intrinsic functions are part
4773of the LLVM language, it is required if any are added that they be documented
4774here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004775
Chandler Carruth69940402007-08-04 01:51:18 +00004776<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4777a family of functions that perform the same operation but on different data
4778types. Because LLVM can represent over 8 million different integer types,
4779overloading is used commonly to allow an intrinsic function to operate on any
4780integer type. One or more of the argument types or the result type can be
4781overloaded to accept any integer type. Argument types may also be defined as
4782exactly matching a previous argument's type or the result type. This allows an
4783intrinsic function which accepts multiple arguments, but needs all of them to
4784be of the same type, to only be overloaded with respect to a single argument or
4785the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004786
Chandler Carruth69940402007-08-04 01:51:18 +00004787<p>Overloaded intrinsics will have the names of its overloaded argument types
4788encoded into its function name, each preceded by a period. Only those types
4789which are overloaded result in a name suffix. Arguments whose type is matched
4790against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4791take an integer of any width and returns an integer of exactly the same integer
4792width. This leads to a family of functions such as
4793<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4794Only one type, the return type, is overloaded, and only one type suffix is
4795required. Because the argument's type is matched against the return type, it
4796does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004797
4798<p>To learn how to add an intrinsic function, please see the
4799<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004800</p>
4801
Misha Brukman9d0919f2003-11-08 01:05:38 +00004802</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004803
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004804<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004805<div class="doc_subsection">
4806 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4807</div>
4808
Misha Brukman9d0919f2003-11-08 01:05:38 +00004809<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004810
Misha Brukman9d0919f2003-11-08 01:05:38 +00004811<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004812 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004813intrinsic functions. These functions are related to the similarly
4814named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004815
Chris Lattner261efe92003-11-25 01:02:51 +00004816<p>All of these functions operate on arguments that use a
4817target-specific value type "<tt>va_list</tt>". The LLVM assembly
4818language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004819transformations should be prepared to handle these functions regardless of
4820the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004821
Chris Lattner374ab302006-05-15 17:26:46 +00004822<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004823instruction and the variable argument handling intrinsic functions are
4824used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004825
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004826<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004827<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004828define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004829 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004830 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004831 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004832 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004833
4834 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004835 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004836
4837 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004838 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004839 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004840 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004841 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004842
4843 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004844 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004845 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004846}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004847
4848declare void @llvm.va_start(i8*)
4849declare void @llvm.va_copy(i8*, i8*)
4850declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004851</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004852</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004853
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004854</div>
4855
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004856<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004857<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004858 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004859</div>
4860
4861
Misha Brukman9d0919f2003-11-08 01:05:38 +00004862<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004863<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004864<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004865<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004866<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004867<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4868href="#i_va_arg">va_arg</a></tt>.</p>
4869
4870<h5>Arguments:</h5>
4871
Dan Gohman0e451ce2008-10-14 16:51:45 +00004872<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004873
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004874<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004875
Dan Gohman0e451ce2008-10-14 16:51:45 +00004876<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004877macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004878<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004879<tt>va_arg</tt> will produce the first variable argument passed to the function.
4880Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004881last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004882
Misha Brukman9d0919f2003-11-08 01:05:38 +00004883</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004884
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004885<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004886<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004887 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004888</div>
4889
Misha Brukman9d0919f2003-11-08 01:05:38 +00004890<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004891<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004892<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004893<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004894
Jeff Cohenb627eab2007-04-29 01:07:00 +00004895<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004896which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004897or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004898
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004899<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004900
Jeff Cohenb627eab2007-04-29 01:07:00 +00004901<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004902
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004903<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004904
Misha Brukman9d0919f2003-11-08 01:05:38 +00004905<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004906macro available in C. In a target-dependent way, it destroys the
4907<tt>va_list</tt> element to which the argument points. Calls to <a
4908href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4909<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4910<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004911
Misha Brukman9d0919f2003-11-08 01:05:38 +00004912</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004913
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004914<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004915<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004916 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004917</div>
4918
Misha Brukman9d0919f2003-11-08 01:05:38 +00004919<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004920
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004921<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004922
4923<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004924 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004925</pre>
4926
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004927<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004928
Jeff Cohenb627eab2007-04-29 01:07:00 +00004929<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4930from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004931
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004932<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004933
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004934<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004935The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004936
Chris Lattnerd7923912004-05-23 21:06:01 +00004937
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004938<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004939
Jeff Cohenb627eab2007-04-29 01:07:00 +00004940<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4941macro available in C. In a target-dependent way, it copies the source
4942<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4943intrinsic is necessary because the <tt><a href="#int_va_start">
4944llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4945example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004946
Misha Brukman9d0919f2003-11-08 01:05:38 +00004947</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004948
Chris Lattner33aec9e2004-02-12 17:01:32 +00004949<!-- ======================================================================= -->
4950<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004951 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4952</div>
4953
4954<div class="doc_text">
4955
4956<p>
4957LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004958Collection</a> (GC) requires the implementation and generation of these
4959intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004960These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004961stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004962href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004963Front-ends for type-safe garbage collected languages should generate these
4964intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4965href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4966</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004967
4968<p>The garbage collection intrinsics only operate on objects in the generic
4969 address space (address space zero).</p>
4970
Chris Lattnerd7923912004-05-23 21:06:01 +00004971</div>
4972
4973<!-- _______________________________________________________________________ -->
4974<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004975 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004976</div>
4977
4978<div class="doc_text">
4979
4980<h5>Syntax:</h5>
4981
4982<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004983 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004984</pre>
4985
4986<h5>Overview:</h5>
4987
John Criswell9e2485c2004-12-10 15:51:16 +00004988<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004989the code generator, and allows some metadata to be associated with it.</p>
4990
4991<h5>Arguments:</h5>
4992
4993<p>The first argument specifies the address of a stack object that contains the
4994root pointer. The second pointer (which must be either a constant or a global
4995value address) contains the meta-data to be associated with the root.</p>
4996
4997<h5>Semantics:</h5>
4998
Chris Lattner05d67092008-04-24 05:59:56 +00004999<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00005000location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00005001the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5002intrinsic may only be used in a function which <a href="#gc">specifies a GC
5003algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005004
5005</div>
5006
5007
5008<!-- _______________________________________________________________________ -->
5009<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005010 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005011</div>
5012
5013<div class="doc_text">
5014
5015<h5>Syntax:</h5>
5016
5017<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005018 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00005019</pre>
5020
5021<h5>Overview:</h5>
5022
5023<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
5024locations, allowing garbage collector implementations that require read
5025barriers.</p>
5026
5027<h5>Arguments:</h5>
5028
Chris Lattner80626e92006-03-14 20:02:51 +00005029<p>The second argument is the address to read from, which should be an address
5030allocated from the garbage collector. The first object is a pointer to the
5031start of the referenced object, if needed by the language runtime (otherwise
5032null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005033
5034<h5>Semantics:</h5>
5035
5036<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
5037instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00005038garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5039may only be used in a function which <a href="#gc">specifies a GC
5040algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005041
5042</div>
5043
5044
5045<!-- _______________________________________________________________________ -->
5046<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005047 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005048</div>
5049
5050<div class="doc_text">
5051
5052<h5>Syntax:</h5>
5053
5054<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005055 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00005056</pre>
5057
5058<h5>Overview:</h5>
5059
5060<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5061locations, allowing garbage collector implementations that require write
5062barriers (such as generational or reference counting collectors).</p>
5063
5064<h5>Arguments:</h5>
5065
Chris Lattner80626e92006-03-14 20:02:51 +00005066<p>The first argument is the reference to store, the second is the start of the
5067object to store it to, and the third is the address of the field of Obj to
5068store to. If the runtime does not require a pointer to the object, Obj may be
5069null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005070
5071<h5>Semantics:</h5>
5072
5073<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5074instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00005075garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5076may only be used in a function which <a href="#gc">specifies a GC
5077algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005078
5079</div>
5080
5081
5082
5083<!-- ======================================================================= -->
5084<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00005085 <a name="int_codegen">Code Generator Intrinsics</a>
5086</div>
5087
5088<div class="doc_text">
5089<p>
5090These intrinsics are provided by LLVM to expose special features that may only
5091be implemented with code generator support.
5092</p>
5093
5094</div>
5095
5096<!-- _______________________________________________________________________ -->
5097<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005098 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005099</div>
5100
5101<div class="doc_text">
5102
5103<h5>Syntax:</h5>
5104<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005105 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005106</pre>
5107
5108<h5>Overview:</h5>
5109
5110<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005111The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5112target-specific value indicating the return address of the current function
5113or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00005114</p>
5115
5116<h5>Arguments:</h5>
5117
5118<p>
5119The argument to this intrinsic indicates which function to return the address
5120for. Zero indicates the calling function, one indicates its caller, etc. The
5121argument is <b>required</b> to be a constant integer value.
5122</p>
5123
5124<h5>Semantics:</h5>
5125
5126<p>
5127The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
5128the return address of the specified call frame, or zero if it cannot be
5129identified. The value returned by this intrinsic is likely to be incorrect or 0
5130for arguments other than zero, so it should only be used for debugging purposes.
5131</p>
5132
5133<p>
5134Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005135aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005136source-language caller.
5137</p>
5138</div>
5139
5140
5141<!-- _______________________________________________________________________ -->
5142<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005143 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005144</div>
5145
5146<div class="doc_text">
5147
5148<h5>Syntax:</h5>
5149<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005150 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005151</pre>
5152
5153<h5>Overview:</h5>
5154
5155<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005156The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5157target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00005158</p>
5159
5160<h5>Arguments:</h5>
5161
5162<p>
5163The argument to this intrinsic indicates which function to return the frame
5164pointer for. Zero indicates the calling function, one indicates its caller,
5165etc. The argument is <b>required</b> to be a constant integer value.
5166</p>
5167
5168<h5>Semantics:</h5>
5169
5170<p>
5171The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5172the frame address of the specified call frame, or zero if it cannot be
5173identified. The value returned by this intrinsic is likely to be incorrect or 0
5174for arguments other than zero, so it should only be used for debugging purposes.
5175</p>
5176
5177<p>
5178Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005179aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005180source-language caller.
5181</p>
5182</div>
5183
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005184<!-- _______________________________________________________________________ -->
5185<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005186 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005187</div>
5188
5189<div class="doc_text">
5190
5191<h5>Syntax:</h5>
5192<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005193 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00005194</pre>
5195
5196<h5>Overview:</h5>
5197
5198<p>
5199The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00005200the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00005201<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5202features like scoped automatic variable sized arrays in C99.
5203</p>
5204
5205<h5>Semantics:</h5>
5206
5207<p>
5208This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005209href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00005210<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5211<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5212state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5213practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5214that were allocated after the <tt>llvm.stacksave</tt> was executed.
5215</p>
5216
5217</div>
5218
5219<!-- _______________________________________________________________________ -->
5220<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005221 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005222</div>
5223
5224<div class="doc_text">
5225
5226<h5>Syntax:</h5>
5227<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005228 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005229</pre>
5230
5231<h5>Overview:</h5>
5232
5233<p>
5234The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5235the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005236href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00005237useful for implementing language features like scoped automatic variable sized
5238arrays in C99.
5239</p>
5240
5241<h5>Semantics:</h5>
5242
5243<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00005244See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00005245</p>
5246
5247</div>
5248
5249
5250<!-- _______________________________________________________________________ -->
5251<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005252 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005253</div>
5254
5255<div class="doc_text">
5256
5257<h5>Syntax:</h5>
5258<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005259 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005260</pre>
5261
5262<h5>Overview:</h5>
5263
5264
5265<p>
5266The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00005267a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5268no
5269effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00005270characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005271</p>
5272
5273<h5>Arguments:</h5>
5274
5275<p>
5276<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5277determining if the fetch should be for a read (0) or write (1), and
5278<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00005279locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005280<tt>locality</tt> arguments must be constant integers.
5281</p>
5282
5283<h5>Semantics:</h5>
5284
5285<p>
5286This intrinsic does not modify the behavior of the program. In particular,
5287prefetches cannot trap and do not produce a value. On targets that support this
5288intrinsic, the prefetch can provide hints to the processor cache for better
5289performance.
5290</p>
5291
5292</div>
5293
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005294<!-- _______________________________________________________________________ -->
5295<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005296 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005297</div>
5298
5299<div class="doc_text">
5300
5301<h5>Syntax:</h5>
5302<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005303 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005304</pre>
5305
5306<h5>Overview:</h5>
5307
5308
5309<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005310The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005311(PC) in a region of
5312code to simulators and other tools. The method is target specific, but it is
5313expected that the marker will use exported symbols to transmit the PC of the
5314marker.
5315The marker makes no guarantees that it will remain with any specific instruction
5316after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005317optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005318correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005319</p>
5320
5321<h5>Arguments:</h5>
5322
5323<p>
5324<tt>id</tt> is a numerical id identifying the marker.
5325</p>
5326
5327<h5>Semantics:</h5>
5328
5329<p>
5330This intrinsic does not modify the behavior of the program. Backends that do not
5331support this intrinisic may ignore it.
5332</p>
5333
5334</div>
5335
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005336<!-- _______________________________________________________________________ -->
5337<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005338 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005339</div>
5340
5341<div class="doc_text">
5342
5343<h5>Syntax:</h5>
5344<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005345 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005346</pre>
5347
5348<h5>Overview:</h5>
5349
5350
5351<p>
5352The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5353counter register (or similar low latency, high accuracy clocks) on those targets
5354that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5355As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5356should only be used for small timings.
5357</p>
5358
5359<h5>Semantics:</h5>
5360
5361<p>
5362When directly supported, reading the cycle counter should not modify any memory.
5363Implementations are allowed to either return a application specific value or a
5364system wide value. On backends without support, this is lowered to a constant 0.
5365</p>
5366
5367</div>
5368
Chris Lattner10610642004-02-14 04:08:35 +00005369<!-- ======================================================================= -->
5370<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005371 <a name="int_libc">Standard C Library Intrinsics</a>
5372</div>
5373
5374<div class="doc_text">
5375<p>
Chris Lattner10610642004-02-14 04:08:35 +00005376LLVM provides intrinsics for a few important standard C library functions.
5377These intrinsics allow source-language front-ends to pass information about the
5378alignment of the pointer arguments to the code generator, providing opportunity
5379for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005380</p>
5381
5382</div>
5383
5384<!-- _______________________________________________________________________ -->
5385<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005386 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005387</div>
5388
5389<div class="doc_text">
5390
5391<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005392<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5393width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005394<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005395 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5396 i8 &lt;len&gt;, i32 &lt;align&gt;)
5397 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5398 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005399 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005400 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005401 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005402 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005403</pre>
5404
5405<h5>Overview:</h5>
5406
5407<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005408The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005409location to the destination location.
5410</p>
5411
5412<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005413Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5414intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005415</p>
5416
5417<h5>Arguments:</h5>
5418
5419<p>
5420The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005421the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005422specifying the number of bytes to copy, and the fourth argument is the alignment
5423of the source and destination locations.
5424</p>
5425
Chris Lattner3301ced2004-02-12 21:18:15 +00005426<p>
5427If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005428the caller guarantees that both the source and destination pointers are aligned
5429to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005430</p>
5431
Chris Lattner33aec9e2004-02-12 17:01:32 +00005432<h5>Semantics:</h5>
5433
5434<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005435The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005436location to the destination location, which are not allowed to overlap. It
5437copies "len" bytes of memory over. If the argument is known to be aligned to
5438some boundary, this can be specified as the fourth argument, otherwise it should
5439be set to 0 or 1.
5440</p>
5441</div>
5442
5443
Chris Lattner0eb51b42004-02-12 18:10:10 +00005444<!-- _______________________________________________________________________ -->
5445<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005446 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005447</div>
5448
5449<div class="doc_text">
5450
5451<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005452<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5453width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005454<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005455 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5456 i8 &lt;len&gt;, i32 &lt;align&gt;)
5457 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5458 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005459 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005460 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005461 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005462 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005463</pre>
5464
5465<h5>Overview:</h5>
5466
5467<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005468The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5469location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005470'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005471</p>
5472
5473<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005474Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5475intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005476</p>
5477
5478<h5>Arguments:</h5>
5479
5480<p>
5481The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005482the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005483specifying the number of bytes to copy, and the fourth argument is the alignment
5484of the source and destination locations.
5485</p>
5486
Chris Lattner3301ced2004-02-12 21:18:15 +00005487<p>
5488If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005489the caller guarantees that the source and destination pointers are aligned to
5490that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005491</p>
5492
Chris Lattner0eb51b42004-02-12 18:10:10 +00005493<h5>Semantics:</h5>
5494
5495<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005496The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005497location to the destination location, which may overlap. It
5498copies "len" bytes of memory over. If the argument is known to be aligned to
5499some boundary, this can be specified as the fourth argument, otherwise it should
5500be set to 0 or 1.
5501</p>
5502</div>
5503
Chris Lattner8ff75902004-01-06 05:31:32 +00005504
Chris Lattner10610642004-02-14 04:08:35 +00005505<!-- _______________________________________________________________________ -->
5506<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005507 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005508</div>
5509
5510<div class="doc_text">
5511
5512<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005513<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5514width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005515<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005516 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5517 i8 &lt;len&gt;, i32 &lt;align&gt;)
5518 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5519 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005520 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005521 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005522 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005523 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005524</pre>
5525
5526<h5>Overview:</h5>
5527
5528<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005529The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005530byte value.
5531</p>
5532
5533<p>
5534Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5535does not return a value, and takes an extra alignment argument.
5536</p>
5537
5538<h5>Arguments:</h5>
5539
5540<p>
5541The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005542byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005543argument specifying the number of bytes to fill, and the fourth argument is the
5544known alignment of destination location.
5545</p>
5546
5547<p>
5548If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005549the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005550</p>
5551
5552<h5>Semantics:</h5>
5553
5554<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005555The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5556the
Chris Lattner10610642004-02-14 04:08:35 +00005557destination location. If the argument is known to be aligned to some boundary,
5558this can be specified as the fourth argument, otherwise it should be set to 0 or
55591.
5560</p>
5561</div>
5562
5563
Chris Lattner32006282004-06-11 02:28:03 +00005564<!-- _______________________________________________________________________ -->
5565<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005566 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005567</div>
5568
5569<div class="doc_text">
5570
5571<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005572<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005573floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005574types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005575<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005576 declare float @llvm.sqrt.f32(float %Val)
5577 declare double @llvm.sqrt.f64(double %Val)
5578 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5579 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5580 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005581</pre>
5582
5583<h5>Overview:</h5>
5584
5585<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005586The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005587returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005588<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005589negative numbers other than -0.0 (which allows for better optimization, because
5590there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5591defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005592</p>
5593
5594<h5>Arguments:</h5>
5595
5596<p>
5597The argument and return value are floating point numbers of the same type.
5598</p>
5599
5600<h5>Semantics:</h5>
5601
5602<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005603This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005604floating point number.
5605</p>
5606</div>
5607
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005608<!-- _______________________________________________________________________ -->
5609<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005610 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005611</div>
5612
5613<div class="doc_text">
5614
5615<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005616<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005617floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005618types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005619<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005620 declare float @llvm.powi.f32(float %Val, i32 %power)
5621 declare double @llvm.powi.f64(double %Val, i32 %power)
5622 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5623 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5624 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005625</pre>
5626
5627<h5>Overview:</h5>
5628
5629<p>
5630The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5631specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005632multiplications is not defined. When a vector of floating point type is
5633used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005634</p>
5635
5636<h5>Arguments:</h5>
5637
5638<p>
5639The second argument is an integer power, and the first is a value to raise to
5640that power.
5641</p>
5642
5643<h5>Semantics:</h5>
5644
5645<p>
5646This function returns the first value raised to the second power with an
5647unspecified sequence of rounding operations.</p>
5648</div>
5649
Dan Gohman91c284c2007-10-15 20:30:11 +00005650<!-- _______________________________________________________________________ -->
5651<div class="doc_subsubsection">
5652 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5653</div>
5654
5655<div class="doc_text">
5656
5657<h5>Syntax:</h5>
5658<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5659floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005660types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005661<pre>
5662 declare float @llvm.sin.f32(float %Val)
5663 declare double @llvm.sin.f64(double %Val)
5664 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5665 declare fp128 @llvm.sin.f128(fp128 %Val)
5666 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5667</pre>
5668
5669<h5>Overview:</h5>
5670
5671<p>
5672The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5673</p>
5674
5675<h5>Arguments:</h5>
5676
5677<p>
5678The argument and return value are floating point numbers of the same type.
5679</p>
5680
5681<h5>Semantics:</h5>
5682
5683<p>
5684This function returns the sine of the specified operand, returning the
5685same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005686conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005687</div>
5688
5689<!-- _______________________________________________________________________ -->
5690<div class="doc_subsubsection">
5691 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5692</div>
5693
5694<div class="doc_text">
5695
5696<h5>Syntax:</h5>
5697<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5698floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005699types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005700<pre>
5701 declare float @llvm.cos.f32(float %Val)
5702 declare double @llvm.cos.f64(double %Val)
5703 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5704 declare fp128 @llvm.cos.f128(fp128 %Val)
5705 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5706</pre>
5707
5708<h5>Overview:</h5>
5709
5710<p>
5711The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5712</p>
5713
5714<h5>Arguments:</h5>
5715
5716<p>
5717The argument and return value are floating point numbers of the same type.
5718</p>
5719
5720<h5>Semantics:</h5>
5721
5722<p>
5723This function returns the cosine of the specified operand, returning the
5724same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005725conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005726</div>
5727
5728<!-- _______________________________________________________________________ -->
5729<div class="doc_subsubsection">
5730 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5731</div>
5732
5733<div class="doc_text">
5734
5735<h5>Syntax:</h5>
5736<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5737floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005738types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005739<pre>
5740 declare float @llvm.pow.f32(float %Val, float %Power)
5741 declare double @llvm.pow.f64(double %Val, double %Power)
5742 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5743 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5744 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5745</pre>
5746
5747<h5>Overview:</h5>
5748
5749<p>
5750The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5751specified (positive or negative) power.
5752</p>
5753
5754<h5>Arguments:</h5>
5755
5756<p>
5757The second argument is a floating point power, and the first is a value to
5758raise to that power.
5759</p>
5760
5761<h5>Semantics:</h5>
5762
5763<p>
5764This function returns the first value raised to the second power,
5765returning the
5766same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005767conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005768</div>
5769
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005770
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005771<!-- ======================================================================= -->
5772<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005773 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005774</div>
5775
5776<div class="doc_text">
5777<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005778LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005779These allow efficient code generation for some algorithms.
5780</p>
5781
5782</div>
5783
5784<!-- _______________________________________________________________________ -->
5785<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005786 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005787</div>
5788
5789<div class="doc_text">
5790
5791<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005792<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005793type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005794<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005795 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5796 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5797 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005798</pre>
5799
5800<h5>Overview:</h5>
5801
5802<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005803The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005804values with an even number of bytes (positive multiple of 16 bits). These are
5805useful for performing operations on data that is not in the target's native
5806byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005807</p>
5808
5809<h5>Semantics:</h5>
5810
5811<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005812The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005813and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5814intrinsic returns an i32 value that has the four bytes of the input i32
5815swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005816i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5817<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005818additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005819</p>
5820
5821</div>
5822
5823<!-- _______________________________________________________________________ -->
5824<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005825 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005826</div>
5827
5828<div class="doc_text">
5829
5830<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005831<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005832width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005833<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005834 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005835 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005836 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005837 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5838 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005839</pre>
5840
5841<h5>Overview:</h5>
5842
5843<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005844The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5845value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005846</p>
5847
5848<h5>Arguments:</h5>
5849
5850<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005851The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005852integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005853</p>
5854
5855<h5>Semantics:</h5>
5856
5857<p>
5858The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5859</p>
5860</div>
5861
5862<!-- _______________________________________________________________________ -->
5863<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005864 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005865</div>
5866
5867<div class="doc_text">
5868
5869<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005870<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005871integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005872<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005873 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5874 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005875 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005876 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5877 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005878</pre>
5879
5880<h5>Overview:</h5>
5881
5882<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005883The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5884leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005885</p>
5886
5887<h5>Arguments:</h5>
5888
5889<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005890The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005891integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005892</p>
5893
5894<h5>Semantics:</h5>
5895
5896<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005897The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5898in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005899of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005900</p>
5901</div>
Chris Lattner32006282004-06-11 02:28:03 +00005902
5903
Chris Lattnereff29ab2005-05-15 19:39:26 +00005904
5905<!-- _______________________________________________________________________ -->
5906<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005907 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005908</div>
5909
5910<div class="doc_text">
5911
5912<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005913<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005914integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005915<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005916 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5917 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005918 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005919 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5920 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005921</pre>
5922
5923<h5>Overview:</h5>
5924
5925<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005926The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5927trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005928</p>
5929
5930<h5>Arguments:</h5>
5931
5932<p>
5933The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005934integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005935</p>
5936
5937<h5>Semantics:</h5>
5938
5939<p>
5940The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5941in a variable. If the src == 0 then the result is the size in bits of the type
5942of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5943</p>
5944</div>
5945
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005946
Bill Wendlingda01af72009-02-08 04:04:40 +00005947<!-- ======================================================================= -->
5948<div class="doc_subsection">
5949 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
5950</div>
5951
5952<div class="doc_text">
5953<p>
5954LLVM provides intrinsics for some arithmetic with overflow operations.
5955</p>
5956
5957</div>
5958
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005959<!-- _______________________________________________________________________ -->
5960<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00005961 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005962</div>
5963
5964<div class="doc_text">
5965
5966<h5>Syntax:</h5>
5967
5968<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00005969on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005970
5971<pre>
5972 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
5973 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
5974 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
5975</pre>
5976
5977<h5>Overview:</h5>
5978
5979<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5980a signed addition of the two arguments, and indicate whether an overflow
5981occurred during the signed summation.</p>
5982
5983<h5>Arguments:</h5>
5984
5985<p>The arguments (%a and %b) and the first element of the result structure may
5986be of integer types of any bit width, but they must have the same bit width. The
5987second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
5988and <tt>%b</tt> are the two values that will undergo signed addition.</p>
5989
5990<h5>Semantics:</h5>
5991
5992<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5993a signed addition of the two variables. They return a structure &mdash; the
5994first element of which is the signed summation, and the second element of which
5995is a bit specifying if the signed summation resulted in an overflow.</p>
5996
5997<h5>Examples:</h5>
5998<pre>
5999 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6000 %sum = extractvalue {i32, i1} %res, 0
6001 %obit = extractvalue {i32, i1} %res, 1
6002 br i1 %obit, label %overflow, label %normal
6003</pre>
6004
6005</div>
6006
6007<!-- _______________________________________________________________________ -->
6008<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006009 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006010</div>
6011
6012<div class="doc_text">
6013
6014<h5>Syntax:</h5>
6015
6016<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006017on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006018
6019<pre>
6020 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6021 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6022 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6023</pre>
6024
6025<h5>Overview:</h5>
6026
6027<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6028an unsigned addition of the two arguments, and indicate whether a carry occurred
6029during the unsigned summation.</p>
6030
6031<h5>Arguments:</h5>
6032
6033<p>The arguments (%a and %b) and the first element of the result structure may
6034be of integer types of any bit width, but they must have the same bit width. The
6035second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6036and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6037
6038<h5>Semantics:</h5>
6039
6040<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6041an unsigned addition of the two arguments. They return a structure &mdash; the
6042first element of which is the sum, and the second element of which is a bit
6043specifying if the unsigned summation resulted in a carry.</p>
6044
6045<h5>Examples:</h5>
6046<pre>
6047 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6048 %sum = extractvalue {i32, i1} %res, 0
6049 %obit = extractvalue {i32, i1} %res, 1
6050 br i1 %obit, label %carry, label %normal
6051</pre>
6052
6053</div>
6054
6055<!-- _______________________________________________________________________ -->
6056<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006057 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006058</div>
6059
6060<div class="doc_text">
6061
6062<h5>Syntax:</h5>
6063
6064<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006065on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006066
6067<pre>
6068 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6069 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6070 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6071</pre>
6072
6073<h5>Overview:</h5>
6074
6075<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6076a signed subtraction of the two arguments, and indicate whether an overflow
6077occurred during the signed subtraction.</p>
6078
6079<h5>Arguments:</h5>
6080
6081<p>The arguments (%a and %b) and the first element of the result structure may
6082be of integer types of any bit width, but they must have the same bit width. The
6083second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6084and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6085
6086<h5>Semantics:</h5>
6087
6088<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6089a signed subtraction of the two arguments. They return a structure &mdash; the
6090first element of which is the subtraction, and the second element of which is a bit
6091specifying if the signed subtraction resulted in an overflow.</p>
6092
6093<h5>Examples:</h5>
6094<pre>
6095 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6096 %sum = extractvalue {i32, i1} %res, 0
6097 %obit = extractvalue {i32, i1} %res, 1
6098 br i1 %obit, label %overflow, label %normal
6099</pre>
6100
6101</div>
6102
6103<!-- _______________________________________________________________________ -->
6104<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006105 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006106</div>
6107
6108<div class="doc_text">
6109
6110<h5>Syntax:</h5>
6111
6112<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006113on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006114
6115<pre>
6116 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6117 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6118 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6119</pre>
6120
6121<h5>Overview:</h5>
6122
6123<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6124an unsigned subtraction of the two arguments, and indicate whether an overflow
6125occurred during the unsigned subtraction.</p>
6126
6127<h5>Arguments:</h5>
6128
6129<p>The arguments (%a and %b) and the first element of the result structure may
6130be of integer types of any bit width, but they must have the same bit width. The
6131second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6132and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6133
6134<h5>Semantics:</h5>
6135
6136<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6137an unsigned subtraction of the two arguments. They return a structure &mdash; the
6138first element of which is the subtraction, and the second element of which is a bit
6139specifying if the unsigned subtraction resulted in an overflow.</p>
6140
6141<h5>Examples:</h5>
6142<pre>
6143 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6144 %sum = extractvalue {i32, i1} %res, 0
6145 %obit = extractvalue {i32, i1} %res, 1
6146 br i1 %obit, label %overflow, label %normal
6147</pre>
6148
6149</div>
6150
6151<!-- _______________________________________________________________________ -->
6152<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006153 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006154</div>
6155
6156<div class="doc_text">
6157
6158<h5>Syntax:</h5>
6159
6160<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006161on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006162
6163<pre>
6164 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6165 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6166 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6167</pre>
6168
6169<h5>Overview:</h5>
6170
6171<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6172a signed multiplication of the two arguments, and indicate whether an overflow
6173occurred during the signed multiplication.</p>
6174
6175<h5>Arguments:</h5>
6176
6177<p>The arguments (%a and %b) and the first element of the result structure may
6178be of integer types of any bit width, but they must have the same bit width. The
6179second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6180and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6181
6182<h5>Semantics:</h5>
6183
6184<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6185a signed multiplication of the two arguments. They return a structure &mdash;
6186the first element of which is the multiplication, and the second element of
6187which is a bit specifying if the signed multiplication resulted in an
6188overflow.</p>
6189
6190<h5>Examples:</h5>
6191<pre>
6192 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6193 %sum = extractvalue {i32, i1} %res, 0
6194 %obit = extractvalue {i32, i1} %res, 1
6195 br i1 %obit, label %overflow, label %normal
6196</pre>
6197
Reid Spencerf86037f2007-04-11 23:23:49 +00006198</div>
6199
Bill Wendling41b485c2009-02-08 23:00:09 +00006200<!-- _______________________________________________________________________ -->
6201<div class="doc_subsubsection">
6202 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6203</div>
6204
6205<div class="doc_text">
6206
6207<h5>Syntax:</h5>
6208
6209<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6210on any integer bit width.</p>
6211
6212<pre>
6213 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6214 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6215 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6216</pre>
6217
6218<h5>Overview:</h5>
6219
Bill Wendling41b485c2009-02-08 23:00:09 +00006220<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6221a unsigned multiplication of the two arguments, and indicate whether an overflow
6222occurred during the unsigned multiplication.</p>
6223
6224<h5>Arguments:</h5>
6225
6226<p>The arguments (%a and %b) and the first element of the result structure may
6227be of integer types of any bit width, but they must have the same bit width. The
6228second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6229and <tt>%b</tt> are the two values that will undergo unsigned
6230multiplication.</p>
6231
6232<h5>Semantics:</h5>
6233
6234<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6235an unsigned multiplication of the two arguments. They return a structure &mdash;
6236the first element of which is the multiplication, and the second element of
6237which is a bit specifying if the unsigned multiplication resulted in an
6238overflow.</p>
6239
6240<h5>Examples:</h5>
6241<pre>
6242 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6243 %sum = extractvalue {i32, i1} %res, 0
6244 %obit = extractvalue {i32, i1} %res, 1
6245 br i1 %obit, label %overflow, label %normal
6246</pre>
6247
6248</div>
6249
Chris Lattner8ff75902004-01-06 05:31:32 +00006250<!-- ======================================================================= -->
6251<div class="doc_subsection">
6252 <a name="int_debugger">Debugger Intrinsics</a>
6253</div>
6254
6255<div class="doc_text">
6256<p>
6257The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6258are described in the <a
6259href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6260Debugging</a> document.
6261</p>
6262</div>
6263
6264
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006265<!-- ======================================================================= -->
6266<div class="doc_subsection">
6267 <a name="int_eh">Exception Handling Intrinsics</a>
6268</div>
6269
6270<div class="doc_text">
6271<p> The LLVM exception handling intrinsics (which all start with
6272<tt>llvm.eh.</tt> prefix), are described in the <a
6273href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6274Handling</a> document. </p>
6275</div>
6276
Tanya Lattner6d806e92007-06-15 20:50:54 +00006277<!-- ======================================================================= -->
6278<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00006279 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00006280</div>
6281
6282<div class="doc_text">
6283<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006284 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00006285 the <tt>nest</tt> attribute, from a function. The result is a callable
6286 function pointer lacking the nest parameter - the caller does not need
6287 to provide a value for it. Instead, the value to use is stored in
6288 advance in a "trampoline", a block of memory usually allocated
6289 on the stack, which also contains code to splice the nest value into the
6290 argument list. This is used to implement the GCC nested function address
6291 extension.
6292</p>
6293<p>
6294 For example, if the function is
6295 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00006296 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006297<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006298 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6299 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6300 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6301 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00006302</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00006303 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6304 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006305</div>
6306
6307<!-- _______________________________________________________________________ -->
6308<div class="doc_subsubsection">
6309 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6310</div>
6311<div class="doc_text">
6312<h5>Syntax:</h5>
6313<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006314declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00006315</pre>
6316<h5>Overview:</h5>
6317<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006318 This fills the memory pointed to by <tt>tramp</tt> with code
6319 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00006320</p>
6321<h5>Arguments:</h5>
6322<p>
6323 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6324 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6325 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00006326 intrinsic. Note that the size and the alignment are target-specific - LLVM
6327 currently provides no portable way of determining them, so a front-end that
6328 generates this intrinsic needs to have some target-specific knowledge.
6329 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00006330</p>
6331<h5>Semantics:</h5>
6332<p>
6333 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00006334 dependent code, turning it into a function. A pointer to this function is
6335 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00006336 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006337 before being called. The new function's signature is the same as that of
6338 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6339 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6340 of pointer type. Calling the new function is equivalent to calling
6341 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6342 missing <tt>nest</tt> argument. If, after calling
6343 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6344 modified, then the effect of any later call to the returned function pointer is
6345 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00006346</p>
6347</div>
6348
6349<!-- ======================================================================= -->
6350<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006351 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6352</div>
6353
6354<div class="doc_text">
6355<p>
6356 These intrinsic functions expand the "universal IR" of LLVM to represent
6357 hardware constructs for atomic operations and memory synchronization. This
6358 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00006359 is aimed at a low enough level to allow any programming models or APIs
6360 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006361 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6362 hardware behavior. Just as hardware provides a "universal IR" for source
6363 languages, it also provides a starting point for developing a "universal"
6364 atomic operation and synchronization IR.
6365</p>
6366<p>
6367 These do <em>not</em> form an API such as high-level threading libraries,
6368 software transaction memory systems, atomic primitives, and intrinsic
6369 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6370 application libraries. The hardware interface provided by LLVM should allow
6371 a clean implementation of all of these APIs and parallel programming models.
6372 No one model or paradigm should be selected above others unless the hardware
6373 itself ubiquitously does so.
6374
6375</p>
6376</div>
6377
6378<!-- _______________________________________________________________________ -->
6379<div class="doc_subsubsection">
6380 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6381</div>
6382<div class="doc_text">
6383<h5>Syntax:</h5>
6384<pre>
6385declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
6386i1 &lt;device&gt; )
6387
6388</pre>
6389<h5>Overview:</h5>
6390<p>
6391 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6392 specific pairs of memory access types.
6393</p>
6394<h5>Arguments:</h5>
6395<p>
6396 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6397 The first four arguments enables a specific barrier as listed below. The fith
6398 argument specifies that the barrier applies to io or device or uncached memory.
6399
6400</p>
6401 <ul>
6402 <li><tt>ll</tt>: load-load barrier</li>
6403 <li><tt>ls</tt>: load-store barrier</li>
6404 <li><tt>sl</tt>: store-load barrier</li>
6405 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006406 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006407 </ul>
6408<h5>Semantics:</h5>
6409<p>
6410 This intrinsic causes the system to enforce some ordering constraints upon
6411 the loads and stores of the program. This barrier does not indicate
6412 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6413 which they occur. For any of the specified pairs of load and store operations
6414 (f.ex. load-load, or store-load), all of the first operations preceding the
6415 barrier will complete before any of the second operations succeeding the
6416 barrier begin. Specifically the semantics for each pairing is as follows:
6417</p>
6418 <ul>
6419 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6420 after the barrier begins.</li>
6421
6422 <li><tt>ls</tt>: All loads before the barrier must complete before any
6423 store after the barrier begins.</li>
6424 <li><tt>ss</tt>: All stores before the barrier must complete before any
6425 store after the barrier begins.</li>
6426 <li><tt>sl</tt>: All stores before the barrier must complete before any
6427 load after the barrier begins.</li>
6428 </ul>
6429<p>
6430 These semantics are applied with a logical "and" behavior when more than one
6431 is enabled in a single memory barrier intrinsic.
6432</p>
6433<p>
6434 Backends may implement stronger barriers than those requested when they do not
6435 support as fine grained a barrier as requested. Some architectures do not
6436 need all types of barriers and on such architectures, these become noops.
6437</p>
6438<h5>Example:</h5>
6439<pre>
6440%ptr = malloc i32
6441 store i32 4, %ptr
6442
6443%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6444 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6445 <i>; guarantee the above finishes</i>
6446 store i32 8, %ptr <i>; before this begins</i>
6447</pre>
6448</div>
6449
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006450<!-- _______________________________________________________________________ -->
6451<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006452 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006453</div>
6454<div class="doc_text">
6455<h5>Syntax:</h5>
6456<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00006457 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6458 any integer bit width and for different address spaces. Not all targets
6459 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006460
6461<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006462declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6463declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6464declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6465declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006466
6467</pre>
6468<h5>Overview:</h5>
6469<p>
6470 This loads a value in memory and compares it to a given value. If they are
6471 equal, it stores a new value into the memory.
6472</p>
6473<h5>Arguments:</h5>
6474<p>
Mon P Wang28873102008-06-25 08:15:39 +00006475 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006476 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6477 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6478 this integer type. While any bit width integer may be used, targets may only
6479 lower representations they support in hardware.
6480
6481</p>
6482<h5>Semantics:</h5>
6483<p>
6484 This entire intrinsic must be executed atomically. It first loads the value
6485 in memory pointed to by <tt>ptr</tt> and compares it with the value
6486 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6487 loaded value is yielded in all cases. This provides the equivalent of an
6488 atomic compare-and-swap operation within the SSA framework.
6489</p>
6490<h5>Examples:</h5>
6491
6492<pre>
6493%ptr = malloc i32
6494 store i32 4, %ptr
6495
6496%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006497%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006498 <i>; yields {i32}:result1 = 4</i>
6499%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6500%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6501
6502%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006503%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006504 <i>; yields {i32}:result2 = 8</i>
6505%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6506
6507%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6508</pre>
6509</div>
6510
6511<!-- _______________________________________________________________________ -->
6512<div class="doc_subsubsection">
6513 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6514</div>
6515<div class="doc_text">
6516<h5>Syntax:</h5>
6517
6518<p>
6519 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6520 integer bit width. Not all targets support all bit widths however.</p>
6521<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006522declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6523declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6524declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6525declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006526
6527</pre>
6528<h5>Overview:</h5>
6529<p>
6530 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6531 the value from memory. It then stores the value in <tt>val</tt> in the memory
6532 at <tt>ptr</tt>.
6533</p>
6534<h5>Arguments:</h5>
6535
6536<p>
Mon P Wang28873102008-06-25 08:15:39 +00006537 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006538 <tt>val</tt> argument and the result must be integers of the same bit width.
6539 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6540 integer type. The targets may only lower integer representations they
6541 support.
6542</p>
6543<h5>Semantics:</h5>
6544<p>
6545 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6546 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6547 equivalent of an atomic swap operation within the SSA framework.
6548
6549</p>
6550<h5>Examples:</h5>
6551<pre>
6552%ptr = malloc i32
6553 store i32 4, %ptr
6554
6555%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006556%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006557 <i>; yields {i32}:result1 = 4</i>
6558%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6559%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6560
6561%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006562%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006563 <i>; yields {i32}:result2 = 8</i>
6564
6565%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6566%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6567</pre>
6568</div>
6569
6570<!-- _______________________________________________________________________ -->
6571<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006572 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006573
6574</div>
6575<div class="doc_text">
6576<h5>Syntax:</h5>
6577<p>
Mon P Wang28873102008-06-25 08:15:39 +00006578 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006579 integer bit width. Not all targets support all bit widths however.</p>
6580<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006581declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6582declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6583declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6584declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006585
6586</pre>
6587<h5>Overview:</h5>
6588<p>
6589 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6590 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6591</p>
6592<h5>Arguments:</h5>
6593<p>
6594
6595 The intrinsic takes two arguments, the first a pointer to an integer value
6596 and the second an integer value. The result is also an integer value. These
6597 integer types can have any bit width, but they must all have the same bit
6598 width. The targets may only lower integer representations they support.
6599</p>
6600<h5>Semantics:</h5>
6601<p>
6602 This intrinsic does a series of operations atomically. It first loads the
6603 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6604 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6605</p>
6606
6607<h5>Examples:</h5>
6608<pre>
6609%ptr = malloc i32
6610 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006611%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006612 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006613%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006614 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006615%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006616 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006617%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006618</pre>
6619</div>
6620
Mon P Wang28873102008-06-25 08:15:39 +00006621<!-- _______________________________________________________________________ -->
6622<div class="doc_subsubsection">
6623 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6624
6625</div>
6626<div class="doc_text">
6627<h5>Syntax:</h5>
6628<p>
6629 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006630 any integer bit width and for different address spaces. Not all targets
6631 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006632<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006633declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6634declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6635declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6636declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006637
6638</pre>
6639<h5>Overview:</h5>
6640<p>
6641 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6642 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6643</p>
6644<h5>Arguments:</h5>
6645<p>
6646
6647 The intrinsic takes two arguments, the first a pointer to an integer value
6648 and the second an integer value. The result is also an integer value. These
6649 integer types can have any bit width, but they must all have the same bit
6650 width. The targets may only lower integer representations they support.
6651</p>
6652<h5>Semantics:</h5>
6653<p>
6654 This intrinsic does a series of operations atomically. It first loads the
6655 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6656 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6657</p>
6658
6659<h5>Examples:</h5>
6660<pre>
6661%ptr = malloc i32
6662 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006663%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006664 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006665%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006666 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006667%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006668 <i>; yields {i32}:result3 = 2</i>
6669%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6670</pre>
6671</div>
6672
6673<!-- _______________________________________________________________________ -->
6674<div class="doc_subsubsection">
6675 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6676 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6677 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6678 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6679
6680</div>
6681<div class="doc_text">
6682<h5>Syntax:</h5>
6683<p>
6684 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6685 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006686 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6687 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006688<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006689declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6690declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6691declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6692declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006693
6694</pre>
6695
6696<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006697declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6698declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6699declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6700declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006701
6702</pre>
6703
6704<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006705declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6706declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6707declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6708declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006709
6710</pre>
6711
6712<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006713declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6714declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6715declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6716declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006717
6718</pre>
6719<h5>Overview:</h5>
6720<p>
6721 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6722 the value stored in memory at <tt>ptr</tt>. It yields the original value
6723 at <tt>ptr</tt>.
6724</p>
6725<h5>Arguments:</h5>
6726<p>
6727
6728 These intrinsics take two arguments, the first a pointer to an integer value
6729 and the second an integer value. The result is also an integer value. These
6730 integer types can have any bit width, but they must all have the same bit
6731 width. The targets may only lower integer representations they support.
6732</p>
6733<h5>Semantics:</h5>
6734<p>
6735 These intrinsics does a series of operations atomically. They first load the
6736 value stored at <tt>ptr</tt>. They then do the bitwise operation
6737 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6738 value stored at <tt>ptr</tt>.
6739</p>
6740
6741<h5>Examples:</h5>
6742<pre>
6743%ptr = malloc i32
6744 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006745%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006746 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006747%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006748 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006749%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006750 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006751%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006752 <i>; yields {i32}:result3 = FF</i>
6753%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6754</pre>
6755</div>
6756
6757
6758<!-- _______________________________________________________________________ -->
6759<div class="doc_subsubsection">
6760 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6761 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6762 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6763 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6764
6765</div>
6766<div class="doc_text">
6767<h5>Syntax:</h5>
6768<p>
6769 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6770 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006771 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6772 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006773 support all bit widths however.</p>
6774<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006775declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6776declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6777declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6778declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006779
6780</pre>
6781
6782<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006783declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6784declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6785declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6786declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006787
6788</pre>
6789
6790<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006791declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6792declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6793declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6794declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006795
6796</pre>
6797
6798<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006799declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6800declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6801declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6802declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006803
6804</pre>
6805<h5>Overview:</h5>
6806<p>
6807 These intrinsics takes the signed or unsigned minimum or maximum of
6808 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6809 original value at <tt>ptr</tt>.
6810</p>
6811<h5>Arguments:</h5>
6812<p>
6813
6814 These intrinsics take two arguments, the first a pointer to an integer value
6815 and the second an integer value. The result is also an integer value. These
6816 integer types can have any bit width, but they must all have the same bit
6817 width. The targets may only lower integer representations they support.
6818</p>
6819<h5>Semantics:</h5>
6820<p>
6821 These intrinsics does a series of operations atomically. They first load the
6822 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6823 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6824 the original value stored at <tt>ptr</tt>.
6825</p>
6826
6827<h5>Examples:</h5>
6828<pre>
6829%ptr = malloc i32
6830 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006831%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006832 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006833%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006834 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006835%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006836 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006837%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006838 <i>; yields {i32}:result3 = 8</i>
6839%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6840</pre>
6841</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006842
6843<!-- ======================================================================= -->
6844<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006845 <a name="int_general">General Intrinsics</a>
6846</div>
6847
6848<div class="doc_text">
6849<p> This class of intrinsics is designed to be generic and has
6850no specific purpose. </p>
6851</div>
6852
6853<!-- _______________________________________________________________________ -->
6854<div class="doc_subsubsection">
6855 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6856</div>
6857
6858<div class="doc_text">
6859
6860<h5>Syntax:</h5>
6861<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006862 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006863</pre>
6864
6865<h5>Overview:</h5>
6866
6867<p>
6868The '<tt>llvm.var.annotation</tt>' intrinsic
6869</p>
6870
6871<h5>Arguments:</h5>
6872
6873<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006874The first argument is a pointer to a value, the second is a pointer to a
6875global string, the third is a pointer to a global string which is the source
6876file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006877</p>
6878
6879<h5>Semantics:</h5>
6880
6881<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006882This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006883This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006884annotations. These have no other defined use, they are ignored by code
6885generation and optimization.
6886</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006887</div>
6888
Tanya Lattnerb6367882007-09-21 22:59:12 +00006889<!-- _______________________________________________________________________ -->
6890<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006891 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006892</div>
6893
6894<div class="doc_text">
6895
6896<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006897<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6898any integer bit width.
6899</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006900<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006901 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6902 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6903 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6904 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6905 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006906</pre>
6907
6908<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006909
6910<p>
6911The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006912</p>
6913
6914<h5>Arguments:</h5>
6915
6916<p>
6917The first argument is an integer value (result of some expression),
6918the second is a pointer to a global string, the third is a pointer to a global
6919string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006920It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006921</p>
6922
6923<h5>Semantics:</h5>
6924
6925<p>
6926This intrinsic allows annotations to be put on arbitrary expressions
6927with arbitrary strings. This can be useful for special purpose optimizations
6928that want to look for these annotations. These have no other defined use, they
6929are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00006930</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006931</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006932
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006933<!-- _______________________________________________________________________ -->
6934<div class="doc_subsubsection">
6935 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6936</div>
6937
6938<div class="doc_text">
6939
6940<h5>Syntax:</h5>
6941<pre>
6942 declare void @llvm.trap()
6943</pre>
6944
6945<h5>Overview:</h5>
6946
6947<p>
6948The '<tt>llvm.trap</tt>' intrinsic
6949</p>
6950
6951<h5>Arguments:</h5>
6952
6953<p>
6954None
6955</p>
6956
6957<h5>Semantics:</h5>
6958
6959<p>
6960This intrinsics is lowered to the target dependent trap instruction. If the
6961target does not have a trap instruction, this intrinsic will be lowered to the
6962call of the abort() function.
6963</p>
6964</div>
6965
Bill Wendling69e4adb2008-11-19 05:56:17 +00006966<!-- _______________________________________________________________________ -->
6967<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00006968 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00006969</div>
6970<div class="doc_text">
6971<h5>Syntax:</h5>
6972<pre>
6973declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
6974
6975</pre>
6976<h5>Overview:</h5>
6977<p>
6978 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
6979 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
6980 it is placed on the stack before local variables.
6981</p>
6982<h5>Arguments:</h5>
6983<p>
6984 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
6985 first argument is the value loaded from the stack guard
6986 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
6987 has enough space to hold the value of the guard.
6988</p>
6989<h5>Semantics:</h5>
6990<p>
6991 This intrinsic causes the prologue/epilogue inserter to force the position of
6992 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6993 stack. This is to ensure that if a local variable on the stack is overwritten,
6994 it will destroy the value of the guard. When the function exits, the guard on
6995 the stack is checked against the original guard. If they're different, then
6996 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
6997</p>
6998</div>
6999
Chris Lattner00950542001-06-06 20:29:01 +00007000<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00007001<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007002<address>
7003 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007004 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007005 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007006 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007007
7008 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00007009 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007010 Last modified: $Date$
7011</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00007012
Misha Brukman9d0919f2003-11-08 01:05:38 +00007013</body>
7014</html>