blob: 60217ecff42a1217a24ddfa808b22d615157328b [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner00950542001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000040 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Nick Lewycky7a0370f2009-05-30 05:06:04 +000044 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000045 </ol>
46 </li>
Chris Lattner00950542001-06-06 20:29:01 +000047 <li><a href="#t_derived">Derived Types</a>
48 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000049 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000050 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000051 <li><a href="#t_function">Function Type</a></li>
52 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000053 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000054 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000055 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000056 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000057 </ol>
58 </li>
Chris Lattner242d61d2009-02-02 07:32:36 +000059 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000060 </ol>
61 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000062 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000063 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000064 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner70882792009-02-28 18:32:25 +000065 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000066 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
67 <li><a href="#undefvalues">Undefined Values</a></li>
68 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky21cc4462009-04-04 07:22:01 +000069 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000070 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000071 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000072 <li><a href="#othervalues">Other Values</a>
73 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000074 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000075 </ol>
76 </li>
Chris Lattner00950542001-06-06 20:29:01 +000077 <li><a href="#instref">Instruction Reference</a>
78 <ol>
79 <li><a href="#terminators">Terminator Instructions</a>
80 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
82 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000083 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
84 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000085 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000086 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000087 </ol>
88 </li>
Chris Lattner00950542001-06-06 20:29:01 +000089 <li><a href="#binaryops">Binary Operations</a>
90 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000091 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000092 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000093 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000094 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000095 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000096 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000097 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
98 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
99 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +0000100 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
101 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
102 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000103 </ol>
104 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000105 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
106 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000107 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
108 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
109 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000110 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000111 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000112 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000113 </ol>
114 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000115 <li><a href="#vectorops">Vector Operations</a>
116 <ol>
117 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
118 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
119 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000120 </ol>
121 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000122 <li><a href="#aggregateops">Aggregate Operations</a>
123 <ol>
124 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
125 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
126 </ol>
127 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000128 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000129 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000130 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
131 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
132 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000133 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
134 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
135 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000136 </ol>
137 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000138 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000139 <ol>
140 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
141 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
142 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
143 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
144 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000145 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
146 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
147 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
148 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000149 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
150 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000151 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000152 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000153 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000154 <li><a href="#otherops">Other Operations</a>
155 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000156 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
157 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000158 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
159 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000161 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000162 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000163 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000164 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000165 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000166 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000167 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000168 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000169 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000170 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
171 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000172 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
173 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
174 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000175 </ol>
176 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000177 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
178 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000179 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
180 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
181 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000182 </ol>
183 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000184 <li><a href="#int_codegen">Code Generator Intrinsics</a>
185 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000186 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
187 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
188 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
189 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
190 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
191 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
192 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000193 </ol>
194 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000195 <li><a href="#int_libc">Standard C Library Intrinsics</a>
196 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000197 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
200 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
201 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000202 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
203 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
204 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000205 </ol>
206 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000207 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000208 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000209 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000210 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
211 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
212 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000213 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
214 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000215 </ol>
216 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000217 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
218 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000219 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
220 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
221 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
222 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
223 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling41b485c2009-02-08 23:00:09 +0000224 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000225 </ol>
226 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000227 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000228 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000229 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000230 <ol>
231 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000232 </ol>
233 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000234 <li><a href="#int_atomics">Atomic intrinsics</a>
235 <ol>
236 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
237 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
238 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
239 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
240 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
241 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
242 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
243 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
244 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
245 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
246 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
247 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
248 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
249 </ol>
250 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000251 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000252 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000253 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000254 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000255 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000256 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000257 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000258 '<tt>llvm.trap</tt>' Intrinsic</a></li>
259 <li><a href="#int_stackprotector">
260 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000261 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000262 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000263 </ol>
264 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000265</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000266
267<div class="doc_author">
268 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
269 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000270</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Chris Lattner00950542001-06-06 20:29:01 +0000272<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000273<div class="doc_section"> <a name="abstract">Abstract </a></div>
274<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000275
Misha Brukman9d0919f2003-11-08 01:05:38 +0000276<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000277<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000278LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000279type safety, low-level operations, flexibility, and the capability of
280representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000281representation used throughout all phases of the LLVM compilation
282strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000283</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000284
Chris Lattner00950542001-06-06 20:29:01 +0000285<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000286<div class="doc_section"> <a name="introduction">Introduction</a> </div>
287<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000288
Misha Brukman9d0919f2003-11-08 01:05:38 +0000289<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000290
Chris Lattner261efe92003-11-25 01:02:51 +0000291<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000292different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000293representation (suitable for fast loading by a Just-In-Time compiler),
294and as a human readable assembly language representation. This allows
295LLVM to provide a powerful intermediate representation for efficient
296compiler transformations and analysis, while providing a natural means
297to debug and visualize the transformations. The three different forms
298of LLVM are all equivalent. This document describes the human readable
299representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000300
John Criswellc1f786c2005-05-13 22:25:59 +0000301<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000302while being expressive, typed, and extensible at the same time. It
303aims to be a "universal IR" of sorts, by being at a low enough level
304that high-level ideas may be cleanly mapped to it (similar to how
305microprocessors are "universal IR's", allowing many source languages to
306be mapped to them). By providing type information, LLVM can be used as
307the target of optimizations: for example, through pointer analysis, it
308can be proven that a C automatic variable is never accessed outside of
309the current function... allowing it to be promoted to a simple SSA
310value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000311
Misha Brukman9d0919f2003-11-08 01:05:38 +0000312</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000313
Chris Lattner00950542001-06-06 20:29:01 +0000314<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000315<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000316
Misha Brukman9d0919f2003-11-08 01:05:38 +0000317<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000318
Chris Lattner261efe92003-11-25 01:02:51 +0000319<p>It is important to note that this document describes 'well formed'
320LLVM assembly language. There is a difference between what the parser
321accepts and what is considered 'well formed'. For example, the
322following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000323
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000324<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000325<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000326%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000327</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000328</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000329
Chris Lattner261efe92003-11-25 01:02:51 +0000330<p>...because the definition of <tt>%x</tt> does not dominate all of
331its uses. The LLVM infrastructure provides a verification pass that may
332be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000333automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000334the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000335by the verifier pass indicate bugs in transformation passes or input to
336the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000337</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000338
Chris Lattnercc689392007-10-03 17:34:29 +0000339<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000340
Chris Lattner00950542001-06-06 20:29:01 +0000341<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000342<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000343<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000344
Misha Brukman9d0919f2003-11-08 01:05:38 +0000345<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000346
Reid Spencer2c452282007-08-07 14:34:28 +0000347 <p>LLVM identifiers come in two basic types: global and local. Global
348 identifiers (functions, global variables) begin with the @ character. Local
349 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000350 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000351
Chris Lattner00950542001-06-06 20:29:01 +0000352<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000353 <li>Named values are represented as a string of characters with their prefix.
354 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
355 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000356 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000357 with quotes. Special characters may be escaped using "\xx" where xx is the
358 ASCII code for the character in hexadecimal. In this way, any character can
359 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000360
Reid Spencer2c452282007-08-07 14:34:28 +0000361 <li>Unnamed values are represented as an unsigned numeric value with their
362 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000363
Reid Spencercc16dc32004-12-09 18:02:53 +0000364 <li>Constants, which are described in a <a href="#constants">section about
365 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000366</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000367
Reid Spencer2c452282007-08-07 14:34:28 +0000368<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000369don't need to worry about name clashes with reserved words, and the set of
370reserved words may be expanded in the future without penalty. Additionally,
371unnamed identifiers allow a compiler to quickly come up with a temporary
372variable without having to avoid symbol table conflicts.</p>
373
Chris Lattner261efe92003-11-25 01:02:51 +0000374<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000375languages. There are keywords for different opcodes
376('<tt><a href="#i_add">add</a></tt>',
377 '<tt><a href="#i_bitcast">bitcast</a></tt>',
378 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000379href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000380and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000381none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000382
383<p>Here is an example of LLVM code to multiply the integer variable
384'<tt>%X</tt>' by 8:</p>
385
Misha Brukman9d0919f2003-11-08 01:05:38 +0000386<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000387
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000388<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000389<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000390%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000391</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000392</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000393
Misha Brukman9d0919f2003-11-08 01:05:38 +0000394<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000395
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000396<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000397<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000398%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000399</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000400</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000401
Misha Brukman9d0919f2003-11-08 01:05:38 +0000402<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000403
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000404<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000405<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000406<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
407<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
408%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000409</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000410</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000411
Chris Lattner261efe92003-11-25 01:02:51 +0000412<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
413important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000414
Chris Lattner00950542001-06-06 20:29:01 +0000415<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000416
417 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
418 line.</li>
419
420 <li>Unnamed temporaries are created when the result of a computation is not
421 assigned to a named value.</li>
422
Misha Brukman9d0919f2003-11-08 01:05:38 +0000423 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000424
Misha Brukman9d0919f2003-11-08 01:05:38 +0000425</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000426
John Criswelle4c57cc2005-05-12 16:52:32 +0000427<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000428demonstrating instructions, we will follow an instruction with a comment that
429defines the type and name of value produced. Comments are shown in italic
430text.</p>
431
Misha Brukman9d0919f2003-11-08 01:05:38 +0000432</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000433
434<!-- *********************************************************************** -->
435<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
436<!-- *********************************************************************** -->
437
438<!-- ======================================================================= -->
439<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
440</div>
441
442<div class="doc_text">
443
444<p>LLVM programs are composed of "Module"s, each of which is a
445translation unit of the input programs. Each module consists of
446functions, global variables, and symbol table entries. Modules may be
447combined together with the LLVM linker, which merges function (and
448global variable) definitions, resolves forward declarations, and merges
449symbol table entries. Here is an example of the "hello world" module:</p>
450
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000451<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000452<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000453<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
454 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000455
456<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000457<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000458
459<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000460define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000461 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000462 %cast210 = <a
Dan Gohman2a08c532009-01-04 23:44:43 +0000463 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000464
465 <i>; Call puts function to write out the string to stdout...</i>
466 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000467 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000468 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000469 href="#i_ret">ret</a> i32 0<br>}<br>
470</pre>
471</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000472
473<p>This example is made up of a <a href="#globalvars">global variable</a>
474named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
475function, and a <a href="#functionstructure">function definition</a>
476for "<tt>main</tt>".</p>
477
Chris Lattnere5d947b2004-12-09 16:36:40 +0000478<p>In general, a module is made up of a list of global values,
479where both functions and global variables are global values. Global values are
480represented by a pointer to a memory location (in this case, a pointer to an
481array of char, and a pointer to a function), and have one of the following <a
482href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000483
Chris Lattnere5d947b2004-12-09 16:36:40 +0000484</div>
485
486<!-- ======================================================================= -->
487<div class="doc_subsection">
488 <a name="linkage">Linkage Types</a>
489</div>
490
491<div class="doc_text">
492
493<p>
494All Global Variables and Functions have one of the following types of linkage:
495</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000496
497<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000498
Rafael Espindolabb46f522009-01-15 20:18:42 +0000499 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
500
501 <dd>Global values with private linkage are only directly accessible by
502 objects in the current module. In particular, linking code into a module with
503 an private global value may cause the private to be renamed as necessary to
504 avoid collisions. Because the symbol is private to the module, all
505 references can be updated. This doesn't show up in any symbol table in the
506 object file.
507 </dd>
508
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000509 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000510
Duncan Sands81d05c22009-01-16 09:29:46 +0000511 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindolabb46f522009-01-15 20:18:42 +0000512 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000513 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000514 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000515
Chris Lattner266c7bb2009-04-13 05:44:34 +0000516 <dt><tt><b><a name="available_externally">available_externally</a></b></tt>:
517 </dt>
518
519 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
520 into the object file corresponding to the LLVM module. They exist to
521 allow inlining and other optimizations to take place given knowledge of the
522 definition of the global, which is known to be somewhere outside the module.
523 Globals with <tt>available_externally</tt> linkage are allowed to be discarded
524 at will, and are otherwise the same as <tt>linkonce_odr</tt>. This linkage
525 type is only allowed on definitions, not declarations.</dd>
526
Chris Lattnerfa730212004-12-09 16:11:40 +0000527 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000528
Chris Lattner4887bd82007-01-14 06:51:48 +0000529 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
530 the same name when linkage occurs. This is typically used to implement
531 inline functions, templates, or other code which must be generated in each
532 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
533 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000534 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000535
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000536 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
537
538 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
539 linkage, except that unreferenced <tt>common</tt> globals may not be
540 discarded. This is used for globals that may be emitted in multiple
541 translation units, but that are not guaranteed to be emitted into every
542 translation unit that uses them. One example of this is tentative
543 definitions in C, such as "<tt>int X;</tt>" at global scope.
544 </dd>
545
Chris Lattnerfa730212004-12-09 16:11:40 +0000546 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000547
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000548 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
549 that some targets may choose to emit different assembly sequences for them
550 for target-dependent reasons. This is used for globals that are declared
551 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000552 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000553
Chris Lattnerfa730212004-12-09 16:11:40 +0000554 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000555
556 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
557 pointer to array type. When two global variables with appending linkage are
558 linked together, the two global arrays are appended together. This is the
559 LLVM, typesafe, equivalent of having the system linker append together
560 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000561 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000562
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000563 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000564
Chris Lattnerd3eda892008-08-05 18:29:16 +0000565 <dd>The semantics of this linkage follow the ELF object file model: the
566 symbol is weak until linked, if not linked, the symbol becomes null instead
567 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000568 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000569
Duncan Sands667d4b82009-03-07 15:45:40 +0000570 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000571 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000572 <dd>Some languages allow differing globals to be merged, such as two
Duncan Sands667d4b82009-03-07 15:45:40 +0000573 functions with different semantics. Other languages, such as <tt>C++</tt>,
574 ensure that only equivalent globals are ever merged (the "one definition
Chris Lattner266c7bb2009-04-13 05:44:34 +0000575 rule" - "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Duncan Sands4dc2b392009-03-11 20:14:15 +0000576 and <tt>weak_odr</tt> linkage types to indicate that the global will only
577 be merged with equivalent globals. These linkage types are otherwise the
578 same as their non-<tt>odr</tt> versions.
Duncan Sands667d4b82009-03-07 15:45:40 +0000579 </dd>
580
Chris Lattnerfa730212004-12-09 16:11:40 +0000581 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000582
583 <dd>If none of the above identifiers are used, the global is externally
584 visible, meaning that it participates in linkage and can be used to resolve
585 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000586 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000587</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000588
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000589 <p>
590 The next two types of linkage are targeted for Microsoft Windows platform
591 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000592 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000593 </p>
594
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000595 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000596 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
597
598 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
599 or variable via a global pointer to a pointer that is set up by the DLL
600 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman79564122009-01-12 21:35:55 +0000601 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000602 </dd>
603
604 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
605
606 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
607 pointer to a pointer in a DLL, so that it can be referenced with the
608 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman79564122009-01-12 21:35:55 +0000609 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000610 name.
611 </dd>
612
Chris Lattnerfa730212004-12-09 16:11:40 +0000613</dl>
614
Dan Gohmanf0032762008-11-24 17:18:39 +0000615<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000616variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
617variable and was linked with this one, one of the two would be renamed,
618preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
619external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000620outside of the current module.</p>
621<p>It is illegal for a function <i>declaration</i>
Duncan Sands5f4ee1f2009-03-11 08:08:06 +0000622to have any linkage type other than "externally visible", <tt>dllimport</tt>
623or <tt>extern_weak</tt>.</p>
Duncan Sands667d4b82009-03-07 15:45:40 +0000624<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
625or <tt>weak_odr</tt> linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000626</div>
627
628<!-- ======================================================================= -->
629<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000630 <a name="callingconv">Calling Conventions</a>
631</div>
632
633<div class="doc_text">
634
635<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
636and <a href="#i_invoke">invokes</a> can all have an optional calling convention
637specified for the call. The calling convention of any pair of dynamic
638caller/callee must match, or the behavior of the program is undefined. The
639following calling conventions are supported by LLVM, and more may be added in
640the future:</p>
641
642<dl>
643 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
644
645 <dd>This calling convention (the default if no other calling convention is
646 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000647 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000648 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000649 </dd>
650
651 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
652
653 <dd>This calling convention attempts to make calls as fast as possible
654 (e.g. by passing things in registers). This calling convention allows the
655 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000656 without having to conform to an externally specified ABI (Application Binary
657 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000658 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
659 supported. This calling convention does not support varargs and requires the
660 prototype of all callees to exactly match the prototype of the function
661 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000662 </dd>
663
664 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
665
666 <dd>This calling convention attempts to make code in the caller as efficient
667 as possible under the assumption that the call is not commonly executed. As
668 such, these calls often preserve all registers so that the call does not break
669 any live ranges in the caller side. This calling convention does not support
670 varargs and requires the prototype of all callees to exactly match the
671 prototype of the function definition.
672 </dd>
673
Chris Lattnercfe6b372005-05-07 01:46:40 +0000674 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000675
676 <dd>Any calling convention may be specified by number, allowing
677 target-specific calling conventions to be used. Target specific calling
678 conventions start at 64.
679 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000680</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000681
682<p>More calling conventions can be added/defined on an as-needed basis, to
683support pascal conventions or any other well-known target-independent
684convention.</p>
685
686</div>
687
688<!-- ======================================================================= -->
689<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000690 <a name="visibility">Visibility Styles</a>
691</div>
692
693<div class="doc_text">
694
695<p>
696All Global Variables and Functions have one of the following visibility styles:
697</p>
698
699<dl>
700 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
701
Chris Lattnerd3eda892008-08-05 18:29:16 +0000702 <dd>On targets that use the ELF object file format, default visibility means
703 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000704 modules and, in shared libraries, means that the declared entity may be
705 overridden. On Darwin, default visibility means that the declaration is
706 visible to other modules. Default visibility corresponds to "external
707 linkage" in the language.
708 </dd>
709
710 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
711
712 <dd>Two declarations of an object with hidden visibility refer to the same
713 object if they are in the same shared object. Usually, hidden visibility
714 indicates that the symbol will not be placed into the dynamic symbol table,
715 so no other module (executable or shared library) can reference it
716 directly.
717 </dd>
718
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000719 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
720
721 <dd>On ELF, protected visibility indicates that the symbol will be placed in
722 the dynamic symbol table, but that references within the defining module will
723 bind to the local symbol. That is, the symbol cannot be overridden by another
724 module.
725 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000726</dl>
727
728</div>
729
730<!-- ======================================================================= -->
731<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000732 <a name="namedtypes">Named Types</a>
733</div>
734
735<div class="doc_text">
736
737<p>LLVM IR allows you to specify name aliases for certain types. This can make
738it easier to read the IR and make the IR more condensed (particularly when
739recursive types are involved). An example of a name specification is:
740</p>
741
742<div class="doc_code">
743<pre>
744%mytype = type { %mytype*, i32 }
745</pre>
746</div>
747
748<p>You may give a name to any <a href="#typesystem">type</a> except "<a
749href="t_void">void</a>". Type name aliases may be used anywhere a type is
750expected with the syntax "%mytype".</p>
751
752<p>Note that type names are aliases for the structural type that they indicate,
753and that you can therefore specify multiple names for the same type. This often
754leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
755structural typing, the name is not part of the type. When printing out LLVM IR,
756the printer will pick <em>one name</em> to render all types of a particular
757shape. This means that if you have code where two different source types end up
758having the same LLVM type, that the dumper will sometimes print the "wrong" or
759unexpected type. This is an important design point and isn't going to
760change.</p>
761
762</div>
763
Chris Lattnere7886e42009-01-11 20:53:49 +0000764<!-- ======================================================================= -->
765<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000766 <a name="globalvars">Global Variables</a>
767</div>
768
769<div class="doc_text">
770
Chris Lattner3689a342005-02-12 19:30:21 +0000771<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000772instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000773an explicit section to be placed in, and may have an optional explicit alignment
774specified. A variable may be defined as "thread_local", which means that it
775will not be shared by threads (each thread will have a separated copy of the
776variable). A variable may be defined as a global "constant," which indicates
777that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000778optimization, allowing the global data to be placed in the read-only section of
779an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000780cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000781
782<p>
783LLVM explicitly allows <em>declarations</em> of global variables to be marked
784constant, even if the final definition of the global is not. This capability
785can be used to enable slightly better optimization of the program, but requires
786the language definition to guarantee that optimizations based on the
787'constantness' are valid for the translation units that do not include the
788definition.
789</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000790
791<p>As SSA values, global variables define pointer values that are in
792scope (i.e. they dominate) all basic blocks in the program. Global
793variables always define a pointer to their "content" type because they
794describe a region of memory, and all memory objects in LLVM are
795accessed through pointers.</p>
796
Christopher Lamb284d9922007-12-11 09:31:00 +0000797<p>A global variable may be declared to reside in a target-specifc numbered
798address space. For targets that support them, address spaces may affect how
799optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000800the variable. The default address space is zero. The address space qualifier
801must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000802
Chris Lattner88f6c462005-11-12 00:45:07 +0000803<p>LLVM allows an explicit section to be specified for globals. If the target
804supports it, it will emit globals to the section specified.</p>
805
Chris Lattner2cbdc452005-11-06 08:02:57 +0000806<p>An explicit alignment may be specified for a global. If not present, or if
807the alignment is set to zero, the alignment of the global is set by the target
808to whatever it feels convenient. If an explicit alignment is specified, the
809global is forced to have at least that much alignment. All alignments must be
810a power of 2.</p>
811
Christopher Lamb284d9922007-12-11 09:31:00 +0000812<p>For example, the following defines a global in a numbered address space with
813an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000814
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000815<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000816<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000817@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000818</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000819</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000820
Chris Lattnerfa730212004-12-09 16:11:40 +0000821</div>
822
823
824<!-- ======================================================================= -->
825<div class="doc_subsection">
826 <a name="functionstructure">Functions</a>
827</div>
828
829<div class="doc_text">
830
Reid Spencerca86e162006-12-31 07:07:53 +0000831<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
832an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000833<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000834<a href="#callingconv">calling convention</a>, a return type, an optional
835<a href="#paramattrs">parameter attribute</a> for the return type, a function
836name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000837<a href="#paramattrs">parameter attributes</a>), optional
838<a href="#fnattrs">function attributes</a>, an optional section,
839an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000840an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000841
842LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
843optional <a href="#linkage">linkage type</a>, an optional
844<a href="#visibility">visibility style</a>, an optional
845<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000846<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000847name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000848<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000849
Chris Lattnerd3eda892008-08-05 18:29:16 +0000850<p>A function definition contains a list of basic blocks, forming the CFG
851(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000852the function. Each basic block may optionally start with a label (giving the
853basic block a symbol table entry), contains a list of instructions, and ends
854with a <a href="#terminators">terminator</a> instruction (such as a branch or
855function return).</p>
856
Chris Lattner4a3c9012007-06-08 16:52:14 +0000857<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000858executed on entrance to the function, and it is not allowed to have predecessor
859basic blocks (i.e. there can not be any branches to the entry block of a
860function). Because the block can have no predecessors, it also cannot have any
861<a href="#i_phi">PHI nodes</a>.</p>
862
Chris Lattner88f6c462005-11-12 00:45:07 +0000863<p>LLVM allows an explicit section to be specified for functions. If the target
864supports it, it will emit functions to the section specified.</p>
865
Chris Lattner2cbdc452005-11-06 08:02:57 +0000866<p>An explicit alignment may be specified for a function. If not present, or if
867the alignment is set to zero, the alignment of the function is set by the target
868to whatever it feels convenient. If an explicit alignment is specified, the
869function is forced to have at least that much alignment. All alignments must be
870a power of 2.</p>
871
Devang Patel307e8ab2008-10-07 17:48:33 +0000872 <h5>Syntax:</h5>
873
874<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000875<tt>
876define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
877 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
878 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
879 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
880 [<a href="#gc">gc</a>] { ... }
881</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000882</div>
883
Chris Lattnerfa730212004-12-09 16:11:40 +0000884</div>
885
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000886
887<!-- ======================================================================= -->
888<div class="doc_subsection">
889 <a name="aliasstructure">Aliases</a>
890</div>
891<div class="doc_text">
892 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000893 function, global variable, another alias or bitcast of global value). Aliases
894 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000895 optional <a href="#visibility">visibility style</a>.</p>
896
897 <h5>Syntax:</h5>
898
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000899<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000900<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000901@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000902</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000903</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000904
905</div>
906
907
908
Chris Lattner4e9aba72006-01-23 23:23:47 +0000909<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000910<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
911<div class="doc_text">
912 <p>The return type and each parameter of a function type may have a set of
913 <i>parameter attributes</i> associated with them. Parameter attributes are
914 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000915 a function. Parameter attributes are considered to be part of the function,
916 not of the function type, so functions with different parameter attributes
917 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000918
Reid Spencer950e9f82007-01-15 18:27:39 +0000919 <p>Parameter attributes are simple keywords that follow the type specified. If
920 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000921 example:</p>
922
923<div class="doc_code">
924<pre>
Nick Lewyckyb6a7d252009-02-15 23:06:14 +0000925declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000926declare i32 @atoi(i8 zeroext)
927declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000928</pre>
929</div>
930
Duncan Sandsdc024672007-11-27 13:23:08 +0000931 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
932 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000933
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000934 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000935 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000936 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000937 <dd>This indicates to the code generator that the parameter or return value
938 should be zero-extended to a 32-bit value by the caller (for a parameter)
939 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000940
Reid Spencer9445e9a2007-07-19 23:13:04 +0000941 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000942 <dd>This indicates to the code generator that the parameter or return value
943 should be sign-extended to a 32-bit value by the caller (for a parameter)
944 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000945
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000946 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000947 <dd>This indicates that this parameter or return value should be treated
948 in a special target-dependent fashion during while emitting code for a
949 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000950 to memory, though some targets use it to distinguish between two different
951 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000952
Duncan Sandsedb05df2008-10-06 08:14:18 +0000953 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000954 <dd>This indicates that the pointer parameter should really be passed by
955 value to the function. The attribute implies that a hidden copy of the
956 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000957 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000958 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000959 value, but is also valid on pointers to scalars. The copy is considered to
960 belong to the caller not the callee (for example,
961 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000962 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerce459b12009-02-05 05:42:28 +0000963 values. The byval attribute also supports specifying an alignment with the
964 align attribute. This has a target-specific effect on the code generator
965 that usually indicates a desired alignment for the synthesized stack
966 slot.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000967
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000968 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000969 <dd>This indicates that the pointer parameter specifies the address of a
970 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000971 This pointer must be guaranteed by the caller to be valid: loads and stores
972 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000973 be applied to the first parameter. This is not a valid attribute for
974 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000975
Zhou Shengfebca342007-06-05 05:28:26 +0000976 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000977 <dd>This indicates that the pointer does not alias any global or any other
978 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000979 case. On a function return value, <tt>noalias</tt> additionally indicates
980 that the pointer does not alias any other pointers visible to the
Nick Lewyckyf23d0d32008-12-19 06:39:12 +0000981 caller. For further details, please see the discussion of the NoAlias
982 response in
983 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
984 analysis</a>.</dd>
985
986 <dt><tt>nocapture</tt></dt>
987 <dd>This indicates that the callee does not make any copies of the pointer
988 that outlive the callee itself. This is not a valid attribute for return
989 values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000990
Duncan Sands50f19f52007-07-27 19:57:41 +0000991 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000992 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000993 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
994 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000995 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000996
Reid Spencerca86e162006-12-31 07:07:53 +0000997</div>
998
999<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +00001000<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001001 <a name="gc">Garbage Collector Names</a>
1002</div>
1003
1004<div class="doc_text">
1005<p>Each function may specify a garbage collector name, which is simply a
1006string.</p>
1007
1008<div class="doc_code"><pre
1009>define void @f() gc "name" { ...</pre></div>
1010
1011<p>The compiler declares the supported values of <i>name</i>. Specifying a
1012collector which will cause the compiler to alter its output in order to support
1013the named garbage collection algorithm.</p>
1014</div>
1015
1016<!-- ======================================================================= -->
1017<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001018 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +00001019</div>
1020
1021<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001022
1023<p>Function attributes are set to communicate additional information about
1024 a function. Function attributes are considered to be part of the function,
1025 not of the function type, so functions with different parameter attributes
1026 can have the same function type.</p>
1027
1028 <p>Function attributes are simple keywords that follow the type specified. If
1029 multiple attributes are needed, they are space separated. For
1030 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001031
1032<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001033<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001034define void @f() noinline { ... }
1035define void @f() alwaysinline { ... }
1036define void @f() alwaysinline optsize { ... }
1037define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001038</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001039</div>
1040
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001041<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001042<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001043<dd>This attribute indicates that the inliner should attempt to inline this
1044function into callers whenever possible, ignoring any active inlining size
1045threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001046
Devang Patel2c9c3e72008-09-26 23:51:19 +00001047<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001048<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +00001049in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +00001050<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001051
Devang Patel2c9c3e72008-09-26 23:51:19 +00001052<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +00001053<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +00001054make choices that keep the code size of this function low, and otherwise do
1055optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001056
Devang Patel2c9c3e72008-09-26 23:51:19 +00001057<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001058<dd>This function attribute indicates that the function never returns normally.
1059This produces undefined behavior at runtime if the function ever does
1060dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001061
1062<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001063<dd>This function attribute indicates that the function never returns with an
1064unwind or exceptional control flow. If the function does unwind, its runtime
1065behavior is undefined.</dd>
1066
1067<dt><tt>readnone</tt></dt>
Duncan Sands7af1c782009-05-06 06:49:50 +00001068<dd>This attribute indicates that the function computes its result (or decides to
1069unwind an exception) based strictly on its arguments, without dereferencing any
Duncan Sandsedb05df2008-10-06 08:14:18 +00001070pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1071registers, etc) visible to caller functions. It does not write through any
1072pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
Duncan Sands7af1c782009-05-06 06:49:50 +00001073never changes any state visible to callers. This means that it cannot unwind
1074exceptions by calling the <tt>C++</tt> exception throwing methods, but could
1075use the <tt>unwind</tt> instruction.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001076
Duncan Sandsedb05df2008-10-06 08:14:18 +00001077<dt><tt><a name="readonly">readonly</a></tt></dt>
1078<dd>This attribute indicates that the function does not write through any
1079pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1080or otherwise modify any state (e.g. memory, control registers, etc) visible to
1081caller functions. It may dereference pointer arguments and read state that may
Duncan Sands7af1c782009-05-06 06:49:50 +00001082be set in the caller. A readonly function always returns the same value (or
1083unwinds an exception identically) when called with the same set of arguments
1084and global state. It cannot unwind an exception by calling the <tt>C++</tt>
1085exception throwing methods, but may use the <tt>unwind</tt> instruction.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001086
1087<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001088<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +00001089protector. It is in the form of a "canary"&mdash;a random value placed on the
1090stack before the local variables that's checked upon return from the function to
1091see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001092needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001093
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001094<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
1095that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
1096have an <tt>ssp</tt> attribute.</p></dd>
1097
1098<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001099<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001100stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001101function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001102
1103<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
1104function that doesn't have an <tt>sspreq</tt> attribute or which has
1105an <tt>ssp</tt> attribute, then the resulting function will have
1106an <tt>sspreq</tt> attribute.</p></dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001107</dl>
1108
Devang Patelf8b94812008-09-04 23:05:13 +00001109</div>
1110
1111<!-- ======================================================================= -->
1112<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001113 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001114</div>
1115
1116<div class="doc_text">
1117<p>
1118Modules may contain "module-level inline asm" blocks, which corresponds to the
1119GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1120LLVM and treated as a single unit, but may be separated in the .ll file if
1121desired. The syntax is very simple:
1122</p>
1123
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001124<div class="doc_code">
1125<pre>
1126module asm "inline asm code goes here"
1127module asm "more can go here"
1128</pre>
1129</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001130
1131<p>The strings can contain any character by escaping non-printable characters.
1132 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1133 for the number.
1134</p>
1135
1136<p>
1137 The inline asm code is simply printed to the machine code .s file when
1138 assembly code is generated.
1139</p>
1140</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001141
Reid Spencerde151942007-02-19 23:54:10 +00001142<!-- ======================================================================= -->
1143<div class="doc_subsection">
1144 <a name="datalayout">Data Layout</a>
1145</div>
1146
1147<div class="doc_text">
1148<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001149data is to be laid out in memory. The syntax for the data layout is simply:</p>
1150<pre> target datalayout = "<i>layout specification</i>"</pre>
1151<p>The <i>layout specification</i> consists of a list of specifications
1152separated by the minus sign character ('-'). Each specification starts with a
1153letter and may include other information after the letter to define some
1154aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001155<dl>
1156 <dt><tt>E</tt></dt>
1157 <dd>Specifies that the target lays out data in big-endian form. That is, the
1158 bits with the most significance have the lowest address location.</dd>
1159 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001160 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001161 the bits with the least significance have the lowest address location.</dd>
1162 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1163 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1164 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1165 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1166 too.</dd>
1167 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1168 <dd>This specifies the alignment for an integer type of a given bit
1169 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1170 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1171 <dd>This specifies the alignment for a vector type of a given bit
1172 <i>size</i>.</dd>
1173 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1174 <dd>This specifies the alignment for a floating point type of a given bit
1175 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1176 (double).</dd>
1177 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1178 <dd>This specifies the alignment for an aggregate type of a given bit
1179 <i>size</i>.</dd>
1180</dl>
1181<p>When constructing the data layout for a given target, LLVM starts with a
1182default set of specifications which are then (possibly) overriden by the
1183specifications in the <tt>datalayout</tt> keyword. The default specifications
1184are given in this list:</p>
1185<ul>
1186 <li><tt>E</tt> - big endian</li>
1187 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1188 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1189 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1190 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1191 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001192 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001193 alignment of 64-bits</li>
1194 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1195 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1196 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1197 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1198 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1199</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001200<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001201following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001202<ol>
1203 <li>If the type sought is an exact match for one of the specifications, that
1204 specification is used.</li>
1205 <li>If no match is found, and the type sought is an integer type, then the
1206 smallest integer type that is larger than the bitwidth of the sought type is
1207 used. If none of the specifications are larger than the bitwidth then the the
1208 largest integer type is used. For example, given the default specifications
1209 above, the i7 type will use the alignment of i8 (next largest) while both
1210 i65 and i256 will use the alignment of i64 (largest specified).</li>
1211 <li>If no match is found, and the type sought is a vector type, then the
1212 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001213 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1214 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001215</ol>
1216</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001217
Chris Lattner00950542001-06-06 20:29:01 +00001218<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001219<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1220<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001221
Misha Brukman9d0919f2003-11-08 01:05:38 +00001222<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001223
Misha Brukman9d0919f2003-11-08 01:05:38 +00001224<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001225intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001226optimizations to be performed on the intermediate representation directly,
1227without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001228extra analyses on the side before the transformation. A strong type
1229system makes it easier to read the generated code and enables novel
1230analyses and transformations that are not feasible to perform on normal
1231three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001232
1233</div>
1234
Chris Lattner00950542001-06-06 20:29:01 +00001235<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001236<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001237Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001238<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001239<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001240classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001241
1242<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001243 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001244 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001245 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001246 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001247 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001248 </tr>
1249 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001250 <td><a href="#t_floating">floating point</a></td>
1251 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001252 </tr>
1253 <tr>
1254 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001255 <td><a href="#t_integer">integer</a>,
1256 <a href="#t_floating">floating point</a>,
1257 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001258 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001259 <a href="#t_struct">structure</a>,
1260 <a href="#t_array">array</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001261 <a href="#t_label">label</a>,
1262 <a href="#t_metadata">metadata</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001263 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001264 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001265 <tr>
1266 <td><a href="#t_primitive">primitive</a></td>
1267 <td><a href="#t_label">label</a>,
1268 <a href="#t_void">void</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001269 <a href="#t_floating">floating point</a>,
1270 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001271 </tr>
1272 <tr>
1273 <td><a href="#t_derived">derived</a></td>
1274 <td><a href="#t_integer">integer</a>,
1275 <a href="#t_array">array</a>,
1276 <a href="#t_function">function</a>,
1277 <a href="#t_pointer">pointer</a>,
1278 <a href="#t_struct">structure</a>,
1279 <a href="#t_pstruct">packed structure</a>,
1280 <a href="#t_vector">vector</a>,
1281 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001282 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001283 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001284 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001285</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001286
Chris Lattner261efe92003-11-25 01:02:51 +00001287<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1288most important. Values of these types are the only ones which can be
1289produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001290instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001291</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001292
Chris Lattner00950542001-06-06 20:29:01 +00001293<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001294<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001295
Chris Lattner4f69f462008-01-04 04:32:38 +00001296<div class="doc_text">
1297<p>The primitive types are the fundamental building blocks of the LLVM
1298system.</p>
1299
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001300</div>
1301
Chris Lattner4f69f462008-01-04 04:32:38 +00001302<!-- _______________________________________________________________________ -->
1303<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1304
1305<div class="doc_text">
1306 <table>
1307 <tbody>
1308 <tr><th>Type</th><th>Description</th></tr>
1309 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1310 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1311 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1312 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1313 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1314 </tbody>
1315 </table>
1316</div>
1317
1318<!-- _______________________________________________________________________ -->
1319<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1320
1321<div class="doc_text">
1322<h5>Overview:</h5>
1323<p>The void type does not represent any value and has no size.</p>
1324
1325<h5>Syntax:</h5>
1326
1327<pre>
1328 void
1329</pre>
1330</div>
1331
1332<!-- _______________________________________________________________________ -->
1333<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1334
1335<div class="doc_text">
1336<h5>Overview:</h5>
1337<p>The label type represents code labels.</p>
1338
1339<h5>Syntax:</h5>
1340
1341<pre>
1342 label
1343</pre>
1344</div>
1345
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001346<!-- _______________________________________________________________________ -->
1347<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1348
1349<div class="doc_text">
1350<h5>Overview:</h5>
1351<p>The metadata type represents embedded metadata. The only derived type that
1352may contain metadata is <tt>metadata*</tt> or a function type that returns or
1353takes metadata typed parameters, but not pointer to metadata types.</p>
1354
1355<h5>Syntax:</h5>
1356
1357<pre>
1358 metadata
1359</pre>
1360</div>
1361
Chris Lattner4f69f462008-01-04 04:32:38 +00001362
1363<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001364<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001365
Misha Brukman9d0919f2003-11-08 01:05:38 +00001366<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001367
Chris Lattner261efe92003-11-25 01:02:51 +00001368<p>The real power in LLVM comes from the derived types in the system.
1369This is what allows a programmer to represent arrays, functions,
1370pointers, and other useful types. Note that these derived types may be
1371recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001372
Misha Brukman9d0919f2003-11-08 01:05:38 +00001373</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001374
Chris Lattner00950542001-06-06 20:29:01 +00001375<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001376<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1377
1378<div class="doc_text">
1379
1380<h5>Overview:</h5>
1381<p>The integer type is a very simple derived type that simply specifies an
1382arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13832^23-1 (about 8 million) can be specified.</p>
1384
1385<h5>Syntax:</h5>
1386
1387<pre>
1388 iN
1389</pre>
1390
1391<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1392value.</p>
1393
1394<h5>Examples:</h5>
1395<table class="layout">
Nick Lewycky86c48642009-05-24 02:46:06 +00001396 <tr class="layout">
1397 <td class="left"><tt>i1</tt></td>
1398 <td class="left">a single-bit integer.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001399 </tr>
Nick Lewycky86c48642009-05-24 02:46:06 +00001400 <tr class="layout">
1401 <td class="left"><tt>i32</tt></td>
1402 <td class="left">a 32-bit integer.</td>
1403 </tr>
1404 <tr class="layout">
1405 <td class="left"><tt>i1942652</tt></td>
1406 <td class="left">a really big integer of over 1 million bits.</td>
1407 </tr>
Reid Spencer2b916312007-05-16 18:44:01 +00001408</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001409
1410<p>Note that the code generator does not yet support large integer types
1411to be used as function return types. The specific limit on how large a
1412return type the code generator can currently handle is target-dependent;
1413currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1414targets.</p>
1415
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001416</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001417
1418<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001419<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001420
Misha Brukman9d0919f2003-11-08 01:05:38 +00001421<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001422
Chris Lattner00950542001-06-06 20:29:01 +00001423<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001424
Misha Brukman9d0919f2003-11-08 01:05:38 +00001425<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001426sequentially in memory. The array type requires a size (number of
1427elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001428
Chris Lattner7faa8832002-04-14 06:13:44 +00001429<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001430
1431<pre>
1432 [&lt;# elements&gt; x &lt;elementtype&gt;]
1433</pre>
1434
John Criswelle4c57cc2005-05-12 16:52:32 +00001435<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001436be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001437
Chris Lattner7faa8832002-04-14 06:13:44 +00001438<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001439<table class="layout">
1440 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001441 <td class="left"><tt>[40 x i32]</tt></td>
1442 <td class="left">Array of 40 32-bit integer values.</td>
1443 </tr>
1444 <tr class="layout">
1445 <td class="left"><tt>[41 x i32]</tt></td>
1446 <td class="left">Array of 41 32-bit integer values.</td>
1447 </tr>
1448 <tr class="layout">
1449 <td class="left"><tt>[4 x i8]</tt></td>
1450 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001451 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001452</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001453<p>Here are some examples of multidimensional arrays:</p>
1454<table class="layout">
1455 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001456 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1457 <td class="left">3x4 array of 32-bit integer values.</td>
1458 </tr>
1459 <tr class="layout">
1460 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1461 <td class="left">12x10 array of single precision floating point values.</td>
1462 </tr>
1463 <tr class="layout">
1464 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1465 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001466 </tr>
1467</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001468
John Criswell0ec250c2005-10-24 16:17:18 +00001469<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1470length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001471LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1472As a special case, however, zero length arrays are recognized to be variable
1473length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001474type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001475
Dan Gohmand8791e52009-01-24 15:58:40 +00001476<p>Note that the code generator does not yet support large aggregate types
1477to be used as function return types. The specific limit on how large an
1478aggregate return type the code generator can currently handle is
1479target-dependent, and also dependent on the aggregate element types.</p>
1480
Misha Brukman9d0919f2003-11-08 01:05:38 +00001481</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001482
Chris Lattner00950542001-06-06 20:29:01 +00001483<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001484<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001485<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001486
Chris Lattner00950542001-06-06 20:29:01 +00001487<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001488
Chris Lattner261efe92003-11-25 01:02:51 +00001489<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001490consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001491return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001492If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001493class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001494
Chris Lattner00950542001-06-06 20:29:01 +00001495<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001496
1497<pre>
1498 &lt;returntype list&gt; (&lt;parameter list&gt;)
1499</pre>
1500
John Criswell0ec250c2005-10-24 16:17:18 +00001501<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001502specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001503which indicates that the function takes a variable number of arguments.
1504Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001505 href="#int_varargs">variable argument handling intrinsic</a> functions.
1506'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1507<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001508
Chris Lattner00950542001-06-06 20:29:01 +00001509<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001510<table class="layout">
1511 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001512 <td class="left"><tt>i32 (i32)</tt></td>
1513 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001514 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001515 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001516 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001517 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001518 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1519 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001520 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001521 <tt>float</tt>.
1522 </td>
1523 </tr><tr class="layout">
1524 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1525 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001526 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001527 which returns an integer. This is the signature for <tt>printf</tt> in
1528 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001529 </td>
Devang Patela582f402008-03-24 05:35:41 +00001530 </tr><tr class="layout">
1531 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001532 <td class="left">A function taking an <tt>i32</tt>, returning two
1533 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001534 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001535 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001536</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001537
Misha Brukman9d0919f2003-11-08 01:05:38 +00001538</div>
Chris Lattner00950542001-06-06 20:29:01 +00001539<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001540<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001541<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001542<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001543<p>The structure type is used to represent a collection of data members
1544together in memory. The packing of the field types is defined to match
1545the ABI of the underlying processor. The elements of a structure may
1546be any type that has a size.</p>
1547<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1548and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1549field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1550instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001551<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001552<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001553<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001554<table class="layout">
1555 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001556 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1557 <td class="left">A triple of three <tt>i32</tt> values</td>
1558 </tr><tr class="layout">
1559 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1560 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1561 second element is a <a href="#t_pointer">pointer</a> to a
1562 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1563 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001564 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001565</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001566
1567<p>Note that the code generator does not yet support large aggregate types
1568to be used as function return types. The specific limit on how large an
1569aggregate return type the code generator can currently handle is
1570target-dependent, and also dependent on the aggregate element types.</p>
1571
Misha Brukman9d0919f2003-11-08 01:05:38 +00001572</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001573
Chris Lattner00950542001-06-06 20:29:01 +00001574<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001575<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1576</div>
1577<div class="doc_text">
1578<h5>Overview:</h5>
1579<p>The packed structure type is used to represent a collection of data members
1580together in memory. There is no padding between fields. Further, the alignment
1581of a packed structure is 1 byte. The elements of a packed structure may
1582be any type that has a size.</p>
1583<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1584and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1585field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1586instruction.</p>
1587<h5>Syntax:</h5>
1588<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1589<h5>Examples:</h5>
1590<table class="layout">
1591 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001592 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1593 <td class="left">A triple of three <tt>i32</tt> values</td>
1594 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001595 <td class="left">
1596<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001597 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1598 second element is a <a href="#t_pointer">pointer</a> to a
1599 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1600 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001601 </tr>
1602</table>
1603</div>
1604
1605<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001606<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001607<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001608<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001609<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001610reference to another object, which must live in memory. Pointer types may have
1611an optional address space attribute defining the target-specific numbered
1612address space where the pointed-to object resides. The default address space is
1613zero.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001614
1615<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
Chris Lattnere220e8c2009-02-08 22:21:28 +00001616it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001617
Chris Lattner7faa8832002-04-14 06:13:44 +00001618<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001619<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001620<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001621<table class="layout">
1622 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001623 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001624 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1625 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1626 </tr>
1627 <tr class="layout">
1628 <td class="left"><tt>i32 (i32 *) *</tt></td>
1629 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001630 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001631 <tt>i32</tt>.</td>
1632 </tr>
1633 <tr class="layout">
1634 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1635 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1636 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001637 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001638</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001639</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001640
Chris Lattnera58561b2004-08-12 19:12:28 +00001641<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001642<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001643<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001644
Chris Lattnera58561b2004-08-12 19:12:28 +00001645<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001646
Reid Spencer485bad12007-02-15 03:07:05 +00001647<p>A vector type is a simple derived type that represents a vector
1648of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001649are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001650A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001651elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001652of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001653considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001654
Chris Lattnera58561b2004-08-12 19:12:28 +00001655<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001656
1657<pre>
1658 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1659</pre>
1660
John Criswellc1f786c2005-05-13 22:25:59 +00001661<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001662be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001663
Chris Lattnera58561b2004-08-12 19:12:28 +00001664<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001665
Reid Spencerd3f876c2004-11-01 08:19:36 +00001666<table class="layout">
1667 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001668 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1669 <td class="left">Vector of 4 32-bit integer values.</td>
1670 </tr>
1671 <tr class="layout">
1672 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1673 <td class="left">Vector of 8 32-bit floating-point values.</td>
1674 </tr>
1675 <tr class="layout">
1676 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1677 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001678 </tr>
1679</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001680
1681<p>Note that the code generator does not yet support large vector types
1682to be used as function return types. The specific limit on how large a
1683vector return type codegen can currently handle is target-dependent;
1684currently it's often a few times longer than a hardware vector register.</p>
1685
Misha Brukman9d0919f2003-11-08 01:05:38 +00001686</div>
1687
Chris Lattner69c11bb2005-04-25 17:34:15 +00001688<!-- _______________________________________________________________________ -->
1689<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1690<div class="doc_text">
1691
1692<h5>Overview:</h5>
1693
1694<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001695corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001696In LLVM, opaque types can eventually be resolved to any type (not just a
1697structure type).</p>
1698
1699<h5>Syntax:</h5>
1700
1701<pre>
1702 opaque
1703</pre>
1704
1705<h5>Examples:</h5>
1706
1707<table class="layout">
1708 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001709 <td class="left"><tt>opaque</tt></td>
1710 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001711 </tr>
1712</table>
1713</div>
1714
Chris Lattner242d61d2009-02-02 07:32:36 +00001715<!-- ======================================================================= -->
1716<div class="doc_subsection">
1717 <a name="t_uprefs">Type Up-references</a>
1718</div>
1719
1720<div class="doc_text">
1721<h5>Overview:</h5>
1722<p>
1723An "up reference" allows you to refer to a lexically enclosing type without
1724requiring it to have a name. For instance, a structure declaration may contain a
1725pointer to any of the types it is lexically a member of. Example of up
1726references (with their equivalent as named type declarations) include:</p>
1727
1728<pre>
Chris Lattner3060f5b2009-02-09 10:00:56 +00001729 { \2 * } %x = type { %x* }
Chris Lattner242d61d2009-02-02 07:32:36 +00001730 { \2 }* %y = type { %y }*
1731 \1* %z = type %z*
1732</pre>
1733
1734<p>
1735An up reference is needed by the asmprinter for printing out cyclic types when
1736there is no declared name for a type in the cycle. Because the asmprinter does
1737not want to print out an infinite type string, it needs a syntax to handle
1738recursive types that have no names (all names are optional in llvm IR).
1739</p>
1740
1741<h5>Syntax:</h5>
1742<pre>
1743 \&lt;level&gt;
1744</pre>
1745
1746<p>
1747The level is the count of the lexical type that is being referred to.
1748</p>
1749
1750<h5>Examples:</h5>
1751
1752<table class="layout">
1753 <tr class="layout">
1754 <td class="left"><tt>\1*</tt></td>
1755 <td class="left">Self-referential pointer.</td>
1756 </tr>
1757 <tr class="layout">
1758 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1759 <td class="left">Recursive structure where the upref refers to the out-most
1760 structure.</td>
1761 </tr>
1762</table>
1763</div>
1764
Chris Lattner69c11bb2005-04-25 17:34:15 +00001765
Chris Lattnerc3f59762004-12-09 17:30:23 +00001766<!-- *********************************************************************** -->
1767<div class="doc_section"> <a name="constants">Constants</a> </div>
1768<!-- *********************************************************************** -->
1769
1770<div class="doc_text">
1771
1772<p>LLVM has several different basic types of constants. This section describes
1773them all and their syntax.</p>
1774
1775</div>
1776
1777<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001778<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001779
1780<div class="doc_text">
1781
1782<dl>
1783 <dt><b>Boolean constants</b></dt>
1784
1785 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001786 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001787 </dd>
1788
1789 <dt><b>Integer constants</b></dt>
1790
Reid Spencercc16dc32004-12-09 18:02:53 +00001791 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001792 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001793 integer types.
1794 </dd>
1795
1796 <dt><b>Floating point constants</b></dt>
1797
1798 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1799 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001800 notation (see below). The assembler requires the exact decimal value of
1801 a floating-point constant. For example, the assembler accepts 1.25 but
1802 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1803 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001804
1805 <dt><b>Null pointer constants</b></dt>
1806
John Criswell9e2485c2004-12-10 15:51:16 +00001807 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001808 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1809
1810</dl>
1811
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001812<p>The one non-intuitive notation for constants is the hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001813of floating point constants. For example, the form '<tt>double
18140x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
18154.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001816(and the only time that they are generated by the disassembler) is when a
1817floating point constant must be emitted but it cannot be represented as a
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001818decimal floating point number in a reasonable number of digits. For example,
1819NaN's, infinities, and other
Reid Spencercc16dc32004-12-09 18:02:53 +00001820special values are represented in their IEEE hexadecimal format so that
1821assembly and disassembly do not cause any bits to change in the constants.</p>
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001822<p>When using the hexadecimal form, constants of types float and double are
1823represented using the 16-digit form shown above (which matches the IEEE754
1824representation for double); float values must, however, be exactly representable
1825as IEE754 single precision.
1826Hexadecimal format is always used for long
1827double, and there are three forms of long double. The 80-bit
1828format used by x86 is represented as <tt>0xK</tt>
1829followed by 20 hexadecimal digits.
1830The 128-bit format used by PowerPC (two adjacent doubles) is represented
1831by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
1832format is represented
1833by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
1834target uses this format. Long doubles will only work if they match
1835the long double format on your target. All hexadecimal formats are big-endian
1836(sign bit at the left).</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001837</div>
1838
1839<!-- ======================================================================= -->
Chris Lattner70882792009-02-28 18:32:25 +00001840<div class="doc_subsection">
1841<a name="aggregateconstants"> <!-- old anchor -->
1842<a name="complexconstants">Complex Constants</a></a>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001843</div>
1844
1845<div class="doc_text">
Chris Lattner70882792009-02-28 18:32:25 +00001846<p>Complex constants are a (potentially recursive) combination of simple
1847constants and smaller complex constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001848
1849<dl>
1850 <dt><b>Structure constants</b></dt>
1851
1852 <dd>Structure constants are represented with notation similar to structure
1853 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001854 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1855 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001856 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001857 types of elements must match those specified by the type.
1858 </dd>
1859
1860 <dt><b>Array constants</b></dt>
1861
1862 <dd>Array constants are represented with notation similar to array type
1863 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001864 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001865 constants must have <a href="#t_array">array type</a>, and the number and
1866 types of elements must match those specified by the type.
1867 </dd>
1868
Reid Spencer485bad12007-02-15 03:07:05 +00001869 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001870
Reid Spencer485bad12007-02-15 03:07:05 +00001871 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001872 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001873 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001874 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001875 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001876 match those specified by the type.
1877 </dd>
1878
1879 <dt><b>Zero initialization</b></dt>
1880
1881 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1882 value to zero of <em>any</em> type, including scalar and aggregate types.
1883 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001884 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001885 initializers.
1886 </dd>
Nick Lewycky21cc4462009-04-04 07:22:01 +00001887
1888 <dt><b>Metadata node</b></dt>
1889
Nick Lewycky1e8c7a62009-05-30 16:08:30 +00001890 <dd>A metadata node is a structure-like constant with
1891 <a href="#t_metadata">metadata type</a>. For example:
1892 "<tt>metadata !{ i32 0, metadata !"test" }</tt>". Unlike other constants
1893 that are meant to be interpreted as part of the instruction stream, metadata
1894 is a place to attach additional information such as debug info.
Nick Lewycky21cc4462009-04-04 07:22:01 +00001895 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001896</dl>
1897
1898</div>
1899
1900<!-- ======================================================================= -->
1901<div class="doc_subsection">
1902 <a name="globalconstants">Global Variable and Function Addresses</a>
1903</div>
1904
1905<div class="doc_text">
1906
1907<p>The addresses of <a href="#globalvars">global variables</a> and <a
1908href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001909constants. These constants are explicitly referenced when the <a
1910href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001911href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1912file:</p>
1913
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001914<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001915<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001916@X = global i32 17
1917@Y = global i32 42
1918@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001919</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001920</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001921
1922</div>
1923
1924<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001925<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001926<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001927 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001928 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001929 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001930
Reid Spencer2dc45b82004-12-09 18:13:12 +00001931 <p>Undefined values indicate to the compiler that the program is well defined
1932 no matter what value is used, giving the compiler more freedom to optimize.
1933 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001934</div>
1935
1936<!-- ======================================================================= -->
1937<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1938</div>
1939
1940<div class="doc_text">
1941
1942<p>Constant expressions are used to allow expressions involving other constants
1943to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001944href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001945that does not have side effects (e.g. load and call are not supported). The
1946following is the syntax for constant expressions:</p>
1947
1948<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001949 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1950 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001951 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001952
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001953 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1954 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001955 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001956
1957 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1958 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001959 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001960
1961 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1962 <dd>Truncate a floating point constant to another floating point type. The
1963 size of CST must be larger than the size of TYPE. Both types must be
1964 floating point.</dd>
1965
1966 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1967 <dd>Floating point extend a constant to another type. The size of CST must be
1968 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1969
Reid Spencer1539a1c2007-07-31 14:40:14 +00001970 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001971 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001972 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1973 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1974 of the same number of elements. If the value won't fit in the integer type,
1975 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001976
Reid Spencerd4448792006-11-09 23:03:26 +00001977 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001978 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001979 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1980 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1981 of the same number of elements. If the value won't fit in the integer type,
1982 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001983
Reid Spencerd4448792006-11-09 23:03:26 +00001984 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001985 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001986 constant. TYPE must be a scalar or vector floating point type. CST must be of
1987 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1988 of the same number of elements. If the value won't fit in the floating point
1989 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001990
Reid Spencerd4448792006-11-09 23:03:26 +00001991 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001992 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001993 constant. TYPE must be a scalar or vector floating point type. CST must be of
1994 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1995 of the same number of elements. If the value won't fit in the floating point
1996 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001997
Reid Spencer5c0ef472006-11-11 23:08:07 +00001998 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1999 <dd>Convert a pointer typed constant to the corresponding integer constant
2000 TYPE must be an integer type. CST must be of pointer type. The CST value is
2001 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
2002
2003 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
2004 <dd>Convert a integer constant to a pointer constant. TYPE must be a
2005 pointer type. CST must be of integer type. The CST value is zero extended,
2006 truncated, or unchanged to make it fit in a pointer size. This one is
2007 <i>really</i> dangerous!</dd>
2008
2009 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner03bbad62009-02-28 18:27:03 +00002010 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2011 are the same as those for the <a href="#i_bitcast">bitcast
2012 instruction</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002013
2014 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
2015
2016 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2017 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2018 instruction, the index list may have zero or more indexes, which are required
2019 to make sense for the type of "CSTPTR".</dd>
2020
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002021 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
2022
2023 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00002024 constants.</dd>
2025
2026 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2027 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2028
2029 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2030 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002031
Nate Begemanac80ade2008-05-12 19:01:56 +00002032 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
2033 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
2034
2035 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
2036 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
2037
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002038 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
2039
2040 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00002041 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002042
Robert Bocchino05ccd702006-01-15 20:48:27 +00002043 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
2044
2045 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00002046 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00002047
Chris Lattnerc1989542006-04-08 00:13:41 +00002048
2049 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
2050
2051 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00002052 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002053
Chris Lattnerc3f59762004-12-09 17:30:23 +00002054 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
2055
Reid Spencer2dc45b82004-12-09 18:13:12 +00002056 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2057 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00002058 binary</a> operations. The constraints on operands are the same as those for
2059 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00002060 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002061</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002062</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00002063
Nick Lewycky21cc4462009-04-04 07:22:01 +00002064<!-- ======================================================================= -->
2065<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2066</div>
2067
2068<div class="doc_text">
2069
2070<p>Embedded metadata provides a way to attach arbitrary data to the
2071instruction stream without affecting the behaviour of the program. There are
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002072two metadata primitives, strings and nodes. All metadata has the
2073<tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2074point ('<tt>!</tt>').
Nick Lewycky21cc4462009-04-04 07:22:01 +00002075</p>
2076
2077<p>A metadata string is a string surrounded by double quotes. It can contain
2078any character by escaping non-printable characters with "\xx" where "xx" is
2079the two digit hex code. For example: "<tt>!"test\00"</tt>".
2080</p>
2081
2082<p>Metadata nodes are represented with notation similar to structure constants
2083(a comma separated list of elements, surrounded by braces and preceeded by an
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002084exclamation point). For example: "<tt>!{ metadata !"test\00", i32 10}</tt>".
Nick Lewycky21cc4462009-04-04 07:22:01 +00002085</p>
2086
Nick Lewyckycb337992009-05-10 20:57:05 +00002087<p>A metadata node will attempt to track changes to the values it holds. In
2088the event that a value is deleted, it will be replaced with a typeless
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002089"<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
Nick Lewyckycb337992009-05-10 20:57:05 +00002090
Nick Lewycky21cc4462009-04-04 07:22:01 +00002091<p>Optimizations may rely on metadata to provide additional information about
2092the program that isn't available in the instructions, or that isn't easily
2093computable. Similarly, the code generator may expect a certain metadata format
2094to be used to express debugging information.</p>
2095</div>
2096
Chris Lattner00950542001-06-06 20:29:01 +00002097<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00002098<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2099<!-- *********************************************************************** -->
2100
2101<!-- ======================================================================= -->
2102<div class="doc_subsection">
2103<a name="inlineasm">Inline Assembler Expressions</a>
2104</div>
2105
2106<div class="doc_text">
2107
2108<p>
2109LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2110Module-Level Inline Assembly</a>) through the use of a special value. This
2111value represents the inline assembler as a string (containing the instructions
2112to emit), a list of operand constraints (stored as a string), and a flag that
2113indicates whether or not the inline asm expression has side effects. An example
2114inline assembler expression is:
2115</p>
2116
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002117<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002118<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002119i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002120</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002121</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002122
2123<p>
2124Inline assembler expressions may <b>only</b> be used as the callee operand of
2125a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2126</p>
2127
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002128<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002129<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002130%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002131</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002132</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002133
2134<p>
2135Inline asms with side effects not visible in the constraint list must be marked
2136as having side effects. This is done through the use of the
2137'<tt>sideeffect</tt>' keyword, like so:
2138</p>
2139
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002140<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002141<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002142call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002143</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002144</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002145
2146<p>TODO: The format of the asm and constraints string still need to be
2147documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00002148need to be documented). This is probably best done by reference to another
2149document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00002150</p>
2151
2152</div>
2153
2154<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00002155<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2156<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002157
Misha Brukman9d0919f2003-11-08 01:05:38 +00002158<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002159
Chris Lattner261efe92003-11-25 01:02:51 +00002160<p>The LLVM instruction set consists of several different
2161classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00002162instructions</a>, <a href="#binaryops">binary instructions</a>,
2163<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00002164 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2165instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002166
Misha Brukman9d0919f2003-11-08 01:05:38 +00002167</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002168
Chris Lattner00950542001-06-06 20:29:01 +00002169<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002170<div class="doc_subsection"> <a name="terminators">Terminator
2171Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002172
Misha Brukman9d0919f2003-11-08 01:05:38 +00002173<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002174
Chris Lattner261efe92003-11-25 01:02:51 +00002175<p>As mentioned <a href="#functionstructure">previously</a>, every
2176basic block in a program ends with a "Terminator" instruction, which
2177indicates which block should be executed after the current block is
2178finished. These terminator instructions typically yield a '<tt>void</tt>'
2179value: they produce control flow, not values (the one exception being
2180the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00002181<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00002182 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2183instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00002184the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2185 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2186 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002187
Misha Brukman9d0919f2003-11-08 01:05:38 +00002188</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002189
Chris Lattner00950542001-06-06 20:29:01 +00002190<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002191<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2192Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002193<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002194<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002195<pre>
2196 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002197 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002198</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002199
Chris Lattner00950542001-06-06 20:29:01 +00002200<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002201
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002202<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2203optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00002204<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002205returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00002206control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002207
Chris Lattner00950542001-06-06 20:29:01 +00002208<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002209
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002210<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2211the return value. The type of the return value must be a
2212'<a href="#t_firstclass">first class</a>' type.</p>
2213
2214<p>A function is not <a href="#wellformed">well formed</a> if
2215it it has a non-void return type and contains a '<tt>ret</tt>'
2216instruction with no return value or a return value with a type that
2217does not match its type, or if it has a void return type and contains
2218a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002219
Chris Lattner00950542001-06-06 20:29:01 +00002220<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002221
Chris Lattner261efe92003-11-25 01:02:51 +00002222<p>When the '<tt>ret</tt>' instruction is executed, control flow
2223returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00002224 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00002225the instruction after the call. If the caller was an "<a
2226 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00002227at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00002228returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00002229return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002230
Chris Lattner00950542001-06-06 20:29:01 +00002231<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002232
2233<pre>
2234 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002235 ret void <i>; Return from a void function</i>
Bill Wendling0a4bbbf2009-02-28 22:12:54 +00002236 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002237</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002238
Dan Gohmand8791e52009-01-24 15:58:40 +00002239<p>Note that the code generator does not yet fully support large
2240 return values. The specific sizes that are currently supported are
2241 dependent on the target. For integers, on 32-bit targets the limit
2242 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2243 For aggregate types, the current limits are dependent on the element
2244 types; for example targets are often limited to 2 total integer
2245 elements and 2 total floating-point elements.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002246
Misha Brukman9d0919f2003-11-08 01:05:38 +00002247</div>
Chris Lattner00950542001-06-06 20:29:01 +00002248<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002249<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002250<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002251<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002252<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002253</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002254<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002255<p>The '<tt>br</tt>' instruction is used to cause control flow to
2256transfer to a different basic block in the current function. There are
2257two forms of this instruction, corresponding to a conditional branch
2258and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002259<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002260<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002261single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002262unconditional form of the '<tt>br</tt>' instruction takes a single
2263'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002264<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002265<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002266argument is evaluated. If the value is <tt>true</tt>, control flows
2267to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2268control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002269<h5>Example:</h5>
Chris Lattner60150a32009-05-09 18:11:50 +00002270<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002271 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002272</div>
Chris Lattner00950542001-06-06 20:29:01 +00002273<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002274<div class="doc_subsubsection">
2275 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2276</div>
2277
Misha Brukman9d0919f2003-11-08 01:05:38 +00002278<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002279<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002280
2281<pre>
2282 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2283</pre>
2284
Chris Lattner00950542001-06-06 20:29:01 +00002285<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002286
2287<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2288several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002289instruction, allowing a branch to occur to one of many possible
2290destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002291
2292
Chris Lattner00950542001-06-06 20:29:01 +00002293<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002294
2295<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2296comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2297an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2298table is not allowed to contain duplicate constant entries.</p>
2299
Chris Lattner00950542001-06-06 20:29:01 +00002300<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002301
Chris Lattner261efe92003-11-25 01:02:51 +00002302<p>The <tt>switch</tt> instruction specifies a table of values and
2303destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002304table is searched for the given value. If the value is found, control flow is
2305transfered to the corresponding destination; otherwise, control flow is
2306transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002307
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002308<h5>Implementation:</h5>
2309
2310<p>Depending on properties of the target machine and the particular
2311<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002312ways. For example, it could be generated as a series of chained conditional
2313branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002314
2315<h5>Example:</h5>
2316
2317<pre>
2318 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002319 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002320 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002321
2322 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002323 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002324
2325 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002326 switch i32 %val, label %otherwise [ i32 0, label %onzero
2327 i32 1, label %onone
2328 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002329</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002330</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002331
Chris Lattner00950542001-06-06 20:29:01 +00002332<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002333<div class="doc_subsubsection">
2334 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2335</div>
2336
Misha Brukman9d0919f2003-11-08 01:05:38 +00002337<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002338
Chris Lattner00950542001-06-06 20:29:01 +00002339<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002340
2341<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002342 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002343 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002344</pre>
2345
Chris Lattner6536cfe2002-05-06 22:08:29 +00002346<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002347
2348<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2349function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002350'<tt>normal</tt>' label or the
2351'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002352"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2353"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002354href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002355continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002356
Chris Lattner00950542001-06-06 20:29:01 +00002357<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002358
Misha Brukman9d0919f2003-11-08 01:05:38 +00002359<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002360
Chris Lattner00950542001-06-06 20:29:01 +00002361<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002362 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002363 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002364 convention</a> the call should use. If none is specified, the call defaults
2365 to using C calling conventions.
2366 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002367
2368 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2369 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2370 and '<tt>inreg</tt>' attributes are valid here.</li>
2371
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002372 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2373 function value being invoked. In most cases, this is a direct function
2374 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2375 an arbitrary pointer to function value.
2376 </li>
2377
2378 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2379 function to be invoked. </li>
2380
2381 <li>'<tt>function args</tt>': argument list whose types match the function
2382 signature argument types. If the function signature indicates the function
2383 accepts a variable number of arguments, the extra arguments can be
2384 specified. </li>
2385
2386 <li>'<tt>normal label</tt>': the label reached when the called function
2387 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2388
2389 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2390 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2391
Devang Patel307e8ab2008-10-07 17:48:33 +00002392 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002393 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2394 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002395</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002396
Chris Lattner00950542001-06-06 20:29:01 +00002397<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002398
Misha Brukman9d0919f2003-11-08 01:05:38 +00002399<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002400href="#i_call">call</a></tt>' instruction in most regards. The primary
2401difference is that it establishes an association with a label, which is used by
2402the runtime library to unwind the stack.</p>
2403
2404<p>This instruction is used in languages with destructors to ensure that proper
2405cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2406exception. Additionally, this is important for implementation of
2407'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2408
Jay Foadd2449092009-06-03 10:20:10 +00002409<p>For the purposes of the SSA form, the definition of the value
2410returned by the '<tt>invoke</tt>' instruction is deemed to occur on
2411the edge from the current block to the "normal" label. If the callee
2412unwinds then no return value is available.</p>
Dan Gohmanf96a4992009-05-22 21:47:08 +00002413
Chris Lattner00950542001-06-06 20:29:01 +00002414<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002415<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002416 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002417 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002418 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002419 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002420</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002421</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002422
2423
Chris Lattner27f71f22003-09-03 00:41:47 +00002424<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002425
Chris Lattner261efe92003-11-25 01:02:51 +00002426<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2427Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002428
Misha Brukman9d0919f2003-11-08 01:05:38 +00002429<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002430
Chris Lattner27f71f22003-09-03 00:41:47 +00002431<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002432<pre>
2433 unwind
2434</pre>
2435
Chris Lattner27f71f22003-09-03 00:41:47 +00002436<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002437
2438<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2439at the first callee in the dynamic call stack which used an <a
2440href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2441primarily used to implement exception handling.</p>
2442
Chris Lattner27f71f22003-09-03 00:41:47 +00002443<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002444
Chris Lattner72ed2002008-04-19 21:01:16 +00002445<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002446immediately halt. The dynamic call stack is then searched for the first <a
2447href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2448execution continues at the "exceptional" destination block specified by the
2449<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2450dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002451</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002452
2453<!-- _______________________________________________________________________ -->
2454
2455<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2456Instruction</a> </div>
2457
2458<div class="doc_text">
2459
2460<h5>Syntax:</h5>
2461<pre>
2462 unreachable
2463</pre>
2464
2465<h5>Overview:</h5>
2466
2467<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2468instruction is used to inform the optimizer that a particular portion of the
2469code is not reachable. This can be used to indicate that the code after a
2470no-return function cannot be reached, and other facts.</p>
2471
2472<h5>Semantics:</h5>
2473
2474<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2475</div>
2476
2477
2478
Chris Lattner00950542001-06-06 20:29:01 +00002479<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002480<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002481<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002482<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002483program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002484produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002485multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002486The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002487<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002488</div>
Chris Lattner00950542001-06-06 20:29:01 +00002489<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002490<div class="doc_subsubsection">
2491 <a name="i_add">'<tt>add</tt>' Instruction</a>
2492</div>
2493
Misha Brukman9d0919f2003-11-08 01:05:38 +00002494<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002495
Chris Lattner00950542001-06-06 20:29:01 +00002496<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002497
2498<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002499 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002500</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002501
Chris Lattner00950542001-06-06 20:29:01 +00002502<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002503
Misha Brukman9d0919f2003-11-08 01:05:38 +00002504<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002505
Chris Lattner00950542001-06-06 20:29:01 +00002506<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002507
2508<p>The two arguments to the '<tt>add</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002509 href="#t_integer">integer</a> or
2510 <a href="#t_vector">vector</a> of integer values. Both arguments must
2511 have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002512
Chris Lattner00950542001-06-06 20:29:01 +00002513<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002514
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002515<p>The value produced is the integer sum of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002516
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002517<p>If the sum has unsigned overflow, the result returned is the
Chris Lattner5ec89832008-01-28 00:36:27 +00002518mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2519the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002520
Chris Lattner5ec89832008-01-28 00:36:27 +00002521<p>Because LLVM integers use a two's complement representation, this
2522instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002523
Chris Lattner00950542001-06-06 20:29:01 +00002524<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002525
2526<pre>
2527 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002528</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002529</div>
Chris Lattner00950542001-06-06 20:29:01 +00002530<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002531<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002532 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
2533</div>
2534
2535<div class="doc_text">
2536
2537<h5>Syntax:</h5>
2538
2539<pre>
2540 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2541</pre>
2542
2543<h5>Overview:</h5>
2544
2545<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
2546
2547<h5>Arguments:</h5>
2548
2549<p>The two arguments to the '<tt>fadd</tt>' instruction must be
2550<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2551floating point values. Both arguments must have identical types.</p>
2552
2553<h5>Semantics:</h5>
2554
2555<p>The value produced is the floating point sum of the two operands.</p>
2556
2557<h5>Example:</h5>
2558
2559<pre>
2560 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
2561</pre>
2562</div>
2563<!-- _______________________________________________________________________ -->
2564<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00002565 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2566</div>
2567
Misha Brukman9d0919f2003-11-08 01:05:38 +00002568<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002569
Chris Lattner00950542001-06-06 20:29:01 +00002570<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002571
2572<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002573 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002574</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002575
Chris Lattner00950542001-06-06 20:29:01 +00002576<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002577
Misha Brukman9d0919f2003-11-08 01:05:38 +00002578<p>The '<tt>sub</tt>' instruction returns the difference of its two
2579operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002580
2581<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2582'<tt>neg</tt>' instruction present in most other intermediate
2583representations.</p>
2584
Chris Lattner00950542001-06-06 20:29:01 +00002585<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002586
2587<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002588 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2589 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002590
Chris Lattner00950542001-06-06 20:29:01 +00002591<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002592
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002593<p>The value produced is the integer difference of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002594
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002595<p>If the difference has unsigned overflow, the result returned is the
Chris Lattner5ec89832008-01-28 00:36:27 +00002596mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2597the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002598
Chris Lattner5ec89832008-01-28 00:36:27 +00002599<p>Because LLVM integers use a two's complement representation, this
2600instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002601
Chris Lattner00950542001-06-06 20:29:01 +00002602<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002603<pre>
2604 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002605 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002606</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002607</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002608
Chris Lattner00950542001-06-06 20:29:01 +00002609<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002610<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002611 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
2612</div>
2613
2614<div class="doc_text">
2615
2616<h5>Syntax:</h5>
2617
2618<pre>
2619 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2620</pre>
2621
2622<h5>Overview:</h5>
2623
2624<p>The '<tt>fsub</tt>' instruction returns the difference of its two
2625operands.</p>
2626
2627<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
2628'<tt>fneg</tt>' instruction present in most other intermediate
2629representations.</p>
2630
2631<h5>Arguments:</h5>
2632
2633<p>The two arguments to the '<tt>fsub</tt>' instruction must be <a
2634 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2635 of floating point values. Both arguments must have identical types.</p>
2636
2637<h5>Semantics:</h5>
2638
2639<p>The value produced is the floating point difference of the two operands.</p>
2640
2641<h5>Example:</h5>
2642<pre>
2643 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
2644 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
2645</pre>
2646</div>
2647
2648<!-- _______________________________________________________________________ -->
2649<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00002650 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2651</div>
2652
Misha Brukman9d0919f2003-11-08 01:05:38 +00002653<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002654
Chris Lattner00950542001-06-06 20:29:01 +00002655<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002656<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002657</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002658<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002659<p>The '<tt>mul</tt>' instruction returns the product of its two
2660operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002661
Chris Lattner00950542001-06-06 20:29:01 +00002662<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002663
2664<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002665href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2666values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002667
Chris Lattner00950542001-06-06 20:29:01 +00002668<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002669
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002670<p>The value produced is the integer product of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002671
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002672<p>If the result of the multiplication has unsigned overflow,
Chris Lattner5ec89832008-01-28 00:36:27 +00002673the result returned is the mathematical result modulo
26742<sup>n</sup>, where n is the bit width of the result.</p>
2675<p>Because LLVM integers use a two's complement representation, and the
2676result is the same width as the operands, this instruction returns the
2677correct result for both signed and unsigned integers. If a full product
2678(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2679should be sign-extended or zero-extended as appropriate to the
2680width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002681<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002682<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002683</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002684</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002685
Chris Lattner00950542001-06-06 20:29:01 +00002686<!-- _______________________________________________________________________ -->
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002687<div class="doc_subsubsection">
2688 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
2689</div>
2690
2691<div class="doc_text">
2692
2693<h5>Syntax:</h5>
2694<pre> &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2695</pre>
2696<h5>Overview:</h5>
2697<p>The '<tt>fmul</tt>' instruction returns the product of its two
2698operands.</p>
2699
2700<h5>Arguments:</h5>
2701
2702<p>The two arguments to the '<tt>fmul</tt>' instruction must be
2703<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2704of floating point values. Both arguments must have identical types.</p>
2705
2706<h5>Semantics:</h5>
2707
2708<p>The value produced is the floating point product of the two operands.</p>
2709
2710<h5>Example:</h5>
2711<pre> &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
2712</pre>
2713</div>
2714
2715<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002716<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2717</a></div>
2718<div class="doc_text">
2719<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002720<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002721</pre>
2722<h5>Overview:</h5>
2723<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2724operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002725
Reid Spencer1628cec2006-10-26 06:15:43 +00002726<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002727
Reid Spencer1628cec2006-10-26 06:15:43 +00002728<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002729<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2730values. Both arguments must have identical types.</p>
2731
Reid Spencer1628cec2006-10-26 06:15:43 +00002732<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002733
Chris Lattner5ec89832008-01-28 00:36:27 +00002734<p>The value produced is the unsigned integer quotient of the two operands.</p>
2735<p>Note that unsigned integer division and signed integer division are distinct
2736operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2737<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002738<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002739<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002740</pre>
2741</div>
2742<!-- _______________________________________________________________________ -->
2743<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2744</a> </div>
2745<div class="doc_text">
2746<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002747<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002748 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002749</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002750
Reid Spencer1628cec2006-10-26 06:15:43 +00002751<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002752
Reid Spencer1628cec2006-10-26 06:15:43 +00002753<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2754operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002755
Reid Spencer1628cec2006-10-26 06:15:43 +00002756<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002757
2758<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2759<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2760values. Both arguments must have identical types.</p>
2761
Reid Spencer1628cec2006-10-26 06:15:43 +00002762<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002763<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002764<p>Note that signed integer division and unsigned integer division are distinct
2765operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2766<p>Division by zero leads to undefined behavior. Overflow also leads to
2767undefined behavior; this is a rare case, but can occur, for example,
2768by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002769<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002770<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002771</pre>
2772</div>
2773<!-- _______________________________________________________________________ -->
2774<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002775Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002776<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002777<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002778<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002779 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002780</pre>
2781<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002782
Reid Spencer1628cec2006-10-26 06:15:43 +00002783<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002784operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002785
Chris Lattner261efe92003-11-25 01:02:51 +00002786<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002787
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002788<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002789<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2790of floating point values. Both arguments must have identical types.</p>
2791
Chris Lattner261efe92003-11-25 01:02:51 +00002792<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002793
Reid Spencer1628cec2006-10-26 06:15:43 +00002794<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002795
Chris Lattner261efe92003-11-25 01:02:51 +00002796<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002797
2798<pre>
2799 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002800</pre>
2801</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002802
Chris Lattner261efe92003-11-25 01:02:51 +00002803<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002804<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2805</div>
2806<div class="doc_text">
2807<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002808<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002809</pre>
2810<h5>Overview:</h5>
2811<p>The '<tt>urem</tt>' instruction returns the remainder from the
2812unsigned division of its two arguments.</p>
2813<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002814<p>The two arguments to the '<tt>urem</tt>' instruction must be
2815<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2816values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002817<h5>Semantics:</h5>
2818<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002819This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002820<p>Note that unsigned integer remainder and signed integer remainder are
2821distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2822<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002823<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002824<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002825</pre>
2826
2827</div>
2828<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002829<div class="doc_subsubsection">
2830 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2831</div>
2832
Chris Lattner261efe92003-11-25 01:02:51 +00002833<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002834
Chris Lattner261efe92003-11-25 01:02:51 +00002835<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002836
2837<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002838 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002839</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002840
Chris Lattner261efe92003-11-25 01:02:51 +00002841<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002842
Reid Spencer0a783f72006-11-02 01:53:59 +00002843<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002844signed division of its two operands. This instruction can also take
2845<a href="#t_vector">vector</a> versions of the values in which case
2846the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002847
Chris Lattner261efe92003-11-25 01:02:51 +00002848<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002849
Reid Spencer0a783f72006-11-02 01:53:59 +00002850<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002851<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2852values. Both arguments must have identical types.</p>
2853
Chris Lattner261efe92003-11-25 01:02:51 +00002854<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002855
Reid Spencer0a783f72006-11-02 01:53:59 +00002856<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002857has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2858operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002859a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002860 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002861Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002862please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002863Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002864<p>Note that signed integer remainder and unsigned integer remainder are
2865distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2866<p>Taking the remainder of a division by zero leads to undefined behavior.
2867Overflow also leads to undefined behavior; this is a rare case, but can occur,
2868for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2869(The remainder doesn't actually overflow, but this rule lets srem be
2870implemented using instructions that return both the result of the division
2871and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002872<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002873<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002874</pre>
2875
2876</div>
2877<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002878<div class="doc_subsubsection">
2879 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2880
Reid Spencer0a783f72006-11-02 01:53:59 +00002881<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002882
Reid Spencer0a783f72006-11-02 01:53:59 +00002883<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002884<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002885</pre>
2886<h5>Overview:</h5>
2887<p>The '<tt>frem</tt>' instruction returns the remainder from the
2888division of its two operands.</p>
2889<h5>Arguments:</h5>
2890<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002891<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2892of floating point values. Both arguments must have identical types.</p>
2893
Reid Spencer0a783f72006-11-02 01:53:59 +00002894<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002895
Chris Lattnera73afe02008-04-01 18:45:27 +00002896<p>This instruction returns the <i>remainder</i> of a division.
2897The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002898
Reid Spencer0a783f72006-11-02 01:53:59 +00002899<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002900
2901<pre>
2902 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002903</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002904</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002905
Reid Spencer8e11bf82007-02-02 13:57:07 +00002906<!-- ======================================================================= -->
2907<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2908Operations</a> </div>
2909<div class="doc_text">
2910<p>Bitwise binary operators are used to do various forms of
2911bit-twiddling in a program. They are generally very efficient
2912instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002913instructions. They require two operands of the same type, execute an operation on them,
2914and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002915</div>
2916
Reid Spencer569f2fa2007-01-31 21:39:12 +00002917<!-- _______________________________________________________________________ -->
2918<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2919Instruction</a> </div>
2920<div class="doc_text">
2921<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002922<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002923</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002924
Reid Spencer569f2fa2007-01-31 21:39:12 +00002925<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002926
Reid Spencer569f2fa2007-01-31 21:39:12 +00002927<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2928the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002929
Reid Spencer569f2fa2007-01-31 21:39:12 +00002930<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002931
Reid Spencer569f2fa2007-01-31 21:39:12 +00002932<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002933 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002934type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002935
Reid Spencer569f2fa2007-01-31 21:39:12 +00002936<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002937
Gabor Greiffb224a22008-08-07 21:46:00 +00002938<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2939where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang01f8d092008-12-10 08:55:09 +00002940equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2941If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2942corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002943
Reid Spencer569f2fa2007-01-31 21:39:12 +00002944<h5>Example:</h5><pre>
2945 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2946 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2947 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002948 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002949 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002950</pre>
2951</div>
2952<!-- _______________________________________________________________________ -->
2953<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2954Instruction</a> </div>
2955<div class="doc_text">
2956<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002957<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002958</pre>
2959
2960<h5>Overview:</h5>
2961<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002962operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002963
2964<h5>Arguments:</h5>
2965<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002966<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002967type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002968
2969<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002970
Reid Spencer569f2fa2007-01-31 21:39:12 +00002971<p>This instruction always performs a logical shift right operation. The most
2972significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002973shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang01f8d092008-12-10 08:55:09 +00002974the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2975vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2976amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002977
2978<h5>Example:</h5>
2979<pre>
2980 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2981 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2982 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2983 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002984 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002985 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002986</pre>
2987</div>
2988
Reid Spencer8e11bf82007-02-02 13:57:07 +00002989<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002990<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2991Instruction</a> </div>
2992<div class="doc_text">
2993
2994<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002995<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002996</pre>
2997
2998<h5>Overview:</h5>
2999<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003000operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003001
3002<h5>Arguments:</h5>
3003<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00003004<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00003005type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003006
3007<h5>Semantics:</h5>
3008<p>This instruction always performs an arithmetic shift right operation,
3009The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00003010of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang01f8d092008-12-10 08:55:09 +00003011larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
3012arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
3013corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003014
3015<h5>Example:</h5>
3016<pre>
3017 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3018 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3019 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3020 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003021 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003022 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003023</pre>
3024</div>
3025
Chris Lattner00950542001-06-06 20:29:01 +00003026<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003027<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3028Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00003029
Misha Brukman9d0919f2003-11-08 01:05:38 +00003030<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003031
Chris Lattner00950542001-06-06 20:29:01 +00003032<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003033
3034<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003035 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003036</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003037
Chris Lattner00950542001-06-06 20:29:01 +00003038<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003039
Chris Lattner261efe92003-11-25 01:02:51 +00003040<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
3041its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003042
Chris Lattner00950542001-06-06 20:29:01 +00003043<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003044
3045<p>The two arguments to the '<tt>and</tt>' instruction must be
3046<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3047values. Both arguments must have identical types.</p>
3048
Chris Lattner00950542001-06-06 20:29:01 +00003049<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003050<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003051<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003052<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003053<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00003054 <tbody>
3055 <tr>
3056 <td>In0</td>
3057 <td>In1</td>
3058 <td>Out</td>
3059 </tr>
3060 <tr>
3061 <td>0</td>
3062 <td>0</td>
3063 <td>0</td>
3064 </tr>
3065 <tr>
3066 <td>0</td>
3067 <td>1</td>
3068 <td>0</td>
3069 </tr>
3070 <tr>
3071 <td>1</td>
3072 <td>0</td>
3073 <td>0</td>
3074 </tr>
3075 <tr>
3076 <td>1</td>
3077 <td>1</td>
3078 <td>1</td>
3079 </tr>
3080 </tbody>
3081</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003082</div>
Chris Lattner00950542001-06-06 20:29:01 +00003083<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003084<pre>
3085 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003086 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3087 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00003088</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003089</div>
Chris Lattner00950542001-06-06 20:29:01 +00003090<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003091<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003092<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00003093<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003094<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003095</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00003096<h5>Overview:</h5>
3097<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
3098or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003099<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003100
3101<p>The two arguments to the '<tt>or</tt>' instruction must be
3102<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3103values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003104<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003105<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003106<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003107<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003108<table border="1" cellspacing="0" cellpadding="4">
3109 <tbody>
3110 <tr>
3111 <td>In0</td>
3112 <td>In1</td>
3113 <td>Out</td>
3114 </tr>
3115 <tr>
3116 <td>0</td>
3117 <td>0</td>
3118 <td>0</td>
3119 </tr>
3120 <tr>
3121 <td>0</td>
3122 <td>1</td>
3123 <td>1</td>
3124 </tr>
3125 <tr>
3126 <td>1</td>
3127 <td>0</td>
3128 <td>1</td>
3129 </tr>
3130 <tr>
3131 <td>1</td>
3132 <td>1</td>
3133 <td>1</td>
3134 </tr>
3135 </tbody>
3136</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003137</div>
Chris Lattner00950542001-06-06 20:29:01 +00003138<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003139<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
3140 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3141 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00003142</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003143</div>
Chris Lattner00950542001-06-06 20:29:01 +00003144<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003145<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3146Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003147<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00003148<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003149<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003150</pre>
Chris Lattner00950542001-06-06 20:29:01 +00003151<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003152<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
3153or of its two operands. The <tt>xor</tt> is used to implement the
3154"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003155<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003156<p>The two arguments to the '<tt>xor</tt>' instruction must be
3157<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3158values. Both arguments must have identical types.</p>
3159
Chris Lattner00950542001-06-06 20:29:01 +00003160<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003161
Misha Brukman9d0919f2003-11-08 01:05:38 +00003162<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003163<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003164<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003165<table border="1" cellspacing="0" cellpadding="4">
3166 <tbody>
3167 <tr>
3168 <td>In0</td>
3169 <td>In1</td>
3170 <td>Out</td>
3171 </tr>
3172 <tr>
3173 <td>0</td>
3174 <td>0</td>
3175 <td>0</td>
3176 </tr>
3177 <tr>
3178 <td>0</td>
3179 <td>1</td>
3180 <td>1</td>
3181 </tr>
3182 <tr>
3183 <td>1</td>
3184 <td>0</td>
3185 <td>1</td>
3186 </tr>
3187 <tr>
3188 <td>1</td>
3189 <td>1</td>
3190 <td>0</td>
3191 </tr>
3192 </tbody>
3193</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003194</div>
Chris Lattner261efe92003-11-25 01:02:51 +00003195<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00003196<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003197<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3198 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3199 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3200 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00003201</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003202</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003203
Chris Lattner00950542001-06-06 20:29:01 +00003204<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003205<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00003206 <a name="vectorops">Vector Operations</a>
3207</div>
3208
3209<div class="doc_text">
3210
3211<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003212target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00003213vector-specific operations needed to process vectors effectively. While LLVM
3214does directly support these vector operations, many sophisticated algorithms
3215will want to use target-specific intrinsics to take full advantage of a specific
3216target.</p>
3217
3218</div>
3219
3220<!-- _______________________________________________________________________ -->
3221<div class="doc_subsubsection">
3222 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3223</div>
3224
3225<div class="doc_text">
3226
3227<h5>Syntax:</h5>
3228
3229<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003230 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003231</pre>
3232
3233<h5>Overview:</h5>
3234
3235<p>
3236The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003237element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003238</p>
3239
3240
3241<h5>Arguments:</h5>
3242
3243<p>
3244The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003245value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00003246an index indicating the position from which to extract the element.
3247The index may be a variable.</p>
3248
3249<h5>Semantics:</h5>
3250
3251<p>
3252The result is a scalar of the same type as the element type of
3253<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3254<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3255results are undefined.
3256</p>
3257
3258<h5>Example:</h5>
3259
3260<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003261 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003262</pre>
3263</div>
3264
3265
3266<!-- _______________________________________________________________________ -->
3267<div class="doc_subsubsection">
3268 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3269</div>
3270
3271<div class="doc_text">
3272
3273<h5>Syntax:</h5>
3274
3275<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00003276 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003277</pre>
3278
3279<h5>Overview:</h5>
3280
3281<p>
3282The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003283element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003284</p>
3285
3286
3287<h5>Arguments:</h5>
3288
3289<p>
3290The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003291value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00003292scalar value whose type must equal the element type of the first
3293operand. The third operand is an index indicating the position at
3294which to insert the value. The index may be a variable.</p>
3295
3296<h5>Semantics:</h5>
3297
3298<p>
Reid Spencer485bad12007-02-15 03:07:05 +00003299The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00003300element values are those of <tt>val</tt> except at position
3301<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3302exceeds the length of <tt>val</tt>, the results are undefined.
3303</p>
3304
3305<h5>Example:</h5>
3306
3307<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003308 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003309</pre>
3310</div>
3311
3312<!-- _______________________________________________________________________ -->
3313<div class="doc_subsubsection">
3314 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3315</div>
3316
3317<div class="doc_text">
3318
3319<h5>Syntax:</h5>
3320
3321<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003322 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003323</pre>
3324
3325<h5>Overview:</h5>
3326
3327<p>
3328The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00003329from two input vectors, returning a vector with the same element type as
3330the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00003331</p>
3332
3333<h5>Arguments:</h5>
3334
3335<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003336The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3337with types that match each other. The third argument is a shuffle mask whose
3338element type is always 'i32'. The result of the instruction is a vector whose
3339length is the same as the shuffle mask and whose element type is the same as
3340the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00003341</p>
3342
3343<p>
3344The shuffle mask operand is required to be a constant vector with either
3345constant integer or undef values.
3346</p>
3347
3348<h5>Semantics:</h5>
3349
3350<p>
3351The elements of the two input vectors are numbered from left to right across
3352both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00003353the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00003354gets. The element selector may be undef (meaning "don't care") and the second
3355operand may be undef if performing a shuffle from only one vector.
3356</p>
3357
3358<h5>Example:</h5>
3359
3360<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003361 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003362 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003363 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3364 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003365 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3366 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3367 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3368 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003369</pre>
3370</div>
3371
Tanya Lattner09474292006-04-14 19:24:33 +00003372
Chris Lattner3df241e2006-04-08 23:07:04 +00003373<!-- ======================================================================= -->
3374<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003375 <a name="aggregateops">Aggregate Operations</a>
3376</div>
3377
3378<div class="doc_text">
3379
3380<p>LLVM supports several instructions for working with aggregate values.
3381</p>
3382
3383</div>
3384
3385<!-- _______________________________________________________________________ -->
3386<div class="doc_subsubsection">
3387 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3388</div>
3389
3390<div class="doc_text">
3391
3392<h5>Syntax:</h5>
3393
3394<pre>
3395 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3396</pre>
3397
3398<h5>Overview:</h5>
3399
3400<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003401The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3402or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003403</p>
3404
3405
3406<h5>Arguments:</h5>
3407
3408<p>
3409The first operand of an '<tt>extractvalue</tt>' instruction is a
3410value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003411type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003412in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003413'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3414</p>
3415
3416<h5>Semantics:</h5>
3417
3418<p>
3419The result is the value at the position in the aggregate specified by
3420the index operands.
3421</p>
3422
3423<h5>Example:</h5>
3424
3425<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003426 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003427</pre>
3428</div>
3429
3430
3431<!-- _______________________________________________________________________ -->
3432<div class="doc_subsubsection">
3433 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3434</div>
3435
3436<div class="doc_text">
3437
3438<h5>Syntax:</h5>
3439
3440<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003441 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003442</pre>
3443
3444<h5>Overview:</h5>
3445
3446<p>
3447The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003448into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003449</p>
3450
3451
3452<h5>Arguments:</h5>
3453
3454<p>
3455The first operand of an '<tt>insertvalue</tt>' instruction is a
3456value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3457The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003458The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003459indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003460indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003461'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3462The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003463by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003464</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003465
3466<h5>Semantics:</h5>
3467
3468<p>
3469The result is an aggregate of the same type as <tt>val</tt>. Its
3470value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003471specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003472</p>
3473
3474<h5>Example:</h5>
3475
3476<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003477 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003478</pre>
3479</div>
3480
3481
3482<!-- ======================================================================= -->
3483<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003484 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003485</div>
3486
Misha Brukman9d0919f2003-11-08 01:05:38 +00003487<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003488
Chris Lattner261efe92003-11-25 01:02:51 +00003489<p>A key design point of an SSA-based representation is how it
3490represents memory. In LLVM, no memory locations are in SSA form, which
3491makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003492allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003493
Misha Brukman9d0919f2003-11-08 01:05:38 +00003494</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003495
Chris Lattner00950542001-06-06 20:29:01 +00003496<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003497<div class="doc_subsubsection">
3498 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3499</div>
3500
Misha Brukman9d0919f2003-11-08 01:05:38 +00003501<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003502
Chris Lattner00950542001-06-06 20:29:01 +00003503<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003504
3505<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003506 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003507</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003508
Chris Lattner00950542001-06-06 20:29:01 +00003509<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003510
Chris Lattner261efe92003-11-25 01:02:51 +00003511<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003512heap and returns a pointer to it. The object is always allocated in the generic
3513address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003514
Chris Lattner00950542001-06-06 20:29:01 +00003515<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003516
3517<p>The '<tt>malloc</tt>' instruction allocates
3518<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003519bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003520appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003521number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003522If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003523be aligned to at least that boundary. If not specified, or if zero, the target can
3524choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003525
Misha Brukman9d0919f2003-11-08 01:05:38 +00003526<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003527
Chris Lattner00950542001-06-06 20:29:01 +00003528<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003529
Chris Lattner261efe92003-11-25 01:02:51 +00003530<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003531a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003532result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003533
Chris Lattner2cbdc452005-11-06 08:02:57 +00003534<h5>Example:</h5>
3535
3536<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003537 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003538
Bill Wendlingaac388b2007-05-29 09:42:13 +00003539 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3540 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3541 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3542 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3543 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003544</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003545
3546<p>Note that the code generator does not yet respect the
3547 alignment value.</p>
3548
Misha Brukman9d0919f2003-11-08 01:05:38 +00003549</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003550
Chris Lattner00950542001-06-06 20:29:01 +00003551<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003552<div class="doc_subsubsection">
3553 <a name="i_free">'<tt>free</tt>' Instruction</a>
3554</div>
3555
Misha Brukman9d0919f2003-11-08 01:05:38 +00003556<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003557
Chris Lattner00950542001-06-06 20:29:01 +00003558<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003559
3560<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003561 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003562</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003563
Chris Lattner00950542001-06-06 20:29:01 +00003564<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003565
Chris Lattner261efe92003-11-25 01:02:51 +00003566<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003567memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003568
Chris Lattner00950542001-06-06 20:29:01 +00003569<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003570
Chris Lattner261efe92003-11-25 01:02:51 +00003571<p>'<tt>value</tt>' shall be a pointer value that points to a value
3572that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3573instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003574
Chris Lattner00950542001-06-06 20:29:01 +00003575<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003576
John Criswell9e2485c2004-12-10 15:51:16 +00003577<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003578after this instruction executes. If the pointer is null, the operation
3579is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003580
Chris Lattner00950542001-06-06 20:29:01 +00003581<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003582
3583<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003584 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003585 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003586</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003587</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003588
Chris Lattner00950542001-06-06 20:29:01 +00003589<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003590<div class="doc_subsubsection">
3591 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3592</div>
3593
Misha Brukman9d0919f2003-11-08 01:05:38 +00003594<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003595
Chris Lattner00950542001-06-06 20:29:01 +00003596<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003597
3598<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003599 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003600</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003601
Chris Lattner00950542001-06-06 20:29:01 +00003602<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003603
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003604<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3605currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003606returns to its caller. The object is always allocated in the generic address
3607space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003608
Chris Lattner00950542001-06-06 20:29:01 +00003609<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003610
John Criswell9e2485c2004-12-10 15:51:16 +00003611<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003612bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003613appropriate type to the program. If "NumElements" is specified, it is the
3614number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003615If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003616to be aligned to at least that boundary. If not specified, or if zero, the target
3617can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003618
Misha Brukman9d0919f2003-11-08 01:05:38 +00003619<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003620
Chris Lattner00950542001-06-06 20:29:01 +00003621<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003622
Bill Wendling871eb0a2009-05-08 20:49:29 +00003623<p>Memory is allocated; a pointer is returned. The operation is undefined if
Chris Lattner72ed2002008-04-19 21:01:16 +00003624there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003625memory is automatically released when the function returns. The '<tt>alloca</tt>'
3626instruction is commonly used to represent automatic variables that must
3627have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003628 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003629instructions), the memory is reclaimed. Allocating zero bytes
3630is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003631
Chris Lattner00950542001-06-06 20:29:01 +00003632<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003633
3634<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003635 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3636 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3637 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3638 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003639</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003640</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003641
Chris Lattner00950542001-06-06 20:29:01 +00003642<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003643<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3644Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003645<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003646<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003647<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003648<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003649<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003650<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003651<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003652address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003653 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003654marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003655the number or order of execution of this <tt>load</tt> with other
3656volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3657instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003658<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003659The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003660(that is, the alignment of the memory address). A value of 0 or an
3661omitted "align" argument means that the operation has the preferential
3662alignment for the target. It is the responsibility of the code emitter
3663to ensure that the alignment information is correct. Overestimating
3664the alignment results in an undefined behavior. Underestimating the
3665alignment may produce less efficient code. An alignment of 1 is always
3666safe.
3667</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003668<h5>Semantics:</h5>
Duncan Sands19527c62009-03-22 11:33:16 +00003669<p>The location of memory pointed to is loaded. If the value being loaded
3670is of scalar type then the number of bytes read does not exceed the minimum
3671number of bytes needed to hold all bits of the type. For example, loading an
3672<tt>i24</tt> reads at most three bytes. When loading a value of a type like
3673<tt>i20</tt> with a size that is not an integral number of bytes, the result
3674is undefined if the value was not originally written using a store of the
3675same type.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003676<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003677<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003678 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003679 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3680 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003681</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003682</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003683<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003684<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3685Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003686<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003687<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003688<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3689 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003690</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003691<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003692<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003693<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003694<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003695to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003696operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3697of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003698operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003699optimizer is not allowed to modify the number or order of execution of
3700this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3701 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003702<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003703The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003704(that is, the alignment of the memory address). A value of 0 or an
3705omitted "align" argument means that the operation has the preferential
3706alignment for the target. It is the responsibility of the code emitter
3707to ensure that the alignment information is correct. Overestimating
3708the alignment results in an undefined behavior. Underestimating the
3709alignment may produce less efficient code. An alignment of 1 is always
3710safe.
3711</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003712<h5>Semantics:</h5>
3713<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
Duncan Sands19527c62009-03-22 11:33:16 +00003714at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.
3715If '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes
3716written does not exceed the minimum number of bytes needed to hold all
3717bits of the type. For example, storing an <tt>i24</tt> writes at most
3718three bytes. When writing a value of a type like <tt>i20</tt> with a
3719size that is not an integral number of bytes, it is unspecified what
3720happens to the extra bits that do not belong to the type, but they will
3721typically be overwritten.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003722<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003723<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003724 store i32 3, i32* %ptr <i>; yields {void}</i>
3725 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003726</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003727</div>
3728
Chris Lattner2b7d3202002-05-06 03:03:22 +00003729<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003730<div class="doc_subsubsection">
3731 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3732</div>
3733
Misha Brukman9d0919f2003-11-08 01:05:38 +00003734<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003735<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003736<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003737 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003738</pre>
3739
Chris Lattner7faa8832002-04-14 06:13:44 +00003740<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003741
3742<p>
3743The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003744subelement of an aggregate data structure. It performs address calculation only
3745and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003746
Chris Lattner7faa8832002-04-14 06:13:44 +00003747<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003748
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003749<p>The first argument is always a pointer, and forms the basis of the
3750calculation. The remaining arguments are indices, that indicate which of the
3751elements of the aggregate object are indexed. The interpretation of each index
3752is dependent on the type being indexed into. The first index always indexes the
3753pointer value given as the first argument, the second index indexes a value of
3754the type pointed to (not necessarily the value directly pointed to, since the
3755first index can be non-zero), etc. The first type indexed into must be a pointer
3756value, subsequent types can be arrays, vectors and structs. Note that subsequent
3757types being indexed into can never be pointers, since that would require loading
3758the pointer before continuing calculation.</p>
3759
3760<p>The type of each index argument depends on the type it is indexing into.
3761When indexing into a (packed) structure, only <tt>i32</tt> integer
3762<b>constants</b> are allowed. When indexing into an array, pointer or vector,
Sanjiv Gupta23c70f42009-04-27 03:21:00 +00003763integers of any width are allowed (also non-constants).</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003764
Chris Lattner261efe92003-11-25 01:02:51 +00003765<p>For example, let's consider a C code fragment and how it gets
3766compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003767
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003768<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003769<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003770struct RT {
3771 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003772 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003773 char C;
3774};
3775struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003776 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003777 double Y;
3778 struct RT Z;
3779};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003780
Chris Lattnercabc8462007-05-29 15:43:56 +00003781int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003782 return &amp;s[1].Z.B[5][13];
3783}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003784</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003785</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003786
Misha Brukman9d0919f2003-11-08 01:05:38 +00003787<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003788
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003789<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003790<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00003791%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3792%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003793
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003794define i32* %foo(%ST* %s) {
3795entry:
3796 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3797 ret i32* %reg
3798}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003799</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003800</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003801
Chris Lattner7faa8832002-04-14 06:13:44 +00003802<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003803
Misha Brukman9d0919f2003-11-08 01:05:38 +00003804<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003805type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003806}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003807the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3808i8 }</tt>' type, another structure. The third index indexes into the second
3809element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003810array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003811'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3812to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003813
Chris Lattner261efe92003-11-25 01:02:51 +00003814<p>Note that it is perfectly legal to index partially through a
3815structure, returning a pointer to an inner element. Because of this,
3816the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003817
3818<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003819 define i32* %foo(%ST* %s) {
3820 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003821 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3822 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003823 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3824 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3825 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003826 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003827</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003828
Chris Lattner8c0e62c2009-03-09 20:55:18 +00003829<p>Note that it is undefined to access an array out of bounds: array
3830and pointer indexes must always be within the defined bounds of the
3831array type when accessed with an instruction that dereferences the
3832pointer (e.g. a load or store instruction). The one exception for
3833this rule is zero length arrays. These arrays are defined to be
3834accessible as variable length arrays, which requires access beyond the
3835zero'th element.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00003836
Chris Lattner884a9702006-08-15 00:45:58 +00003837<p>The getelementptr instruction is often confusing. For some more insight
3838into how it works, see <a href="GetElementPtr.html">the getelementptr
3839FAQ</a>.</p>
3840
Chris Lattner7faa8832002-04-14 06:13:44 +00003841<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003842
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003843<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003844 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003845 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3846 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003847 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003848 <i>; yields i8*:eptr</i>
3849 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta9f805c22009-04-25 07:27:44 +00003850 <i>; yields i32*:iptr</i>
Sanjiv Gupta16ffa802009-04-24 16:38:13 +00003851 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003852</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003853</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003854
Chris Lattner00950542001-06-06 20:29:01 +00003855<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003856<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003857</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003858<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003859<p>The instructions in this category are the conversion instructions (casting)
3860which all take a single operand and a type. They perform various bit conversions
3861on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003862</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003863
Chris Lattner6536cfe2002-05-06 22:08:29 +00003864<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003865<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003866 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3867</div>
3868<div class="doc_text">
3869
3870<h5>Syntax:</h5>
3871<pre>
3872 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3873</pre>
3874
3875<h5>Overview:</h5>
3876<p>
3877The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3878</p>
3879
3880<h5>Arguments:</h5>
3881<p>
3882The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3883be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003884and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003885type. The bit size of <tt>value</tt> must be larger than the bit size of
3886<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003887
3888<h5>Semantics:</h5>
3889<p>
3890The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003891and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3892larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3893It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003894
3895<h5>Example:</h5>
3896<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003897 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003898 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3899 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003900</pre>
3901</div>
3902
3903<!-- _______________________________________________________________________ -->
3904<div class="doc_subsubsection">
3905 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3906</div>
3907<div class="doc_text">
3908
3909<h5>Syntax:</h5>
3910<pre>
3911 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3912</pre>
3913
3914<h5>Overview:</h5>
3915<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3916<tt>ty2</tt>.</p>
3917
3918
3919<h5>Arguments:</h5>
3920<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003921<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3922also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003923<tt>value</tt> must be smaller than the bit size of the destination type,
3924<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003925
3926<h5>Semantics:</h5>
3927<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003928bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003929
Reid Spencerb5929522007-01-12 15:46:11 +00003930<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003931
3932<h5>Example:</h5>
3933<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003934 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003935 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003936</pre>
3937</div>
3938
3939<!-- _______________________________________________________________________ -->
3940<div class="doc_subsubsection">
3941 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3942</div>
3943<div class="doc_text">
3944
3945<h5>Syntax:</h5>
3946<pre>
3947 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3948</pre>
3949
3950<h5>Overview:</h5>
3951<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3952
3953<h5>Arguments:</h5>
3954<p>
3955The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003956<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3957also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003958<tt>value</tt> must be smaller than the bit size of the destination type,
3959<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003960
3961<h5>Semantics:</h5>
3962<p>
3963The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3964bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003965the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003966
Reid Spencerc78f3372007-01-12 03:35:51 +00003967<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003968
3969<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003970<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003971 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003972 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003973</pre>
3974</div>
3975
3976<!-- _______________________________________________________________________ -->
3977<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003978 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3979</div>
3980
3981<div class="doc_text">
3982
3983<h5>Syntax:</h5>
3984
3985<pre>
3986 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3987</pre>
3988
3989<h5>Overview:</h5>
3990<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3991<tt>ty2</tt>.</p>
3992
3993
3994<h5>Arguments:</h5>
3995<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3996 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3997cast it to. The size of <tt>value</tt> must be larger than the size of
3998<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3999<i>no-op cast</i>.</p>
4000
4001<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004002<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4003<a href="#t_floating">floating point</a> type to a smaller
4004<a href="#t_floating">floating point</a> type. If the value cannot fit within
4005the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004006
4007<h5>Example:</h5>
4008<pre>
4009 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4010 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4011</pre>
4012</div>
4013
4014<!-- _______________________________________________________________________ -->
4015<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004016 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4017</div>
4018<div class="doc_text">
4019
4020<h5>Syntax:</h5>
4021<pre>
4022 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4023</pre>
4024
4025<h5>Overview:</h5>
4026<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
4027floating point value.</p>
4028
4029<h5>Arguments:</h5>
4030<p>The '<tt>fpext</tt>' instruction takes a
4031<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00004032and a <a href="#t_floating">floating point</a> type to cast it to. The source
4033type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004034
4035<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004036<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00004037<a href="#t_floating">floating point</a> type to a larger
4038<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00004039used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00004040<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004041
4042<h5>Example:</h5>
4043<pre>
4044 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4045 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4046</pre>
4047</div>
4048
4049<!-- _______________________________________________________________________ -->
4050<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00004051 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004052</div>
4053<div class="doc_text">
4054
4055<h5>Syntax:</h5>
4056<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004057 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004058</pre>
4059
4060<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004061<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004062unsigned integer equivalent of type <tt>ty2</tt>.
4063</p>
4064
4065<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004066<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00004067scalar or vector <a href="#t_floating">floating point</a> value, and a type
4068to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4069type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4070vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004071
4072<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004073<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004074<a href="#t_floating">floating point</a> operand into the nearest (rounding
4075towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
4076the results are undefined.</p>
4077
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004078<h5>Example:</h5>
4079<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004080 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004081 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004082 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004083</pre>
4084</div>
4085
4086<!-- _______________________________________________________________________ -->
4087<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004088 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004089</div>
4090<div class="doc_text">
4091
4092<h5>Syntax:</h5>
4093<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004094 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004095</pre>
4096
4097<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004098<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004099<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004100</p>
4101
Chris Lattner6536cfe2002-05-06 22:08:29 +00004102<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004103<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00004104scalar or vector <a href="#t_floating">floating point</a> value, and a type
4105to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4106type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4107vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004108
Chris Lattner6536cfe2002-05-06 22:08:29 +00004109<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004110<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004111<a href="#t_floating">floating point</a> operand into the nearest (rounding
4112towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4113the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004114
Chris Lattner33ba0d92001-07-09 00:26:23 +00004115<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004116<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004117 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004118 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004119 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004120</pre>
4121</div>
4122
4123<!-- _______________________________________________________________________ -->
4124<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004125 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004126</div>
4127<div class="doc_text">
4128
4129<h5>Syntax:</h5>
4130<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004131 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004132</pre>
4133
4134<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004135<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004136integer and converts that value to the <tt>ty2</tt> type.</p>
4137
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004138<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004139<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4140scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4141to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4142type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4143floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004144
4145<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004146<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004147integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00004148the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004149
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004150<h5>Example:</h5>
4151<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004152 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004153 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004154</pre>
4155</div>
4156
4157<!-- _______________________________________________________________________ -->
4158<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004159 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004160</div>
4161<div class="doc_text">
4162
4163<h5>Syntax:</h5>
4164<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004165 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004166</pre>
4167
4168<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004169<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004170integer and converts that value to the <tt>ty2</tt> type.</p>
4171
4172<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004173<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4174scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4175to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4176type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4177floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004178
4179<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004180<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004181integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00004182the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004183
4184<h5>Example:</h5>
4185<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004186 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004187 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004188</pre>
4189</div>
4190
4191<!-- _______________________________________________________________________ -->
4192<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00004193 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4194</div>
4195<div class="doc_text">
4196
4197<h5>Syntax:</h5>
4198<pre>
4199 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4200</pre>
4201
4202<h5>Overview:</h5>
4203<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4204the integer type <tt>ty2</tt>.</p>
4205
4206<h5>Arguments:</h5>
4207<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00004208must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00004209<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004210
4211<h5>Semantics:</h5>
4212<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4213<tt>ty2</tt> by interpreting the pointer value as an integer and either
4214truncating or zero extending that value to the size of the integer type. If
4215<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4216<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00004217are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4218change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004219
4220<h5>Example:</h5>
4221<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004222 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4223 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004224</pre>
4225</div>
4226
4227<!-- _______________________________________________________________________ -->
4228<div class="doc_subsubsection">
4229 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4230</div>
4231<div class="doc_text">
4232
4233<h5>Syntax:</h5>
4234<pre>
4235 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4236</pre>
4237
4238<h5>Overview:</h5>
4239<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4240a pointer type, <tt>ty2</tt>.</p>
4241
4242<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00004243<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00004244value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004245<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004246
4247<h5>Semantics:</h5>
4248<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4249<tt>ty2</tt> by applying either a zero extension or a truncation depending on
4250the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4251size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4252the size of a pointer then a zero extension is done. If they are the same size,
4253nothing is done (<i>no-op cast</i>).</p>
4254
4255<h5>Example:</h5>
4256<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004257 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4258 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4259 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004260</pre>
4261</div>
4262
4263<!-- _______________________________________________________________________ -->
4264<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00004265 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004266</div>
4267<div class="doc_text">
4268
4269<h5>Syntax:</h5>
4270<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004271 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004272</pre>
4273
4274<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004275
Reid Spencer5c0ef472006-11-11 23:08:07 +00004276<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004277<tt>ty2</tt> without changing any bits.</p>
4278
4279<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004280
Reid Spencer5c0ef472006-11-11 23:08:07 +00004281<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00004282a non-aggregate first class value, and a type to cast it to, which must also be
4283a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4284<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00004285and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00004286type is a pointer, the destination type must also be a pointer. This
4287instruction supports bitwise conversion of vectors to integers and to vectors
4288of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004289
4290<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004291<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00004292<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4293this conversion. The conversion is done as if the <tt>value</tt> had been
4294stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4295converted to other pointer types with this instruction. To convert pointers to
4296other types, use the <a href="#i_inttoptr">inttoptr</a> or
4297<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004298
4299<h5>Example:</h5>
4300<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004301 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004302 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004303 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00004304</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004305</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004306
Reid Spencer2fd21e62006-11-08 01:18:52 +00004307<!-- ======================================================================= -->
4308<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4309<div class="doc_text">
4310<p>The instructions in this category are the "miscellaneous"
4311instructions, which defy better classification.</p>
4312</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004313
4314<!-- _______________________________________________________________________ -->
4315<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4316</div>
4317<div class="doc_text">
4318<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004319<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004320</pre>
4321<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004322<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4323a vector of boolean values based on comparison
4324of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004325<h5>Arguments:</h5>
4326<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004327the condition code indicating the kind of comparison to perform. It is not
4328a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004329</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004330<ol>
4331 <li><tt>eq</tt>: equal</li>
4332 <li><tt>ne</tt>: not equal </li>
4333 <li><tt>ugt</tt>: unsigned greater than</li>
4334 <li><tt>uge</tt>: unsigned greater or equal</li>
4335 <li><tt>ult</tt>: unsigned less than</li>
4336 <li><tt>ule</tt>: unsigned less or equal</li>
4337 <li><tt>sgt</tt>: signed greater than</li>
4338 <li><tt>sge</tt>: signed greater or equal</li>
4339 <li><tt>slt</tt>: signed less than</li>
4340 <li><tt>sle</tt>: signed less or equal</li>
4341</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00004342<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00004343<a href="#t_pointer">pointer</a>
4344or integer <a href="#t_vector">vector</a> typed.
4345They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004346<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004347<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00004348the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00004349yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004350</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004351<ol>
4352 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4353 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4354 </li>
4355 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00004356 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004357 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004358 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004359 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004360 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004361 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004362 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004363 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004364 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004365 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004366 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004367 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004368 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004369 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004370 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004371 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004372 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004373</ol>
4374<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00004375values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004376<p>If the operands are integer vectors, then they are compared
4377element by element. The result is an <tt>i1</tt> vector with
4378the same number of elements as the values being compared.
4379Otherwise, the result is an <tt>i1</tt>.
4380</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004381
4382<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004383<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4384 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4385 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4386 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4387 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4388 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004389</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004390
4391<p>Note that the code generator does not yet support vector types with
4392 the <tt>icmp</tt> instruction.</p>
4393
Reid Spencerf3a70a62006-11-18 21:50:54 +00004394</div>
4395
4396<!-- _______________________________________________________________________ -->
4397<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4398</div>
4399<div class="doc_text">
4400<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004401<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004402</pre>
4403<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004404<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4405or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004406of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004407<p>
4408If the operands are floating point scalars, then the result
4409type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4410</p>
4411<p>If the operands are floating point vectors, then the result type
4412is a vector of boolean with the same number of elements as the
4413operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004414<h5>Arguments:</h5>
4415<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004416the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004417a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004418<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004419 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004420 <li><tt>oeq</tt>: ordered and equal</li>
4421 <li><tt>ogt</tt>: ordered and greater than </li>
4422 <li><tt>oge</tt>: ordered and greater than or equal</li>
4423 <li><tt>olt</tt>: ordered and less than </li>
4424 <li><tt>ole</tt>: ordered and less than or equal</li>
4425 <li><tt>one</tt>: ordered and not equal</li>
4426 <li><tt>ord</tt>: ordered (no nans)</li>
4427 <li><tt>ueq</tt>: unordered or equal</li>
4428 <li><tt>ugt</tt>: unordered or greater than </li>
4429 <li><tt>uge</tt>: unordered or greater than or equal</li>
4430 <li><tt>ult</tt>: unordered or less than </li>
4431 <li><tt>ule</tt>: unordered or less than or equal</li>
4432 <li><tt>une</tt>: unordered or not equal</li>
4433 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004434 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004435</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004436<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004437<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004438<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4439either a <a href="#t_floating">floating point</a> type
4440or a <a href="#t_vector">vector</a> of floating point type.
4441They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004442<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004443<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004444according to the condition code given as <tt>cond</tt>.
4445If the operands are vectors, then the vectors are compared
4446element by element.
4447Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004448always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004449<ol>
4450 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004451 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004452 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004453 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004454 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004455 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004456 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004457 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004458 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004459 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004460 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004461 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004462 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004463 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4464 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004465 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004466 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004467 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004468 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004469 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004470 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004471 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004472 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004473 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004474 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004475 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004476 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004477 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4478</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004479
4480<h5>Example:</h5>
4481<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004482 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4483 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4484 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004485</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004486
4487<p>Note that the code generator does not yet support vector types with
4488 the <tt>fcmp</tt> instruction.</p>
4489
Reid Spencerf3a70a62006-11-18 21:50:54 +00004490</div>
4491
Reid Spencer2fd21e62006-11-08 01:18:52 +00004492<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004493<div class="doc_subsubsection">
4494 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4495</div>
4496<div class="doc_text">
4497<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004498<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004499</pre>
4500<h5>Overview:</h5>
4501<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4502element-wise comparison of its two integer vector operands.</p>
4503<h5>Arguments:</h5>
4504<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4505the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004506a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004507<ol>
4508 <li><tt>eq</tt>: equal</li>
4509 <li><tt>ne</tt>: not equal </li>
4510 <li><tt>ugt</tt>: unsigned greater than</li>
4511 <li><tt>uge</tt>: unsigned greater or equal</li>
4512 <li><tt>ult</tt>: unsigned less than</li>
4513 <li><tt>ule</tt>: unsigned less or equal</li>
4514 <li><tt>sgt</tt>: signed greater than</li>
4515 <li><tt>sge</tt>: signed greater or equal</li>
4516 <li><tt>slt</tt>: signed less than</li>
4517 <li><tt>sle</tt>: signed less or equal</li>
4518</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004519<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004520<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4521<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004522<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004523according to the condition code given as <tt>cond</tt>. The comparison yields a
4524<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4525identical type as the values being compared. The most significant bit in each
4526element is 1 if the element-wise comparison evaluates to true, and is 0
4527otherwise. All other bits of the result are undefined. The condition codes
4528are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman0e451ce2008-10-14 16:51:45 +00004529instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004530
4531<h5>Example:</h5>
4532<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004533 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4534 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004535</pre>
4536</div>
4537
4538<!-- _______________________________________________________________________ -->
4539<div class="doc_subsubsection">
4540 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4541</div>
4542<div class="doc_text">
4543<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004544<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004545<h5>Overview:</h5>
4546<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4547element-wise comparison of its two floating point vector operands. The output
4548elements have the same width as the input elements.</p>
4549<h5>Arguments:</h5>
4550<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4551the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004552a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004553<ol>
4554 <li><tt>false</tt>: no comparison, always returns false</li>
4555 <li><tt>oeq</tt>: ordered and equal</li>
4556 <li><tt>ogt</tt>: ordered and greater than </li>
4557 <li><tt>oge</tt>: ordered and greater than or equal</li>
4558 <li><tt>olt</tt>: ordered and less than </li>
4559 <li><tt>ole</tt>: ordered and less than or equal</li>
4560 <li><tt>one</tt>: ordered and not equal</li>
4561 <li><tt>ord</tt>: ordered (no nans)</li>
4562 <li><tt>ueq</tt>: unordered or equal</li>
4563 <li><tt>ugt</tt>: unordered or greater than </li>
4564 <li><tt>uge</tt>: unordered or greater than or equal</li>
4565 <li><tt>ult</tt>: unordered or less than </li>
4566 <li><tt>ule</tt>: unordered or less than or equal</li>
4567 <li><tt>une</tt>: unordered or not equal</li>
4568 <li><tt>uno</tt>: unordered (either nans)</li>
4569 <li><tt>true</tt>: no comparison, always returns true</li>
4570</ol>
4571<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4572<a href="#t_floating">floating point</a> typed. They must also be identical
4573types.</p>
4574<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004575<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004576according to the condition code given as <tt>cond</tt>. The comparison yields a
4577<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4578an identical number of elements as the values being compared, and each element
4579having identical with to the width of the floating point elements. The most
4580significant bit in each element is 1 if the element-wise comparison evaluates to
4581true, and is 0 otherwise. All other bits of the result are undefined. The
4582condition codes are evaluated identically to the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004583<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004584
4585<h5>Example:</h5>
4586<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +00004587 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4588 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4589
4590 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4591 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemanac80ade2008-05-12 19:01:56 +00004592</pre>
4593</div>
4594
4595<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004596<div class="doc_subsubsection">
4597 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4598</div>
4599
Reid Spencer2fd21e62006-11-08 01:18:52 +00004600<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004601
Reid Spencer2fd21e62006-11-08 01:18:52 +00004602<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004603
Reid Spencer2fd21e62006-11-08 01:18:52 +00004604<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4605<h5>Overview:</h5>
4606<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4607the SSA graph representing the function.</p>
4608<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004609
Jeff Cohenb627eab2007-04-29 01:07:00 +00004610<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004611field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4612as arguments, with one pair for each predecessor basic block of the
4613current block. Only values of <a href="#t_firstclass">first class</a>
4614type may be used as the value arguments to the PHI node. Only labels
4615may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004616
Reid Spencer2fd21e62006-11-08 01:18:52 +00004617<p>There must be no non-phi instructions between the start of a basic
4618block and the PHI instructions: i.e. PHI instructions must be first in
4619a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004620
Jay Foadd2449092009-06-03 10:20:10 +00004621<p>For the purposes of the SSA form, the use of each incoming value is
4622deemed to occur on the edge from the corresponding predecessor block
4623to the current block (but after any definition of an '<tt>invoke</tt>'
4624instruction's return value on the same edge).</p>
4625
Reid Spencer2fd21e62006-11-08 01:18:52 +00004626<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004627
Jeff Cohenb627eab2007-04-29 01:07:00 +00004628<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4629specified by the pair corresponding to the predecessor basic block that executed
4630just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004631
Reid Spencer2fd21e62006-11-08 01:18:52 +00004632<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004633<pre>
4634Loop: ; Infinite loop that counts from 0 on up...
4635 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4636 %nextindvar = add i32 %indvar, 1
4637 br label %Loop
4638</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004639</div>
4640
Chris Lattnercc37aae2004-03-12 05:50:16 +00004641<!-- _______________________________________________________________________ -->
4642<div class="doc_subsubsection">
4643 <a name="i_select">'<tt>select</tt>' Instruction</a>
4644</div>
4645
4646<div class="doc_text">
4647
4648<h5>Syntax:</h5>
4649
4650<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004651 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4652
Dan Gohman0e451ce2008-10-14 16:51:45 +00004653 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004654</pre>
4655
4656<h5>Overview:</h5>
4657
4658<p>
4659The '<tt>select</tt>' instruction is used to choose one value based on a
4660condition, without branching.
4661</p>
4662
4663
4664<h5>Arguments:</h5>
4665
4666<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004667The '<tt>select</tt>' instruction requires an 'i1' value or
4668a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004669condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004670type. If the val1/val2 are vectors and
4671the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004672individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004673</p>
4674
4675<h5>Semantics:</h5>
4676
4677<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004678If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004679value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004680</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004681<p>
4682If the condition is a vector of i1, then the value arguments must
4683be vectors of the same size, and the selection is done element
4684by element.
4685</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004686
4687<h5>Example:</h5>
4688
4689<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004690 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004691</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004692
4693<p>Note that the code generator does not yet support conditions
4694 with vector type.</p>
4695
Chris Lattnercc37aae2004-03-12 05:50:16 +00004696</div>
4697
Robert Bocchino05ccd702006-01-15 20:48:27 +00004698
4699<!-- _______________________________________________________________________ -->
4700<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004701 <a name="i_call">'<tt>call</tt>' Instruction</a>
4702</div>
4703
Misha Brukman9d0919f2003-11-08 01:05:38 +00004704<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004705
Chris Lattner00950542001-06-06 20:29:01 +00004706<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004707<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004708 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004709</pre>
4710
Chris Lattner00950542001-06-06 20:29:01 +00004711<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004712
Misha Brukman9d0919f2003-11-08 01:05:38 +00004713<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004714
Chris Lattner00950542001-06-06 20:29:01 +00004715<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004716
Misha Brukman9d0919f2003-11-08 01:05:38 +00004717<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004718
Chris Lattner6536cfe2002-05-06 22:08:29 +00004719<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004720 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004721 <p>The optional "tail" marker indicates whether the callee function accesses
4722 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004723 function call is eligible for tail call optimization. Note that calls may
4724 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004725 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004726 </li>
4727 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004728 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004729 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004730 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004731 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004732
4733 <li>
4734 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4735 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4736 and '<tt>inreg</tt>' attributes are valid here.</p>
4737 </li>
4738
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004739 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004740 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4741 the type of the return value. Functions that return no value are marked
4742 <tt><a href="#t_void">void</a></tt>.</p>
4743 </li>
4744 <li>
4745 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4746 value being invoked. The argument types must match the types implied by
4747 this signature. This type can be omitted if the function is not varargs
4748 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004749 </li>
4750 <li>
4751 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4752 be invoked. In most cases, this is a direct function invocation, but
4753 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004754 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004755 </li>
4756 <li>
4757 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004758 function signature argument types. All arguments must be of
4759 <a href="#t_firstclass">first class</a> type. If the function signature
4760 indicates the function accepts a variable number of arguments, the extra
4761 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004762 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004763 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004764 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004765 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4766 '<tt>readnone</tt>' attributes are valid here.</p>
4767 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004768</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004769
Chris Lattner00950542001-06-06 20:29:01 +00004770<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004771
Chris Lattner261efe92003-11-25 01:02:51 +00004772<p>The '<tt>call</tt>' instruction is used to cause control flow to
4773transfer to a specified function, with its incoming arguments bound to
4774the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4775instruction in the called function, control flow continues with the
4776instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004777function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004778
Chris Lattner00950542001-06-06 20:29:01 +00004779<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004780
4781<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004782 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004783 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4784 %X = tail call i32 @foo() <i>; yields i32</i>
4785 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4786 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004787
4788 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004789 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004790 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4791 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004792 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004793 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004794</pre>
4795
Misha Brukman9d0919f2003-11-08 01:05:38 +00004796</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004797
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004798<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004799<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004800 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004801</div>
4802
Misha Brukman9d0919f2003-11-08 01:05:38 +00004803<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004804
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004805<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004806
4807<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004808 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004809</pre>
4810
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004811<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004812
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004813<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004814the "variable argument" area of a function call. It is used to implement the
4815<tt>va_arg</tt> macro in C.</p>
4816
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004817<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004818
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004819<p>This instruction takes a <tt>va_list*</tt> value and the type of
4820the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004821increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004822actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004823
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004824<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004825
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004826<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4827type from the specified <tt>va_list</tt> and causes the
4828<tt>va_list</tt> to point to the next argument. For more information,
4829see the variable argument handling <a href="#int_varargs">Intrinsic
4830Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004831
4832<p>It is legal for this instruction to be called in a function which does not
4833take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004834function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004835
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004836<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004837href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004838argument.</p>
4839
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004840<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004841
4842<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4843
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00004844<p>Note that the code generator does not yet fully support va_arg
4845 on many targets. Also, it does not currently support va_arg with
4846 aggregate types on any target.</p>
4847
Misha Brukman9d0919f2003-11-08 01:05:38 +00004848</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004849
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004850<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004851<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4852<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004853
Misha Brukman9d0919f2003-11-08 01:05:38 +00004854<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004855
4856<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004857well known names and semantics and are required to follow certain restrictions.
4858Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004859language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004860adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004861
John Criswellfc6b8952005-05-16 16:17:45 +00004862<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004863prefix is reserved in LLVM for intrinsic names; thus, function names may not
4864begin with this prefix. Intrinsic functions must always be external functions:
4865you cannot define the body of intrinsic functions. Intrinsic functions may
4866only be used in call or invoke instructions: it is illegal to take the address
4867of an intrinsic function. Additionally, because intrinsic functions are part
4868of the LLVM language, it is required if any are added that they be documented
4869here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004870
Chandler Carruth69940402007-08-04 01:51:18 +00004871<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4872a family of functions that perform the same operation but on different data
4873types. Because LLVM can represent over 8 million different integer types,
4874overloading is used commonly to allow an intrinsic function to operate on any
4875integer type. One or more of the argument types or the result type can be
4876overloaded to accept any integer type. Argument types may also be defined as
4877exactly matching a previous argument's type or the result type. This allows an
4878intrinsic function which accepts multiple arguments, but needs all of them to
4879be of the same type, to only be overloaded with respect to a single argument or
4880the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004881
Chandler Carruth69940402007-08-04 01:51:18 +00004882<p>Overloaded intrinsics will have the names of its overloaded argument types
4883encoded into its function name, each preceded by a period. Only those types
4884which are overloaded result in a name suffix. Arguments whose type is matched
4885against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4886take an integer of any width and returns an integer of exactly the same integer
4887width. This leads to a family of functions such as
4888<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4889Only one type, the return type, is overloaded, and only one type suffix is
4890required. Because the argument's type is matched against the return type, it
4891does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004892
4893<p>To learn how to add an intrinsic function, please see the
4894<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004895</p>
4896
Misha Brukman9d0919f2003-11-08 01:05:38 +00004897</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004898
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004899<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004900<div class="doc_subsection">
4901 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4902</div>
4903
Misha Brukman9d0919f2003-11-08 01:05:38 +00004904<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004905
Misha Brukman9d0919f2003-11-08 01:05:38 +00004906<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004907 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004908intrinsic functions. These functions are related to the similarly
4909named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004910
Chris Lattner261efe92003-11-25 01:02:51 +00004911<p>All of these functions operate on arguments that use a
4912target-specific value type "<tt>va_list</tt>". The LLVM assembly
4913language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004914transformations should be prepared to handle these functions regardless of
4915the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004916
Chris Lattner374ab302006-05-15 17:26:46 +00004917<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004918instruction and the variable argument handling intrinsic functions are
4919used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004920
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004921<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004922<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004923define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004924 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004925 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004926 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004927 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004928
4929 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004930 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004931
4932 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004933 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004934 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004935 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004936 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004937
4938 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004939 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004940 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004941}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004942
4943declare void @llvm.va_start(i8*)
4944declare void @llvm.va_copy(i8*, i8*)
4945declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004946</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004947</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004948
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004949</div>
4950
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004951<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004952<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004953 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004954</div>
4955
4956
Misha Brukman9d0919f2003-11-08 01:05:38 +00004957<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004958<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004959<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004960<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004961<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004962<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4963href="#i_va_arg">va_arg</a></tt>.</p>
4964
4965<h5>Arguments:</h5>
4966
Dan Gohman0e451ce2008-10-14 16:51:45 +00004967<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004968
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004969<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004970
Dan Gohman0e451ce2008-10-14 16:51:45 +00004971<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004972macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004973<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004974<tt>va_arg</tt> will produce the first variable argument passed to the function.
4975Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004976last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004977
Misha Brukman9d0919f2003-11-08 01:05:38 +00004978</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004979
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004980<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004981<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004982 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004983</div>
4984
Misha Brukman9d0919f2003-11-08 01:05:38 +00004985<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004986<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004987<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004988<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004989
Jeff Cohenb627eab2007-04-29 01:07:00 +00004990<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004991which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004992or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004993
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004994<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004995
Jeff Cohenb627eab2007-04-29 01:07:00 +00004996<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004997
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004998<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004999
Misha Brukman9d0919f2003-11-08 01:05:38 +00005000<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005001macro available in C. In a target-dependent way, it destroys the
5002<tt>va_list</tt> element to which the argument points. Calls to <a
5003href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
5004<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
5005<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005006
Misha Brukman9d0919f2003-11-08 01:05:38 +00005007</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005008
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005009<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005010<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005011 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00005012</div>
5013
Misha Brukman9d0919f2003-11-08 01:05:38 +00005014<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00005015
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005016<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005017
5018<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005019 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00005020</pre>
5021
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005022<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005023
Jeff Cohenb627eab2007-04-29 01:07:00 +00005024<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
5025from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005026
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005027<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005028
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005029<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00005030The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005031
Chris Lattnerd7923912004-05-23 21:06:01 +00005032
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005033<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005034
Jeff Cohenb627eab2007-04-29 01:07:00 +00005035<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
5036macro available in C. In a target-dependent way, it copies the source
5037<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
5038intrinsic is necessary because the <tt><a href="#int_va_start">
5039llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
5040example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005041
Misha Brukman9d0919f2003-11-08 01:05:38 +00005042</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005043
Chris Lattner33aec9e2004-02-12 17:01:32 +00005044<!-- ======================================================================= -->
5045<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00005046 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5047</div>
5048
5049<div class="doc_text">
5050
5051<p>
5052LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00005053Collection</a> (GC) requires the implementation and generation of these
5054intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00005055These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00005056stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005057href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00005058Front-ends for type-safe garbage collected languages should generate these
5059intrinsics to make use of the LLVM garbage collectors. For more details, see <a
5060href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
5061</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00005062
5063<p>The garbage collection intrinsics only operate on objects in the generic
5064 address space (address space zero).</p>
5065
Chris Lattnerd7923912004-05-23 21:06:01 +00005066</div>
5067
5068<!-- _______________________________________________________________________ -->
5069<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005070 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005071</div>
5072
5073<div class="doc_text">
5074
5075<h5>Syntax:</h5>
5076
5077<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005078 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00005079</pre>
5080
5081<h5>Overview:</h5>
5082
John Criswell9e2485c2004-12-10 15:51:16 +00005083<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00005084the code generator, and allows some metadata to be associated with it.</p>
5085
5086<h5>Arguments:</h5>
5087
5088<p>The first argument specifies the address of a stack object that contains the
5089root pointer. The second pointer (which must be either a constant or a global
5090value address) contains the meta-data to be associated with the root.</p>
5091
5092<h5>Semantics:</h5>
5093
Chris Lattner05d67092008-04-24 05:59:56 +00005094<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00005095location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00005096the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5097intrinsic may only be used in a function which <a href="#gc">specifies a GC
5098algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005099
5100</div>
5101
5102
5103<!-- _______________________________________________________________________ -->
5104<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005105 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005106</div>
5107
5108<div class="doc_text">
5109
5110<h5>Syntax:</h5>
5111
5112<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005113 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00005114</pre>
5115
5116<h5>Overview:</h5>
5117
5118<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
5119locations, allowing garbage collector implementations that require read
5120barriers.</p>
5121
5122<h5>Arguments:</h5>
5123
Chris Lattner80626e92006-03-14 20:02:51 +00005124<p>The second argument is the address to read from, which should be an address
5125allocated from the garbage collector. The first object is a pointer to the
5126start of the referenced object, if needed by the language runtime (otherwise
5127null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005128
5129<h5>Semantics:</h5>
5130
5131<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
5132instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00005133garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5134may only be used in a function which <a href="#gc">specifies a GC
5135algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005136
5137</div>
5138
5139
5140<!-- _______________________________________________________________________ -->
5141<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005142 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005143</div>
5144
5145<div class="doc_text">
5146
5147<h5>Syntax:</h5>
5148
5149<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005150 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00005151</pre>
5152
5153<h5>Overview:</h5>
5154
5155<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5156locations, allowing garbage collector implementations that require write
5157barriers (such as generational or reference counting collectors).</p>
5158
5159<h5>Arguments:</h5>
5160
Chris Lattner80626e92006-03-14 20:02:51 +00005161<p>The first argument is the reference to store, the second is the start of the
5162object to store it to, and the third is the address of the field of Obj to
5163store to. If the runtime does not require a pointer to the object, Obj may be
5164null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005165
5166<h5>Semantics:</h5>
5167
5168<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5169instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00005170garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5171may only be used in a function which <a href="#gc">specifies a GC
5172algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005173
5174</div>
5175
5176
5177
5178<!-- ======================================================================= -->
5179<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00005180 <a name="int_codegen">Code Generator Intrinsics</a>
5181</div>
5182
5183<div class="doc_text">
5184<p>
5185These intrinsics are provided by LLVM to expose special features that may only
5186be implemented with code generator support.
5187</p>
5188
5189</div>
5190
5191<!-- _______________________________________________________________________ -->
5192<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005193 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005194</div>
5195
5196<div class="doc_text">
5197
5198<h5>Syntax:</h5>
5199<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005200 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005201</pre>
5202
5203<h5>Overview:</h5>
5204
5205<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005206The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5207target-specific value indicating the return address of the current function
5208or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00005209</p>
5210
5211<h5>Arguments:</h5>
5212
5213<p>
5214The argument to this intrinsic indicates which function to return the address
5215for. Zero indicates the calling function, one indicates its caller, etc. The
5216argument is <b>required</b> to be a constant integer value.
5217</p>
5218
5219<h5>Semantics:</h5>
5220
5221<p>
5222The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
5223the return address of the specified call frame, or zero if it cannot be
5224identified. The value returned by this intrinsic is likely to be incorrect or 0
5225for arguments other than zero, so it should only be used for debugging purposes.
5226</p>
5227
5228<p>
5229Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005230aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005231source-language caller.
5232</p>
5233</div>
5234
5235
5236<!-- _______________________________________________________________________ -->
5237<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005238 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005239</div>
5240
5241<div class="doc_text">
5242
5243<h5>Syntax:</h5>
5244<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005245 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005246</pre>
5247
5248<h5>Overview:</h5>
5249
5250<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005251The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5252target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00005253</p>
5254
5255<h5>Arguments:</h5>
5256
5257<p>
5258The argument to this intrinsic indicates which function to return the frame
5259pointer for. Zero indicates the calling function, one indicates its caller,
5260etc. The argument is <b>required</b> to be a constant integer value.
5261</p>
5262
5263<h5>Semantics:</h5>
5264
5265<p>
5266The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5267the frame address of the specified call frame, or zero if it cannot be
5268identified. The value returned by this intrinsic is likely to be incorrect or 0
5269for arguments other than zero, so it should only be used for debugging purposes.
5270</p>
5271
5272<p>
5273Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005274aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005275source-language caller.
5276</p>
5277</div>
5278
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005279<!-- _______________________________________________________________________ -->
5280<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005281 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005282</div>
5283
5284<div class="doc_text">
5285
5286<h5>Syntax:</h5>
5287<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005288 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00005289</pre>
5290
5291<h5>Overview:</h5>
5292
5293<p>
5294The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00005295the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00005296<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5297features like scoped automatic variable sized arrays in C99.
5298</p>
5299
5300<h5>Semantics:</h5>
5301
5302<p>
5303This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005304href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00005305<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5306<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5307state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5308practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5309that were allocated after the <tt>llvm.stacksave</tt> was executed.
5310</p>
5311
5312</div>
5313
5314<!-- _______________________________________________________________________ -->
5315<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005316 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005317</div>
5318
5319<div class="doc_text">
5320
5321<h5>Syntax:</h5>
5322<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005323 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005324</pre>
5325
5326<h5>Overview:</h5>
5327
5328<p>
5329The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5330the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005331href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00005332useful for implementing language features like scoped automatic variable sized
5333arrays in C99.
5334</p>
5335
5336<h5>Semantics:</h5>
5337
5338<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00005339See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00005340</p>
5341
5342</div>
5343
5344
5345<!-- _______________________________________________________________________ -->
5346<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005347 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005348</div>
5349
5350<div class="doc_text">
5351
5352<h5>Syntax:</h5>
5353<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005354 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005355</pre>
5356
5357<h5>Overview:</h5>
5358
5359
5360<p>
5361The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00005362a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5363no
5364effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00005365characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005366</p>
5367
5368<h5>Arguments:</h5>
5369
5370<p>
5371<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5372determining if the fetch should be for a read (0) or write (1), and
5373<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00005374locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005375<tt>locality</tt> arguments must be constant integers.
5376</p>
5377
5378<h5>Semantics:</h5>
5379
5380<p>
5381This intrinsic does not modify the behavior of the program. In particular,
5382prefetches cannot trap and do not produce a value. On targets that support this
5383intrinsic, the prefetch can provide hints to the processor cache for better
5384performance.
5385</p>
5386
5387</div>
5388
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005389<!-- _______________________________________________________________________ -->
5390<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005391 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005392</div>
5393
5394<div class="doc_text">
5395
5396<h5>Syntax:</h5>
5397<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005398 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005399</pre>
5400
5401<h5>Overview:</h5>
5402
5403
5404<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005405The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005406(PC) in a region of
5407code to simulators and other tools. The method is target specific, but it is
5408expected that the marker will use exported symbols to transmit the PC of the
5409marker.
5410The marker makes no guarantees that it will remain with any specific instruction
5411after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005412optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005413correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005414</p>
5415
5416<h5>Arguments:</h5>
5417
5418<p>
5419<tt>id</tt> is a numerical id identifying the marker.
5420</p>
5421
5422<h5>Semantics:</h5>
5423
5424<p>
5425This intrinsic does not modify the behavior of the program. Backends that do not
5426support this intrinisic may ignore it.
5427</p>
5428
5429</div>
5430
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005431<!-- _______________________________________________________________________ -->
5432<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005433 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005434</div>
5435
5436<div class="doc_text">
5437
5438<h5>Syntax:</h5>
5439<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005440 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005441</pre>
5442
5443<h5>Overview:</h5>
5444
5445
5446<p>
5447The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5448counter register (or similar low latency, high accuracy clocks) on those targets
5449that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5450As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5451should only be used for small timings.
5452</p>
5453
5454<h5>Semantics:</h5>
5455
5456<p>
5457When directly supported, reading the cycle counter should not modify any memory.
5458Implementations are allowed to either return a application specific value or a
5459system wide value. On backends without support, this is lowered to a constant 0.
5460</p>
5461
5462</div>
5463
Chris Lattner10610642004-02-14 04:08:35 +00005464<!-- ======================================================================= -->
5465<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005466 <a name="int_libc">Standard C Library Intrinsics</a>
5467</div>
5468
5469<div class="doc_text">
5470<p>
Chris Lattner10610642004-02-14 04:08:35 +00005471LLVM provides intrinsics for a few important standard C library functions.
5472These intrinsics allow source-language front-ends to pass information about the
5473alignment of the pointer arguments to the code generator, providing opportunity
5474for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005475</p>
5476
5477</div>
5478
5479<!-- _______________________________________________________________________ -->
5480<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005481 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005482</div>
5483
5484<div class="doc_text">
5485
5486<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005487<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5488width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005489<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005490 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5491 i8 &lt;len&gt;, i32 &lt;align&gt;)
5492 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5493 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005494 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005495 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005496 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005497 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005498</pre>
5499
5500<h5>Overview:</h5>
5501
5502<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005503The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005504location to the destination location.
5505</p>
5506
5507<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005508Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5509intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005510</p>
5511
5512<h5>Arguments:</h5>
5513
5514<p>
5515The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005516the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005517specifying the number of bytes to copy, and the fourth argument is the alignment
5518of the source and destination locations.
5519</p>
5520
Chris Lattner3301ced2004-02-12 21:18:15 +00005521<p>
5522If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005523the caller guarantees that both the source and destination pointers are aligned
5524to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005525</p>
5526
Chris Lattner33aec9e2004-02-12 17:01:32 +00005527<h5>Semantics:</h5>
5528
5529<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005530The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005531location to the destination location, which are not allowed to overlap. It
5532copies "len" bytes of memory over. If the argument is known to be aligned to
5533some boundary, this can be specified as the fourth argument, otherwise it should
5534be set to 0 or 1.
5535</p>
5536</div>
5537
5538
Chris Lattner0eb51b42004-02-12 18:10:10 +00005539<!-- _______________________________________________________________________ -->
5540<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005541 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005542</div>
5543
5544<div class="doc_text">
5545
5546<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005547<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5548width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005549<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005550 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5551 i8 &lt;len&gt;, i32 &lt;align&gt;)
5552 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5553 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005554 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005555 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005556 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005557 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005558</pre>
5559
5560<h5>Overview:</h5>
5561
5562<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005563The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5564location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005565'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005566</p>
5567
5568<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005569Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5570intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005571</p>
5572
5573<h5>Arguments:</h5>
5574
5575<p>
5576The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005577the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005578specifying the number of bytes to copy, and the fourth argument is the alignment
5579of the source and destination locations.
5580</p>
5581
Chris Lattner3301ced2004-02-12 21:18:15 +00005582<p>
5583If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005584the caller guarantees that the source and destination pointers are aligned to
5585that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005586</p>
5587
Chris Lattner0eb51b42004-02-12 18:10:10 +00005588<h5>Semantics:</h5>
5589
5590<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005591The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005592location to the destination location, which may overlap. It
5593copies "len" bytes of memory over. If the argument is known to be aligned to
5594some boundary, this can be specified as the fourth argument, otherwise it should
5595be set to 0 or 1.
5596</p>
5597</div>
5598
Chris Lattner8ff75902004-01-06 05:31:32 +00005599
Chris Lattner10610642004-02-14 04:08:35 +00005600<!-- _______________________________________________________________________ -->
5601<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005602 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005603</div>
5604
5605<div class="doc_text">
5606
5607<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005608<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5609width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005610<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005611 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5612 i8 &lt;len&gt;, i32 &lt;align&gt;)
5613 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5614 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005615 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005616 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005617 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005618 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005619</pre>
5620
5621<h5>Overview:</h5>
5622
5623<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005624The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005625byte value.
5626</p>
5627
5628<p>
5629Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5630does not return a value, and takes an extra alignment argument.
5631</p>
5632
5633<h5>Arguments:</h5>
5634
5635<p>
5636The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005637byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005638argument specifying the number of bytes to fill, and the fourth argument is the
5639known alignment of destination location.
5640</p>
5641
5642<p>
5643If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005644the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005645</p>
5646
5647<h5>Semantics:</h5>
5648
5649<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005650The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5651the
Chris Lattner10610642004-02-14 04:08:35 +00005652destination location. If the argument is known to be aligned to some boundary,
5653this can be specified as the fourth argument, otherwise it should be set to 0 or
56541.
5655</p>
5656</div>
5657
5658
Chris Lattner32006282004-06-11 02:28:03 +00005659<!-- _______________________________________________________________________ -->
5660<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005661 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005662</div>
5663
5664<div class="doc_text">
5665
5666<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005667<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005668floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005669types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005670<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005671 declare float @llvm.sqrt.f32(float %Val)
5672 declare double @llvm.sqrt.f64(double %Val)
5673 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5674 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5675 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005676</pre>
5677
5678<h5>Overview:</h5>
5679
5680<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005681The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005682returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005683<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005684negative numbers other than -0.0 (which allows for better optimization, because
5685there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5686defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005687</p>
5688
5689<h5>Arguments:</h5>
5690
5691<p>
5692The argument and return value are floating point numbers of the same type.
5693</p>
5694
5695<h5>Semantics:</h5>
5696
5697<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005698This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005699floating point number.
5700</p>
5701</div>
5702
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005703<!-- _______________________________________________________________________ -->
5704<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005705 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005706</div>
5707
5708<div class="doc_text">
5709
5710<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005711<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005712floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005713types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005714<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005715 declare float @llvm.powi.f32(float %Val, i32 %power)
5716 declare double @llvm.powi.f64(double %Val, i32 %power)
5717 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5718 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5719 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005720</pre>
5721
5722<h5>Overview:</h5>
5723
5724<p>
5725The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5726specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005727multiplications is not defined. When a vector of floating point type is
5728used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005729</p>
5730
5731<h5>Arguments:</h5>
5732
5733<p>
5734The second argument is an integer power, and the first is a value to raise to
5735that power.
5736</p>
5737
5738<h5>Semantics:</h5>
5739
5740<p>
5741This function returns the first value raised to the second power with an
5742unspecified sequence of rounding operations.</p>
5743</div>
5744
Dan Gohman91c284c2007-10-15 20:30:11 +00005745<!-- _______________________________________________________________________ -->
5746<div class="doc_subsubsection">
5747 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5748</div>
5749
5750<div class="doc_text">
5751
5752<h5>Syntax:</h5>
5753<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5754floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005755types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005756<pre>
5757 declare float @llvm.sin.f32(float %Val)
5758 declare double @llvm.sin.f64(double %Val)
5759 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5760 declare fp128 @llvm.sin.f128(fp128 %Val)
5761 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5762</pre>
5763
5764<h5>Overview:</h5>
5765
5766<p>
5767The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5768</p>
5769
5770<h5>Arguments:</h5>
5771
5772<p>
5773The argument and return value are floating point numbers of the same type.
5774</p>
5775
5776<h5>Semantics:</h5>
5777
5778<p>
5779This function returns the sine of the specified operand, returning the
5780same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005781conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005782</div>
5783
5784<!-- _______________________________________________________________________ -->
5785<div class="doc_subsubsection">
5786 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5787</div>
5788
5789<div class="doc_text">
5790
5791<h5>Syntax:</h5>
5792<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5793floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005794types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005795<pre>
5796 declare float @llvm.cos.f32(float %Val)
5797 declare double @llvm.cos.f64(double %Val)
5798 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5799 declare fp128 @llvm.cos.f128(fp128 %Val)
5800 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5801</pre>
5802
5803<h5>Overview:</h5>
5804
5805<p>
5806The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5807</p>
5808
5809<h5>Arguments:</h5>
5810
5811<p>
5812The argument and return value are floating point numbers of the same type.
5813</p>
5814
5815<h5>Semantics:</h5>
5816
5817<p>
5818This function returns the cosine of the specified operand, returning the
5819same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005820conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005821</div>
5822
5823<!-- _______________________________________________________________________ -->
5824<div class="doc_subsubsection">
5825 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5826</div>
5827
5828<div class="doc_text">
5829
5830<h5>Syntax:</h5>
5831<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5832floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005833types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005834<pre>
5835 declare float @llvm.pow.f32(float %Val, float %Power)
5836 declare double @llvm.pow.f64(double %Val, double %Power)
5837 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5838 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5839 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5840</pre>
5841
5842<h5>Overview:</h5>
5843
5844<p>
5845The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5846specified (positive or negative) power.
5847</p>
5848
5849<h5>Arguments:</h5>
5850
5851<p>
5852The second argument is a floating point power, and the first is a value to
5853raise to that power.
5854</p>
5855
5856<h5>Semantics:</h5>
5857
5858<p>
5859This function returns the first value raised to the second power,
5860returning the
5861same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005862conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005863</div>
5864
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005865
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005866<!-- ======================================================================= -->
5867<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005868 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005869</div>
5870
5871<div class="doc_text">
5872<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005873LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005874These allow efficient code generation for some algorithms.
5875</p>
5876
5877</div>
5878
5879<!-- _______________________________________________________________________ -->
5880<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005881 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005882</div>
5883
5884<div class="doc_text">
5885
5886<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005887<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005888type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005889<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005890 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5891 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5892 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005893</pre>
5894
5895<h5>Overview:</h5>
5896
5897<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005898The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005899values with an even number of bytes (positive multiple of 16 bits). These are
5900useful for performing operations on data that is not in the target's native
5901byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005902</p>
5903
5904<h5>Semantics:</h5>
5905
5906<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005907The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005908and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5909intrinsic returns an i32 value that has the four bytes of the input i32
5910swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005911i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5912<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005913additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005914</p>
5915
5916</div>
5917
5918<!-- _______________________________________________________________________ -->
5919<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005920 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005921</div>
5922
5923<div class="doc_text">
5924
5925<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005926<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005927width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005928<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005929 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005930 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005931 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005932 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5933 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005934</pre>
5935
5936<h5>Overview:</h5>
5937
5938<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005939The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5940value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005941</p>
5942
5943<h5>Arguments:</h5>
5944
5945<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005946The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005947integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005948</p>
5949
5950<h5>Semantics:</h5>
5951
5952<p>
5953The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5954</p>
5955</div>
5956
5957<!-- _______________________________________________________________________ -->
5958<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005959 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005960</div>
5961
5962<div class="doc_text">
5963
5964<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005965<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005966integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005967<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005968 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5969 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005970 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005971 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5972 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005973</pre>
5974
5975<h5>Overview:</h5>
5976
5977<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005978The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5979leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005980</p>
5981
5982<h5>Arguments:</h5>
5983
5984<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005985The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005986integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005987</p>
5988
5989<h5>Semantics:</h5>
5990
5991<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005992The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5993in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005994of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005995</p>
5996</div>
Chris Lattner32006282004-06-11 02:28:03 +00005997
5998
Chris Lattnereff29ab2005-05-15 19:39:26 +00005999
6000<!-- _______________________________________________________________________ -->
6001<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00006002 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006003</div>
6004
6005<div class="doc_text">
6006
6007<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00006008<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00006009integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006010<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006011 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6012 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00006013 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006014 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6015 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00006016</pre>
6017
6018<h5>Overview:</h5>
6019
6020<p>
Reid Spencer0b118202006-01-16 21:12:35 +00006021The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6022trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00006023</p>
6024
6025<h5>Arguments:</h5>
6026
6027<p>
6028The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00006029integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00006030</p>
6031
6032<h5>Semantics:</h5>
6033
6034<p>
6035The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
6036in a variable. If the src == 0 then the result is the size in bits of the type
6037of src. For example, <tt>llvm.cttz(2) = 1</tt>.
6038</p>
6039</div>
6040
Reid Spencer497d93e2007-04-01 08:27:01 +00006041<!-- _______________________________________________________________________ -->
6042<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00006043 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006044</div>
6045
6046<div class="doc_text">
6047
6048<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00006049<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006050on any integer bit width.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006051<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006052 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
6053 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00006054</pre>
6055
6056<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00006057<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00006058range of bits from an integer value and returns them in the same bit width as
6059the original value.</p>
6060
6061<h5>Arguments:</h5>
6062<p>The first argument, <tt>%val</tt> and the result may be integer types of
6063any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00006064arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006065
6066<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00006067<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00006068of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
6069<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
6070operates in forward mode.</p>
6071<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
6072right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00006073only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
6074<ol>
6075 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
6076 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
6077 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
6078 to determine the number of bits to retain.</li>
6079 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006080 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006081</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00006082<p>In reverse mode, a similar computation is made except that the bits are
6083returned in the reverse order. So, for example, if <tt>X</tt> has the value
6084<tt>i16 0x0ACF (101011001111)</tt> and we apply
6085<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
6086<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006087</div>
6088
Reid Spencerf86037f2007-04-11 23:23:49 +00006089<div class="doc_subsubsection">
6090 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
6091</div>
6092
6093<div class="doc_text">
6094
6095<h5>Syntax:</h5>
6096<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006097on any integer bit width.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00006098<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006099 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
6100 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00006101</pre>
6102
6103<h5>Overview:</h5>
6104<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
6105of bits in an integer value with another integer value. It returns the integer
6106with the replaced bits.</p>
6107
6108<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006109<p>The first argument, <tt>%val</tt>, and the result may be integer types of
6110any bit width, but they must have the same bit width. <tt>%val</tt> is the value
Reid Spencerf86037f2007-04-11 23:23:49 +00006111whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
6112integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
6113type since they specify only a bit index.</p>
6114
6115<h5>Semantics:</h5>
6116<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
6117of operation: forwards and reverse. If <tt>%lo</tt> is greater than
6118<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
6119operates in forward mode.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006120
Reid Spencerf86037f2007-04-11 23:23:49 +00006121<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
6122truncating it down to the size of the replacement area or zero extending it
6123up to that size.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006124
Reid Spencerf86037f2007-04-11 23:23:49 +00006125<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
6126are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
6127in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman0e451ce2008-10-14 16:51:45 +00006128to the <tt>%hi</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006129
Reid Spencerc6749c42007-05-14 16:50:20 +00006130<p>In reverse mode, a similar computation is made except that the bits are
6131reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman0e451ce2008-10-14 16:51:45 +00006132<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006133
Reid Spencerf86037f2007-04-11 23:23:49 +00006134<h5>Examples:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006135
Reid Spencerf86037f2007-04-11 23:23:49 +00006136<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00006137 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00006138 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
6139 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
6140 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00006141 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00006142</pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006143
6144</div>
6145
Bill Wendlingda01af72009-02-08 04:04:40 +00006146<!-- ======================================================================= -->
6147<div class="doc_subsection">
6148 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6149</div>
6150
6151<div class="doc_text">
6152<p>
6153LLVM provides intrinsics for some arithmetic with overflow operations.
6154</p>
6155
6156</div>
6157
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006158<!-- _______________________________________________________________________ -->
6159<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006160 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006161</div>
6162
6163<div class="doc_text">
6164
6165<h5>Syntax:</h5>
6166
6167<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006168on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006169
6170<pre>
6171 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6172 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6173 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6174</pre>
6175
6176<h5>Overview:</h5>
6177
6178<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6179a signed addition of the two arguments, and indicate whether an overflow
6180occurred during the signed summation.</p>
6181
6182<h5>Arguments:</h5>
6183
6184<p>The arguments (%a and %b) and the first element of the result structure may
6185be of integer types of any bit width, but they must have the same bit width. The
6186second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6187and <tt>%b</tt> are the two values that will undergo signed addition.</p>
6188
6189<h5>Semantics:</h5>
6190
6191<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6192a signed addition of the two variables. They return a structure &mdash; the
6193first element of which is the signed summation, and the second element of which
6194is a bit specifying if the signed summation resulted in an overflow.</p>
6195
6196<h5>Examples:</h5>
6197<pre>
6198 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6199 %sum = extractvalue {i32, i1} %res, 0
6200 %obit = extractvalue {i32, i1} %res, 1
6201 br i1 %obit, label %overflow, label %normal
6202</pre>
6203
6204</div>
6205
6206<!-- _______________________________________________________________________ -->
6207<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006208 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006209</div>
6210
6211<div class="doc_text">
6212
6213<h5>Syntax:</h5>
6214
6215<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006216on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006217
6218<pre>
6219 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6220 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6221 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6222</pre>
6223
6224<h5>Overview:</h5>
6225
6226<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6227an unsigned addition of the two arguments, and indicate whether a carry occurred
6228during the unsigned summation.</p>
6229
6230<h5>Arguments:</h5>
6231
6232<p>The arguments (%a and %b) and the first element of the result structure may
6233be of integer types of any bit width, but they must have the same bit width. The
6234second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6235and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6236
6237<h5>Semantics:</h5>
6238
6239<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6240an unsigned addition of the two arguments. They return a structure &mdash; the
6241first element of which is the sum, and the second element of which is a bit
6242specifying if the unsigned summation resulted in a carry.</p>
6243
6244<h5>Examples:</h5>
6245<pre>
6246 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6247 %sum = extractvalue {i32, i1} %res, 0
6248 %obit = extractvalue {i32, i1} %res, 1
6249 br i1 %obit, label %carry, label %normal
6250</pre>
6251
6252</div>
6253
6254<!-- _______________________________________________________________________ -->
6255<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006256 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006257</div>
6258
6259<div class="doc_text">
6260
6261<h5>Syntax:</h5>
6262
6263<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006264on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006265
6266<pre>
6267 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6268 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6269 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6270</pre>
6271
6272<h5>Overview:</h5>
6273
6274<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6275a signed subtraction of the two arguments, and indicate whether an overflow
6276occurred during the signed subtraction.</p>
6277
6278<h5>Arguments:</h5>
6279
6280<p>The arguments (%a and %b) and the first element of the result structure may
6281be of integer types of any bit width, but they must have the same bit width. The
6282second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6283and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6284
6285<h5>Semantics:</h5>
6286
6287<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6288a signed subtraction of the two arguments. They return a structure &mdash; the
6289first element of which is the subtraction, and the second element of which is a bit
6290specifying if the signed subtraction resulted in an overflow.</p>
6291
6292<h5>Examples:</h5>
6293<pre>
6294 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6295 %sum = extractvalue {i32, i1} %res, 0
6296 %obit = extractvalue {i32, i1} %res, 1
6297 br i1 %obit, label %overflow, label %normal
6298</pre>
6299
6300</div>
6301
6302<!-- _______________________________________________________________________ -->
6303<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006304 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006305</div>
6306
6307<div class="doc_text">
6308
6309<h5>Syntax:</h5>
6310
6311<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006312on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006313
6314<pre>
6315 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6316 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6317 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6318</pre>
6319
6320<h5>Overview:</h5>
6321
6322<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6323an unsigned subtraction of the two arguments, and indicate whether an overflow
6324occurred during the unsigned subtraction.</p>
6325
6326<h5>Arguments:</h5>
6327
6328<p>The arguments (%a and %b) and the first element of the result structure may
6329be of integer types of any bit width, but they must have the same bit width. The
6330second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6331and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6332
6333<h5>Semantics:</h5>
6334
6335<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6336an unsigned subtraction of the two arguments. They return a structure &mdash; the
6337first element of which is the subtraction, and the second element of which is a bit
6338specifying if the unsigned subtraction resulted in an overflow.</p>
6339
6340<h5>Examples:</h5>
6341<pre>
6342 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6343 %sum = extractvalue {i32, i1} %res, 0
6344 %obit = extractvalue {i32, i1} %res, 1
6345 br i1 %obit, label %overflow, label %normal
6346</pre>
6347
6348</div>
6349
6350<!-- _______________________________________________________________________ -->
6351<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006352 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006353</div>
6354
6355<div class="doc_text">
6356
6357<h5>Syntax:</h5>
6358
6359<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006360on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006361
6362<pre>
6363 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6364 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6365 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6366</pre>
6367
6368<h5>Overview:</h5>
6369
6370<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6371a signed multiplication of the two arguments, and indicate whether an overflow
6372occurred during the signed multiplication.</p>
6373
6374<h5>Arguments:</h5>
6375
6376<p>The arguments (%a and %b) and the first element of the result structure may
6377be of integer types of any bit width, but they must have the same bit width. The
6378second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6379and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6380
6381<h5>Semantics:</h5>
6382
6383<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6384a signed multiplication of the two arguments. They return a structure &mdash;
6385the first element of which is the multiplication, and the second element of
6386which is a bit specifying if the signed multiplication resulted in an
6387overflow.</p>
6388
6389<h5>Examples:</h5>
6390<pre>
6391 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6392 %sum = extractvalue {i32, i1} %res, 0
6393 %obit = extractvalue {i32, i1} %res, 1
6394 br i1 %obit, label %overflow, label %normal
6395</pre>
6396
Reid Spencerf86037f2007-04-11 23:23:49 +00006397</div>
6398
Bill Wendling41b485c2009-02-08 23:00:09 +00006399<!-- _______________________________________________________________________ -->
6400<div class="doc_subsubsection">
6401 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6402</div>
6403
6404<div class="doc_text">
6405
6406<h5>Syntax:</h5>
6407
6408<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6409on any integer bit width.</p>
6410
6411<pre>
6412 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6413 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6414 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6415</pre>
6416
6417<h5>Overview:</h5>
6418
6419<p><i><b>Warning:</b> '<tt>llvm.umul.with.overflow</tt>' is badly broken. It is
6420actively being fixed, but it should not currently be used!</i></p>
6421
6422<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6423a unsigned multiplication of the two arguments, and indicate whether an overflow
6424occurred during the unsigned multiplication.</p>
6425
6426<h5>Arguments:</h5>
6427
6428<p>The arguments (%a and %b) and the first element of the result structure may
6429be of integer types of any bit width, but they must have the same bit width. The
6430second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6431and <tt>%b</tt> are the two values that will undergo unsigned
6432multiplication.</p>
6433
6434<h5>Semantics:</h5>
6435
6436<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6437an unsigned multiplication of the two arguments. They return a structure &mdash;
6438the first element of which is the multiplication, and the second element of
6439which is a bit specifying if the unsigned multiplication resulted in an
6440overflow.</p>
6441
6442<h5>Examples:</h5>
6443<pre>
6444 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6445 %sum = extractvalue {i32, i1} %res, 0
6446 %obit = extractvalue {i32, i1} %res, 1
6447 br i1 %obit, label %overflow, label %normal
6448</pre>
6449
6450</div>
6451
Chris Lattner8ff75902004-01-06 05:31:32 +00006452<!-- ======================================================================= -->
6453<div class="doc_subsection">
6454 <a name="int_debugger">Debugger Intrinsics</a>
6455</div>
6456
6457<div class="doc_text">
6458<p>
6459The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6460are described in the <a
6461href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6462Debugging</a> document.
6463</p>
6464</div>
6465
6466
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006467<!-- ======================================================================= -->
6468<div class="doc_subsection">
6469 <a name="int_eh">Exception Handling Intrinsics</a>
6470</div>
6471
6472<div class="doc_text">
6473<p> The LLVM exception handling intrinsics (which all start with
6474<tt>llvm.eh.</tt> prefix), are described in the <a
6475href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6476Handling</a> document. </p>
6477</div>
6478
Tanya Lattner6d806e92007-06-15 20:50:54 +00006479<!-- ======================================================================= -->
6480<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00006481 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00006482</div>
6483
6484<div class="doc_text">
6485<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006486 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00006487 the <tt>nest</tt> attribute, from a function. The result is a callable
6488 function pointer lacking the nest parameter - the caller does not need
6489 to provide a value for it. Instead, the value to use is stored in
6490 advance in a "trampoline", a block of memory usually allocated
6491 on the stack, which also contains code to splice the nest value into the
6492 argument list. This is used to implement the GCC nested function address
6493 extension.
6494</p>
6495<p>
6496 For example, if the function is
6497 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00006498 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006499<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006500 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6501 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6502 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6503 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00006504</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00006505 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6506 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006507</div>
6508
6509<!-- _______________________________________________________________________ -->
6510<div class="doc_subsubsection">
6511 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6512</div>
6513<div class="doc_text">
6514<h5>Syntax:</h5>
6515<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006516declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00006517</pre>
6518<h5>Overview:</h5>
6519<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006520 This fills the memory pointed to by <tt>tramp</tt> with code
6521 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00006522</p>
6523<h5>Arguments:</h5>
6524<p>
6525 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6526 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6527 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00006528 intrinsic. Note that the size and the alignment are target-specific - LLVM
6529 currently provides no portable way of determining them, so a front-end that
6530 generates this intrinsic needs to have some target-specific knowledge.
6531 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00006532</p>
6533<h5>Semantics:</h5>
6534<p>
6535 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00006536 dependent code, turning it into a function. A pointer to this function is
6537 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00006538 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006539 before being called. The new function's signature is the same as that of
6540 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6541 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6542 of pointer type. Calling the new function is equivalent to calling
6543 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6544 missing <tt>nest</tt> argument. If, after calling
6545 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6546 modified, then the effect of any later call to the returned function pointer is
6547 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00006548</p>
6549</div>
6550
6551<!-- ======================================================================= -->
6552<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006553 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6554</div>
6555
6556<div class="doc_text">
6557<p>
6558 These intrinsic functions expand the "universal IR" of LLVM to represent
6559 hardware constructs for atomic operations and memory synchronization. This
6560 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00006561 is aimed at a low enough level to allow any programming models or APIs
6562 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006563 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6564 hardware behavior. Just as hardware provides a "universal IR" for source
6565 languages, it also provides a starting point for developing a "universal"
6566 atomic operation and synchronization IR.
6567</p>
6568<p>
6569 These do <em>not</em> form an API such as high-level threading libraries,
6570 software transaction memory systems, atomic primitives, and intrinsic
6571 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6572 application libraries. The hardware interface provided by LLVM should allow
6573 a clean implementation of all of these APIs and parallel programming models.
6574 No one model or paradigm should be selected above others unless the hardware
6575 itself ubiquitously does so.
6576
6577</p>
6578</div>
6579
6580<!-- _______________________________________________________________________ -->
6581<div class="doc_subsubsection">
6582 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6583</div>
6584<div class="doc_text">
6585<h5>Syntax:</h5>
6586<pre>
6587declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
6588i1 &lt;device&gt; )
6589
6590</pre>
6591<h5>Overview:</h5>
6592<p>
6593 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6594 specific pairs of memory access types.
6595</p>
6596<h5>Arguments:</h5>
6597<p>
6598 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6599 The first four arguments enables a specific barrier as listed below. The fith
6600 argument specifies that the barrier applies to io or device or uncached memory.
6601
6602</p>
6603 <ul>
6604 <li><tt>ll</tt>: load-load barrier</li>
6605 <li><tt>ls</tt>: load-store barrier</li>
6606 <li><tt>sl</tt>: store-load barrier</li>
6607 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006608 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006609 </ul>
6610<h5>Semantics:</h5>
6611<p>
6612 This intrinsic causes the system to enforce some ordering constraints upon
6613 the loads and stores of the program. This barrier does not indicate
6614 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6615 which they occur. For any of the specified pairs of load and store operations
6616 (f.ex. load-load, or store-load), all of the first operations preceding the
6617 barrier will complete before any of the second operations succeeding the
6618 barrier begin. Specifically the semantics for each pairing is as follows:
6619</p>
6620 <ul>
6621 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6622 after the barrier begins.</li>
6623
6624 <li><tt>ls</tt>: All loads before the barrier must complete before any
6625 store after the barrier begins.</li>
6626 <li><tt>ss</tt>: All stores before the barrier must complete before any
6627 store after the barrier begins.</li>
6628 <li><tt>sl</tt>: All stores before the barrier must complete before any
6629 load after the barrier begins.</li>
6630 </ul>
6631<p>
6632 These semantics are applied with a logical "and" behavior when more than one
6633 is enabled in a single memory barrier intrinsic.
6634</p>
6635<p>
6636 Backends may implement stronger barriers than those requested when they do not
6637 support as fine grained a barrier as requested. Some architectures do not
6638 need all types of barriers and on such architectures, these become noops.
6639</p>
6640<h5>Example:</h5>
6641<pre>
6642%ptr = malloc i32
6643 store i32 4, %ptr
6644
6645%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6646 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6647 <i>; guarantee the above finishes</i>
6648 store i32 8, %ptr <i>; before this begins</i>
6649</pre>
6650</div>
6651
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006652<!-- _______________________________________________________________________ -->
6653<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006654 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006655</div>
6656<div class="doc_text">
6657<h5>Syntax:</h5>
6658<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00006659 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6660 any integer bit width and for different address spaces. Not all targets
6661 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006662
6663<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006664declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6665declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6666declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6667declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006668
6669</pre>
6670<h5>Overview:</h5>
6671<p>
6672 This loads a value in memory and compares it to a given value. If they are
6673 equal, it stores a new value into the memory.
6674</p>
6675<h5>Arguments:</h5>
6676<p>
Mon P Wang28873102008-06-25 08:15:39 +00006677 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006678 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6679 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6680 this integer type. While any bit width integer may be used, targets may only
6681 lower representations they support in hardware.
6682
6683</p>
6684<h5>Semantics:</h5>
6685<p>
6686 This entire intrinsic must be executed atomically. It first loads the value
6687 in memory pointed to by <tt>ptr</tt> and compares it with the value
6688 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6689 loaded value is yielded in all cases. This provides the equivalent of an
6690 atomic compare-and-swap operation within the SSA framework.
6691</p>
6692<h5>Examples:</h5>
6693
6694<pre>
6695%ptr = malloc i32
6696 store i32 4, %ptr
6697
6698%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006699%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006700 <i>; yields {i32}:result1 = 4</i>
6701%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6702%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6703
6704%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006705%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006706 <i>; yields {i32}:result2 = 8</i>
6707%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6708
6709%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6710</pre>
6711</div>
6712
6713<!-- _______________________________________________________________________ -->
6714<div class="doc_subsubsection">
6715 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6716</div>
6717<div class="doc_text">
6718<h5>Syntax:</h5>
6719
6720<p>
6721 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6722 integer bit width. Not all targets support all bit widths however.</p>
6723<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006724declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6725declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6726declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6727declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006728
6729</pre>
6730<h5>Overview:</h5>
6731<p>
6732 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6733 the value from memory. It then stores the value in <tt>val</tt> in the memory
6734 at <tt>ptr</tt>.
6735</p>
6736<h5>Arguments:</h5>
6737
6738<p>
Mon P Wang28873102008-06-25 08:15:39 +00006739 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006740 <tt>val</tt> argument and the result must be integers of the same bit width.
6741 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6742 integer type. The targets may only lower integer representations they
6743 support.
6744</p>
6745<h5>Semantics:</h5>
6746<p>
6747 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6748 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6749 equivalent of an atomic swap operation within the SSA framework.
6750
6751</p>
6752<h5>Examples:</h5>
6753<pre>
6754%ptr = malloc i32
6755 store i32 4, %ptr
6756
6757%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006758%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006759 <i>; yields {i32}:result1 = 4</i>
6760%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6761%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6762
6763%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006764%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006765 <i>; yields {i32}:result2 = 8</i>
6766
6767%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6768%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6769</pre>
6770</div>
6771
6772<!-- _______________________________________________________________________ -->
6773<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006774 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006775
6776</div>
6777<div class="doc_text">
6778<h5>Syntax:</h5>
6779<p>
Mon P Wang28873102008-06-25 08:15:39 +00006780 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006781 integer bit width. Not all targets support all bit widths however.</p>
6782<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006783declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6784declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6785declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6786declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006787
6788</pre>
6789<h5>Overview:</h5>
6790<p>
6791 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6792 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6793</p>
6794<h5>Arguments:</h5>
6795<p>
6796
6797 The intrinsic takes two arguments, the first a pointer to an integer value
6798 and the second an integer value. The result is also an integer value. These
6799 integer types can have any bit width, but they must all have the same bit
6800 width. The targets may only lower integer representations they support.
6801</p>
6802<h5>Semantics:</h5>
6803<p>
6804 This intrinsic does a series of operations atomically. It first loads the
6805 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6806 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6807</p>
6808
6809<h5>Examples:</h5>
6810<pre>
6811%ptr = malloc i32
6812 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006813%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006814 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006815%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006816 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006817%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006818 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006819%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006820</pre>
6821</div>
6822
Mon P Wang28873102008-06-25 08:15:39 +00006823<!-- _______________________________________________________________________ -->
6824<div class="doc_subsubsection">
6825 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6826
6827</div>
6828<div class="doc_text">
6829<h5>Syntax:</h5>
6830<p>
6831 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006832 any integer bit width and for different address spaces. Not all targets
6833 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006834<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006835declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6836declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6837declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6838declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006839
6840</pre>
6841<h5>Overview:</h5>
6842<p>
6843 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6844 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6845</p>
6846<h5>Arguments:</h5>
6847<p>
6848
6849 The intrinsic takes two arguments, the first a pointer to an integer value
6850 and the second an integer value. The result is also an integer value. These
6851 integer types can have any bit width, but they must all have the same bit
6852 width. The targets may only lower integer representations they support.
6853</p>
6854<h5>Semantics:</h5>
6855<p>
6856 This intrinsic does a series of operations atomically. It first loads the
6857 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6858 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6859</p>
6860
6861<h5>Examples:</h5>
6862<pre>
6863%ptr = malloc i32
6864 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006865%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006866 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006867%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006868 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006869%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006870 <i>; yields {i32}:result3 = 2</i>
6871%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6872</pre>
6873</div>
6874
6875<!-- _______________________________________________________________________ -->
6876<div class="doc_subsubsection">
6877 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6878 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6879 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6880 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6881
6882</div>
6883<div class="doc_text">
6884<h5>Syntax:</h5>
6885<p>
6886 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6887 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006888 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6889 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006890<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006891declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6892declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6893declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6894declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006895
6896</pre>
6897
6898<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006899declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6900declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6901declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6902declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006903
6904</pre>
6905
6906<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006907declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6908declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6909declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6910declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006911
6912</pre>
6913
6914<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006915declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6916declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6917declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6918declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006919
6920</pre>
6921<h5>Overview:</h5>
6922<p>
6923 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6924 the value stored in memory at <tt>ptr</tt>. It yields the original value
6925 at <tt>ptr</tt>.
6926</p>
6927<h5>Arguments:</h5>
6928<p>
6929
6930 These intrinsics take two arguments, the first a pointer to an integer value
6931 and the second an integer value. The result is also an integer value. These
6932 integer types can have any bit width, but they must all have the same bit
6933 width. The targets may only lower integer representations they support.
6934</p>
6935<h5>Semantics:</h5>
6936<p>
6937 These intrinsics does a series of operations atomically. They first load the
6938 value stored at <tt>ptr</tt>. They then do the bitwise operation
6939 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6940 value stored at <tt>ptr</tt>.
6941</p>
6942
6943<h5>Examples:</h5>
6944<pre>
6945%ptr = malloc i32
6946 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006947%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006948 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006949%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006950 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006951%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006952 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006953%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006954 <i>; yields {i32}:result3 = FF</i>
6955%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6956</pre>
6957</div>
6958
6959
6960<!-- _______________________________________________________________________ -->
6961<div class="doc_subsubsection">
6962 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6963 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6964 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6965 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6966
6967</div>
6968<div class="doc_text">
6969<h5>Syntax:</h5>
6970<p>
6971 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6972 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006973 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6974 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006975 support all bit widths however.</p>
6976<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006977declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6978declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6979declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6980declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006981
6982</pre>
6983
6984<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006985declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6986declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6987declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6988declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006989
6990</pre>
6991
6992<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006993declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6994declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6995declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6996declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006997
6998</pre>
6999
7000<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00007001declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7002declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7003declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7004declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007005
7006</pre>
7007<h5>Overview:</h5>
7008<p>
7009 These intrinsics takes the signed or unsigned minimum or maximum of
7010 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7011 original value at <tt>ptr</tt>.
7012</p>
7013<h5>Arguments:</h5>
7014<p>
7015
7016 These intrinsics take two arguments, the first a pointer to an integer value
7017 and the second an integer value. The result is also an integer value. These
7018 integer types can have any bit width, but they must all have the same bit
7019 width. The targets may only lower integer representations they support.
7020</p>
7021<h5>Semantics:</h5>
7022<p>
7023 These intrinsics does a series of operations atomically. They first load the
7024 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
7025 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
7026 the original value stored at <tt>ptr</tt>.
7027</p>
7028
7029<h5>Examples:</h5>
7030<pre>
7031%ptr = malloc i32
7032 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00007033%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00007034 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007035%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00007036 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007037%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00007038 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007039%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00007040 <i>; yields {i32}:result3 = 8</i>
7041%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7042</pre>
7043</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007044
7045<!-- ======================================================================= -->
7046<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00007047 <a name="int_general">General Intrinsics</a>
7048</div>
7049
7050<div class="doc_text">
7051<p> This class of intrinsics is designed to be generic and has
7052no specific purpose. </p>
7053</div>
7054
7055<!-- _______________________________________________________________________ -->
7056<div class="doc_subsubsection">
7057 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7058</div>
7059
7060<div class="doc_text">
7061
7062<h5>Syntax:</h5>
7063<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00007064 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00007065</pre>
7066
7067<h5>Overview:</h5>
7068
7069<p>
7070The '<tt>llvm.var.annotation</tt>' intrinsic
7071</p>
7072
7073<h5>Arguments:</h5>
7074
7075<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00007076The first argument is a pointer to a value, the second is a pointer to a
7077global string, the third is a pointer to a global string which is the source
7078file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00007079</p>
7080
7081<h5>Semantics:</h5>
7082
7083<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007084This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00007085This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007086annotations. These have no other defined use, they are ignored by code
7087generation and optimization.
7088</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007089</div>
7090
Tanya Lattnerb6367882007-09-21 22:59:12 +00007091<!-- _______________________________________________________________________ -->
7092<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00007093 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007094</div>
7095
7096<div class="doc_text">
7097
7098<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00007099<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7100any integer bit width.
7101</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007102<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00007103 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7104 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7105 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7106 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7107 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00007108</pre>
7109
7110<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00007111
7112<p>
7113The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00007114</p>
7115
7116<h5>Arguments:</h5>
7117
7118<p>
7119The first argument is an integer value (result of some expression),
7120the second is a pointer to a global string, the third is a pointer to a global
7121string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00007122It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00007123</p>
7124
7125<h5>Semantics:</h5>
7126
7127<p>
7128This intrinsic allows annotations to be put on arbitrary expressions
7129with arbitrary strings. This can be useful for special purpose optimizations
7130that want to look for these annotations. These have no other defined use, they
7131are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00007132</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007133</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007134
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007135<!-- _______________________________________________________________________ -->
7136<div class="doc_subsubsection">
7137 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7138</div>
7139
7140<div class="doc_text">
7141
7142<h5>Syntax:</h5>
7143<pre>
7144 declare void @llvm.trap()
7145</pre>
7146
7147<h5>Overview:</h5>
7148
7149<p>
7150The '<tt>llvm.trap</tt>' intrinsic
7151</p>
7152
7153<h5>Arguments:</h5>
7154
7155<p>
7156None
7157</p>
7158
7159<h5>Semantics:</h5>
7160
7161<p>
7162This intrinsics is lowered to the target dependent trap instruction. If the
7163target does not have a trap instruction, this intrinsic will be lowered to the
7164call of the abort() function.
7165</p>
7166</div>
7167
Bill Wendling69e4adb2008-11-19 05:56:17 +00007168<!-- _______________________________________________________________________ -->
7169<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00007170 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00007171</div>
7172<div class="doc_text">
7173<h5>Syntax:</h5>
7174<pre>
7175declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
7176
7177</pre>
7178<h5>Overview:</h5>
7179<p>
7180 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
7181 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
7182 it is placed on the stack before local variables.
7183</p>
7184<h5>Arguments:</h5>
7185<p>
7186 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
7187 first argument is the value loaded from the stack guard
7188 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
7189 has enough space to hold the value of the guard.
7190</p>
7191<h5>Semantics:</h5>
7192<p>
7193 This intrinsic causes the prologue/epilogue inserter to force the position of
7194 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7195 stack. This is to ensure that if a local variable on the stack is overwritten,
7196 it will destroy the value of the guard. When the function exits, the guard on
7197 the stack is checked against the original guard. If they're different, then
7198 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
7199</p>
7200</div>
7201
Chris Lattner00950542001-06-06 20:29:01 +00007202<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00007203<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007204<address>
7205 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007206 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007207 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007208 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007209
7210 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00007211 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007212 Last modified: $Date$
7213</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00007214
Misha Brukman9d0919f2003-11-08 01:05:38 +00007215</body>
7216</html>