blob: adaf44ab87033794cfe2dfc9c8adc9cd933f519c [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christopher6c7e8a02009-12-05 02:46:03 +00008 <meta name="description"
Reid Spencer3921c742004-08-26 20:44:00 +00009 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendling3d10a5a2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling987e7eb2009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
28 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
29 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
30 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
31 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
32 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
33 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner5a2d8752009-10-10 18:26:06 +000034 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling987e7eb2009-07-20 02:41:50 +000035 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
36 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
37 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
38 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendling3d10a5a2009-07-20 01:03:30 +000039 </ol>
40 </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000041 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000042 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000043 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000044 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000045 <li><a href="#aliasstructure">Aliases</a></li>
Devang Patelcd1fd252010-01-11 19:35:55 +000046 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000047 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000048 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000049 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000050 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000051 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman556ca272009-07-27 18:07:55 +000052 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000053 </ol>
54 </li>
Chris Lattner00950542001-06-06 20:29:01 +000055 <li><a href="#typesystem">Type System</a>
56 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000057 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christopher6c7e8a02009-12-05 02:46:03 +000058 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000059 <ol>
Nick Lewyckyec38da42009-09-27 00:45:11 +000060 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner4f69f462008-01-04 04:32:38 +000061 <li><a href="#t_floating">Floating Point Types</a></li>
62 <li><a href="#t_void">Void Type</a></li>
63 <li><a href="#t_label">Label Type</a></li>
Nick Lewycky7a0370f2009-05-30 05:06:04 +000064 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000065 </ol>
66 </li>
Chris Lattner00950542001-06-06 20:29:01 +000067 <li><a href="#t_derived">Derived Types</a>
68 <ol>
Chris Lattnerfdfeb692010-02-12 20:49:41 +000069 <li><a href="#t_aggregate">Aggregate Types</a>
70 <ol>
71 <li><a href="#t_array">Array Type</a></li>
72 <li><a href="#t_struct">Structure Type</a></li>
73 <li><a href="#t_pstruct">Packed Structure Type</a></li>
74 <li><a href="#t_union">Union Type</a></li>
75 <li><a href="#t_vector">Vector Type</a></li>
76 </ol>
77 </li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000078 <li><a href="#t_function">Function Type</a></li>
79 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000080 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000081 </ol>
82 </li>
Chris Lattner242d61d2009-02-02 07:32:36 +000083 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000084 </ol>
85 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000086 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000087 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000088 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner70882792009-02-28 18:32:25 +000089 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000090 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
91 <li><a href="#undefvalues">Undefined Values</a></li>
Chris Lattnerf9d078e2009-10-27 21:19:13 +000092 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000093 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000094 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000095 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000096 <li><a href="#othervalues">Other Values</a>
97 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000098 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Devang Patelcd1fd252010-01-11 19:35:55 +000099 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +0000100 </ol>
101 </li>
Chris Lattner857755c2009-07-20 05:55:19 +0000102 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
103 <ol>
104 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner401e10c2009-07-20 06:14:25 +0000105 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
106 Global Variable</a></li>
Chris Lattner857755c2009-07-20 05:55:19 +0000107 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
108 Global Variable</a></li>
109 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
110 Global Variable</a></li>
111 </ol>
112 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000113 <li><a href="#instref">Instruction Reference</a>
114 <ol>
115 <li><a href="#terminators">Terminator Instructions</a>
116 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000117 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
118 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000119 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerab21db72009-10-28 00:19:10 +0000120 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000121 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000122 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +0000123 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000124 </ol>
125 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000126 <li><a href="#binaryops">Binary Operations</a>
127 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000128 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000129 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000130 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000131 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000132 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000133 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +0000134 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
135 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
136 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +0000137 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
138 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
139 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000140 </ol>
141 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000142 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
143 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000144 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
145 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
146 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000147 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000148 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000149 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000150 </ol>
151 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000152 <li><a href="#vectorops">Vector Operations</a>
153 <ol>
154 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
155 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
156 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000157 </ol>
158 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000159 <li><a href="#aggregateops">Aggregate Operations</a>
160 <ol>
161 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
162 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
163 </ol>
164 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000165 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000166 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000167 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000168 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
169 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
170 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000171 </ol>
172 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000173 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000174 <ol>
175 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
176 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
177 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
178 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
179 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000180 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
181 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
182 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
183 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000184 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
185 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000186 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000187 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000188 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000189 <li><a href="#otherops">Other Operations</a>
190 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000191 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
192 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000193 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000194 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000195 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000196 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000197 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000198 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000199 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000200 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000201 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000202 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000203 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
204 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000205 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
206 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
207 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000208 </ol>
209 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000210 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
211 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000212 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
213 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
214 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000215 </ol>
216 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000217 <li><a href="#int_codegen">Code Generator Intrinsics</a>
218 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000219 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
220 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
221 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
222 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
223 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
224 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
225 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000226 </ol>
227 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000228 <li><a href="#int_libc">Standard C Library Intrinsics</a>
229 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000230 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
231 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
232 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
233 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
234 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000235 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
236 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
237 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000238 </ol>
239 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000240 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000241 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000242 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000243 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
244 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
245 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000246 </ol>
247 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000248 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
249 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000250 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
251 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
252 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
253 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
254 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling41b485c2009-02-08 23:00:09 +0000255 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000256 </ol>
257 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000258 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000259 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000260 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000261 <ol>
262 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000263 </ol>
264 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000265 <li><a href="#int_atomics">Atomic intrinsics</a>
266 <ol>
267 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
268 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
269 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
270 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
271 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
272 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
273 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
274 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
275 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
276 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
277 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
278 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
279 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
280 </ol>
281 </li>
Nick Lewyckycc271862009-10-13 07:03:23 +0000282 <li><a href="#int_memorymarkers">Memory Use Markers</a>
283 <ol>
284 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
285 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
286 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
287 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
288 </ol>
289 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000290 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000291 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000292 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000293 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000294 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000295 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000296 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000297 '<tt>llvm.trap</tt>' Intrinsic</a></li>
298 <li><a href="#int_stackprotector">
299 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher0e671492009-11-30 08:03:53 +0000300 <li><a href="#int_objectsize">
301 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000302 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000303 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000304 </ol>
305 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000306</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000307
308<div class="doc_author">
309 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
310 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000311</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000312
Chris Lattner00950542001-06-06 20:29:01 +0000313<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000314<div class="doc_section"> <a name="abstract">Abstract </a></div>
315<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000316
Misha Brukman9d0919f2003-11-08 01:05:38 +0000317<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000318
319<p>This document is a reference manual for the LLVM assembly language. LLVM is
320 a Static Single Assignment (SSA) based representation that provides type
321 safety, low-level operations, flexibility, and the capability of representing
322 'all' high-level languages cleanly. It is the common code representation
323 used throughout all phases of the LLVM compilation strategy.</p>
324
Misha Brukman9d0919f2003-11-08 01:05:38 +0000325</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000326
Chris Lattner00950542001-06-06 20:29:01 +0000327<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000328<div class="doc_section"> <a name="introduction">Introduction</a> </div>
329<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000330
Misha Brukman9d0919f2003-11-08 01:05:38 +0000331<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000332
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000333<p>The LLVM code representation is designed to be used in three different forms:
334 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
335 for fast loading by a Just-In-Time compiler), and as a human readable
336 assembly language representation. This allows LLVM to provide a powerful
337 intermediate representation for efficient compiler transformations and
338 analysis, while providing a natural means to debug and visualize the
339 transformations. The three different forms of LLVM are all equivalent. This
340 document describes the human readable representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000341
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000342<p>The LLVM representation aims to be light-weight and low-level while being
343 expressive, typed, and extensible at the same time. It aims to be a
344 "universal IR" of sorts, by being at a low enough level that high-level ideas
345 may be cleanly mapped to it (similar to how microprocessors are "universal
346 IR's", allowing many source languages to be mapped to them). By providing
347 type information, LLVM can be used as the target of optimizations: for
348 example, through pointer analysis, it can be proven that a C automatic
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000349 variable is never accessed outside of the current function, allowing it to
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000350 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000351
Misha Brukman9d0919f2003-11-08 01:05:38 +0000352</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000353
Chris Lattner00950542001-06-06 20:29:01 +0000354<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000355<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000356
Misha Brukman9d0919f2003-11-08 01:05:38 +0000357<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000358
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000359<p>It is important to note that this document describes 'well formed' LLVM
360 assembly language. There is a difference between what the parser accepts and
361 what is considered 'well formed'. For example, the following instruction is
362 syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000363
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000364<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000365<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000366%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000367</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000368</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000369
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000370<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
371 LLVM infrastructure provides a verification pass that may be used to verify
372 that an LLVM module is well formed. This pass is automatically run by the
373 parser after parsing input assembly and by the optimizer before it outputs
374 bitcode. The violations pointed out by the verifier pass indicate bugs in
375 transformation passes or input to the parser.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000376
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000377</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000378
Chris Lattnercc689392007-10-03 17:34:29 +0000379<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000380
Chris Lattner00950542001-06-06 20:29:01 +0000381<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000382<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000383<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000384
Misha Brukman9d0919f2003-11-08 01:05:38 +0000385<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000386
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000387<p>LLVM identifiers come in two basic types: global and local. Global
388 identifiers (functions, global variables) begin with the <tt>'@'</tt>
389 character. Local identifiers (register names, types) begin with
390 the <tt>'%'</tt> character. Additionally, there are three different formats
391 for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000392
Chris Lattner00950542001-06-06 20:29:01 +0000393<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000394 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000395 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
396 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
397 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
398 other characters in their names can be surrounded with quotes. Special
399 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
400 ASCII code for the character in hexadecimal. In this way, any character
401 can be used in a name value, even quotes themselves.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000402
Reid Spencer2c452282007-08-07 14:34:28 +0000403 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000404 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000405
Reid Spencercc16dc32004-12-09 18:02:53 +0000406 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000407 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000408</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000409
Reid Spencer2c452282007-08-07 14:34:28 +0000410<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000411 don't need to worry about name clashes with reserved words, and the set of
412 reserved words may be expanded in the future without penalty. Additionally,
413 unnamed identifiers allow a compiler to quickly come up with a temporary
414 variable without having to avoid symbol table conflicts.</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000415
Chris Lattner261efe92003-11-25 01:02:51 +0000416<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000417 languages. There are keywords for different opcodes
418 ('<tt><a href="#i_add">add</a></tt>',
419 '<tt><a href="#i_bitcast">bitcast</a></tt>',
420 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
421 ('<tt><a href="#t_void">void</a></tt>',
422 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
423 reserved words cannot conflict with variable names, because none of them
424 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000425
426<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000427 '<tt>%X</tt>' by 8:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000428
Misha Brukman9d0919f2003-11-08 01:05:38 +0000429<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000430
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000431<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000432<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000433%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000434</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000435</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000436
Misha Brukman9d0919f2003-11-08 01:05:38 +0000437<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000438
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000439<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000440<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000441%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000442</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000443</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000444
Misha Brukman9d0919f2003-11-08 01:05:38 +0000445<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000446
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000447<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000448<pre>
Gabor Greifec58f752009-10-28 13:05:07 +0000449%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
450%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000451%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000452</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000453</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000454
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000455<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
456 lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000457
Chris Lattner00950542001-06-06 20:29:01 +0000458<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000459 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000460 line.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000461
462 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000463 assigned to a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000464
Misha Brukman9d0919f2003-11-08 01:05:38 +0000465 <li>Unnamed temporaries are numbered sequentially</li>
466</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000467
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000468<p>It also shows a convention that we follow in this document. When
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000469 demonstrating instructions, we will follow an instruction with a comment that
470 defines the type and name of value produced. Comments are shown in italic
471 text.</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000472
Misha Brukman9d0919f2003-11-08 01:05:38 +0000473</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000474
475<!-- *********************************************************************** -->
476<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
477<!-- *********************************************************************** -->
478
479<!-- ======================================================================= -->
480<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
481</div>
482
483<div class="doc_text">
484
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000485<p>LLVM programs are composed of "Module"s, each of which is a translation unit
486 of the input programs. Each module consists of functions, global variables,
487 and symbol table entries. Modules may be combined together with the LLVM
488 linker, which merges function (and global variable) definitions, resolves
489 forward declarations, and merges symbol table entries. Here is an example of
490 the "hello world" module:</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000491
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000492<div class="doc_code">
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000493<pre>
494<i>; Declare the string constant as a global constant.</i>
495<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000496
497<i>; External declaration of the puts function</i>
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000498<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000499
500<i>; Definition of main function</i>
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000501define i32 @main() { <i>; i32()* </i>
502 <i>; Convert [13 x i8]* to i8 *...</i>
503 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000504
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000505 <i>; Call puts function to write out the string to stdout.</i>
506 <a href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Devang Patelcd1fd252010-01-11 19:35:55 +0000507 <a href="#i_ret">ret</a> i32 0<br>}
508
509<i>; Named metadata</i>
510!1 = metadata !{i32 41}
511!foo = !{!1, null}
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000512</pre>
513</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000514
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000515<p>This example is made up of a <a href="#globalvars">global variable</a> named
Devang Patelcd1fd252010-01-11 19:35:55 +0000516 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000517 a <a href="#functionstructure">function definition</a> for
Devang Patelcd1fd252010-01-11 19:35:55 +0000518 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
519 "<tt>foo"</tt>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000520
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000521<p>In general, a module is made up of a list of global values, where both
522 functions and global variables are global values. Global values are
523 represented by a pointer to a memory location (in this case, a pointer to an
524 array of char, and a pointer to a function), and have one of the
525 following <a href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000526
Chris Lattnere5d947b2004-12-09 16:36:40 +0000527</div>
528
529<!-- ======================================================================= -->
530<div class="doc_subsection">
531 <a name="linkage">Linkage Types</a>
532</div>
533
534<div class="doc_text">
535
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000536<p>All Global Variables and Functions have one of the following types of
537 linkage:</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000538
539<dl>
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000540 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000541 <dd>Global values with private linkage are only directly accessible by objects
542 in the current module. In particular, linking code into a module with an
543 private global value may cause the private to be renamed as necessary to
544 avoid collisions. Because the symbol is private to the module, all
545 references can be updated. This doesn't show up in any symbol table in the
546 object file.</dd>
Rafael Espindolabb46f522009-01-15 20:18:42 +0000547
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000548 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendling3d10a5a2009-07-20 01:03:30 +0000549 <dd>Similar to private, but the symbol is passed through the assembler and
Chris Lattnere1eaf912009-08-24 04:32:16 +0000550 removed by the linker after evaluation. Note that (unlike private
551 symbols) linker_private symbols are subject to coalescing by the linker:
552 weak symbols get merged and redefinitions are rejected. However, unlike
553 normal strong symbols, they are removed by the linker from the final
554 linked image (executable or dynamic library).</dd>
Bill Wendling3d10a5a2009-07-20 01:03:30 +0000555
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000556 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000557 <dd>Similar to private, but the value shows as a local symbol
558 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
559 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000560
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000561 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000562 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000563 into the object file corresponding to the LLVM module. They exist to
564 allow inlining and other optimizations to take place given knowledge of
565 the definition of the global, which is known to be somewhere outside the
566 module. Globals with <tt>available_externally</tt> linkage are allowed to
567 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
568 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000569
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000570 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Chris Lattner4887bd82007-01-14 06:51:48 +0000571 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattner873187c2010-01-09 19:15:14 +0000572 the same name when linkage occurs. This can be used to implement
573 some forms of inline functions, templates, or other code which must be
574 generated in each translation unit that uses it, but where the body may
575 be overridden with a more definitive definition later. Unreferenced
576 <tt>linkonce</tt> globals are allowed to be discarded. Note that
577 <tt>linkonce</tt> linkage does not actually allow the optimizer to
578 inline the body of this function into callers because it doesn't know if
579 this definition of the function is the definitive definition within the
580 program or whether it will be overridden by a stronger definition.
581 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
582 linkage.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000583
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000584 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattner26d054d2009-08-05 05:21:07 +0000585 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
586 <tt>linkonce</tt> linkage, except that unreferenced globals with
587 <tt>weak</tt> linkage may not be discarded. This is used for globals that
588 are declared "weak" in C source code.</dd>
589
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000590 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattner26d054d2009-08-05 05:21:07 +0000591 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
592 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
593 global scope.
594 Symbols with "<tt>common</tt>" linkage are merged in the same way as
595 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattnercd81f5d2009-08-05 05:41:44 +0000596 <tt>common</tt> symbols may not have an explicit section,
Eric Christopher6c7e8a02009-12-05 02:46:03 +0000597 must have a zero initializer, and may not be marked '<a
Chris Lattnercd81f5d2009-08-05 05:41:44 +0000598 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
599 have common linkage.</dd>
Chris Lattner26d054d2009-08-05 05:21:07 +0000600
Chris Lattnere5d947b2004-12-09 16:36:40 +0000601
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000602 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000603 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000604 pointer to array type. When two global variables with appending linkage
605 are linked together, the two global arrays are appended together. This is
606 the LLVM, typesafe, equivalent of having the system linker append together
607 "sections" with identical names when .o files are linked.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000608
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000609 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000610 <dd>The semantics of this linkage follow the ELF object file model: the symbol
611 is weak until linked, if not linked, the symbol becomes null instead of
612 being an undefined reference.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000613
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000614 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
615 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000616 <dd>Some languages allow differing globals to be merged, such as two functions
617 with different semantics. Other languages, such as <tt>C++</tt>, ensure
618 that only equivalent globals are ever merged (the "one definition rule" -
619 "ODR"). Such languages can use the <tt>linkonce_odr</tt>
620 and <tt>weak_odr</tt> linkage types to indicate that the global will only
621 be merged with equivalent globals. These linkage types are otherwise the
622 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands667d4b82009-03-07 15:45:40 +0000623
Chris Lattnerfa730212004-12-09 16:11:40 +0000624 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000625 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000626 visible, meaning that it participates in linkage and can be used to
627 resolve external symbol references.</dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000628</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000629
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000630<p>The next two types of linkage are targeted for Microsoft Windows platform
631 only. They are designed to support importing (exporting) symbols from (to)
632 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000633
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000634<dl>
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000635 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000636 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000637 or variable via a global pointer to a pointer that is set up by the DLL
638 exporting the symbol. On Microsoft Windows targets, the pointer name is
639 formed by combining <code>__imp_</code> and the function or variable
640 name.</dd>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000641
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000642 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000643 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000644 pointer to a pointer in a DLL, so that it can be referenced with the
645 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
646 name is formed by combining <code>__imp_</code> and the function or
647 variable name.</dd>
Chris Lattnerfa730212004-12-09 16:11:40 +0000648</dl>
649
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000650<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
651 another module defined a "<tt>.LC0</tt>" variable and was linked with this
652 one, one of the two would be renamed, preventing a collision. Since
653 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
654 declarations), they are accessible outside of the current module.</p>
655
656<p>It is illegal for a function <i>declaration</i> to have any linkage type
657 other than "externally visible", <tt>dllimport</tt>
658 or <tt>extern_weak</tt>.</p>
659
Duncan Sands667d4b82009-03-07 15:45:40 +0000660<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000661 or <tt>weak_odr</tt> linkages.</p>
662
Chris Lattnerfa730212004-12-09 16:11:40 +0000663</div>
664
665<!-- ======================================================================= -->
666<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000667 <a name="callingconv">Calling Conventions</a>
668</div>
669
670<div class="doc_text">
671
672<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000673 and <a href="#i_invoke">invokes</a> can all have an optional calling
674 convention specified for the call. The calling convention of any pair of
675 dynamic caller/callee must match, or the behavior of the program is
676 undefined. The following calling conventions are supported by LLVM, and more
677 may be added in the future:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000678
679<dl>
680 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000681 <dd>This calling convention (the default if no other calling convention is
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000682 specified) matches the target C calling conventions. This calling
683 convention supports varargs function calls and tolerates some mismatch in
684 the declared prototype and implemented declaration of the function (as
685 does normal C).</dd>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000686
687 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000688 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000689 (e.g. by passing things in registers). This calling convention allows the
690 target to use whatever tricks it wants to produce fast code for the
691 target, without having to conform to an externally specified ABI
Jeffrey Yasskin95fa80a2010-01-09 19:44:16 +0000692 (Application Binary Interface).
693 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
Chris Lattner29689432010-03-11 00:22:57 +0000694 when this or the GHC convention is used.</a> This calling convention
695 does not support varargs and requires the prototype of all callees to
696 exactly match the prototype of the function definition.</dd>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000697
698 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000699 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000700 as possible under the assumption that the call is not commonly executed.
701 As such, these calls often preserve all registers so that the call does
702 not break any live ranges in the caller side. This calling convention
703 does not support varargs and requires the prototype of all callees to
704 exactly match the prototype of the function definition.</dd>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000705
Chris Lattner29689432010-03-11 00:22:57 +0000706 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
707 <dd>This calling convention has been implemented specifically for use by the
708 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
709 It passes everything in registers, going to extremes to achieve this by
710 disabling callee save registers. This calling convention should not be
711 used lightly but only for specific situations such as an alternative to
712 the <em>register pinning</em> performance technique often used when
713 implementing functional programming languages.At the moment only X86
714 supports this convention and it has the following limitations:
715 <ul>
716 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
717 floating point types are supported.</li>
718 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
719 6 floating point parameters.</li>
720 </ul>
721 This calling convention supports
722 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
723 requires both the caller and callee are using it.
724 </dd>
725
Chris Lattnercfe6b372005-05-07 01:46:40 +0000726 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000727 <dd>Any calling convention may be specified by number, allowing
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000728 target-specific calling conventions to be used. Target specific calling
729 conventions start at 64.</dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000730</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000731
732<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000733 support Pascal conventions or any other well-known target-independent
734 convention.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000735
736</div>
737
738<!-- ======================================================================= -->
739<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000740 <a name="visibility">Visibility Styles</a>
741</div>
742
743<div class="doc_text">
744
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000745<p>All Global Variables and Functions have one of the following visibility
746 styles:</p>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000747
748<dl>
749 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000750 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000751 that the declaration is visible to other modules and, in shared libraries,
752 means that the declared entity may be overridden. On Darwin, default
753 visibility means that the declaration is visible to other modules. Default
754 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000755
756 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000757 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000758 object if they are in the same shared object. Usually, hidden visibility
759 indicates that the symbol will not be placed into the dynamic symbol
760 table, so no other module (executable or shared library) can reference it
761 directly.</dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000762
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000763 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000764 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000765 the dynamic symbol table, but that references within the defining module
766 will bind to the local symbol. That is, the symbol cannot be overridden by
767 another module.</dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000768</dl>
769
770</div>
771
772<!-- ======================================================================= -->
773<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000774 <a name="namedtypes">Named Types</a>
775</div>
776
777<div class="doc_text">
778
779<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000780 it easier to read the IR and make the IR more condensed (particularly when
781 recursive types are involved). An example of a name specification is:</p>
Chris Lattnere7886e42009-01-11 20:53:49 +0000782
783<div class="doc_code">
784<pre>
785%mytype = type { %mytype*, i32 }
786</pre>
787</div>
788
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000789<p>You may give a name to any <a href="#typesystem">type</a> except
790 "<a href="t_void">void</a>". Type name aliases may be used anywhere a type
791 is expected with the syntax "%mytype".</p>
Chris Lattnere7886e42009-01-11 20:53:49 +0000792
793<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000794 and that you can therefore specify multiple names for the same type. This
795 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
796 uses structural typing, the name is not part of the type. When printing out
797 LLVM IR, the printer will pick <em>one name</em> to render all types of a
798 particular shape. This means that if you have code where two different
799 source types end up having the same LLVM type, that the dumper will sometimes
800 print the "wrong" or unexpected type. This is an important design point and
801 isn't going to change.</p>
Chris Lattnere7886e42009-01-11 20:53:49 +0000802
803</div>
804
Chris Lattnere7886e42009-01-11 20:53:49 +0000805<!-- ======================================================================= -->
806<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000807 <a name="globalvars">Global Variables</a>
808</div>
809
810<div class="doc_text">
811
Chris Lattner3689a342005-02-12 19:30:21 +0000812<p>Global variables define regions of memory allocated at compilation time
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000813 instead of run-time. Global variables may optionally be initialized, may
814 have an explicit section to be placed in, and may have an optional explicit
815 alignment specified. A variable may be defined as "thread_local", which
816 means that it will not be shared by threads (each thread will have a
817 separated copy of the variable). A variable may be defined as a global
818 "constant," which indicates that the contents of the variable
819 will <b>never</b> be modified (enabling better optimization, allowing the
820 global data to be placed in the read-only section of an executable, etc).
821 Note that variables that need runtime initialization cannot be marked
822 "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000823
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000824<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
825 constant, even if the final definition of the global is not. This capability
826 can be used to enable slightly better optimization of the program, but
827 requires the language definition to guarantee that optimizations based on the
828 'constantness' are valid for the translation units that do not include the
829 definition.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000830
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000831<p>As SSA values, global variables define pointer values that are in scope
832 (i.e. they dominate) all basic blocks in the program. Global variables
833 always define a pointer to their "content" type because they describe a
834 region of memory, and all memory objects in LLVM are accessed through
835 pointers.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000836
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000837<p>A global variable may be declared to reside in a target-specific numbered
838 address space. For targets that support them, address spaces may affect how
839 optimizations are performed and/or what target instructions are used to
840 access the variable. The default address space is zero. The address space
841 qualifier must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000842
Chris Lattner88f6c462005-11-12 00:45:07 +0000843<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000844 supports it, it will emit globals to the section specified.</p>
Chris Lattner88f6c462005-11-12 00:45:07 +0000845
Chris Lattner2cbdc452005-11-06 08:02:57 +0000846<p>An explicit alignment may be specified for a global. If not present, or if
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000847 the alignment is set to zero, the alignment of the global is set by the
848 target to whatever it feels convenient. If an explicit alignment is
849 specified, the global is forced to have at least that much alignment. All
850 alignments must be a power of 2.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +0000851
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000852<p>For example, the following defines a global in a numbered address space with
853 an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000854
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000855<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000856<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000857@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000858</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000859</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000860
Chris Lattnerfa730212004-12-09 16:11:40 +0000861</div>
862
863
864<!-- ======================================================================= -->
865<div class="doc_subsection">
866 <a name="functionstructure">Functions</a>
867</div>
868
869<div class="doc_text">
870
Dan Gohmanb55a1ee2010-03-01 17:41:39 +0000871<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000872 optional <a href="#linkage">linkage type</a>, an optional
873 <a href="#visibility">visibility style</a>, an optional
874 <a href="#callingconv">calling convention</a>, a return type, an optional
875 <a href="#paramattrs">parameter attribute</a> for the return type, a function
876 name, a (possibly empty) argument list (each with optional
877 <a href="#paramattrs">parameter attributes</a>), optional
878 <a href="#fnattrs">function attributes</a>, an optional section, an optional
879 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
880 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000881
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000882<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
883 optional <a href="#linkage">linkage type</a>, an optional
Eric Christopher6c7e8a02009-12-05 02:46:03 +0000884 <a href="#visibility">visibility style</a>, an optional
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000885 <a href="#callingconv">calling convention</a>, a return type, an optional
886 <a href="#paramattrs">parameter attribute</a> for the return type, a function
887 name, a possibly empty list of arguments, an optional alignment, and an
888 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000889
Chris Lattnerd3eda892008-08-05 18:29:16 +0000890<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000891 (Control Flow Graph) for the function. Each basic block may optionally start
892 with a label (giving the basic block a symbol table entry), contains a list
893 of instructions, and ends with a <a href="#terminators">terminator</a>
894 instruction (such as a branch or function return).</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000895
Chris Lattner4a3c9012007-06-08 16:52:14 +0000896<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000897 executed on entrance to the function, and it is not allowed to have
898 predecessor basic blocks (i.e. there can not be any branches to the entry
899 block of a function). Because the block can have no predecessors, it also
900 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000901
Chris Lattner88f6c462005-11-12 00:45:07 +0000902<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000903 supports it, it will emit functions to the section specified.</p>
Chris Lattner88f6c462005-11-12 00:45:07 +0000904
Chris Lattner2cbdc452005-11-06 08:02:57 +0000905<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000906 the alignment is set to zero, the alignment of the function is set by the
907 target to whatever it feels convenient. If an explicit alignment is
908 specified, the function is forced to have at least that much alignment. All
909 alignments must be a power of 2.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +0000910
Bill Wendlingc39e3e02009-07-20 02:39:26 +0000911<h5>Syntax:</h5>
Devang Patel307e8ab2008-10-07 17:48:33 +0000912<div class="doc_code">
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000913<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +0000914define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000915 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
916 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
917 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
918 [<a href="#gc">gc</a>] { ... }
919</pre>
Devang Patel307e8ab2008-10-07 17:48:33 +0000920</div>
921
Chris Lattnerfa730212004-12-09 16:11:40 +0000922</div>
923
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000924<!-- ======================================================================= -->
925<div class="doc_subsection">
926 <a name="aliasstructure">Aliases</a>
927</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000928
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000929<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000930
931<p>Aliases act as "second name" for the aliasee value (which can be either
932 function, global variable, another alias or bitcast of global value). Aliases
933 may have an optional <a href="#linkage">linkage type</a>, and an
934 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000935
Bill Wendlingc39e3e02009-07-20 02:39:26 +0000936<h5>Syntax:</h5>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000937<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000938<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000939@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000940</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000941</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000942
943</div>
944
Chris Lattner4e9aba72006-01-23 23:23:47 +0000945<!-- ======================================================================= -->
Devang Patelcd1fd252010-01-11 19:35:55 +0000946<div class="doc_subsection">
947 <a name="namedmetadatastructure">Named Metadata</a>
948</div>
949
950<div class="doc_text">
951
Chris Lattnere6a5ddd2010-01-15 21:50:19 +0000952<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
953 nodes</a> (but not metadata strings) and null are the only valid operands for
954 a named metadata.</p>
Devang Patelcd1fd252010-01-11 19:35:55 +0000955
956<h5>Syntax:</h5>
957<div class="doc_code">
958<pre>
959!1 = metadata !{metadata !"one"}
960!name = !{null, !1}
961</pre>
962</div>
963
964</div>
965
966<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000967<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
Reid Spencerca86e162006-12-31 07:07:53 +0000968
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000969<div class="doc_text">
970
971<p>The return type and each parameter of a function type may have a set of
972 <i>parameter attributes</i> associated with them. Parameter attributes are
973 used to communicate additional information about the result or parameters of
974 a function. Parameter attributes are considered to be part of the function,
975 not of the function type, so functions with different parameter attributes
976 can have the same function type.</p>
977
978<p>Parameter attributes are simple keywords that follow the type specified. If
979 multiple parameter attributes are needed, they are space separated. For
980 example:</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000981
982<div class="doc_code">
983<pre>
Nick Lewyckyb6a7d252009-02-15 23:06:14 +0000984declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000985declare i32 @atoi(i8 zeroext)
986declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000987</pre>
988</div>
989
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000990<p>Note that any attributes for the function result (<tt>nounwind</tt>,
991 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000992
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000993<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner47507de2008-01-11 06:20:47 +0000994
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000995<dl>
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000996 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000997 <dd>This indicates to the code generator that the parameter or return value
998 should be zero-extended to a 32-bit value by the caller (for a parameter)
999 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +00001000
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001001 <dt><tt><b>signext</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001002 <dd>This indicates to the code generator that the parameter or return value
1003 should be sign-extended to a 32-bit value by the caller (for a parameter)
1004 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +00001005
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001006 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001007 <dd>This indicates that this parameter or return value should be treated in a
1008 special target-dependent fashion during while emitting code for a function
1009 call or return (usually, by putting it in a register as opposed to memory,
1010 though some targets use it to distinguish between two different kinds of
1011 registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +00001012
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001013 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001014 <dd>This indicates that the pointer parameter should really be passed by value
1015 to the function. The attribute implies that a hidden copy of the pointee
1016 is made between the caller and the callee, so the callee is unable to
1017 modify the value in the callee. This attribute is only valid on LLVM
1018 pointer arguments. It is generally used to pass structs and arrays by
1019 value, but is also valid on pointers to scalars. The copy is considered
1020 to belong to the caller not the callee (for example,
1021 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1022 <tt>byval</tt> parameters). This is not a valid attribute for return
1023 values. The byval attribute also supports specifying an alignment with
1024 the align attribute. This has a target-specific effect on the code
1025 generator that usually indicates a desired alignment for the synthesized
1026 stack slot.</dd>
1027
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001028 <dt><tt><b>sret</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001029 <dd>This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source program.
1031 This pointer must be guaranteed by the caller to be valid: loads and
1032 stores to the structure may be assumed by the callee to not to trap. This
1033 may only be applied to the first parameter. This is not a valid attribute
1034 for return values. </dd>
1035
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001036 <dt><tt><b>noalias</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001037 <dd>This indicates that the pointer does not alias any global or any other
1038 parameter. The caller is responsible for ensuring that this is the
1039 case. On a function return value, <tt>noalias</tt> additionally indicates
1040 that the pointer does not alias any other pointers visible to the
1041 caller. For further details, please see the discussion of the NoAlias
1042 response in
1043 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
1044 analysis</a>.</dd>
1045
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001046 <dt><tt><b>nocapture</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001047 <dd>This indicates that the callee does not make any copies of the pointer
1048 that outlive the callee itself. This is not a valid attribute for return
1049 values.</dd>
1050
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001051 <dt><tt><b>nest</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001052 <dd>This indicates that the pointer parameter can be excised using the
1053 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1054 attribute for return values.</dd>
1055</dl>
Reid Spencerca86e162006-12-31 07:07:53 +00001056
Reid Spencerca86e162006-12-31 07:07:53 +00001057</div>
1058
1059<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +00001060<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001061 <a name="gc">Garbage Collector Names</a>
1062</div>
1063
1064<div class="doc_text">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001065
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001066<p>Each function may specify a garbage collector name, which is simply a
1067 string:</p>
1068
1069<div class="doc_code">
1070<pre>
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001071define void @f() gc "name" { ... }
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001072</pre>
1073</div>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001074
1075<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001076 collector which will cause the compiler to alter its output in order to
1077 support the named garbage collection algorithm.</p>
1078
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001079</div>
1080
1081<!-- ======================================================================= -->
1082<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001083 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +00001084</div>
1085
1086<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001087
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001088<p>Function attributes are set to communicate additional information about a
1089 function. Function attributes are considered to be part of the function, not
1090 of the function type, so functions with different parameter attributes can
1091 have the same function type.</p>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001092
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001093<p>Function attributes are simple keywords that follow the type specified. If
1094 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001095
1096<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001097<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001098define void @f() noinline { ... }
1099define void @f() alwaysinline { ... }
1100define void @f() alwaysinline optsize { ... }
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001101define void @f() optsize { ... }
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001102</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001103</div>
1104
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001105<dl>
Charles Davis1e063d12010-02-12 00:31:15 +00001106 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1107 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1108 the backend should forcibly align the stack pointer. Specify the
1109 desired alignment, which must be a power of two, in parentheses.
1110
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001111 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001112 <dd>This attribute indicates that the inliner should attempt to inline this
1113 function into callers whenever possible, ignoring any active inlining size
1114 threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001115
Jakob Stoklund Olesen570a4a52010-02-06 01:16:28 +00001116 <dt><tt><b>inlinehint</b></tt></dt>
1117 <dd>This attribute indicates that the source code contained a hint that inlining
1118 this function is desirable (such as the "inline" keyword in C/C++). It
1119 is just a hint; it imposes no requirements on the inliner.</dd>
1120
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001121 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001122 <dd>This attribute indicates that the inliner should never inline this
1123 function in any situation. This attribute may not be used together with
1124 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001125
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001126 <dt><tt><b>optsize</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001127 <dd>This attribute suggests that optimization passes and code generator passes
1128 make choices that keep the code size of this function low, and otherwise
1129 do optimizations specifically to reduce code size.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001130
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001131 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001132 <dd>This function attribute indicates that the function never returns
1133 normally. This produces undefined behavior at runtime if the function
1134 ever does dynamically return.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001135
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001136 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001137 <dd>This function attribute indicates that the function never returns with an
1138 unwind or exceptional control flow. If the function does unwind, its
1139 runtime behavior is undefined.</dd>
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001140
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001141 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001142 <dd>This attribute indicates that the function computes its result (or decides
1143 to unwind an exception) based strictly on its arguments, without
1144 dereferencing any pointer arguments or otherwise accessing any mutable
1145 state (e.g. memory, control registers, etc) visible to caller functions.
1146 It does not write through any pointer arguments
1147 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1148 changes any state visible to callers. This means that it cannot unwind
1149 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1150 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel5d96fda2009-06-12 19:45:19 +00001151
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001152 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001153 <dd>This attribute indicates that the function does not write through any
1154 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1155 arguments) or otherwise modify any state (e.g. memory, control registers,
1156 etc) visible to caller functions. It may dereference pointer arguments
1157 and read state that may be set in the caller. A readonly function always
1158 returns the same value (or unwinds an exception identically) when called
1159 with the same set of arguments and global state. It cannot unwind an
1160 exception by calling the <tt>C++</tt> exception throwing methods, but may
1161 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc5ec8a72009-07-17 18:07:26 +00001162
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001163 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001164 <dd>This attribute indicates that the function should emit a stack smashing
1165 protector. It is in the form of a "canary"&mdash;a random value placed on
1166 the stack before the local variables that's checked upon return from the
1167 function to see if it has been overwritten. A heuristic is used to
1168 determine if a function needs stack protectors or not.<br>
1169<br>
1170 If a function that has an <tt>ssp</tt> attribute is inlined into a
1171 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1172 function will have an <tt>ssp</tt> attribute.</dd>
1173
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001174 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001175 <dd>This attribute indicates that the function should <em>always</em> emit a
1176 stack smashing protector. This overrides
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001177 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1178<br>
1179 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1180 function that doesn't have an <tt>sspreq</tt> attribute or which has
1181 an <tt>ssp</tt> attribute, then the resulting function will have
1182 an <tt>sspreq</tt> attribute.</dd>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001183
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001184 <dt><tt><b>noredzone</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001185 <dd>This attribute indicates that the code generator should not use a red
1186 zone, even if the target-specific ABI normally permits it.</dd>
1187
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001188 <dt><tt><b>noimplicitfloat</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001189 <dd>This attributes disables implicit floating point instructions.</dd>
1190
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001191 <dt><tt><b>naked</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001192 <dd>This attribute disables prologue / epilogue emission for the function.
1193 This can have very system-specific consequences.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001194</dl>
1195
Devang Patelf8b94812008-09-04 23:05:13 +00001196</div>
1197
1198<!-- ======================================================================= -->
1199<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001200 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001201</div>
1202
1203<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001204
1205<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1206 the GCC "file scope inline asm" blocks. These blocks are internally
1207 concatenated by LLVM and treated as a single unit, but may be separated in
1208 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001209
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001210<div class="doc_code">
1211<pre>
1212module asm "inline asm code goes here"
1213module asm "more can go here"
1214</pre>
1215</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001216
1217<p>The strings can contain any character by escaping non-printable characters.
1218 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001219 for the number.</p>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001220
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001221<p>The inline asm code is simply printed to the machine code .s file when
1222 assembly code is generated.</p>
1223
Chris Lattner4e9aba72006-01-23 23:23:47 +00001224</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001225
Reid Spencerde151942007-02-19 23:54:10 +00001226<!-- ======================================================================= -->
1227<div class="doc_subsection">
1228 <a name="datalayout">Data Layout</a>
1229</div>
1230
1231<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001232
Reid Spencerde151942007-02-19 23:54:10 +00001233<p>A module may specify a target specific data layout string that specifies how
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001234 data is to be laid out in memory. The syntax for the data layout is
1235 simply:</p>
1236
1237<div class="doc_code">
1238<pre>
1239target datalayout = "<i>layout specification</i>"
1240</pre>
1241</div>
1242
1243<p>The <i>layout specification</i> consists of a list of specifications
1244 separated by the minus sign character ('-'). Each specification starts with
1245 a letter and may include other information after the letter to define some
1246 aspect of the data layout. The specifications accepted are as follows:</p>
1247
Reid Spencerde151942007-02-19 23:54:10 +00001248<dl>
1249 <dt><tt>E</tt></dt>
1250 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001251 bits with the most significance have the lowest address location.</dd>
1252
Reid Spencerde151942007-02-19 23:54:10 +00001253 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001254 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001255 the bits with the least significance have the lowest address
1256 location.</dd>
1257
Reid Spencerde151942007-02-19 23:54:10 +00001258 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001259 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001260 <i>preferred</i> alignments. All sizes are in bits. Specifying
1261 the <i>pref</i> alignment is optional. If omitted, the
1262 preceding <tt>:</tt> should be omitted too.</dd>
1263
Reid Spencerde151942007-02-19 23:54:10 +00001264 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1265 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001266 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1267
Reid Spencerde151942007-02-19 23:54:10 +00001268 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001269 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001270 <i>size</i>.</dd>
1271
Reid Spencerde151942007-02-19 23:54:10 +00001272 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001273 <dd>This specifies the alignment for a floating point type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001274 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1275 (double).</dd>
1276
Reid Spencerde151942007-02-19 23:54:10 +00001277 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1278 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001279 <i>size</i>.</dd>
1280
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001281 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1282 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001283 <i>size</i>.</dd>
Chris Lattnere82bdc42009-11-07 09:35:34 +00001284
1285 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1286 <dd>This specifies a set of native integer widths for the target CPU
1287 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1288 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001289 this set are considered to support most general arithmetic
Chris Lattnere82bdc42009-11-07 09:35:34 +00001290 operations efficiently.</dd>
Reid Spencerde151942007-02-19 23:54:10 +00001291</dl>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001292
Reid Spencerde151942007-02-19 23:54:10 +00001293<p>When constructing the data layout for a given target, LLVM starts with a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001294 default set of specifications which are then (possibly) overriden by the
1295 specifications in the <tt>datalayout</tt> keyword. The default specifications
1296 are given in this list:</p>
1297
Reid Spencerde151942007-02-19 23:54:10 +00001298<ul>
1299 <li><tt>E</tt> - big endian</li>
Dan Gohmanfdf2e8c2010-02-23 02:44:03 +00001300 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
Reid Spencerde151942007-02-19 23:54:10 +00001301 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1302 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1303 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1304 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001305 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001306 alignment of 64-bits</li>
1307 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1308 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1309 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1310 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1311 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001312 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencerde151942007-02-19 23:54:10 +00001313</ul>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001314
1315<p>When LLVM is determining the alignment for a given type, it uses the
1316 following rules:</p>
1317
Reid Spencerde151942007-02-19 23:54:10 +00001318<ol>
1319 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001320 specification is used.</li>
1321
Reid Spencerde151942007-02-19 23:54:10 +00001322 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001323 smallest integer type that is larger than the bitwidth of the sought type
1324 is used. If none of the specifications are larger than the bitwidth then
1325 the the largest integer type is used. For example, given the default
1326 specifications above, the i7 type will use the alignment of i8 (next
1327 largest) while both i65 and i256 will use the alignment of i64 (largest
1328 specified).</li>
1329
Reid Spencerde151942007-02-19 23:54:10 +00001330 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001331 largest vector type that is smaller than the sought vector type will be
1332 used as a fall back. This happens because &lt;128 x double&gt; can be
1333 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001334</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001335
Reid Spencerde151942007-02-19 23:54:10 +00001336</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001337
Dan Gohman556ca272009-07-27 18:07:55 +00001338<!-- ======================================================================= -->
1339<div class="doc_subsection">
1340 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1341</div>
1342
1343<div class="doc_text">
1344
Andreas Bolka55e459a2009-07-29 00:02:05 +00001345<p>Any memory access must be done through a pointer value associated
Andreas Bolka99a82052009-07-27 20:37:10 +00001346with an address range of the memory access, otherwise the behavior
Dan Gohman556ca272009-07-27 18:07:55 +00001347is undefined. Pointer values are associated with address ranges
1348according to the following rules:</p>
1349
1350<ul>
Andreas Bolka55e459a2009-07-29 00:02:05 +00001351 <li>A pointer value formed from a
1352 <tt><a href="#i_getelementptr">getelementptr</a></tt> instruction
1353 is associated with the addresses associated with the first operand
1354 of the <tt>getelementptr</tt>.</li>
1355 <li>An address of a global variable is associated with the address
Dan Gohman556ca272009-07-27 18:07:55 +00001356 range of the variable's storage.</li>
1357 <li>The result value of an allocation instruction is associated with
1358 the address range of the allocated storage.</li>
1359 <li>A null pointer in the default address-space is associated with
Andreas Bolka55e459a2009-07-29 00:02:05 +00001360 no address.</li>
1361 <li>A pointer value formed by an
1362 <tt><a href="#i_inttoptr">inttoptr</a></tt> is associated with all
1363 address ranges of all pointer values that contribute (directly or
1364 indirectly) to the computation of the pointer's value.</li>
1365 <li>The result value of a
1366 <tt><a href="#i_bitcast">bitcast</a></tt> is associated with all
Dan Gohman556ca272009-07-27 18:07:55 +00001367 addresses associated with the operand of the <tt>bitcast</tt>.</li>
1368 <li>An integer constant other than zero or a pointer value returned
1369 from a function not defined within LLVM may be associated with address
1370 ranges allocated through mechanisms other than those provided by
Andreas Bolka55e459a2009-07-29 00:02:05 +00001371 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman556ca272009-07-27 18:07:55 +00001372 allocated by mechanisms provided by LLVM.</li>
1373 </ul>
1374
1375<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka55e459a2009-07-29 00:02:05 +00001376<tt><a href="#i_load">load</a></tt> merely indicates the size and
1377alignment of the memory from which to load, as well as the
1378interpretation of the value. The first operand of a
1379<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1380and alignment of the store.</p>
Dan Gohman556ca272009-07-27 18:07:55 +00001381
1382<p>Consequently, type-based alias analysis, aka TBAA, aka
1383<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1384LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1385additional information which specialized optimization passes may use
1386to implement type-based alias analysis.</p>
1387
1388</div>
1389
Chris Lattner00950542001-06-06 20:29:01 +00001390<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001391<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1392<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001393
Misha Brukman9d0919f2003-11-08 01:05:38 +00001394<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001395
Misha Brukman9d0919f2003-11-08 01:05:38 +00001396<p>The LLVM type system is one of the most important features of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001397 intermediate representation. Being typed enables a number of optimizations
1398 to be performed on the intermediate representation directly, without having
1399 to do extra analyses on the side before the transformation. A strong type
1400 system makes it easier to read the generated code and enables novel analyses
1401 and transformations that are not feasible to perform on normal three address
1402 code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001403
1404</div>
1405
Chris Lattner00950542001-06-06 20:29:01 +00001406<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001407<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001408Classifications</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001409
Misha Brukman9d0919f2003-11-08 01:05:38 +00001410<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001411
1412<p>The types fall into a few useful classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001413
1414<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001415 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001416 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001417 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001418 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001419 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001420 </tr>
1421 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001422 <td><a href="#t_floating">floating point</a></td>
1423 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001424 </tr>
1425 <tr>
1426 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001427 <td><a href="#t_integer">integer</a>,
1428 <a href="#t_floating">floating point</a>,
1429 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001430 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001431 <a href="#t_struct">structure</a>,
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001432 <a href="#t_union">union</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001433 <a href="#t_array">array</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001434 <a href="#t_label">label</a>,
1435 <a href="#t_metadata">metadata</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001436 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001437 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001438 <tr>
1439 <td><a href="#t_primitive">primitive</a></td>
1440 <td><a href="#t_label">label</a>,
1441 <a href="#t_void">void</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001442 <a href="#t_floating">floating point</a>,
1443 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001444 </tr>
1445 <tr>
1446 <td><a href="#t_derived">derived</a></td>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001447 <td><a href="#t_array">array</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001448 <a href="#t_function">function</a>,
1449 <a href="#t_pointer">pointer</a>,
1450 <a href="#t_struct">structure</a>,
1451 <a href="#t_pstruct">packed structure</a>,
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001452 <a href="#t_union">union</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001453 <a href="#t_vector">vector</a>,
1454 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001455 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001456 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001457 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001458</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001459
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001460<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1461 important. Values of these types are the only ones which can be produced by
Nick Lewyckyec38da42009-09-27 00:45:11 +00001462 instructions.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001463
Misha Brukman9d0919f2003-11-08 01:05:38 +00001464</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001465
Chris Lattner00950542001-06-06 20:29:01 +00001466<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001467<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001468
Chris Lattner4f69f462008-01-04 04:32:38 +00001469<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001470
Chris Lattner4f69f462008-01-04 04:32:38 +00001471<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001472 system.</p>
Chris Lattner4f69f462008-01-04 04:32:38 +00001473
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001474</div>
1475
Chris Lattner4f69f462008-01-04 04:32:38 +00001476<!-- _______________________________________________________________________ -->
Nick Lewyckyec38da42009-09-27 00:45:11 +00001477<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1478
1479<div class="doc_text">
1480
1481<h5>Overview:</h5>
1482<p>The integer type is a very simple type that simply specifies an arbitrary
1483 bit width for the integer type desired. Any bit width from 1 bit to
1484 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1485
1486<h5>Syntax:</h5>
1487<pre>
1488 iN
1489</pre>
1490
1491<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1492 value.</p>
1493
1494<h5>Examples:</h5>
1495<table class="layout">
1496 <tr class="layout">
1497 <td class="left"><tt>i1</tt></td>
1498 <td class="left">a single-bit integer.</td>
1499 </tr>
1500 <tr class="layout">
1501 <td class="left"><tt>i32</tt></td>
1502 <td class="left">a 32-bit integer.</td>
1503 </tr>
1504 <tr class="layout">
1505 <td class="left"><tt>i1942652</tt></td>
1506 <td class="left">a really big integer of over 1 million bits.</td>
1507 </tr>
1508</table>
1509
Nick Lewyckyec38da42009-09-27 00:45:11 +00001510</div>
1511
1512<!-- _______________________________________________________________________ -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001513<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1514
1515<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001516
1517<table>
1518 <tbody>
1519 <tr><th>Type</th><th>Description</th></tr>
1520 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1521 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1522 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1523 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1524 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1525 </tbody>
1526</table>
1527
Chris Lattner4f69f462008-01-04 04:32:38 +00001528</div>
1529
1530<!-- _______________________________________________________________________ -->
1531<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1532
1533<div class="doc_text">
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001534
Chris Lattner4f69f462008-01-04 04:32:38 +00001535<h5>Overview:</h5>
1536<p>The void type does not represent any value and has no size.</p>
1537
1538<h5>Syntax:</h5>
Chris Lattner4f69f462008-01-04 04:32:38 +00001539<pre>
1540 void
1541</pre>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001542
Chris Lattner4f69f462008-01-04 04:32:38 +00001543</div>
1544
1545<!-- _______________________________________________________________________ -->
1546<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1547
1548<div class="doc_text">
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001549
Chris Lattner4f69f462008-01-04 04:32:38 +00001550<h5>Overview:</h5>
1551<p>The label type represents code labels.</p>
1552
1553<h5>Syntax:</h5>
Chris Lattner4f69f462008-01-04 04:32:38 +00001554<pre>
1555 label
1556</pre>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001557
Chris Lattner4f69f462008-01-04 04:32:38 +00001558</div>
1559
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001560<!-- _______________________________________________________________________ -->
1561<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1562
1563<div class="doc_text">
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001564
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001565<h5>Overview:</h5>
Nick Lewyckyc261df92009-09-27 23:27:42 +00001566<p>The metadata type represents embedded metadata. No derived types may be
1567 created from metadata except for <a href="#t_function">function</a>
1568 arguments.
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001569
1570<h5>Syntax:</h5>
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001571<pre>
1572 metadata
1573</pre>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001574
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001575</div>
1576
Chris Lattner4f69f462008-01-04 04:32:38 +00001577
1578<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001579<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001580
Misha Brukman9d0919f2003-11-08 01:05:38 +00001581<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001582
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001583<p>The real power in LLVM comes from the derived types in the system. This is
1584 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewyckyec38da42009-09-27 00:45:11 +00001585 useful types. Each of these types contain one or more element types which
1586 may be a primitive type, or another derived type. For example, it is
1587 possible to have a two dimensional array, using an array as the element type
1588 of another array.</p>
Dan Gohmand8791e52009-01-24 15:58:40 +00001589
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001590
1591</div>
1592
1593<!-- _______________________________________________________________________ -->
1594<div class="doc_subsubsection"> <a name="t_aggregate">Aggregate Types</a> </div>
1595
1596<div class="doc_text">
1597
1598<p>Aggregate Types are a subset of derived types that can contain multiple
1599 member types. <a href="#t_array">Arrays</a>,
1600 <a href="#t_struct">structs</a>, <a href="#t_vector">vectors</a> and
1601 <a href="#t_union">unions</a> are aggregate types.</p>
1602
1603</div>
1604
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001605</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001606
1607<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001608<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001609
Misha Brukman9d0919f2003-11-08 01:05:38 +00001610<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001611
Chris Lattner00950542001-06-06 20:29:01 +00001612<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001613<p>The array type is a very simple derived type that arranges elements
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001614 sequentially in memory. The array type requires a size (number of elements)
1615 and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001616
Chris Lattner7faa8832002-04-14 06:13:44 +00001617<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001618<pre>
1619 [&lt;# elements&gt; x &lt;elementtype&gt;]
1620</pre>
1621
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001622<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1623 be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001624
Chris Lattner7faa8832002-04-14 06:13:44 +00001625<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001626<table class="layout">
1627 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001628 <td class="left"><tt>[40 x i32]</tt></td>
1629 <td class="left">Array of 40 32-bit integer values.</td>
1630 </tr>
1631 <tr class="layout">
1632 <td class="left"><tt>[41 x i32]</tt></td>
1633 <td class="left">Array of 41 32-bit integer values.</td>
1634 </tr>
1635 <tr class="layout">
1636 <td class="left"><tt>[4 x i8]</tt></td>
1637 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001638 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001639</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001640<p>Here are some examples of multidimensional arrays:</p>
1641<table class="layout">
1642 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001643 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1644 <td class="left">3x4 array of 32-bit integer values.</td>
1645 </tr>
1646 <tr class="layout">
1647 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1648 <td class="left">12x10 array of single precision floating point values.</td>
1649 </tr>
1650 <tr class="layout">
1651 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1652 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001653 </tr>
1654</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001655
Dan Gohman7657f6b2009-11-09 19:01:53 +00001656<p>There is no restriction on indexing beyond the end of the array implied by
1657 a static type (though there are restrictions on indexing beyond the bounds
1658 of an allocated object in some cases). This means that single-dimension
1659 'variable sized array' addressing can be implemented in LLVM with a zero
1660 length array type. An implementation of 'pascal style arrays' in LLVM could
1661 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001662
Misha Brukman9d0919f2003-11-08 01:05:38 +00001663</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001664
Chris Lattner00950542001-06-06 20:29:01 +00001665<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001666<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001667
Misha Brukman9d0919f2003-11-08 01:05:38 +00001668<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001669
Chris Lattner00950542001-06-06 20:29:01 +00001670<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001671<p>The function type can be thought of as a function signature. It consists of
1672 a return type and a list of formal parameter types. The return type of a
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001673 function type is a scalar type, a void type, a struct type, or a union
1674 type. If the return type is a struct type then all struct elements must be
1675 of first class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001676
Chris Lattner00950542001-06-06 20:29:01 +00001677<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001678<pre>
Nick Lewycky51386942009-09-27 07:55:32 +00001679 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001680</pre>
1681
John Criswell0ec250c2005-10-24 16:17:18 +00001682<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001683 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1684 which indicates that the function takes a variable number of arguments.
1685 Variable argument functions can access their arguments with
1686 the <a href="#int_varargs">variable argument handling intrinsic</a>
Chris Lattner0724fbd2010-03-02 06:36:51 +00001687 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
Nick Lewyckyc261df92009-09-27 23:27:42 +00001688 <a href="#t_label">label</a>.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001689
Chris Lattner00950542001-06-06 20:29:01 +00001690<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001691<table class="layout">
1692 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001693 <td class="left"><tt>i32 (i32)</tt></td>
1694 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001695 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001696 </tr><tr class="layout">
Chris Lattner0724fbd2010-03-02 06:36:51 +00001697 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001698 </tt></td>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001699 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
Chris Lattner0724fbd2010-03-02 06:36:51 +00001700 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
1701 returning <tt>float</tt>.
Reid Spencer92f82302006-12-31 07:18:34 +00001702 </td>
1703 </tr><tr class="layout">
1704 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001705 <td class="left">A vararg function that takes at least one
1706 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1707 which returns an integer. This is the signature for <tt>printf</tt> in
Reid Spencer92f82302006-12-31 07:18:34 +00001708 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001709 </td>
Devang Patela582f402008-03-24 05:35:41 +00001710 </tr><tr class="layout">
1711 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky51386942009-09-27 07:55:32 +00001712 <td class="left">A function taking an <tt>i32</tt>, returning a
1713 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patela582f402008-03-24 05:35:41 +00001714 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001715 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001716</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001717
Misha Brukman9d0919f2003-11-08 01:05:38 +00001718</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001719
Chris Lattner00950542001-06-06 20:29:01 +00001720<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001721<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001722
Misha Brukman9d0919f2003-11-08 01:05:38 +00001723<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001724
Chris Lattner00950542001-06-06 20:29:01 +00001725<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001726<p>The structure type is used to represent a collection of data members together
1727 in memory. The packing of the field types is defined to match the ABI of the
1728 underlying processor. The elements of a structure may be any type that has a
1729 size.</p>
1730
Jeffrey Yasskin7a088cf2010-01-11 19:19:26 +00001731<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
1732 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
1733 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1734 Structures in registers are accessed using the
1735 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
1736 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001737<h5>Syntax:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001738<pre>
1739 { &lt;type list&gt; }
1740</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001741
Chris Lattner00950542001-06-06 20:29:01 +00001742<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001743<table class="layout">
1744 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001745 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1746 <td class="left">A triple of three <tt>i32</tt> values</td>
1747 </tr><tr class="layout">
1748 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1749 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1750 second element is a <a href="#t_pointer">pointer</a> to a
1751 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1752 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001753 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001754</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001755
Misha Brukman9d0919f2003-11-08 01:05:38 +00001756</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001757
Chris Lattner00950542001-06-06 20:29:01 +00001758<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001759<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1760</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001761
Andrew Lenharth75e10682006-12-08 17:13:00 +00001762<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001763
Andrew Lenharth75e10682006-12-08 17:13:00 +00001764<h5>Overview:</h5>
1765<p>The packed structure type is used to represent a collection of data members
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001766 together in memory. There is no padding between fields. Further, the
1767 alignment of a packed structure is 1 byte. The elements of a packed
1768 structure may be any type that has a size.</p>
1769
1770<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1771 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1772 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1773
Andrew Lenharth75e10682006-12-08 17:13:00 +00001774<h5>Syntax:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001775<pre>
1776 &lt; { &lt;type list&gt; } &gt;
1777</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001778
Andrew Lenharth75e10682006-12-08 17:13:00 +00001779<h5>Examples:</h5>
1780<table class="layout">
1781 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001782 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1783 <td class="left">A triple of three <tt>i32</tt> values</td>
1784 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001785 <td class="left">
1786<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001787 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1788 second element is a <a href="#t_pointer">pointer</a> to a
1789 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1790 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001791 </tr>
1792</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001793
Andrew Lenharth75e10682006-12-08 17:13:00 +00001794</div>
1795
1796<!-- _______________________________________________________________________ -->
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001797<div class="doc_subsubsection"> <a name="t_union">Union Type</a> </div>
1798
1799<div class="doc_text">
1800
1801<h5>Overview:</h5>
1802<p>A union type describes an object with size and alignment suitable for
1803 an object of any one of a given set of types (also known as an "untagged"
1804 union). It is similar in concept and usage to a
1805 <a href="#t_struct">struct</a>, except that all members of the union
1806 have an offset of zero. The elements of a union may be any type that has a
1807 size. Unions must have at least one member - empty unions are not allowed.
1808 </p>
1809
1810<p>The size of the union as a whole will be the size of its largest member,
1811 and the alignment requirements of the union as a whole will be the largest
1812 alignment requirement of any member.</p>
1813
Dan Gohman2eddfef2010-02-25 16:51:31 +00001814<p>Union members are accessed using '<tt><a href="#i_load">load</a></tt> and
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001815 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1816 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1817 Since all members are at offset zero, the getelementptr instruction does
1818 not affect the address, only the type of the resulting pointer.</p>
1819
1820<h5>Syntax:</h5>
1821<pre>
1822 union { &lt;type list&gt; }
1823</pre>
1824
1825<h5>Examples:</h5>
1826<table class="layout">
1827 <tr class="layout">
1828 <td class="left"><tt>union { i32, i32*, float }</tt></td>
1829 <td class="left">A union of three types: an <tt>i32</tt>, a pointer to
1830 an <tt>i32</tt>, and a <tt>float</tt>.</td>
1831 </tr><tr class="layout">
1832 <td class="left">
1833 <tt>union {&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1834 <td class="left">A union, where the first element is a <tt>float</tt> and the
1835 second element is a <a href="#t_pointer">pointer</a> to a
1836 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1837 an <tt>i32</tt>.</td>
1838 </tr>
1839</table>
1840
1841</div>
1842
1843<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001844<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001845
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001846<div class="doc_text">
1847
1848<h5>Overview:</h5>
Dan Gohmanff3ef322010-02-25 16:50:07 +00001849<p>The pointer type is used to specify memory locations.
1850 Pointers are commonly used to reference objects in memory.</p>
1851
1852<p>Pointer types may have an optional address space attribute defining the
1853 numbered address space where the pointed-to object resides. The default
1854 address space is number zero. The semantics of non-zero address
1855 spaces are target-specific.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001856
1857<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1858 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001859
Chris Lattner7faa8832002-04-14 06:13:44 +00001860<h5>Syntax:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001861<pre>
1862 &lt;type&gt; *
1863</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001864
Chris Lattner7faa8832002-04-14 06:13:44 +00001865<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001866<table class="layout">
1867 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001868 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001869 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1870 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1871 </tr>
1872 <tr class="layout">
1873 <td class="left"><tt>i32 (i32 *) *</tt></td>
1874 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001875 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001876 <tt>i32</tt>.</td>
1877 </tr>
1878 <tr class="layout">
1879 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1880 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1881 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001882 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001883</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001884
Misha Brukman9d0919f2003-11-08 01:05:38 +00001885</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001886
Chris Lattnera58561b2004-08-12 19:12:28 +00001887<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001888<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001889
Misha Brukman9d0919f2003-11-08 01:05:38 +00001890<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001891
Chris Lattnera58561b2004-08-12 19:12:28 +00001892<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001893<p>A vector type is a simple derived type that represents a vector of elements.
1894 Vector types are used when multiple primitive data are operated in parallel
1895 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sandsd40d14e2009-11-27 13:38:03 +00001896 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001897 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001898
Chris Lattnera58561b2004-08-12 19:12:28 +00001899<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001900<pre>
1901 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1902</pre>
1903
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001904<p>The number of elements is a constant integer value; elementtype may be any
1905 integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001906
Chris Lattnera58561b2004-08-12 19:12:28 +00001907<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001908<table class="layout">
1909 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001910 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1911 <td class="left">Vector of 4 32-bit integer values.</td>
1912 </tr>
1913 <tr class="layout">
1914 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1915 <td class="left">Vector of 8 32-bit floating-point values.</td>
1916 </tr>
1917 <tr class="layout">
1918 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1919 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001920 </tr>
1921</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001922
Misha Brukman9d0919f2003-11-08 01:05:38 +00001923</div>
1924
Chris Lattner69c11bb2005-04-25 17:34:15 +00001925<!-- _______________________________________________________________________ -->
1926<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1927<div class="doc_text">
1928
1929<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001930<p>Opaque types are used to represent unknown types in the system. This
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001931 corresponds (for example) to the C notion of a forward declared structure
1932 type. In LLVM, opaque types can eventually be resolved to any type (not just
1933 a structure type).</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001934
1935<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001936<pre>
1937 opaque
1938</pre>
1939
1940<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001941<table class="layout">
1942 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001943 <td class="left"><tt>opaque</tt></td>
1944 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001945 </tr>
1946</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001947
Chris Lattner69c11bb2005-04-25 17:34:15 +00001948</div>
1949
Chris Lattner242d61d2009-02-02 07:32:36 +00001950<!-- ======================================================================= -->
1951<div class="doc_subsection">
1952 <a name="t_uprefs">Type Up-references</a>
1953</div>
1954
1955<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001956
Chris Lattner242d61d2009-02-02 07:32:36 +00001957<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001958<p>An "up reference" allows you to refer to a lexically enclosing type without
1959 requiring it to have a name. For instance, a structure declaration may
1960 contain a pointer to any of the types it is lexically a member of. Example
1961 of up references (with their equivalent as named type declarations)
1962 include:</p>
Chris Lattner242d61d2009-02-02 07:32:36 +00001963
1964<pre>
Chris Lattner3060f5b2009-02-09 10:00:56 +00001965 { \2 * } %x = type { %x* }
Chris Lattner242d61d2009-02-02 07:32:36 +00001966 { \2 }* %y = type { %y }*
1967 \1* %z = type %z*
1968</pre>
1969
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001970<p>An up reference is needed by the asmprinter for printing out cyclic types
1971 when there is no declared name for a type in the cycle. Because the
1972 asmprinter does not want to print out an infinite type string, it needs a
1973 syntax to handle recursive types that have no names (all names are optional
1974 in llvm IR).</p>
Chris Lattner242d61d2009-02-02 07:32:36 +00001975
1976<h5>Syntax:</h5>
1977<pre>
1978 \&lt;level&gt;
1979</pre>
1980
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001981<p>The level is the count of the lexical type that is being referred to.</p>
Chris Lattner242d61d2009-02-02 07:32:36 +00001982
1983<h5>Examples:</h5>
Chris Lattner242d61d2009-02-02 07:32:36 +00001984<table class="layout">
1985 <tr class="layout">
1986 <td class="left"><tt>\1*</tt></td>
1987 <td class="left">Self-referential pointer.</td>
1988 </tr>
1989 <tr class="layout">
1990 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1991 <td class="left">Recursive structure where the upref refers to the out-most
1992 structure.</td>
1993 </tr>
1994</table>
Chris Lattner242d61d2009-02-02 07:32:36 +00001995
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001996</div>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001997
Chris Lattnerc3f59762004-12-09 17:30:23 +00001998<!-- *********************************************************************** -->
1999<div class="doc_section"> <a name="constants">Constants</a> </div>
2000<!-- *********************************************************************** -->
2001
2002<div class="doc_text">
2003
2004<p>LLVM has several different basic types of constants. This section describes
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002005 them all and their syntax.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002006
2007</div>
2008
2009<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00002010<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002011
2012<div class="doc_text">
2013
2014<dl>
2015 <dt><b>Boolean constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002016 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewyckyec38da42009-09-27 00:45:11 +00002017 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002018
2019 <dt><b>Integer constants</b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002020 <dd>Standard integers (such as '4') are constants of
2021 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2022 with integer types.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002023
2024 <dt><b>Floating point constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002025 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002026 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2027 notation (see below). The assembler requires the exact decimal value of a
2028 floating-point constant. For example, the assembler accepts 1.25 but
2029 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2030 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002031
2032 <dt><b>Null pointer constants</b></dt>
John Criswell9e2485c2004-12-10 15:51:16 +00002033 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002034 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002035</dl>
2036
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002037<p>The one non-intuitive notation for constants is the hexadecimal form of
2038 floating point constants. For example, the form '<tt>double
2039 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2040 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2041 constants are required (and the only time that they are generated by the
2042 disassembler) is when a floating point constant must be emitted but it cannot
2043 be represented as a decimal floating point number in a reasonable number of
2044 digits. For example, NaN's, infinities, and other special values are
2045 represented in their IEEE hexadecimal format so that assembly and disassembly
2046 do not cause any bits to change in the constants.</p>
2047
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00002048<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002049 represented using the 16-digit form shown above (which matches the IEEE754
2050 representation for double); float values must, however, be exactly
2051 representable as IEE754 single precision. Hexadecimal format is always used
2052 for long double, and there are three forms of long double. The 80-bit format
2053 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2054 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2055 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2056 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2057 currently supported target uses this format. Long doubles will only work if
2058 they match the long double format on your target. All hexadecimal formats
2059 are big-endian (sign bit at the left).</p>
2060
Chris Lattnerc3f59762004-12-09 17:30:23 +00002061</div>
2062
2063<!-- ======================================================================= -->
Chris Lattner70882792009-02-28 18:32:25 +00002064<div class="doc_subsection">
Bill Wendlingd9fe2982009-07-20 02:32:41 +00002065<a name="aggregateconstants"></a> <!-- old anchor -->
2066<a name="complexconstants">Complex Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002067</div>
2068
2069<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002070
Chris Lattner70882792009-02-28 18:32:25 +00002071<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002072 constants and smaller complex constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002073
2074<dl>
2075 <dt><b>Structure constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002076 <dd>Structure constants are represented with notation similar to structure
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002077 type definitions (a comma separated list of elements, surrounded by braces
2078 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2079 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2080 Structure constants must have <a href="#t_struct">structure type</a>, and
2081 the number and types of elements must match those specified by the
2082 type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002083
Chris Lattnerfdfeb692010-02-12 20:49:41 +00002084 <dt><b>Union constants</b></dt>
2085 <dd>Union constants are represented with notation similar to a structure with
2086 a single element - that is, a single typed element surrounded
2087 by braces (<tt>{}</tt>)). For example: "<tt>{ i32 4 }</tt>". The
2088 <a href="#t_union">union type</a> can be initialized with a single-element
2089 struct as long as the type of the struct element matches the type of
2090 one of the union members.</dd>
2091
Chris Lattnerc3f59762004-12-09 17:30:23 +00002092 <dt><b>Array constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002093 <dd>Array constants are represented with notation similar to array type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002094 definitions (a comma separated list of elements, surrounded by square
2095 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2096 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2097 the number and types of elements must match those specified by the
2098 type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002099
Reid Spencer485bad12007-02-15 03:07:05 +00002100 <dt><b>Vector constants</b></dt>
Reid Spencer485bad12007-02-15 03:07:05 +00002101 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002102 definitions (a comma separated list of elements, surrounded by
2103 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2104 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2105 have <a href="#t_vector">vector type</a>, and the number and types of
2106 elements must match those specified by the type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002107
2108 <dt><b>Zero initialization</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002109 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattnerfdfeb692010-02-12 20:49:41 +00002110 value to zero of <em>any</em> type, including scalar and
2111 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002112 This is often used to avoid having to print large zero initializers
2113 (e.g. for large arrays) and is always exactly equivalent to using explicit
2114 zero initializers.</dd>
Nick Lewycky21cc4462009-04-04 07:22:01 +00002115
2116 <dt><b>Metadata node</b></dt>
Nick Lewycky1e8c7a62009-05-30 16:08:30 +00002117 <dd>A metadata node is a structure-like constant with
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002118 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2119 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2120 be interpreted as part of the instruction stream, metadata is a place to
2121 attach additional information such as debug info.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002122</dl>
2123
2124</div>
2125
2126<!-- ======================================================================= -->
2127<div class="doc_subsection">
2128 <a name="globalconstants">Global Variable and Function Addresses</a>
2129</div>
2130
2131<div class="doc_text">
2132
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002133<p>The addresses of <a href="#globalvars">global variables</a>
2134 and <a href="#functionstructure">functions</a> are always implicitly valid
2135 (link-time) constants. These constants are explicitly referenced when
2136 the <a href="#identifiers">identifier for the global</a> is used and always
2137 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2138 legal LLVM file:</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002139
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002140<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002141<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00002142@X = global i32 17
2143@Y = global i32 42
2144@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00002145</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002146</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002147
2148</div>
2149
2150<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00002151<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002152<div class="doc_text">
2153
Chris Lattner48a109c2009-09-07 22:52:39 +00002154<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer8040cd32009-10-12 14:46:08 +00002155 indicates that the user of the value may receive an unspecified bit-pattern.
Chris Lattner48a109c2009-09-07 22:52:39 +00002156 Undefined values may be of any type (other than label or void) and be used
2157 anywhere a constant is permitted.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002158
Chris Lattnerc608cb12009-09-11 01:49:31 +00002159<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattner48a109c2009-09-07 22:52:39 +00002160 program is well defined no matter what value is used. This gives the
2161 compiler more freedom to optimize. Here are some examples of (potentially
2162 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002163
Chris Lattner48a109c2009-09-07 22:52:39 +00002164
2165<div class="doc_code">
2166<pre>
2167 %A = add %X, undef
2168 %B = sub %X, undef
2169 %C = xor %X, undef
2170Safe:
2171 %A = undef
2172 %B = undef
2173 %C = undef
2174</pre>
2175</div>
2176
2177<p>This is safe because all of the output bits are affected by the undef bits.
2178Any output bit can have a zero or one depending on the input bits.</p>
2179
2180<div class="doc_code">
2181<pre>
2182 %A = or %X, undef
2183 %B = and %X, undef
2184Safe:
2185 %A = -1
2186 %B = 0
2187Unsafe:
2188 %A = undef
2189 %B = undef
2190</pre>
2191</div>
2192
2193<p>These logical operations have bits that are not always affected by the input.
2194For example, if "%X" has a zero bit, then the output of the 'and' operation will
2195always be a zero, no matter what the corresponding bit from the undef is. As
Chris Lattnerc608cb12009-09-11 01:49:31 +00002196such, it is unsafe to optimize or assume that the result of the and is undef.
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002197However, it is safe to assume that all bits of the undef could be 0, and
2198optimize the and to 0. Likewise, it is safe to assume that all the bits of
2199the undef operand to the or could be set, allowing the or to be folded to
Chris Lattnerc608cb12009-09-11 01:49:31 +00002200-1.</p>
Chris Lattner48a109c2009-09-07 22:52:39 +00002201
2202<div class="doc_code">
2203<pre>
2204 %A = select undef, %X, %Y
2205 %B = select undef, 42, %Y
2206 %C = select %X, %Y, undef
2207Safe:
2208 %A = %X (or %Y)
2209 %B = 42 (or %Y)
2210 %C = %Y
2211Unsafe:
2212 %A = undef
2213 %B = undef
2214 %C = undef
2215</pre>
2216</div>
2217
2218<p>This set of examples show that undefined select (and conditional branch)
2219conditions can go "either way" but they have to come from one of the two
2220operands. In the %A example, if %X and %Y were both known to have a clear low
2221bit, then %A would have to have a cleared low bit. However, in the %C example,
2222the optimizer is allowed to assume that the undef operand could be the same as
2223%Y, allowing the whole select to be eliminated.</p>
2224
2225
2226<div class="doc_code">
2227<pre>
2228 %A = xor undef, undef
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002229
Chris Lattner48a109c2009-09-07 22:52:39 +00002230 %B = undef
2231 %C = xor %B, %B
2232
2233 %D = undef
2234 %E = icmp lt %D, 4
2235 %F = icmp gte %D, 4
2236
2237Safe:
2238 %A = undef
2239 %B = undef
2240 %C = undef
2241 %D = undef
2242 %E = undef
2243 %F = undef
2244</pre>
2245</div>
2246
2247<p>This example points out that two undef operands are not necessarily the same.
2248This can be surprising to people (and also matches C semantics) where they
2249assume that "X^X" is always zero, even if X is undef. This isn't true for a
2250number of reasons, but the short answer is that an undef "variable" can
2251arbitrarily change its value over its "live range". This is true because the
2252"variable" doesn't actually <em>have a live range</em>. Instead, the value is
2253logically read from arbitrary registers that happen to be around when needed,
Benjamin Kramer8040cd32009-10-12 14:46:08 +00002254so the value is not necessarily consistent over time. In fact, %A and %C need
Chris Lattner349eb412009-09-08 15:13:16 +00002255to have the same semantics or the core LLVM "replace all uses with" concept
Chris Lattner48a109c2009-09-07 22:52:39 +00002256would not hold.</p>
Chris Lattner6e9057b2009-09-07 23:33:52 +00002257
2258<div class="doc_code">
2259<pre>
2260 %A = fdiv undef, %X
2261 %B = fdiv %X, undef
2262Safe:
2263 %A = undef
2264b: unreachable
2265</pre>
2266</div>
2267
2268<p>These examples show the crucial difference between an <em>undefined
2269value</em> and <em>undefined behavior</em>. An undefined value (like undef) is
2270allowed to have an arbitrary bit-pattern. This means that the %A operation
2271can be constant folded to undef because the undef could be an SNaN, and fdiv is
2272not (currently) defined on SNaN's. However, in the second example, we can make
2273a more aggressive assumption: because the undef is allowed to be an arbitrary
2274value, we are allowed to assume that it could be zero. Since a divide by zero
Chris Lattner8e371aa2009-09-08 19:45:34 +00002275has <em>undefined behavior</em>, we are allowed to assume that the operation
Chris Lattner6e9057b2009-09-07 23:33:52 +00002276does not execute at all. This allows us to delete the divide and all code after
2277it: since the undefined operation "can't happen", the optimizer can assume that
2278it occurs in dead code.
2279</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002280
Chris Lattner6e9057b2009-09-07 23:33:52 +00002281<div class="doc_code">
2282<pre>
2283a: store undef -> %X
2284b: store %X -> undef
2285Safe:
2286a: &lt;deleted&gt;
2287b: unreachable
2288</pre>
2289</div>
2290
2291<p>These examples reiterate the fdiv example: a store "of" an undefined value
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002292can be assumed to not have any effect: we can assume that the value is
Chris Lattner6e9057b2009-09-07 23:33:52 +00002293overwritten with bits that happen to match what was already there. However, a
2294store "to" an undefined location could clobber arbitrary memory, therefore, it
2295has undefined behavior.</p>
2296
Chris Lattnerc3f59762004-12-09 17:30:23 +00002297</div>
2298
2299<!-- ======================================================================= -->
Chris Lattnerf9d078e2009-10-27 21:19:13 +00002300<div class="doc_subsection"><a name="blockaddress">Addresses of Basic
2301 Blocks</a></div>
Chris Lattnerc6f44362009-10-27 21:01:34 +00002302<div class="doc_text">
2303
Chris Lattnercdfc9402009-11-01 01:27:45 +00002304<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnerc6f44362009-10-27 21:01:34 +00002305
2306<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner2dfdf2a2009-10-27 21:49:40 +00002307 basic block in the specified function, and always has an i8* type. Taking
Chris Lattnercdfc9402009-11-01 01:27:45 +00002308 the address of the entry block is illegal.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002309
Chris Lattnerc6f44362009-10-27 21:01:34 +00002310<p>This value only has defined behavior when used as an operand to the
Chris Lattnerab21db72009-10-28 00:19:10 +00002311 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction or for comparisons
Chris Lattnerc6f44362009-10-27 21:01:34 +00002312 against null. Pointer equality tests between labels addresses is undefined
2313 behavior - though, again, comparison against null is ok, and no label is
Chris Lattnerf9d078e2009-10-27 21:19:13 +00002314 equal to the null pointer. This may also be passed around as an opaque
2315 pointer sized value as long as the bits are not inspected. This allows
Chris Lattner3fd77ce2009-10-27 21:44:20 +00002316 <tt>ptrtoint</tt> and arithmetic to be performed on these values so long as
Chris Lattnerab21db72009-10-28 00:19:10 +00002317 the original value is reconstituted before the <tt>indirectbr</tt>.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002318
Chris Lattnerf9d078e2009-10-27 21:19:13 +00002319<p>Finally, some targets may provide defined semantics when
Chris Lattnerc6f44362009-10-27 21:01:34 +00002320 using the value as the operand to an inline assembly, but that is target
2321 specific.
2322 </p>
2323
2324</div>
2325
2326
2327<!-- ======================================================================= -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002328<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
2329</div>
2330
2331<div class="doc_text">
2332
2333<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002334 to be used as constants. Constant expressions may be of
2335 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2336 operation that does not have side effects (e.g. load and call are not
2337 supported). The following is the syntax for constant expressions:</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002338
2339<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002340 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002341 <dd>Truncate a constant to another type. The bit size of CST must be larger
2342 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002343
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002344 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002345 <dd>Zero extend a constant to another type. The bit size of CST must be
2346 smaller or equal to the bit size of TYPE. Both types must be
2347 integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002348
2349 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002350 <dd>Sign extend a constant to another type. The bit size of CST must be
2351 smaller or equal to the bit size of TYPE. Both types must be
2352 integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002353
2354 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002355 <dd>Truncate a floating point constant to another floating point type. The
2356 size of CST must be larger than the size of TYPE. Both types must be
2357 floating point.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002358
2359 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002360 <dd>Floating point extend a constant to another type. The size of CST must be
2361 smaller or equal to the size of TYPE. Both types must be floating
2362 point.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002363
Reid Spencer1539a1c2007-07-31 14:40:14 +00002364 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002365 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002366 constant. TYPE must be a scalar or vector integer type. CST must be of
2367 scalar or vector floating point type. Both CST and TYPE must be scalars,
2368 or vectors of the same number of elements. If the value won't fit in the
2369 integer type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002370
Reid Spencerd4448792006-11-09 23:03:26 +00002371 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002372 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002373 constant. TYPE must be a scalar or vector integer type. CST must be of
2374 scalar or vector floating point type. Both CST and TYPE must be scalars,
2375 or vectors of the same number of elements. If the value won't fit in the
2376 integer type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002377
Reid Spencerd4448792006-11-09 23:03:26 +00002378 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002379 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002380 constant. TYPE must be a scalar or vector floating point type. CST must be
2381 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2382 vectors of the same number of elements. If the value won't fit in the
2383 floating point type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002384
Reid Spencerd4448792006-11-09 23:03:26 +00002385 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002386 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002387 constant. TYPE must be a scalar or vector floating point type. CST must be
2388 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2389 vectors of the same number of elements. If the value won't fit in the
2390 floating point type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002391
Reid Spencer5c0ef472006-11-11 23:08:07 +00002392 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2393 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002394 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2395 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2396 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5c0ef472006-11-11 23:08:07 +00002397
2398 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002399 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2400 type. CST must be of integer type. The CST value is zero extended,
2401 truncated, or unchanged to make it fit in a pointer size. This one is
2402 <i>really</i> dangerous!</dd>
Reid Spencer5c0ef472006-11-11 23:08:07 +00002403
2404 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner03bbad62009-02-28 18:27:03 +00002405 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2406 are the same as those for the <a href="#i_bitcast">bitcast
2407 instruction</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002408
2409 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Dan Gohmandd8004d2009-07-27 21:53:46 +00002410 <dt><b><tt>getelementptr inbounds ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002411 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002412 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2413 instruction, the index list may have zero or more indexes, which are
2414 required to make sense for the type of "CSTPTR".</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002415
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002416 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002417 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer01c42592006-12-04 19:23:19 +00002418
2419 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2420 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2421
2422 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2423 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002424
2425 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002426 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2427 constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002428
Robert Bocchino05ccd702006-01-15 20:48:27 +00002429 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002430 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2431 constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002432
2433 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002434 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2435 constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002436
Chris Lattnerc3f59762004-12-09 17:30:23 +00002437 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002438 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2439 be any of the <a href="#binaryops">binary</a>
2440 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2441 on operands are the same as those for the corresponding instruction
2442 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002443</dl>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002444
Chris Lattnerc3f59762004-12-09 17:30:23 +00002445</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00002446
Chris Lattner00950542001-06-06 20:29:01 +00002447<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00002448<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2449<!-- *********************************************************************** -->
2450
2451<!-- ======================================================================= -->
2452<div class="doc_subsection">
2453<a name="inlineasm">Inline Assembler Expressions</a>
2454</div>
2455
2456<div class="doc_text">
2457
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002458<p>LLVM supports inline assembler expressions (as opposed
2459 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2460 a special value. This value represents the inline assembler as a string
2461 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen09fed252009-10-13 21:56:55 +00002462 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen8ba2d5b2009-10-21 23:28:00 +00002463 expression has side effects, and a flag indicating whether the function
2464 containing the asm needs to align its stack conservatively. An example
2465 inline assembler expression is:</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002466
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002467<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002468<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002469i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002470</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002471</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002472
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002473<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2474 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2475 have:</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002476
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002477<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002478<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002479%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002480</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002481</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002482
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002483<p>Inline asms with side effects not visible in the constraint list must be
2484 marked as having side effects. This is done through the use of the
2485 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002486
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002487<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002488<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002489call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002490</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002491</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002492
Dale Johannesen8ba2d5b2009-10-21 23:28:00 +00002493<p>In some cases inline asms will contain code that will not work unless the
2494 stack is aligned in some way, such as calls or SSE instructions on x86,
2495 yet will not contain code that does that alignment within the asm.
2496 The compiler should make conservative assumptions about what the asm might
2497 contain and should generate its usual stack alignment code in the prologue
2498 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen09fed252009-10-13 21:56:55 +00002499
2500<div class="doc_code">
2501<pre>
Dale Johannesen8ba2d5b2009-10-21 23:28:00 +00002502call void asm alignstack "eieio", ""()
Dale Johannesen09fed252009-10-13 21:56:55 +00002503</pre>
2504</div>
2505
2506<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2507 first.</p>
2508
Chris Lattnere87d6532006-01-25 23:47:57 +00002509<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002510 documented here. Constraints on what can be done (e.g. duplication, moving,
2511 etc need to be documented). This is probably best done by reference to
2512 another document that covers inline asm from a holistic perspective.</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002513
2514</div>
2515
Chris Lattnere6a5ddd2010-01-15 21:50:19 +00002516<!-- ======================================================================= -->
2517<div class="doc_subsection"><a name="metadata">Metadata Nodes and Metadata
2518 Strings</a>
2519</div>
2520
2521<div class="doc_text">
2522
2523<p>LLVM IR allows metadata to be attached to instructions in the program that
2524 can convey extra information about the code to the optimizers and code
2525 generator. One example application of metadata is source-level debug
2526 information. There are two metadata primitives: strings and nodes. All
2527 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2528 preceding exclamation point ('<tt>!</tt>').</p>
2529
2530<p>A metadata string is a string surrounded by double quotes. It can contain
2531 any character by escaping non-printable characters with "\xx" where "xx" is
2532 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2533
2534<p>Metadata nodes are represented with notation similar to structure constants
2535 (a comma separated list of elements, surrounded by braces and preceded by an
2536 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2537 10}</tt>". Metadata nodes can have any values as their operand.</p>
2538
2539<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2540 metadata nodes, which can be looked up in the module symbol table. For
2541 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2542
Devang Patele1d50cd2010-03-04 23:44:48 +00002543<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
2544 function is using two metadata arguments.
2545
2546 <div class="doc_code">
2547 <pre>
2548 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2549 </pre>
2550 </div></p>
2551
2552<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
2553 attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.
2554
2555 <div class="doc_code">
2556 <pre>
2557 %indvar.next = add i64 %indvar, 1, !dbg !21
2558 </pre>
2559 </div></p>
Chris Lattnere6a5ddd2010-01-15 21:50:19 +00002560</div>
2561
Chris Lattner857755c2009-07-20 05:55:19 +00002562
2563<!-- *********************************************************************** -->
2564<div class="doc_section">
2565 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2566</div>
2567<!-- *********************************************************************** -->
2568
2569<p>LLVM has a number of "magic" global variables that contain data that affect
2570code generation or other IR semantics. These are documented here. All globals
Chris Lattner401e10c2009-07-20 06:14:25 +00002571of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2572section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2573by LLVM.</p>
Chris Lattner857755c2009-07-20 05:55:19 +00002574
2575<!-- ======================================================================= -->
2576<div class="doc_subsection">
2577<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2578</div>
2579
2580<div class="doc_text">
2581
2582<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2583href="#linkage_appending">appending linkage</a>. This array contains a list of
2584pointers to global variables and functions which may optionally have a pointer
2585cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2586
2587<pre>
2588 @X = global i8 4
2589 @Y = global i32 123
2590
2591 @llvm.used = appending global [2 x i8*] [
2592 i8* @X,
2593 i8* bitcast (i32* @Y to i8*)
2594 ], section "llvm.metadata"
2595</pre>
2596
2597<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2598compiler, assembler, and linker are required to treat the symbol as if there is
2599a reference to the global that it cannot see. For example, if a variable has
2600internal linkage and no references other than that from the <tt>@llvm.used</tt>
2601list, it cannot be deleted. This is commonly used to represent references from
2602inline asms and other things the compiler cannot "see", and corresponds to
2603"attribute((used))" in GNU C.</p>
2604
2605<p>On some targets, the code generator must emit a directive to the assembler or
2606object file to prevent the assembler and linker from molesting the symbol.</p>
2607
2608</div>
2609
2610<!-- ======================================================================= -->
2611<div class="doc_subsection">
Chris Lattner401e10c2009-07-20 06:14:25 +00002612<a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
2613</div>
2614
2615<div class="doc_text">
2616
2617<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2618<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2619touching the symbol. On targets that support it, this allows an intelligent
2620linker to optimize references to the symbol without being impeded as it would be
2621by <tt>@llvm.used</tt>.</p>
2622
2623<p>This is a rare construct that should only be used in rare circumstances, and
2624should not be exposed to source languages.</p>
2625
2626</div>
2627
2628<!-- ======================================================================= -->
2629<div class="doc_subsection">
Chris Lattner857755c2009-07-20 05:55:19 +00002630<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2631</div>
2632
2633<div class="doc_text">
2634
2635<p>TODO: Describe this.</p>
2636
2637</div>
2638
2639<!-- ======================================================================= -->
2640<div class="doc_subsection">
2641<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2642</div>
2643
2644<div class="doc_text">
2645
2646<p>TODO: Describe this.</p>
2647
2648</div>
2649
2650
Chris Lattnere87d6532006-01-25 23:47:57 +00002651<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00002652<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2653<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002654
Misha Brukman9d0919f2003-11-08 01:05:38 +00002655<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002656
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002657<p>The LLVM instruction set consists of several different classifications of
2658 instructions: <a href="#terminators">terminator
2659 instructions</a>, <a href="#binaryops">binary instructions</a>,
2660 <a href="#bitwiseops">bitwise binary instructions</a>,
2661 <a href="#memoryops">memory instructions</a>, and
2662 <a href="#otherops">other instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002663
Misha Brukman9d0919f2003-11-08 01:05:38 +00002664</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002665
Chris Lattner00950542001-06-06 20:29:01 +00002666<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002667<div class="doc_subsection"> <a name="terminators">Terminator
2668Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002669
Misha Brukman9d0919f2003-11-08 01:05:38 +00002670<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002671
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002672<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2673 in a program ends with a "Terminator" instruction, which indicates which
2674 block should be executed after the current block is finished. These
2675 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2676 control flow, not values (the one exception being the
2677 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2678
2679<p>There are six different terminator instructions: the
2680 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2681 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2682 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
Bill Wendling21c346e2009-11-02 00:25:26 +00002683 '<a href="#i_indirectbr">'<tt>indirectbr</tt></a>' Instruction, the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002684 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2685 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2686 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002687
Misha Brukman9d0919f2003-11-08 01:05:38 +00002688</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002689
Chris Lattner00950542001-06-06 20:29:01 +00002690<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002691<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2692Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002693
Misha Brukman9d0919f2003-11-08 01:05:38 +00002694<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002695
Chris Lattner00950542001-06-06 20:29:01 +00002696<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002697<pre>
2698 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002699 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002700</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002701
Chris Lattner00950542001-06-06 20:29:01 +00002702<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002703<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2704 a value) from a function back to the caller.</p>
2705
2706<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2707 value and then causes control flow, and one that just causes control flow to
2708 occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002709
Chris Lattner00950542001-06-06 20:29:01 +00002710<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002711<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2712 return value. The type of the return value must be a
2713 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002714
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002715<p>A function is not <a href="#wellformed">well formed</a> if it it has a
2716 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2717 value or a return value with a type that does not match its type, or if it
2718 has a void return type and contains a '<tt>ret</tt>' instruction with a
2719 return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002720
Chris Lattner00950542001-06-06 20:29:01 +00002721<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002722<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2723 the calling function's context. If the caller is a
2724 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2725 instruction after the call. If the caller was an
2726 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2727 the beginning of the "normal" destination block. If the instruction returns
2728 a value, that value shall set the call or invoke instruction's return
2729 value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002730
Chris Lattner00950542001-06-06 20:29:01 +00002731<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002732<pre>
2733 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002734 ret void <i>; Return from a void function</i>
Bill Wendling0a4bbbf2009-02-28 22:12:54 +00002735 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002736</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002737
Misha Brukman9d0919f2003-11-08 01:05:38 +00002738</div>
Chris Lattner00950542001-06-06 20:29:01 +00002739<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002740<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002741
Misha Brukman9d0919f2003-11-08 01:05:38 +00002742<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002743
Chris Lattner00950542001-06-06 20:29:01 +00002744<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002745<pre>
2746 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002747</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002748
Chris Lattner00950542001-06-06 20:29:01 +00002749<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002750<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2751 different basic block in the current function. There are two forms of this
2752 instruction, corresponding to a conditional branch and an unconditional
2753 branch.</p>
2754
Chris Lattner00950542001-06-06 20:29:01 +00002755<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002756<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2757 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2758 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2759 target.</p>
2760
Chris Lattner00950542001-06-06 20:29:01 +00002761<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002762<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002763 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2764 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2765 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2766
Chris Lattner00950542001-06-06 20:29:01 +00002767<h5>Example:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00002768<pre>
2769Test:
2770 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2771 br i1 %cond, label %IfEqual, label %IfUnequal
2772IfEqual:
2773 <a href="#i_ret">ret</a> i32 1
2774IfUnequal:
2775 <a href="#i_ret">ret</a> i32 0
2776</pre>
2777
Misha Brukman9d0919f2003-11-08 01:05:38 +00002778</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002779
Chris Lattner00950542001-06-06 20:29:01 +00002780<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002781<div class="doc_subsubsection">
2782 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2783</div>
2784
Misha Brukman9d0919f2003-11-08 01:05:38 +00002785<div class="doc_text">
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002786
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002787<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002788<pre>
2789 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2790</pre>
2791
Chris Lattner00950542001-06-06 20:29:01 +00002792<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002793<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002794 several different places. It is a generalization of the '<tt>br</tt>'
2795 instruction, allowing a branch to occur to one of many possible
2796 destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002797
Chris Lattner00950542001-06-06 20:29:01 +00002798<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002799<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002800 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2801 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2802 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002803
Chris Lattner00950542001-06-06 20:29:01 +00002804<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002805<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002806 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2807 is searched for the given value. If the value is found, control flow is
Benjamin Kramer8040cd32009-10-12 14:46:08 +00002808 transferred to the corresponding destination; otherwise, control flow is
2809 transferred to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002810
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002811<h5>Implementation:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002812<p>Depending on properties of the target machine and the particular
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002813 <tt>switch</tt> instruction, this instruction may be code generated in
2814 different ways. For example, it could be generated as a series of chained
2815 conditional branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002816
2817<h5>Example:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002818<pre>
2819 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002820 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002821 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002822
2823 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002824 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002825
2826 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002827 switch i32 %val, label %otherwise [ i32 0, label %onzero
2828 i32 1, label %onone
2829 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002830</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002831
Misha Brukman9d0919f2003-11-08 01:05:38 +00002832</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002833
Chris Lattnerf9be95f2009-10-27 19:13:16 +00002834
2835<!-- _______________________________________________________________________ -->
2836<div class="doc_subsubsection">
Chris Lattnerab21db72009-10-28 00:19:10 +00002837 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
Chris Lattnerf9be95f2009-10-27 19:13:16 +00002838</div>
2839
2840<div class="doc_text">
2841
2842<h5>Syntax:</h5>
2843<pre>
Chris Lattnerab21db72009-10-28 00:19:10 +00002844 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattnerf9be95f2009-10-27 19:13:16 +00002845</pre>
2846
2847<h5>Overview:</h5>
2848
Chris Lattnerab21db72009-10-28 00:19:10 +00002849<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattnerf9be95f2009-10-27 19:13:16 +00002850 within the current function, whose address is specified by
Chris Lattnerc6f44362009-10-27 21:01:34 +00002851 "<tt>address</tt>". Address must be derived from a <a
2852 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattnerf9be95f2009-10-27 19:13:16 +00002853
2854<h5>Arguments:</h5>
2855
2856<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
2857 rest of the arguments indicate the full set of possible destinations that the
2858 address may point to. Blocks are allowed to occur multiple times in the
2859 destination list, though this isn't particularly useful.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002860
Chris Lattnerf9be95f2009-10-27 19:13:16 +00002861<p>This destination list is required so that dataflow analysis has an accurate
2862 understanding of the CFG.</p>
2863
2864<h5>Semantics:</h5>
2865
2866<p>Control transfers to the block specified in the address argument. All
2867 possible destination blocks must be listed in the label list, otherwise this
2868 instruction has undefined behavior. This implies that jumps to labels
2869 defined in other functions have undefined behavior as well.</p>
2870
2871<h5>Implementation:</h5>
2872
2873<p>This is typically implemented with a jump through a register.</p>
2874
2875<h5>Example:</h5>
2876<pre>
Chris Lattnerab21db72009-10-28 00:19:10 +00002877 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattnerf9be95f2009-10-27 19:13:16 +00002878</pre>
2879
2880</div>
2881
2882
Chris Lattner00950542001-06-06 20:29:01 +00002883<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002884<div class="doc_subsubsection">
2885 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2886</div>
2887
Misha Brukman9d0919f2003-11-08 01:05:38 +00002888<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002889
Chris Lattner00950542001-06-06 20:29:01 +00002890<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002891<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002892 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002893 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002894</pre>
2895
Chris Lattner6536cfe2002-05-06 22:08:29 +00002896<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002897<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002898 function, with the possibility of control flow transfer to either the
2899 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
2900 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
2901 control flow will return to the "normal" label. If the callee (or any
2902 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
2903 instruction, control is interrupted and continued at the dynamically nearest
2904 "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002905
Chris Lattner00950542001-06-06 20:29:01 +00002906<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002907<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002908
Chris Lattner00950542001-06-06 20:29:01 +00002909<ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002910 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
2911 convention</a> the call should use. If none is specified, the call
2912 defaults to using C calling conventions.</li>
Devang Patelf642f472008-10-06 18:50:38 +00002913
2914 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002915 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
2916 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patelf642f472008-10-06 18:50:38 +00002917
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002918 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002919 function value being invoked. In most cases, this is a direct function
2920 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
2921 off an arbitrary pointer to function value.</li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002922
2923 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002924 function to be invoked. </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002925
2926 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner0724fbd2010-03-02 06:36:51 +00002927 signature argument types and parameter attributes. All arguments must be
2928 of <a href="#t_firstclass">first class</a> type. If the function
2929 signature indicates the function accepts a variable number of arguments,
2930 the extra arguments can be specified.</li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002931
2932 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002933 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002934
2935 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002936 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002937
Devang Patel307e8ab2008-10-07 17:48:33 +00002938 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002939 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2940 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002941</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002942
Chris Lattner00950542001-06-06 20:29:01 +00002943<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002944<p>This instruction is designed to operate as a standard
2945 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
2946 primary difference is that it establishes an association with a label, which
2947 is used by the runtime library to unwind the stack.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002948
2949<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002950 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2951 exception. Additionally, this is important for implementation of
2952 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002953
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002954<p>For the purposes of the SSA form, the definition of the value returned by the
2955 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
2956 block to the "normal" label. If the callee unwinds then no return value is
2957 available.</p>
Dan Gohmanf96a4992009-05-22 21:47:08 +00002958
Chris Lattnerdf7a6802010-01-15 18:08:37 +00002959<p>Note that the code generator does not yet completely support unwind, and
2960that the invoke/unwind semantics are likely to change in future versions.</p>
2961
Chris Lattner00950542001-06-06 20:29:01 +00002962<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002963<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002964 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002965 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002966 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002967 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002968</pre>
Chris Lattner35eca582004-10-16 18:04:13 +00002969
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002970</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002971
Chris Lattner27f71f22003-09-03 00:41:47 +00002972<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002973
Chris Lattner261efe92003-11-25 01:02:51 +00002974<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2975Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002976
Misha Brukman9d0919f2003-11-08 01:05:38 +00002977<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002978
Chris Lattner27f71f22003-09-03 00:41:47 +00002979<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002980<pre>
2981 unwind
2982</pre>
2983
Chris Lattner27f71f22003-09-03 00:41:47 +00002984<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002985<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002986 at the first callee in the dynamic call stack which used
2987 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
2988 This is primarily used to implement exception handling.</p>
Chris Lattner35eca582004-10-16 18:04:13 +00002989
Chris Lattner27f71f22003-09-03 00:41:47 +00002990<h5>Semantics:</h5>
Chris Lattner72ed2002008-04-19 21:01:16 +00002991<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002992 immediately halt. The dynamic call stack is then searched for the
2993 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
2994 Once found, execution continues at the "exceptional" destination block
2995 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
2996 instruction in the dynamic call chain, undefined behavior results.</p>
2997
Chris Lattnerdf7a6802010-01-15 18:08:37 +00002998<p>Note that the code generator does not yet completely support unwind, and
2999that the invoke/unwind semantics are likely to change in future versions.</p>
3000
Misha Brukman9d0919f2003-11-08 01:05:38 +00003001</div>
Chris Lattner35eca582004-10-16 18:04:13 +00003002
3003<!-- _______________________________________________________________________ -->
3004
3005<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
3006Instruction</a> </div>
3007
3008<div class="doc_text">
3009
3010<h5>Syntax:</h5>
3011<pre>
3012 unreachable
3013</pre>
3014
3015<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00003016<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003017 instruction is used to inform the optimizer that a particular portion of the
3018 code is not reachable. This can be used to indicate that the code after a
3019 no-return function cannot be reached, and other facts.</p>
Chris Lattner35eca582004-10-16 18:04:13 +00003020
3021<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00003022<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003023
Chris Lattner35eca582004-10-16 18:04:13 +00003024</div>
3025
Chris Lattner00950542001-06-06 20:29:01 +00003026<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00003027<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003028
Misha Brukman9d0919f2003-11-08 01:05:38 +00003029<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003030
3031<p>Binary operators are used to do most of the computation in a program. They
3032 require two operands of the same type, execute an operation on them, and
3033 produce a single value. The operands might represent multiple data, as is
3034 the case with the <a href="#t_vector">vector</a> data type. The result value
3035 has the same type as its operands.</p>
3036
Misha Brukman9d0919f2003-11-08 01:05:38 +00003037<p>There are several different binary operators:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003038
Misha Brukman9d0919f2003-11-08 01:05:38 +00003039</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003040
Chris Lattner00950542001-06-06 20:29:01 +00003041<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00003042<div class="doc_subsubsection">
3043 <a name="i_add">'<tt>add</tt>' Instruction</a>
3044</div>
3045
Misha Brukman9d0919f2003-11-08 01:05:38 +00003046<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003047
Chris Lattner00950542001-06-06 20:29:01 +00003048<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003049<pre>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003050 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00003051 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3052 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3053 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003054</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003055
Chris Lattner00950542001-06-06 20:29:01 +00003056<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003057<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003058
Chris Lattner00950542001-06-06 20:29:01 +00003059<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003060<p>The two arguments to the '<tt>add</tt>' instruction must
3061 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3062 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003063
Chris Lattner00950542001-06-06 20:29:01 +00003064<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003065<p>The value produced is the integer sum of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003066
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003067<p>If the sum has unsigned overflow, the result returned is the mathematical
3068 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003069
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003070<p>Because LLVM integers use a two's complement representation, this instruction
3071 is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003072
Dan Gohman08d012e2009-07-22 22:44:56 +00003073<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3074 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3075 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
3076 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003077
Chris Lattner00950542001-06-06 20:29:01 +00003078<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003079<pre>
3080 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00003081</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003082
Misha Brukman9d0919f2003-11-08 01:05:38 +00003083</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003084
Chris Lattner00950542001-06-06 20:29:01 +00003085<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00003086<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003087 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
3088</div>
3089
3090<div class="doc_text">
3091
3092<h5>Syntax:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003093<pre>
3094 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3095</pre>
3096
3097<h5>Overview:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003098<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3099
3100<h5>Arguments:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003101<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003102 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3103 floating point values. Both arguments must have identical types.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003104
3105<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003106<p>The value produced is the floating point sum of the two operands.</p>
3107
3108<h5>Example:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003109<pre>
3110 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3111</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003112
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003113</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003114
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003115<!-- _______________________________________________________________________ -->
3116<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00003117 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
3118</div>
3119
Misha Brukman9d0919f2003-11-08 01:05:38 +00003120<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003121
Chris Lattner00950542001-06-06 20:29:01 +00003122<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003123<pre>
Dan Gohman08d012e2009-07-22 22:44:56 +00003124 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00003125 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3126 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3127 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003128</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003129
Chris Lattner00950542001-06-06 20:29:01 +00003130<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003131<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003132 operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003133
3134<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003135 '<tt>neg</tt>' instruction present in most other intermediate
3136 representations.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003137
Chris Lattner00950542001-06-06 20:29:01 +00003138<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003139<p>The two arguments to the '<tt>sub</tt>' instruction must
3140 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3141 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003142
Chris Lattner00950542001-06-06 20:29:01 +00003143<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003144<p>The value produced is the integer difference of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003145
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003146<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003147 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3148 result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003149
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003150<p>Because LLVM integers use a two's complement representation, this instruction
3151 is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003152
Dan Gohman08d012e2009-07-22 22:44:56 +00003153<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3154 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3155 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
3156 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003157
Chris Lattner00950542001-06-06 20:29:01 +00003158<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00003159<pre>
3160 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003161 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00003162</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003163
Misha Brukman9d0919f2003-11-08 01:05:38 +00003164</div>
Chris Lattner5568e942008-05-20 20:48:21 +00003165
Chris Lattner00950542001-06-06 20:29:01 +00003166<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00003167<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003168 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
3169</div>
3170
3171<div class="doc_text">
3172
3173<h5>Syntax:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003174<pre>
3175 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3176</pre>
3177
3178<h5>Overview:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003179<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003180 operands.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003181
3182<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003183 '<tt>fneg</tt>' instruction present in most other intermediate
3184 representations.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003185
3186<h5>Arguments:</h5>
Bill Wendlingd9fe2982009-07-20 02:32:41 +00003187<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003188 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3189 floating point values. Both arguments must have identical types.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003190
3191<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003192<p>The value produced is the floating point difference of the two operands.</p>
3193
3194<h5>Example:</h5>
3195<pre>
3196 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3197 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3198</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003199
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003200</div>
3201
3202<!-- _______________________________________________________________________ -->
3203<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00003204 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
3205</div>
3206
Misha Brukman9d0919f2003-11-08 01:05:38 +00003207<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003208
Chris Lattner00950542001-06-06 20:29:01 +00003209<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003210<pre>
Dan Gohman08d012e2009-07-22 22:44:56 +00003211 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00003212 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3213 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3214 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003215</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003216
Chris Lattner00950542001-06-06 20:29:01 +00003217<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003218<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003219
Chris Lattner00950542001-06-06 20:29:01 +00003220<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003221<p>The two arguments to the '<tt>mul</tt>' instruction must
3222 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3223 integer values. Both arguments must have identical types.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003224
Chris Lattner00950542001-06-06 20:29:01 +00003225<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003226<p>The value produced is the integer product of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003227
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003228<p>If the result of the multiplication has unsigned overflow, the result
3229 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3230 width of the result.</p>
3231
3232<p>Because LLVM integers use a two's complement representation, and the result
3233 is the same width as the operands, this instruction returns the correct
3234 result for both signed and unsigned integers. If a full product
3235 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3236 be sign-extended or zero-extended as appropriate to the width of the full
3237 product.</p>
3238
Dan Gohman08d012e2009-07-22 22:44:56 +00003239<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3240 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3241 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
3242 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003243
Chris Lattner00950542001-06-06 20:29:01 +00003244<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003245<pre>
3246 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00003247</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003248
Misha Brukman9d0919f2003-11-08 01:05:38 +00003249</div>
Chris Lattner5568e942008-05-20 20:48:21 +00003250
Chris Lattner00950542001-06-06 20:29:01 +00003251<!-- _______________________________________________________________________ -->
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003252<div class="doc_subsubsection">
3253 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
3254</div>
3255
3256<div class="doc_text">
3257
3258<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003259<pre>
3260 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003261</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003262
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003263<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003264<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003265
3266<h5>Arguments:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003267<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003268 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3269 floating point values. Both arguments must have identical types.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003270
3271<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003272<p>The value produced is the floating point product of the two operands.</p>
3273
3274<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003275<pre>
3276 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003277</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003278
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003279</div>
3280
3281<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00003282<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
3283</a></div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003284
Reid Spencer1628cec2006-10-26 06:15:43 +00003285<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003286
Reid Spencer1628cec2006-10-26 06:15:43 +00003287<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003288<pre>
3289 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003290</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003291
Reid Spencer1628cec2006-10-26 06:15:43 +00003292<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003293<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003294
Reid Spencer1628cec2006-10-26 06:15:43 +00003295<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003296<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003297 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3298 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003299
Reid Spencer1628cec2006-10-26 06:15:43 +00003300<h5>Semantics:</h5>
Chris Lattner5ec89832008-01-28 00:36:27 +00003301<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003302
Chris Lattner5ec89832008-01-28 00:36:27 +00003303<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003304 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3305
Chris Lattner5ec89832008-01-28 00:36:27 +00003306<p>Division by zero leads to undefined behavior.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003307
Reid Spencer1628cec2006-10-26 06:15:43 +00003308<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003309<pre>
3310 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003311</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003312
Reid Spencer1628cec2006-10-26 06:15:43 +00003313</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003314
Reid Spencer1628cec2006-10-26 06:15:43 +00003315<!-- _______________________________________________________________________ -->
3316<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
3317</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003318
Reid Spencer1628cec2006-10-26 06:15:43 +00003319<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003320
Reid Spencer1628cec2006-10-26 06:15:43 +00003321<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003322<pre>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003323 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00003324 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003325</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003326
Reid Spencer1628cec2006-10-26 06:15:43 +00003327<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003328<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003329
Reid Spencer1628cec2006-10-26 06:15:43 +00003330<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003331<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003332 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3333 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003334
Reid Spencer1628cec2006-10-26 06:15:43 +00003335<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003336<p>The value produced is the signed integer quotient of the two operands rounded
3337 towards zero.</p>
3338
Chris Lattner5ec89832008-01-28 00:36:27 +00003339<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003340 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3341
Chris Lattner5ec89832008-01-28 00:36:27 +00003342<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003343 undefined behavior; this is a rare case, but can occur, for example, by doing
3344 a 32-bit division of -2147483648 by -1.</p>
3345
Dan Gohman9c5beed2009-07-22 00:04:19 +00003346<p>If the <tt>exact</tt> keyword is present, the result value of the
3347 <tt>sdiv</tt> is undefined if the result would be rounded or if overflow
3348 would occur.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003349
Reid Spencer1628cec2006-10-26 06:15:43 +00003350<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003351<pre>
3352 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003353</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003354
Reid Spencer1628cec2006-10-26 06:15:43 +00003355</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003356
Reid Spencer1628cec2006-10-26 06:15:43 +00003357<!-- _______________________________________________________________________ -->
3358<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00003359Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003360
Misha Brukman9d0919f2003-11-08 01:05:38 +00003361<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003362
Chris Lattner00950542001-06-06 20:29:01 +00003363<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003364<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003365 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003366</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003367
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003368<h5>Overview:</h5>
3369<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003370
Chris Lattner261efe92003-11-25 01:02:51 +00003371<h5>Arguments:</h5>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003372<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003373 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3374 floating point values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003375
Chris Lattner261efe92003-11-25 01:02:51 +00003376<h5>Semantics:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00003377<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003378
Chris Lattner261efe92003-11-25 01:02:51 +00003379<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003380<pre>
3381 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003382</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003383
Chris Lattner261efe92003-11-25 01:02:51 +00003384</div>
Chris Lattner5568e942008-05-20 20:48:21 +00003385
Chris Lattner261efe92003-11-25 01:02:51 +00003386<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00003387<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3388</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003389
Reid Spencer0a783f72006-11-02 01:53:59 +00003390<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003391
Reid Spencer0a783f72006-11-02 01:53:59 +00003392<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003393<pre>
3394 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003395</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003396
Reid Spencer0a783f72006-11-02 01:53:59 +00003397<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003398<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3399 division of its two arguments.</p>
3400
Reid Spencer0a783f72006-11-02 01:53:59 +00003401<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003402<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003403 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3404 values. Both arguments must have identical types.</p>
3405
Reid Spencer0a783f72006-11-02 01:53:59 +00003406<h5>Semantics:</h5>
3407<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003408 This instruction always performs an unsigned division to get the
3409 remainder.</p>
3410
Chris Lattner5ec89832008-01-28 00:36:27 +00003411<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003412 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3413
Chris Lattner5ec89832008-01-28 00:36:27 +00003414<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003415
Reid Spencer0a783f72006-11-02 01:53:59 +00003416<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003417<pre>
3418 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003419</pre>
3420
3421</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003422
Reid Spencer0a783f72006-11-02 01:53:59 +00003423<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00003424<div class="doc_subsubsection">
3425 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3426</div>
3427
Chris Lattner261efe92003-11-25 01:02:51 +00003428<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003429
Chris Lattner261efe92003-11-25 01:02:51 +00003430<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003431<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003432 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003433</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003434
Chris Lattner261efe92003-11-25 01:02:51 +00003435<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003436<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3437 division of its two operands. This instruction can also take
3438 <a href="#t_vector">vector</a> versions of the values in which case the
3439 elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00003440
Chris Lattner261efe92003-11-25 01:02:51 +00003441<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003442<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003443 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3444 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003445
Chris Lattner261efe92003-11-25 01:02:51 +00003446<h5>Semantics:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00003447<p>This instruction returns the <i>remainder</i> of a division (where the result
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003448 has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
3449 operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
3450 a value. For more information about the difference,
3451 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3452 Math Forum</a>. For a table of how this is implemented in various languages,
3453 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3454 Wikipedia: modulo operation</a>.</p>
3455
Chris Lattner5ec89832008-01-28 00:36:27 +00003456<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003457 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3458
Chris Lattner5ec89832008-01-28 00:36:27 +00003459<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003460 Overflow also leads to undefined behavior; this is a rare case, but can
3461 occur, for example, by taking the remainder of a 32-bit division of
3462 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3463 lets srem be implemented using instructions that return both the result of
3464 the division and the remainder.)</p>
3465
Chris Lattner261efe92003-11-25 01:02:51 +00003466<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003467<pre>
3468 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003469</pre>
3470
3471</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003472
Reid Spencer0a783f72006-11-02 01:53:59 +00003473<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00003474<div class="doc_subsubsection">
3475 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
3476
Reid Spencer0a783f72006-11-02 01:53:59 +00003477<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003478
Reid Spencer0a783f72006-11-02 01:53:59 +00003479<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003480<pre>
3481 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003482</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003483
Reid Spencer0a783f72006-11-02 01:53:59 +00003484<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003485<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3486 its two operands.</p>
3487
Reid Spencer0a783f72006-11-02 01:53:59 +00003488<h5>Arguments:</h5>
3489<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003490 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3491 floating point values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003492
Reid Spencer0a783f72006-11-02 01:53:59 +00003493<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003494<p>This instruction returns the <i>remainder</i> of a division. The remainder
3495 has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003496
Reid Spencer0a783f72006-11-02 01:53:59 +00003497<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003498<pre>
3499 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003500</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003501
Misha Brukman9d0919f2003-11-08 01:05:38 +00003502</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00003503
Reid Spencer8e11bf82007-02-02 13:57:07 +00003504<!-- ======================================================================= -->
3505<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
3506Operations</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003507
Reid Spencer8e11bf82007-02-02 13:57:07 +00003508<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003509
3510<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3511 program. They are generally very efficient instructions and can commonly be
3512 strength reduced from other instructions. They require two operands of the
3513 same type, execute an operation on them, and produce a single value. The
3514 resulting value is the same type as its operands.</p>
3515
Reid Spencer8e11bf82007-02-02 13:57:07 +00003516</div>
3517
Reid Spencer569f2fa2007-01-31 21:39:12 +00003518<!-- _______________________________________________________________________ -->
3519<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
3520Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003521
Reid Spencer569f2fa2007-01-31 21:39:12 +00003522<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003523
Reid Spencer569f2fa2007-01-31 21:39:12 +00003524<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003525<pre>
3526 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003527</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003528
Reid Spencer569f2fa2007-01-31 21:39:12 +00003529<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003530<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3531 a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003532
Reid Spencer569f2fa2007-01-31 21:39:12 +00003533<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003534<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3535 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3536 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003537
Reid Spencer569f2fa2007-01-31 21:39:12 +00003538<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003539<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3540 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3541 is (statically or dynamically) negative or equal to or larger than the number
3542 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3543 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3544 shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003545
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003546<h5>Example:</h5>
3547<pre>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003548 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3549 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3550 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003551 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003552 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003553</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003554
Reid Spencer569f2fa2007-01-31 21:39:12 +00003555</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003556
Reid Spencer569f2fa2007-01-31 21:39:12 +00003557<!-- _______________________________________________________________________ -->
3558<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
3559Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003560
Reid Spencer569f2fa2007-01-31 21:39:12 +00003561<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003562
Reid Spencer569f2fa2007-01-31 21:39:12 +00003563<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003564<pre>
3565 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003566</pre>
3567
3568<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003569<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3570 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003571
3572<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003573<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003574 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3575 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003576
3577<h5>Semantics:</h5>
3578<p>This instruction always performs a logical shift right operation. The most
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003579 significant bits of the result will be filled with zero bits after the shift.
3580 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3581 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3582 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3583 shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003584
3585<h5>Example:</h5>
3586<pre>
3587 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3588 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3589 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3590 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003591 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003592 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003593</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003594
Reid Spencer569f2fa2007-01-31 21:39:12 +00003595</div>
3596
Reid Spencer8e11bf82007-02-02 13:57:07 +00003597<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00003598<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3599Instruction</a> </div>
3600<div class="doc_text">
3601
3602<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003603<pre>
3604 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003605</pre>
3606
3607<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003608<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3609 operand shifted to the right a specified number of bits with sign
3610 extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003611
3612<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003613<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003614 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3615 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003616
3617<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003618<p>This instruction always performs an arithmetic shift right operation, The
3619 most significant bits of the result will be filled with the sign bit
3620 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3621 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3622 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3623 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003624
3625<h5>Example:</h5>
3626<pre>
3627 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3628 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3629 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3630 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003631 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003632 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003633</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003634
Reid Spencer569f2fa2007-01-31 21:39:12 +00003635</div>
3636
Chris Lattner00950542001-06-06 20:29:01 +00003637<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003638<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3639Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00003640
Misha Brukman9d0919f2003-11-08 01:05:38 +00003641<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003642
Chris Lattner00950542001-06-06 20:29:01 +00003643<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003644<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003645 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003646</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003647
Chris Lattner00950542001-06-06 20:29:01 +00003648<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003649<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3650 operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003651
Chris Lattner00950542001-06-06 20:29:01 +00003652<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003653<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003654 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3655 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003656
Chris Lattner00950542001-06-06 20:29:01 +00003657<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003658<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003659
Misha Brukman9d0919f2003-11-08 01:05:38 +00003660<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00003661 <tbody>
3662 <tr>
3663 <td>In0</td>
3664 <td>In1</td>
3665 <td>Out</td>
3666 </tr>
3667 <tr>
3668 <td>0</td>
3669 <td>0</td>
3670 <td>0</td>
3671 </tr>
3672 <tr>
3673 <td>0</td>
3674 <td>1</td>
3675 <td>0</td>
3676 </tr>
3677 <tr>
3678 <td>1</td>
3679 <td>0</td>
3680 <td>0</td>
3681 </tr>
3682 <tr>
3683 <td>1</td>
3684 <td>1</td>
3685 <td>1</td>
3686 </tr>
3687 </tbody>
3688</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003689
Chris Lattner00950542001-06-06 20:29:01 +00003690<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003691<pre>
3692 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003693 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3694 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00003695</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003696</div>
Chris Lattner00950542001-06-06 20:29:01 +00003697<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003698<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00003699
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003700<div class="doc_text">
3701
3702<h5>Syntax:</h5>
3703<pre>
3704 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3705</pre>
3706
3707<h5>Overview:</h5>
3708<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3709 two operands.</p>
3710
3711<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003712<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003713 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3714 values. Both arguments must have identical types.</p>
3715
Chris Lattner00950542001-06-06 20:29:01 +00003716<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003717<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003718
Chris Lattner261efe92003-11-25 01:02:51 +00003719<table border="1" cellspacing="0" cellpadding="4">
3720 <tbody>
3721 <tr>
3722 <td>In0</td>
3723 <td>In1</td>
3724 <td>Out</td>
3725 </tr>
3726 <tr>
3727 <td>0</td>
3728 <td>0</td>
3729 <td>0</td>
3730 </tr>
3731 <tr>
3732 <td>0</td>
3733 <td>1</td>
3734 <td>1</td>
3735 </tr>
3736 <tr>
3737 <td>1</td>
3738 <td>0</td>
3739 <td>1</td>
3740 </tr>
3741 <tr>
3742 <td>1</td>
3743 <td>1</td>
3744 <td>1</td>
3745 </tr>
3746 </tbody>
3747</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003748
Chris Lattner00950542001-06-06 20:29:01 +00003749<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003750<pre>
3751 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003752 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3753 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00003754</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003755
Misha Brukman9d0919f2003-11-08 01:05:38 +00003756</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003757
Chris Lattner00950542001-06-06 20:29:01 +00003758<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003759<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3760Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003761
Misha Brukman9d0919f2003-11-08 01:05:38 +00003762<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003763
Chris Lattner00950542001-06-06 20:29:01 +00003764<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003765<pre>
3766 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003767</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003768
Chris Lattner00950542001-06-06 20:29:01 +00003769<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003770<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3771 its two operands. The <tt>xor</tt> is used to implement the "one's
3772 complement" operation, which is the "~" operator in C.</p>
3773
Chris Lattner00950542001-06-06 20:29:01 +00003774<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003775<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003776 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3777 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003778
Chris Lattner00950542001-06-06 20:29:01 +00003779<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003780<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003781
Chris Lattner261efe92003-11-25 01:02:51 +00003782<table border="1" cellspacing="0" cellpadding="4">
3783 <tbody>
3784 <tr>
3785 <td>In0</td>
3786 <td>In1</td>
3787 <td>Out</td>
3788 </tr>
3789 <tr>
3790 <td>0</td>
3791 <td>0</td>
3792 <td>0</td>
3793 </tr>
3794 <tr>
3795 <td>0</td>
3796 <td>1</td>
3797 <td>1</td>
3798 </tr>
3799 <tr>
3800 <td>1</td>
3801 <td>0</td>
3802 <td>1</td>
3803 </tr>
3804 <tr>
3805 <td>1</td>
3806 <td>1</td>
3807 <td>0</td>
3808 </tr>
3809 </tbody>
3810</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003811
Chris Lattner00950542001-06-06 20:29:01 +00003812<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003813<pre>
3814 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003815 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3816 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3817 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00003818</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003819
Misha Brukman9d0919f2003-11-08 01:05:38 +00003820</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003821
Chris Lattner00950542001-06-06 20:29:01 +00003822<!-- ======================================================================= -->
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003823<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00003824 <a name="vectorops">Vector Operations</a>
3825</div>
3826
3827<div class="doc_text">
3828
3829<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003830 target-independent manner. These instructions cover the element-access and
3831 vector-specific operations needed to process vectors effectively. While LLVM
3832 does directly support these vector operations, many sophisticated algorithms
3833 will want to use target-specific intrinsics to take full advantage of a
3834 specific target.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003835
3836</div>
3837
3838<!-- _______________________________________________________________________ -->
3839<div class="doc_subsubsection">
3840 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3841</div>
3842
3843<div class="doc_text">
3844
3845<h5>Syntax:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003846<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003847 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003848</pre>
3849
3850<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003851<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
3852 from a vector at a specified index.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003853
3854
3855<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003856<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
3857 of <a href="#t_vector">vector</a> type. The second operand is an index
3858 indicating the position from which to extract the element. The index may be
3859 a variable.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003860
3861<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003862<p>The result is a scalar of the same type as the element type of
3863 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3864 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3865 results are undefined.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003866
3867<h5>Example:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003868<pre>
Gabor Greifa5b6f452009-10-28 13:14:50 +00003869 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003870</pre>
Chris Lattner3df241e2006-04-08 23:07:04 +00003871
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003872</div>
Chris Lattner3df241e2006-04-08 23:07:04 +00003873
3874<!-- _______________________________________________________________________ -->
3875<div class="doc_subsubsection">
3876 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3877</div>
3878
3879<div class="doc_text">
3880
3881<h5>Syntax:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003882<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00003883 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003884</pre>
3885
3886<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003887<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
3888 vector at a specified index.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003889
3890<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003891<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
3892 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
3893 whose type must equal the element type of the first operand. The third
3894 operand is an index indicating the position at which to insert the value.
3895 The index may be a variable.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003896
3897<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003898<p>The result is a vector of the same type as <tt>val</tt>. Its element values
3899 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
3900 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3901 results are undefined.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003902
3903<h5>Example:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003904<pre>
Gabor Greifa5b6f452009-10-28 13:14:50 +00003905 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003906</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003907
Chris Lattner3df241e2006-04-08 23:07:04 +00003908</div>
3909
3910<!-- _______________________________________________________________________ -->
3911<div class="doc_subsubsection">
3912 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3913</div>
3914
3915<div class="doc_text">
3916
3917<h5>Syntax:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003918<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003919 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003920</pre>
3921
3922<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003923<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
3924 from two input vectors, returning a vector with the same element type as the
3925 input and length that is the same as the shuffle mask.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003926
3927<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003928<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3929 with types that match each other. The third argument is a shuffle mask whose
3930 element type is always 'i32'. The result of the instruction is a vector
3931 whose length is the same as the shuffle mask and whose element type is the
3932 same as the element type of the first two operands.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003933
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003934<p>The shuffle mask operand is required to be a constant vector with either
3935 constant integer or undef values.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003936
3937<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003938<p>The elements of the two input vectors are numbered from left to right across
3939 both of the vectors. The shuffle mask operand specifies, for each element of
3940 the result vector, which element of the two input vectors the result element
3941 gets. The element selector may be undef (meaning "don't care") and the
3942 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003943
3944<h5>Example:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003945<pre>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003946 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003947 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003948 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Reid Spencerca86e162006-12-31 07:07:53 +00003949 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003950 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wangaeb06d22008-11-10 04:46:22 +00003951 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003952 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wangaeb06d22008-11-10 04:46:22 +00003953 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003954</pre>
Chris Lattner3df241e2006-04-08 23:07:04 +00003955
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003956</div>
Tanya Lattner09474292006-04-14 19:24:33 +00003957
Chris Lattner3df241e2006-04-08 23:07:04 +00003958<!-- ======================================================================= -->
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003959<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003960 <a name="aggregateops">Aggregate Operations</a>
3961</div>
3962
3963<div class="doc_text">
3964
Chris Lattnerfdfeb692010-02-12 20:49:41 +00003965<p>LLVM supports several instructions for working with
3966 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003967
3968</div>
3969
3970<!-- _______________________________________________________________________ -->
3971<div class="doc_subsubsection">
3972 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3973</div>
3974
3975<div class="doc_text">
3976
3977<h5>Syntax:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003978<pre>
3979 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3980</pre>
3981
3982<h5>Overview:</h5>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00003983<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
3984 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003985
3986<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003987<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattnerfdfeb692010-02-12 20:49:41 +00003988 of <a href="#t_struct">struct</a>, <a href="#t_union">union</a> or
3989 <a href="#t_array">array</a> type. The operands are constant indices to
3990 specify which value to extract in a similar manner as indices in a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003991 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003992
3993<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003994<p>The result is the value at the position in the aggregate specified by the
3995 index operands.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003996
3997<h5>Example:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003998<pre>
Gabor Greifa5b6f452009-10-28 13:14:50 +00003999 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004000</pre>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004001
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004002</div>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004003
4004<!-- _______________________________________________________________________ -->
4005<div class="doc_subsubsection">
4006 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
4007</div>
4008
4009<div class="doc_text">
4010
4011<h5>Syntax:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004012<pre>
Jeffrey Yasskin7a088cf2010-01-11 19:19:26 +00004013 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt; <i>; yields &lt;aggregate type&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004014</pre>
4015
4016<h5>Overview:</h5>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004017<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4018 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004019
4020<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004021<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004022 of <a href="#t_struct">struct</a>, <a href="#t_union">union</a> or
4023 <a href="#t_array">array</a> type. The second operand is a first-class
4024 value to insert. The following operands are constant indices indicating
4025 the position at which to insert the value in a similar manner as indices in a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004026 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. The
4027 value to insert must have the same type as the value identified by the
4028 indices.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004029
4030<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004031<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4032 that of <tt>val</tt> except that the value at the position specified by the
4033 indices is that of <tt>elt</tt>.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004034
4035<h5>Example:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004036<pre>
Jeffrey Yasskin7a088cf2010-01-11 19:19:26 +00004037 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4038 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004039</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004040
Dan Gohmana334d5f2008-05-12 23:51:09 +00004041</div>
4042
4043
4044<!-- ======================================================================= -->
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004045<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00004046 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004047</div>
4048
Misha Brukman9d0919f2003-11-08 01:05:38 +00004049<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00004050
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004051<p>A key design point of an SSA-based representation is how it represents
4052 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandez2fee2942009-10-26 23:44:29 +00004053 very simple. This section describes how to read, write, and allocate
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004054 memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004055
Misha Brukman9d0919f2003-11-08 01:05:38 +00004056</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004057
Chris Lattner00950542001-06-06 20:29:01 +00004058<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00004059<div class="doc_subsubsection">
Chris Lattner2cbdc452005-11-06 08:02:57 +00004060 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
4061</div>
4062
Misha Brukman9d0919f2003-11-08 01:05:38 +00004063<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00004064
Chris Lattner00950542001-06-06 20:29:01 +00004065<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004066<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004067 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00004068</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004069
Chris Lattner00950542001-06-06 20:29:01 +00004070<h5>Overview:</h5>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00004071<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004072 currently executing function, to be automatically released when this function
4073 returns to its caller. The object is always allocated in the generic address
4074 space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004075
Chris Lattner00950542001-06-06 20:29:01 +00004076<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004077<p>The '<tt>alloca</tt>' instruction
4078 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4079 runtime stack, returning a pointer of the appropriate type to the program.
4080 If "NumElements" is specified, it is the number of elements allocated,
4081 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4082 specified, the value result of the allocation is guaranteed to be aligned to
4083 at least that boundary. If not specified, or if zero, the target can choose
4084 to align the allocation on any convenient boundary compatible with the
4085 type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004086
Misha Brukman9d0919f2003-11-08 01:05:38 +00004087<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004088
Chris Lattner00950542001-06-06 20:29:01 +00004089<h5>Semantics:</h5>
Bill Wendling871eb0a2009-05-08 20:49:29 +00004090<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004091 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4092 memory is automatically released when the function returns. The
4093 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4094 variables that must have an address available. When the function returns
4095 (either with the <tt><a href="#i_ret">ret</a></tt>
4096 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4097 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004098
Chris Lattner00950542001-06-06 20:29:01 +00004099<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004100<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00004101 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4102 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4103 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4104 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00004105</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004106
Misha Brukman9d0919f2003-11-08 01:05:38 +00004107</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004108
Chris Lattner00950542001-06-06 20:29:01 +00004109<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00004110<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
4111Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004112
Misha Brukman9d0919f2003-11-08 01:05:38 +00004113<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004114
Chris Lattner2b7d3202002-05-06 03:03:22 +00004115<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004116<pre>
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004117 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4118 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4119 !&lt;index&gt; = !{ i32 1 }
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004120</pre>
4121
Chris Lattner2b7d3202002-05-06 03:03:22 +00004122<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004123<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004124
Chris Lattner2b7d3202002-05-06 03:03:22 +00004125<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004126<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4127 from which to load. The pointer must point to
4128 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4129 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
4130 number or order of execution of this <tt>load</tt> with other
4131 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
David Greene8939b0d2010-02-16 20:50:18 +00004132 instructions.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004133
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004134<p>The optional constant <tt>align</tt> argument specifies the alignment of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004135 operation (that is, the alignment of the memory address). A value of 0 or an
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004136 omitted <tt>align</tt> argument means that the operation has the preferential
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004137 alignment for the target. It is the responsibility of the code emitter to
4138 ensure that the alignment information is correct. Overestimating the
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004139 alignment results in undefined behavior. Underestimating the alignment may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004140 produce less efficient code. An alignment of 1 is always safe.</p>
4141
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004142<p>The optional <tt>!nontemporal</tt> metadata must reference a single
4143 metatadata name &lt;index&gt; corresponding to a metadata node with
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00004144 one <tt>i32</tt> entry of value 1. The existence of
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004145 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4146 and code generator that this load is not expected to be reused in the cache.
4147 The code generator may select special instructions to save cache bandwidth,
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00004148 such as the <tt>MOVNT</tt> instruction on x86.</p>
David Greene8939b0d2010-02-16 20:50:18 +00004149
Chris Lattner2b7d3202002-05-06 03:03:22 +00004150<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004151<p>The location of memory pointed to is loaded. If the value being loaded is of
4152 scalar type then the number of bytes read does not exceed the minimum number
4153 of bytes needed to hold all bits of the type. For example, loading an
4154 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4155 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4156 is undefined if the value was not originally written using a store of the
4157 same type.</p>
4158
Chris Lattner2b7d3202002-05-06 03:03:22 +00004159<h5>Examples:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004160<pre>
4161 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4162 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004163 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00004164</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004165
Misha Brukman9d0919f2003-11-08 01:05:38 +00004166</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004167
Chris Lattner2b7d3202002-05-06 03:03:22 +00004168<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00004169<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
4170Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004171
Reid Spencer035ab572006-11-09 21:18:01 +00004172<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004173
Chris Lattner2b7d3202002-05-06 03:03:22 +00004174<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004175<pre>
David Greene8939b0d2010-02-16 20:50:18 +00004176 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !<index>] <i>; yields {void}</i>
4177 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !<index>] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00004178</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004179
Chris Lattner2b7d3202002-05-06 03:03:22 +00004180<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004181<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004182
Chris Lattner2b7d3202002-05-06 03:03:22 +00004183<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004184<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4185 and an address at which to store it. The type of the
4186 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4187 the <a href="#t_firstclass">first class</a> type of the
4188 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked
4189 as <tt>volatile</tt>, then the optimizer is not allowed to modify the number
4190 or order of execution of this <tt>store</tt> with other
4191 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
4192 instructions.</p>
4193
4194<p>The optional constant "align" argument specifies the alignment of the
4195 operation (that is, the alignment of the memory address). A value of 0 or an
4196 omitted "align" argument means that the operation has the preferential
4197 alignment for the target. It is the responsibility of the code emitter to
4198 ensure that the alignment information is correct. Overestimating the
4199 alignment results in an undefined behavior. Underestimating the alignment may
4200 produce less efficient code. An alignment of 1 is always safe.</p>
4201
David Greene8939b0d2010-02-16 20:50:18 +00004202<p>The optional !nontemporal metadata must reference a single metatadata
4203 name <index> corresponding to a metadata node with one i32 entry of
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00004204 value 1. The existence of the !nontemporal metatadata on the
David Greene8939b0d2010-02-16 20:50:18 +00004205 instruction tells the optimizer and code generator that this load is
4206 not expected to be reused in the cache. The code generator may
4207 select special instructions to save cache bandwidth, such as the
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00004208 MOVNT instruction on x86.</p>
David Greene8939b0d2010-02-16 20:50:18 +00004209
4210
Chris Lattner261efe92003-11-25 01:02:51 +00004211<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004212<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4213 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4214 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4215 does not exceed the minimum number of bytes needed to hold all bits of the
4216 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4217 writing a value of a type like <tt>i20</tt> with a size that is not an
4218 integral number of bytes, it is unspecified what happens to the extra bits
4219 that do not belong to the type, but they will typically be overwritten.</p>
4220
Chris Lattner2b7d3202002-05-06 03:03:22 +00004221<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004222<pre>
4223 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00004224 store i32 3, i32* %ptr <i>; yields {void}</i>
4225 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00004226</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004227
Reid Spencer47ce1792006-11-09 21:15:49 +00004228</div>
4229
Chris Lattner2b7d3202002-05-06 03:03:22 +00004230<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004231<div class="doc_subsubsection">
4232 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
4233</div>
4234
Misha Brukman9d0919f2003-11-08 01:05:38 +00004235<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004236
Chris Lattner7faa8832002-04-14 06:13:44 +00004237<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004238<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004239 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohmandd8004d2009-07-27 21:53:46 +00004240 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004241</pre>
4242
Chris Lattner7faa8832002-04-14 06:13:44 +00004243<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004244<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004245 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
4246 It performs address calculation only and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004247
Chris Lattner7faa8832002-04-14 06:13:44 +00004248<h5>Arguments:</h5>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004249<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnerc8eef442009-07-29 06:44:13 +00004250 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004251 elements of the aggregate object are indexed. The interpretation of each
4252 index is dependent on the type being indexed into. The first index always
4253 indexes the pointer value given as the first argument, the second index
4254 indexes a value of the type pointed to (not necessarily the value directly
4255 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004256 indexed into must be a pointer value, subsequent types can be arrays,
4257 vectors, structs and unions. Note that subsequent types being indexed into
4258 can never be pointers, since that would require loading the pointer before
4259 continuing calculation.</p>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004260
4261<p>The type of each index argument depends on the type it is indexing into.
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004262 When indexing into a (optionally packed) structure or union, only <tt>i32</tt>
4263 integer <b>constants</b> are allowed. When indexing into an array, pointer
4264 or vector, integers of any width are allowed, and they are not required to be
Chris Lattnerc8eef442009-07-29 06:44:13 +00004265 constant.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004266
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004267<p>For example, let's consider a C code fragment and how it gets compiled to
4268 LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004269
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004270<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004271<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004272struct RT {
4273 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00004274 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004275 char C;
4276};
4277struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00004278 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004279 double Y;
4280 struct RT Z;
4281};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004282
Chris Lattnercabc8462007-05-29 15:43:56 +00004283int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004284 return &amp;s[1].Z.B[5][13];
4285}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004286</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004287</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004288
Misha Brukman9d0919f2003-11-08 01:05:38 +00004289<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004290
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004291<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004292<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00004293%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
4294%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004295
Dan Gohman4df605b2009-07-25 02:23:48 +00004296define i32* @foo(%ST* %s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004297entry:
4298 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
4299 ret i32* %reg
4300}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004301</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004302</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004303
Chris Lattner7faa8832002-04-14 06:13:44 +00004304<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004305<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004306 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
4307 }</tt>' type, a structure. The second index indexes into the third element
4308 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
4309 i8 }</tt>' type, another structure. The third index indexes into the second
4310 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
4311 array. The two dimensions of the array are subscripted into, yielding an
4312 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
4313 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004314
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004315<p>Note that it is perfectly legal to index partially through a structure,
4316 returning a pointer to an inner element. Because of this, the LLVM code for
4317 the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004318
4319<pre>
Dan Gohman4df605b2009-07-25 02:23:48 +00004320 define i32* @foo(%ST* %s) {
Reid Spencerca86e162006-12-31 07:07:53 +00004321 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00004322 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
4323 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004324 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
4325 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
4326 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004327 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00004328</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00004329
Dan Gohmandd8004d2009-07-27 21:53:46 +00004330<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman0a28d182009-07-29 16:00:30 +00004331 <tt>getelementptr</tt> is undefined if the base pointer is not an
4332 <i>in bounds</i> address of an allocated object, or if any of the addresses
Dan Gohmanb255b882009-08-20 17:08:17 +00004333 that would be formed by successive addition of the offsets implied by the
4334 indices to the base address with infinitely precise arithmetic are not an
4335 <i>in bounds</i> address of that allocated object.
Dan Gohman0a28d182009-07-29 16:00:30 +00004336 The <i>in bounds</i> addresses for an allocated object are all the addresses
Dan Gohmanb255b882009-08-20 17:08:17 +00004337 that point into the object, plus the address one byte past the end.</p>
Dan Gohmandd8004d2009-07-27 21:53:46 +00004338
4339<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4340 the base address with silently-wrapping two's complement arithmetic, and
4341 the result value of the <tt>getelementptr</tt> may be outside the object
4342 pointed to by the base pointer. The result value may not necessarily be
4343 used to access memory though, even if it happens to point into allocated
4344 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4345 section for more information.</p>
4346
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004347<p>The getelementptr instruction is often confusing. For some more insight into
4348 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner884a9702006-08-15 00:45:58 +00004349
Chris Lattner7faa8832002-04-14 06:13:44 +00004350<h5>Example:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004351<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004352 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004353 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4354 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004355 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004356 <i>; yields i8*:eptr</i>
4357 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta9f805c22009-04-25 07:27:44 +00004358 <i>; yields i32*:iptr</i>
Sanjiv Gupta16ffa802009-04-24 16:38:13 +00004359 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004360</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004361
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004362</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00004363
Chris Lattner00950542001-06-06 20:29:01 +00004364<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00004365<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004366</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004367
Misha Brukman9d0919f2003-11-08 01:05:38 +00004368<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004369
Reid Spencer2fd21e62006-11-08 01:18:52 +00004370<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004371 which all take a single operand and a type. They perform various bit
4372 conversions on the operand.</p>
4373
Misha Brukman9d0919f2003-11-08 01:05:38 +00004374</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004375
Chris Lattner6536cfe2002-05-06 22:08:29 +00004376<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00004377<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004378 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4379</div>
4380<div class="doc_text">
4381
4382<h5>Syntax:</h5>
4383<pre>
4384 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4385</pre>
4386
4387<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004388<p>The '<tt>trunc</tt>' instruction truncates its operand to the
4389 type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004390
4391<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004392<p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
4393 be an <a href="#t_integer">integer</a> type, and a type that specifies the
4394 size and type of the result, which must be
4395 an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must
4396 be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
4397 allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004398
4399<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004400<p>The '<tt>trunc</tt>' instruction truncates the high order bits
4401 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4402 source size must be larger than the destination size, <tt>trunc</tt> cannot
4403 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004404
4405<h5>Example:</h5>
4406<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004407 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00004408 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
Gabor Greif6a292012009-10-28 09:21:30 +00004409 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004410</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004411
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004412</div>
4413
4414<!-- _______________________________________________________________________ -->
4415<div class="doc_subsubsection">
4416 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4417</div>
4418<div class="doc_text">
4419
4420<h5>Syntax:</h5>
4421<pre>
4422 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4423</pre>
4424
4425<h5>Overview:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004426<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004427 <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004428
4429
4430<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004431<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004432 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4433 also be of <a href="#t_integer">integer</a> type. The bit size of the
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004434 <tt>value</tt> must be smaller than the bit size of the destination type,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004435 <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004436
4437<h5>Semantics:</h5>
4438<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004439 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004440
Reid Spencerb5929522007-01-12 15:46:11 +00004441<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004442
4443<h5>Example:</h5>
4444<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004445 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00004446 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004447</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004448
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004449</div>
4450
4451<!-- _______________________________________________________________________ -->
4452<div class="doc_subsubsection">
4453 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4454</div>
4455<div class="doc_text">
4456
4457<h5>Syntax:</h5>
4458<pre>
4459 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4460</pre>
4461
4462<h5>Overview:</h5>
4463<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4464
4465<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004466<p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004467 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4468 also be of <a href="#t_integer">integer</a> type. The bit size of the
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004469 <tt>value</tt> must be smaller than the bit size of the destination type,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004470 <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004471
4472<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004473<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4474 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4475 of the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004476
Reid Spencerc78f3372007-01-12 03:35:51 +00004477<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004478
4479<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004480<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004481 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00004482 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004483</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004484
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004485</div>
4486
4487<!-- _______________________________________________________________________ -->
4488<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00004489 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4490</div>
4491
4492<div class="doc_text">
4493
4494<h5>Syntax:</h5>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004495<pre>
4496 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4497</pre>
4498
4499<h5>Overview:</h5>
4500<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004501 <tt>ty2</tt>.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004502
4503<h5>Arguments:</h5>
4504<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004505 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4506 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004507 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004508 <i>no-op cast</i>.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004509
4510<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004511<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004512 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004513 <a href="#t_floating">floating point</a> type. If the value cannot fit
4514 within the destination type, <tt>ty2</tt>, then the results are
4515 undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004516
4517<h5>Example:</h5>
4518<pre>
4519 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4520 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4521</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004522
Reid Spencer3fa91b02006-11-09 21:48:10 +00004523</div>
4524
4525<!-- _______________________________________________________________________ -->
4526<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004527 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4528</div>
4529<div class="doc_text">
4530
4531<h5>Syntax:</h5>
4532<pre>
4533 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4534</pre>
4535
4536<h5>Overview:</h5>
4537<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004538 floating point value.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004539
4540<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004541<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004542 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4543 a <a href="#t_floating">floating point</a> type to cast it to. The source
4544 type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004545
4546<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004547<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004548 <a href="#t_floating">floating point</a> type to a larger
4549 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4550 used to make a <i>no-op cast</i> because it always changes bits. Use
4551 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004552
4553<h5>Example:</h5>
4554<pre>
4555 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4556 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4557</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004558
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004559</div>
4560
4561<!-- _______________________________________________________________________ -->
4562<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00004563 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004564</div>
4565<div class="doc_text">
4566
4567<h5>Syntax:</h5>
4568<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004569 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004570</pre>
4571
4572<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004573<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004574 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004575
4576<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004577<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4578 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4579 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4580 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4581 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004582
4583<h5>Semantics:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004584<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004585 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4586 towards zero) unsigned integer value. If the value cannot fit
4587 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004588
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004589<h5>Example:</h5>
4590<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004591 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004592 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greif6a292012009-10-28 09:21:30 +00004593 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004594</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004595
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004596</div>
4597
4598<!-- _______________________________________________________________________ -->
4599<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004600 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004601</div>
4602<div class="doc_text">
4603
4604<h5>Syntax:</h5>
4605<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004606 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004607</pre>
4608
4609<h5>Overview:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004610<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004611 <a href="#t_floating">floating point</a> <tt>value</tt> to
4612 type <tt>ty2</tt>.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004613
Chris Lattner6536cfe2002-05-06 22:08:29 +00004614<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004615<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4616 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4617 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4618 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4619 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004620
Chris Lattner6536cfe2002-05-06 22:08:29 +00004621<h5>Semantics:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004622<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004623 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4624 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4625 the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004626
Chris Lattner33ba0d92001-07-09 00:26:23 +00004627<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004628<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004629 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004630 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greif6a292012009-10-28 09:21:30 +00004631 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004632</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004633
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004634</div>
4635
4636<!-- _______________________________________________________________________ -->
4637<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004638 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004639</div>
4640<div class="doc_text">
4641
4642<h5>Syntax:</h5>
4643<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004644 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004645</pre>
4646
4647<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004648<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004649 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004650
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004651<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004652<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004653 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4654 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4655 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4656 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004657
4658<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004659<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004660 integer quantity and converts it to the corresponding floating point
4661 value. If the value cannot fit in the floating point value, the results are
4662 undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004663
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004664<h5>Example:</h5>
4665<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004666 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004667 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004668</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004669
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004670</div>
4671
4672<!-- _______________________________________________________________________ -->
4673<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004674 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004675</div>
4676<div class="doc_text">
4677
4678<h5>Syntax:</h5>
4679<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004680 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004681</pre>
4682
4683<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004684<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4685 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004686
4687<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004688<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004689 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4690 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4691 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4692 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004693
4694<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004695<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4696 quantity and converts it to the corresponding floating point value. If the
4697 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004698
4699<h5>Example:</h5>
4700<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004701 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004702 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004703</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004704
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004705</div>
4706
4707<!-- _______________________________________________________________________ -->
4708<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00004709 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4710</div>
4711<div class="doc_text">
4712
4713<h5>Syntax:</h5>
4714<pre>
4715 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4716</pre>
4717
4718<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004719<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4720 the integer type <tt>ty2</tt>.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004721
4722<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004723<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4724 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4725 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004726
4727<h5>Semantics:</h5>
4728<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004729 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4730 truncating or zero extending that value to the size of the integer type. If
4731 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4732 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4733 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4734 change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004735
4736<h5>Example:</h5>
4737<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004738 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4739 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004740</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004741
Reid Spencer72679252006-11-11 21:00:47 +00004742</div>
4743
4744<!-- _______________________________________________________________________ -->
4745<div class="doc_subsubsection">
4746 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4747</div>
4748<div class="doc_text">
4749
4750<h5>Syntax:</h5>
4751<pre>
4752 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4753</pre>
4754
4755<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004756<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4757 pointer type, <tt>ty2</tt>.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004758
4759<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00004760<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004761 value to cast, and a type to cast it to, which must be a
4762 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004763
4764<h5>Semantics:</h5>
4765<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004766 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4767 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4768 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
4769 than the size of a pointer then a zero extension is done. If they are the
4770 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencer72679252006-11-11 21:00:47 +00004771
4772<h5>Example:</h5>
4773<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004774 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greif6a292012009-10-28 09:21:30 +00004775 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4776 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004777</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004778
Reid Spencer72679252006-11-11 21:00:47 +00004779</div>
4780
4781<!-- _______________________________________________________________________ -->
4782<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00004783 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004784</div>
4785<div class="doc_text">
4786
4787<h5>Syntax:</h5>
4788<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004789 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004790</pre>
4791
4792<h5>Overview:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004793<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004794 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004795
4796<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004797<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
4798 non-aggregate first class value, and a type to cast it to, which must also be
4799 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
4800 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
4801 identical. If the source type is a pointer, the destination type must also be
4802 a pointer. This instruction supports bitwise conversion of vectors to
4803 integers and to vectors of other types (as long as they have the same
4804 size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004805
4806<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004807<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004808 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4809 this conversion. The conversion is done as if the <tt>value</tt> had been
4810 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
4811 be converted to other pointer types with this instruction. To convert
4812 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
4813 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004814
4815<h5>Example:</h5>
4816<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004817 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004818 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004819 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00004820</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004821
Misha Brukman9d0919f2003-11-08 01:05:38 +00004822</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004823
Reid Spencer2fd21e62006-11-08 01:18:52 +00004824<!-- ======================================================================= -->
4825<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004826
Reid Spencer2fd21e62006-11-08 01:18:52 +00004827<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004828
4829<p>The instructions in this category are the "miscellaneous" instructions, which
4830 defy better classification.</p>
4831
Reid Spencer2fd21e62006-11-08 01:18:52 +00004832</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004833
4834<!-- _______________________________________________________________________ -->
4835<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4836</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004837
Reid Spencerf3a70a62006-11-18 21:50:54 +00004838<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004839
Reid Spencerf3a70a62006-11-18 21:50:54 +00004840<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004841<pre>
4842 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004843</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004844
Reid Spencerf3a70a62006-11-18 21:50:54 +00004845<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004846<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
4847 boolean values based on comparison of its two integer, integer vector, or
4848 pointer operands.</p>
4849
Reid Spencerf3a70a62006-11-18 21:50:54 +00004850<h5>Arguments:</h5>
4851<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004852 the condition code indicating the kind of comparison to perform. It is not a
4853 value, just a keyword. The possible condition code are:</p>
4854
Reid Spencerf3a70a62006-11-18 21:50:54 +00004855<ol>
4856 <li><tt>eq</tt>: equal</li>
4857 <li><tt>ne</tt>: not equal </li>
4858 <li><tt>ugt</tt>: unsigned greater than</li>
4859 <li><tt>uge</tt>: unsigned greater or equal</li>
4860 <li><tt>ult</tt>: unsigned less than</li>
4861 <li><tt>ule</tt>: unsigned less or equal</li>
4862 <li><tt>sgt</tt>: signed greater than</li>
4863 <li><tt>sge</tt>: signed greater or equal</li>
4864 <li><tt>slt</tt>: signed less than</li>
4865 <li><tt>sle</tt>: signed less or equal</li>
4866</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004867
Chris Lattner3b19d652007-01-15 01:54:13 +00004868<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004869 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
4870 typed. They must also be identical types.</p>
4871
Reid Spencerf3a70a62006-11-18 21:50:54 +00004872<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004873<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
4874 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewyckyec38da42009-09-27 00:45:11 +00004875 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004876 result, as follows:</p>
4877
Reid Spencerf3a70a62006-11-18 21:50:54 +00004878<ol>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004879 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004880 <tt>false</tt> otherwise. No sign interpretation is necessary or
4881 performed.</li>
4882
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004883 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004884 <tt>false</tt> otherwise. No sign interpretation is necessary or
4885 performed.</li>
4886
Reid Spencerf3a70a62006-11-18 21:50:54 +00004887 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004888 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4889
Reid Spencerf3a70a62006-11-18 21:50:54 +00004890 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004891 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4892 to <tt>op2</tt>.</li>
4893
Reid Spencerf3a70a62006-11-18 21:50:54 +00004894 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004895 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4896
Reid Spencerf3a70a62006-11-18 21:50:54 +00004897 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004898 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4899
Reid Spencerf3a70a62006-11-18 21:50:54 +00004900 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004901 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4902
Reid Spencerf3a70a62006-11-18 21:50:54 +00004903 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004904 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4905 to <tt>op2</tt>.</li>
4906
Reid Spencerf3a70a62006-11-18 21:50:54 +00004907 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004908 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4909
Reid Spencerf3a70a62006-11-18 21:50:54 +00004910 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004911 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004912</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004913
Reid Spencerf3a70a62006-11-18 21:50:54 +00004914<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004915 values are compared as if they were integers.</p>
4916
4917<p>If the operands are integer vectors, then they are compared element by
4918 element. The result is an <tt>i1</tt> vector with the same number of elements
4919 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004920
4921<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004922<pre>
4923 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004924 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4925 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4926 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4927 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4928 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004929</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004930
4931<p>Note that the code generator does not yet support vector types with
4932 the <tt>icmp</tt> instruction.</p>
4933
Reid Spencerf3a70a62006-11-18 21:50:54 +00004934</div>
4935
4936<!-- _______________________________________________________________________ -->
4937<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4938</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004939
Reid Spencerf3a70a62006-11-18 21:50:54 +00004940<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004941
Reid Spencerf3a70a62006-11-18 21:50:54 +00004942<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004943<pre>
4944 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004945</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004946
Reid Spencerf3a70a62006-11-18 21:50:54 +00004947<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004948<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
4949 values based on comparison of its operands.</p>
4950
4951<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewyckyec38da42009-09-27 00:45:11 +00004952(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004953
4954<p>If the operands are floating point vectors, then the result type is a vector
4955 of boolean with the same number of elements as the operands being
4956 compared.</p>
4957
Reid Spencerf3a70a62006-11-18 21:50:54 +00004958<h5>Arguments:</h5>
4959<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004960 the condition code indicating the kind of comparison to perform. It is not a
4961 value, just a keyword. The possible condition code are:</p>
4962
Reid Spencerf3a70a62006-11-18 21:50:54 +00004963<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004964 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004965 <li><tt>oeq</tt>: ordered and equal</li>
4966 <li><tt>ogt</tt>: ordered and greater than </li>
4967 <li><tt>oge</tt>: ordered and greater than or equal</li>
4968 <li><tt>olt</tt>: ordered and less than </li>
4969 <li><tt>ole</tt>: ordered and less than or equal</li>
4970 <li><tt>one</tt>: ordered and not equal</li>
4971 <li><tt>ord</tt>: ordered (no nans)</li>
4972 <li><tt>ueq</tt>: unordered or equal</li>
4973 <li><tt>ugt</tt>: unordered or greater than </li>
4974 <li><tt>uge</tt>: unordered or greater than or equal</li>
4975 <li><tt>ult</tt>: unordered or less than </li>
4976 <li><tt>ule</tt>: unordered or less than or equal</li>
4977 <li><tt>une</tt>: unordered or not equal</li>
4978 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004979 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004980</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004981
Jeff Cohenb627eab2007-04-29 01:07:00 +00004982<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004983 <i>unordered</i> means that either operand may be a QNAN.</p>
4984
4985<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
4986 a <a href="#t_floating">floating point</a> type or
4987 a <a href="#t_vector">vector</a> of floating point type. They must have
4988 identical types.</p>
4989
Reid Spencerf3a70a62006-11-18 21:50:54 +00004990<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004991<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004992 according to the condition code given as <tt>cond</tt>. If the operands are
4993 vectors, then the vectors are compared element by element. Each comparison
Nick Lewyckyec38da42009-09-27 00:45:11 +00004994 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004995 follows:</p>
4996
Reid Spencerf3a70a62006-11-18 21:50:54 +00004997<ol>
4998 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004999
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005000 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005001 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5002
Reid Spencerb7f26282006-11-19 03:00:14 +00005003 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00005004 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005005
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005006 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005007 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5008
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005009 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005010 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5011
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005012 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005013 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5014
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005015 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005016 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5017
Reid Spencerb7f26282006-11-19 03:00:14 +00005018 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005019
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005020 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005021 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5022
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005023 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005024 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5025
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005026 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005027 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5028
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005029 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005030 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5031
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005032 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005033 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5034
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005035 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005036 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5037
Reid Spencerb7f26282006-11-19 03:00:14 +00005038 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005039
Reid Spencerf3a70a62006-11-18 21:50:54 +00005040 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5041</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005042
5043<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005044<pre>
5045 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00005046 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5047 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5048 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005049</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00005050
5051<p>Note that the code generator does not yet support vector types with
5052 the <tt>fcmp</tt> instruction.</p>
5053
Reid Spencerf3a70a62006-11-18 21:50:54 +00005054</div>
5055
Reid Spencer2fd21e62006-11-08 01:18:52 +00005056<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00005057<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00005058 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
5059</div>
5060
Reid Spencer2fd21e62006-11-08 01:18:52 +00005061<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00005062
Reid Spencer2fd21e62006-11-08 01:18:52 +00005063<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005064<pre>
5065 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5066</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00005067
Reid Spencer2fd21e62006-11-08 01:18:52 +00005068<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005069<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5070 SSA graph representing the function.</p>
5071
Reid Spencer2fd21e62006-11-08 01:18:52 +00005072<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005073<p>The type of the incoming values is specified with the first type field. After
5074 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5075 one pair for each predecessor basic block of the current block. Only values
5076 of <a href="#t_firstclass">first class</a> type may be used as the value
5077 arguments to the PHI node. Only labels may be used as the label
5078 arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00005079
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005080<p>There must be no non-phi instructions between the start of a basic block and
5081 the PHI instructions: i.e. PHI instructions must be first in a basic
5082 block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00005083
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005084<p>For the purposes of the SSA form, the use of each incoming value is deemed to
5085 occur on the edge from the corresponding predecessor block to the current
5086 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5087 value on the same edge).</p>
Jay Foadd2449092009-06-03 10:20:10 +00005088
Reid Spencer2fd21e62006-11-08 01:18:52 +00005089<h5>Semantics:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005090<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005091 specified by the pair corresponding to the predecessor basic block that
5092 executed just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00005093
Reid Spencer2fd21e62006-11-08 01:18:52 +00005094<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00005095<pre>
5096Loop: ; Infinite loop that counts from 0 on up...
5097 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5098 %nextindvar = add i32 %indvar, 1
5099 br label %Loop
5100</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005101
Reid Spencer2fd21e62006-11-08 01:18:52 +00005102</div>
5103
Chris Lattnercc37aae2004-03-12 05:50:16 +00005104<!-- _______________________________________________________________________ -->
5105<div class="doc_subsubsection">
5106 <a name="i_select">'<tt>select</tt>' Instruction</a>
5107</div>
5108
5109<div class="doc_text">
5110
5111<h5>Syntax:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005112<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00005113 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5114
Dan Gohman0e451ce2008-10-14 16:51:45 +00005115 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00005116</pre>
5117
5118<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005119<p>The '<tt>select</tt>' instruction is used to choose one value based on a
5120 condition, without branching.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005121
5122
5123<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005124<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5125 values indicating the condition, and two values of the
5126 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5127 vectors and the condition is a scalar, then entire vectors are selected, not
5128 individual elements.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005129
5130<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005131<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5132 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005133
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005134<p>If the condition is a vector of i1, then the value arguments must be vectors
5135 of the same size, and the selection is done element by element.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005136
5137<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005138<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00005139 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005140</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00005141
5142<p>Note that the code generator does not yet support conditions
5143 with vector type.</p>
5144
Chris Lattnercc37aae2004-03-12 05:50:16 +00005145</div>
5146
Robert Bocchino05ccd702006-01-15 20:48:27 +00005147<!-- _______________________________________________________________________ -->
5148<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00005149 <a name="i_call">'<tt>call</tt>' Instruction</a>
5150</div>
5151
Misha Brukman9d0919f2003-11-08 01:05:38 +00005152<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00005153
Chris Lattner00950542001-06-06 20:29:01 +00005154<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00005155<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00005156 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00005157</pre>
5158
Chris Lattner00950542001-06-06 20:29:01 +00005159<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005160<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00005161
Chris Lattner00950542001-06-06 20:29:01 +00005162<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005163<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00005164
Chris Lattner6536cfe2002-05-06 22:08:29 +00005165<ol>
Jeffrey Yasskin95fa80a2010-01-09 19:44:16 +00005166 <li>The optional "tail" marker indicates that the callee function does not
5167 access any allocas or varargs in the caller. Note that calls may be
5168 marked "tail" even if they do not occur before
5169 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5170 present, the function call is eligible for tail call optimization,
5171 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
Evan Chengdc444e92010-03-08 21:05:02 +00005172 optimized into a jump</a>. The code generator may optimize calls marked
5173 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
5174 sibling call optimization</a> when the caller and callee have
5175 matching signatures, or 2) forced tail call optimization when the
5176 following extra requirements are met:
Jeffrey Yasskin95fa80a2010-01-09 19:44:16 +00005177 <ul>
5178 <li>Caller and callee both have the calling
5179 convention <tt>fastcc</tt>.</li>
5180 <li>The call is in tail position (ret immediately follows call and ret
5181 uses value of call or is void).</li>
5182 <li>Option <tt>-tailcallopt</tt> is enabled,
Dan Gohmanfbbee8d2010-03-02 01:08:11 +00005183 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
Jeffrey Yasskin95fa80a2010-01-09 19:44:16 +00005184 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
5185 constraints are met.</a></li>
5186 </ul>
5187 </li>
Devang Patelf642f472008-10-06 18:50:38 +00005188
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005189 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5190 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskin95fa80a2010-01-09 19:44:16 +00005191 defaults to using C calling conventions. The calling convention of the
5192 call must match the calling convention of the target function, or else the
5193 behavior is undefined.</li>
Devang Patelf642f472008-10-06 18:50:38 +00005194
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005195 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5196 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5197 '<tt>inreg</tt>' attributes are valid here.</li>
5198
5199 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5200 type of the return value. Functions that return no value are marked
5201 <tt><a href="#t_void">void</a></tt>.</li>
5202
5203 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5204 being invoked. The argument types must match the types implied by this
5205 signature. This type can be omitted if the function is not varargs and if
5206 the function type does not return a pointer to a function.</li>
5207
5208 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5209 be invoked. In most cases, this is a direct function invocation, but
5210 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5211 to function value.</li>
5212
5213 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner0724fbd2010-03-02 06:36:51 +00005214 signature argument types and parameter attributes. All arguments must be
5215 of <a href="#t_firstclass">first class</a> type. If the function
5216 signature indicates the function accepts a variable number of arguments,
5217 the extra arguments can be specified.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005218
5219 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5220 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5221 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00005222</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00005223
Chris Lattner00950542001-06-06 20:29:01 +00005224<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005225<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5226 a specified function, with its incoming arguments bound to the specified
5227 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5228 function, control flow continues with the instruction after the function
5229 call, and the return value of the function is bound to the result
5230 argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00005231
Chris Lattner00950542001-06-06 20:29:01 +00005232<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00005233<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00005234 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00005235 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
5236 %X = tail call i32 @foo() <i>; yields i32</i>
5237 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
5238 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00005239
5240 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00005241 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00005242 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
5243 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00005244 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00005245 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00005246</pre>
5247
Dale Johannesen07de8d12009-09-24 18:38:21 +00005248<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen9f8380b2009-09-25 17:04:42 +00005249standard C99 library as being the C99 library functions, and may perform
5250optimizations or generate code for them under that assumption. This is
5251something we'd like to change in the future to provide better support for
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00005252freestanding environments and non-C-based languages.</p>
Dale Johannesen07de8d12009-09-24 18:38:21 +00005253
Misha Brukman9d0919f2003-11-08 01:05:38 +00005254</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005255
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005256<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00005257<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00005258 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005259</div>
5260
Misha Brukman9d0919f2003-11-08 01:05:38 +00005261<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00005262
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005263<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005264<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005265 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00005266</pre>
5267
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005268<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005269<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005270 the "variable argument" area of a function call. It is used to implement the
5271 <tt>va_arg</tt> macro in C.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005272
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005273<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005274<p>This instruction takes a <tt>va_list*</tt> value and the type of the
5275 argument. It returns a value of the specified argument type and increments
5276 the <tt>va_list</tt> to point to the next argument. The actual type
5277 of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005278
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005279<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005280<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
5281 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
5282 to the next argument. For more information, see the variable argument
5283 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005284
5285<p>It is legal for this instruction to be called in a function which does not
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005286 take a variable number of arguments, for example, the <tt>vfprintf</tt>
5287 function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005288
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005289<p><tt>va_arg</tt> is an LLVM instruction instead of
5290 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
5291 argument.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005292
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005293<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005294<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
5295
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005296<p>Note that the code generator does not yet fully support va_arg on many
5297 targets. Also, it does not currently support va_arg with aggregate types on
5298 any target.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00005299
Misha Brukman9d0919f2003-11-08 01:05:38 +00005300</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005301
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005302<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00005303<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
5304<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005305
Misha Brukman9d0919f2003-11-08 01:05:38 +00005306<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005307
5308<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005309 well known names and semantics and are required to follow certain
5310 restrictions. Overall, these intrinsics represent an extension mechanism for
5311 the LLVM language that does not require changing all of the transformations
5312 in LLVM when adding to the language (or the bitcode reader/writer, the
5313 parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005314
John Criswellfc6b8952005-05-16 16:17:45 +00005315<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005316 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5317 begin with this prefix. Intrinsic functions must always be external
5318 functions: you cannot define the body of intrinsic functions. Intrinsic
5319 functions may only be used in call or invoke instructions: it is illegal to
5320 take the address of an intrinsic function. Additionally, because intrinsic
5321 functions are part of the LLVM language, it is required if any are added that
5322 they be documented here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005323
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005324<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5325 family of functions that perform the same operation but on different data
5326 types. Because LLVM can represent over 8 million different integer types,
5327 overloading is used commonly to allow an intrinsic function to operate on any
5328 integer type. One or more of the argument types or the result type can be
5329 overloaded to accept any integer type. Argument types may also be defined as
5330 exactly matching a previous argument's type or the result type. This allows
5331 an intrinsic function which accepts multiple arguments, but needs all of them
5332 to be of the same type, to only be overloaded with respect to a single
5333 argument or the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005334
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005335<p>Overloaded intrinsics will have the names of its overloaded argument types
5336 encoded into its function name, each preceded by a period. Only those types
5337 which are overloaded result in a name suffix. Arguments whose type is matched
5338 against another type do not. For example, the <tt>llvm.ctpop</tt> function
5339 can take an integer of any width and returns an integer of exactly the same
5340 integer width. This leads to a family of functions such as
5341 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
5342 %val)</tt>. Only one type, the return type, is overloaded, and only one type
5343 suffix is required. Because the argument's type is matched against the return
5344 type, it does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00005345
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005346<p>To learn how to add an intrinsic function, please see the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005347 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005348
Misha Brukman9d0919f2003-11-08 01:05:38 +00005349</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005350
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005351<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005352<div class="doc_subsection">
5353 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
5354</div>
5355
Misha Brukman9d0919f2003-11-08 01:05:38 +00005356<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00005357
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005358<p>Variable argument support is defined in LLVM with
5359 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5360 intrinsic functions. These functions are related to the similarly named
5361 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005362
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005363<p>All of these functions operate on arguments that use a target-specific value
5364 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5365 not define what this type is, so all transformations should be prepared to
5366 handle these functions regardless of the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005367
Chris Lattner374ab302006-05-15 17:26:46 +00005368<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005369 instruction and the variable argument handling intrinsic functions are
5370 used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005371
Bill Wendling2f7a8b02007-05-29 09:04:49 +00005372<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005373<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005374define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00005375 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00005376 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00005377 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005378 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005379
5380 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00005381 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00005382
5383 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00005384 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00005385 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00005386 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005387 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005388
5389 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005390 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00005391 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00005392}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005393
5394declare void @llvm.va_start(i8*)
5395declare void @llvm.va_copy(i8*, i8*)
5396declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005397</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005398</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005399
Bill Wendling2f7a8b02007-05-29 09:04:49 +00005400</div>
5401
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005402<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005403<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005404 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00005405</div>
5406
5407
Misha Brukman9d0919f2003-11-08 01:05:38 +00005408<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005409
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005410<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005411<pre>
5412 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5413</pre>
5414
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005415<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005416<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5417 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005418
5419<h5>Arguments:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005420<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005421
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005422<h5>Semantics:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005423<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005424 macro available in C. In a target-dependent way, it initializes
5425 the <tt>va_list</tt> element to which the argument points, so that the next
5426 call to <tt>va_arg</tt> will produce the first variable argument passed to
5427 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5428 need to know the last argument of the function as the compiler can figure
5429 that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005430
Misha Brukman9d0919f2003-11-08 01:05:38 +00005431</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005432
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005433<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005434<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005435 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00005436</div>
5437
Misha Brukman9d0919f2003-11-08 01:05:38 +00005438<div class="doc_text">
Chris Lattnerb75137d2007-01-08 07:55:15 +00005439
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005440<h5>Syntax:</h5>
5441<pre>
5442 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5443</pre>
5444
5445<h5>Overview:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005446<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005447 which has been initialized previously
5448 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5449 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005450
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005451<h5>Arguments:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005452<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005453
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005454<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005455<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005456 macro available in C. In a target-dependent way, it destroys
5457 the <tt>va_list</tt> element to which the argument points. Calls
5458 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5459 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5460 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005461
Misha Brukman9d0919f2003-11-08 01:05:38 +00005462</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005463
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005464<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005465<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005466 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00005467</div>
5468
Misha Brukman9d0919f2003-11-08 01:05:38 +00005469<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00005470
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005471<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005472<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005473 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00005474</pre>
5475
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005476<h5>Overview:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005477<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005478 from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005479
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005480<h5>Arguments:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005481<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005482 The second argument is a pointer to a <tt>va_list</tt> element to copy
5483 from.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005484
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005485<h5>Semantics:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005486<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005487 macro available in C. In a target-dependent way, it copies the
5488 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5489 element. This intrinsic is necessary because
5490 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5491 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005492
Misha Brukman9d0919f2003-11-08 01:05:38 +00005493</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005494
Chris Lattner33aec9e2004-02-12 17:01:32 +00005495<!-- ======================================================================= -->
5496<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00005497 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5498</div>
5499
5500<div class="doc_text">
5501
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005502<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00005503Collection</a> (GC) requires the implementation and generation of these
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005504intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5505roots on the stack</a>, as well as garbage collector implementations that
5506require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5507barriers. Front-ends for type-safe garbage collected languages should generate
5508these intrinsics to make use of the LLVM garbage collectors. For more details,
5509see <a href="GarbageCollection.html">Accurate Garbage Collection with
5510LLVM</a>.</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00005511
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005512<p>The garbage collection intrinsics only operate on objects in the generic
5513 address space (address space zero).</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00005514
Chris Lattnerd7923912004-05-23 21:06:01 +00005515</div>
5516
5517<!-- _______________________________________________________________________ -->
5518<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005519 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005520</div>
5521
5522<div class="doc_text">
5523
5524<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005525<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005526 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00005527</pre>
5528
5529<h5>Overview:</h5>
John Criswell9e2485c2004-12-10 15:51:16 +00005530<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005531 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005532
5533<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005534<p>The first argument specifies the address of a stack object that contains the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005535 root pointer. The second pointer (which must be either a constant or a
5536 global value address) contains the meta-data to be associated with the
5537 root.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005538
5539<h5>Semantics:</h5>
Chris Lattner05d67092008-04-24 05:59:56 +00005540<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005541 location. At compile-time, the code generator generates information to allow
5542 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5543 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5544 algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005545
5546</div>
5547
Chris Lattnerd7923912004-05-23 21:06:01 +00005548<!-- _______________________________________________________________________ -->
5549<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005550 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005551</div>
5552
5553<div class="doc_text">
5554
5555<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005556<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005557 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00005558</pre>
5559
5560<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005561<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005562 locations, allowing garbage collector implementations that require read
5563 barriers.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005564
5565<h5>Arguments:</h5>
Chris Lattner80626e92006-03-14 20:02:51 +00005566<p>The second argument is the address to read from, which should be an address
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005567 allocated from the garbage collector. The first object is a pointer to the
5568 start of the referenced object, if needed by the language runtime (otherwise
5569 null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005570
5571<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005572<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005573 instruction, but may be replaced with substantially more complex code by the
5574 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5575 may only be used in a function which <a href="#gc">specifies a GC
5576 algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005577
5578</div>
5579
Chris Lattnerd7923912004-05-23 21:06:01 +00005580<!-- _______________________________________________________________________ -->
5581<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005582 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005583</div>
5584
5585<div class="doc_text">
5586
5587<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005588<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005589 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00005590</pre>
5591
5592<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005593<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005594 locations, allowing garbage collector implementations that require write
5595 barriers (such as generational or reference counting collectors).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005596
5597<h5>Arguments:</h5>
Chris Lattner80626e92006-03-14 20:02:51 +00005598<p>The first argument is the reference to store, the second is the start of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005599 object to store it to, and the third is the address of the field of Obj to
5600 store to. If the runtime does not require a pointer to the object, Obj may
5601 be null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005602
5603<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005604<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005605 instruction, but may be replaced with substantially more complex code by the
5606 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5607 may only be used in a function which <a href="#gc">specifies a GC
5608 algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005609
5610</div>
5611
Chris Lattnerd7923912004-05-23 21:06:01 +00005612<!-- ======================================================================= -->
5613<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00005614 <a name="int_codegen">Code Generator Intrinsics</a>
5615</div>
5616
5617<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005618
5619<p>These intrinsics are provided by LLVM to expose special features that may
5620 only be implemented with code generator support.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005621
5622</div>
5623
5624<!-- _______________________________________________________________________ -->
5625<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005626 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005627</div>
5628
5629<div class="doc_text">
5630
5631<h5>Syntax:</h5>
5632<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005633 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005634</pre>
5635
5636<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005637<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5638 target-specific value indicating the return address of the current function
5639 or one of its callers.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005640
5641<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005642<p>The argument to this intrinsic indicates which function to return the address
5643 for. Zero indicates the calling function, one indicates its caller, etc.
5644 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005645
5646<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005647<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5648 indicating the return address of the specified call frame, or zero if it
5649 cannot be identified. The value returned by this intrinsic is likely to be
5650 incorrect or 0 for arguments other than zero, so it should only be used for
5651 debugging purposes.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005652
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005653<p>Note that calling this intrinsic does not prevent function inlining or other
5654 aggressive transformations, so the value returned may not be that of the
5655 obvious source-language caller.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005656
Chris Lattner10610642004-02-14 04:08:35 +00005657</div>
5658
Chris Lattner10610642004-02-14 04:08:35 +00005659<!-- _______________________________________________________________________ -->
5660<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005661 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005662</div>
5663
5664<div class="doc_text">
5665
5666<h5>Syntax:</h5>
5667<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005668 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005669</pre>
5670
5671<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005672<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5673 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005674
5675<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005676<p>The argument to this intrinsic indicates which function to return the frame
5677 pointer for. Zero indicates the calling function, one indicates its caller,
5678 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005679
5680<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005681<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5682 indicating the frame address of the specified call frame, or zero if it
5683 cannot be identified. The value returned by this intrinsic is likely to be
5684 incorrect or 0 for arguments other than zero, so it should only be used for
5685 debugging purposes.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005686
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005687<p>Note that calling this intrinsic does not prevent function inlining or other
5688 aggressive transformations, so the value returned may not be that of the
5689 obvious source-language caller.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005690
Chris Lattner10610642004-02-14 04:08:35 +00005691</div>
5692
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005693<!-- _______________________________________________________________________ -->
5694<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005695 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005696</div>
5697
5698<div class="doc_text">
5699
5700<h5>Syntax:</h5>
5701<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005702 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00005703</pre>
5704
5705<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005706<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5707 of the function stack, for use
5708 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5709 useful for implementing language features like scoped automatic variable
5710 sized arrays in C99.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00005711
5712<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005713<p>This intrinsic returns a opaque pointer value that can be passed
5714 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5715 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5716 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5717 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5718 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5719 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00005720
5721</div>
5722
5723<!-- _______________________________________________________________________ -->
5724<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005725 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005726</div>
5727
5728<div class="doc_text">
5729
5730<h5>Syntax:</h5>
5731<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005732 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005733</pre>
5734
5735<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005736<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5737 the function stack to the state it was in when the
5738 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5739 executed. This is useful for implementing language features like scoped
5740 automatic variable sized arrays in C99.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00005741
5742<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005743<p>See the description
5744 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00005745
5746</div>
5747
Chris Lattner57e1f392006-01-13 02:03:13 +00005748<!-- _______________________________________________________________________ -->
5749<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005750 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005751</div>
5752
5753<div class="doc_text">
5754
5755<h5>Syntax:</h5>
5756<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005757 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005758</pre>
5759
5760<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005761<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
5762 insert a prefetch instruction if supported; otherwise, it is a noop.
5763 Prefetches have no effect on the behavior of the program but can change its
5764 performance characteristics.</p>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005765
5766<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005767<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
5768 specifier determining if the fetch should be for a read (0) or write (1),
5769 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5770 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
5771 and <tt>locality</tt> arguments must be constant integers.</p>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005772
5773<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005774<p>This intrinsic does not modify the behavior of the program. In particular,
5775 prefetches cannot trap and do not produce a value. On targets that support
5776 this intrinsic, the prefetch can provide hints to the processor cache for
5777 better performance.</p>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005778
5779</div>
5780
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005781<!-- _______________________________________________________________________ -->
5782<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005783 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005784</div>
5785
5786<div class="doc_text">
5787
5788<h5>Syntax:</h5>
5789<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005790 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005791</pre>
5792
5793<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005794<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
5795 Counter (PC) in a region of code to simulators and other tools. The method
5796 is target specific, but it is expected that the marker will use exported
5797 symbols to transmit the PC of the marker. The marker makes no guarantees
5798 that it will remain with any specific instruction after optimizations. It is
5799 possible that the presence of a marker will inhibit optimizations. The
5800 intended use is to be inserted after optimizations to allow correlations of
5801 simulation runs.</p>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005802
5803<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005804<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005805
5806<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005807<p>This intrinsic does not modify the behavior of the program. Backends that do
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00005808 not support this intrinsic may ignore it.</p>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005809
5810</div>
5811
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005812<!-- _______________________________________________________________________ -->
5813<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005814 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005815</div>
5816
5817<div class="doc_text">
5818
5819<h5>Syntax:</h5>
5820<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005821 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005822</pre>
5823
5824<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005825<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5826 counter register (or similar low latency, high accuracy clocks) on those
5827 targets that support it. On X86, it should map to RDTSC. On Alpha, it
5828 should map to RPCC. As the backing counters overflow quickly (on the order
5829 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005830
5831<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005832<p>When directly supported, reading the cycle counter should not modify any
5833 memory. Implementations are allowed to either return a application specific
5834 value or a system wide value. On backends without support, this is lowered
5835 to a constant 0.</p>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005836
5837</div>
5838
Chris Lattner10610642004-02-14 04:08:35 +00005839<!-- ======================================================================= -->
5840<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005841 <a name="int_libc">Standard C Library Intrinsics</a>
5842</div>
5843
5844<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005845
5846<p>LLVM provides intrinsics for a few important standard C library functions.
5847 These intrinsics allow source-language front-ends to pass information about
5848 the alignment of the pointer arguments to the code generator, providing
5849 opportunity for more efficient code generation.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005850
5851</div>
5852
5853<!-- _______________________________________________________________________ -->
5854<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005855 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005856</div>
5857
5858<div class="doc_text">
5859
5860<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005861<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
5862 integer bit width. Not all targets support all bit widths however.</p>
5863
Chris Lattner33aec9e2004-02-12 17:01:32 +00005864<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005865 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005866 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner824b9582008-11-21 16:42:48 +00005867 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5868 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005869 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005870 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005871 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005872 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005873</pre>
5874
5875<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005876<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5877 source location to the destination location.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005878
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005879<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5880 intrinsics do not return a value, and takes an extra alignment argument.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005881
5882<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005883<p>The first argument is a pointer to the destination, the second is a pointer
5884 to the source. The third argument is an integer argument specifying the
5885 number of bytes to copy, and the fourth argument is the alignment of the
5886 source and destination locations.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005887
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00005888<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005889 then the caller guarantees that both the source and destination pointers are
5890 aligned to that boundary.</p>
Chris Lattner3301ced2004-02-12 21:18:15 +00005891
Chris Lattner33aec9e2004-02-12 17:01:32 +00005892<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005893<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5894 source location to the destination location, which are not allowed to
5895 overlap. It copies "len" bytes of memory over. If the argument is known to
5896 be aligned to some boundary, this can be specified as the fourth argument,
5897 otherwise it should be set to 0 or 1.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005898
Chris Lattner33aec9e2004-02-12 17:01:32 +00005899</div>
5900
Chris Lattner0eb51b42004-02-12 18:10:10 +00005901<!-- _______________________________________________________________________ -->
5902<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005903 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005904</div>
5905
5906<div class="doc_text">
5907
5908<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005909<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005910 width. Not all targets support all bit widths however.</p>
5911
Chris Lattner0eb51b42004-02-12 18:10:10 +00005912<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005913 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005914 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner824b9582008-11-21 16:42:48 +00005915 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5916 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005917 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005918 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005919 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005920 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005921</pre>
5922
5923<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005924<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
5925 source location to the destination location. It is similar to the
5926 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
5927 overlap.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005928
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005929<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5930 intrinsics do not return a value, and takes an extra alignment argument.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005931
5932<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005933<p>The first argument is a pointer to the destination, the second is a pointer
5934 to the source. The third argument is an integer argument specifying the
5935 number of bytes to copy, and the fourth argument is the alignment of the
5936 source and destination locations.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005937
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00005938<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005939 then the caller guarantees that the source and destination pointers are
5940 aligned to that boundary.</p>
Chris Lattner3301ced2004-02-12 21:18:15 +00005941
Chris Lattner0eb51b42004-02-12 18:10:10 +00005942<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005943<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
5944 source location to the destination location, which may overlap. It copies
5945 "len" bytes of memory over. If the argument is known to be aligned to some
5946 boundary, this can be specified as the fourth argument, otherwise it should
5947 be set to 0 or 1.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005948
Chris Lattner0eb51b42004-02-12 18:10:10 +00005949</div>
5950
Chris Lattner10610642004-02-14 04:08:35 +00005951<!-- _______________________________________________________________________ -->
5952<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005953 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005954</div>
5955
5956<div class="doc_text">
5957
5958<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005959<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005960 width. Not all targets support all bit widths however.</p>
5961
Chris Lattner10610642004-02-14 04:08:35 +00005962<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005963 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005964 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner824b9582008-11-21 16:42:48 +00005965 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5966 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005967 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005968 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005969 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005970 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005971</pre>
5972
5973<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005974<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
5975 particular byte value.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005976
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005977<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
5978 intrinsic does not return a value, and takes an extra alignment argument.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005979
5980<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005981<p>The first argument is a pointer to the destination to fill, the second is the
5982 byte value to fill it with, the third argument is an integer argument
5983 specifying the number of bytes to fill, and the fourth argument is the known
5984 alignment of destination location.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005985
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00005986<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005987 then the caller guarantees that the destination pointer is aligned to that
5988 boundary.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005989
5990<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005991<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
5992 at the destination location. If the argument is known to be aligned to some
5993 boundary, this can be specified as the fourth argument, otherwise it should
5994 be set to 0 or 1.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005995
Chris Lattner10610642004-02-14 04:08:35 +00005996</div>
5997
Chris Lattner32006282004-06-11 02:28:03 +00005998<!-- _______________________________________________________________________ -->
5999<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00006000 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00006001</div>
6002
6003<div class="doc_text">
6004
6005<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006006<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6007 floating point or vector of floating point type. Not all targets support all
6008 types however.</p>
6009
Chris Lattnera4d74142005-07-21 01:29:16 +00006010<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00006011 declare float @llvm.sqrt.f32(float %Val)
6012 declare double @llvm.sqrt.f64(double %Val)
6013 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6014 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6015 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00006016</pre>
6017
6018<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006019<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6020 returning the same value as the libm '<tt>sqrt</tt>' functions would.
6021 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6022 behavior for negative numbers other than -0.0 (which allows for better
6023 optimization, because there is no need to worry about errno being
6024 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00006025
6026<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006027<p>The argument and return value are floating point numbers of the same
6028 type.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00006029
6030<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006031<p>This function returns the sqrt of the specified operand if it is a
6032 nonnegative floating point number.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00006033
Chris Lattnera4d74142005-07-21 01:29:16 +00006034</div>
6035
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006036<!-- _______________________________________________________________________ -->
6037<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00006038 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006039</div>
6040
6041<div class="doc_text">
6042
6043<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006044<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6045 floating point or vector of floating point type. Not all targets support all
6046 types however.</p>
6047
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006048<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00006049 declare float @llvm.powi.f32(float %Val, i32 %power)
6050 declare double @llvm.powi.f64(double %Val, i32 %power)
6051 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6052 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6053 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006054</pre>
6055
6056<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006057<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6058 specified (positive or negative) power. The order of evaluation of
6059 multiplications is not defined. When a vector of floating point type is
6060 used, the second argument remains a scalar integer value.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006061
6062<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006063<p>The second argument is an integer power, and the first is a value to raise to
6064 that power.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006065
6066<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006067<p>This function returns the first value raised to the second power with an
6068 unspecified sequence of rounding operations.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006069
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006070</div>
6071
Dan Gohman91c284c2007-10-15 20:30:11 +00006072<!-- _______________________________________________________________________ -->
6073<div class="doc_subsubsection">
6074 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
6075</div>
6076
6077<div class="doc_text">
6078
6079<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006080<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
6081 floating point or vector of floating point type. Not all targets support all
6082 types however.</p>
6083
Dan Gohman91c284c2007-10-15 20:30:11 +00006084<pre>
6085 declare float @llvm.sin.f32(float %Val)
6086 declare double @llvm.sin.f64(double %Val)
6087 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6088 declare fp128 @llvm.sin.f128(fp128 %Val)
6089 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6090</pre>
6091
6092<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006093<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006094
6095<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006096<p>The argument and return value are floating point numbers of the same
6097 type.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006098
6099<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006100<p>This function returns the sine of the specified operand, returning the same
6101 values as the libm <tt>sin</tt> functions would, and handles error conditions
6102 in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006103
Dan Gohman91c284c2007-10-15 20:30:11 +00006104</div>
6105
6106<!-- _______________________________________________________________________ -->
6107<div class="doc_subsubsection">
6108 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
6109</div>
6110
6111<div class="doc_text">
6112
6113<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006114<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
6115 floating point or vector of floating point type. Not all targets support all
6116 types however.</p>
6117
Dan Gohman91c284c2007-10-15 20:30:11 +00006118<pre>
6119 declare float @llvm.cos.f32(float %Val)
6120 declare double @llvm.cos.f64(double %Val)
6121 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6122 declare fp128 @llvm.cos.f128(fp128 %Val)
6123 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6124</pre>
6125
6126<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006127<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006128
6129<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006130<p>The argument and return value are floating point numbers of the same
6131 type.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006132
6133<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006134<p>This function returns the cosine of the specified operand, returning the same
6135 values as the libm <tt>cos</tt> functions would, and handles error conditions
6136 in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006137
Dan Gohman91c284c2007-10-15 20:30:11 +00006138</div>
6139
6140<!-- _______________________________________________________________________ -->
6141<div class="doc_subsubsection">
6142 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
6143</div>
6144
6145<div class="doc_text">
6146
6147<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006148<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
6149 floating point or vector of floating point type. Not all targets support all
6150 types however.</p>
6151
Dan Gohman91c284c2007-10-15 20:30:11 +00006152<pre>
6153 declare float @llvm.pow.f32(float %Val, float %Power)
6154 declare double @llvm.pow.f64(double %Val, double %Power)
6155 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6156 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6157 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6158</pre>
6159
6160<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006161<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
6162 specified (positive or negative) power.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006163
6164<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006165<p>The second argument is a floating point power, and the first is a value to
6166 raise to that power.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006167
6168<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006169<p>This function returns the first value raised to the second power, returning
6170 the same values as the libm <tt>pow</tt> functions would, and handles error
6171 conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006172
Dan Gohman91c284c2007-10-15 20:30:11 +00006173</div>
6174
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006175<!-- ======================================================================= -->
6176<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00006177 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006178</div>
6179
6180<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006181
6182<p>LLVM provides intrinsics for a few important bit manipulation operations.
6183 These allow efficient code generation for some algorithms.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006184
6185</div>
6186
6187<!-- _______________________________________________________________________ -->
6188<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00006189 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00006190</div>
6191
6192<div class="doc_text">
6193
6194<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00006195<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006196 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
6197
Nate Begeman7e36c472006-01-13 23:26:38 +00006198<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006199 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
6200 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
6201 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00006202</pre>
6203
6204<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006205<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
6206 values with an even number of bytes (positive multiple of 16 bits). These
6207 are useful for performing operations on data that is not in the target's
6208 native byte order.</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00006209
6210<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006211<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
6212 and low byte of the input i16 swapped. Similarly,
6213 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
6214 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
6215 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
6216 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
6217 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
6218 more, respectively).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00006219
6220</div>
6221
6222<!-- _______________________________________________________________________ -->
6223<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00006224 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006225</div>
6226
6227<div class="doc_text">
6228
6229<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00006230<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006231 width. Not all targets support all bit widths however.</p>
6232
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006233<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006234 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006235 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00006236 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006237 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
6238 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006239</pre>
6240
6241<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006242<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
6243 in a value.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006244
6245<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006246<p>The only argument is the value to be counted. The argument may be of any
6247 integer type. The return type must match the argument type.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006248
6249<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006250<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006251
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006252</div>
6253
6254<!-- _______________________________________________________________________ -->
6255<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00006256 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006257</div>
6258
6259<div class="doc_text">
6260
6261<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006262<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
6263 integer bit width. Not all targets support all bit widths however.</p>
6264
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006265<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006266 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
6267 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00006268 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006269 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
6270 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006271</pre>
6272
6273<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006274<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
6275 leading zeros in a variable.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006276
6277<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006278<p>The only argument is the value to be counted. The argument may be of any
6279 integer type. The return type must match the argument type.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006280
6281<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006282<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
6283 zeros in a variable. If the src == 0 then the result is the size in bits of
6284 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006285
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006286</div>
Chris Lattner32006282004-06-11 02:28:03 +00006287
Chris Lattnereff29ab2005-05-15 19:39:26 +00006288<!-- _______________________________________________________________________ -->
6289<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00006290 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006291</div>
6292
6293<div class="doc_text">
6294
6295<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006296<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
6297 integer bit width. Not all targets support all bit widths however.</p>
6298
Chris Lattnereff29ab2005-05-15 19:39:26 +00006299<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006300 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6301 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00006302 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006303 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6304 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00006305</pre>
6306
6307<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006308<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6309 trailing zeros.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006310
6311<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006312<p>The only argument is the value to be counted. The argument may be of any
6313 integer type. The return type must match the argument type.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006314
6315<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006316<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
6317 zeros in a variable. If the src == 0 then the result is the size in bits of
6318 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006319
Chris Lattnereff29ab2005-05-15 19:39:26 +00006320</div>
6321
Bill Wendlingda01af72009-02-08 04:04:40 +00006322<!-- ======================================================================= -->
6323<div class="doc_subsection">
6324 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6325</div>
6326
6327<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006328
6329<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingda01af72009-02-08 04:04:40 +00006330
6331</div>
6332
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006333<!-- _______________________________________________________________________ -->
6334<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006335 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006336</div>
6337
6338<div class="doc_text">
6339
6340<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006341<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006342 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006343
6344<pre>
6345 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6346 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6347 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6348</pre>
6349
6350<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006351<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006352 a signed addition of the two arguments, and indicate whether an overflow
6353 occurred during the signed summation.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006354
6355<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006356<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006357 be of integer types of any bit width, but they must have the same bit
6358 width. The second element of the result structure must be of
6359 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6360 undergo signed addition.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006361
6362<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006363<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006364 a signed addition of the two variables. They return a structure &mdash; the
6365 first element of which is the signed summation, and the second element of
6366 which is a bit specifying if the signed summation resulted in an
6367 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006368
6369<h5>Examples:</h5>
6370<pre>
6371 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6372 %sum = extractvalue {i32, i1} %res, 0
6373 %obit = extractvalue {i32, i1} %res, 1
6374 br i1 %obit, label %overflow, label %normal
6375</pre>
6376
6377</div>
6378
6379<!-- _______________________________________________________________________ -->
6380<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006381 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006382</div>
6383
6384<div class="doc_text">
6385
6386<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006387<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006388 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006389
6390<pre>
6391 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6392 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6393 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6394</pre>
6395
6396<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006397<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006398 an unsigned addition of the two arguments, and indicate whether a carry
6399 occurred during the unsigned summation.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006400
6401<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006402<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006403 be of integer types of any bit width, but they must have the same bit
6404 width. The second element of the result structure must be of
6405 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6406 undergo unsigned addition.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006407
6408<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006409<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006410 an unsigned addition of the two arguments. They return a structure &mdash;
6411 the first element of which is the sum, and the second element of which is a
6412 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006413
6414<h5>Examples:</h5>
6415<pre>
6416 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6417 %sum = extractvalue {i32, i1} %res, 0
6418 %obit = extractvalue {i32, i1} %res, 1
6419 br i1 %obit, label %carry, label %normal
6420</pre>
6421
6422</div>
6423
6424<!-- _______________________________________________________________________ -->
6425<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006426 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006427</div>
6428
6429<div class="doc_text">
6430
6431<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006432<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006433 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006434
6435<pre>
6436 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6437 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6438 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6439</pre>
6440
6441<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006442<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006443 a signed subtraction of the two arguments, and indicate whether an overflow
6444 occurred during the signed subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006445
6446<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006447<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006448 be of integer types of any bit width, but they must have the same bit
6449 width. The second element of the result structure must be of
6450 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6451 undergo signed subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006452
6453<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006454<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006455 a signed subtraction of the two arguments. They return a structure &mdash;
6456 the first element of which is the subtraction, and the second element of
6457 which is a bit specifying if the signed subtraction resulted in an
6458 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006459
6460<h5>Examples:</h5>
6461<pre>
6462 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6463 %sum = extractvalue {i32, i1} %res, 0
6464 %obit = extractvalue {i32, i1} %res, 1
6465 br i1 %obit, label %overflow, label %normal
6466</pre>
6467
6468</div>
6469
6470<!-- _______________________________________________________________________ -->
6471<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006472 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006473</div>
6474
6475<div class="doc_text">
6476
6477<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006478<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006479 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006480
6481<pre>
6482 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6483 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6484 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6485</pre>
6486
6487<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006488<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006489 an unsigned subtraction of the two arguments, and indicate whether an
6490 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006491
6492<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006493<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006494 be of integer types of any bit width, but they must have the same bit
6495 width. The second element of the result structure must be of
6496 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6497 undergo unsigned subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006498
6499<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006500<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006501 an unsigned subtraction of the two arguments. They return a structure &mdash;
6502 the first element of which is the subtraction, and the second element of
6503 which is a bit specifying if the unsigned subtraction resulted in an
6504 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006505
6506<h5>Examples:</h5>
6507<pre>
6508 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6509 %sum = extractvalue {i32, i1} %res, 0
6510 %obit = extractvalue {i32, i1} %res, 1
6511 br i1 %obit, label %overflow, label %normal
6512</pre>
6513
6514</div>
6515
6516<!-- _______________________________________________________________________ -->
6517<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006518 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006519</div>
6520
6521<div class="doc_text">
6522
6523<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006524<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006525 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006526
6527<pre>
6528 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6529 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6530 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6531</pre>
6532
6533<h5>Overview:</h5>
6534
6535<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006536 a signed multiplication of the two arguments, and indicate whether an
6537 overflow occurred during the signed multiplication.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006538
6539<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006540<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006541 be of integer types of any bit width, but they must have the same bit
6542 width. The second element of the result structure must be of
6543 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6544 undergo signed multiplication.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006545
6546<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006547<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006548 a signed multiplication of the two arguments. They return a structure &mdash;
6549 the first element of which is the multiplication, and the second element of
6550 which is a bit specifying if the signed multiplication resulted in an
6551 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006552
6553<h5>Examples:</h5>
6554<pre>
6555 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6556 %sum = extractvalue {i32, i1} %res, 0
6557 %obit = extractvalue {i32, i1} %res, 1
6558 br i1 %obit, label %overflow, label %normal
6559</pre>
6560
Reid Spencerf86037f2007-04-11 23:23:49 +00006561</div>
6562
Bill Wendling41b485c2009-02-08 23:00:09 +00006563<!-- _______________________________________________________________________ -->
6564<div class="doc_subsubsection">
6565 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6566</div>
6567
6568<div class="doc_text">
6569
6570<h5>Syntax:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006571<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006572 on any integer bit width.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006573
6574<pre>
6575 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6576 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6577 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6578</pre>
6579
6580<h5>Overview:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006581<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006582 a unsigned multiplication of the two arguments, and indicate whether an
6583 overflow occurred during the unsigned multiplication.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006584
6585<h5>Arguments:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006586<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006587 be of integer types of any bit width, but they must have the same bit
6588 width. The second element of the result structure must be of
6589 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6590 undergo unsigned multiplication.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006591
6592<h5>Semantics:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006593<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006594 an unsigned multiplication of the two arguments. They return a structure
6595 &mdash; the first element of which is the multiplication, and the second
6596 element of which is a bit specifying if the unsigned multiplication resulted
6597 in an overflow.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006598
6599<h5>Examples:</h5>
6600<pre>
6601 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6602 %sum = extractvalue {i32, i1} %res, 0
6603 %obit = extractvalue {i32, i1} %res, 1
6604 br i1 %obit, label %overflow, label %normal
6605</pre>
6606
6607</div>
6608
Chris Lattner8ff75902004-01-06 05:31:32 +00006609<!-- ======================================================================= -->
6610<div class="doc_subsection">
6611 <a name="int_debugger">Debugger Intrinsics</a>
6612</div>
6613
6614<div class="doc_text">
Chris Lattner8ff75902004-01-06 05:31:32 +00006615
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006616<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
6617 prefix), are described in
6618 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6619 Level Debugging</a> document.</p>
6620
6621</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00006622
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006623<!-- ======================================================================= -->
6624<div class="doc_subsection">
6625 <a name="int_eh">Exception Handling Intrinsics</a>
6626</div>
6627
6628<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006629
6630<p>The LLVM exception handling intrinsics (which all start with
6631 <tt>llvm.eh.</tt> prefix), are described in
6632 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6633 Handling</a> document.</p>
6634
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006635</div>
6636
Tanya Lattner6d806e92007-06-15 20:50:54 +00006637<!-- ======================================================================= -->
6638<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00006639 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00006640</div>
6641
6642<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006643
6644<p>This intrinsic makes it possible to excise one parameter, marked with
6645 the <tt>nest</tt> attribute, from a function. The result is a callable
6646 function pointer lacking the nest parameter - the caller does not need to
6647 provide a value for it. Instead, the value to use is stored in advance in a
6648 "trampoline", a block of memory usually allocated on the stack, which also
6649 contains code to splice the nest value into the argument list. This is used
6650 to implement the GCC nested function address extension.</p>
6651
6652<p>For example, if the function is
6653 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6654 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
6655 follows:</p>
6656
6657<div class="doc_code">
Duncan Sands36397f52007-07-27 12:58:54 +00006658<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006659 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6660 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6661 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6662 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00006663</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006664</div>
6665
6666<p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6667 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
6668
Duncan Sands36397f52007-07-27 12:58:54 +00006669</div>
6670
6671<!-- _______________________________________________________________________ -->
6672<div class="doc_subsubsection">
6673 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6674</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006675
Duncan Sands36397f52007-07-27 12:58:54 +00006676<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006677
Duncan Sands36397f52007-07-27 12:58:54 +00006678<h5>Syntax:</h5>
6679<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006680 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00006681</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006682
Duncan Sands36397f52007-07-27 12:58:54 +00006683<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006684<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
6685 function pointer suitable for executing it.</p>
6686
Duncan Sands36397f52007-07-27 12:58:54 +00006687<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006688<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6689 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
6690 sufficiently aligned block of memory; this memory is written to by the
6691 intrinsic. Note that the size and the alignment are target-specific - LLVM
6692 currently provides no portable way of determining them, so a front-end that
6693 generates this intrinsic needs to have some target-specific knowledge.
6694 The <tt>func</tt> argument must hold a function bitcast to
6695 an <tt>i8*</tt>.</p>
6696
Duncan Sands36397f52007-07-27 12:58:54 +00006697<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006698<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
6699 dependent code, turning it into a function. A pointer to this function is
6700 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
6701 function pointer type</a> before being called. The new function's signature
6702 is the same as that of <tt>func</tt> with any arguments marked with
6703 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
6704 is allowed, and it must be of pointer type. Calling the new function is
6705 equivalent to calling <tt>func</tt> with the same argument list, but
6706 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
6707 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
6708 by <tt>tramp</tt> is modified, then the effect of any later call to the
6709 returned function pointer is undefined.</p>
6710
Duncan Sands36397f52007-07-27 12:58:54 +00006711</div>
6712
6713<!-- ======================================================================= -->
6714<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006715 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6716</div>
6717
6718<div class="doc_text">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006719
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006720<p>These intrinsic functions expand the "universal IR" of LLVM to represent
6721 hardware constructs for atomic operations and memory synchronization. This
6722 provides an interface to the hardware, not an interface to the programmer. It
6723 is aimed at a low enough level to allow any programming models or APIs
6724 (Application Programming Interfaces) which need atomic behaviors to map
6725 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
6726 hardware provides a "universal IR" for source languages, it also provides a
6727 starting point for developing a "universal" atomic operation and
6728 synchronization IR.</p>
6729
6730<p>These do <em>not</em> form an API such as high-level threading libraries,
6731 software transaction memory systems, atomic primitives, and intrinsic
6732 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6733 application libraries. The hardware interface provided by LLVM should allow
6734 a clean implementation of all of these APIs and parallel programming models.
6735 No one model or paradigm should be selected above others unless the hardware
6736 itself ubiquitously does so.</p>
6737
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006738</div>
6739
6740<!-- _______________________________________________________________________ -->
6741<div class="doc_subsubsection">
6742 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6743</div>
6744<div class="doc_text">
6745<h5>Syntax:</h5>
6746<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006747 declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt; )
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006748</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006749
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006750<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006751<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6752 specific pairs of memory access types.</p>
6753
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006754<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006755<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6756 The first four arguments enables a specific barrier as listed below. The
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00006757 fifth argument specifies that the barrier applies to io or device or uncached
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006758 memory.</p>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006759
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006760<ul>
6761 <li><tt>ll</tt>: load-load barrier</li>
6762 <li><tt>ls</tt>: load-store barrier</li>
6763 <li><tt>sl</tt>: store-load barrier</li>
6764 <li><tt>ss</tt>: store-store barrier</li>
6765 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
6766</ul>
6767
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006768<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006769<p>This intrinsic causes the system to enforce some ordering constraints upon
6770 the loads and stores of the program. This barrier does not
6771 indicate <em>when</em> any events will occur, it only enforces
6772 an <em>order</em> in which they occur. For any of the specified pairs of load
6773 and store operations (f.ex. load-load, or store-load), all of the first
6774 operations preceding the barrier will complete before any of the second
6775 operations succeeding the barrier begin. Specifically the semantics for each
6776 pairing is as follows:</p>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006777
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006778<ul>
6779 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6780 after the barrier begins.</li>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00006781 <li><tt>ls</tt>: All loads before the barrier must complete before any
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006782 store after the barrier begins.</li>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00006783 <li><tt>ss</tt>: All stores before the barrier must complete before any
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006784 store after the barrier begins.</li>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00006785 <li><tt>sl</tt>: All stores before the barrier must complete before any
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006786 load after the barrier begins.</li>
6787</ul>
6788
6789<p>These semantics are applied with a logical "and" behavior when more than one
6790 is enabled in a single memory barrier intrinsic.</p>
6791
6792<p>Backends may implement stronger barriers than those requested when they do
6793 not support as fine grained a barrier as requested. Some architectures do
6794 not need all types of barriers and on such architectures, these become
6795 noops.</p>
6796
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006797<h5>Example:</h5>
6798<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00006799%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6800%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006801 store i32 4, %ptr
6802
6803%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6804 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6805 <i>; guarantee the above finishes</i>
6806 store i32 8, %ptr <i>; before this begins</i>
6807</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006808
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006809</div>
6810
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006811<!-- _______________________________________________________________________ -->
6812<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006813 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006814</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006815
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006816<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006817
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006818<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006819<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6820 any integer bit width and for different address spaces. Not all targets
6821 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006822
6823<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006824 declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6825 declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6826 declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6827 declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006828</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006829
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006830<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006831<p>This loads a value in memory and compares it to a given value. If they are
6832 equal, it stores a new value into the memory.</p>
6833
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006834<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006835<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
6836 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6837 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6838 this integer type. While any bit width integer may be used, targets may only
6839 lower representations they support in hardware.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006840
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006841<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006842<p>This entire intrinsic must be executed atomically. It first loads the value
6843 in memory pointed to by <tt>ptr</tt> and compares it with the
6844 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
6845 memory. The loaded value is yielded in all cases. This provides the
6846 equivalent of an atomic compare-and-swap operation within the SSA
6847 framework.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006848
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006849<h5>Examples:</h5>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006850<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00006851%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6852%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006853 store i32 4, %ptr
6854
6855%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006856%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006857 <i>; yields {i32}:result1 = 4</i>
6858%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6859%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6860
6861%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006862%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006863 <i>; yields {i32}:result2 = 8</i>
6864%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6865
6866%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6867</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006868
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006869</div>
6870
6871<!-- _______________________________________________________________________ -->
6872<div class="doc_subsubsection">
6873 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6874</div>
6875<div class="doc_text">
6876<h5>Syntax:</h5>
6877
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006878<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6879 integer bit width. Not all targets support all bit widths however.</p>
6880
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006881<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006882 declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6883 declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6884 declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6885 declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006886</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006887
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006888<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006889<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6890 the value from memory. It then stores the value in <tt>val</tt> in the memory
6891 at <tt>ptr</tt>.</p>
6892
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006893<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006894<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
6895 the <tt>val</tt> argument and the result must be integers of the same bit
6896 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6897 integer type. The targets may only lower integer representations they
6898 support.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006899
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006900<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006901<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6902 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6903 equivalent of an atomic swap operation within the SSA framework.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006904
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006905<h5>Examples:</h5>
6906<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00006907%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6908%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006909 store i32 4, %ptr
6910
6911%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006912%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006913 <i>; yields {i32}:result1 = 4</i>
6914%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6915%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6916
6917%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006918%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006919 <i>; yields {i32}:result2 = 8</i>
6920
6921%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6922%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6923</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006924
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006925</div>
6926
6927<!-- _______________________________________________________________________ -->
6928<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006929 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006930
6931</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006932
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006933<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006934
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006935<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006936<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
6937 any integer bit width. Not all targets support all bit widths however.</p>
6938
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006939<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006940 declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6941 declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6942 declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6943 declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006944</pre>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006945
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006946<h5>Overview:</h5>
6947<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
6948 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6949
6950<h5>Arguments:</h5>
6951<p>The intrinsic takes two arguments, the first a pointer to an integer value
6952 and the second an integer value. The result is also an integer value. These
6953 integer types can have any bit width, but they must all have the same bit
6954 width. The targets may only lower integer representations they support.</p>
6955
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006956<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006957<p>This intrinsic does a series of operations atomically. It first loads the
6958 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6959 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006960
6961<h5>Examples:</h5>
6962<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00006963%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6964%ptr = bitcast i8* %mallocP to i32*
6965 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006966%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006967 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006968%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006969 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006970%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006971 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006972%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006973</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006974
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006975</div>
6976
Mon P Wang28873102008-06-25 08:15:39 +00006977<!-- _______________________________________________________________________ -->
6978<div class="doc_subsubsection">
6979 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6980
6981</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006982
Mon P Wang28873102008-06-25 08:15:39 +00006983<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006984
Mon P Wang28873102008-06-25 08:15:39 +00006985<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006986<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
6987 any integer bit width and for different address spaces. Not all targets
6988 support all bit widths however.</p>
6989
Mon P Wang28873102008-06-25 08:15:39 +00006990<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006991 declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6992 declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6993 declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6994 declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006995</pre>
Mon P Wang28873102008-06-25 08:15:39 +00006996
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006997<h5>Overview:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00006998<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006999 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7000
7001<h5>Arguments:</h5>
7002<p>The intrinsic takes two arguments, the first a pointer to an integer value
7003 and the second an integer value. The result is also an integer value. These
7004 integer types can have any bit width, but they must all have the same bit
7005 width. The targets may only lower integer representations they support.</p>
7006
Mon P Wang28873102008-06-25 08:15:39 +00007007<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007008<p>This intrinsic does a series of operations atomically. It first loads the
7009 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
7010 result to <tt>ptr</tt>. It yields the original value stored
7011 at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00007012
7013<h5>Examples:</h5>
7014<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00007015%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7016%ptr = bitcast i8* %mallocP to i32*
7017 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00007018%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00007019 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007020%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00007021 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007022%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00007023 <i>; yields {i32}:result3 = 2</i>
7024%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
7025</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007026
Mon P Wang28873102008-06-25 08:15:39 +00007027</div>
7028
7029<!-- _______________________________________________________________________ -->
7030<div class="doc_subsubsection">
7031 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
7032 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
7033 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
7034 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
Mon P Wang28873102008-06-25 08:15:39 +00007035</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007036
Mon P Wang28873102008-06-25 08:15:39 +00007037<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007038
Mon P Wang28873102008-06-25 08:15:39 +00007039<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007040<p>These are overloaded intrinsics. You can
7041 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
7042 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
7043 bit width and for different address spaces. Not all targets support all bit
7044 widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00007045
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007046<pre>
7047 declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7048 declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7049 declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7050 declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007051</pre>
7052
7053<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007054 declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7055 declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7056 declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7057 declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007058</pre>
7059
7060<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007061 declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7062 declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7063 declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7064 declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007065</pre>
7066
7067<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007068 declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7069 declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7070 declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7071 declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007072</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007073
Mon P Wang28873102008-06-25 08:15:39 +00007074<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007075<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
7076 the value stored in memory at <tt>ptr</tt>. It yields the original value
7077 at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00007078
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007079<h5>Arguments:</h5>
7080<p>These intrinsics take two arguments, the first a pointer to an integer value
7081 and the second an integer value. The result is also an integer value. These
7082 integer types can have any bit width, but they must all have the same bit
7083 width. The targets may only lower integer representations they support.</p>
7084
Mon P Wang28873102008-06-25 08:15:39 +00007085<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007086<p>These intrinsics does a series of operations atomically. They first load the
7087 value stored at <tt>ptr</tt>. They then do the bitwise
7088 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
7089 original value stored at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00007090
7091<h5>Examples:</h5>
7092<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00007093%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7094%ptr = bitcast i8* %mallocP to i32*
7095 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00007096%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00007097 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007098%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00007099 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007100%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00007101 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007102%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00007103 <i>; yields {i32}:result3 = FF</i>
7104%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
7105</pre>
Mon P Wang28873102008-06-25 08:15:39 +00007106
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007107</div>
Mon P Wang28873102008-06-25 08:15:39 +00007108
7109<!-- _______________________________________________________________________ -->
7110<div class="doc_subsubsection">
7111 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
7112 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
7113 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
7114 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
Mon P Wang28873102008-06-25 08:15:39 +00007115</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007116
Mon P Wang28873102008-06-25 08:15:39 +00007117<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007118
Mon P Wang28873102008-06-25 08:15:39 +00007119<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007120<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
7121 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
7122 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
7123 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00007124
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007125<pre>
7126 declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7127 declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7128 declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7129 declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007130</pre>
7131
7132<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007133 declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7134 declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7135 declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7136 declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007137</pre>
7138
7139<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007140 declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7141 declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7142 declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7143 declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007144</pre>
7145
7146<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007147 declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7148 declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7149 declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7150 declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007151</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007152
Mon P Wang28873102008-06-25 08:15:39 +00007153<h5>Overview:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00007154<p>These intrinsics takes the signed or unsigned minimum or maximum of
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007155 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7156 original value at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00007157
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007158<h5>Arguments:</h5>
7159<p>These intrinsics take two arguments, the first a pointer to an integer value
7160 and the second an integer value. The result is also an integer value. These
7161 integer types can have any bit width, but they must all have the same bit
7162 width. The targets may only lower integer representations they support.</p>
7163
Mon P Wang28873102008-06-25 08:15:39 +00007164<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007165<p>These intrinsics does a series of operations atomically. They first load the
7166 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
7167 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
7168 yield the original value stored at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00007169
7170<h5>Examples:</h5>
7171<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00007172%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7173%ptr = bitcast i8* %mallocP to i32*
7174 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00007175%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00007176 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007177%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00007178 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007179%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00007180 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007181%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00007182 <i>; yields {i32}:result3 = 8</i>
7183%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7184</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007185
Mon P Wang28873102008-06-25 08:15:39 +00007186</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007187
Nick Lewyckycc271862009-10-13 07:03:23 +00007188
7189<!-- ======================================================================= -->
7190<div class="doc_subsection">
7191 <a name="int_memorymarkers">Memory Use Markers</a>
7192</div>
7193
7194<div class="doc_text">
7195
7196<p>This class of intrinsics exists to information about the lifetime of memory
7197 objects and ranges where variables are immutable.</p>
7198
7199</div>
7200
7201<!-- _______________________________________________________________________ -->
7202<div class="doc_subsubsection">
7203 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
7204</div>
7205
7206<div class="doc_text">
7207
7208<h5>Syntax:</h5>
7209<pre>
7210 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7211</pre>
7212
7213<h5>Overview:</h5>
7214<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7215 object's lifetime.</p>
7216
7217<h5>Arguments:</h5>
Nick Lewycky321333e2009-10-13 07:57:33 +00007218<p>The first argument is a constant integer representing the size of the
7219 object, or -1 if it is variable sized. The second argument is a pointer to
7220 the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00007221
7222<h5>Semantics:</h5>
7223<p>This intrinsic indicates that before this point in the code, the value of the
7224 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewycky8d336592009-10-27 16:56:58 +00007225 never be used and has an undefined value. A load from the pointer that
7226 precedes this intrinsic can be replaced with
Nick Lewyckycc271862009-10-13 07:03:23 +00007227 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7228
7229</div>
7230
7231<!-- _______________________________________________________________________ -->
7232<div class="doc_subsubsection">
7233 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
7234</div>
7235
7236<div class="doc_text">
7237
7238<h5>Syntax:</h5>
7239<pre>
7240 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7241</pre>
7242
7243<h5>Overview:</h5>
7244<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7245 object's lifetime.</p>
7246
7247<h5>Arguments:</h5>
Nick Lewycky321333e2009-10-13 07:57:33 +00007248<p>The first argument is a constant integer representing the size of the
7249 object, or -1 if it is variable sized. The second argument is a pointer to
7250 the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00007251
7252<h5>Semantics:</h5>
7253<p>This intrinsic indicates that after this point in the code, the value of the
7254 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7255 never be used and has an undefined value. Any stores into the memory object
7256 following this intrinsic may be removed as dead.
7257
7258</div>
7259
7260<!-- _______________________________________________________________________ -->
7261<div class="doc_subsubsection">
7262 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
7263</div>
7264
7265<div class="doc_text">
7266
7267<h5>Syntax:</h5>
7268<pre>
7269 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;) readonly
7270</pre>
7271
7272<h5>Overview:</h5>
7273<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7274 a memory object will not change.</p>
7275
7276<h5>Arguments:</h5>
Nick Lewycky321333e2009-10-13 07:57:33 +00007277<p>The first argument is a constant integer representing the size of the
7278 object, or -1 if it is variable sized. The second argument is a pointer to
7279 the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00007280
7281<h5>Semantics:</h5>
7282<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7283 the return value, the referenced memory location is constant and
7284 unchanging.</p>
7285
7286</div>
7287
7288<!-- _______________________________________________________________________ -->
7289<div class="doc_subsubsection">
7290 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
7291</div>
7292
7293<div class="doc_text">
7294
7295<h5>Syntax:</h5>
7296<pre>
7297 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7298</pre>
7299
7300<h5>Overview:</h5>
7301<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7302 a memory object are mutable.</p>
7303
7304<h5>Arguments:</h5>
7305<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky321333e2009-10-13 07:57:33 +00007306 The second argument is a constant integer representing the size of the
7307 object, or -1 if it is variable sized and the third argument is a pointer
7308 to the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00007309
7310<h5>Semantics:</h5>
7311<p>This intrinsic indicates that the memory is mutable again.</p>
7312
7313</div>
7314
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007315<!-- ======================================================================= -->
7316<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00007317 <a name="int_general">General Intrinsics</a>
7318</div>
7319
7320<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007321
7322<p>This class of intrinsics is designed to be generic and has no specific
7323 purpose.</p>
7324
Tanya Lattner6d806e92007-06-15 20:50:54 +00007325</div>
7326
7327<!-- _______________________________________________________________________ -->
7328<div class="doc_subsubsection">
7329 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7330</div>
7331
7332<div class="doc_text">
7333
7334<h5>Syntax:</h5>
7335<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00007336 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00007337</pre>
7338
7339<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007340<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007341
7342<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007343<p>The first argument is a pointer to a value, the second is a pointer to a
7344 global string, the third is a pointer to a global string which is the source
7345 file name, and the last argument is the line number.</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007346
7347<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007348<p>This intrinsic allows annotation of local variables with arbitrary strings.
7349 This can be useful for special purpose optimizations that want to look for
7350 these annotations. These have no other defined use, they are ignored by code
7351 generation and optimization.</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007352
Tanya Lattner6d806e92007-06-15 20:50:54 +00007353</div>
7354
Tanya Lattnerb6367882007-09-21 22:59:12 +00007355<!-- _______________________________________________________________________ -->
7356<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00007357 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007358</div>
7359
7360<div class="doc_text">
7361
7362<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007363<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7364 any integer bit width.</p>
7365
Tanya Lattnerb6367882007-09-21 22:59:12 +00007366<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00007367 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7368 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7369 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7370 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7371 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00007372</pre>
7373
7374<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007375<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007376
7377<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007378<p>The first argument is an integer value (result of some expression), the
7379 second is a pointer to a global string, the third is a pointer to a global
7380 string which is the source file name, and the last argument is the line
7381 number. It returns the value of the first argument.</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007382
7383<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007384<p>This intrinsic allows annotations to be put on arbitrary expressions with
7385 arbitrary strings. This can be useful for special purpose optimizations that
7386 want to look for these annotations. These have no other defined use, they
7387 are ignored by code generation and optimization.</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007388
Tanya Lattnerb6367882007-09-21 22:59:12 +00007389</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007390
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007391<!-- _______________________________________________________________________ -->
7392<div class="doc_subsubsection">
7393 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7394</div>
7395
7396<div class="doc_text">
7397
7398<h5>Syntax:</h5>
7399<pre>
7400 declare void @llvm.trap()
7401</pre>
7402
7403<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007404<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007405
7406<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007407<p>None.</p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007408
7409<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007410<p>This intrinsics is lowered to the target dependent trap instruction. If the
7411 target does not have a trap instruction, this intrinsic will be lowered to
7412 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007413
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007414</div>
7415
Bill Wendling69e4adb2008-11-19 05:56:17 +00007416<!-- _______________________________________________________________________ -->
7417<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00007418 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00007419</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007420
Bill Wendling69e4adb2008-11-19 05:56:17 +00007421<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007422
Bill Wendling69e4adb2008-11-19 05:56:17 +00007423<h5>Syntax:</h5>
7424<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007425 declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
Bill Wendling69e4adb2008-11-19 05:56:17 +00007426</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007427
Bill Wendling69e4adb2008-11-19 05:56:17 +00007428<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007429<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
7430 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
7431 ensure that it is placed on the stack before local variables.</p>
7432
Bill Wendling69e4adb2008-11-19 05:56:17 +00007433<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007434<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
7435 arguments. The first argument is the value loaded from the stack
7436 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
7437 that has enough space to hold the value of the guard.</p>
7438
Bill Wendling69e4adb2008-11-19 05:56:17 +00007439<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007440<p>This intrinsic causes the prologue/epilogue inserter to force the position of
7441 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7442 stack. This is to ensure that if a local variable on the stack is
7443 overwritten, it will destroy the value of the guard. When the function exits,
7444 the guard on the stack is checked against the original guard. If they're
7445 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
7446 function.</p>
7447
Bill Wendling69e4adb2008-11-19 05:56:17 +00007448</div>
7449
Eric Christopher0e671492009-11-30 08:03:53 +00007450<!-- _______________________________________________________________________ -->
7451<div class="doc_subsubsection">
7452 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
7453</div>
7454
7455<div class="doc_text">
7456
7457<h5>Syntax:</h5>
7458<pre>
Eric Christopher8295a0a2009-12-23 00:29:49 +00007459 declare i32 @llvm.objectsize.i32( i8* &lt;object&gt;, i1 &lt;type&gt; )
7460 declare i64 @llvm.objectsize.i64( i8* &lt;object&gt;, i1 &lt;type&gt; )
Eric Christopher0e671492009-11-30 08:03:53 +00007461</pre>
7462
7463<h5>Overview:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00007464<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information
Eric Christopherd003c5b2010-01-08 21:42:39 +00007465 to the optimizers to discover at compile time either a) when an
Eric Christopher6c7e8a02009-12-05 02:46:03 +00007466 operation like memcpy will either overflow a buffer that corresponds to
7467 an object, or b) to determine that a runtime check for overflow isn't
7468 necessary. An object in this context means an allocation of a
Eric Christopher8295a0a2009-12-23 00:29:49 +00007469 specific class, structure, array, or other object.</p>
Eric Christopher0e671492009-11-30 08:03:53 +00007470
7471<h5>Arguments:</h5>
7472<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher8295a0a2009-12-23 00:29:49 +00007473 argument is a pointer to or into the <tt>object</tt>. The second argument
7474 is a boolean 0 or 1. This argument determines whether you want the
7475 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
7476 1, variables are not allowed.</p>
7477
Eric Christopher0e671492009-11-30 08:03:53 +00007478<h5>Semantics:</h5>
7479<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
Eric Christopher6c7e8a02009-12-05 02:46:03 +00007480 representing the size of the object concerned or <tt>i32/i64 -1 or 0</tt>
7481 (depending on the <tt>type</tt> argument if the size cannot be determined
7482 at compile time.</p>
Eric Christopher0e671492009-11-30 08:03:53 +00007483
7484</div>
7485
Chris Lattner00950542001-06-06 20:29:01 +00007486<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00007487<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007488<address>
7489 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007490 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007491 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007492 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007493
7494 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00007495 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007496 Last modified: $Date$
7497</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00007498
Misha Brukman9d0919f2003-11-08 01:05:38 +00007499</body>
7500</html>