blob: 916826aa462e924f5c833e03aa17bf3d041bc02a [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendling3d10a5a2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling987e7eb2009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
28 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
29 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
30 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
31 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
32 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
33 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner5a2d8752009-10-10 18:26:06 +000034 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling987e7eb2009-07-20 02:41:50 +000035 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
36 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
37 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
38 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendling3d10a5a2009-07-20 01:03:30 +000039 </ol>
40 </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000041 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000042 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000043 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000044 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000045 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000046 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000047 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000048 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000049 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000050 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman556ca272009-07-27 18:07:55 +000051 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000052 </ol>
53 </li>
Chris Lattner00950542001-06-06 20:29:01 +000054 <li><a href="#typesystem">Type System</a>
55 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000056 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000057 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000058 <ol>
Nick Lewyckyec38da42009-09-27 00:45:11 +000059 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner4f69f462008-01-04 04:32:38 +000060 <li><a href="#t_floating">Floating Point Types</a></li>
61 <li><a href="#t_void">Void Type</a></li>
62 <li><a href="#t_label">Label Type</a></li>
Nick Lewycky7a0370f2009-05-30 05:06:04 +000063 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000064 </ol>
65 </li>
Chris Lattner00950542001-06-06 20:29:01 +000066 <li><a href="#t_derived">Derived Types</a>
67 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000068 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000069 <li><a href="#t_function">Function Type</a></li>
70 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000071 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000072 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000073 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000074 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000075 </ol>
76 </li>
Chris Lattner242d61d2009-02-02 07:32:36 +000077 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000078 </ol>
79 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000080 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000081 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000082 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner70882792009-02-28 18:32:25 +000083 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000084 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
85 <li><a href="#undefvalues">Undefined Values</a></li>
Chris Lattnerc6f44362009-10-27 21:01:34 +000086 <li><a href="#blockaddress">Address of Basic Block</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000087 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky21cc4462009-04-04 07:22:01 +000088 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000089 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000090 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000091 <li><a href="#othervalues">Other Values</a>
92 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000093 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000094 </ol>
95 </li>
Chris Lattner857755c2009-07-20 05:55:19 +000096 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
97 <ol>
98 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner401e10c2009-07-20 06:14:25 +000099 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
100 Global Variable</a></li>
Chris Lattner857755c2009-07-20 05:55:19 +0000101 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
102 Global Variable</a></li>
103 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
104 Global Variable</a></li>
105 </ol>
106 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000107 <li><a href="#instref">Instruction Reference</a>
108 <ol>
109 <li><a href="#terminators">Terminator Instructions</a>
110 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000111 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
112 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000113 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerf9be95f2009-10-27 19:13:16 +0000114 <li><a href="#i_indbr">'<tt>indbr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000115 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000116 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +0000117 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000118 </ol>
119 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000120 <li><a href="#binaryops">Binary Operations</a>
121 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000122 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000123 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000124 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000125 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000126 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000127 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +0000128 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
129 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
130 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +0000131 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
132 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
133 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000134 </ol>
135 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000136 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
137 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000138 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
139 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
140 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000141 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000142 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000143 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000144 </ol>
145 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000146 <li><a href="#vectorops">Vector Operations</a>
147 <ol>
148 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
149 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
150 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000151 </ol>
152 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000153 <li><a href="#aggregateops">Aggregate Operations</a>
154 <ol>
155 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
156 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
157 </ol>
158 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000159 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000160 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000161 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000162 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
163 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
164 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000165 </ol>
166 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000167 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000168 <ol>
169 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
170 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
171 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
172 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
173 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000174 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
175 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
176 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
177 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000178 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
179 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000180 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000181 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000182 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000183 <li><a href="#otherops">Other Operations</a>
184 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000185 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
186 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000187 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000188 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000189 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000190 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000191 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000192 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000193 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000194 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000195 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000196 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000197 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
198 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000199 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
200 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
201 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000202 </ol>
203 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000204 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
205 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000206 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
207 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
208 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000209 </ol>
210 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000211 <li><a href="#int_codegen">Code Generator Intrinsics</a>
212 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000213 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
214 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
215 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
216 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
217 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
218 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
219 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000220 </ol>
221 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000222 <li><a href="#int_libc">Standard C Library Intrinsics</a>
223 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000224 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
225 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
226 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
227 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
228 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000229 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
230 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
231 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000232 </ol>
233 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000234 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000235 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000236 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000237 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
238 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
239 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000240 </ol>
241 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000242 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
243 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000244 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
245 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
246 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
247 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
248 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling41b485c2009-02-08 23:00:09 +0000249 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000250 </ol>
251 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000252 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000253 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000254 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000255 <ol>
256 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000257 </ol>
258 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000259 <li><a href="#int_atomics">Atomic intrinsics</a>
260 <ol>
261 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
262 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
263 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
264 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
265 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
266 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
267 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
268 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
269 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
270 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
271 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
272 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
273 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
274 </ol>
275 </li>
Nick Lewyckycc271862009-10-13 07:03:23 +0000276 <li><a href="#int_memorymarkers">Memory Use Markers</a>
277 <ol>
278 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
279 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
280 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
281 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
282 </ol>
283 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000284 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000285 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000286 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000287 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000288 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000289 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000290 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000291 '<tt>llvm.trap</tt>' Intrinsic</a></li>
292 <li><a href="#int_stackprotector">
293 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000294 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000295 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000296 </ol>
297 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000298</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000299
300<div class="doc_author">
301 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
302 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000303</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000304
Chris Lattner00950542001-06-06 20:29:01 +0000305<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000306<div class="doc_section"> <a name="abstract">Abstract </a></div>
307<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000308
Misha Brukman9d0919f2003-11-08 01:05:38 +0000309<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000310
311<p>This document is a reference manual for the LLVM assembly language. LLVM is
312 a Static Single Assignment (SSA) based representation that provides type
313 safety, low-level operations, flexibility, and the capability of representing
314 'all' high-level languages cleanly. It is the common code representation
315 used throughout all phases of the LLVM compilation strategy.</p>
316
Misha Brukman9d0919f2003-11-08 01:05:38 +0000317</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000318
Chris Lattner00950542001-06-06 20:29:01 +0000319<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000320<div class="doc_section"> <a name="introduction">Introduction</a> </div>
321<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000322
Misha Brukman9d0919f2003-11-08 01:05:38 +0000323<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000324
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000325<p>The LLVM code representation is designed to be used in three different forms:
326 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
327 for fast loading by a Just-In-Time compiler), and as a human readable
328 assembly language representation. This allows LLVM to provide a powerful
329 intermediate representation for efficient compiler transformations and
330 analysis, while providing a natural means to debug and visualize the
331 transformations. The three different forms of LLVM are all equivalent. This
332 document describes the human readable representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000333
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000334<p>The LLVM representation aims to be light-weight and low-level while being
335 expressive, typed, and extensible at the same time. It aims to be a
336 "universal IR" of sorts, by being at a low enough level that high-level ideas
337 may be cleanly mapped to it (similar to how microprocessors are "universal
338 IR's", allowing many source languages to be mapped to them). By providing
339 type information, LLVM can be used as the target of optimizations: for
340 example, through pointer analysis, it can be proven that a C automatic
341 variable is never accessed outside of the current function... allowing it to
342 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000343
Misha Brukman9d0919f2003-11-08 01:05:38 +0000344</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000345
Chris Lattner00950542001-06-06 20:29:01 +0000346<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000347<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000348
Misha Brukman9d0919f2003-11-08 01:05:38 +0000349<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000350
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000351<p>It is important to note that this document describes 'well formed' LLVM
352 assembly language. There is a difference between what the parser accepts and
353 what is considered 'well formed'. For example, the following instruction is
354 syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000355
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000356<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000357<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000358%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000359</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000360</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000361
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000362<p>...because the definition of <tt>%x</tt> does not dominate all of its
363 uses. The LLVM infrastructure provides a verification pass that may be used
364 to verify that an LLVM module is well formed. This pass is automatically run
365 by the parser after parsing input assembly and by the optimizer before it
366 outputs bitcode. The violations pointed out by the verifier pass indicate
367 bugs in transformation passes or input to the parser.</p>
368
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000369</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000370
Chris Lattnercc689392007-10-03 17:34:29 +0000371<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000372
Chris Lattner00950542001-06-06 20:29:01 +0000373<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000374<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000375<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000376
Misha Brukman9d0919f2003-11-08 01:05:38 +0000377<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000378
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000379<p>LLVM identifiers come in two basic types: global and local. Global
380 identifiers (functions, global variables) begin with the <tt>'@'</tt>
381 character. Local identifiers (register names, types) begin with
382 the <tt>'%'</tt> character. Additionally, there are three different formats
383 for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000384
Chris Lattner00950542001-06-06 20:29:01 +0000385<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000386 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000387 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
388 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
389 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
390 other characters in their names can be surrounded with quotes. Special
391 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
392 ASCII code for the character in hexadecimal. In this way, any character
393 can be used in a name value, even quotes themselves.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000394
Reid Spencer2c452282007-08-07 14:34:28 +0000395 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000396 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000397
Reid Spencercc16dc32004-12-09 18:02:53 +0000398 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000399 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000400</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000401
Reid Spencer2c452282007-08-07 14:34:28 +0000402<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000403 don't need to worry about name clashes with reserved words, and the set of
404 reserved words may be expanded in the future without penalty. Additionally,
405 unnamed identifiers allow a compiler to quickly come up with a temporary
406 variable without having to avoid symbol table conflicts.</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000407
Chris Lattner261efe92003-11-25 01:02:51 +0000408<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000409 languages. There are keywords for different opcodes
410 ('<tt><a href="#i_add">add</a></tt>',
411 '<tt><a href="#i_bitcast">bitcast</a></tt>',
412 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
413 ('<tt><a href="#t_void">void</a></tt>',
414 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
415 reserved words cannot conflict with variable names, because none of them
416 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000417
418<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000419 '<tt>%X</tt>' by 8:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000420
Misha Brukman9d0919f2003-11-08 01:05:38 +0000421<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000422
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000423<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000424<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000425%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000426</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000427</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000428
Misha Brukman9d0919f2003-11-08 01:05:38 +0000429<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000430
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000431<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000432<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000433%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000434</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000435</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000436
Misha Brukman9d0919f2003-11-08 01:05:38 +0000437<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000438
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000439<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000440<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000441<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
442<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
443%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000444</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000445</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000446
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000447<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
448 lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000449
Chris Lattner00950542001-06-06 20:29:01 +0000450<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000451 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000452 line.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000453
454 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000455 assigned to a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000456
Misha Brukman9d0919f2003-11-08 01:05:38 +0000457 <li>Unnamed temporaries are numbered sequentially</li>
458</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000459
John Criswelle4c57cc2005-05-12 16:52:32 +0000460<p>...and it also shows a convention that we follow in this document. When
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000461 demonstrating instructions, we will follow an instruction with a comment that
462 defines the type and name of value produced. Comments are shown in italic
463 text.</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000464
Misha Brukman9d0919f2003-11-08 01:05:38 +0000465</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000466
467<!-- *********************************************************************** -->
468<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
469<!-- *********************************************************************** -->
470
471<!-- ======================================================================= -->
472<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
473</div>
474
475<div class="doc_text">
476
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000477<p>LLVM programs are composed of "Module"s, each of which is a translation unit
478 of the input programs. Each module consists of functions, global variables,
479 and symbol table entries. Modules may be combined together with the LLVM
480 linker, which merges function (and global variable) definitions, resolves
481 forward declarations, and merges symbol table entries. Here is an example of
482 the "hello world" module:</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000483
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000484<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000485<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000486<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
487 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000488
489<i>; External declaration of the puts function</i>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000490<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000491
492<i>; Definition of main function</i>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000493define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000494 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000495 %cast210 = <a
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000496 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000497
498 <i>; Call puts function to write out the string to stdout...</i>
499 <a
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000500 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000501 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000502 href="#i_ret">ret</a> i32 0<br>}<br>
503</pre>
504</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000505
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000506<p>This example is made up of a <a href="#globalvars">global variable</a> named
507 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and
508 a <a href="#functionstructure">function definition</a> for
509 "<tt>main</tt>".</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000510
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000511<p>In general, a module is made up of a list of global values, where both
512 functions and global variables are global values. Global values are
513 represented by a pointer to a memory location (in this case, a pointer to an
514 array of char, and a pointer to a function), and have one of the
515 following <a href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000516
Chris Lattnere5d947b2004-12-09 16:36:40 +0000517</div>
518
519<!-- ======================================================================= -->
520<div class="doc_subsection">
521 <a name="linkage">Linkage Types</a>
522</div>
523
524<div class="doc_text">
525
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000526<p>All Global Variables and Functions have one of the following types of
527 linkage:</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000528
529<dl>
Rafael Espindolabb46f522009-01-15 20:18:42 +0000530 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000531 <dd>Global values with private linkage are only directly accessible by objects
532 in the current module. In particular, linking code into a module with an
533 private global value may cause the private to be renamed as necessary to
534 avoid collisions. Because the symbol is private to the module, all
535 references can be updated. This doesn't show up in any symbol table in the
536 object file.</dd>
Rafael Espindolabb46f522009-01-15 20:18:42 +0000537
Bill Wendling3d10a5a2009-07-20 01:03:30 +0000538 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt>: </dt>
Bill Wendling3d10a5a2009-07-20 01:03:30 +0000539 <dd>Similar to private, but the symbol is passed through the assembler and
Chris Lattnere1eaf912009-08-24 04:32:16 +0000540 removed by the linker after evaluation. Note that (unlike private
541 symbols) linker_private symbols are subject to coalescing by the linker:
542 weak symbols get merged and redefinitions are rejected. However, unlike
543 normal strong symbols, they are removed by the linker from the final
544 linked image (executable or dynamic library).</dd>
Bill Wendling3d10a5a2009-07-20 01:03:30 +0000545
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000546 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000547 <dd>Similar to private, but the value shows as a local symbol
548 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
549 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000550
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000551 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt>: </dt>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000552 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000553 into the object file corresponding to the LLVM module. They exist to
554 allow inlining and other optimizations to take place given knowledge of
555 the definition of the global, which is known to be somewhere outside the
556 module. Globals with <tt>available_externally</tt> linkage are allowed to
557 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
558 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000559
Chris Lattnerfa730212004-12-09 16:11:40 +0000560 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattner4887bd82007-01-14 06:51:48 +0000561 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000562 the same name when linkage occurs. This is typically used to implement
563 inline functions, templates, or other code which must be generated in each
564 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
565 allowed to be discarded.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000566
Chris Lattnerfa730212004-12-09 16:11:40 +0000567 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattner26d054d2009-08-05 05:21:07 +0000568 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
569 <tt>linkonce</tt> linkage, except that unreferenced globals with
570 <tt>weak</tt> linkage may not be discarded. This is used for globals that
571 are declared "weak" in C source code.</dd>
572
573 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
574 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
575 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
576 global scope.
577 Symbols with "<tt>common</tt>" linkage are merged in the same way as
578 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattnercd81f5d2009-08-05 05:41:44 +0000579 <tt>common</tt> symbols may not have an explicit section,
580 must have a zero initializer, and may not be marked '<a
581 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
582 have common linkage.</dd>
Chris Lattner26d054d2009-08-05 05:21:07 +0000583
Chris Lattnere5d947b2004-12-09 16:36:40 +0000584
Chris Lattnerfa730212004-12-09 16:11:40 +0000585 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000586 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000587 pointer to array type. When two global variables with appending linkage
588 are linked together, the two global arrays are appended together. This is
589 the LLVM, typesafe, equivalent of having the system linker append together
590 "sections" with identical names when .o files are linked.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000591
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000592 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000593 <dd>The semantics of this linkage follow the ELF object file model: the symbol
594 is weak until linked, if not linked, the symbol becomes null instead of
595 being an undefined reference.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000596
Chris Lattner5a2d8752009-10-10 18:26:06 +0000597 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt>: </dt>
598 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt>: </dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000599 <dd>Some languages allow differing globals to be merged, such as two functions
600 with different semantics. Other languages, such as <tt>C++</tt>, ensure
601 that only equivalent globals are ever merged (the "one definition rule" -
602 "ODR"). Such languages can use the <tt>linkonce_odr</tt>
603 and <tt>weak_odr</tt> linkage types to indicate that the global will only
604 be merged with equivalent globals. These linkage types are otherwise the
605 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands667d4b82009-03-07 15:45:40 +0000606
Chris Lattnerfa730212004-12-09 16:11:40 +0000607 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000608 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000609 visible, meaning that it participates in linkage and can be used to
610 resolve external symbol references.</dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000611</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000612
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000613<p>The next two types of linkage are targeted for Microsoft Windows platform
614 only. They are designed to support importing (exporting) symbols from (to)
615 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000616
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000617<dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000618 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000619 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000620 or variable via a global pointer to a pointer that is set up by the DLL
621 exporting the symbol. On Microsoft Windows targets, the pointer name is
622 formed by combining <code>__imp_</code> and the function or variable
623 name.</dd>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000624
625 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000626 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000627 pointer to a pointer in a DLL, so that it can be referenced with the
628 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
629 name is formed by combining <code>__imp_</code> and the function or
630 variable name.</dd>
Chris Lattnerfa730212004-12-09 16:11:40 +0000631</dl>
632
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000633<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
634 another module defined a "<tt>.LC0</tt>" variable and was linked with this
635 one, one of the two would be renamed, preventing a collision. Since
636 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
637 declarations), they are accessible outside of the current module.</p>
638
639<p>It is illegal for a function <i>declaration</i> to have any linkage type
640 other than "externally visible", <tt>dllimport</tt>
641 or <tt>extern_weak</tt>.</p>
642
Duncan Sands667d4b82009-03-07 15:45:40 +0000643<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000644 or <tt>weak_odr</tt> linkages.</p>
645
Chris Lattnerfa730212004-12-09 16:11:40 +0000646</div>
647
648<!-- ======================================================================= -->
649<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000650 <a name="callingconv">Calling Conventions</a>
651</div>
652
653<div class="doc_text">
654
655<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000656 and <a href="#i_invoke">invokes</a> can all have an optional calling
657 convention specified for the call. The calling convention of any pair of
658 dynamic caller/callee must match, or the behavior of the program is
659 undefined. The following calling conventions are supported by LLVM, and more
660 may be added in the future:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000661
662<dl>
663 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000664 <dd>This calling convention (the default if no other calling convention is
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000665 specified) matches the target C calling conventions. This calling
666 convention supports varargs function calls and tolerates some mismatch in
667 the declared prototype and implemented declaration of the function (as
668 does normal C).</dd>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000669
670 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000671 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000672 (e.g. by passing things in registers). This calling convention allows the
673 target to use whatever tricks it wants to produce fast code for the
674 target, without having to conform to an externally specified ABI
675 (Application Binary Interface). Implementations of this convention should
676 allow arbitrary <a href="CodeGenerator.html#tailcallopt">tail call
677 optimization</a> to be supported. This calling convention does not
678 support varargs and requires the prototype of all callees to exactly match
679 the prototype of the function definition.</dd>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000680
681 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000682 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000683 as possible under the assumption that the call is not commonly executed.
684 As such, these calls often preserve all registers so that the call does
685 not break any live ranges in the caller side. This calling convention
686 does not support varargs and requires the prototype of all callees to
687 exactly match the prototype of the function definition.</dd>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000688
Chris Lattnercfe6b372005-05-07 01:46:40 +0000689 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000690 <dd>Any calling convention may be specified by number, allowing
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000691 target-specific calling conventions to be used. Target specific calling
692 conventions start at 64.</dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000693</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000694
695<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000696 support Pascal conventions or any other well-known target-independent
697 convention.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000698
699</div>
700
701<!-- ======================================================================= -->
702<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000703 <a name="visibility">Visibility Styles</a>
704</div>
705
706<div class="doc_text">
707
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000708<p>All Global Variables and Functions have one of the following visibility
709 styles:</p>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000710
711<dl>
712 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000713 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000714 that the declaration is visible to other modules and, in shared libraries,
715 means that the declared entity may be overridden. On Darwin, default
716 visibility means that the declaration is visible to other modules. Default
717 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000718
719 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000720 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000721 object if they are in the same shared object. Usually, hidden visibility
722 indicates that the symbol will not be placed into the dynamic symbol
723 table, so no other module (executable or shared library) can reference it
724 directly.</dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000725
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000726 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000727 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000728 the dynamic symbol table, but that references within the defining module
729 will bind to the local symbol. That is, the symbol cannot be overridden by
730 another module.</dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000731</dl>
732
733</div>
734
735<!-- ======================================================================= -->
736<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000737 <a name="namedtypes">Named Types</a>
738</div>
739
740<div class="doc_text">
741
742<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000743 it easier to read the IR and make the IR more condensed (particularly when
744 recursive types are involved). An example of a name specification is:</p>
Chris Lattnere7886e42009-01-11 20:53:49 +0000745
746<div class="doc_code">
747<pre>
748%mytype = type { %mytype*, i32 }
749</pre>
750</div>
751
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000752<p>You may give a name to any <a href="#typesystem">type</a> except
753 "<a href="t_void">void</a>". Type name aliases may be used anywhere a type
754 is expected with the syntax "%mytype".</p>
Chris Lattnere7886e42009-01-11 20:53:49 +0000755
756<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000757 and that you can therefore specify multiple names for the same type. This
758 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
759 uses structural typing, the name is not part of the type. When printing out
760 LLVM IR, the printer will pick <em>one name</em> to render all types of a
761 particular shape. This means that if you have code where two different
762 source types end up having the same LLVM type, that the dumper will sometimes
763 print the "wrong" or unexpected type. This is an important design point and
764 isn't going to change.</p>
Chris Lattnere7886e42009-01-11 20:53:49 +0000765
766</div>
767
Chris Lattnere7886e42009-01-11 20:53:49 +0000768<!-- ======================================================================= -->
769<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000770 <a name="globalvars">Global Variables</a>
771</div>
772
773<div class="doc_text">
774
Chris Lattner3689a342005-02-12 19:30:21 +0000775<p>Global variables define regions of memory allocated at compilation time
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000776 instead of run-time. Global variables may optionally be initialized, may
777 have an explicit section to be placed in, and may have an optional explicit
778 alignment specified. A variable may be defined as "thread_local", which
779 means that it will not be shared by threads (each thread will have a
780 separated copy of the variable). A variable may be defined as a global
781 "constant," which indicates that the contents of the variable
782 will <b>never</b> be modified (enabling better optimization, allowing the
783 global data to be placed in the read-only section of an executable, etc).
784 Note that variables that need runtime initialization cannot be marked
785 "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000786
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000787<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
788 constant, even if the final definition of the global is not. This capability
789 can be used to enable slightly better optimization of the program, but
790 requires the language definition to guarantee that optimizations based on the
791 'constantness' are valid for the translation units that do not include the
792 definition.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000793
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000794<p>As SSA values, global variables define pointer values that are in scope
795 (i.e. they dominate) all basic blocks in the program. Global variables
796 always define a pointer to their "content" type because they describe a
797 region of memory, and all memory objects in LLVM are accessed through
798 pointers.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000799
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000800<p>A global variable may be declared to reside in a target-specific numbered
801 address space. For targets that support them, address spaces may affect how
802 optimizations are performed and/or what target instructions are used to
803 access the variable. The default address space is zero. The address space
804 qualifier must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000805
Chris Lattner88f6c462005-11-12 00:45:07 +0000806<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000807 supports it, it will emit globals to the section specified.</p>
Chris Lattner88f6c462005-11-12 00:45:07 +0000808
Chris Lattner2cbdc452005-11-06 08:02:57 +0000809<p>An explicit alignment may be specified for a global. If not present, or if
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000810 the alignment is set to zero, the alignment of the global is set by the
811 target to whatever it feels convenient. If an explicit alignment is
812 specified, the global is forced to have at least that much alignment. All
813 alignments must be a power of 2.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +0000814
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000815<p>For example, the following defines a global in a numbered address space with
816 an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000817
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000818<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000819<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000820@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000821</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000822</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000823
Chris Lattnerfa730212004-12-09 16:11:40 +0000824</div>
825
826
827<!-- ======================================================================= -->
828<div class="doc_subsection">
829 <a name="functionstructure">Functions</a>
830</div>
831
832<div class="doc_text">
833
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000834<p>LLVM function definitions consist of the "<tt>define</tt>" keyord, an
835 optional <a href="#linkage">linkage type</a>, an optional
836 <a href="#visibility">visibility style</a>, an optional
837 <a href="#callingconv">calling convention</a>, a return type, an optional
838 <a href="#paramattrs">parameter attribute</a> for the return type, a function
839 name, a (possibly empty) argument list (each with optional
840 <a href="#paramattrs">parameter attributes</a>), optional
841 <a href="#fnattrs">function attributes</a>, an optional section, an optional
842 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
843 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000844
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000845<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
846 optional <a href="#linkage">linkage type</a>, an optional
847 <a href="#visibility">visibility style</a>, an optional
848 <a href="#callingconv">calling convention</a>, a return type, an optional
849 <a href="#paramattrs">parameter attribute</a> for the return type, a function
850 name, a possibly empty list of arguments, an optional alignment, and an
851 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000852
Chris Lattnerd3eda892008-08-05 18:29:16 +0000853<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000854 (Control Flow Graph) for the function. Each basic block may optionally start
855 with a label (giving the basic block a symbol table entry), contains a list
856 of instructions, and ends with a <a href="#terminators">terminator</a>
857 instruction (such as a branch or function return).</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000858
Chris Lattner4a3c9012007-06-08 16:52:14 +0000859<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000860 executed on entrance to the function, and it is not allowed to have
861 predecessor basic blocks (i.e. there can not be any branches to the entry
862 block of a function). Because the block can have no predecessors, it also
863 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000864
Chris Lattner88f6c462005-11-12 00:45:07 +0000865<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000866 supports it, it will emit functions to the section specified.</p>
Chris Lattner88f6c462005-11-12 00:45:07 +0000867
Chris Lattner2cbdc452005-11-06 08:02:57 +0000868<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000869 the alignment is set to zero, the alignment of the function is set by the
870 target to whatever it feels convenient. If an explicit alignment is
871 specified, the function is forced to have at least that much alignment. All
872 alignments must be a power of 2.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +0000873
Bill Wendlingc39e3e02009-07-20 02:39:26 +0000874<h5>Syntax:</h5>
Devang Patel307e8ab2008-10-07 17:48:33 +0000875<div class="doc_code">
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000876<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +0000877define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000878 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
879 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
880 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
881 [<a href="#gc">gc</a>] { ... }
882</pre>
Devang Patel307e8ab2008-10-07 17:48:33 +0000883</div>
884
Chris Lattnerfa730212004-12-09 16:11:40 +0000885</div>
886
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000887<!-- ======================================================================= -->
888<div class="doc_subsection">
889 <a name="aliasstructure">Aliases</a>
890</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000891
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000892<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000893
894<p>Aliases act as "second name" for the aliasee value (which can be either
895 function, global variable, another alias or bitcast of global value). Aliases
896 may have an optional <a href="#linkage">linkage type</a>, and an
897 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000898
Bill Wendlingc39e3e02009-07-20 02:39:26 +0000899<h5>Syntax:</h5>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000900<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000901<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000902@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000903</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000904</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000905
906</div>
907
Chris Lattner4e9aba72006-01-23 23:23:47 +0000908<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000909<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
Reid Spencerca86e162006-12-31 07:07:53 +0000910
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000911<div class="doc_text">
912
913<p>The return type and each parameter of a function type may have a set of
914 <i>parameter attributes</i> associated with them. Parameter attributes are
915 used to communicate additional information about the result or parameters of
916 a function. Parameter attributes are considered to be part of the function,
917 not of the function type, so functions with different parameter attributes
918 can have the same function type.</p>
919
920<p>Parameter attributes are simple keywords that follow the type specified. If
921 multiple parameter attributes are needed, they are space separated. For
922 example:</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000923
924<div class="doc_code">
925<pre>
Nick Lewyckyb6a7d252009-02-15 23:06:14 +0000926declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000927declare i32 @atoi(i8 zeroext)
928declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000929</pre>
930</div>
931
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000932<p>Note that any attributes for the function result (<tt>nounwind</tt>,
933 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000934
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000935<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner47507de2008-01-11 06:20:47 +0000936
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000937<dl>
938 <dt><tt>zeroext</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000939 <dd>This indicates to the code generator that the parameter or return value
940 should be zero-extended to a 32-bit value by the caller (for a parameter)
941 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000942
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000943 <dt><tt>signext</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000944 <dd>This indicates to the code generator that the parameter or return value
945 should be sign-extended to a 32-bit value by the caller (for a parameter)
946 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000947
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000948 <dt><tt>inreg</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000949 <dd>This indicates that this parameter or return value should be treated in a
950 special target-dependent fashion during while emitting code for a function
951 call or return (usually, by putting it in a register as opposed to memory,
952 though some targets use it to distinguish between two different kinds of
953 registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000954
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000955 <dt><tt><a name="byval">byval</a></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000956 <dd>This indicates that the pointer parameter should really be passed by value
957 to the function. The attribute implies that a hidden copy of the pointee
958 is made between the caller and the callee, so the callee is unable to
959 modify the value in the callee. This attribute is only valid on LLVM
960 pointer arguments. It is generally used to pass structs and arrays by
961 value, but is also valid on pointers to scalars. The copy is considered
962 to belong to the caller not the callee (for example,
963 <tt><a href="#readonly">readonly</a></tt> functions should not write to
964 <tt>byval</tt> parameters). This is not a valid attribute for return
965 values. The byval attribute also supports specifying an alignment with
966 the align attribute. This has a target-specific effect on the code
967 generator that usually indicates a desired alignment for the synthesized
968 stack slot.</dd>
969
970 <dt><tt>sret</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000971 <dd>This indicates that the pointer parameter specifies the address of a
972 structure that is the return value of the function in the source program.
973 This pointer must be guaranteed by the caller to be valid: loads and
974 stores to the structure may be assumed by the callee to not to trap. This
975 may only be applied to the first parameter. This is not a valid attribute
976 for return values. </dd>
977
978 <dt><tt>noalias</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000979 <dd>This indicates that the pointer does not alias any global or any other
980 parameter. The caller is responsible for ensuring that this is the
981 case. On a function return value, <tt>noalias</tt> additionally indicates
982 that the pointer does not alias any other pointers visible to the
983 caller. For further details, please see the discussion of the NoAlias
984 response in
985 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
986 analysis</a>.</dd>
987
988 <dt><tt>nocapture</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000989 <dd>This indicates that the callee does not make any copies of the pointer
990 that outlive the callee itself. This is not a valid attribute for return
991 values.</dd>
992
993 <dt><tt>nest</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000994 <dd>This indicates that the pointer parameter can be excised using the
995 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
996 attribute for return values.</dd>
997</dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000998
Reid Spencerca86e162006-12-31 07:07:53 +0000999</div>
1000
1001<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +00001002<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001003 <a name="gc">Garbage Collector Names</a>
1004</div>
1005
1006<div class="doc_text">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001007
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001008<p>Each function may specify a garbage collector name, which is simply a
1009 string:</p>
1010
1011<div class="doc_code">
1012<pre>
1013define void @f() gc "name" { ...
1014</pre>
1015</div>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001016
1017<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001018 collector which will cause the compiler to alter its output in order to
1019 support the named garbage collection algorithm.</p>
1020
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001021</div>
1022
1023<!-- ======================================================================= -->
1024<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001025 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +00001026</div>
1027
1028<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001029
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001030<p>Function attributes are set to communicate additional information about a
1031 function. Function attributes are considered to be part of the function, not
1032 of the function type, so functions with different parameter attributes can
1033 have the same function type.</p>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001034
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001035<p>Function attributes are simple keywords that follow the type specified. If
1036 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001037
1038<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001039<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001040define void @f() noinline { ... }
1041define void @f() alwaysinline { ... }
1042define void @f() alwaysinline optsize { ... }
1043define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001044</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001045</div>
1046
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001047<dl>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001048 <dt><tt>alwaysinline</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001049 <dd>This attribute indicates that the inliner should attempt to inline this
1050 function into callers whenever possible, ignoring any active inlining size
1051 threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001052
Dale Johannesende86d472009-08-26 01:08:21 +00001053 <dt><tt>inlinehint</tt></dt>
1054 <dd>This attribute indicates that the source code contained a hint that inlining
1055 this function is desirable (such as the "inline" keyword in C/C++). It
1056 is just a hint; it imposes no requirements on the inliner.</dd>
1057
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001058 <dt><tt>noinline</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001059 <dd>This attribute indicates that the inliner should never inline this
1060 function in any situation. This attribute may not be used together with
1061 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001062
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001063 <dt><tt>optsize</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001064 <dd>This attribute suggests that optimization passes and code generator passes
1065 make choices that keep the code size of this function low, and otherwise
1066 do optimizations specifically to reduce code size.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001067
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001068 <dt><tt>noreturn</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001069 <dd>This function attribute indicates that the function never returns
1070 normally. This produces undefined behavior at runtime if the function
1071 ever does dynamically return.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001072
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001073 <dt><tt>nounwind</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001074 <dd>This function attribute indicates that the function never returns with an
1075 unwind or exceptional control flow. If the function does unwind, its
1076 runtime behavior is undefined.</dd>
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001077
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001078 <dt><tt>readnone</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001079 <dd>This attribute indicates that the function computes its result (or decides
1080 to unwind an exception) based strictly on its arguments, without
1081 dereferencing any pointer arguments or otherwise accessing any mutable
1082 state (e.g. memory, control registers, etc) visible to caller functions.
1083 It does not write through any pointer arguments
1084 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1085 changes any state visible to callers. This means that it cannot unwind
1086 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1087 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel5d96fda2009-06-12 19:45:19 +00001088
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001089 <dt><tt><a name="readonly">readonly</a></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001090 <dd>This attribute indicates that the function does not write through any
1091 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1092 arguments) or otherwise modify any state (e.g. memory, control registers,
1093 etc) visible to caller functions. It may dereference pointer arguments
1094 and read state that may be set in the caller. A readonly function always
1095 returns the same value (or unwinds an exception identically) when called
1096 with the same set of arguments and global state. It cannot unwind an
1097 exception by calling the <tt>C++</tt> exception throwing methods, but may
1098 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc5ec8a72009-07-17 18:07:26 +00001099
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001100 <dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001101 <dd>This attribute indicates that the function should emit a stack smashing
1102 protector. It is in the form of a "canary"&mdash;a random value placed on
1103 the stack before the local variables that's checked upon return from the
1104 function to see if it has been overwritten. A heuristic is used to
1105 determine if a function needs stack protectors or not.<br>
1106<br>
1107 If a function that has an <tt>ssp</tt> attribute is inlined into a
1108 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1109 function will have an <tt>ssp</tt> attribute.</dd>
1110
1111 <dt><tt>sspreq</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001112 <dd>This attribute indicates that the function should <em>always</em> emit a
1113 stack smashing protector. This overrides
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001114 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1115<br>
1116 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1117 function that doesn't have an <tt>sspreq</tt> attribute or which has
1118 an <tt>ssp</tt> attribute, then the resulting function will have
1119 an <tt>sspreq</tt> attribute.</dd>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001120
1121 <dt><tt>noredzone</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001122 <dd>This attribute indicates that the code generator should not use a red
1123 zone, even if the target-specific ABI normally permits it.</dd>
1124
1125 <dt><tt>noimplicitfloat</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001126 <dd>This attributes disables implicit floating point instructions.</dd>
1127
1128 <dt><tt>naked</tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001129 <dd>This attribute disables prologue / epilogue emission for the function.
1130 This can have very system-specific consequences.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001131</dl>
1132
Devang Patelf8b94812008-09-04 23:05:13 +00001133</div>
1134
1135<!-- ======================================================================= -->
1136<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001137 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001138</div>
1139
1140<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001141
1142<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1143 the GCC "file scope inline asm" blocks. These blocks are internally
1144 concatenated by LLVM and treated as a single unit, but may be separated in
1145 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001146
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001147<div class="doc_code">
1148<pre>
1149module asm "inline asm code goes here"
1150module asm "more can go here"
1151</pre>
1152</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001153
1154<p>The strings can contain any character by escaping non-printable characters.
1155 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001156 for the number.</p>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001157
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001158<p>The inline asm code is simply printed to the machine code .s file when
1159 assembly code is generated.</p>
1160
Chris Lattner4e9aba72006-01-23 23:23:47 +00001161</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001162
Reid Spencerde151942007-02-19 23:54:10 +00001163<!-- ======================================================================= -->
1164<div class="doc_subsection">
1165 <a name="datalayout">Data Layout</a>
1166</div>
1167
1168<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001169
Reid Spencerde151942007-02-19 23:54:10 +00001170<p>A module may specify a target specific data layout string that specifies how
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001171 data is to be laid out in memory. The syntax for the data layout is
1172 simply:</p>
1173
1174<div class="doc_code">
1175<pre>
1176target datalayout = "<i>layout specification</i>"
1177</pre>
1178</div>
1179
1180<p>The <i>layout specification</i> consists of a list of specifications
1181 separated by the minus sign character ('-'). Each specification starts with
1182 a letter and may include other information after the letter to define some
1183 aspect of the data layout. The specifications accepted are as follows:</p>
1184
Reid Spencerde151942007-02-19 23:54:10 +00001185<dl>
1186 <dt><tt>E</tt></dt>
1187 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001188 bits with the most significance have the lowest address location.</dd>
1189
Reid Spencerde151942007-02-19 23:54:10 +00001190 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001191 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001192 the bits with the least significance have the lowest address
1193 location.</dd>
1194
Reid Spencerde151942007-02-19 23:54:10 +00001195 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1196 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001197 <i>preferred</i> alignments. All sizes are in bits. Specifying
1198 the <i>pref</i> alignment is optional. If omitted, the
1199 preceding <tt>:</tt> should be omitted too.</dd>
1200
Reid Spencerde151942007-02-19 23:54:10 +00001201 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1202 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001203 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1204
Reid Spencerde151942007-02-19 23:54:10 +00001205 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1206 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001207 <i>size</i>.</dd>
1208
Reid Spencerde151942007-02-19 23:54:10 +00001209 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1210 <dd>This specifies the alignment for a floating point type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001211 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1212 (double).</dd>
1213
Reid Spencerde151942007-02-19 23:54:10 +00001214 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1215 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001216 <i>size</i>.</dd>
1217
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001218 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1219 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001220 <i>size</i>.</dd>
Reid Spencerde151942007-02-19 23:54:10 +00001221</dl>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001222
Reid Spencerde151942007-02-19 23:54:10 +00001223<p>When constructing the data layout for a given target, LLVM starts with a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001224 default set of specifications which are then (possibly) overriden by the
1225 specifications in the <tt>datalayout</tt> keyword. The default specifications
1226 are given in this list:</p>
1227
Reid Spencerde151942007-02-19 23:54:10 +00001228<ul>
1229 <li><tt>E</tt> - big endian</li>
1230 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1231 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1232 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1233 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1234 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001235 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001236 alignment of 64-bits</li>
1237 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1238 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1239 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1240 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1241 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001242 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencerde151942007-02-19 23:54:10 +00001243</ul>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001244
1245<p>When LLVM is determining the alignment for a given type, it uses the
1246 following rules:</p>
1247
Reid Spencerde151942007-02-19 23:54:10 +00001248<ol>
1249 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001250 specification is used.</li>
1251
Reid Spencerde151942007-02-19 23:54:10 +00001252 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001253 smallest integer type that is larger than the bitwidth of the sought type
1254 is used. If none of the specifications are larger than the bitwidth then
1255 the the largest integer type is used. For example, given the default
1256 specifications above, the i7 type will use the alignment of i8 (next
1257 largest) while both i65 and i256 will use the alignment of i64 (largest
1258 specified).</li>
1259
Reid Spencerde151942007-02-19 23:54:10 +00001260 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001261 largest vector type that is smaller than the sought vector type will be
1262 used as a fall back. This happens because &lt;128 x double&gt; can be
1263 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001264</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001265
Reid Spencerde151942007-02-19 23:54:10 +00001266</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001267
Dan Gohman556ca272009-07-27 18:07:55 +00001268<!-- ======================================================================= -->
1269<div class="doc_subsection">
1270 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1271</div>
1272
1273<div class="doc_text">
1274
Andreas Bolka55e459a2009-07-29 00:02:05 +00001275<p>Any memory access must be done through a pointer value associated
Andreas Bolka99a82052009-07-27 20:37:10 +00001276with an address range of the memory access, otherwise the behavior
Dan Gohman556ca272009-07-27 18:07:55 +00001277is undefined. Pointer values are associated with address ranges
1278according to the following rules:</p>
1279
1280<ul>
Andreas Bolka55e459a2009-07-29 00:02:05 +00001281 <li>A pointer value formed from a
1282 <tt><a href="#i_getelementptr">getelementptr</a></tt> instruction
1283 is associated with the addresses associated with the first operand
1284 of the <tt>getelementptr</tt>.</li>
1285 <li>An address of a global variable is associated with the address
Dan Gohman556ca272009-07-27 18:07:55 +00001286 range of the variable's storage.</li>
1287 <li>The result value of an allocation instruction is associated with
1288 the address range of the allocated storage.</li>
1289 <li>A null pointer in the default address-space is associated with
Andreas Bolka55e459a2009-07-29 00:02:05 +00001290 no address.</li>
1291 <li>A pointer value formed by an
1292 <tt><a href="#i_inttoptr">inttoptr</a></tt> is associated with all
1293 address ranges of all pointer values that contribute (directly or
1294 indirectly) to the computation of the pointer's value.</li>
1295 <li>The result value of a
1296 <tt><a href="#i_bitcast">bitcast</a></tt> is associated with all
Dan Gohman556ca272009-07-27 18:07:55 +00001297 addresses associated with the operand of the <tt>bitcast</tt>.</li>
1298 <li>An integer constant other than zero or a pointer value returned
1299 from a function not defined within LLVM may be associated with address
1300 ranges allocated through mechanisms other than those provided by
Andreas Bolka55e459a2009-07-29 00:02:05 +00001301 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman556ca272009-07-27 18:07:55 +00001302 allocated by mechanisms provided by LLVM.</li>
1303 </ul>
1304
1305<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka55e459a2009-07-29 00:02:05 +00001306<tt><a href="#i_load">load</a></tt> merely indicates the size and
1307alignment of the memory from which to load, as well as the
1308interpretation of the value. The first operand of a
1309<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1310and alignment of the store.</p>
Dan Gohman556ca272009-07-27 18:07:55 +00001311
1312<p>Consequently, type-based alias analysis, aka TBAA, aka
1313<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1314LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1315additional information which specialized optimization passes may use
1316to implement type-based alias analysis.</p>
1317
1318</div>
1319
Chris Lattner00950542001-06-06 20:29:01 +00001320<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001321<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1322<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001323
Misha Brukman9d0919f2003-11-08 01:05:38 +00001324<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001325
Misha Brukman9d0919f2003-11-08 01:05:38 +00001326<p>The LLVM type system is one of the most important features of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001327 intermediate representation. Being typed enables a number of optimizations
1328 to be performed on the intermediate representation directly, without having
1329 to do extra analyses on the side before the transformation. A strong type
1330 system makes it easier to read the generated code and enables novel analyses
1331 and transformations that are not feasible to perform on normal three address
1332 code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001333
1334</div>
1335
Chris Lattner00950542001-06-06 20:29:01 +00001336<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001337<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001338Classifications</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001339
Misha Brukman9d0919f2003-11-08 01:05:38 +00001340<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001341
1342<p>The types fall into a few useful classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001343
1344<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001345 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001346 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001347 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001348 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001349 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001350 </tr>
1351 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001352 <td><a href="#t_floating">floating point</a></td>
1353 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001354 </tr>
1355 <tr>
1356 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001357 <td><a href="#t_integer">integer</a>,
1358 <a href="#t_floating">floating point</a>,
1359 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001360 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001361 <a href="#t_struct">structure</a>,
1362 <a href="#t_array">array</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001363 <a href="#t_label">label</a>,
1364 <a href="#t_metadata">metadata</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001365 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001366 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001367 <tr>
1368 <td><a href="#t_primitive">primitive</a></td>
1369 <td><a href="#t_label">label</a>,
1370 <a href="#t_void">void</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001371 <a href="#t_floating">floating point</a>,
1372 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001373 </tr>
1374 <tr>
1375 <td><a href="#t_derived">derived</a></td>
1376 <td><a href="#t_integer">integer</a>,
1377 <a href="#t_array">array</a>,
1378 <a href="#t_function">function</a>,
1379 <a href="#t_pointer">pointer</a>,
1380 <a href="#t_struct">structure</a>,
1381 <a href="#t_pstruct">packed structure</a>,
1382 <a href="#t_vector">vector</a>,
1383 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001384 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001385 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001386 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001387</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001388
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001389<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1390 important. Values of these types are the only ones which can be produced by
Nick Lewyckyec38da42009-09-27 00:45:11 +00001391 instructions.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001392
Misha Brukman9d0919f2003-11-08 01:05:38 +00001393</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001394
Chris Lattner00950542001-06-06 20:29:01 +00001395<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001396<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001397
Chris Lattner4f69f462008-01-04 04:32:38 +00001398<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001399
Chris Lattner4f69f462008-01-04 04:32:38 +00001400<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001401 system.</p>
Chris Lattner4f69f462008-01-04 04:32:38 +00001402
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001403</div>
1404
Chris Lattner4f69f462008-01-04 04:32:38 +00001405<!-- _______________________________________________________________________ -->
Nick Lewyckyec38da42009-09-27 00:45:11 +00001406<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1407
1408<div class="doc_text">
1409
1410<h5>Overview:</h5>
1411<p>The integer type is a very simple type that simply specifies an arbitrary
1412 bit width for the integer type desired. Any bit width from 1 bit to
1413 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1414
1415<h5>Syntax:</h5>
1416<pre>
1417 iN
1418</pre>
1419
1420<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1421 value.</p>
1422
1423<h5>Examples:</h5>
1424<table class="layout">
1425 <tr class="layout">
1426 <td class="left"><tt>i1</tt></td>
1427 <td class="left">a single-bit integer.</td>
1428 </tr>
1429 <tr class="layout">
1430 <td class="left"><tt>i32</tt></td>
1431 <td class="left">a 32-bit integer.</td>
1432 </tr>
1433 <tr class="layout">
1434 <td class="left"><tt>i1942652</tt></td>
1435 <td class="left">a really big integer of over 1 million bits.</td>
1436 </tr>
1437</table>
1438
1439<p>Note that the code generator does not yet support large integer types to be
1440 used as function return types. The specific limit on how large a return type
1441 the code generator can currently handle is target-dependent; currently it's
1442 often 64 bits for 32-bit targets and 128 bits for 64-bit targets.</p>
1443
1444</div>
1445
1446<!-- _______________________________________________________________________ -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001447<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1448
1449<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001450
1451<table>
1452 <tbody>
1453 <tr><th>Type</th><th>Description</th></tr>
1454 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1455 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1456 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1457 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1458 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1459 </tbody>
1460</table>
1461
Chris Lattner4f69f462008-01-04 04:32:38 +00001462</div>
1463
1464<!-- _______________________________________________________________________ -->
1465<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1466
1467<div class="doc_text">
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001468
Chris Lattner4f69f462008-01-04 04:32:38 +00001469<h5>Overview:</h5>
1470<p>The void type does not represent any value and has no size.</p>
1471
1472<h5>Syntax:</h5>
Chris Lattner4f69f462008-01-04 04:32:38 +00001473<pre>
1474 void
1475</pre>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001476
Chris Lattner4f69f462008-01-04 04:32:38 +00001477</div>
1478
1479<!-- _______________________________________________________________________ -->
1480<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1481
1482<div class="doc_text">
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001483
Chris Lattner4f69f462008-01-04 04:32:38 +00001484<h5>Overview:</h5>
1485<p>The label type represents code labels.</p>
1486
1487<h5>Syntax:</h5>
Chris Lattner4f69f462008-01-04 04:32:38 +00001488<pre>
1489 label
1490</pre>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001491
Chris Lattner4f69f462008-01-04 04:32:38 +00001492</div>
1493
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001494<!-- _______________________________________________________________________ -->
1495<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1496
1497<div class="doc_text">
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001498
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001499<h5>Overview:</h5>
Nick Lewyckyc261df92009-09-27 23:27:42 +00001500<p>The metadata type represents embedded metadata. No derived types may be
1501 created from metadata except for <a href="#t_function">function</a>
1502 arguments.
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001503
1504<h5>Syntax:</h5>
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001505<pre>
1506 metadata
1507</pre>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001508
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001509</div>
1510
Chris Lattner4f69f462008-01-04 04:32:38 +00001511
1512<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001513<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001514
Misha Brukman9d0919f2003-11-08 01:05:38 +00001515<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001516
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001517<p>The real power in LLVM comes from the derived types in the system. This is
1518 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewyckyec38da42009-09-27 00:45:11 +00001519 useful types. Each of these types contain one or more element types which
1520 may be a primitive type, or another derived type. For example, it is
1521 possible to have a two dimensional array, using an array as the element type
1522 of another array.</p>
Dan Gohmand8791e52009-01-24 15:58:40 +00001523
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001524</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001525
1526<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001527<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001528
Misha Brukman9d0919f2003-11-08 01:05:38 +00001529<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001530
Chris Lattner00950542001-06-06 20:29:01 +00001531<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001532<p>The array type is a very simple derived type that arranges elements
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001533 sequentially in memory. The array type requires a size (number of elements)
1534 and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001535
Chris Lattner7faa8832002-04-14 06:13:44 +00001536<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001537<pre>
1538 [&lt;# elements&gt; x &lt;elementtype&gt;]
1539</pre>
1540
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001541<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1542 be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001543
Chris Lattner7faa8832002-04-14 06:13:44 +00001544<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001545<table class="layout">
1546 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001547 <td class="left"><tt>[40 x i32]</tt></td>
1548 <td class="left">Array of 40 32-bit integer values.</td>
1549 </tr>
1550 <tr class="layout">
1551 <td class="left"><tt>[41 x i32]</tt></td>
1552 <td class="left">Array of 41 32-bit integer values.</td>
1553 </tr>
1554 <tr class="layout">
1555 <td class="left"><tt>[4 x i8]</tt></td>
1556 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001557 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001558</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001559<p>Here are some examples of multidimensional arrays:</p>
1560<table class="layout">
1561 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001562 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1563 <td class="left">3x4 array of 32-bit integer values.</td>
1564 </tr>
1565 <tr class="layout">
1566 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1567 <td class="left">12x10 array of single precision floating point values.</td>
1568 </tr>
1569 <tr class="layout">
1570 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1571 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001572 </tr>
1573</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001574
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001575<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1576 length array. Normally, accesses past the end of an array are undefined in
1577 LLVM (e.g. it is illegal to access the 5th element of a 3 element array). As
1578 a special case, however, zero length arrays are recognized to be variable
1579 length. This allows implementation of 'pascal style arrays' with the LLVM
1580 type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001581
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001582<p>Note that the code generator does not yet support large aggregate types to be
1583 used as function return types. The specific limit on how large an aggregate
1584 return type the code generator can currently handle is target-dependent, and
1585 also dependent on the aggregate element types.</p>
Dan Gohmand8791e52009-01-24 15:58:40 +00001586
Misha Brukman9d0919f2003-11-08 01:05:38 +00001587</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001588
Chris Lattner00950542001-06-06 20:29:01 +00001589<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001590<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001591
Misha Brukman9d0919f2003-11-08 01:05:38 +00001592<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001593
Chris Lattner00950542001-06-06 20:29:01 +00001594<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001595<p>The function type can be thought of as a function signature. It consists of
1596 a return type and a list of formal parameter types. The return type of a
1597 function type is a scalar type, a void type, or a struct type. If the return
1598 type is a struct type then all struct elements must be of first class types,
1599 and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001600
Chris Lattner00950542001-06-06 20:29:01 +00001601<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001602<pre>
Nick Lewycky51386942009-09-27 07:55:32 +00001603 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001604</pre>
1605
John Criswell0ec250c2005-10-24 16:17:18 +00001606<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001607 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1608 which indicates that the function takes a variable number of arguments.
1609 Variable argument functions can access their arguments with
1610 the <a href="#int_varargs">variable argument handling intrinsic</a>
Nick Lewycky51386942009-09-27 07:55:32 +00001611 functions. '<tt>&lt;returntype&gt;</tt>' is a any type except
Nick Lewyckyc261df92009-09-27 23:27:42 +00001612 <a href="#t_label">label</a>.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001613
Chris Lattner00950542001-06-06 20:29:01 +00001614<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001615<table class="layout">
1616 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001617 <td class="left"><tt>i32 (i32)</tt></td>
1618 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001619 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001620 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001621 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001622 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001623 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1624 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001625 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001626 <tt>float</tt>.
1627 </td>
1628 </tr><tr class="layout">
1629 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1630 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001631 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001632 which returns an integer. This is the signature for <tt>printf</tt> in
1633 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001634 </td>
Devang Patela582f402008-03-24 05:35:41 +00001635 </tr><tr class="layout">
1636 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky51386942009-09-27 07:55:32 +00001637 <td class="left">A function taking an <tt>i32</tt>, returning a
1638 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patela582f402008-03-24 05:35:41 +00001639 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001640 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001641</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001642
Misha Brukman9d0919f2003-11-08 01:05:38 +00001643</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001644
Chris Lattner00950542001-06-06 20:29:01 +00001645<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001646<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001647
Misha Brukman9d0919f2003-11-08 01:05:38 +00001648<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001649
Chris Lattner00950542001-06-06 20:29:01 +00001650<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001651<p>The structure type is used to represent a collection of data members together
1652 in memory. The packing of the field types is defined to match the ABI of the
1653 underlying processor. The elements of a structure may be any type that has a
1654 size.</p>
1655
1656<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1657 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1658 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1659
Chris Lattner00950542001-06-06 20:29:01 +00001660<h5>Syntax:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001661<pre>
1662 { &lt;type list&gt; }
1663</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001664
Chris Lattner00950542001-06-06 20:29:01 +00001665<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001666<table class="layout">
1667 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001668 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1669 <td class="left">A triple of three <tt>i32</tt> values</td>
1670 </tr><tr class="layout">
1671 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1672 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1673 second element is a <a href="#t_pointer">pointer</a> to a
1674 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1675 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001676 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001677</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001678
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001679<p>Note that the code generator does not yet support large aggregate types to be
1680 used as function return types. The specific limit on how large an aggregate
1681 return type the code generator can currently handle is target-dependent, and
1682 also dependent on the aggregate element types.</p>
Dan Gohmand8791e52009-01-24 15:58:40 +00001683
Misha Brukman9d0919f2003-11-08 01:05:38 +00001684</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001685
Chris Lattner00950542001-06-06 20:29:01 +00001686<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001687<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1688</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001689
Andrew Lenharth75e10682006-12-08 17:13:00 +00001690<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001691
Andrew Lenharth75e10682006-12-08 17:13:00 +00001692<h5>Overview:</h5>
1693<p>The packed structure type is used to represent a collection of data members
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001694 together in memory. There is no padding between fields. Further, the
1695 alignment of a packed structure is 1 byte. The elements of a packed
1696 structure may be any type that has a size.</p>
1697
1698<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1699 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1700 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1701
Andrew Lenharth75e10682006-12-08 17:13:00 +00001702<h5>Syntax:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001703<pre>
1704 &lt; { &lt;type list&gt; } &gt;
1705</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001706
Andrew Lenharth75e10682006-12-08 17:13:00 +00001707<h5>Examples:</h5>
1708<table class="layout">
1709 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001710 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1711 <td class="left">A triple of three <tt>i32</tt> values</td>
1712 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001713 <td class="left">
1714<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001715 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1716 second element is a <a href="#t_pointer">pointer</a> to a
1717 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1718 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001719 </tr>
1720</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001721
Andrew Lenharth75e10682006-12-08 17:13:00 +00001722</div>
1723
1724<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001725<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001726
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001727<div class="doc_text">
1728
1729<h5>Overview:</h5>
1730<p>As in many languages, the pointer type represents a pointer or reference to
1731 another object, which must live in memory. Pointer types may have an optional
1732 address space attribute defining the target-specific numbered address space
1733 where the pointed-to object resides. The default address space is zero.</p>
1734
1735<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1736 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001737
Chris Lattner7faa8832002-04-14 06:13:44 +00001738<h5>Syntax:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001739<pre>
1740 &lt;type&gt; *
1741</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001742
Chris Lattner7faa8832002-04-14 06:13:44 +00001743<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001744<table class="layout">
1745 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001746 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001747 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1748 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1749 </tr>
1750 <tr class="layout">
1751 <td class="left"><tt>i32 (i32 *) *</tt></td>
1752 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001753 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001754 <tt>i32</tt>.</td>
1755 </tr>
1756 <tr class="layout">
1757 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1758 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1759 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001760 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001761</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001762
Misha Brukman9d0919f2003-11-08 01:05:38 +00001763</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001764
Chris Lattnera58561b2004-08-12 19:12:28 +00001765<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001766<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001767
Misha Brukman9d0919f2003-11-08 01:05:38 +00001768<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001769
Chris Lattnera58561b2004-08-12 19:12:28 +00001770<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001771<p>A vector type is a simple derived type that represents a vector of elements.
1772 Vector types are used when multiple primitive data are operated in parallel
1773 using a single instruction (SIMD). A vector type requires a size (number of
1774 elements) and an underlying primitive data type. Vectors must have a power
1775 of two length (1, 2, 4, 8, 16 ...). Vector types are considered
1776 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001777
Chris Lattnera58561b2004-08-12 19:12:28 +00001778<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001779<pre>
1780 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1781</pre>
1782
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001783<p>The number of elements is a constant integer value; elementtype may be any
1784 integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001785
Chris Lattnera58561b2004-08-12 19:12:28 +00001786<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001787<table class="layout">
1788 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001789 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1790 <td class="left">Vector of 4 32-bit integer values.</td>
1791 </tr>
1792 <tr class="layout">
1793 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1794 <td class="left">Vector of 8 32-bit floating-point values.</td>
1795 </tr>
1796 <tr class="layout">
1797 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1798 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001799 </tr>
1800</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001801
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001802<p>Note that the code generator does not yet support large vector types to be
1803 used as function return types. The specific limit on how large a vector
1804 return type codegen can currently handle is target-dependent; currently it's
1805 often a few times longer than a hardware vector register.</p>
Dan Gohmand8791e52009-01-24 15:58:40 +00001806
Misha Brukman9d0919f2003-11-08 01:05:38 +00001807</div>
1808
Chris Lattner69c11bb2005-04-25 17:34:15 +00001809<!-- _______________________________________________________________________ -->
1810<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1811<div class="doc_text">
1812
1813<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001814<p>Opaque types are used to represent unknown types in the system. This
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001815 corresponds (for example) to the C notion of a forward declared structure
1816 type. In LLVM, opaque types can eventually be resolved to any type (not just
1817 a structure type).</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001818
1819<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001820<pre>
1821 opaque
1822</pre>
1823
1824<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001825<table class="layout">
1826 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001827 <td class="left"><tt>opaque</tt></td>
1828 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001829 </tr>
1830</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001831
Chris Lattner69c11bb2005-04-25 17:34:15 +00001832</div>
1833
Chris Lattner242d61d2009-02-02 07:32:36 +00001834<!-- ======================================================================= -->
1835<div class="doc_subsection">
1836 <a name="t_uprefs">Type Up-references</a>
1837</div>
1838
1839<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001840
Chris Lattner242d61d2009-02-02 07:32:36 +00001841<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001842<p>An "up reference" allows you to refer to a lexically enclosing type without
1843 requiring it to have a name. For instance, a structure declaration may
1844 contain a pointer to any of the types it is lexically a member of. Example
1845 of up references (with their equivalent as named type declarations)
1846 include:</p>
Chris Lattner242d61d2009-02-02 07:32:36 +00001847
1848<pre>
Chris Lattner3060f5b2009-02-09 10:00:56 +00001849 { \2 * } %x = type { %x* }
Chris Lattner242d61d2009-02-02 07:32:36 +00001850 { \2 }* %y = type { %y }*
1851 \1* %z = type %z*
1852</pre>
1853
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001854<p>An up reference is needed by the asmprinter for printing out cyclic types
1855 when there is no declared name for a type in the cycle. Because the
1856 asmprinter does not want to print out an infinite type string, it needs a
1857 syntax to handle recursive types that have no names (all names are optional
1858 in llvm IR).</p>
Chris Lattner242d61d2009-02-02 07:32:36 +00001859
1860<h5>Syntax:</h5>
1861<pre>
1862 \&lt;level&gt;
1863</pre>
1864
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001865<p>The level is the count of the lexical type that is being referred to.</p>
Chris Lattner242d61d2009-02-02 07:32:36 +00001866
1867<h5>Examples:</h5>
Chris Lattner242d61d2009-02-02 07:32:36 +00001868<table class="layout">
1869 <tr class="layout">
1870 <td class="left"><tt>\1*</tt></td>
1871 <td class="left">Self-referential pointer.</td>
1872 </tr>
1873 <tr class="layout">
1874 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1875 <td class="left">Recursive structure where the upref refers to the out-most
1876 structure.</td>
1877 </tr>
1878</table>
Chris Lattner242d61d2009-02-02 07:32:36 +00001879
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001880</div>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001881
Chris Lattnerc3f59762004-12-09 17:30:23 +00001882<!-- *********************************************************************** -->
1883<div class="doc_section"> <a name="constants">Constants</a> </div>
1884<!-- *********************************************************************** -->
1885
1886<div class="doc_text">
1887
1888<p>LLVM has several different basic types of constants. This section describes
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001889 them all and their syntax.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001890
1891</div>
1892
1893<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001894<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001895
1896<div class="doc_text">
1897
1898<dl>
1899 <dt><b>Boolean constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001900 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewyckyec38da42009-09-27 00:45:11 +00001901 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001902
1903 <dt><b>Integer constants</b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001904 <dd>Standard integers (such as '4') are constants of
1905 the <a href="#t_integer">integer</a> type. Negative numbers may be used
1906 with integer types.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001907
1908 <dt><b>Floating point constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001909 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001910 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1911 notation (see below). The assembler requires the exact decimal value of a
1912 floating-point constant. For example, the assembler accepts 1.25 but
1913 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1914 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001915
1916 <dt><b>Null pointer constants</b></dt>
John Criswell9e2485c2004-12-10 15:51:16 +00001917 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001918 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001919</dl>
1920
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001921<p>The one non-intuitive notation for constants is the hexadecimal form of
1922 floating point constants. For example, the form '<tt>double
1923 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
1924 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
1925 constants are required (and the only time that they are generated by the
1926 disassembler) is when a floating point constant must be emitted but it cannot
1927 be represented as a decimal floating point number in a reasonable number of
1928 digits. For example, NaN's, infinities, and other special values are
1929 represented in their IEEE hexadecimal format so that assembly and disassembly
1930 do not cause any bits to change in the constants.</p>
1931
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001932<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001933 represented using the 16-digit form shown above (which matches the IEEE754
1934 representation for double); float values must, however, be exactly
1935 representable as IEE754 single precision. Hexadecimal format is always used
1936 for long double, and there are three forms of long double. The 80-bit format
1937 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
1938 The 128-bit format used by PowerPC (two adjacent doubles) is represented
1939 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
1940 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
1941 currently supported target uses this format. Long doubles will only work if
1942 they match the long double format on your target. All hexadecimal formats
1943 are big-endian (sign bit at the left).</p>
1944
Chris Lattnerc3f59762004-12-09 17:30:23 +00001945</div>
1946
1947<!-- ======================================================================= -->
Chris Lattner70882792009-02-28 18:32:25 +00001948<div class="doc_subsection">
Bill Wendlingd9fe2982009-07-20 02:32:41 +00001949<a name="aggregateconstants"></a> <!-- old anchor -->
1950<a name="complexconstants">Complex Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001951</div>
1952
1953<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001954
Chris Lattner70882792009-02-28 18:32:25 +00001955<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001956 constants and smaller complex constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001957
1958<dl>
1959 <dt><b>Structure constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001960 <dd>Structure constants are represented with notation similar to structure
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001961 type definitions (a comma separated list of elements, surrounded by braces
1962 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1963 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
1964 Structure constants must have <a href="#t_struct">structure type</a>, and
1965 the number and types of elements must match those specified by the
1966 type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001967
1968 <dt><b>Array constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001969 <dd>Array constants are represented with notation similar to array type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001970 definitions (a comma separated list of elements, surrounded by square
1971 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
1972 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
1973 the number and types of elements must match those specified by the
1974 type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001975
Reid Spencer485bad12007-02-15 03:07:05 +00001976 <dt><b>Vector constants</b></dt>
Reid Spencer485bad12007-02-15 03:07:05 +00001977 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001978 definitions (a comma separated list of elements, surrounded by
1979 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
1980 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
1981 have <a href="#t_vector">vector type</a>, and the number and types of
1982 elements must match those specified by the type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001983
1984 <dt><b>Zero initialization</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001985 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001986 value to zero of <em>any</em> type, including scalar and aggregate types.
1987 This is often used to avoid having to print large zero initializers
1988 (e.g. for large arrays) and is always exactly equivalent to using explicit
1989 zero initializers.</dd>
Nick Lewycky21cc4462009-04-04 07:22:01 +00001990
1991 <dt><b>Metadata node</b></dt>
Nick Lewycky1e8c7a62009-05-30 16:08:30 +00001992 <dd>A metadata node is a structure-like constant with
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001993 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
1994 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
1995 be interpreted as part of the instruction stream, metadata is a place to
1996 attach additional information such as debug info.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001997</dl>
1998
1999</div>
2000
2001<!-- ======================================================================= -->
2002<div class="doc_subsection">
2003 <a name="globalconstants">Global Variable and Function Addresses</a>
2004</div>
2005
2006<div class="doc_text">
2007
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002008<p>The addresses of <a href="#globalvars">global variables</a>
2009 and <a href="#functionstructure">functions</a> are always implicitly valid
2010 (link-time) constants. These constants are explicitly referenced when
2011 the <a href="#identifiers">identifier for the global</a> is used and always
2012 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2013 legal LLVM file:</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002014
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002015<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002016<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00002017@X = global i32 17
2018@Y = global i32 42
2019@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00002020</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002021</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002022
2023</div>
2024
2025<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00002026<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002027<div class="doc_text">
2028
Chris Lattner48a109c2009-09-07 22:52:39 +00002029<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer8040cd32009-10-12 14:46:08 +00002030 indicates that the user of the value may receive an unspecified bit-pattern.
Chris Lattner48a109c2009-09-07 22:52:39 +00002031 Undefined values may be of any type (other than label or void) and be used
2032 anywhere a constant is permitted.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002033
Chris Lattnerc608cb12009-09-11 01:49:31 +00002034<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattner48a109c2009-09-07 22:52:39 +00002035 program is well defined no matter what value is used. This gives the
2036 compiler more freedom to optimize. Here are some examples of (potentially
2037 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002038
Chris Lattner48a109c2009-09-07 22:52:39 +00002039
2040<div class="doc_code">
2041<pre>
2042 %A = add %X, undef
2043 %B = sub %X, undef
2044 %C = xor %X, undef
2045Safe:
2046 %A = undef
2047 %B = undef
2048 %C = undef
2049</pre>
2050</div>
2051
2052<p>This is safe because all of the output bits are affected by the undef bits.
2053Any output bit can have a zero or one depending on the input bits.</p>
2054
2055<div class="doc_code">
2056<pre>
2057 %A = or %X, undef
2058 %B = and %X, undef
2059Safe:
2060 %A = -1
2061 %B = 0
2062Unsafe:
2063 %A = undef
2064 %B = undef
2065</pre>
2066</div>
2067
2068<p>These logical operations have bits that are not always affected by the input.
2069For example, if "%X" has a zero bit, then the output of the 'and' operation will
2070always be a zero, no matter what the corresponding bit from the undef is. As
Chris Lattnerc608cb12009-09-11 01:49:31 +00002071such, it is unsafe to optimize or assume that the result of the and is undef.
2072However, it is safe to assume that all bits of the undef could be 0, and
2073optimize the and to 0. Likewise, it is safe to assume that all the bits of
2074the undef operand to the or could be set, allowing the or to be folded to
2075-1.</p>
Chris Lattner48a109c2009-09-07 22:52:39 +00002076
2077<div class="doc_code">
2078<pre>
2079 %A = select undef, %X, %Y
2080 %B = select undef, 42, %Y
2081 %C = select %X, %Y, undef
2082Safe:
2083 %A = %X (or %Y)
2084 %B = 42 (or %Y)
2085 %C = %Y
2086Unsafe:
2087 %A = undef
2088 %B = undef
2089 %C = undef
2090</pre>
2091</div>
2092
2093<p>This set of examples show that undefined select (and conditional branch)
2094conditions can go "either way" but they have to come from one of the two
2095operands. In the %A example, if %X and %Y were both known to have a clear low
2096bit, then %A would have to have a cleared low bit. However, in the %C example,
2097the optimizer is allowed to assume that the undef operand could be the same as
2098%Y, allowing the whole select to be eliminated.</p>
2099
2100
2101<div class="doc_code">
2102<pre>
2103 %A = xor undef, undef
2104
2105 %B = undef
2106 %C = xor %B, %B
2107
2108 %D = undef
2109 %E = icmp lt %D, 4
2110 %F = icmp gte %D, 4
2111
2112Safe:
2113 %A = undef
2114 %B = undef
2115 %C = undef
2116 %D = undef
2117 %E = undef
2118 %F = undef
2119</pre>
2120</div>
2121
2122<p>This example points out that two undef operands are not necessarily the same.
2123This can be surprising to people (and also matches C semantics) where they
2124assume that "X^X" is always zero, even if X is undef. This isn't true for a
2125number of reasons, but the short answer is that an undef "variable" can
2126arbitrarily change its value over its "live range". This is true because the
2127"variable" doesn't actually <em>have a live range</em>. Instead, the value is
2128logically read from arbitrary registers that happen to be around when needed,
Benjamin Kramer8040cd32009-10-12 14:46:08 +00002129so the value is not necessarily consistent over time. In fact, %A and %C need
Chris Lattner349eb412009-09-08 15:13:16 +00002130to have the same semantics or the core LLVM "replace all uses with" concept
Chris Lattner48a109c2009-09-07 22:52:39 +00002131would not hold.</p>
Chris Lattner6e9057b2009-09-07 23:33:52 +00002132
2133<div class="doc_code">
2134<pre>
2135 %A = fdiv undef, %X
2136 %B = fdiv %X, undef
2137Safe:
2138 %A = undef
2139b: unreachable
2140</pre>
2141</div>
2142
2143<p>These examples show the crucial difference between an <em>undefined
2144value</em> and <em>undefined behavior</em>. An undefined value (like undef) is
2145allowed to have an arbitrary bit-pattern. This means that the %A operation
2146can be constant folded to undef because the undef could be an SNaN, and fdiv is
2147not (currently) defined on SNaN's. However, in the second example, we can make
2148a more aggressive assumption: because the undef is allowed to be an arbitrary
2149value, we are allowed to assume that it could be zero. Since a divide by zero
Chris Lattner8e371aa2009-09-08 19:45:34 +00002150has <em>undefined behavior</em>, we are allowed to assume that the operation
Chris Lattner6e9057b2009-09-07 23:33:52 +00002151does not execute at all. This allows us to delete the divide and all code after
2152it: since the undefined operation "can't happen", the optimizer can assume that
2153it occurs in dead code.
2154</p>
2155
2156<div class="doc_code">
2157<pre>
2158a: store undef -> %X
2159b: store %X -> undef
2160Safe:
2161a: &lt;deleted&gt;
2162b: unreachable
2163</pre>
2164</div>
2165
2166<p>These examples reiterate the fdiv example: a store "of" an undefined value
2167can be assumed to not have any effect: we can assume that the value is
2168overwritten with bits that happen to match what was already there. However, a
2169store "to" an undefined location could clobber arbitrary memory, therefore, it
2170has undefined behavior.</p>
2171
Chris Lattnerc3f59762004-12-09 17:30:23 +00002172</div>
2173
2174<!-- ======================================================================= -->
Chris Lattnerc6f44362009-10-27 21:01:34 +00002175<div class="doc_subsection"><a name="blockaddress">Address of Basic
2176 Block</a></div>
2177<div class="doc_text">
2178
2179<p><b><tt>blockaddress(@function, %block)</tt></b></p>
2180
2181<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
2182 basic block in the specified function, and always has an i8* type.</p>
2183
2184
2185<p>This value only has defined behavior when used as an operand to the
2186 '<a href="#i_indbr"><tt>indbr</tt></a>' instruction or for comparisons
2187 against null. Pointer equality tests between labels addresses is undefined
2188 behavior - though, again, comparison against null is ok, and no label is
2189 equal to the null pointer. Some targets may provide defined semantics when
2190 using the value as the operand to an inline assembly, but that is target
2191 specific.
2192 </p>
2193
2194</div>
2195
2196
2197<!-- ======================================================================= -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002198<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
2199</div>
2200
2201<div class="doc_text">
2202
2203<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002204 to be used as constants. Constant expressions may be of
2205 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2206 operation that does not have side effects (e.g. load and call are not
2207 supported). The following is the syntax for constant expressions:</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002208
2209<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002210 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002211 <dd>Truncate a constant to another type. The bit size of CST must be larger
2212 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002213
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002214 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002215 <dd>Zero extend a constant to another type. The bit size of CST must be
2216 smaller or equal to the bit size of TYPE. Both types must be
2217 integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002218
2219 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002220 <dd>Sign extend a constant to another type. The bit size of CST must be
2221 smaller or equal to the bit size of TYPE. Both types must be
2222 integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002223
2224 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002225 <dd>Truncate a floating point constant to another floating point type. The
2226 size of CST must be larger than the size of TYPE. Both types must be
2227 floating point.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002228
2229 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002230 <dd>Floating point extend a constant to another type. The size of CST must be
2231 smaller or equal to the size of TYPE. Both types must be floating
2232 point.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002233
Reid Spencer1539a1c2007-07-31 14:40:14 +00002234 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002235 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002236 constant. TYPE must be a scalar or vector integer type. CST must be of
2237 scalar or vector floating point type. Both CST and TYPE must be scalars,
2238 or vectors of the same number of elements. If the value won't fit in the
2239 integer type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002240
Reid Spencerd4448792006-11-09 23:03:26 +00002241 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002242 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002243 constant. TYPE must be a scalar or vector integer type. CST must be of
2244 scalar or vector floating point type. Both CST and TYPE must be scalars,
2245 or vectors of the same number of elements. If the value won't fit in the
2246 integer type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002247
Reid Spencerd4448792006-11-09 23:03:26 +00002248 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002249 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002250 constant. TYPE must be a scalar or vector floating point type. CST must be
2251 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2252 vectors of the same number of elements. If the value won't fit in the
2253 floating point type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002254
Reid Spencerd4448792006-11-09 23:03:26 +00002255 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002256 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002257 constant. TYPE must be a scalar or vector floating point type. CST must be
2258 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2259 vectors of the same number of elements. If the value won't fit in the
2260 floating point type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002261
Reid Spencer5c0ef472006-11-11 23:08:07 +00002262 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2263 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002264 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2265 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2266 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5c0ef472006-11-11 23:08:07 +00002267
2268 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002269 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2270 type. CST must be of integer type. The CST value is zero extended,
2271 truncated, or unchanged to make it fit in a pointer size. This one is
2272 <i>really</i> dangerous!</dd>
Reid Spencer5c0ef472006-11-11 23:08:07 +00002273
2274 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner03bbad62009-02-28 18:27:03 +00002275 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2276 are the same as those for the <a href="#i_bitcast">bitcast
2277 instruction</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002278
2279 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Dan Gohmandd8004d2009-07-27 21:53:46 +00002280 <dt><b><tt>getelementptr inbounds ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002281 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002282 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2283 instruction, the index list may have zero or more indexes, which are
2284 required to make sense for the type of "CSTPTR".</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002285
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002286 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002287 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer01c42592006-12-04 19:23:19 +00002288
2289 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2290 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2291
2292 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2293 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002294
2295 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002296 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2297 constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002298
Robert Bocchino05ccd702006-01-15 20:48:27 +00002299 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002300 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2301 constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002302
2303 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002304 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2305 constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002306
Chris Lattnerc3f59762004-12-09 17:30:23 +00002307 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002308 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2309 be any of the <a href="#binaryops">binary</a>
2310 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2311 on operands are the same as those for the corresponding instruction
2312 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002313</dl>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002314
Chris Lattnerc3f59762004-12-09 17:30:23 +00002315</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00002316
Nick Lewycky21cc4462009-04-04 07:22:01 +00002317<!-- ======================================================================= -->
2318<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2319</div>
2320
2321<div class="doc_text">
2322
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002323<p>Embedded metadata provides a way to attach arbitrary data to the instruction
2324 stream without affecting the behaviour of the program. There are two
2325 metadata primitives, strings and nodes. All metadata has the
2326 <tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2327 point ('<tt>!</tt>').</p>
Nick Lewycky21cc4462009-04-04 07:22:01 +00002328
2329<p>A metadata string is a string surrounded by double quotes. It can contain
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002330 any character by escaping non-printable characters with "\xx" where "xx" is
2331 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
Nick Lewycky21cc4462009-04-04 07:22:01 +00002332
2333<p>Metadata nodes are represented with notation similar to structure constants
Benjamin Kramer8040cd32009-10-12 14:46:08 +00002334 (a comma separated list of elements, surrounded by braces and preceded by an
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002335 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2336 10}</tt>".</p>
Nick Lewycky21cc4462009-04-04 07:22:01 +00002337
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002338<p>A metadata node will attempt to track changes to the values it holds. In the
2339 event that a value is deleted, it will be replaced with a typeless
2340 "<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
Nick Lewyckycb337992009-05-10 20:57:05 +00002341
Nick Lewycky21cc4462009-04-04 07:22:01 +00002342<p>Optimizations may rely on metadata to provide additional information about
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002343 the program that isn't available in the instructions, or that isn't easily
2344 computable. Similarly, the code generator may expect a certain metadata
2345 format to be used to express debugging information.</p>
2346
Nick Lewycky21cc4462009-04-04 07:22:01 +00002347</div>
2348
Chris Lattner00950542001-06-06 20:29:01 +00002349<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00002350<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2351<!-- *********************************************************************** -->
2352
2353<!-- ======================================================================= -->
2354<div class="doc_subsection">
2355<a name="inlineasm">Inline Assembler Expressions</a>
2356</div>
2357
2358<div class="doc_text">
2359
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002360<p>LLVM supports inline assembler expressions (as opposed
2361 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2362 a special value. This value represents the inline assembler as a string
2363 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen09fed252009-10-13 21:56:55 +00002364 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen8ba2d5b2009-10-21 23:28:00 +00002365 expression has side effects, and a flag indicating whether the function
2366 containing the asm needs to align its stack conservatively. An example
2367 inline assembler expression is:</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002368
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002369<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002370<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002371i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002372</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002373</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002374
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002375<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2376 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2377 have:</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002378
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002379<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002380<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002381%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002382</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002383</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002384
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002385<p>Inline asms with side effects not visible in the constraint list must be
2386 marked as having side effects. This is done through the use of the
2387 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002388
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002389<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002390<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002391call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002392</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002393</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002394
Dale Johannesen8ba2d5b2009-10-21 23:28:00 +00002395<p>In some cases inline asms will contain code that will not work unless the
2396 stack is aligned in some way, such as calls or SSE instructions on x86,
2397 yet will not contain code that does that alignment within the asm.
2398 The compiler should make conservative assumptions about what the asm might
2399 contain and should generate its usual stack alignment code in the prologue
2400 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen09fed252009-10-13 21:56:55 +00002401
2402<div class="doc_code">
2403<pre>
Dale Johannesen8ba2d5b2009-10-21 23:28:00 +00002404call void asm alignstack "eieio", ""()
Dale Johannesen09fed252009-10-13 21:56:55 +00002405</pre>
2406</div>
2407
2408<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2409 first.</p>
2410
Chris Lattnere87d6532006-01-25 23:47:57 +00002411<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002412 documented here. Constraints on what can be done (e.g. duplication, moving,
2413 etc need to be documented). This is probably best done by reference to
2414 another document that covers inline asm from a holistic perspective.</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002415
2416</div>
2417
Chris Lattner857755c2009-07-20 05:55:19 +00002418
2419<!-- *********************************************************************** -->
2420<div class="doc_section">
2421 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2422</div>
2423<!-- *********************************************************************** -->
2424
2425<p>LLVM has a number of "magic" global variables that contain data that affect
2426code generation or other IR semantics. These are documented here. All globals
Chris Lattner401e10c2009-07-20 06:14:25 +00002427of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2428section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2429by LLVM.</p>
Chris Lattner857755c2009-07-20 05:55:19 +00002430
2431<!-- ======================================================================= -->
2432<div class="doc_subsection">
2433<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2434</div>
2435
2436<div class="doc_text">
2437
2438<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2439href="#linkage_appending">appending linkage</a>. This array contains a list of
2440pointers to global variables and functions which may optionally have a pointer
2441cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2442
2443<pre>
2444 @X = global i8 4
2445 @Y = global i32 123
2446
2447 @llvm.used = appending global [2 x i8*] [
2448 i8* @X,
2449 i8* bitcast (i32* @Y to i8*)
2450 ], section "llvm.metadata"
2451</pre>
2452
2453<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2454compiler, assembler, and linker are required to treat the symbol as if there is
2455a reference to the global that it cannot see. For example, if a variable has
2456internal linkage and no references other than that from the <tt>@llvm.used</tt>
2457list, it cannot be deleted. This is commonly used to represent references from
2458inline asms and other things the compiler cannot "see", and corresponds to
2459"attribute((used))" in GNU C.</p>
2460
2461<p>On some targets, the code generator must emit a directive to the assembler or
2462object file to prevent the assembler and linker from molesting the symbol.</p>
2463
2464</div>
2465
2466<!-- ======================================================================= -->
2467<div class="doc_subsection">
Chris Lattner401e10c2009-07-20 06:14:25 +00002468<a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
2469</div>
2470
2471<div class="doc_text">
2472
2473<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2474<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2475touching the symbol. On targets that support it, this allows an intelligent
2476linker to optimize references to the symbol without being impeded as it would be
2477by <tt>@llvm.used</tt>.</p>
2478
2479<p>This is a rare construct that should only be used in rare circumstances, and
2480should not be exposed to source languages.</p>
2481
2482</div>
2483
2484<!-- ======================================================================= -->
2485<div class="doc_subsection">
Chris Lattner857755c2009-07-20 05:55:19 +00002486<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2487</div>
2488
2489<div class="doc_text">
2490
2491<p>TODO: Describe this.</p>
2492
2493</div>
2494
2495<!-- ======================================================================= -->
2496<div class="doc_subsection">
2497<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2498</div>
2499
2500<div class="doc_text">
2501
2502<p>TODO: Describe this.</p>
2503
2504</div>
2505
2506
Chris Lattnere87d6532006-01-25 23:47:57 +00002507<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00002508<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2509<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002510
Misha Brukman9d0919f2003-11-08 01:05:38 +00002511<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002512
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002513<p>The LLVM instruction set consists of several different classifications of
2514 instructions: <a href="#terminators">terminator
2515 instructions</a>, <a href="#binaryops">binary instructions</a>,
2516 <a href="#bitwiseops">bitwise binary instructions</a>,
2517 <a href="#memoryops">memory instructions</a>, and
2518 <a href="#otherops">other instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002519
Misha Brukman9d0919f2003-11-08 01:05:38 +00002520</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002521
Chris Lattner00950542001-06-06 20:29:01 +00002522<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002523<div class="doc_subsection"> <a name="terminators">Terminator
2524Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002525
Misha Brukman9d0919f2003-11-08 01:05:38 +00002526<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002527
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002528<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2529 in a program ends with a "Terminator" instruction, which indicates which
2530 block should be executed after the current block is finished. These
2531 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2532 control flow, not values (the one exception being the
2533 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2534
2535<p>There are six different terminator instructions: the
2536 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2537 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2538 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
Chris Lattnerf9be95f2009-10-27 19:13:16 +00002539 '<a href="#i_indbr">'<tt>indbr</tt>' Instruction, the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002540 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2541 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2542 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002543
Misha Brukman9d0919f2003-11-08 01:05:38 +00002544</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002545
Chris Lattner00950542001-06-06 20:29:01 +00002546<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002547<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2548Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002549
Misha Brukman9d0919f2003-11-08 01:05:38 +00002550<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002551
Chris Lattner00950542001-06-06 20:29:01 +00002552<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002553<pre>
2554 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002555 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002556</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002557
Chris Lattner00950542001-06-06 20:29:01 +00002558<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002559<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2560 a value) from a function back to the caller.</p>
2561
2562<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2563 value and then causes control flow, and one that just causes control flow to
2564 occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002565
Chris Lattner00950542001-06-06 20:29:01 +00002566<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002567<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2568 return value. The type of the return value must be a
2569 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002570
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002571<p>A function is not <a href="#wellformed">well formed</a> if it it has a
2572 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2573 value or a return value with a type that does not match its type, or if it
2574 has a void return type and contains a '<tt>ret</tt>' instruction with a
2575 return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002576
Chris Lattner00950542001-06-06 20:29:01 +00002577<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002578<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2579 the calling function's context. If the caller is a
2580 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2581 instruction after the call. If the caller was an
2582 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2583 the beginning of the "normal" destination block. If the instruction returns
2584 a value, that value shall set the call or invoke instruction's return
2585 value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002586
Chris Lattner00950542001-06-06 20:29:01 +00002587<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002588<pre>
2589 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002590 ret void <i>; Return from a void function</i>
Bill Wendling0a4bbbf2009-02-28 22:12:54 +00002591 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002592</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002593
Dan Gohmand8791e52009-01-24 15:58:40 +00002594<p>Note that the code generator does not yet fully support large
2595 return values. The specific sizes that are currently supported are
2596 dependent on the target. For integers, on 32-bit targets the limit
2597 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2598 For aggregate types, the current limits are dependent on the element
2599 types; for example targets are often limited to 2 total integer
2600 elements and 2 total floating-point elements.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002601
Misha Brukman9d0919f2003-11-08 01:05:38 +00002602</div>
Chris Lattner00950542001-06-06 20:29:01 +00002603<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002604<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002605
Misha Brukman9d0919f2003-11-08 01:05:38 +00002606<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002607
Chris Lattner00950542001-06-06 20:29:01 +00002608<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002609<pre>
2610 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002611</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002612
Chris Lattner00950542001-06-06 20:29:01 +00002613<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002614<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2615 different basic block in the current function. There are two forms of this
2616 instruction, corresponding to a conditional branch and an unconditional
2617 branch.</p>
2618
Chris Lattner00950542001-06-06 20:29:01 +00002619<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002620<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2621 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2622 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2623 target.</p>
2624
Chris Lattner00950542001-06-06 20:29:01 +00002625<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002626<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002627 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2628 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2629 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2630
Chris Lattner00950542001-06-06 20:29:01 +00002631<h5>Example:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00002632<pre>
2633Test:
2634 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2635 br i1 %cond, label %IfEqual, label %IfUnequal
2636IfEqual:
2637 <a href="#i_ret">ret</a> i32 1
2638IfUnequal:
2639 <a href="#i_ret">ret</a> i32 0
2640</pre>
2641
Misha Brukman9d0919f2003-11-08 01:05:38 +00002642</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002643
Chris Lattner00950542001-06-06 20:29:01 +00002644<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002645<div class="doc_subsubsection">
2646 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2647</div>
2648
Misha Brukman9d0919f2003-11-08 01:05:38 +00002649<div class="doc_text">
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002650
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002651<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002652<pre>
2653 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2654</pre>
2655
Chris Lattner00950542001-06-06 20:29:01 +00002656<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002657<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002658 several different places. It is a generalization of the '<tt>br</tt>'
2659 instruction, allowing a branch to occur to one of many possible
2660 destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002661
Chris Lattner00950542001-06-06 20:29:01 +00002662<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002663<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002664 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2665 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2666 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002667
Chris Lattner00950542001-06-06 20:29:01 +00002668<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002669<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002670 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2671 is searched for the given value. If the value is found, control flow is
Benjamin Kramer8040cd32009-10-12 14:46:08 +00002672 transferred to the corresponding destination; otherwise, control flow is
2673 transferred to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002674
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002675<h5>Implementation:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002676<p>Depending on properties of the target machine and the particular
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002677 <tt>switch</tt> instruction, this instruction may be code generated in
2678 different ways. For example, it could be generated as a series of chained
2679 conditional branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002680
2681<h5>Example:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002682<pre>
2683 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002684 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002685 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002686
2687 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002688 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002689
2690 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002691 switch i32 %val, label %otherwise [ i32 0, label %onzero
2692 i32 1, label %onone
2693 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002694</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002695
Misha Brukman9d0919f2003-11-08 01:05:38 +00002696</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002697
Chris Lattnerf9be95f2009-10-27 19:13:16 +00002698
2699<!-- _______________________________________________________________________ -->
2700<div class="doc_subsubsection">
2701 <a name="i_indbr">'<tt>indbr</tt>' Instruction</a>
2702</div>
2703
2704<div class="doc_text">
2705
2706<h5>Syntax:</h5>
2707<pre>
2708 indbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
2709</pre>
2710
2711<h5>Overview:</h5>
2712
2713<p>The '<tt>indbr</tt>' instruction implements an indirect branch to a label
2714 within the current function, whose address is specified by
Chris Lattnerc6f44362009-10-27 21:01:34 +00002715 "<tt>address</tt>". Address must be derived from a <a
2716 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattnerf9be95f2009-10-27 19:13:16 +00002717
2718<h5>Arguments:</h5>
2719
2720<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
2721 rest of the arguments indicate the full set of possible destinations that the
2722 address may point to. Blocks are allowed to occur multiple times in the
2723 destination list, though this isn't particularly useful.</p>
2724
2725<p>This destination list is required so that dataflow analysis has an accurate
2726 understanding of the CFG.</p>
2727
2728<h5>Semantics:</h5>
2729
2730<p>Control transfers to the block specified in the address argument. All
2731 possible destination blocks must be listed in the label list, otherwise this
2732 instruction has undefined behavior. This implies that jumps to labels
2733 defined in other functions have undefined behavior as well.</p>
2734
2735<h5>Implementation:</h5>
2736
2737<p>This is typically implemented with a jump through a register.</p>
2738
2739<h5>Example:</h5>
2740<pre>
Chris Lattner5f75cf52009-10-27 20:27:24 +00002741 indbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattnerf9be95f2009-10-27 19:13:16 +00002742</pre>
2743
2744</div>
2745
2746
Chris Lattner00950542001-06-06 20:29:01 +00002747<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002748<div class="doc_subsubsection">
2749 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2750</div>
2751
Misha Brukman9d0919f2003-11-08 01:05:38 +00002752<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002753
Chris Lattner00950542001-06-06 20:29:01 +00002754<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002755<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002756 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002757 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002758</pre>
2759
Chris Lattner6536cfe2002-05-06 22:08:29 +00002760<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002761<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002762 function, with the possibility of control flow transfer to either the
2763 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
2764 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
2765 control flow will return to the "normal" label. If the callee (or any
2766 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
2767 instruction, control is interrupted and continued at the dynamically nearest
2768 "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002769
Chris Lattner00950542001-06-06 20:29:01 +00002770<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002771<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002772
Chris Lattner00950542001-06-06 20:29:01 +00002773<ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002774 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
2775 convention</a> the call should use. If none is specified, the call
2776 defaults to using C calling conventions.</li>
Devang Patelf642f472008-10-06 18:50:38 +00002777
2778 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002779 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
2780 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patelf642f472008-10-06 18:50:38 +00002781
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002782 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002783 function value being invoked. In most cases, this is a direct function
2784 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
2785 off an arbitrary pointer to function value.</li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002786
2787 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002788 function to be invoked. </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002789
2790 <li>'<tt>function args</tt>': argument list whose types match the function
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002791 signature argument types. If the function signature indicates the
2792 function accepts a variable number of arguments, the extra arguments can
2793 be specified.</li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002794
2795 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002796 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002797
2798 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002799 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002800
Devang Patel307e8ab2008-10-07 17:48:33 +00002801 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002802 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2803 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002804</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002805
Chris Lattner00950542001-06-06 20:29:01 +00002806<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002807<p>This instruction is designed to operate as a standard
2808 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
2809 primary difference is that it establishes an association with a label, which
2810 is used by the runtime library to unwind the stack.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002811
2812<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002813 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2814 exception. Additionally, this is important for implementation of
2815 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002816
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002817<p>For the purposes of the SSA form, the definition of the value returned by the
2818 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
2819 block to the "normal" label. If the callee unwinds then no return value is
2820 available.</p>
Dan Gohmanf96a4992009-05-22 21:47:08 +00002821
Chris Lattner00950542001-06-06 20:29:01 +00002822<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002823<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002824 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002825 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002826 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002827 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002828</pre>
Chris Lattner35eca582004-10-16 18:04:13 +00002829
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002830</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002831
Chris Lattner27f71f22003-09-03 00:41:47 +00002832<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002833
Chris Lattner261efe92003-11-25 01:02:51 +00002834<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2835Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002836
Misha Brukman9d0919f2003-11-08 01:05:38 +00002837<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002838
Chris Lattner27f71f22003-09-03 00:41:47 +00002839<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002840<pre>
2841 unwind
2842</pre>
2843
Chris Lattner27f71f22003-09-03 00:41:47 +00002844<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002845<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002846 at the first callee in the dynamic call stack which used
2847 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
2848 This is primarily used to implement exception handling.</p>
Chris Lattner35eca582004-10-16 18:04:13 +00002849
Chris Lattner27f71f22003-09-03 00:41:47 +00002850<h5>Semantics:</h5>
Chris Lattner72ed2002008-04-19 21:01:16 +00002851<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002852 immediately halt. The dynamic call stack is then searched for the
2853 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
2854 Once found, execution continues at the "exceptional" destination block
2855 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
2856 instruction in the dynamic call chain, undefined behavior results.</p>
2857
Misha Brukman9d0919f2003-11-08 01:05:38 +00002858</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002859
2860<!-- _______________________________________________________________________ -->
2861
2862<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2863Instruction</a> </div>
2864
2865<div class="doc_text">
2866
2867<h5>Syntax:</h5>
2868<pre>
2869 unreachable
2870</pre>
2871
2872<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002873<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002874 instruction is used to inform the optimizer that a particular portion of the
2875 code is not reachable. This can be used to indicate that the code after a
2876 no-return function cannot be reached, and other facts.</p>
Chris Lattner35eca582004-10-16 18:04:13 +00002877
2878<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002879<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002880
Chris Lattner35eca582004-10-16 18:04:13 +00002881</div>
2882
Chris Lattner00950542001-06-06 20:29:01 +00002883<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002884<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002885
Misha Brukman9d0919f2003-11-08 01:05:38 +00002886<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002887
2888<p>Binary operators are used to do most of the computation in a program. They
2889 require two operands of the same type, execute an operation on them, and
2890 produce a single value. The operands might represent multiple data, as is
2891 the case with the <a href="#t_vector">vector</a> data type. The result value
2892 has the same type as its operands.</p>
2893
Misha Brukman9d0919f2003-11-08 01:05:38 +00002894<p>There are several different binary operators:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002895
Misha Brukman9d0919f2003-11-08 01:05:38 +00002896</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002897
Chris Lattner00950542001-06-06 20:29:01 +00002898<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002899<div class="doc_subsubsection">
2900 <a name="i_add">'<tt>add</tt>' Instruction</a>
2901</div>
2902
Misha Brukman9d0919f2003-11-08 01:05:38 +00002903<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002904
Chris Lattner00950542001-06-06 20:29:01 +00002905<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002906<pre>
Dan Gohmancbb38f22009-07-20 22:41:19 +00002907 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00002908 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2909 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2910 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002911</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002912
Chris Lattner00950542001-06-06 20:29:01 +00002913<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002914<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002915
Chris Lattner00950542001-06-06 20:29:01 +00002916<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002917<p>The two arguments to the '<tt>add</tt>' instruction must
2918 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2919 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002920
Chris Lattner00950542001-06-06 20:29:01 +00002921<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002922<p>The value produced is the integer sum of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002923
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002924<p>If the sum has unsigned overflow, the result returned is the mathematical
2925 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002926
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002927<p>Because LLVM integers use a two's complement representation, this instruction
2928 is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002929
Dan Gohman08d012e2009-07-22 22:44:56 +00002930<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2931 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2932 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
2933 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00002934
Chris Lattner00950542001-06-06 20:29:01 +00002935<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002936<pre>
2937 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002938</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002939
Misha Brukman9d0919f2003-11-08 01:05:38 +00002940</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002941
Chris Lattner00950542001-06-06 20:29:01 +00002942<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002943<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002944 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
2945</div>
2946
2947<div class="doc_text">
2948
2949<h5>Syntax:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002950<pre>
2951 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2952</pre>
2953
2954<h5>Overview:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002955<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
2956
2957<h5>Arguments:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002958<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002959 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2960 floating point values. Both arguments must have identical types.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002961
2962<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002963<p>The value produced is the floating point sum of the two operands.</p>
2964
2965<h5>Example:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002966<pre>
2967 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
2968</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002969
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002970</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002971
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002972<!-- _______________________________________________________________________ -->
2973<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00002974 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2975</div>
2976
Misha Brukman9d0919f2003-11-08 01:05:38 +00002977<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002978
Chris Lattner00950542001-06-06 20:29:01 +00002979<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002980<pre>
Dan Gohman08d012e2009-07-22 22:44:56 +00002981 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00002982 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2983 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2984 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002985</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002986
Chris Lattner00950542001-06-06 20:29:01 +00002987<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002988<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002989 operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002990
2991<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002992 '<tt>neg</tt>' instruction present in most other intermediate
2993 representations.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002994
Chris Lattner00950542001-06-06 20:29:01 +00002995<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002996<p>The two arguments to the '<tt>sub</tt>' instruction must
2997 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2998 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002999
Chris Lattner00950542001-06-06 20:29:01 +00003000<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003001<p>The value produced is the integer difference of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003002
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003003<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003004 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3005 result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003006
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003007<p>Because LLVM integers use a two's complement representation, this instruction
3008 is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003009
Dan Gohman08d012e2009-07-22 22:44:56 +00003010<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3011 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3012 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
3013 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003014
Chris Lattner00950542001-06-06 20:29:01 +00003015<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00003016<pre>
3017 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003018 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00003019</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003020
Misha Brukman9d0919f2003-11-08 01:05:38 +00003021</div>
Chris Lattner5568e942008-05-20 20:48:21 +00003022
Chris Lattner00950542001-06-06 20:29:01 +00003023<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00003024<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003025 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
3026</div>
3027
3028<div class="doc_text">
3029
3030<h5>Syntax:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003031<pre>
3032 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3033</pre>
3034
3035<h5>Overview:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003036<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003037 operands.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003038
3039<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003040 '<tt>fneg</tt>' instruction present in most other intermediate
3041 representations.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003042
3043<h5>Arguments:</h5>
Bill Wendlingd9fe2982009-07-20 02:32:41 +00003044<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003045 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3046 floating point values. Both arguments must have identical types.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003047
3048<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003049<p>The value produced is the floating point difference of the two operands.</p>
3050
3051<h5>Example:</h5>
3052<pre>
3053 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3054 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3055</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003056
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003057</div>
3058
3059<!-- _______________________________________________________________________ -->
3060<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00003061 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
3062</div>
3063
Misha Brukman9d0919f2003-11-08 01:05:38 +00003064<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003065
Chris Lattner00950542001-06-06 20:29:01 +00003066<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003067<pre>
Dan Gohman08d012e2009-07-22 22:44:56 +00003068 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00003069 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3070 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3071 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003072</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003073
Chris Lattner00950542001-06-06 20:29:01 +00003074<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003075<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003076
Chris Lattner00950542001-06-06 20:29:01 +00003077<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003078<p>The two arguments to the '<tt>mul</tt>' instruction must
3079 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3080 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003081
Chris Lattner00950542001-06-06 20:29:01 +00003082<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003083<p>The value produced is the integer product of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003084
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003085<p>If the result of the multiplication has unsigned overflow, the result
3086 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3087 width of the result.</p>
3088
3089<p>Because LLVM integers use a two's complement representation, and the result
3090 is the same width as the operands, this instruction returns the correct
3091 result for both signed and unsigned integers. If a full product
3092 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3093 be sign-extended or zero-extended as appropriate to the width of the full
3094 product.</p>
3095
Dan Gohman08d012e2009-07-22 22:44:56 +00003096<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3097 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3098 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
3099 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003100
Chris Lattner00950542001-06-06 20:29:01 +00003101<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003102<pre>
3103 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00003104</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003105
Misha Brukman9d0919f2003-11-08 01:05:38 +00003106</div>
Chris Lattner5568e942008-05-20 20:48:21 +00003107
Chris Lattner00950542001-06-06 20:29:01 +00003108<!-- _______________________________________________________________________ -->
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003109<div class="doc_subsubsection">
3110 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
3111</div>
3112
3113<div class="doc_text">
3114
3115<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003116<pre>
3117 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003118</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003119
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003120<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003121<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003122
3123<h5>Arguments:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003124<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003125 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3126 floating point values. Both arguments must have identical types.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003127
3128<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003129<p>The value produced is the floating point product of the two operands.</p>
3130
3131<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003132<pre>
3133 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003134</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003135
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003136</div>
3137
3138<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00003139<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
3140</a></div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003141
Reid Spencer1628cec2006-10-26 06:15:43 +00003142<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003143
Reid Spencer1628cec2006-10-26 06:15:43 +00003144<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003145<pre>
3146 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003147</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003148
Reid Spencer1628cec2006-10-26 06:15:43 +00003149<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003150<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003151
Reid Spencer1628cec2006-10-26 06:15:43 +00003152<h5>Arguments:</h5>
3153<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003154 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3155 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003156
Reid Spencer1628cec2006-10-26 06:15:43 +00003157<h5>Semantics:</h5>
Chris Lattner5ec89832008-01-28 00:36:27 +00003158<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003159
Chris Lattner5ec89832008-01-28 00:36:27 +00003160<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003161 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3162
Chris Lattner5ec89832008-01-28 00:36:27 +00003163<p>Division by zero leads to undefined behavior.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003164
Reid Spencer1628cec2006-10-26 06:15:43 +00003165<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003166<pre>
3167 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003168</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003169
Reid Spencer1628cec2006-10-26 06:15:43 +00003170</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003171
Reid Spencer1628cec2006-10-26 06:15:43 +00003172<!-- _______________________________________________________________________ -->
3173<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
3174</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003175
Reid Spencer1628cec2006-10-26 06:15:43 +00003176<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003177
Reid Spencer1628cec2006-10-26 06:15:43 +00003178<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003179<pre>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003180 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00003181 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003182</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003183
Reid Spencer1628cec2006-10-26 06:15:43 +00003184<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003185<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003186
Reid Spencer1628cec2006-10-26 06:15:43 +00003187<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003188<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003189 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3190 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003191
Reid Spencer1628cec2006-10-26 06:15:43 +00003192<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003193<p>The value produced is the signed integer quotient of the two operands rounded
3194 towards zero.</p>
3195
Chris Lattner5ec89832008-01-28 00:36:27 +00003196<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003197 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3198
Chris Lattner5ec89832008-01-28 00:36:27 +00003199<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003200 undefined behavior; this is a rare case, but can occur, for example, by doing
3201 a 32-bit division of -2147483648 by -1.</p>
3202
Dan Gohman9c5beed2009-07-22 00:04:19 +00003203<p>If the <tt>exact</tt> keyword is present, the result value of the
3204 <tt>sdiv</tt> is undefined if the result would be rounded or if overflow
3205 would occur.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003206
Reid Spencer1628cec2006-10-26 06:15:43 +00003207<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003208<pre>
3209 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003210</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003211
Reid Spencer1628cec2006-10-26 06:15:43 +00003212</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003213
Reid Spencer1628cec2006-10-26 06:15:43 +00003214<!-- _______________________________________________________________________ -->
3215<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00003216Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003217
Misha Brukman9d0919f2003-11-08 01:05:38 +00003218<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003219
Chris Lattner00950542001-06-06 20:29:01 +00003220<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003221<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003222 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003223</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003224
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003225<h5>Overview:</h5>
3226<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003227
Chris Lattner261efe92003-11-25 01:02:51 +00003228<h5>Arguments:</h5>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003229<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003230 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3231 floating point values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003232
Chris Lattner261efe92003-11-25 01:02:51 +00003233<h5>Semantics:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00003234<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003235
Chris Lattner261efe92003-11-25 01:02:51 +00003236<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003237<pre>
3238 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003239</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003240
Chris Lattner261efe92003-11-25 01:02:51 +00003241</div>
Chris Lattner5568e942008-05-20 20:48:21 +00003242
Chris Lattner261efe92003-11-25 01:02:51 +00003243<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00003244<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3245</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003246
Reid Spencer0a783f72006-11-02 01:53:59 +00003247<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003248
Reid Spencer0a783f72006-11-02 01:53:59 +00003249<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003250<pre>
3251 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003252</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003253
Reid Spencer0a783f72006-11-02 01:53:59 +00003254<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003255<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3256 division of its two arguments.</p>
3257
Reid Spencer0a783f72006-11-02 01:53:59 +00003258<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003259<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003260 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3261 values. Both arguments must have identical types.</p>
3262
Reid Spencer0a783f72006-11-02 01:53:59 +00003263<h5>Semantics:</h5>
3264<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003265 This instruction always performs an unsigned division to get the
3266 remainder.</p>
3267
Chris Lattner5ec89832008-01-28 00:36:27 +00003268<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003269 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3270
Chris Lattner5ec89832008-01-28 00:36:27 +00003271<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003272
Reid Spencer0a783f72006-11-02 01:53:59 +00003273<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003274<pre>
3275 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003276</pre>
3277
3278</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003279
Reid Spencer0a783f72006-11-02 01:53:59 +00003280<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00003281<div class="doc_subsubsection">
3282 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3283</div>
3284
Chris Lattner261efe92003-11-25 01:02:51 +00003285<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003286
Chris Lattner261efe92003-11-25 01:02:51 +00003287<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003288<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003289 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003290</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003291
Chris Lattner261efe92003-11-25 01:02:51 +00003292<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003293<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3294 division of its two operands. This instruction can also take
3295 <a href="#t_vector">vector</a> versions of the values in which case the
3296 elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00003297
Chris Lattner261efe92003-11-25 01:02:51 +00003298<h5>Arguments:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00003299<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003300 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3301 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003302
Chris Lattner261efe92003-11-25 01:02:51 +00003303<h5>Semantics:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00003304<p>This instruction returns the <i>remainder</i> of a division (where the result
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003305 has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
3306 operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
3307 a value. For more information about the difference,
3308 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3309 Math Forum</a>. For a table of how this is implemented in various languages,
3310 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3311 Wikipedia: modulo operation</a>.</p>
3312
Chris Lattner5ec89832008-01-28 00:36:27 +00003313<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003314 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3315
Chris Lattner5ec89832008-01-28 00:36:27 +00003316<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003317 Overflow also leads to undefined behavior; this is a rare case, but can
3318 occur, for example, by taking the remainder of a 32-bit division of
3319 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3320 lets srem be implemented using instructions that return both the result of
3321 the division and the remainder.)</p>
3322
Chris Lattner261efe92003-11-25 01:02:51 +00003323<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003324<pre>
3325 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003326</pre>
3327
3328</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003329
Reid Spencer0a783f72006-11-02 01:53:59 +00003330<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00003331<div class="doc_subsubsection">
3332 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
3333
Reid Spencer0a783f72006-11-02 01:53:59 +00003334<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003335
Reid Spencer0a783f72006-11-02 01:53:59 +00003336<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003337<pre>
3338 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003339</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003340
Reid Spencer0a783f72006-11-02 01:53:59 +00003341<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003342<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3343 its two operands.</p>
3344
Reid Spencer0a783f72006-11-02 01:53:59 +00003345<h5>Arguments:</h5>
3346<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003347 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3348 floating point values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003349
Reid Spencer0a783f72006-11-02 01:53:59 +00003350<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003351<p>This instruction returns the <i>remainder</i> of a division. The remainder
3352 has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003353
Reid Spencer0a783f72006-11-02 01:53:59 +00003354<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003355<pre>
3356 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003357</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003358
Misha Brukman9d0919f2003-11-08 01:05:38 +00003359</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00003360
Reid Spencer8e11bf82007-02-02 13:57:07 +00003361<!-- ======================================================================= -->
3362<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
3363Operations</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003364
Reid Spencer8e11bf82007-02-02 13:57:07 +00003365<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003366
3367<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3368 program. They are generally very efficient instructions and can commonly be
3369 strength reduced from other instructions. They require two operands of the
3370 same type, execute an operation on them, and produce a single value. The
3371 resulting value is the same type as its operands.</p>
3372
Reid Spencer8e11bf82007-02-02 13:57:07 +00003373</div>
3374
Reid Spencer569f2fa2007-01-31 21:39:12 +00003375<!-- _______________________________________________________________________ -->
3376<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
3377Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003378
Reid Spencer569f2fa2007-01-31 21:39:12 +00003379<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003380
Reid Spencer569f2fa2007-01-31 21:39:12 +00003381<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003382<pre>
3383 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003384</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003385
Reid Spencer569f2fa2007-01-31 21:39:12 +00003386<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003387<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3388 a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003389
Reid Spencer569f2fa2007-01-31 21:39:12 +00003390<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003391<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3392 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3393 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003394
Reid Spencer569f2fa2007-01-31 21:39:12 +00003395<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003396<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3397 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3398 is (statically or dynamically) negative or equal to or larger than the number
3399 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3400 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3401 shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003402
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003403<h5>Example:</h5>
3404<pre>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003405 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3406 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3407 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003408 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003409 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003410</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003411
Reid Spencer569f2fa2007-01-31 21:39:12 +00003412</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003413
Reid Spencer569f2fa2007-01-31 21:39:12 +00003414<!-- _______________________________________________________________________ -->
3415<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
3416Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003417
Reid Spencer569f2fa2007-01-31 21:39:12 +00003418<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003419
Reid Spencer569f2fa2007-01-31 21:39:12 +00003420<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003421<pre>
3422 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003423</pre>
3424
3425<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003426<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3427 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003428
3429<h5>Arguments:</h5>
3430<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003431 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3432 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003433
3434<h5>Semantics:</h5>
3435<p>This instruction always performs a logical shift right operation. The most
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003436 significant bits of the result will be filled with zero bits after the shift.
3437 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3438 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3439 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3440 shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003441
3442<h5>Example:</h5>
3443<pre>
3444 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3445 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3446 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3447 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003448 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003449 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003450</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003451
Reid Spencer569f2fa2007-01-31 21:39:12 +00003452</div>
3453
Reid Spencer8e11bf82007-02-02 13:57:07 +00003454<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00003455<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3456Instruction</a> </div>
3457<div class="doc_text">
3458
3459<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003460<pre>
3461 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003462</pre>
3463
3464<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003465<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3466 operand shifted to the right a specified number of bits with sign
3467 extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003468
3469<h5>Arguments:</h5>
3470<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003471 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3472 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003473
3474<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003475<p>This instruction always performs an arithmetic shift right operation, The
3476 most significant bits of the result will be filled with the sign bit
3477 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3478 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3479 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3480 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003481
3482<h5>Example:</h5>
3483<pre>
3484 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3485 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3486 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3487 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003488 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003489 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003490</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003491
Reid Spencer569f2fa2007-01-31 21:39:12 +00003492</div>
3493
Chris Lattner00950542001-06-06 20:29:01 +00003494<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003495<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3496Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00003497
Misha Brukman9d0919f2003-11-08 01:05:38 +00003498<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003499
Chris Lattner00950542001-06-06 20:29:01 +00003500<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003501<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003502 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003503</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003504
Chris Lattner00950542001-06-06 20:29:01 +00003505<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003506<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3507 operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003508
Chris Lattner00950542001-06-06 20:29:01 +00003509<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003510<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003511 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3512 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003513
Chris Lattner00950542001-06-06 20:29:01 +00003514<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003515<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003516
Misha Brukman9d0919f2003-11-08 01:05:38 +00003517<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00003518 <tbody>
3519 <tr>
3520 <td>In0</td>
3521 <td>In1</td>
3522 <td>Out</td>
3523 </tr>
3524 <tr>
3525 <td>0</td>
3526 <td>0</td>
3527 <td>0</td>
3528 </tr>
3529 <tr>
3530 <td>0</td>
3531 <td>1</td>
3532 <td>0</td>
3533 </tr>
3534 <tr>
3535 <td>1</td>
3536 <td>0</td>
3537 <td>0</td>
3538 </tr>
3539 <tr>
3540 <td>1</td>
3541 <td>1</td>
3542 <td>1</td>
3543 </tr>
3544 </tbody>
3545</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003546
Chris Lattner00950542001-06-06 20:29:01 +00003547<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003548<pre>
3549 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003550 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3551 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00003552</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003553</div>
Chris Lattner00950542001-06-06 20:29:01 +00003554<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003555<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00003556
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003557<div class="doc_text">
3558
3559<h5>Syntax:</h5>
3560<pre>
3561 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3562</pre>
3563
3564<h5>Overview:</h5>
3565<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3566 two operands.</p>
3567
3568<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003569<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003570 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3571 values. Both arguments must have identical types.</p>
3572
Chris Lattner00950542001-06-06 20:29:01 +00003573<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003574<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003575
Chris Lattner261efe92003-11-25 01:02:51 +00003576<table border="1" cellspacing="0" cellpadding="4">
3577 <tbody>
3578 <tr>
3579 <td>In0</td>
3580 <td>In1</td>
3581 <td>Out</td>
3582 </tr>
3583 <tr>
3584 <td>0</td>
3585 <td>0</td>
3586 <td>0</td>
3587 </tr>
3588 <tr>
3589 <td>0</td>
3590 <td>1</td>
3591 <td>1</td>
3592 </tr>
3593 <tr>
3594 <td>1</td>
3595 <td>0</td>
3596 <td>1</td>
3597 </tr>
3598 <tr>
3599 <td>1</td>
3600 <td>1</td>
3601 <td>1</td>
3602 </tr>
3603 </tbody>
3604</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003605
Chris Lattner00950542001-06-06 20:29:01 +00003606<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003607<pre>
3608 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003609 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3610 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00003611</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003612
Misha Brukman9d0919f2003-11-08 01:05:38 +00003613</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003614
Chris Lattner00950542001-06-06 20:29:01 +00003615<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003616<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3617Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003618
Misha Brukman9d0919f2003-11-08 01:05:38 +00003619<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003620
Chris Lattner00950542001-06-06 20:29:01 +00003621<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003622<pre>
3623 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003624</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003625
Chris Lattner00950542001-06-06 20:29:01 +00003626<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003627<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3628 its two operands. The <tt>xor</tt> is used to implement the "one's
3629 complement" operation, which is the "~" operator in C.</p>
3630
Chris Lattner00950542001-06-06 20:29:01 +00003631<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003632<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003633 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3634 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003635
Chris Lattner00950542001-06-06 20:29:01 +00003636<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003637<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003638
Chris Lattner261efe92003-11-25 01:02:51 +00003639<table border="1" cellspacing="0" cellpadding="4">
3640 <tbody>
3641 <tr>
3642 <td>In0</td>
3643 <td>In1</td>
3644 <td>Out</td>
3645 </tr>
3646 <tr>
3647 <td>0</td>
3648 <td>0</td>
3649 <td>0</td>
3650 </tr>
3651 <tr>
3652 <td>0</td>
3653 <td>1</td>
3654 <td>1</td>
3655 </tr>
3656 <tr>
3657 <td>1</td>
3658 <td>0</td>
3659 <td>1</td>
3660 </tr>
3661 <tr>
3662 <td>1</td>
3663 <td>1</td>
3664 <td>0</td>
3665 </tr>
3666 </tbody>
3667</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003668
Chris Lattner00950542001-06-06 20:29:01 +00003669<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003670<pre>
3671 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003672 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3673 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3674 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00003675</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003676
Misha Brukman9d0919f2003-11-08 01:05:38 +00003677</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003678
Chris Lattner00950542001-06-06 20:29:01 +00003679<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003680<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00003681 <a name="vectorops">Vector Operations</a>
3682</div>
3683
3684<div class="doc_text">
3685
3686<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003687 target-independent manner. These instructions cover the element-access and
3688 vector-specific operations needed to process vectors effectively. While LLVM
3689 does directly support these vector operations, many sophisticated algorithms
3690 will want to use target-specific intrinsics to take full advantage of a
3691 specific target.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003692
3693</div>
3694
3695<!-- _______________________________________________________________________ -->
3696<div class="doc_subsubsection">
3697 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3698</div>
3699
3700<div class="doc_text">
3701
3702<h5>Syntax:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003703<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003704 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003705</pre>
3706
3707<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003708<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
3709 from a vector at a specified index.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003710
3711
3712<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003713<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
3714 of <a href="#t_vector">vector</a> type. The second operand is an index
3715 indicating the position from which to extract the element. The index may be
3716 a variable.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003717
3718<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003719<p>The result is a scalar of the same type as the element type of
3720 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3721 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3722 results are undefined.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003723
3724<h5>Example:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003725<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003726 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003727</pre>
Chris Lattner3df241e2006-04-08 23:07:04 +00003728
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003729</div>
Chris Lattner3df241e2006-04-08 23:07:04 +00003730
3731<!-- _______________________________________________________________________ -->
3732<div class="doc_subsubsection">
3733 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3734</div>
3735
3736<div class="doc_text">
3737
3738<h5>Syntax:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003739<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00003740 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003741</pre>
3742
3743<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003744<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
3745 vector at a specified index.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003746
3747<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003748<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
3749 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
3750 whose type must equal the element type of the first operand. The third
3751 operand is an index indicating the position at which to insert the value.
3752 The index may be a variable.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003753
3754<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003755<p>The result is a vector of the same type as <tt>val</tt>. Its element values
3756 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
3757 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3758 results are undefined.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003759
3760<h5>Example:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003761<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003762 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003763</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003764
Chris Lattner3df241e2006-04-08 23:07:04 +00003765</div>
3766
3767<!-- _______________________________________________________________________ -->
3768<div class="doc_subsubsection">
3769 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3770</div>
3771
3772<div class="doc_text">
3773
3774<h5>Syntax:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003775<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003776 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003777</pre>
3778
3779<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003780<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
3781 from two input vectors, returning a vector with the same element type as the
3782 input and length that is the same as the shuffle mask.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003783
3784<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003785<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3786 with types that match each other. The third argument is a shuffle mask whose
3787 element type is always 'i32'. The result of the instruction is a vector
3788 whose length is the same as the shuffle mask and whose element type is the
3789 same as the element type of the first two operands.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003790
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003791<p>The shuffle mask operand is required to be a constant vector with either
3792 constant integer or undef values.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003793
3794<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003795<p>The elements of the two input vectors are numbered from left to right across
3796 both of the vectors. The shuffle mask operand specifies, for each element of
3797 the result vector, which element of the two input vectors the result element
3798 gets. The element selector may be undef (meaning "don't care") and the
3799 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00003800
3801<h5>Example:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00003802<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003803 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003804 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003805 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3806 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003807 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3808 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3809 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3810 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003811</pre>
Chris Lattner3df241e2006-04-08 23:07:04 +00003812
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003813</div>
Tanya Lattner09474292006-04-14 19:24:33 +00003814
Chris Lattner3df241e2006-04-08 23:07:04 +00003815<!-- ======================================================================= -->
3816<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003817 <a name="aggregateops">Aggregate Operations</a>
3818</div>
3819
3820<div class="doc_text">
3821
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003822<p>LLVM supports several instructions for working with aggregate values.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003823
3824</div>
3825
3826<!-- _______________________________________________________________________ -->
3827<div class="doc_subsubsection">
3828 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3829</div>
3830
3831<div class="doc_text">
3832
3833<h5>Syntax:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003834<pre>
3835 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3836</pre>
3837
3838<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003839<p>The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3840 or array element from an aggregate value.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003841
3842<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003843<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
3844 of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
3845 operands are constant indices to specify which value to extract in a similar
3846 manner as indices in a
3847 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003848
3849<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003850<p>The result is the value at the position in the aggregate specified by the
3851 index operands.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003852
3853<h5>Example:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003854<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003855 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003856</pre>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003857
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003858</div>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003859
3860<!-- _______________________________________________________________________ -->
3861<div class="doc_subsubsection">
3862 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3863</div>
3864
3865<div class="doc_text">
3866
3867<h5>Syntax:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003868<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003869 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003870</pre>
3871
3872<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003873<p>The '<tt>insertvalue</tt>' instruction inserts a value into a struct field or
3874 array element in an aggregate.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003875
3876
3877<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003878<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
3879 of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
3880 second operand is a first-class value to insert. The following operands are
3881 constant indices indicating the position at which to insert the value in a
3882 similar manner as indices in a
3883 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. The
3884 value to insert must have the same type as the value identified by the
3885 indices.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003886
3887<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003888<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
3889 that of <tt>val</tt> except that the value at the position specified by the
3890 indices is that of <tt>elt</tt>.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003891
3892<h5>Example:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003893<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003894 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003895</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003896
Dan Gohmana334d5f2008-05-12 23:51:09 +00003897</div>
3898
3899
3900<!-- ======================================================================= -->
3901<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003902 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003903</div>
3904
Misha Brukman9d0919f2003-11-08 01:05:38 +00003905<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003906
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003907<p>A key design point of an SSA-based representation is how it represents
3908 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandez2fee2942009-10-26 23:44:29 +00003909 very simple. This section describes how to read, write, and allocate
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003910 memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003911
Misha Brukman9d0919f2003-11-08 01:05:38 +00003912</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003913
Chris Lattner00950542001-06-06 20:29:01 +00003914<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003915<div class="doc_subsubsection">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003916 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3917</div>
3918
Misha Brukman9d0919f2003-11-08 01:05:38 +00003919<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003920
Chris Lattner00950542001-06-06 20:29:01 +00003921<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003922<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003923 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003924</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003925
Chris Lattner00950542001-06-06 20:29:01 +00003926<h5>Overview:</h5>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003927<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003928 currently executing function, to be automatically released when this function
3929 returns to its caller. The object is always allocated in the generic address
3930 space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003931
Chris Lattner00950542001-06-06 20:29:01 +00003932<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003933<p>The '<tt>alloca</tt>' instruction
3934 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
3935 runtime stack, returning a pointer of the appropriate type to the program.
3936 If "NumElements" is specified, it is the number of elements allocated,
3937 otherwise "NumElements" is defaulted to be one. If a constant alignment is
3938 specified, the value result of the allocation is guaranteed to be aligned to
3939 at least that boundary. If not specified, or if zero, the target can choose
3940 to align the allocation on any convenient boundary compatible with the
3941 type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003942
Misha Brukman9d0919f2003-11-08 01:05:38 +00003943<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003944
Chris Lattner00950542001-06-06 20:29:01 +00003945<h5>Semantics:</h5>
Bill Wendling871eb0a2009-05-08 20:49:29 +00003946<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003947 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
3948 memory is automatically released when the function returns. The
3949 '<tt>alloca</tt>' instruction is commonly used to represent automatic
3950 variables that must have an address available. When the function returns
3951 (either with the <tt><a href="#i_ret">ret</a></tt>
3952 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
3953 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003954
Chris Lattner00950542001-06-06 20:29:01 +00003955<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003956<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003957 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3958 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3959 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3960 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003961</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003962
Misha Brukman9d0919f2003-11-08 01:05:38 +00003963</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003964
Chris Lattner00950542001-06-06 20:29:01 +00003965<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003966<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3967Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003968
Misha Brukman9d0919f2003-11-08 01:05:38 +00003969<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003970
Chris Lattner2b7d3202002-05-06 03:03:22 +00003971<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003972<pre>
3973 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
3974 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
3975</pre>
3976
Chris Lattner2b7d3202002-05-06 03:03:22 +00003977<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003978<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003979
Chris Lattner2b7d3202002-05-06 03:03:22 +00003980<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003981<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
3982 from which to load. The pointer must point to
3983 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
3984 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
3985 number or order of execution of this <tt>load</tt> with other
3986 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3987 instructions. </p>
3988
3989<p>The optional constant "align" argument specifies the alignment of the
3990 operation (that is, the alignment of the memory address). A value of 0 or an
3991 omitted "align" argument means that the operation has the preferential
3992 alignment for the target. It is the responsibility of the code emitter to
3993 ensure that the alignment information is correct. Overestimating the
3994 alignment results in an undefined behavior. Underestimating the alignment may
3995 produce less efficient code. An alignment of 1 is always safe.</p>
3996
Chris Lattner2b7d3202002-05-06 03:03:22 +00003997<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003998<p>The location of memory pointed to is loaded. If the value being loaded is of
3999 scalar type then the number of bytes read does not exceed the minimum number
4000 of bytes needed to hold all bits of the type. For example, loading an
4001 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4002 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4003 is undefined if the value was not originally written using a store of the
4004 same type.</p>
4005
Chris Lattner2b7d3202002-05-06 03:03:22 +00004006<h5>Examples:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004007<pre>
4008 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4009 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004010 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00004011</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004012
Misha Brukman9d0919f2003-11-08 01:05:38 +00004013</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004014
Chris Lattner2b7d3202002-05-06 03:03:22 +00004015<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00004016<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
4017Instruction</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004018
Reid Spencer035ab572006-11-09 21:18:01 +00004019<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004020
Chris Lattner2b7d3202002-05-06 03:03:22 +00004021<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004022<pre>
4023 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00004024 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00004025</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004026
Chris Lattner2b7d3202002-05-06 03:03:22 +00004027<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004028<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004029
Chris Lattner2b7d3202002-05-06 03:03:22 +00004030<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004031<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4032 and an address at which to store it. The type of the
4033 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4034 the <a href="#t_firstclass">first class</a> type of the
4035 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked
4036 as <tt>volatile</tt>, then the optimizer is not allowed to modify the number
4037 or order of execution of this <tt>store</tt> with other
4038 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
4039 instructions.</p>
4040
4041<p>The optional constant "align" argument specifies the alignment of the
4042 operation (that is, the alignment of the memory address). A value of 0 or an
4043 omitted "align" argument means that the operation has the preferential
4044 alignment for the target. It is the responsibility of the code emitter to
4045 ensure that the alignment information is correct. Overestimating the
4046 alignment results in an undefined behavior. Underestimating the alignment may
4047 produce less efficient code. An alignment of 1 is always safe.</p>
4048
Chris Lattner261efe92003-11-25 01:02:51 +00004049<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004050<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4051 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4052 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4053 does not exceed the minimum number of bytes needed to hold all bits of the
4054 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4055 writing a value of a type like <tt>i20</tt> with a size that is not an
4056 integral number of bytes, it is unspecified what happens to the extra bits
4057 that do not belong to the type, but they will typically be overwritten.</p>
4058
Chris Lattner2b7d3202002-05-06 03:03:22 +00004059<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004060<pre>
4061 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00004062 store i32 3, i32* %ptr <i>; yields {void}</i>
4063 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00004064</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004065
Reid Spencer47ce1792006-11-09 21:15:49 +00004066</div>
4067
Chris Lattner2b7d3202002-05-06 03:03:22 +00004068<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004069<div class="doc_subsubsection">
4070 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
4071</div>
4072
Misha Brukman9d0919f2003-11-08 01:05:38 +00004073<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004074
Chris Lattner7faa8832002-04-14 06:13:44 +00004075<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004076<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004077 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohmandd8004d2009-07-27 21:53:46 +00004078 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004079</pre>
4080
Chris Lattner7faa8832002-04-14 06:13:44 +00004081<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004082<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
4083 subelement of an aggregate data structure. It performs address calculation
4084 only and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004085
Chris Lattner7faa8832002-04-14 06:13:44 +00004086<h5>Arguments:</h5>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004087<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnerc8eef442009-07-29 06:44:13 +00004088 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004089 elements of the aggregate object are indexed. The interpretation of each
4090 index is dependent on the type being indexed into. The first index always
4091 indexes the pointer value given as the first argument, the second index
4092 indexes a value of the type pointed to (not necessarily the value directly
4093 pointed to, since the first index can be non-zero), etc. The first type
4094 indexed into must be a pointer value, subsequent types can be arrays, vectors
4095 and structs. Note that subsequent types being indexed into can never be
4096 pointers, since that would require loading the pointer before continuing
4097 calculation.</p>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004098
4099<p>The type of each index argument depends on the type it is indexing into.
Chris Lattnerc8eef442009-07-29 06:44:13 +00004100 When indexing into a (optionally packed) structure, only <tt>i32</tt> integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004101 <b>constants</b> are allowed. When indexing into an array, pointer or
Chris Lattnerc8eef442009-07-29 06:44:13 +00004102 vector, integers of any width are allowed, and they are not required to be
4103 constant.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004104
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004105<p>For example, let's consider a C code fragment and how it gets compiled to
4106 LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004107
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004108<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004109<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004110struct RT {
4111 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00004112 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004113 char C;
4114};
4115struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00004116 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004117 double Y;
4118 struct RT Z;
4119};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004120
Chris Lattnercabc8462007-05-29 15:43:56 +00004121int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004122 return &amp;s[1].Z.B[5][13];
4123}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004124</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004125</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004126
Misha Brukman9d0919f2003-11-08 01:05:38 +00004127<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004128
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004129<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004130<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00004131%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
4132%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004133
Dan Gohman4df605b2009-07-25 02:23:48 +00004134define i32* @foo(%ST* %s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004135entry:
4136 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
4137 ret i32* %reg
4138}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004139</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004140</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004141
Chris Lattner7faa8832002-04-14 06:13:44 +00004142<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004143<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004144 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
4145 }</tt>' type, a structure. The second index indexes into the third element
4146 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
4147 i8 }</tt>' type, another structure. The third index indexes into the second
4148 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
4149 array. The two dimensions of the array are subscripted into, yielding an
4150 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
4151 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004152
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004153<p>Note that it is perfectly legal to index partially through a structure,
4154 returning a pointer to an inner element. Because of this, the LLVM code for
4155 the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004156
4157<pre>
Dan Gohman4df605b2009-07-25 02:23:48 +00004158 define i32* @foo(%ST* %s) {
Reid Spencerca86e162006-12-31 07:07:53 +00004159 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00004160 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
4161 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004162 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
4163 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
4164 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004165 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00004166</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00004167
Dan Gohmandd8004d2009-07-27 21:53:46 +00004168<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman0a28d182009-07-29 16:00:30 +00004169 <tt>getelementptr</tt> is undefined if the base pointer is not an
4170 <i>in bounds</i> address of an allocated object, or if any of the addresses
Dan Gohmanb255b882009-08-20 17:08:17 +00004171 that would be formed by successive addition of the offsets implied by the
4172 indices to the base address with infinitely precise arithmetic are not an
4173 <i>in bounds</i> address of that allocated object.
Dan Gohman0a28d182009-07-29 16:00:30 +00004174 The <i>in bounds</i> addresses for an allocated object are all the addresses
Dan Gohmanb255b882009-08-20 17:08:17 +00004175 that point into the object, plus the address one byte past the end.</p>
Dan Gohmandd8004d2009-07-27 21:53:46 +00004176
4177<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4178 the base address with silently-wrapping two's complement arithmetic, and
4179 the result value of the <tt>getelementptr</tt> may be outside the object
4180 pointed to by the base pointer. The result value may not necessarily be
4181 used to access memory though, even if it happens to point into allocated
4182 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4183 section for more information.</p>
4184
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004185<p>The getelementptr instruction is often confusing. For some more insight into
4186 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner884a9702006-08-15 00:45:58 +00004187
Chris Lattner7faa8832002-04-14 06:13:44 +00004188<h5>Example:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004189<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004190 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004191 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4192 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004193 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004194 <i>; yields i8*:eptr</i>
4195 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta9f805c22009-04-25 07:27:44 +00004196 <i>; yields i32*:iptr</i>
Sanjiv Gupta16ffa802009-04-24 16:38:13 +00004197 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004198</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004199
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004200</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00004201
Chris Lattner00950542001-06-06 20:29:01 +00004202<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00004203<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004204</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004205
Misha Brukman9d0919f2003-11-08 01:05:38 +00004206<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004207
Reid Spencer2fd21e62006-11-08 01:18:52 +00004208<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004209 which all take a single operand and a type. They perform various bit
4210 conversions on the operand.</p>
4211
Misha Brukman9d0919f2003-11-08 01:05:38 +00004212</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004213
Chris Lattner6536cfe2002-05-06 22:08:29 +00004214<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00004215<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004216 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4217</div>
4218<div class="doc_text">
4219
4220<h5>Syntax:</h5>
4221<pre>
4222 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4223</pre>
4224
4225<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004226<p>The '<tt>trunc</tt>' instruction truncates its operand to the
4227 type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004228
4229<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004230<p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
4231 be an <a href="#t_integer">integer</a> type, and a type that specifies the
4232 size and type of the result, which must be
4233 an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must
4234 be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
4235 allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004236
4237<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004238<p>The '<tt>trunc</tt>' instruction truncates the high order bits
4239 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4240 source size must be larger than the destination size, <tt>trunc</tt> cannot
4241 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004242
4243<h5>Example:</h5>
4244<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004245 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00004246 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
4247 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004248</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004249
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004250</div>
4251
4252<!-- _______________________________________________________________________ -->
4253<div class="doc_subsubsection">
4254 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4255</div>
4256<div class="doc_text">
4257
4258<h5>Syntax:</h5>
4259<pre>
4260 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4261</pre>
4262
4263<h5>Overview:</h5>
4264<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004265 <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004266
4267
4268<h5>Arguments:</h5>
4269<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004270 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4271 also be of <a href="#t_integer">integer</a> type. The bit size of the
4272 <tt>value</tt> must be smaller than the bit size of the destination type,
4273 <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004274
4275<h5>Semantics:</h5>
4276<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004277 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004278
Reid Spencerb5929522007-01-12 15:46:11 +00004279<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004280
4281<h5>Example:</h5>
4282<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004283 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00004284 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004285</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004286
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004287</div>
4288
4289<!-- _______________________________________________________________________ -->
4290<div class="doc_subsubsection">
4291 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4292</div>
4293<div class="doc_text">
4294
4295<h5>Syntax:</h5>
4296<pre>
4297 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4298</pre>
4299
4300<h5>Overview:</h5>
4301<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4302
4303<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004304<p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of
4305 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4306 also be of <a href="#t_integer">integer</a> type. The bit size of the
4307 <tt>value</tt> must be smaller than the bit size of the destination type,
4308 <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004309
4310<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004311<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4312 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4313 of the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004314
Reid Spencerc78f3372007-01-12 03:35:51 +00004315<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004316
4317<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004318<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004319 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00004320 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004321</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004322
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004323</div>
4324
4325<!-- _______________________________________________________________________ -->
4326<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00004327 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4328</div>
4329
4330<div class="doc_text">
4331
4332<h5>Syntax:</h5>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004333<pre>
4334 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4335</pre>
4336
4337<h5>Overview:</h5>
4338<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004339 <tt>ty2</tt>.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004340
4341<h5>Arguments:</h5>
4342<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004343 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4344 to cast it to. The size of <tt>value</tt> must be larger than the size of
4345 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4346 <i>no-op cast</i>.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004347
4348<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004349<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4350 <a href="#t_floating">floating point</a> type to a smaller
4351 <a href="#t_floating">floating point</a> type. If the value cannot fit
4352 within the destination type, <tt>ty2</tt>, then the results are
4353 undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004354
4355<h5>Example:</h5>
4356<pre>
4357 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4358 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4359</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004360
Reid Spencer3fa91b02006-11-09 21:48:10 +00004361</div>
4362
4363<!-- _______________________________________________________________________ -->
4364<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004365 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4366</div>
4367<div class="doc_text">
4368
4369<h5>Syntax:</h5>
4370<pre>
4371 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4372</pre>
4373
4374<h5>Overview:</h5>
4375<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004376 floating point value.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004377
4378<h5>Arguments:</h5>
4379<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004380 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4381 a <a href="#t_floating">floating point</a> type to cast it to. The source
4382 type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004383
4384<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004385<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004386 <a href="#t_floating">floating point</a> type to a larger
4387 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4388 used to make a <i>no-op cast</i> because it always changes bits. Use
4389 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004390
4391<h5>Example:</h5>
4392<pre>
4393 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4394 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4395</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004396
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004397</div>
4398
4399<!-- _______________________________________________________________________ -->
4400<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00004401 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004402</div>
4403<div class="doc_text">
4404
4405<h5>Syntax:</h5>
4406<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004407 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004408</pre>
4409
4410<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004411<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004412 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004413
4414<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004415<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4416 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4417 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4418 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4419 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004420
4421<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004422<p>The '<tt>fptoui</tt>' instruction converts its
4423 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4424 towards zero) unsigned integer value. If the value cannot fit
4425 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004426
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004427<h5>Example:</h5>
4428<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004429 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004430 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004431 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004432</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004433
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004434</div>
4435
4436<!-- _______________________________________________________________________ -->
4437<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004438 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004439</div>
4440<div class="doc_text">
4441
4442<h5>Syntax:</h5>
4443<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004444 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004445</pre>
4446
4447<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004448<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004449 <a href="#t_floating">floating point</a> <tt>value</tt> to
4450 type <tt>ty2</tt>.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004451
Chris Lattner6536cfe2002-05-06 22:08:29 +00004452<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004453<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4454 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4455 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4456 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4457 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004458
Chris Lattner6536cfe2002-05-06 22:08:29 +00004459<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004460<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004461 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4462 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4463 the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004464
Chris Lattner33ba0d92001-07-09 00:26:23 +00004465<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004466<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004467 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004468 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004469 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004470</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004471
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004472</div>
4473
4474<!-- _______________________________________________________________________ -->
4475<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004476 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004477</div>
4478<div class="doc_text">
4479
4480<h5>Syntax:</h5>
4481<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004482 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004483</pre>
4484
4485<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004486<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004487 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004488
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004489<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004490<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004491 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4492 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4493 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4494 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004495
4496<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004497<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004498 integer quantity and converts it to the corresponding floating point
4499 value. If the value cannot fit in the floating point value, the results are
4500 undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004501
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004502<h5>Example:</h5>
4503<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004504 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004505 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004506</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004507
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004508</div>
4509
4510<!-- _______________________________________________________________________ -->
4511<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004512 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004513</div>
4514<div class="doc_text">
4515
4516<h5>Syntax:</h5>
4517<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004518 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004519</pre>
4520
4521<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004522<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4523 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004524
4525<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004526<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004527 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4528 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4529 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4530 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004531
4532<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004533<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4534 quantity and converts it to the corresponding floating point value. If the
4535 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004536
4537<h5>Example:</h5>
4538<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004539 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004540 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004541</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004542
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004543</div>
4544
4545<!-- _______________________________________________________________________ -->
4546<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00004547 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4548</div>
4549<div class="doc_text">
4550
4551<h5>Syntax:</h5>
4552<pre>
4553 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4554</pre>
4555
4556<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004557<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4558 the integer type <tt>ty2</tt>.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004559
4560<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004561<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4562 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4563 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004564
4565<h5>Semantics:</h5>
4566<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004567 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4568 truncating or zero extending that value to the size of the integer type. If
4569 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4570 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4571 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4572 change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004573
4574<h5>Example:</h5>
4575<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004576 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4577 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004578</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004579
Reid Spencer72679252006-11-11 21:00:47 +00004580</div>
4581
4582<!-- _______________________________________________________________________ -->
4583<div class="doc_subsubsection">
4584 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4585</div>
4586<div class="doc_text">
4587
4588<h5>Syntax:</h5>
4589<pre>
4590 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4591</pre>
4592
4593<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004594<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4595 pointer type, <tt>ty2</tt>.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004596
4597<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00004598<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004599 value to cast, and a type to cast it to, which must be a
4600 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004601
4602<h5>Semantics:</h5>
4603<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004604 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4605 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4606 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
4607 than the size of a pointer then a zero extension is done. If they are the
4608 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencer72679252006-11-11 21:00:47 +00004609
4610<h5>Example:</h5>
4611<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004612 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4613 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4614 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004615</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004616
Reid Spencer72679252006-11-11 21:00:47 +00004617</div>
4618
4619<!-- _______________________________________________________________________ -->
4620<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00004621 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004622</div>
4623<div class="doc_text">
4624
4625<h5>Syntax:</h5>
4626<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004627 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004628</pre>
4629
4630<h5>Overview:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004631<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004632 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004633
4634<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004635<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
4636 non-aggregate first class value, and a type to cast it to, which must also be
4637 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
4638 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
4639 identical. If the source type is a pointer, the destination type must also be
4640 a pointer. This instruction supports bitwise conversion of vectors to
4641 integers and to vectors of other types (as long as they have the same
4642 size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004643
4644<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004645<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004646 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4647 this conversion. The conversion is done as if the <tt>value</tt> had been
4648 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
4649 be converted to other pointer types with this instruction. To convert
4650 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
4651 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004652
4653<h5>Example:</h5>
4654<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004655 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004656 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004657 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00004658</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004659
Misha Brukman9d0919f2003-11-08 01:05:38 +00004660</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004661
Reid Spencer2fd21e62006-11-08 01:18:52 +00004662<!-- ======================================================================= -->
4663<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004664
Reid Spencer2fd21e62006-11-08 01:18:52 +00004665<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004666
4667<p>The instructions in this category are the "miscellaneous" instructions, which
4668 defy better classification.</p>
4669
Reid Spencer2fd21e62006-11-08 01:18:52 +00004670</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004671
4672<!-- _______________________________________________________________________ -->
4673<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4674</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004675
Reid Spencerf3a70a62006-11-18 21:50:54 +00004676<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004677
Reid Spencerf3a70a62006-11-18 21:50:54 +00004678<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004679<pre>
4680 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004681</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004682
Reid Spencerf3a70a62006-11-18 21:50:54 +00004683<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004684<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
4685 boolean values based on comparison of its two integer, integer vector, or
4686 pointer operands.</p>
4687
Reid Spencerf3a70a62006-11-18 21:50:54 +00004688<h5>Arguments:</h5>
4689<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004690 the condition code indicating the kind of comparison to perform. It is not a
4691 value, just a keyword. The possible condition code are:</p>
4692
Reid Spencerf3a70a62006-11-18 21:50:54 +00004693<ol>
4694 <li><tt>eq</tt>: equal</li>
4695 <li><tt>ne</tt>: not equal </li>
4696 <li><tt>ugt</tt>: unsigned greater than</li>
4697 <li><tt>uge</tt>: unsigned greater or equal</li>
4698 <li><tt>ult</tt>: unsigned less than</li>
4699 <li><tt>ule</tt>: unsigned less or equal</li>
4700 <li><tt>sgt</tt>: signed greater than</li>
4701 <li><tt>sge</tt>: signed greater or equal</li>
4702 <li><tt>slt</tt>: signed less than</li>
4703 <li><tt>sle</tt>: signed less or equal</li>
4704</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004705
Chris Lattner3b19d652007-01-15 01:54:13 +00004706<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004707 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
4708 typed. They must also be identical types.</p>
4709
Reid Spencerf3a70a62006-11-18 21:50:54 +00004710<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004711<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
4712 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewyckyec38da42009-09-27 00:45:11 +00004713 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004714 result, as follows:</p>
4715
Reid Spencerf3a70a62006-11-18 21:50:54 +00004716<ol>
4717 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004718 <tt>false</tt> otherwise. No sign interpretation is necessary or
4719 performed.</li>
4720
Reid Spencerf3a70a62006-11-18 21:50:54 +00004721 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004722 <tt>false</tt> otherwise. No sign interpretation is necessary or
4723 performed.</li>
4724
Reid Spencerf3a70a62006-11-18 21:50:54 +00004725 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004726 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4727
Reid Spencerf3a70a62006-11-18 21:50:54 +00004728 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004729 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4730 to <tt>op2</tt>.</li>
4731
Reid Spencerf3a70a62006-11-18 21:50:54 +00004732 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004733 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4734
Reid Spencerf3a70a62006-11-18 21:50:54 +00004735 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004736 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4737
Reid Spencerf3a70a62006-11-18 21:50:54 +00004738 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004739 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4740
Reid Spencerf3a70a62006-11-18 21:50:54 +00004741 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004742 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4743 to <tt>op2</tt>.</li>
4744
Reid Spencerf3a70a62006-11-18 21:50:54 +00004745 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004746 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4747
Reid Spencerf3a70a62006-11-18 21:50:54 +00004748 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004749 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004750</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004751
Reid Spencerf3a70a62006-11-18 21:50:54 +00004752<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004753 values are compared as if they were integers.</p>
4754
4755<p>If the operands are integer vectors, then they are compared element by
4756 element. The result is an <tt>i1</tt> vector with the same number of elements
4757 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004758
4759<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004760<pre>
4761 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004762 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4763 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4764 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4765 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4766 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004767</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004768
4769<p>Note that the code generator does not yet support vector types with
4770 the <tt>icmp</tt> instruction.</p>
4771
Reid Spencerf3a70a62006-11-18 21:50:54 +00004772</div>
4773
4774<!-- _______________________________________________________________________ -->
4775<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4776</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004777
Reid Spencerf3a70a62006-11-18 21:50:54 +00004778<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004779
Reid Spencerf3a70a62006-11-18 21:50:54 +00004780<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004781<pre>
4782 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004783</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004784
Reid Spencerf3a70a62006-11-18 21:50:54 +00004785<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004786<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
4787 values based on comparison of its operands.</p>
4788
4789<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewyckyec38da42009-09-27 00:45:11 +00004790(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004791
4792<p>If the operands are floating point vectors, then the result type is a vector
4793 of boolean with the same number of elements as the operands being
4794 compared.</p>
4795
Reid Spencerf3a70a62006-11-18 21:50:54 +00004796<h5>Arguments:</h5>
4797<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004798 the condition code indicating the kind of comparison to perform. It is not a
4799 value, just a keyword. The possible condition code are:</p>
4800
Reid Spencerf3a70a62006-11-18 21:50:54 +00004801<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004802 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004803 <li><tt>oeq</tt>: ordered and equal</li>
4804 <li><tt>ogt</tt>: ordered and greater than </li>
4805 <li><tt>oge</tt>: ordered and greater than or equal</li>
4806 <li><tt>olt</tt>: ordered and less than </li>
4807 <li><tt>ole</tt>: ordered and less than or equal</li>
4808 <li><tt>one</tt>: ordered and not equal</li>
4809 <li><tt>ord</tt>: ordered (no nans)</li>
4810 <li><tt>ueq</tt>: unordered or equal</li>
4811 <li><tt>ugt</tt>: unordered or greater than </li>
4812 <li><tt>uge</tt>: unordered or greater than or equal</li>
4813 <li><tt>ult</tt>: unordered or less than </li>
4814 <li><tt>ule</tt>: unordered or less than or equal</li>
4815 <li><tt>une</tt>: unordered or not equal</li>
4816 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004817 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004818</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004819
Jeff Cohenb627eab2007-04-29 01:07:00 +00004820<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004821 <i>unordered</i> means that either operand may be a QNAN.</p>
4822
4823<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
4824 a <a href="#t_floating">floating point</a> type or
4825 a <a href="#t_vector">vector</a> of floating point type. They must have
4826 identical types.</p>
4827
Reid Spencerf3a70a62006-11-18 21:50:54 +00004828<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004829<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004830 according to the condition code given as <tt>cond</tt>. If the operands are
4831 vectors, then the vectors are compared element by element. Each comparison
Nick Lewyckyec38da42009-09-27 00:45:11 +00004832 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004833 follows:</p>
4834
Reid Spencerf3a70a62006-11-18 21:50:54 +00004835<ol>
4836 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004837
Reid Spencerb7f26282006-11-19 03:00:14 +00004838 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004839 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4840
Reid Spencerb7f26282006-11-19 03:00:14 +00004841 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004842 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
4843
Reid Spencerb7f26282006-11-19 03:00:14 +00004844 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004845 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4846
Reid Spencerb7f26282006-11-19 03:00:14 +00004847 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004848 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4849
Reid Spencerb7f26282006-11-19 03:00:14 +00004850 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004851 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4852
Reid Spencerb7f26282006-11-19 03:00:14 +00004853 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004854 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4855
Reid Spencerb7f26282006-11-19 03:00:14 +00004856 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004857
Reid Spencerb7f26282006-11-19 03:00:14 +00004858 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004859 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4860
Reid Spencerb7f26282006-11-19 03:00:14 +00004861 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004862 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4863
Reid Spencerb7f26282006-11-19 03:00:14 +00004864 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004865 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4866
Reid Spencerb7f26282006-11-19 03:00:14 +00004867 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004868 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4869
Reid Spencerb7f26282006-11-19 03:00:14 +00004870 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004871 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4872
Reid Spencerb7f26282006-11-19 03:00:14 +00004873 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004874 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4875
Reid Spencerb7f26282006-11-19 03:00:14 +00004876 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004877
Reid Spencerf3a70a62006-11-18 21:50:54 +00004878 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4879</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004880
4881<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004882<pre>
4883 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004884 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4885 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4886 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004887</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004888
4889<p>Note that the code generator does not yet support vector types with
4890 the <tt>fcmp</tt> instruction.</p>
4891
Reid Spencerf3a70a62006-11-18 21:50:54 +00004892</div>
4893
Reid Spencer2fd21e62006-11-08 01:18:52 +00004894<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004895<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00004896 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4897</div>
4898
Reid Spencer2fd21e62006-11-08 01:18:52 +00004899<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004900
Reid Spencer2fd21e62006-11-08 01:18:52 +00004901<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004902<pre>
4903 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
4904</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004905
Reid Spencer2fd21e62006-11-08 01:18:52 +00004906<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004907<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
4908 SSA graph representing the function.</p>
4909
Reid Spencer2fd21e62006-11-08 01:18:52 +00004910<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004911<p>The type of the incoming values is specified with the first type field. After
4912 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
4913 one pair for each predecessor basic block of the current block. Only values
4914 of <a href="#t_firstclass">first class</a> type may be used as the value
4915 arguments to the PHI node. Only labels may be used as the label
4916 arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004917
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004918<p>There must be no non-phi instructions between the start of a basic block and
4919 the PHI instructions: i.e. PHI instructions must be first in a basic
4920 block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004921
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004922<p>For the purposes of the SSA form, the use of each incoming value is deemed to
4923 occur on the edge from the corresponding predecessor block to the current
4924 block (but after any definition of an '<tt>invoke</tt>' instruction's return
4925 value on the same edge).</p>
Jay Foadd2449092009-06-03 10:20:10 +00004926
Reid Spencer2fd21e62006-11-08 01:18:52 +00004927<h5>Semantics:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004928<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004929 specified by the pair corresponding to the predecessor basic block that
4930 executed just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004931
Reid Spencer2fd21e62006-11-08 01:18:52 +00004932<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004933<pre>
4934Loop: ; Infinite loop that counts from 0 on up...
4935 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4936 %nextindvar = add i32 %indvar, 1
4937 br label %Loop
4938</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004939
Reid Spencer2fd21e62006-11-08 01:18:52 +00004940</div>
4941
Chris Lattnercc37aae2004-03-12 05:50:16 +00004942<!-- _______________________________________________________________________ -->
4943<div class="doc_subsubsection">
4944 <a name="i_select">'<tt>select</tt>' Instruction</a>
4945</div>
4946
4947<div class="doc_text">
4948
4949<h5>Syntax:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004950<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004951 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4952
Dan Gohman0e451ce2008-10-14 16:51:45 +00004953 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004954</pre>
4955
4956<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004957<p>The '<tt>select</tt>' instruction is used to choose one value based on a
4958 condition, without branching.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004959
4960
4961<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004962<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
4963 values indicating the condition, and two values of the
4964 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
4965 vectors and the condition is a scalar, then entire vectors are selected, not
4966 individual elements.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004967
4968<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004969<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
4970 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004971
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004972<p>If the condition is a vector of i1, then the value arguments must be vectors
4973 of the same size, and the selection is done element by element.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004974
4975<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004976<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004977 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004978</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004979
4980<p>Note that the code generator does not yet support conditions
4981 with vector type.</p>
4982
Chris Lattnercc37aae2004-03-12 05:50:16 +00004983</div>
4984
Robert Bocchino05ccd702006-01-15 20:48:27 +00004985<!-- _______________________________________________________________________ -->
4986<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004987 <a name="i_call">'<tt>call</tt>' Instruction</a>
4988</div>
4989
Misha Brukman9d0919f2003-11-08 01:05:38 +00004990<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004991
Chris Lattner00950542001-06-06 20:29:01 +00004992<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004993<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004994 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004995</pre>
4996
Chris Lattner00950542001-06-06 20:29:01 +00004997<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004998<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004999
Chris Lattner00950542001-06-06 20:29:01 +00005000<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005001<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00005002
Chris Lattner6536cfe2002-05-06 22:08:29 +00005003<ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005004 <li>The optional "tail" marker indicates whether the callee function accesses
5005 any allocas or varargs in the caller. If the "tail" marker is present,
5006 the function call is eligible for tail call optimization. Note that calls
5007 may be marked "tail" even if they do not occur before
5008 a <a href="#i_ret"><tt>ret</tt></a> instruction.</li>
Devang Patelf642f472008-10-06 18:50:38 +00005009
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005010 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5011 convention</a> the call should use. If none is specified, the call
5012 defaults to using C calling conventions.</li>
Devang Patelf642f472008-10-06 18:50:38 +00005013
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005014 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5015 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5016 '<tt>inreg</tt>' attributes are valid here.</li>
5017
5018 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5019 type of the return value. Functions that return no value are marked
5020 <tt><a href="#t_void">void</a></tt>.</li>
5021
5022 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5023 being invoked. The argument types must match the types implied by this
5024 signature. This type can be omitted if the function is not varargs and if
5025 the function type does not return a pointer to a function.</li>
5026
5027 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5028 be invoked. In most cases, this is a direct function invocation, but
5029 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5030 to function value.</li>
5031
5032 <li>'<tt>function args</tt>': argument list whose types match the function
5033 signature argument types. All arguments must be of
5034 <a href="#t_firstclass">first class</a> type. If the function signature
5035 indicates the function accepts a variable number of arguments, the extra
5036 arguments can be specified.</li>
5037
5038 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5039 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5040 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00005041</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00005042
Chris Lattner00950542001-06-06 20:29:01 +00005043<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005044<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5045 a specified function, with its incoming arguments bound to the specified
5046 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5047 function, control flow continues with the instruction after the function
5048 call, and the return value of the function is bound to the result
5049 argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00005050
Chris Lattner00950542001-06-06 20:29:01 +00005051<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00005052<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00005053 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00005054 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
5055 %X = tail call i32 @foo() <i>; yields i32</i>
5056 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
5057 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00005058
5059 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00005060 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00005061 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
5062 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00005063 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00005064 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00005065</pre>
5066
Dale Johannesen07de8d12009-09-24 18:38:21 +00005067<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen9f8380b2009-09-25 17:04:42 +00005068standard C99 library as being the C99 library functions, and may perform
5069optimizations or generate code for them under that assumption. This is
5070something we'd like to change in the future to provide better support for
5071freestanding environments and non-C-based langauges.</p>
Dale Johannesen07de8d12009-09-24 18:38:21 +00005072
Misha Brukman9d0919f2003-11-08 01:05:38 +00005073</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005074
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005075<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00005076<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00005077 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005078</div>
5079
Misha Brukman9d0919f2003-11-08 01:05:38 +00005080<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00005081
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005082<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005083<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005084 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00005085</pre>
5086
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005087<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005088<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005089 the "variable argument" area of a function call. It is used to implement the
5090 <tt>va_arg</tt> macro in C.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005091
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005092<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005093<p>This instruction takes a <tt>va_list*</tt> value and the type of the
5094 argument. It returns a value of the specified argument type and increments
5095 the <tt>va_list</tt> to point to the next argument. The actual type
5096 of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005097
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005098<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005099<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
5100 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
5101 to the next argument. For more information, see the variable argument
5102 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005103
5104<p>It is legal for this instruction to be called in a function which does not
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005105 take a variable number of arguments, for example, the <tt>vfprintf</tt>
5106 function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005107
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005108<p><tt>va_arg</tt> is an LLVM instruction instead of
5109 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
5110 argument.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005111
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005112<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005113<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
5114
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005115<p>Note that the code generator does not yet fully support va_arg on many
5116 targets. Also, it does not currently support va_arg with aggregate types on
5117 any target.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00005118
Misha Brukman9d0919f2003-11-08 01:05:38 +00005119</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005120
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005121<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00005122<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
5123<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005124
Misha Brukman9d0919f2003-11-08 01:05:38 +00005125<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005126
5127<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005128 well known names and semantics and are required to follow certain
5129 restrictions. Overall, these intrinsics represent an extension mechanism for
5130 the LLVM language that does not require changing all of the transformations
5131 in LLVM when adding to the language (or the bitcode reader/writer, the
5132 parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005133
John Criswellfc6b8952005-05-16 16:17:45 +00005134<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005135 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5136 begin with this prefix. Intrinsic functions must always be external
5137 functions: you cannot define the body of intrinsic functions. Intrinsic
5138 functions may only be used in call or invoke instructions: it is illegal to
5139 take the address of an intrinsic function. Additionally, because intrinsic
5140 functions are part of the LLVM language, it is required if any are added that
5141 they be documented here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005142
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005143<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5144 family of functions that perform the same operation but on different data
5145 types. Because LLVM can represent over 8 million different integer types,
5146 overloading is used commonly to allow an intrinsic function to operate on any
5147 integer type. One or more of the argument types or the result type can be
5148 overloaded to accept any integer type. Argument types may also be defined as
5149 exactly matching a previous argument's type or the result type. This allows
5150 an intrinsic function which accepts multiple arguments, but needs all of them
5151 to be of the same type, to only be overloaded with respect to a single
5152 argument or the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005153
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005154<p>Overloaded intrinsics will have the names of its overloaded argument types
5155 encoded into its function name, each preceded by a period. Only those types
5156 which are overloaded result in a name suffix. Arguments whose type is matched
5157 against another type do not. For example, the <tt>llvm.ctpop</tt> function
5158 can take an integer of any width and returns an integer of exactly the same
5159 integer width. This leads to a family of functions such as
5160 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
5161 %val)</tt>. Only one type, the return type, is overloaded, and only one type
5162 suffix is required. Because the argument's type is matched against the return
5163 type, it does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00005164
5165<p>To learn how to add an intrinsic function, please see the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005166 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005167
Misha Brukman9d0919f2003-11-08 01:05:38 +00005168</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005169
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005170<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005171<div class="doc_subsection">
5172 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
5173</div>
5174
Misha Brukman9d0919f2003-11-08 01:05:38 +00005175<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00005176
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005177<p>Variable argument support is defined in LLVM with
5178 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5179 intrinsic functions. These functions are related to the similarly named
5180 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005181
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005182<p>All of these functions operate on arguments that use a target-specific value
5183 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5184 not define what this type is, so all transformations should be prepared to
5185 handle these functions regardless of the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005186
Chris Lattner374ab302006-05-15 17:26:46 +00005187<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005188 instruction and the variable argument handling intrinsic functions are
5189 used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005190
Bill Wendling2f7a8b02007-05-29 09:04:49 +00005191<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005192<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005193define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00005194 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00005195 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00005196 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005197 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005198
5199 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00005200 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00005201
5202 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00005203 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00005204 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00005205 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005206 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005207
5208 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005209 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00005210 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00005211}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005212
5213declare void @llvm.va_start(i8*)
5214declare void @llvm.va_copy(i8*, i8*)
5215declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005216</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005217</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005218
Bill Wendling2f7a8b02007-05-29 09:04:49 +00005219</div>
5220
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005221<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005222<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005223 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00005224</div>
5225
5226
Misha Brukman9d0919f2003-11-08 01:05:38 +00005227<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005228
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005229<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005230<pre>
5231 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5232</pre>
5233
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005234<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005235<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5236 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005237
5238<h5>Arguments:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005239<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005240
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005241<h5>Semantics:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005242<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005243 macro available in C. In a target-dependent way, it initializes
5244 the <tt>va_list</tt> element to which the argument points, so that the next
5245 call to <tt>va_arg</tt> will produce the first variable argument passed to
5246 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5247 need to know the last argument of the function as the compiler can figure
5248 that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005249
Misha Brukman9d0919f2003-11-08 01:05:38 +00005250</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005251
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005252<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005253<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005254 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00005255</div>
5256
Misha Brukman9d0919f2003-11-08 01:05:38 +00005257<div class="doc_text">
Chris Lattnerb75137d2007-01-08 07:55:15 +00005258
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005259<h5>Syntax:</h5>
5260<pre>
5261 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5262</pre>
5263
5264<h5>Overview:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005265<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005266 which has been initialized previously
5267 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5268 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005269
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005270<h5>Arguments:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005271<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005272
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005273<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005274<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005275 macro available in C. In a target-dependent way, it destroys
5276 the <tt>va_list</tt> element to which the argument points. Calls
5277 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5278 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5279 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005280
Misha Brukman9d0919f2003-11-08 01:05:38 +00005281</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005282
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005283<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005284<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005285 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00005286</div>
5287
Misha Brukman9d0919f2003-11-08 01:05:38 +00005288<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00005289
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005290<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005291<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005292 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00005293</pre>
5294
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005295<h5>Overview:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005296<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005297 from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005298
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005299<h5>Arguments:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005300<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005301 The second argument is a pointer to a <tt>va_list</tt> element to copy
5302 from.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005303
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005304<h5>Semantics:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005305<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005306 macro available in C. In a target-dependent way, it copies the
5307 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5308 element. This intrinsic is necessary because
5309 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5310 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005311
Misha Brukman9d0919f2003-11-08 01:05:38 +00005312</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005313
Chris Lattner33aec9e2004-02-12 17:01:32 +00005314<!-- ======================================================================= -->
5315<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00005316 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5317</div>
5318
5319<div class="doc_text">
5320
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005321<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00005322Collection</a> (GC) requires the implementation and generation of these
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005323intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5324roots on the stack</a>, as well as garbage collector implementations that
5325require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5326barriers. Front-ends for type-safe garbage collected languages should generate
5327these intrinsics to make use of the LLVM garbage collectors. For more details,
5328see <a href="GarbageCollection.html">Accurate Garbage Collection with
5329LLVM</a>.</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00005330
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005331<p>The garbage collection intrinsics only operate on objects in the generic
5332 address space (address space zero).</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00005333
Chris Lattnerd7923912004-05-23 21:06:01 +00005334</div>
5335
5336<!-- _______________________________________________________________________ -->
5337<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005338 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005339</div>
5340
5341<div class="doc_text">
5342
5343<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005344<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005345 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00005346</pre>
5347
5348<h5>Overview:</h5>
John Criswell9e2485c2004-12-10 15:51:16 +00005349<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005350 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005351
5352<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005353<p>The first argument specifies the address of a stack object that contains the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005354 root pointer. The second pointer (which must be either a constant or a
5355 global value address) contains the meta-data to be associated with the
5356 root.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005357
5358<h5>Semantics:</h5>
Chris Lattner05d67092008-04-24 05:59:56 +00005359<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005360 location. At compile-time, the code generator generates information to allow
5361 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5362 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5363 algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005364
5365</div>
5366
Chris Lattnerd7923912004-05-23 21:06:01 +00005367<!-- _______________________________________________________________________ -->
5368<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005369 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005370</div>
5371
5372<div class="doc_text">
5373
5374<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005375<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005376 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00005377</pre>
5378
5379<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005380<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005381 locations, allowing garbage collector implementations that require read
5382 barriers.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005383
5384<h5>Arguments:</h5>
Chris Lattner80626e92006-03-14 20:02:51 +00005385<p>The second argument is the address to read from, which should be an address
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005386 allocated from the garbage collector. The first object is a pointer to the
5387 start of the referenced object, if needed by the language runtime (otherwise
5388 null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005389
5390<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005391<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005392 instruction, but may be replaced with substantially more complex code by the
5393 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5394 may only be used in a function which <a href="#gc">specifies a GC
5395 algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005396
5397</div>
5398
Chris Lattnerd7923912004-05-23 21:06:01 +00005399<!-- _______________________________________________________________________ -->
5400<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005401 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005402</div>
5403
5404<div class="doc_text">
5405
5406<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005407<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005408 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00005409</pre>
5410
5411<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005412<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005413 locations, allowing garbage collector implementations that require write
5414 barriers (such as generational or reference counting collectors).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005415
5416<h5>Arguments:</h5>
Chris Lattner80626e92006-03-14 20:02:51 +00005417<p>The first argument is the reference to store, the second is the start of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005418 object to store it to, and the third is the address of the field of Obj to
5419 store to. If the runtime does not require a pointer to the object, Obj may
5420 be null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005421
5422<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005423<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005424 instruction, but may be replaced with substantially more complex code by the
5425 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5426 may only be used in a function which <a href="#gc">specifies a GC
5427 algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005428
5429</div>
5430
Chris Lattnerd7923912004-05-23 21:06:01 +00005431<!-- ======================================================================= -->
5432<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00005433 <a name="int_codegen">Code Generator Intrinsics</a>
5434</div>
5435
5436<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005437
5438<p>These intrinsics are provided by LLVM to expose special features that may
5439 only be implemented with code generator support.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005440
5441</div>
5442
5443<!-- _______________________________________________________________________ -->
5444<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005445 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005446</div>
5447
5448<div class="doc_text">
5449
5450<h5>Syntax:</h5>
5451<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005452 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005453</pre>
5454
5455<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005456<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5457 target-specific value indicating the return address of the current function
5458 or one of its callers.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005459
5460<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005461<p>The argument to this intrinsic indicates which function to return the address
5462 for. Zero indicates the calling function, one indicates its caller, etc.
5463 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005464
5465<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005466<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5467 indicating the return address of the specified call frame, or zero if it
5468 cannot be identified. The value returned by this intrinsic is likely to be
5469 incorrect or 0 for arguments other than zero, so it should only be used for
5470 debugging purposes.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005471
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005472<p>Note that calling this intrinsic does not prevent function inlining or other
5473 aggressive transformations, so the value returned may not be that of the
5474 obvious source-language caller.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005475
Chris Lattner10610642004-02-14 04:08:35 +00005476</div>
5477
Chris Lattner10610642004-02-14 04:08:35 +00005478<!-- _______________________________________________________________________ -->
5479<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005480 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005481</div>
5482
5483<div class="doc_text">
5484
5485<h5>Syntax:</h5>
5486<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005487 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005488</pre>
5489
5490<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005491<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5492 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005493
5494<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005495<p>The argument to this intrinsic indicates which function to return the frame
5496 pointer for. Zero indicates the calling function, one indicates its caller,
5497 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005498
5499<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005500<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5501 indicating the frame address of the specified call frame, or zero if it
5502 cannot be identified. The value returned by this intrinsic is likely to be
5503 incorrect or 0 for arguments other than zero, so it should only be used for
5504 debugging purposes.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005505
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005506<p>Note that calling this intrinsic does not prevent function inlining or other
5507 aggressive transformations, so the value returned may not be that of the
5508 obvious source-language caller.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005509
Chris Lattner10610642004-02-14 04:08:35 +00005510</div>
5511
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005512<!-- _______________________________________________________________________ -->
5513<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005514 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005515</div>
5516
5517<div class="doc_text">
5518
5519<h5>Syntax:</h5>
5520<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005521 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00005522</pre>
5523
5524<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005525<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5526 of the function stack, for use
5527 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5528 useful for implementing language features like scoped automatic variable
5529 sized arrays in C99.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00005530
5531<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005532<p>This intrinsic returns a opaque pointer value that can be passed
5533 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5534 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5535 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5536 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5537 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5538 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00005539
5540</div>
5541
5542<!-- _______________________________________________________________________ -->
5543<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005544 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005545</div>
5546
5547<div class="doc_text">
5548
5549<h5>Syntax:</h5>
5550<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005551 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005552</pre>
5553
5554<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005555<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5556 the function stack to the state it was in when the
5557 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5558 executed. This is useful for implementing language features like scoped
5559 automatic variable sized arrays in C99.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00005560
5561<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005562<p>See the description
5563 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00005564
5565</div>
5566
Chris Lattner57e1f392006-01-13 02:03:13 +00005567<!-- _______________________________________________________________________ -->
5568<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005569 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005570</div>
5571
5572<div class="doc_text">
5573
5574<h5>Syntax:</h5>
5575<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005576 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005577</pre>
5578
5579<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005580<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
5581 insert a prefetch instruction if supported; otherwise, it is a noop.
5582 Prefetches have no effect on the behavior of the program but can change its
5583 performance characteristics.</p>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005584
5585<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005586<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
5587 specifier determining if the fetch should be for a read (0) or write (1),
5588 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5589 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
5590 and <tt>locality</tt> arguments must be constant integers.</p>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005591
5592<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005593<p>This intrinsic does not modify the behavior of the program. In particular,
5594 prefetches cannot trap and do not produce a value. On targets that support
5595 this intrinsic, the prefetch can provide hints to the processor cache for
5596 better performance.</p>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005597
5598</div>
5599
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005600<!-- _______________________________________________________________________ -->
5601<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005602 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005603</div>
5604
5605<div class="doc_text">
5606
5607<h5>Syntax:</h5>
5608<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005609 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005610</pre>
5611
5612<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005613<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
5614 Counter (PC) in a region of code to simulators and other tools. The method
5615 is target specific, but it is expected that the marker will use exported
5616 symbols to transmit the PC of the marker. The marker makes no guarantees
5617 that it will remain with any specific instruction after optimizations. It is
5618 possible that the presence of a marker will inhibit optimizations. The
5619 intended use is to be inserted after optimizations to allow correlations of
5620 simulation runs.</p>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005621
5622<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005623<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005624
5625<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005626<p>This intrinsic does not modify the behavior of the program. Backends that do
5627 not support this intrinisic may ignore it.</p>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005628
5629</div>
5630
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005631<!-- _______________________________________________________________________ -->
5632<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005633 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005634</div>
5635
5636<div class="doc_text">
5637
5638<h5>Syntax:</h5>
5639<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005640 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005641</pre>
5642
5643<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005644<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5645 counter register (or similar low latency, high accuracy clocks) on those
5646 targets that support it. On X86, it should map to RDTSC. On Alpha, it
5647 should map to RPCC. As the backing counters overflow quickly (on the order
5648 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005649
5650<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005651<p>When directly supported, reading the cycle counter should not modify any
5652 memory. Implementations are allowed to either return a application specific
5653 value or a system wide value. On backends without support, this is lowered
5654 to a constant 0.</p>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005655
5656</div>
5657
Chris Lattner10610642004-02-14 04:08:35 +00005658<!-- ======================================================================= -->
5659<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005660 <a name="int_libc">Standard C Library Intrinsics</a>
5661</div>
5662
5663<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005664
5665<p>LLVM provides intrinsics for a few important standard C library functions.
5666 These intrinsics allow source-language front-ends to pass information about
5667 the alignment of the pointer arguments to the code generator, providing
5668 opportunity for more efficient code generation.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005669
5670</div>
5671
5672<!-- _______________________________________________________________________ -->
5673<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005674 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005675</div>
5676
5677<div class="doc_text">
5678
5679<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005680<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
5681 integer bit width. Not all targets support all bit widths however.</p>
5682
Chris Lattner33aec9e2004-02-12 17:01:32 +00005683<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005684 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005685 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner824b9582008-11-21 16:42:48 +00005686 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5687 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005688 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005689 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005690 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005691 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005692</pre>
5693
5694<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005695<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5696 source location to the destination location.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005697
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005698<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5699 intrinsics do not return a value, and takes an extra alignment argument.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005700
5701<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005702<p>The first argument is a pointer to the destination, the second is a pointer
5703 to the source. The third argument is an integer argument specifying the
5704 number of bytes to copy, and the fourth argument is the alignment of the
5705 source and destination locations.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005706
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005707<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5708 then the caller guarantees that both the source and destination pointers are
5709 aligned to that boundary.</p>
Chris Lattner3301ced2004-02-12 21:18:15 +00005710
Chris Lattner33aec9e2004-02-12 17:01:32 +00005711<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005712<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5713 source location to the destination location, which are not allowed to
5714 overlap. It copies "len" bytes of memory over. If the argument is known to
5715 be aligned to some boundary, this can be specified as the fourth argument,
5716 otherwise it should be set to 0 or 1.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005717
Chris Lattner33aec9e2004-02-12 17:01:32 +00005718</div>
5719
Chris Lattner0eb51b42004-02-12 18:10:10 +00005720<!-- _______________________________________________________________________ -->
5721<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005722 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005723</div>
5724
5725<div class="doc_text">
5726
5727<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005728<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005729 width. Not all targets support all bit widths however.</p>
5730
Chris Lattner0eb51b42004-02-12 18:10:10 +00005731<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005732 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005733 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner824b9582008-11-21 16:42:48 +00005734 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5735 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005736 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005737 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005738 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005739 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005740</pre>
5741
5742<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005743<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
5744 source location to the destination location. It is similar to the
5745 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
5746 overlap.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005747
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005748<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5749 intrinsics do not return a value, and takes an extra alignment argument.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005750
5751<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005752<p>The first argument is a pointer to the destination, the second is a pointer
5753 to the source. The third argument is an integer argument specifying the
5754 number of bytes to copy, and the fourth argument is the alignment of the
5755 source and destination locations.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005756
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005757<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5758 then the caller guarantees that the source and destination pointers are
5759 aligned to that boundary.</p>
Chris Lattner3301ced2004-02-12 21:18:15 +00005760
Chris Lattner0eb51b42004-02-12 18:10:10 +00005761<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005762<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
5763 source location to the destination location, which may overlap. It copies
5764 "len" bytes of memory over. If the argument is known to be aligned to some
5765 boundary, this can be specified as the fourth argument, otherwise it should
5766 be set to 0 or 1.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005767
Chris Lattner0eb51b42004-02-12 18:10:10 +00005768</div>
5769
Chris Lattner10610642004-02-14 04:08:35 +00005770<!-- _______________________________________________________________________ -->
5771<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005772 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005773</div>
5774
5775<div class="doc_text">
5776
5777<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005778<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005779 width. Not all targets support all bit widths however.</p>
5780
Chris Lattner10610642004-02-14 04:08:35 +00005781<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005782 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005783 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner824b9582008-11-21 16:42:48 +00005784 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5785 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005786 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005787 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005788 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005789 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005790</pre>
5791
5792<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005793<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
5794 particular byte value.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005795
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005796<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
5797 intrinsic does not return a value, and takes an extra alignment argument.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005798
5799<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005800<p>The first argument is a pointer to the destination to fill, the second is the
5801 byte value to fill it with, the third argument is an integer argument
5802 specifying the number of bytes to fill, and the fourth argument is the known
5803 alignment of destination location.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005804
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005805<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5806 then the caller guarantees that the destination pointer is aligned to that
5807 boundary.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005808
5809<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005810<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
5811 at the destination location. If the argument is known to be aligned to some
5812 boundary, this can be specified as the fourth argument, otherwise it should
5813 be set to 0 or 1.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005814
Chris Lattner10610642004-02-14 04:08:35 +00005815</div>
5816
Chris Lattner32006282004-06-11 02:28:03 +00005817<!-- _______________________________________________________________________ -->
5818<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005819 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005820</div>
5821
5822<div class="doc_text">
5823
5824<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005825<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
5826 floating point or vector of floating point type. Not all targets support all
5827 types however.</p>
5828
Chris Lattnera4d74142005-07-21 01:29:16 +00005829<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005830 declare float @llvm.sqrt.f32(float %Val)
5831 declare double @llvm.sqrt.f64(double %Val)
5832 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5833 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5834 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005835</pre>
5836
5837<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005838<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
5839 returning the same value as the libm '<tt>sqrt</tt>' functions would.
5840 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
5841 behavior for negative numbers other than -0.0 (which allows for better
5842 optimization, because there is no need to worry about errno being
5843 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005844
5845<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005846<p>The argument and return value are floating point numbers of the same
5847 type.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005848
5849<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005850<p>This function returns the sqrt of the specified operand if it is a
5851 nonnegative floating point number.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005852
Chris Lattnera4d74142005-07-21 01:29:16 +00005853</div>
5854
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005855<!-- _______________________________________________________________________ -->
5856<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005857 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005858</div>
5859
5860<div class="doc_text">
5861
5862<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005863<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
5864 floating point or vector of floating point type. Not all targets support all
5865 types however.</p>
5866
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005867<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005868 declare float @llvm.powi.f32(float %Val, i32 %power)
5869 declare double @llvm.powi.f64(double %Val, i32 %power)
5870 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5871 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5872 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005873</pre>
5874
5875<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005876<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5877 specified (positive or negative) power. The order of evaluation of
5878 multiplications is not defined. When a vector of floating point type is
5879 used, the second argument remains a scalar integer value.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005880
5881<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005882<p>The second argument is an integer power, and the first is a value to raise to
5883 that power.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005884
5885<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005886<p>This function returns the first value raised to the second power with an
5887 unspecified sequence of rounding operations.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005888
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005889</div>
5890
Dan Gohman91c284c2007-10-15 20:30:11 +00005891<!-- _______________________________________________________________________ -->
5892<div class="doc_subsubsection">
5893 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5894</div>
5895
5896<div class="doc_text">
5897
5898<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005899<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5900 floating point or vector of floating point type. Not all targets support all
5901 types however.</p>
5902
Dan Gohman91c284c2007-10-15 20:30:11 +00005903<pre>
5904 declare float @llvm.sin.f32(float %Val)
5905 declare double @llvm.sin.f64(double %Val)
5906 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5907 declare fp128 @llvm.sin.f128(fp128 %Val)
5908 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5909</pre>
5910
5911<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005912<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005913
5914<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005915<p>The argument and return value are floating point numbers of the same
5916 type.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005917
5918<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005919<p>This function returns the sine of the specified operand, returning the same
5920 values as the libm <tt>sin</tt> functions would, and handles error conditions
5921 in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005922
Dan Gohman91c284c2007-10-15 20:30:11 +00005923</div>
5924
5925<!-- _______________________________________________________________________ -->
5926<div class="doc_subsubsection">
5927 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5928</div>
5929
5930<div class="doc_text">
5931
5932<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005933<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5934 floating point or vector of floating point type. Not all targets support all
5935 types however.</p>
5936
Dan Gohman91c284c2007-10-15 20:30:11 +00005937<pre>
5938 declare float @llvm.cos.f32(float %Val)
5939 declare double @llvm.cos.f64(double %Val)
5940 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5941 declare fp128 @llvm.cos.f128(fp128 %Val)
5942 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5943</pre>
5944
5945<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005946<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005947
5948<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005949<p>The argument and return value are floating point numbers of the same
5950 type.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005951
5952<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005953<p>This function returns the cosine of the specified operand, returning the same
5954 values as the libm <tt>cos</tt> functions would, and handles error conditions
5955 in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005956
Dan Gohman91c284c2007-10-15 20:30:11 +00005957</div>
5958
5959<!-- _______________________________________________________________________ -->
5960<div class="doc_subsubsection">
5961 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5962</div>
5963
5964<div class="doc_text">
5965
5966<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005967<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5968 floating point or vector of floating point type. Not all targets support all
5969 types however.</p>
5970
Dan Gohman91c284c2007-10-15 20:30:11 +00005971<pre>
5972 declare float @llvm.pow.f32(float %Val, float %Power)
5973 declare double @llvm.pow.f64(double %Val, double %Power)
5974 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5975 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5976 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5977</pre>
5978
5979<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005980<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5981 specified (positive or negative) power.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005982
5983<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005984<p>The second argument is a floating point power, and the first is a value to
5985 raise to that power.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005986
5987<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005988<p>This function returns the first value raised to the second power, returning
5989 the same values as the libm <tt>pow</tt> functions would, and handles error
5990 conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005991
Dan Gohman91c284c2007-10-15 20:30:11 +00005992</div>
5993
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005994<!-- ======================================================================= -->
5995<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005996 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005997</div>
5998
5999<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006000
6001<p>LLVM provides intrinsics for a few important bit manipulation operations.
6002 These allow efficient code generation for some algorithms.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006003
6004</div>
6005
6006<!-- _______________________________________________________________________ -->
6007<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00006008 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00006009</div>
6010
6011<div class="doc_text">
6012
6013<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00006014<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006015 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
6016
Nate Begeman7e36c472006-01-13 23:26:38 +00006017<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006018 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
6019 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
6020 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00006021</pre>
6022
6023<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006024<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
6025 values with an even number of bytes (positive multiple of 16 bits). These
6026 are useful for performing operations on data that is not in the target's
6027 native byte order.</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00006028
6029<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006030<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
6031 and low byte of the input i16 swapped. Similarly,
6032 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
6033 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
6034 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
6035 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
6036 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
6037 more, respectively).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00006038
6039</div>
6040
6041<!-- _______________________________________________________________________ -->
6042<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00006043 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006044</div>
6045
6046<div class="doc_text">
6047
6048<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00006049<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006050 width. Not all targets support all bit widths however.</p>
6051
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006052<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006053 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006054 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00006055 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006056 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
6057 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006058</pre>
6059
6060<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006061<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
6062 in a value.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006063
6064<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006065<p>The only argument is the value to be counted. The argument may be of any
6066 integer type. The return type must match the argument type.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006067
6068<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006069<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006070
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006071</div>
6072
6073<!-- _______________________________________________________________________ -->
6074<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00006075 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006076</div>
6077
6078<div class="doc_text">
6079
6080<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006081<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
6082 integer bit width. Not all targets support all bit widths however.</p>
6083
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006084<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006085 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
6086 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00006087 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006088 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
6089 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006090</pre>
6091
6092<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006093<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
6094 leading zeros in a variable.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006095
6096<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006097<p>The only argument is the value to be counted. The argument may be of any
6098 integer type. The return type must match the argument type.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006099
6100<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006101<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
6102 zeros in a variable. If the src == 0 then the result is the size in bits of
6103 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006104
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006105</div>
Chris Lattner32006282004-06-11 02:28:03 +00006106
Chris Lattnereff29ab2005-05-15 19:39:26 +00006107<!-- _______________________________________________________________________ -->
6108<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00006109 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006110</div>
6111
6112<div class="doc_text">
6113
6114<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006115<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
6116 integer bit width. Not all targets support all bit widths however.</p>
6117
Chris Lattnereff29ab2005-05-15 19:39:26 +00006118<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006119 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6120 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00006121 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006122 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6123 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00006124</pre>
6125
6126<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006127<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6128 trailing zeros.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006129
6130<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006131<p>The only argument is the value to be counted. The argument may be of any
6132 integer type. The return type must match the argument type.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006133
6134<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006135<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
6136 zeros in a variable. If the src == 0 then the result is the size in bits of
6137 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006138
Chris Lattnereff29ab2005-05-15 19:39:26 +00006139</div>
6140
Bill Wendlingda01af72009-02-08 04:04:40 +00006141<!-- ======================================================================= -->
6142<div class="doc_subsection">
6143 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6144</div>
6145
6146<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006147
6148<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingda01af72009-02-08 04:04:40 +00006149
6150</div>
6151
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006152<!-- _______________________________________________________________________ -->
6153<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006154 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006155</div>
6156
6157<div class="doc_text">
6158
6159<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006160<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006161 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006162
6163<pre>
6164 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6165 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6166 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6167</pre>
6168
6169<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006170<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006171 a signed addition of the two arguments, and indicate whether an overflow
6172 occurred during the signed summation.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006173
6174<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006175<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006176 be of integer types of any bit width, but they must have the same bit
6177 width. The second element of the result structure must be of
6178 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6179 undergo signed addition.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006180
6181<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006182<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006183 a signed addition of the two variables. They return a structure &mdash; the
6184 first element of which is the signed summation, and the second element of
6185 which is a bit specifying if the signed summation resulted in an
6186 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006187
6188<h5>Examples:</h5>
6189<pre>
6190 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6191 %sum = extractvalue {i32, i1} %res, 0
6192 %obit = extractvalue {i32, i1} %res, 1
6193 br i1 %obit, label %overflow, label %normal
6194</pre>
6195
6196</div>
6197
6198<!-- _______________________________________________________________________ -->
6199<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006200 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006201</div>
6202
6203<div class="doc_text">
6204
6205<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006206<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006207 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006208
6209<pre>
6210 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6211 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6212 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6213</pre>
6214
6215<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006216<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006217 an unsigned addition of the two arguments, and indicate whether a carry
6218 occurred during the unsigned summation.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006219
6220<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006221<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006222 be of integer types of any bit width, but they must have the same bit
6223 width. The second element of the result structure must be of
6224 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6225 undergo unsigned addition.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006226
6227<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006228<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006229 an unsigned addition of the two arguments. They return a structure &mdash;
6230 the first element of which is the sum, and the second element of which is a
6231 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006232
6233<h5>Examples:</h5>
6234<pre>
6235 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6236 %sum = extractvalue {i32, i1} %res, 0
6237 %obit = extractvalue {i32, i1} %res, 1
6238 br i1 %obit, label %carry, label %normal
6239</pre>
6240
6241</div>
6242
6243<!-- _______________________________________________________________________ -->
6244<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006245 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006246</div>
6247
6248<div class="doc_text">
6249
6250<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006251<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006252 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006253
6254<pre>
6255 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6256 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6257 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6258</pre>
6259
6260<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006261<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006262 a signed subtraction of the two arguments, and indicate whether an overflow
6263 occurred during the signed subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006264
6265<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006266<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006267 be of integer types of any bit width, but they must have the same bit
6268 width. The second element of the result structure must be of
6269 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6270 undergo signed subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006271
6272<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006273<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006274 a signed subtraction of the two arguments. They return a structure &mdash;
6275 the first element of which is the subtraction, and the second element of
6276 which is a bit specifying if the signed subtraction resulted in an
6277 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006278
6279<h5>Examples:</h5>
6280<pre>
6281 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6282 %sum = extractvalue {i32, i1} %res, 0
6283 %obit = extractvalue {i32, i1} %res, 1
6284 br i1 %obit, label %overflow, label %normal
6285</pre>
6286
6287</div>
6288
6289<!-- _______________________________________________________________________ -->
6290<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006291 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006292</div>
6293
6294<div class="doc_text">
6295
6296<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006297<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006298 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006299
6300<pre>
6301 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6302 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6303 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6304</pre>
6305
6306<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006307<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006308 an unsigned subtraction of the two arguments, and indicate whether an
6309 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006310
6311<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006312<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006313 be of integer types of any bit width, but they must have the same bit
6314 width. The second element of the result structure must be of
6315 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6316 undergo unsigned subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006317
6318<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006319<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006320 an unsigned subtraction of the two arguments. They return a structure &mdash;
6321 the first element of which is the subtraction, and the second element of
6322 which is a bit specifying if the unsigned subtraction resulted in an
6323 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006324
6325<h5>Examples:</h5>
6326<pre>
6327 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6328 %sum = extractvalue {i32, i1} %res, 0
6329 %obit = extractvalue {i32, i1} %res, 1
6330 br i1 %obit, label %overflow, label %normal
6331</pre>
6332
6333</div>
6334
6335<!-- _______________________________________________________________________ -->
6336<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006337 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006338</div>
6339
6340<div class="doc_text">
6341
6342<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006343<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006344 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006345
6346<pre>
6347 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6348 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6349 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6350</pre>
6351
6352<h5>Overview:</h5>
6353
6354<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006355 a signed multiplication of the two arguments, and indicate whether an
6356 overflow occurred during the signed multiplication.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006357
6358<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006359<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006360 be of integer types of any bit width, but they must have the same bit
6361 width. The second element of the result structure must be of
6362 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6363 undergo signed multiplication.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006364
6365<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006366<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006367 a signed multiplication of the two arguments. They return a structure &mdash;
6368 the first element of which is the multiplication, and the second element of
6369 which is a bit specifying if the signed multiplication resulted in an
6370 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006371
6372<h5>Examples:</h5>
6373<pre>
6374 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6375 %sum = extractvalue {i32, i1} %res, 0
6376 %obit = extractvalue {i32, i1} %res, 1
6377 br i1 %obit, label %overflow, label %normal
6378</pre>
6379
Reid Spencerf86037f2007-04-11 23:23:49 +00006380</div>
6381
Bill Wendling41b485c2009-02-08 23:00:09 +00006382<!-- _______________________________________________________________________ -->
6383<div class="doc_subsubsection">
6384 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6385</div>
6386
6387<div class="doc_text">
6388
6389<h5>Syntax:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006390<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006391 on any integer bit width.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006392
6393<pre>
6394 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6395 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6396 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6397</pre>
6398
6399<h5>Overview:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006400<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006401 a unsigned multiplication of the two arguments, and indicate whether an
6402 overflow occurred during the unsigned multiplication.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006403
6404<h5>Arguments:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006405<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006406 be of integer types of any bit width, but they must have the same bit
6407 width. The second element of the result structure must be of
6408 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6409 undergo unsigned multiplication.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006410
6411<h5>Semantics:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006412<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006413 an unsigned multiplication of the two arguments. They return a structure
6414 &mdash; the first element of which is the multiplication, and the second
6415 element of which is a bit specifying if the unsigned multiplication resulted
6416 in an overflow.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006417
6418<h5>Examples:</h5>
6419<pre>
6420 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6421 %sum = extractvalue {i32, i1} %res, 0
6422 %obit = extractvalue {i32, i1} %res, 1
6423 br i1 %obit, label %overflow, label %normal
6424</pre>
6425
6426</div>
6427
Chris Lattner8ff75902004-01-06 05:31:32 +00006428<!-- ======================================================================= -->
6429<div class="doc_subsection">
6430 <a name="int_debugger">Debugger Intrinsics</a>
6431</div>
6432
6433<div class="doc_text">
Chris Lattner8ff75902004-01-06 05:31:32 +00006434
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006435<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
6436 prefix), are described in
6437 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6438 Level Debugging</a> document.</p>
6439
6440</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00006441
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006442<!-- ======================================================================= -->
6443<div class="doc_subsection">
6444 <a name="int_eh">Exception Handling Intrinsics</a>
6445</div>
6446
6447<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006448
6449<p>The LLVM exception handling intrinsics (which all start with
6450 <tt>llvm.eh.</tt> prefix), are described in
6451 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6452 Handling</a> document.</p>
6453
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006454</div>
6455
Tanya Lattner6d806e92007-06-15 20:50:54 +00006456<!-- ======================================================================= -->
6457<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00006458 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00006459</div>
6460
6461<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006462
6463<p>This intrinsic makes it possible to excise one parameter, marked with
6464 the <tt>nest</tt> attribute, from a function. The result is a callable
6465 function pointer lacking the nest parameter - the caller does not need to
6466 provide a value for it. Instead, the value to use is stored in advance in a
6467 "trampoline", a block of memory usually allocated on the stack, which also
6468 contains code to splice the nest value into the argument list. This is used
6469 to implement the GCC nested function address extension.</p>
6470
6471<p>For example, if the function is
6472 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6473 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
6474 follows:</p>
6475
6476<div class="doc_code">
Duncan Sands36397f52007-07-27 12:58:54 +00006477<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006478 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6479 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6480 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6481 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00006482</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006483</div>
6484
6485<p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6486 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
6487
Duncan Sands36397f52007-07-27 12:58:54 +00006488</div>
6489
6490<!-- _______________________________________________________________________ -->
6491<div class="doc_subsubsection">
6492 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6493</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006494
Duncan Sands36397f52007-07-27 12:58:54 +00006495<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006496
Duncan Sands36397f52007-07-27 12:58:54 +00006497<h5>Syntax:</h5>
6498<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006499 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00006500</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006501
Duncan Sands36397f52007-07-27 12:58:54 +00006502<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006503<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
6504 function pointer suitable for executing it.</p>
6505
Duncan Sands36397f52007-07-27 12:58:54 +00006506<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006507<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6508 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
6509 sufficiently aligned block of memory; this memory is written to by the
6510 intrinsic. Note that the size and the alignment are target-specific - LLVM
6511 currently provides no portable way of determining them, so a front-end that
6512 generates this intrinsic needs to have some target-specific knowledge.
6513 The <tt>func</tt> argument must hold a function bitcast to
6514 an <tt>i8*</tt>.</p>
6515
Duncan Sands36397f52007-07-27 12:58:54 +00006516<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006517<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
6518 dependent code, turning it into a function. A pointer to this function is
6519 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
6520 function pointer type</a> before being called. The new function's signature
6521 is the same as that of <tt>func</tt> with any arguments marked with
6522 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
6523 is allowed, and it must be of pointer type. Calling the new function is
6524 equivalent to calling <tt>func</tt> with the same argument list, but
6525 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
6526 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
6527 by <tt>tramp</tt> is modified, then the effect of any later call to the
6528 returned function pointer is undefined.</p>
6529
Duncan Sands36397f52007-07-27 12:58:54 +00006530</div>
6531
6532<!-- ======================================================================= -->
6533<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006534 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6535</div>
6536
6537<div class="doc_text">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006538
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006539<p>These intrinsic functions expand the "universal IR" of LLVM to represent
6540 hardware constructs for atomic operations and memory synchronization. This
6541 provides an interface to the hardware, not an interface to the programmer. It
6542 is aimed at a low enough level to allow any programming models or APIs
6543 (Application Programming Interfaces) which need atomic behaviors to map
6544 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
6545 hardware provides a "universal IR" for source languages, it also provides a
6546 starting point for developing a "universal" atomic operation and
6547 synchronization IR.</p>
6548
6549<p>These do <em>not</em> form an API such as high-level threading libraries,
6550 software transaction memory systems, atomic primitives, and intrinsic
6551 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6552 application libraries. The hardware interface provided by LLVM should allow
6553 a clean implementation of all of these APIs and parallel programming models.
6554 No one model or paradigm should be selected above others unless the hardware
6555 itself ubiquitously does so.</p>
6556
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006557</div>
6558
6559<!-- _______________________________________________________________________ -->
6560<div class="doc_subsubsection">
6561 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6562</div>
6563<div class="doc_text">
6564<h5>Syntax:</h5>
6565<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006566 declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt; )
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006567</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006568
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006569<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006570<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6571 specific pairs of memory access types.</p>
6572
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006573<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006574<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6575 The first four arguments enables a specific barrier as listed below. The
6576 fith argument specifies that the barrier applies to io or device or uncached
6577 memory.</p>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006578
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006579<ul>
6580 <li><tt>ll</tt>: load-load barrier</li>
6581 <li><tt>ls</tt>: load-store barrier</li>
6582 <li><tt>sl</tt>: store-load barrier</li>
6583 <li><tt>ss</tt>: store-store barrier</li>
6584 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
6585</ul>
6586
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006587<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006588<p>This intrinsic causes the system to enforce some ordering constraints upon
6589 the loads and stores of the program. This barrier does not
6590 indicate <em>when</em> any events will occur, it only enforces
6591 an <em>order</em> in which they occur. For any of the specified pairs of load
6592 and store operations (f.ex. load-load, or store-load), all of the first
6593 operations preceding the barrier will complete before any of the second
6594 operations succeeding the barrier begin. Specifically the semantics for each
6595 pairing is as follows:</p>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006596
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006597<ul>
6598 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6599 after the barrier begins.</li>
6600 <li><tt>ls</tt>: All loads before the barrier must complete before any
6601 store after the barrier begins.</li>
6602 <li><tt>ss</tt>: All stores before the barrier must complete before any
6603 store after the barrier begins.</li>
6604 <li><tt>sl</tt>: All stores before the barrier must complete before any
6605 load after the barrier begins.</li>
6606</ul>
6607
6608<p>These semantics are applied with a logical "and" behavior when more than one
6609 is enabled in a single memory barrier intrinsic.</p>
6610
6611<p>Backends may implement stronger barriers than those requested when they do
6612 not support as fine grained a barrier as requested. Some architectures do
6613 not need all types of barriers and on such architectures, these become
6614 noops.</p>
6615
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006616<h5>Example:</h5>
6617<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00006618%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6619%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006620 store i32 4, %ptr
6621
6622%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6623 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6624 <i>; guarantee the above finishes</i>
6625 store i32 8, %ptr <i>; before this begins</i>
6626</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006627
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006628</div>
6629
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006630<!-- _______________________________________________________________________ -->
6631<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006632 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006633</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006634
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006635<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006636
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006637<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006638<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6639 any integer bit width and for different address spaces. Not all targets
6640 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006641
6642<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006643 declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6644 declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6645 declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6646 declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006647</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006648
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006649<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006650<p>This loads a value in memory and compares it to a given value. If they are
6651 equal, it stores a new value into the memory.</p>
6652
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006653<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006654<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
6655 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6656 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6657 this integer type. While any bit width integer may be used, targets may only
6658 lower representations they support in hardware.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006659
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006660<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006661<p>This entire intrinsic must be executed atomically. It first loads the value
6662 in memory pointed to by <tt>ptr</tt> and compares it with the
6663 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
6664 memory. The loaded value is yielded in all cases. This provides the
6665 equivalent of an atomic compare-and-swap operation within the SSA
6666 framework.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006667
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006668<h5>Examples:</h5>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006669<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00006670%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6671%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006672 store i32 4, %ptr
6673
6674%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006675%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006676 <i>; yields {i32}:result1 = 4</i>
6677%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6678%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6679
6680%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006681%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006682 <i>; yields {i32}:result2 = 8</i>
6683%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6684
6685%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6686</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006687
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006688</div>
6689
6690<!-- _______________________________________________________________________ -->
6691<div class="doc_subsubsection">
6692 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6693</div>
6694<div class="doc_text">
6695<h5>Syntax:</h5>
6696
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006697<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6698 integer bit width. Not all targets support all bit widths however.</p>
6699
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006700<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006701 declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6702 declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6703 declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6704 declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006705</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006706
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006707<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006708<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6709 the value from memory. It then stores the value in <tt>val</tt> in the memory
6710 at <tt>ptr</tt>.</p>
6711
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006712<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006713<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
6714 the <tt>val</tt> argument and the result must be integers of the same bit
6715 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6716 integer type. The targets may only lower integer representations they
6717 support.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006718
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006719<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006720<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6721 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6722 equivalent of an atomic swap operation within the SSA framework.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006723
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006724<h5>Examples:</h5>
6725<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00006726%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6727%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006728 store i32 4, %ptr
6729
6730%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006731%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006732 <i>; yields {i32}:result1 = 4</i>
6733%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6734%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6735
6736%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006737%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006738 <i>; yields {i32}:result2 = 8</i>
6739
6740%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6741%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6742</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006743
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006744</div>
6745
6746<!-- _______________________________________________________________________ -->
6747<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006748 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006749
6750</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006751
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006752<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006753
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006754<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006755<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
6756 any integer bit width. Not all targets support all bit widths however.</p>
6757
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006758<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006759 declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6760 declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6761 declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6762 declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006763</pre>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006764
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006765<h5>Overview:</h5>
6766<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
6767 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6768
6769<h5>Arguments:</h5>
6770<p>The intrinsic takes two arguments, the first a pointer to an integer value
6771 and the second an integer value. The result is also an integer value. These
6772 integer types can have any bit width, but they must all have the same bit
6773 width. The targets may only lower integer representations they support.</p>
6774
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006775<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006776<p>This intrinsic does a series of operations atomically. It first loads the
6777 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6778 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006779
6780<h5>Examples:</h5>
6781<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00006782%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6783%ptr = bitcast i8* %mallocP to i32*
6784 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006785%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006786 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006787%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006788 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006789%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006790 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006791%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006792</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006793
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006794</div>
6795
Mon P Wang28873102008-06-25 08:15:39 +00006796<!-- _______________________________________________________________________ -->
6797<div class="doc_subsubsection">
6798 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6799
6800</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006801
Mon P Wang28873102008-06-25 08:15:39 +00006802<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006803
Mon P Wang28873102008-06-25 08:15:39 +00006804<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006805<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
6806 any integer bit width and for different address spaces. Not all targets
6807 support all bit widths however.</p>
6808
Mon P Wang28873102008-06-25 08:15:39 +00006809<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006810 declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6811 declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6812 declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6813 declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006814</pre>
Mon P Wang28873102008-06-25 08:15:39 +00006815
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006816<h5>Overview:</h5>
6817<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6818 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6819
6820<h5>Arguments:</h5>
6821<p>The intrinsic takes two arguments, the first a pointer to an integer value
6822 and the second an integer value. The result is also an integer value. These
6823 integer types can have any bit width, but they must all have the same bit
6824 width. The targets may only lower integer representations they support.</p>
6825
Mon P Wang28873102008-06-25 08:15:39 +00006826<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006827<p>This intrinsic does a series of operations atomically. It first loads the
6828 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6829 result to <tt>ptr</tt>. It yields the original value stored
6830 at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006831
6832<h5>Examples:</h5>
6833<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00006834%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6835%ptr = bitcast i8* %mallocP to i32*
6836 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006837%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006838 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006839%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006840 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006841%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006842 <i>; yields {i32}:result3 = 2</i>
6843%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6844</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006845
Mon P Wang28873102008-06-25 08:15:39 +00006846</div>
6847
6848<!-- _______________________________________________________________________ -->
6849<div class="doc_subsubsection">
6850 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6851 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6852 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6853 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
Mon P Wang28873102008-06-25 08:15:39 +00006854</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006855
Mon P Wang28873102008-06-25 08:15:39 +00006856<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006857
Mon P Wang28873102008-06-25 08:15:39 +00006858<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006859<p>These are overloaded intrinsics. You can
6860 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
6861 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
6862 bit width and for different address spaces. Not all targets support all bit
6863 widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006864
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006865<pre>
6866 declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6867 declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6868 declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6869 declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006870</pre>
6871
6872<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006873 declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6874 declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6875 declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6876 declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006877</pre>
6878
6879<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006880 declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6881 declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6882 declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6883 declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006884</pre>
6885
6886<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006887 declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6888 declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6889 declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6890 declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006891</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006892
Mon P Wang28873102008-06-25 08:15:39 +00006893<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006894<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6895 the value stored in memory at <tt>ptr</tt>. It yields the original value
6896 at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006897
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006898<h5>Arguments:</h5>
6899<p>These intrinsics take two arguments, the first a pointer to an integer value
6900 and the second an integer value. The result is also an integer value. These
6901 integer types can have any bit width, but they must all have the same bit
6902 width. The targets may only lower integer representations they support.</p>
6903
Mon P Wang28873102008-06-25 08:15:39 +00006904<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006905<p>These intrinsics does a series of operations atomically. They first load the
6906 value stored at <tt>ptr</tt>. They then do the bitwise
6907 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
6908 original value stored at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006909
6910<h5>Examples:</h5>
6911<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00006912%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6913%ptr = bitcast i8* %mallocP to i32*
6914 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006915%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006916 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006917%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006918 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006919%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006920 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006921%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006922 <i>; yields {i32}:result3 = FF</i>
6923%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6924</pre>
Mon P Wang28873102008-06-25 08:15:39 +00006925
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006926</div>
Mon P Wang28873102008-06-25 08:15:39 +00006927
6928<!-- _______________________________________________________________________ -->
6929<div class="doc_subsubsection">
6930 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6931 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6932 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6933 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
Mon P Wang28873102008-06-25 08:15:39 +00006934</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006935
Mon P Wang28873102008-06-25 08:15:39 +00006936<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006937
Mon P Wang28873102008-06-25 08:15:39 +00006938<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006939<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6940 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
6941 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6942 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006943
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006944<pre>
6945 declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6946 declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6947 declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6948 declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006949</pre>
6950
6951<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006952 declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6953 declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6954 declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6955 declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006956</pre>
6957
6958<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006959 declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6960 declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6961 declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6962 declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006963</pre>
6964
6965<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006966 declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6967 declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6968 declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6969 declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006970</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006971
Mon P Wang28873102008-06-25 08:15:39 +00006972<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006973<p>These intrinsics takes the signed or unsigned minimum or maximum of
6974 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6975 original value at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006976
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006977<h5>Arguments:</h5>
6978<p>These intrinsics take two arguments, the first a pointer to an integer value
6979 and the second an integer value. The result is also an integer value. These
6980 integer types can have any bit width, but they must all have the same bit
6981 width. The targets may only lower integer representations they support.</p>
6982
Mon P Wang28873102008-06-25 08:15:39 +00006983<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006984<p>These intrinsics does a series of operations atomically. They first load the
6985 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
6986 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
6987 yield the original value stored at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006988
6989<h5>Examples:</h5>
6990<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00006991%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6992%ptr = bitcast i8* %mallocP to i32*
6993 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006994%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006995 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006996%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006997 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006998%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006999 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007000%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00007001 <i>; yields {i32}:result3 = 8</i>
7002%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7003</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007004
Mon P Wang28873102008-06-25 08:15:39 +00007005</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007006
Nick Lewyckycc271862009-10-13 07:03:23 +00007007
7008<!-- ======================================================================= -->
7009<div class="doc_subsection">
7010 <a name="int_memorymarkers">Memory Use Markers</a>
7011</div>
7012
7013<div class="doc_text">
7014
7015<p>This class of intrinsics exists to information about the lifetime of memory
7016 objects and ranges where variables are immutable.</p>
7017
7018</div>
7019
7020<!-- _______________________________________________________________________ -->
7021<div class="doc_subsubsection">
7022 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
7023</div>
7024
7025<div class="doc_text">
7026
7027<h5>Syntax:</h5>
7028<pre>
7029 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7030</pre>
7031
7032<h5>Overview:</h5>
7033<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7034 object's lifetime.</p>
7035
7036<h5>Arguments:</h5>
Nick Lewycky321333e2009-10-13 07:57:33 +00007037<p>The first argument is a constant integer representing the size of the
7038 object, or -1 if it is variable sized. The second argument is a pointer to
7039 the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00007040
7041<h5>Semantics:</h5>
7042<p>This intrinsic indicates that before this point in the code, the value of the
7043 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewycky8d336592009-10-27 16:56:58 +00007044 never be used and has an undefined value. A load from the pointer that
7045 precedes this intrinsic can be replaced with
Nick Lewyckycc271862009-10-13 07:03:23 +00007046 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7047
7048</div>
7049
7050<!-- _______________________________________________________________________ -->
7051<div class="doc_subsubsection">
7052 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
7053</div>
7054
7055<div class="doc_text">
7056
7057<h5>Syntax:</h5>
7058<pre>
7059 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7060</pre>
7061
7062<h5>Overview:</h5>
7063<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7064 object's lifetime.</p>
7065
7066<h5>Arguments:</h5>
Nick Lewycky321333e2009-10-13 07:57:33 +00007067<p>The first argument is a constant integer representing the size of the
7068 object, or -1 if it is variable sized. The second argument is a pointer to
7069 the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00007070
7071<h5>Semantics:</h5>
7072<p>This intrinsic indicates that after this point in the code, the value of the
7073 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7074 never be used and has an undefined value. Any stores into the memory object
7075 following this intrinsic may be removed as dead.
7076
7077</div>
7078
7079<!-- _______________________________________________________________________ -->
7080<div class="doc_subsubsection">
7081 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
7082</div>
7083
7084<div class="doc_text">
7085
7086<h5>Syntax:</h5>
7087<pre>
7088 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;) readonly
7089</pre>
7090
7091<h5>Overview:</h5>
7092<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7093 a memory object will not change.</p>
7094
7095<h5>Arguments:</h5>
Nick Lewycky321333e2009-10-13 07:57:33 +00007096<p>The first argument is a constant integer representing the size of the
7097 object, or -1 if it is variable sized. The second argument is a pointer to
7098 the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00007099
7100<h5>Semantics:</h5>
7101<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7102 the return value, the referenced memory location is constant and
7103 unchanging.</p>
7104
7105</div>
7106
7107<!-- _______________________________________________________________________ -->
7108<div class="doc_subsubsection">
7109 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
7110</div>
7111
7112<div class="doc_text">
7113
7114<h5>Syntax:</h5>
7115<pre>
7116 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7117</pre>
7118
7119<h5>Overview:</h5>
7120<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7121 a memory object are mutable.</p>
7122
7123<h5>Arguments:</h5>
7124<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky321333e2009-10-13 07:57:33 +00007125 The second argument is a constant integer representing the size of the
7126 object, or -1 if it is variable sized and the third argument is a pointer
7127 to the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00007128
7129<h5>Semantics:</h5>
7130<p>This intrinsic indicates that the memory is mutable again.</p>
7131
7132</div>
7133
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007134<!-- ======================================================================= -->
7135<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00007136 <a name="int_general">General Intrinsics</a>
7137</div>
7138
7139<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007140
7141<p>This class of intrinsics is designed to be generic and has no specific
7142 purpose.</p>
7143
Tanya Lattner6d806e92007-06-15 20:50:54 +00007144</div>
7145
7146<!-- _______________________________________________________________________ -->
7147<div class="doc_subsubsection">
7148 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7149</div>
7150
7151<div class="doc_text">
7152
7153<h5>Syntax:</h5>
7154<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00007155 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00007156</pre>
7157
7158<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007159<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007160
7161<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007162<p>The first argument is a pointer to a value, the second is a pointer to a
7163 global string, the third is a pointer to a global string which is the source
7164 file name, and the last argument is the line number.</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007165
7166<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007167<p>This intrinsic allows annotation of local variables with arbitrary strings.
7168 This can be useful for special purpose optimizations that want to look for
7169 these annotations. These have no other defined use, they are ignored by code
7170 generation and optimization.</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007171
Tanya Lattner6d806e92007-06-15 20:50:54 +00007172</div>
7173
Tanya Lattnerb6367882007-09-21 22:59:12 +00007174<!-- _______________________________________________________________________ -->
7175<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00007176 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007177</div>
7178
7179<div class="doc_text">
7180
7181<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007182<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7183 any integer bit width.</p>
7184
Tanya Lattnerb6367882007-09-21 22:59:12 +00007185<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00007186 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7187 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7188 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7189 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7190 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00007191</pre>
7192
7193<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007194<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007195
7196<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007197<p>The first argument is an integer value (result of some expression), the
7198 second is a pointer to a global string, the third is a pointer to a global
7199 string which is the source file name, and the last argument is the line
7200 number. It returns the value of the first argument.</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007201
7202<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007203<p>This intrinsic allows annotations to be put on arbitrary expressions with
7204 arbitrary strings. This can be useful for special purpose optimizations that
7205 want to look for these annotations. These have no other defined use, they
7206 are ignored by code generation and optimization.</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007207
Tanya Lattnerb6367882007-09-21 22:59:12 +00007208</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007209
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007210<!-- _______________________________________________________________________ -->
7211<div class="doc_subsubsection">
7212 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7213</div>
7214
7215<div class="doc_text">
7216
7217<h5>Syntax:</h5>
7218<pre>
7219 declare void @llvm.trap()
7220</pre>
7221
7222<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007223<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007224
7225<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007226<p>None.</p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007227
7228<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007229<p>This intrinsics is lowered to the target dependent trap instruction. If the
7230 target does not have a trap instruction, this intrinsic will be lowered to
7231 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007232
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007233</div>
7234
Bill Wendling69e4adb2008-11-19 05:56:17 +00007235<!-- _______________________________________________________________________ -->
7236<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00007237 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00007238</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007239
Bill Wendling69e4adb2008-11-19 05:56:17 +00007240<div class="doc_text">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007241
Bill Wendling69e4adb2008-11-19 05:56:17 +00007242<h5>Syntax:</h5>
7243<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007244 declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
Bill Wendling69e4adb2008-11-19 05:56:17 +00007245</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007246
Bill Wendling69e4adb2008-11-19 05:56:17 +00007247<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007248<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
7249 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
7250 ensure that it is placed on the stack before local variables.</p>
7251
Bill Wendling69e4adb2008-11-19 05:56:17 +00007252<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007253<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
7254 arguments. The first argument is the value loaded from the stack
7255 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
7256 that has enough space to hold the value of the guard.</p>
7257
Bill Wendling69e4adb2008-11-19 05:56:17 +00007258<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007259<p>This intrinsic causes the prologue/epilogue inserter to force the position of
7260 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7261 stack. This is to ensure that if a local variable on the stack is
7262 overwritten, it will destroy the value of the guard. When the function exits,
7263 the guard on the stack is checked against the original guard. If they're
7264 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
7265 function.</p>
7266
Bill Wendling69e4adb2008-11-19 05:56:17 +00007267</div>
7268
Chris Lattner00950542001-06-06 20:29:01 +00007269<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00007270<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007271<address>
7272 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007273 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007274 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007275 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007276
7277 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00007278 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007279 Last modified: $Date$
7280</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00007281
Misha Brukman9d0919f2003-11-08 01:05:38 +00007282</body>
7283</html>