blob: 652aeef2e20fb30f880db63b2737850f273dc0ec [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Richard Smith32dbdf62014-07-31 04:25:36 +000078 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000132 incrementing counter, starting with 0). Note that basic blocks are
133 included in this numbering. For example, if the entry basic block is not
134 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000135
136It also shows a convention that we follow in this document. When
137demonstrating instructions, we will follow an instruction with a comment
138that defines the type and name of value produced.
139
140High Level Structure
141====================
142
143Module Structure
144----------------
145
146LLVM programs are composed of ``Module``'s, each of which is a
147translation unit of the input programs. Each module consists of
148functions, global variables, and symbol table entries. Modules may be
149combined together with the LLVM linker, which merges function (and
150global variable) definitions, resolves forward declarations, and merges
151symbol table entries. Here is an example of the "hello world" module:
152
153.. code-block:: llvm
154
Michael Liaoa7699082013-03-06 18:24:34 +0000155 ; Declare the string constant as a global constant.
156 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000157
Michael Liaoa7699082013-03-06 18:24:34 +0000158 ; External declaration of the puts function
159 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000160
161 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000162 define i32 @main() { ; i32()*
163 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000164 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
165
Michael Liaoa7699082013-03-06 18:24:34 +0000166 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000167 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000168 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000169 }
170
171 ; Named metadata
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000172 !0 = metadata !{i32 42, null, metadata !"string"}
173 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000174
175This example is made up of a :ref:`global variable <globalvars>` named
176"``.str``", an external declaration of the "``puts``" function, a
177:ref:`function definition <functionstructure>` for "``main``" and
178:ref:`named metadata <namedmetadatastructure>` "``foo``".
179
180In general, a module is made up of a list of global values (where both
181functions and global variables are global values). Global values are
182represented by a pointer to a memory location (in this case, a pointer
183to an array of char, and a pointer to a function), and have one of the
184following :ref:`linkage types <linkage>`.
185
186.. _linkage:
187
188Linkage Types
189-------------
190
191All Global Variables and Functions have one of the following types of
192linkage:
193
194``private``
195 Global values with "``private``" linkage are only directly
196 accessible by objects in the current module. In particular, linking
197 code into a module with an private global value may cause the
198 private to be renamed as necessary to avoid collisions. Because the
199 symbol is private to the module, all references can be updated. This
200 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000201``internal``
202 Similar to private, but the value shows as a local symbol
203 (``STB_LOCAL`` in the case of ELF) in the object file. This
204 corresponds to the notion of the '``static``' keyword in C.
205``available_externally``
206 Globals with "``available_externally``" linkage are never emitted
207 into the object file corresponding to the LLVM module. They exist to
208 allow inlining and other optimizations to take place given knowledge
209 of the definition of the global, which is known to be somewhere
210 outside the module. Globals with ``available_externally`` linkage
211 are allowed to be discarded at will, and are otherwise the same as
212 ``linkonce_odr``. This linkage type is only allowed on definitions,
213 not declarations.
214``linkonce``
215 Globals with "``linkonce``" linkage are merged with other globals of
216 the same name when linkage occurs. This can be used to implement
217 some forms of inline functions, templates, or other code which must
218 be generated in each translation unit that uses it, but where the
219 body may be overridden with a more definitive definition later.
220 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
221 that ``linkonce`` linkage does not actually allow the optimizer to
222 inline the body of this function into callers because it doesn't
223 know if this definition of the function is the definitive definition
224 within the program or whether it will be overridden by a stronger
225 definition. To enable inlining and other optimizations, use
226 "``linkonce_odr``" linkage.
227``weak``
228 "``weak``" linkage has the same merging semantics as ``linkonce``
229 linkage, except that unreferenced globals with ``weak`` linkage may
230 not be discarded. This is used for globals that are declared "weak"
231 in C source code.
232``common``
233 "``common``" linkage is most similar to "``weak``" linkage, but they
234 are used for tentative definitions in C, such as "``int X;``" at
235 global scope. Symbols with "``common``" linkage are merged in the
236 same way as ``weak symbols``, and they may not be deleted if
237 unreferenced. ``common`` symbols may not have an explicit section,
238 must have a zero initializer, and may not be marked
239 ':ref:`constant <globalvars>`'. Functions and aliases may not have
240 common linkage.
241
242.. _linkage_appending:
243
244``appending``
245 "``appending``" linkage may only be applied to global variables of
246 pointer to array type. When two global variables with appending
247 linkage are linked together, the two global arrays are appended
248 together. This is the LLVM, typesafe, equivalent of having the
249 system linker append together "sections" with identical names when
250 .o files are linked.
251``extern_weak``
252 The semantics of this linkage follow the ELF object file model: the
253 symbol is weak until linked, if not linked, the symbol becomes null
254 instead of being an undefined reference.
255``linkonce_odr``, ``weak_odr``
256 Some languages allow differing globals to be merged, such as two
257 functions with different semantics. Other languages, such as
258 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000259 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000260 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
261 global will only be merged with equivalent globals. These linkage
262 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000263``external``
264 If none of the above identifiers are used, the global is externally
265 visible, meaning that it participates in linkage and can be used to
266 resolve external symbol references.
267
Sean Silvab084af42012-12-07 10:36:55 +0000268It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000269other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000270
Sean Silvab084af42012-12-07 10:36:55 +0000271.. _callingconv:
272
273Calling Conventions
274-------------------
275
276LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
277:ref:`invokes <i_invoke>` can all have an optional calling convention
278specified for the call. The calling convention of any pair of dynamic
279caller/callee must match, or the behavior of the program is undefined.
280The following calling conventions are supported by LLVM, and more may be
281added in the future:
282
283"``ccc``" - The C calling convention
284 This calling convention (the default if no other calling convention
285 is specified) matches the target C calling conventions. This calling
286 convention supports varargs function calls and tolerates some
287 mismatch in the declared prototype and implemented declaration of
288 the function (as does normal C).
289"``fastcc``" - The fast calling convention
290 This calling convention attempts to make calls as fast as possible
291 (e.g. by passing things in registers). This calling convention
292 allows the target to use whatever tricks it wants to produce fast
293 code for the target, without having to conform to an externally
294 specified ABI (Application Binary Interface). `Tail calls can only
295 be optimized when this, the GHC or the HiPE convention is
296 used. <CodeGenerator.html#id80>`_ This calling convention does not
297 support varargs and requires the prototype of all callees to exactly
298 match the prototype of the function definition.
299"``coldcc``" - The cold calling convention
300 This calling convention attempts to make code in the caller as
301 efficient as possible under the assumption that the call is not
302 commonly executed. As such, these calls often preserve all registers
303 so that the call does not break any live ranges in the caller side.
304 This calling convention does not support varargs and requires the
305 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000306 function definition. Furthermore the inliner doesn't consider such function
307 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000308"``cc 10``" - GHC convention
309 This calling convention has been implemented specifically for use by
310 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
311 It passes everything in registers, going to extremes to achieve this
312 by disabling callee save registers. This calling convention should
313 not be used lightly but only for specific situations such as an
314 alternative to the *register pinning* performance technique often
315 used when implementing functional programming languages. At the
316 moment only X86 supports this convention and it has the following
317 limitations:
318
319 - On *X86-32* only supports up to 4 bit type parameters. No
320 floating point types are supported.
321 - On *X86-64* only supports up to 10 bit type parameters and 6
322 floating point parameters.
323
324 This calling convention supports `tail call
325 optimization <CodeGenerator.html#id80>`_ but requires both the
326 caller and callee are using it.
327"``cc 11``" - The HiPE calling convention
328 This calling convention has been implemented specifically for use by
329 the `High-Performance Erlang
330 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
331 native code compiler of the `Ericsson's Open Source Erlang/OTP
332 system <http://www.erlang.org/download.shtml>`_. It uses more
333 registers for argument passing than the ordinary C calling
334 convention and defines no callee-saved registers. The calling
335 convention properly supports `tail call
336 optimization <CodeGenerator.html#id80>`_ but requires that both the
337 caller and the callee use it. It uses a *register pinning*
338 mechanism, similar to GHC's convention, for keeping frequently
339 accessed runtime components pinned to specific hardware registers.
340 At the moment only X86 supports this convention (both 32 and 64
341 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000342"``webkit_jscc``" - WebKit's JavaScript calling convention
343 This calling convention has been implemented for `WebKit FTL JIT
344 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
345 stack right to left (as cdecl does), and returns a value in the
346 platform's customary return register.
347"``anyregcc``" - Dynamic calling convention for code patching
348 This is a special convention that supports patching an arbitrary code
349 sequence in place of a call site. This convention forces the call
350 arguments into registers but allows them to be dynamcially
351 allocated. This can currently only be used with calls to
352 llvm.experimental.patchpoint because only this intrinsic records
353 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000354"``preserve_mostcc``" - The `PreserveMost` calling convention
355 This calling convention attempts to make the code in the caller as little
356 intrusive as possible. This calling convention behaves identical to the `C`
357 calling convention on how arguments and return values are passed, but it
358 uses a different set of caller/callee-saved registers. This alleviates the
359 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000360 call in the caller. If the arguments are passed in callee-saved registers,
361 then they will be preserved by the callee across the call. This doesn't
362 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000363
364 - On X86-64 the callee preserves all general purpose registers, except for
365 R11. R11 can be used as a scratch register. Floating-point registers
366 (XMMs/YMMs) are not preserved and need to be saved by the caller.
367
368 The idea behind this convention is to support calls to runtime functions
369 that have a hot path and a cold path. The hot path is usually a small piece
370 of code that doesn't many registers. The cold path might need to call out to
371 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000372 registers, which haven't already been saved by the caller. The
373 `PreserveMost` calling convention is very similar to the `cold` calling
374 convention in terms of caller/callee-saved registers, but they are used for
375 different types of function calls. `coldcc` is for function calls that are
376 rarely executed, whereas `preserve_mostcc` function calls are intended to be
377 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
378 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000379
380 This calling convention will be used by a future version of the ObjectiveC
381 runtime and should therefore still be considered experimental at this time.
382 Although this convention was created to optimize certain runtime calls to
383 the ObjectiveC runtime, it is not limited to this runtime and might be used
384 by other runtimes in the future too. The current implementation only
385 supports X86-64, but the intention is to support more architectures in the
386 future.
387"``preserve_allcc``" - The `PreserveAll` calling convention
388 This calling convention attempts to make the code in the caller even less
389 intrusive than the `PreserveMost` calling convention. This calling
390 convention also behaves identical to the `C` calling convention on how
391 arguments and return values are passed, but it uses a different set of
392 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000393 recovering a large register set before and after the call in the caller. If
394 the arguments are passed in callee-saved registers, then they will be
395 preserved by the callee across the call. This doesn't apply for values
396 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000397
398 - On X86-64 the callee preserves all general purpose registers, except for
399 R11. R11 can be used as a scratch register. Furthermore it also preserves
400 all floating-point registers (XMMs/YMMs).
401
402 The idea behind this convention is to support calls to runtime functions
403 that don't need to call out to any other functions.
404
405 This calling convention, like the `PreserveMost` calling convention, will be
406 used by a future version of the ObjectiveC runtime and should be considered
407 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000408"``cc <n>``" - Numbered convention
409 Any calling convention may be specified by number, allowing
410 target-specific calling conventions to be used. Target specific
411 calling conventions start at 64.
412
413More calling conventions can be added/defined on an as-needed basis, to
414support Pascal conventions or any other well-known target-independent
415convention.
416
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000417.. _visibilitystyles:
418
Sean Silvab084af42012-12-07 10:36:55 +0000419Visibility Styles
420-----------------
421
422All Global Variables and Functions have one of the following visibility
423styles:
424
425"``default``" - Default style
426 On targets that use the ELF object file format, default visibility
427 means that the declaration is visible to other modules and, in
428 shared libraries, means that the declared entity may be overridden.
429 On Darwin, default visibility means that the declaration is visible
430 to other modules. Default visibility corresponds to "external
431 linkage" in the language.
432"``hidden``" - Hidden style
433 Two declarations of an object with hidden visibility refer to the
434 same object if they are in the same shared object. Usually, hidden
435 visibility indicates that the symbol will not be placed into the
436 dynamic symbol table, so no other module (executable or shared
437 library) can reference it directly.
438"``protected``" - Protected style
439 On ELF, protected visibility indicates that the symbol will be
440 placed in the dynamic symbol table, but that references within the
441 defining module will bind to the local symbol. That is, the symbol
442 cannot be overridden by another module.
443
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000444A symbol with ``internal`` or ``private`` linkage must have ``default``
445visibility.
446
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000447.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448
Nico Rieck7157bb72014-01-14 15:22:47 +0000449DLL Storage Classes
450-------------------
451
452All Global Variables, Functions and Aliases can have one of the following
453DLL storage class:
454
455``dllimport``
456 "``dllimport``" causes the compiler to reference a function or variable via
457 a global pointer to a pointer that is set up by the DLL exporting the
458 symbol. On Microsoft Windows targets, the pointer name is formed by
459 combining ``__imp_`` and the function or variable name.
460``dllexport``
461 "``dllexport``" causes the compiler to provide a global pointer to a pointer
462 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
463 Microsoft Windows targets, the pointer name is formed by combining
464 ``__imp_`` and the function or variable name. Since this storage class
465 exists for defining a dll interface, the compiler, assembler and linker know
466 it is externally referenced and must refrain from deleting the symbol.
467
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000468.. _tls_model:
469
470Thread Local Storage Models
471---------------------------
472
473A variable may be defined as ``thread_local``, which means that it will
474not be shared by threads (each thread will have a separated copy of the
475variable). Not all targets support thread-local variables. Optionally, a
476TLS model may be specified:
477
478``localdynamic``
479 For variables that are only used within the current shared library.
480``initialexec``
481 For variables in modules that will not be loaded dynamically.
482``localexec``
483 For variables defined in the executable and only used within it.
484
485If no explicit model is given, the "general dynamic" model is used.
486
487The models correspond to the ELF TLS models; see `ELF Handling For
488Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
489more information on under which circumstances the different models may
490be used. The target may choose a different TLS model if the specified
491model is not supported, or if a better choice of model can be made.
492
493A model can also be specified in a alias, but then it only governs how
494the alias is accessed. It will not have any effect in the aliasee.
495
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000496.. _namedtypes:
497
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000498Structure Types
499---------------
Sean Silvab084af42012-12-07 10:36:55 +0000500
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000501LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
502types <t_struct>`. Literal types are uniqued structurally, but identified types
503are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000504to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000505
506An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000507
508.. code-block:: llvm
509
510 %mytype = type { %mytype*, i32 }
511
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000512Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
513literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000514
515.. _globalvars:
516
517Global Variables
518----------------
519
520Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000521instead of run-time.
522
Bob Wilson85b24f22014-06-12 20:40:33 +0000523Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000524
525Global variables in other translation units can also be declared, in which
526case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000527
Bob Wilson85b24f22014-06-12 20:40:33 +0000528Either global variable definitions or declarations may have an explicit section
529to be placed in and may have an optional explicit alignment specified.
530
Michael Gottesman006039c2013-01-31 05:48:48 +0000531A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000532the contents of the variable will **never** be modified (enabling better
533optimization, allowing the global data to be placed in the read-only
534section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000535initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000536variable.
537
538LLVM explicitly allows *declarations* of global variables to be marked
539constant, even if the final definition of the global is not. This
540capability can be used to enable slightly better optimization of the
541program, but requires the language definition to guarantee that
542optimizations based on the 'constantness' are valid for the translation
543units that do not include the definition.
544
545As SSA values, global variables define pointer values that are in scope
546(i.e. they dominate) all basic blocks in the program. Global variables
547always define a pointer to their "content" type because they describe a
548region of memory, and all memory objects in LLVM are accessed through
549pointers.
550
551Global variables can be marked with ``unnamed_addr`` which indicates
552that the address is not significant, only the content. Constants marked
553like this can be merged with other constants if they have the same
554initializer. Note that a constant with significant address *can* be
555merged with a ``unnamed_addr`` constant, the result being a constant
556whose address is significant.
557
558A global variable may be declared to reside in a target-specific
559numbered address space. For targets that support them, address spaces
560may affect how optimizations are performed and/or what target
561instructions are used to access the variable. The default address space
562is zero. The address space qualifier must precede any other attributes.
563
564LLVM allows an explicit section to be specified for globals. If the
565target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000566Additionally, the global can placed in a comdat if the target has the necessary
567support.
Sean Silvab084af42012-12-07 10:36:55 +0000568
Michael Gottesmane743a302013-02-04 03:22:00 +0000569By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000570variables defined within the module are not modified from their
571initial values before the start of the global initializer. This is
572true even for variables potentially accessible from outside the
573module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000574``@llvm.used`` or dllexported variables. This assumption may be suppressed
575by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000576
Sean Silvab084af42012-12-07 10:36:55 +0000577An explicit alignment may be specified for a global, which must be a
578power of 2. If not present, or if the alignment is set to zero, the
579alignment of the global is set by the target to whatever it feels
580convenient. If an explicit alignment is specified, the global is forced
581to have exactly that alignment. Targets and optimizers are not allowed
582to over-align the global if the global has an assigned section. In this
583case, the extra alignment could be observable: for example, code could
584assume that the globals are densely packed in their section and try to
585iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000586iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000587
Nico Rieck7157bb72014-01-14 15:22:47 +0000588Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
589
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000590Variables and aliasaes can have a
591:ref:`Thread Local Storage Model <tls_model>`.
592
Nico Rieck7157bb72014-01-14 15:22:47 +0000593Syntax::
594
595 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000596 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000597 <global | constant> <Type> [<InitializerConstant>]
598 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000599
Sean Silvab084af42012-12-07 10:36:55 +0000600For example, the following defines a global in a numbered address space
601with an initializer, section, and alignment:
602
603.. code-block:: llvm
604
605 @G = addrspace(5) constant float 1.0, section "foo", align 4
606
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000607The following example just declares a global variable
608
609.. code-block:: llvm
610
611 @G = external global i32
612
Sean Silvab084af42012-12-07 10:36:55 +0000613The following example defines a thread-local global with the
614``initialexec`` TLS model:
615
616.. code-block:: llvm
617
618 @G = thread_local(initialexec) global i32 0, align 4
619
620.. _functionstructure:
621
622Functions
623---------
624
625LLVM function definitions consist of the "``define``" keyword, an
626optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000627style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
628an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000629an optional ``unnamed_addr`` attribute, a return type, an optional
630:ref:`parameter attribute <paramattrs>` for the return type, a function
631name, a (possibly empty) argument list (each with optional :ref:`parameter
632attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000633an optional section, an optional alignment,
634an optional :ref:`comdat <langref_comdats>`,
635an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000636curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000637
638LLVM function declarations consist of the "``declare``" keyword, an
639optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000640style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
641an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000642an optional ``unnamed_addr`` attribute, a return type, an optional
643:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000644name, a possibly empty list of arguments, an optional alignment, an optional
645:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000646
Bill Wendling6822ecb2013-10-27 05:09:12 +0000647A function definition contains a list of basic blocks, forming the CFG (Control
648Flow Graph) for the function. Each basic block may optionally start with a label
649(giving the basic block a symbol table entry), contains a list of instructions,
650and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
651function return). If an explicit label is not provided, a block is assigned an
652implicit numbered label, using the next value from the same counter as used for
653unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
654entry block does not have an explicit label, it will be assigned label "%0",
655then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000656
657The first basic block in a function is special in two ways: it is
658immediately executed on entrance to the function, and it is not allowed
659to have predecessor basic blocks (i.e. there can not be any branches to
660the entry block of a function). Because the block can have no
661predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
662
663LLVM allows an explicit section to be specified for functions. If the
664target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000665Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000666
667An explicit alignment may be specified for a function. If not present,
668or if the alignment is set to zero, the alignment of the function is set
669by the target to whatever it feels convenient. If an explicit alignment
670is specified, the function is forced to have at least that much
671alignment. All alignments must be a power of 2.
672
673If the ``unnamed_addr`` attribute is given, the address is know to not
674be significant and two identical functions can be merged.
675
676Syntax::
677
Nico Rieck7157bb72014-01-14 15:22:47 +0000678 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000679 [cconv] [ret attrs]
680 <ResultType> @<FunctionName> ([argument list])
David Majnemerdad0a642014-06-27 18:19:56 +0000681 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>]
682 [align N] [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000683
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000684.. _langref_aliases:
685
Sean Silvab084af42012-12-07 10:36:55 +0000686Aliases
687-------
688
Rafael Espindola64c1e182014-06-03 02:41:57 +0000689Aliases, unlike function or variables, don't create any new data. They
690are just a new symbol and metadata for an existing position.
691
692Aliases have a name and an aliasee that is either a global value or a
693constant expression.
694
Nico Rieck7157bb72014-01-14 15:22:47 +0000695Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000696:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
697<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000698
699Syntax::
700
Rafael Espindola464fe022014-07-30 22:51:54 +0000701 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000702
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000703The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000704``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000705might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000706
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000707Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000708the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
709to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000710
Rafael Espindola64c1e182014-06-03 02:41:57 +0000711Since aliases are only a second name, some restrictions apply, of which
712some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000713
Rafael Espindola64c1e182014-06-03 02:41:57 +0000714* The expression defining the aliasee must be computable at assembly
715 time. Since it is just a name, no relocations can be used.
716
717* No alias in the expression can be weak as the possibility of the
718 intermediate alias being overridden cannot be represented in an
719 object file.
720
721* No global value in the expression can be a declaration, since that
722 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000723
David Majnemerdad0a642014-06-27 18:19:56 +0000724.. _langref_comdats:
725
726Comdats
727-------
728
729Comdat IR provides access to COFF and ELF object file COMDAT functionality.
730
Richard Smith32dbdf62014-07-31 04:25:36 +0000731Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000732specify this key will only end up in the final object file if the linker chooses
733that key over some other key. Aliases are placed in the same COMDAT that their
734aliasee computes to, if any.
735
736Comdats have a selection kind to provide input on how the linker should
737choose between keys in two different object files.
738
739Syntax::
740
741 $<Name> = comdat SelectionKind
742
743The selection kind must be one of the following:
744
745``any``
746 The linker may choose any COMDAT key, the choice is arbitrary.
747``exactmatch``
748 The linker may choose any COMDAT key but the sections must contain the
749 same data.
750``largest``
751 The linker will choose the section containing the largest COMDAT key.
752``noduplicates``
753 The linker requires that only section with this COMDAT key exist.
754``samesize``
755 The linker may choose any COMDAT key but the sections must contain the
756 same amount of data.
757
758Note that the Mach-O platform doesn't support COMDATs and ELF only supports
759``any`` as a selection kind.
760
761Here is an example of a COMDAT group where a function will only be selected if
762the COMDAT key's section is the largest:
763
764.. code-block:: llvm
765
766 $foo = comdat largest
767 @foo = global i32 2, comdat $foo
768
769 define void @bar() comdat $foo {
770 ret void
771 }
772
773In a COFF object file, this will create a COMDAT section with selection kind
774``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
775and another COMDAT section with selection kind
776``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
777section and contains the contents of the ``@baz`` symbol.
778
779There are some restrictions on the properties of the global object.
780It, or an alias to it, must have the same name as the COMDAT group when
781targeting COFF.
782The contents and size of this object may be used during link-time to determine
783which COMDAT groups get selected depending on the selection kind.
784Because the name of the object must match the name of the COMDAT group, the
785linkage of the global object must not be local; local symbols can get renamed
786if a collision occurs in the symbol table.
787
788The combined use of COMDATS and section attributes may yield surprising results.
789For example:
790
791.. code-block:: llvm
792
793 $foo = comdat any
794 $bar = comdat any
795 @g1 = global i32 42, section "sec", comdat $foo
796 @g2 = global i32 42, section "sec", comdat $bar
797
798From the object file perspective, this requires the creation of two sections
799with the same name. This is necessary because both globals belong to different
800COMDAT groups and COMDATs, at the object file level, are represented by
801sections.
802
803Note that certain IR constructs like global variables and functions may create
804COMDATs in the object file in addition to any which are specified using COMDAT
805IR. This arises, for example, when a global variable has linkonce_odr linkage.
806
Sean Silvab084af42012-12-07 10:36:55 +0000807.. _namedmetadatastructure:
808
809Named Metadata
810--------------
811
812Named metadata is a collection of metadata. :ref:`Metadata
813nodes <metadata>` (but not metadata strings) are the only valid
814operands for a named metadata.
815
816Syntax::
817
818 ; Some unnamed metadata nodes, which are referenced by the named metadata.
819 !0 = metadata !{metadata !"zero"}
820 !1 = metadata !{metadata !"one"}
821 !2 = metadata !{metadata !"two"}
822 ; A named metadata.
823 !name = !{!0, !1, !2}
824
825.. _paramattrs:
826
827Parameter Attributes
828--------------------
829
830The return type and each parameter of a function type may have a set of
831*parameter attributes* associated with them. Parameter attributes are
832used to communicate additional information about the result or
833parameters of a function. Parameter attributes are considered to be part
834of the function, not of the function type, so functions with different
835parameter attributes can have the same function type.
836
837Parameter attributes are simple keywords that follow the type specified.
838If multiple parameter attributes are needed, they are space separated.
839For example:
840
841.. code-block:: llvm
842
843 declare i32 @printf(i8* noalias nocapture, ...)
844 declare i32 @atoi(i8 zeroext)
845 declare signext i8 @returns_signed_char()
846
847Note that any attributes for the function result (``nounwind``,
848``readonly``) come immediately after the argument list.
849
850Currently, only the following parameter attributes are defined:
851
852``zeroext``
853 This indicates to the code generator that the parameter or return
854 value should be zero-extended to the extent required by the target's
855 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
856 the caller (for a parameter) or the callee (for a return value).
857``signext``
858 This indicates to the code generator that the parameter or return
859 value should be sign-extended to the extent required by the target's
860 ABI (which is usually 32-bits) by the caller (for a parameter) or
861 the callee (for a return value).
862``inreg``
863 This indicates that this parameter or return value should be treated
864 in a special target-dependent fashion during while emitting code for
865 a function call or return (usually, by putting it in a register as
866 opposed to memory, though some targets use it to distinguish between
867 two different kinds of registers). Use of this attribute is
868 target-specific.
869``byval``
870 This indicates that the pointer parameter should really be passed by
871 value to the function. The attribute implies that a hidden copy of
872 the pointee is made between the caller and the callee, so the callee
873 is unable to modify the value in the caller. This attribute is only
874 valid on LLVM pointer arguments. It is generally used to pass
875 structs and arrays by value, but is also valid on pointers to
876 scalars. The copy is considered to belong to the caller not the
877 callee (for example, ``readonly`` functions should not write to
878 ``byval`` parameters). This is not a valid attribute for return
879 values.
880
881 The byval attribute also supports specifying an alignment with the
882 align attribute. It indicates the alignment of the stack slot to
883 form and the known alignment of the pointer specified to the call
884 site. If the alignment is not specified, then the code generator
885 makes a target-specific assumption.
886
Reid Klecknera534a382013-12-19 02:14:12 +0000887.. _attr_inalloca:
888
889``inalloca``
890
Reid Kleckner60d3a832014-01-16 22:59:24 +0000891 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000892 address of outgoing stack arguments. An ``inalloca`` argument must
893 be a pointer to stack memory produced by an ``alloca`` instruction.
894 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000895 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000896 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000897
Reid Kleckner436c42e2014-01-17 23:58:17 +0000898 An argument allocation may be used by a call at most once because
899 the call may deallocate it. The ``inalloca`` attribute cannot be
900 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000901 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
902 ``inalloca`` attribute also disables LLVM's implicit lowering of
903 large aggregate return values, which means that frontend authors
904 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000905
Reid Kleckner60d3a832014-01-16 22:59:24 +0000906 When the call site is reached, the argument allocation must have
907 been the most recent stack allocation that is still live, or the
908 results are undefined. It is possible to allocate additional stack
909 space after an argument allocation and before its call site, but it
910 must be cleared off with :ref:`llvm.stackrestore
911 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000912
913 See :doc:`InAlloca` for more information on how to use this
914 attribute.
915
Sean Silvab084af42012-12-07 10:36:55 +0000916``sret``
917 This indicates that the pointer parameter specifies the address of a
918 structure that is the return value of the function in the source
919 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000920 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000921 not to trap and to be properly aligned. This may only be applied to
922 the first parameter. This is not a valid attribute for return
923 values.
Sean Silva1703e702014-04-08 21:06:22 +0000924
Hal Finkelccc70902014-07-22 16:58:55 +0000925``align <n>``
926 This indicates that the pointer value may be assumed by the optimizer to
927 have the specified alignment.
928
929 Note that this attribute has additional semantics when combined with the
930 ``byval`` attribute.
931
Sean Silva1703e702014-04-08 21:06:22 +0000932.. _noalias:
933
Sean Silvab084af42012-12-07 10:36:55 +0000934``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000935 This indicates that pointer values :ref:`based <pointeraliasing>` on
Richard Smith32dbdf62014-07-31 04:25:36 +0000936 the argument or return value do not alias pointer values that are
Sean Silvab084af42012-12-07 10:36:55 +0000937 not *based* on it, ignoring certain "irrelevant" dependencies. For a
938 call to the parent function, dependencies between memory references
939 from before or after the call and from those during the call are
940 "irrelevant" to the ``noalias`` keyword for the arguments and return
941 value used in that call. The caller shares the responsibility with
942 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000943 details, please see the discussion of the NoAlias response in :ref:`alias
944 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000945
946 Note that this definition of ``noalias`` is intentionally similar
947 to the definition of ``restrict`` in C99 for function arguments,
948 though it is slightly weaker.
949
950 For function return values, C99's ``restrict`` is not meaningful,
951 while LLVM's ``noalias`` is.
952``nocapture``
953 This indicates that the callee does not make any copies of the
954 pointer that outlive the callee itself. This is not a valid
955 attribute for return values.
956
957.. _nest:
958
959``nest``
960 This indicates that the pointer parameter can be excised using the
961 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000962 attribute for return values and can only be applied to one parameter.
963
964``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000965 This indicates that the function always returns the argument as its return
966 value. This is an optimization hint to the code generator when generating
967 the caller, allowing tail call optimization and omission of register saves
968 and restores in some cases; it is not checked or enforced when generating
969 the callee. The parameter and the function return type must be valid
970 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
971 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000972
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000973``nonnull``
974 This indicates that the parameter or return pointer is not null. This
975 attribute may only be applied to pointer typed parameters. This is not
976 checked or enforced by LLVM, the caller must ensure that the pointer
977 passed in is non-null, or the callee must ensure that the returned pointer
978 is non-null.
979
Hal Finkelb0407ba2014-07-18 15:51:28 +0000980``dereferenceable(<n>)``
981 This indicates that the parameter or return pointer is dereferenceable. This
982 attribute may only be applied to pointer typed parameters. A pointer that
983 is dereferenceable can be loaded from speculatively without a risk of
984 trapping. The number of bytes known to be dereferenceable must be provided
985 in parentheses. It is legal for the number of bytes to be less than the
986 size of the pointee type. The ``nonnull`` attribute does not imply
987 dereferenceability (consider a pointer to one element past the end of an
988 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
989 ``addrspace(0)`` (which is the default address space).
990
Sean Silvab084af42012-12-07 10:36:55 +0000991.. _gc:
992
993Garbage Collector Names
994-----------------------
995
996Each function may specify a garbage collector name, which is simply a
997string:
998
999.. code-block:: llvm
1000
1001 define void @f() gc "name" { ... }
1002
1003The compiler declares the supported values of *name*. Specifying a
Richard Smith32dbdf62014-07-31 04:25:36 +00001004collector will cause the compiler to alter its output in order to
Sean Silvab084af42012-12-07 10:36:55 +00001005support the named garbage collection algorithm.
1006
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001007.. _prefixdata:
1008
1009Prefix Data
1010-----------
1011
1012Prefix data is data associated with a function which the code generator
1013will emit immediately before the function body. The purpose of this feature
1014is to allow frontends to associate language-specific runtime metadata with
1015specific functions and make it available through the function pointer while
1016still allowing the function pointer to be called. To access the data for a
1017given function, a program may bitcast the function pointer to a pointer to
1018the constant's type. This implies that the IR symbol points to the start
1019of the prefix data.
1020
1021To maintain the semantics of ordinary function calls, the prefix data must
1022have a particular format. Specifically, it must begin with a sequence of
1023bytes which decode to a sequence of machine instructions, valid for the
1024module's target, which transfer control to the point immediately succeeding
1025the prefix data, without performing any other visible action. This allows
1026the inliner and other passes to reason about the semantics of the function
1027definition without needing to reason about the prefix data. Obviously this
1028makes the format of the prefix data highly target dependent.
1029
Peter Collingbourne213358a2013-09-23 20:14:21 +00001030Prefix data is laid out as if it were an initializer for a global variable
1031of the prefix data's type. No padding is automatically placed between the
1032prefix data and the function body. If padding is required, it must be part
1033of the prefix data.
1034
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001035A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
1036which encodes the ``nop`` instruction:
1037
1038.. code-block:: llvm
1039
1040 define void @f() prefix i8 144 { ... }
1041
1042Generally prefix data can be formed by encoding a relative branch instruction
1043which skips the metadata, as in this example of valid prefix data for the
1044x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1045
1046.. code-block:: llvm
1047
1048 %0 = type <{ i8, i8, i8* }>
1049
1050 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
1051
1052A function may have prefix data but no body. This has similar semantics
1053to the ``available_externally`` linkage in that the data may be used by the
1054optimizers but will not be emitted in the object file.
1055
Bill Wendling63b88192013-02-06 06:52:58 +00001056.. _attrgrp:
1057
1058Attribute Groups
1059----------------
1060
1061Attribute groups are groups of attributes that are referenced by objects within
1062the IR. They are important for keeping ``.ll`` files readable, because a lot of
1063functions will use the same set of attributes. In the degenerative case of a
1064``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1065group will capture the important command line flags used to build that file.
1066
1067An attribute group is a module-level object. To use an attribute group, an
1068object references the attribute group's ID (e.g. ``#37``). An object may refer
1069to more than one attribute group. In that situation, the attributes from the
1070different groups are merged.
1071
1072Here is an example of attribute groups for a function that should always be
1073inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1074
1075.. code-block:: llvm
1076
1077 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001078 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001079
1080 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001081 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001082
1083 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1084 define void @f() #0 #1 { ... }
1085
Sean Silvab084af42012-12-07 10:36:55 +00001086.. _fnattrs:
1087
1088Function Attributes
1089-------------------
1090
1091Function attributes are set to communicate additional information about
1092a function. Function attributes are considered to be part of the
1093function, not of the function type, so functions with different function
1094attributes can have the same function type.
1095
1096Function attributes are simple keywords that follow the type specified.
1097If multiple attributes are needed, they are space separated. For
1098example:
1099
1100.. code-block:: llvm
1101
1102 define void @f() noinline { ... }
1103 define void @f() alwaysinline { ... }
1104 define void @f() alwaysinline optsize { ... }
1105 define void @f() optsize { ... }
1106
Sean Silvab084af42012-12-07 10:36:55 +00001107``alignstack(<n>)``
1108 This attribute indicates that, when emitting the prologue and
1109 epilogue, the backend should forcibly align the stack pointer.
1110 Specify the desired alignment, which must be a power of two, in
1111 parentheses.
1112``alwaysinline``
1113 This attribute indicates that the inliner should attempt to inline
1114 this function into callers whenever possible, ignoring any active
1115 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001116``builtin``
1117 This indicates that the callee function at a call site should be
1118 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001119 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001120 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001121 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001122``cold``
1123 This attribute indicates that this function is rarely called. When
1124 computing edge weights, basic blocks post-dominated by a cold
1125 function call are also considered to be cold; and, thus, given low
1126 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001127``inlinehint``
1128 This attribute indicates that the source code contained a hint that
1129 inlining this function is desirable (such as the "inline" keyword in
1130 C/C++). It is just a hint; it imposes no requirements on the
1131 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001132``jumptable``
1133 This attribute indicates that the function should be added to a
1134 jump-instruction table at code-generation time, and that all address-taken
1135 references to this function should be replaced with a reference to the
1136 appropriate jump-instruction-table function pointer. Note that this creates
1137 a new pointer for the original function, which means that code that depends
1138 on function-pointer identity can break. So, any function annotated with
1139 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001140``minsize``
1141 This attribute suggests that optimization passes and code generator
1142 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001143 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001144 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001145``naked``
1146 This attribute disables prologue / epilogue emission for the
1147 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001148``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001149 This indicates that the callee function at a call site is not recognized as
1150 a built-in function. LLVM will retain the original call and not replace it
1151 with equivalent code based on the semantics of the built-in function, unless
1152 the call site uses the ``builtin`` attribute. This is valid at call sites
1153 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001154``noduplicate``
1155 This attribute indicates that calls to the function cannot be
1156 duplicated. A call to a ``noduplicate`` function may be moved
1157 within its parent function, but may not be duplicated within
1158 its parent function.
1159
1160 A function containing a ``noduplicate`` call may still
1161 be an inlining candidate, provided that the call is not
1162 duplicated by inlining. That implies that the function has
1163 internal linkage and only has one call site, so the original
1164 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001165``noimplicitfloat``
1166 This attributes disables implicit floating point instructions.
1167``noinline``
1168 This attribute indicates that the inliner should never inline this
1169 function in any situation. This attribute may not be used together
1170 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001171``nonlazybind``
1172 This attribute suppresses lazy symbol binding for the function. This
1173 may make calls to the function faster, at the cost of extra program
1174 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001175``noredzone``
1176 This attribute indicates that the code generator should not use a
1177 red zone, even if the target-specific ABI normally permits it.
1178``noreturn``
1179 This function attribute indicates that the function never returns
1180 normally. This produces undefined behavior at runtime if the
1181 function ever does dynamically return.
1182``nounwind``
1183 This function attribute indicates that the function never returns
1184 with an unwind or exceptional control flow. If the function does
1185 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001186``optnone``
1187 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001188 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001189 exception of interprocedural optimization passes.
1190 This attribute cannot be used together with the ``alwaysinline``
1191 attribute; this attribute is also incompatible
1192 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001193
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001194 This attribute requires the ``noinline`` attribute to be specified on
1195 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001196 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001197 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001198``optsize``
1199 This attribute suggests that optimization passes and code generator
1200 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001201 and otherwise do optimizations specifically to reduce code size as
1202 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001203``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001204 On a function, this attribute indicates that the function computes its
1205 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001206 without dereferencing any pointer arguments or otherwise accessing
1207 any mutable state (e.g. memory, control registers, etc) visible to
1208 caller functions. It does not write through any pointer arguments
1209 (including ``byval`` arguments) and never changes any state visible
1210 to callers. This means that it cannot unwind exceptions by calling
1211 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001212
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001213 On an argument, this attribute indicates that the function does not
1214 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001215 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001216``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001217 On a function, this attribute indicates that the function does not write
1218 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001219 modify any state (e.g. memory, control registers, etc) visible to
1220 caller functions. It may dereference pointer arguments and read
1221 state that may be set in the caller. A readonly function always
1222 returns the same value (or unwinds an exception identically) when
1223 called with the same set of arguments and global state. It cannot
1224 unwind an exception by calling the ``C++`` exception throwing
1225 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001226
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001227 On an argument, this attribute indicates that the function does not write
1228 through this pointer argument, even though it may write to the memory that
1229 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001230``returns_twice``
1231 This attribute indicates that this function can return twice. The C
1232 ``setjmp`` is an example of such a function. The compiler disables
1233 some optimizations (like tail calls) in the caller of these
1234 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001235``sanitize_address``
1236 This attribute indicates that AddressSanitizer checks
1237 (dynamic address safety analysis) are enabled for this function.
1238``sanitize_memory``
1239 This attribute indicates that MemorySanitizer checks (dynamic detection
1240 of accesses to uninitialized memory) are enabled for this function.
1241``sanitize_thread``
1242 This attribute indicates that ThreadSanitizer checks
1243 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001244``ssp``
1245 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001246 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001247 placed on the stack before the local variables that's checked upon
1248 return from the function to see if it has been overwritten. A
1249 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001250 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001251
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001252 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1253 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1254 - Calls to alloca() with variable sizes or constant sizes greater than
1255 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001256
Josh Magee24c7f062014-02-01 01:36:16 +00001257 Variables that are identified as requiring a protector will be arranged
1258 on the stack such that they are adjacent to the stack protector guard.
1259
Sean Silvab084af42012-12-07 10:36:55 +00001260 If a function that has an ``ssp`` attribute is inlined into a
1261 function that doesn't have an ``ssp`` attribute, then the resulting
1262 function will have an ``ssp`` attribute.
1263``sspreq``
1264 This attribute indicates that the function should *always* emit a
1265 stack smashing protector. This overrides the ``ssp`` function
1266 attribute.
1267
Josh Magee24c7f062014-02-01 01:36:16 +00001268 Variables that are identified as requiring a protector will be arranged
1269 on the stack such that they are adjacent to the stack protector guard.
1270 The specific layout rules are:
1271
1272 #. Large arrays and structures containing large arrays
1273 (``>= ssp-buffer-size``) are closest to the stack protector.
1274 #. Small arrays and structures containing small arrays
1275 (``< ssp-buffer-size``) are 2nd closest to the protector.
1276 #. Variables that have had their address taken are 3rd closest to the
1277 protector.
1278
Sean Silvab084af42012-12-07 10:36:55 +00001279 If a function that has an ``sspreq`` attribute is inlined into a
1280 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001281 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1282 an ``sspreq`` attribute.
1283``sspstrong``
1284 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001285 protector. This attribute causes a strong heuristic to be used when
1286 determining if a function needs stack protectors. The strong heuristic
1287 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001288
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001289 - Arrays of any size and type
1290 - Aggregates containing an array of any size and type.
1291 - Calls to alloca().
1292 - Local variables that have had their address taken.
1293
Josh Magee24c7f062014-02-01 01:36:16 +00001294 Variables that are identified as requiring a protector will be arranged
1295 on the stack such that they are adjacent to the stack protector guard.
1296 The specific layout rules are:
1297
1298 #. Large arrays and structures containing large arrays
1299 (``>= ssp-buffer-size``) are closest to the stack protector.
1300 #. Small arrays and structures containing small arrays
1301 (``< ssp-buffer-size``) are 2nd closest to the protector.
1302 #. Variables that have had their address taken are 3rd closest to the
1303 protector.
1304
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001305 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001306
1307 If a function that has an ``sspstrong`` attribute is inlined into a
1308 function that doesn't have an ``sspstrong`` attribute, then the
1309 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001310``uwtable``
1311 This attribute indicates that the ABI being targeted requires that
1312 an unwind table entry be produce for this function even if we can
1313 show that no exceptions passes by it. This is normally the case for
1314 the ELF x86-64 abi, but it can be disabled for some compilation
1315 units.
Sean Silvab084af42012-12-07 10:36:55 +00001316
1317.. _moduleasm:
1318
1319Module-Level Inline Assembly
1320----------------------------
1321
1322Modules may contain "module-level inline asm" blocks, which corresponds
1323to the GCC "file scope inline asm" blocks. These blocks are internally
1324concatenated by LLVM and treated as a single unit, but may be separated
1325in the ``.ll`` file if desired. The syntax is very simple:
1326
1327.. code-block:: llvm
1328
1329 module asm "inline asm code goes here"
1330 module asm "more can go here"
1331
1332The strings can contain any character by escaping non-printable
1333characters. The escape sequence used is simply "\\xx" where "xx" is the
1334two digit hex code for the number.
1335
1336The inline asm code is simply printed to the machine code .s file when
1337assembly code is generated.
1338
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001339.. _langref_datalayout:
1340
Sean Silvab084af42012-12-07 10:36:55 +00001341Data Layout
1342-----------
1343
1344A module may specify a target specific data layout string that specifies
1345how data is to be laid out in memory. The syntax for the data layout is
1346simply:
1347
1348.. code-block:: llvm
1349
1350 target datalayout = "layout specification"
1351
1352The *layout specification* consists of a list of specifications
1353separated by the minus sign character ('-'). Each specification starts
1354with a letter and may include other information after the letter to
1355define some aspect of the data layout. The specifications accepted are
1356as follows:
1357
1358``E``
1359 Specifies that the target lays out data in big-endian form. That is,
1360 the bits with the most significance have the lowest address
1361 location.
1362``e``
1363 Specifies that the target lays out data in little-endian form. That
1364 is, the bits with the least significance have the lowest address
1365 location.
1366``S<size>``
1367 Specifies the natural alignment of the stack in bits. Alignment
1368 promotion of stack variables is limited to the natural stack
1369 alignment to avoid dynamic stack realignment. The stack alignment
1370 must be a multiple of 8-bits. If omitted, the natural stack
1371 alignment defaults to "unspecified", which does not prevent any
1372 alignment promotions.
1373``p[n]:<size>:<abi>:<pref>``
1374 This specifies the *size* of a pointer and its ``<abi>`` and
1375 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001376 bits. The address space, ``n`` is optional, and if not specified,
1377 denotes the default address space 0. The value of ``n`` must be
1378 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001379``i<size>:<abi>:<pref>``
1380 This specifies the alignment for an integer type of a given bit
1381 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1382``v<size>:<abi>:<pref>``
1383 This specifies the alignment for a vector type of a given bit
1384 ``<size>``.
1385``f<size>:<abi>:<pref>``
1386 This specifies the alignment for a floating point type of a given bit
1387 ``<size>``. Only values of ``<size>`` that are supported by the target
1388 will work. 32 (float) and 64 (double) are supported on all targets; 80
1389 or 128 (different flavors of long double) are also supported on some
1390 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001391``a:<abi>:<pref>``
1392 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001393``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001394 If present, specifies that llvm names are mangled in the output. The
1395 options are
1396
1397 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1398 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1399 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1400 symbols get a ``_`` prefix.
1401 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1402 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001403``n<size1>:<size2>:<size3>...``
1404 This specifies a set of native integer widths for the target CPU in
1405 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1406 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1407 this set are considered to support most general arithmetic operations
1408 efficiently.
1409
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001410On every specification that takes a ``<abi>:<pref>``, specifying the
1411``<pref>`` alignment is optional. If omitted, the preceding ``:``
1412should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1413
Sean Silvab084af42012-12-07 10:36:55 +00001414When constructing the data layout for a given target, LLVM starts with a
1415default set of specifications which are then (possibly) overridden by
1416the specifications in the ``datalayout`` keyword. The default
1417specifications are given in this list:
1418
1419- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001420- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1421- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1422 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001423- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001424- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1425- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1426- ``i16:16:16`` - i16 is 16-bit aligned
1427- ``i32:32:32`` - i32 is 32-bit aligned
1428- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1429 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001430- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001431- ``f32:32:32`` - float is 32-bit aligned
1432- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001433- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001434- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1435- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001436- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001437
1438When LLVM is determining the alignment for a given type, it uses the
1439following rules:
1440
1441#. If the type sought is an exact match for one of the specifications,
1442 that specification is used.
1443#. If no match is found, and the type sought is an integer type, then
1444 the smallest integer type that is larger than the bitwidth of the
1445 sought type is used. If none of the specifications are larger than
1446 the bitwidth then the largest integer type is used. For example,
1447 given the default specifications above, the i7 type will use the
1448 alignment of i8 (next largest) while both i65 and i256 will use the
1449 alignment of i64 (largest specified).
1450#. If no match is found, and the type sought is a vector type, then the
1451 largest vector type that is smaller than the sought vector type will
1452 be used as a fall back. This happens because <128 x double> can be
1453 implemented in terms of 64 <2 x double>, for example.
1454
1455The function of the data layout string may not be what you expect.
1456Notably, this is not a specification from the frontend of what alignment
1457the code generator should use.
1458
1459Instead, if specified, the target data layout is required to match what
1460the ultimate *code generator* expects. This string is used by the
1461mid-level optimizers to improve code, and this only works if it matches
1462what the ultimate code generator uses. If you would like to generate IR
1463that does not embed this target-specific detail into the IR, then you
1464don't have to specify the string. This will disable some optimizations
1465that require precise layout information, but this also prevents those
1466optimizations from introducing target specificity into the IR.
1467
Bill Wendling5cc90842013-10-18 23:41:25 +00001468.. _langref_triple:
1469
1470Target Triple
1471-------------
1472
1473A module may specify a target triple string that describes the target
1474host. The syntax for the target triple is simply:
1475
1476.. code-block:: llvm
1477
1478 target triple = "x86_64-apple-macosx10.7.0"
1479
1480The *target triple* string consists of a series of identifiers delimited
1481by the minus sign character ('-'). The canonical forms are:
1482
1483::
1484
1485 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1486 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1487
1488This information is passed along to the backend so that it generates
1489code for the proper architecture. It's possible to override this on the
1490command line with the ``-mtriple`` command line option.
1491
Sean Silvab084af42012-12-07 10:36:55 +00001492.. _pointeraliasing:
1493
1494Pointer Aliasing Rules
1495----------------------
1496
1497Any memory access must be done through a pointer value associated with
1498an address range of the memory access, otherwise the behavior is
1499undefined. Pointer values are associated with address ranges according
1500to the following rules:
1501
1502- A pointer value is associated with the addresses associated with any
1503 value it is *based* on.
1504- An address of a global variable is associated with the address range
1505 of the variable's storage.
1506- The result value of an allocation instruction is associated with the
1507 address range of the allocated storage.
1508- A null pointer in the default address-space is associated with no
1509 address.
1510- An integer constant other than zero or a pointer value returned from
1511 a function not defined within LLVM may be associated with address
1512 ranges allocated through mechanisms other than those provided by
1513 LLVM. Such ranges shall not overlap with any ranges of addresses
1514 allocated by mechanisms provided by LLVM.
1515
1516A pointer value is *based* on another pointer value according to the
1517following rules:
1518
1519- A pointer value formed from a ``getelementptr`` operation is *based*
1520 on the first operand of the ``getelementptr``.
1521- The result value of a ``bitcast`` is *based* on the operand of the
1522 ``bitcast``.
1523- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1524 values that contribute (directly or indirectly) to the computation of
1525 the pointer's value.
1526- The "*based* on" relationship is transitive.
1527
1528Note that this definition of *"based"* is intentionally similar to the
1529definition of *"based"* in C99, though it is slightly weaker.
1530
1531LLVM IR does not associate types with memory. The result type of a
1532``load`` merely indicates the size and alignment of the memory from
1533which to load, as well as the interpretation of the value. The first
1534operand type of a ``store`` similarly only indicates the size and
1535alignment of the store.
1536
1537Consequently, type-based alias analysis, aka TBAA, aka
1538``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1539:ref:`Metadata <metadata>` may be used to encode additional information
1540which specialized optimization passes may use to implement type-based
1541alias analysis.
1542
1543.. _volatile:
1544
1545Volatile Memory Accesses
1546------------------------
1547
1548Certain memory accesses, such as :ref:`load <i_load>`'s,
1549:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1550marked ``volatile``. The optimizers must not change the number of
1551volatile operations or change their order of execution relative to other
1552volatile operations. The optimizers *may* change the order of volatile
1553operations relative to non-volatile operations. This is not Java's
1554"volatile" and has no cross-thread synchronization behavior.
1555
Andrew Trick89fc5a62013-01-30 21:19:35 +00001556IR-level volatile loads and stores cannot safely be optimized into
1557llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1558flagged volatile. Likewise, the backend should never split or merge
1559target-legal volatile load/store instructions.
1560
Andrew Trick7e6f9282013-01-31 00:49:39 +00001561.. admonition:: Rationale
1562
1563 Platforms may rely on volatile loads and stores of natively supported
1564 data width to be executed as single instruction. For example, in C
1565 this holds for an l-value of volatile primitive type with native
1566 hardware support, but not necessarily for aggregate types. The
1567 frontend upholds these expectations, which are intentionally
1568 unspecified in the IR. The rules above ensure that IR transformation
1569 do not violate the frontend's contract with the language.
1570
Sean Silvab084af42012-12-07 10:36:55 +00001571.. _memmodel:
1572
1573Memory Model for Concurrent Operations
1574--------------------------------------
1575
1576The LLVM IR does not define any way to start parallel threads of
1577execution or to register signal handlers. Nonetheless, there are
1578platform-specific ways to create them, and we define LLVM IR's behavior
1579in their presence. This model is inspired by the C++0x memory model.
1580
1581For a more informal introduction to this model, see the :doc:`Atomics`.
1582
1583We define a *happens-before* partial order as the least partial order
1584that
1585
1586- Is a superset of single-thread program order, and
1587- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1588 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1589 techniques, like pthread locks, thread creation, thread joining,
1590 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1591 Constraints <ordering>`).
1592
1593Note that program order does not introduce *happens-before* edges
1594between a thread and signals executing inside that thread.
1595
1596Every (defined) read operation (load instructions, memcpy, atomic
1597loads/read-modify-writes, etc.) R reads a series of bytes written by
1598(defined) write operations (store instructions, atomic
1599stores/read-modify-writes, memcpy, etc.). For the purposes of this
1600section, initialized globals are considered to have a write of the
1601initializer which is atomic and happens before any other read or write
1602of the memory in question. For each byte of a read R, R\ :sub:`byte`
1603may see any write to the same byte, except:
1604
1605- If write\ :sub:`1` happens before write\ :sub:`2`, and
1606 write\ :sub:`2` happens before R\ :sub:`byte`, then
1607 R\ :sub:`byte` does not see write\ :sub:`1`.
1608- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1609 R\ :sub:`byte` does not see write\ :sub:`3`.
1610
1611Given that definition, R\ :sub:`byte` is defined as follows:
1612
1613- If R is volatile, the result is target-dependent. (Volatile is
1614 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001615 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001616 like normal memory. It does not generally provide cross-thread
1617 synchronization.)
1618- Otherwise, if there is no write to the same byte that happens before
1619 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1620- Otherwise, if R\ :sub:`byte` may see exactly one write,
1621 R\ :sub:`byte` returns the value written by that write.
1622- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1623 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1624 Memory Ordering Constraints <ordering>` section for additional
1625 constraints on how the choice is made.
1626- Otherwise R\ :sub:`byte` returns ``undef``.
1627
1628R returns the value composed of the series of bytes it read. This
1629implies that some bytes within the value may be ``undef`` **without**
1630the entire value being ``undef``. Note that this only defines the
1631semantics of the operation; it doesn't mean that targets will emit more
1632than one instruction to read the series of bytes.
1633
1634Note that in cases where none of the atomic intrinsics are used, this
1635model places only one restriction on IR transformations on top of what
1636is required for single-threaded execution: introducing a store to a byte
1637which might not otherwise be stored is not allowed in general.
1638(Specifically, in the case where another thread might write to and read
1639from an address, introducing a store can change a load that may see
1640exactly one write into a load that may see multiple writes.)
1641
1642.. _ordering:
1643
1644Atomic Memory Ordering Constraints
1645----------------------------------
1646
1647Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1648:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1649:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001650ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001651the same address they *synchronize with*. These semantics are borrowed
1652from Java and C++0x, but are somewhat more colloquial. If these
1653descriptions aren't precise enough, check those specs (see spec
1654references in the :doc:`atomics guide <Atomics>`).
1655:ref:`fence <i_fence>` instructions treat these orderings somewhat
1656differently since they don't take an address. See that instruction's
1657documentation for details.
1658
1659For a simpler introduction to the ordering constraints, see the
1660:doc:`Atomics`.
1661
1662``unordered``
1663 The set of values that can be read is governed by the happens-before
1664 partial order. A value cannot be read unless some operation wrote
1665 it. This is intended to provide a guarantee strong enough to model
1666 Java's non-volatile shared variables. This ordering cannot be
1667 specified for read-modify-write operations; it is not strong enough
1668 to make them atomic in any interesting way.
1669``monotonic``
1670 In addition to the guarantees of ``unordered``, there is a single
1671 total order for modifications by ``monotonic`` operations on each
1672 address. All modification orders must be compatible with the
1673 happens-before order. There is no guarantee that the modification
1674 orders can be combined to a global total order for the whole program
1675 (and this often will not be possible). The read in an atomic
1676 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1677 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1678 order immediately before the value it writes. If one atomic read
1679 happens before another atomic read of the same address, the later
1680 read must see the same value or a later value in the address's
1681 modification order. This disallows reordering of ``monotonic`` (or
1682 stronger) operations on the same address. If an address is written
1683 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1684 read that address repeatedly, the other threads must eventually see
1685 the write. This corresponds to the C++0x/C1x
1686 ``memory_order_relaxed``.
1687``acquire``
1688 In addition to the guarantees of ``monotonic``, a
1689 *synchronizes-with* edge may be formed with a ``release`` operation.
1690 This is intended to model C++'s ``memory_order_acquire``.
1691``release``
1692 In addition to the guarantees of ``monotonic``, if this operation
1693 writes a value which is subsequently read by an ``acquire``
1694 operation, it *synchronizes-with* that operation. (This isn't a
1695 complete description; see the C++0x definition of a release
1696 sequence.) This corresponds to the C++0x/C1x
1697 ``memory_order_release``.
1698``acq_rel`` (acquire+release)
1699 Acts as both an ``acquire`` and ``release`` operation on its
1700 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1701``seq_cst`` (sequentially consistent)
1702 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001703 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001704 writes), there is a global total order on all
1705 sequentially-consistent operations on all addresses, which is
1706 consistent with the *happens-before* partial order and with the
1707 modification orders of all the affected addresses. Each
1708 sequentially-consistent read sees the last preceding write to the
1709 same address in this global order. This corresponds to the C++0x/C1x
1710 ``memory_order_seq_cst`` and Java volatile.
1711
1712.. _singlethread:
1713
1714If an atomic operation is marked ``singlethread``, it only *synchronizes
1715with* or participates in modification and seq\_cst total orderings with
1716other operations running in the same thread (for example, in signal
1717handlers).
1718
1719.. _fastmath:
1720
1721Fast-Math Flags
1722---------------
1723
1724LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1725:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1726:ref:`frem <i_frem>`) have the following flags that can set to enable
1727otherwise unsafe floating point operations
1728
1729``nnan``
1730 No NaNs - Allow optimizations to assume the arguments and result are not
1731 NaN. Such optimizations are required to retain defined behavior over
1732 NaNs, but the value of the result is undefined.
1733
1734``ninf``
1735 No Infs - Allow optimizations to assume the arguments and result are not
1736 +/-Inf. Such optimizations are required to retain defined behavior over
1737 +/-Inf, but the value of the result is undefined.
1738
1739``nsz``
1740 No Signed Zeros - Allow optimizations to treat the sign of a zero
1741 argument or result as insignificant.
1742
1743``arcp``
1744 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1745 argument rather than perform division.
1746
1747``fast``
1748 Fast - Allow algebraically equivalent transformations that may
1749 dramatically change results in floating point (e.g. reassociate). This
1750 flag implies all the others.
1751
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001752.. _uselistorder:
1753
1754Use-list Order Directives
1755-------------------------
1756
1757Use-list directives encode the in-memory order of each use-list, allowing the
1758order to be recreated. ``<order-indexes>`` is a comma-separated list of
1759indexes that are assigned to the referenced value's uses. The referenced
1760value's use-list is immediately sorted by these indexes.
1761
1762Use-list directives may appear at function scope or global scope. They are not
1763instructions, and have no effect on the semantics of the IR. When they're at
1764function scope, they must appear after the terminator of the final basic block.
1765
1766If basic blocks have their address taken via ``blockaddress()`` expressions,
1767``uselistorder_bb`` can be used to reorder their use-lists from outside their
1768function's scope.
1769
1770:Syntax:
1771
1772::
1773
1774 uselistorder <ty> <value>, { <order-indexes> }
1775 uselistorder_bb @function, %block { <order-indexes> }
1776
1777:Examples:
1778
1779::
1780
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001781 define void @foo(i32 %arg1, i32 %arg2) {
1782 entry:
1783 ; ... instructions ...
1784 bb:
1785 ; ... instructions ...
1786
1787 ; At function scope.
1788 uselistorder i32 %arg1, { 1, 0, 2 }
1789 uselistorder label %bb, { 1, 0 }
1790 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001791
1792 ; At global scope.
1793 uselistorder i32* @global, { 1, 2, 0 }
1794 uselistorder i32 7, { 1, 0 }
1795 uselistorder i32 (i32) @bar, { 1, 0 }
1796 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1797
Sean Silvab084af42012-12-07 10:36:55 +00001798.. _typesystem:
1799
1800Type System
1801===========
1802
1803The LLVM type system is one of the most important features of the
1804intermediate representation. Being typed enables a number of
1805optimizations to be performed on the intermediate representation
1806directly, without having to do extra analyses on the side before the
1807transformation. A strong type system makes it easier to read the
1808generated code and enables novel analyses and transformations that are
1809not feasible to perform on normal three address code representations.
1810
Rafael Espindola08013342013-12-07 19:34:20 +00001811.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001812
Rafael Espindola08013342013-12-07 19:34:20 +00001813Void Type
1814---------
Sean Silvab084af42012-12-07 10:36:55 +00001815
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001816:Overview:
1817
Rafael Espindola08013342013-12-07 19:34:20 +00001818
1819The void type does not represent any value and has no size.
1820
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001821:Syntax:
1822
Rafael Espindola08013342013-12-07 19:34:20 +00001823
1824::
1825
1826 void
Sean Silvab084af42012-12-07 10:36:55 +00001827
1828
Rafael Espindola08013342013-12-07 19:34:20 +00001829.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001830
Rafael Espindola08013342013-12-07 19:34:20 +00001831Function Type
1832-------------
Sean Silvab084af42012-12-07 10:36:55 +00001833
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001834:Overview:
1835
Sean Silvab084af42012-12-07 10:36:55 +00001836
Rafael Espindola08013342013-12-07 19:34:20 +00001837The function type can be thought of as a function signature. It consists of a
1838return type and a list of formal parameter types. The return type of a function
1839type is a void type or first class type --- except for :ref:`label <t_label>`
1840and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001841
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001842:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001843
Rafael Espindola08013342013-12-07 19:34:20 +00001844::
Sean Silvab084af42012-12-07 10:36:55 +00001845
Rafael Espindola08013342013-12-07 19:34:20 +00001846 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001847
Rafael Espindola08013342013-12-07 19:34:20 +00001848...where '``<parameter list>``' is a comma-separated list of type
1849specifiers. Optionally, the parameter list may include a type ``...``, which
1850indicates that the function takes a variable number of arguments. Variable
1851argument functions can access their arguments with the :ref:`variable argument
1852handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1853except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001854
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001855:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001856
Rafael Espindola08013342013-12-07 19:34:20 +00001857+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1858| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1859+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1860| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1861+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1862| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1863+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1864| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1865+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1866
1867.. _t_firstclass:
1868
1869First Class Types
1870-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001871
1872The :ref:`first class <t_firstclass>` types are perhaps the most important.
1873Values of these types are the only ones which can be produced by
1874instructions.
1875
Rafael Espindola08013342013-12-07 19:34:20 +00001876.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001877
Rafael Espindola08013342013-12-07 19:34:20 +00001878Single Value Types
1879^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001880
Rafael Espindola08013342013-12-07 19:34:20 +00001881These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001882
1883.. _t_integer:
1884
1885Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001886""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001887
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001888:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001889
1890The integer type is a very simple type that simply specifies an
1891arbitrary bit width for the integer type desired. Any bit width from 1
1892bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1893
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001894:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001895
1896::
1897
1898 iN
1899
1900The number of bits the integer will occupy is specified by the ``N``
1901value.
1902
1903Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001904*********
Sean Silvab084af42012-12-07 10:36:55 +00001905
1906+----------------+------------------------------------------------+
1907| ``i1`` | a single-bit integer. |
1908+----------------+------------------------------------------------+
1909| ``i32`` | a 32-bit integer. |
1910+----------------+------------------------------------------------+
1911| ``i1942652`` | a really big integer of over 1 million bits. |
1912+----------------+------------------------------------------------+
1913
1914.. _t_floating:
1915
1916Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001917""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001918
1919.. list-table::
1920 :header-rows: 1
1921
1922 * - Type
1923 - Description
1924
1925 * - ``half``
1926 - 16-bit floating point value
1927
1928 * - ``float``
1929 - 32-bit floating point value
1930
1931 * - ``double``
1932 - 64-bit floating point value
1933
1934 * - ``fp128``
1935 - 128-bit floating point value (112-bit mantissa)
1936
1937 * - ``x86_fp80``
1938 - 80-bit floating point value (X87)
1939
1940 * - ``ppc_fp128``
1941 - 128-bit floating point value (two 64-bits)
1942
Reid Kleckner9a16d082014-03-05 02:41:37 +00001943X86_mmx Type
1944""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001945
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001946:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001947
Reid Kleckner9a16d082014-03-05 02:41:37 +00001948The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001949machine. The operations allowed on it are quite limited: parameters and
1950return values, load and store, and bitcast. User-specified MMX
1951instructions are represented as intrinsic or asm calls with arguments
1952and/or results of this type. There are no arrays, vectors or constants
1953of this type.
1954
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001955:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001956
1957::
1958
Reid Kleckner9a16d082014-03-05 02:41:37 +00001959 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001960
Sean Silvab084af42012-12-07 10:36:55 +00001961
Rafael Espindola08013342013-12-07 19:34:20 +00001962.. _t_pointer:
1963
1964Pointer Type
1965""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001966
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001967:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001968
Rafael Espindola08013342013-12-07 19:34:20 +00001969The pointer type is used to specify memory locations. Pointers are
1970commonly used to reference objects in memory.
1971
1972Pointer types may have an optional address space attribute defining the
1973numbered address space where the pointed-to object resides. The default
1974address space is number zero. The semantics of non-zero address spaces
1975are target-specific.
1976
1977Note that LLVM does not permit pointers to void (``void*``) nor does it
1978permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001979
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001980:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001981
1982::
1983
Rafael Espindola08013342013-12-07 19:34:20 +00001984 <type> *
1985
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001986:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001987
1988+-------------------------+--------------------------------------------------------------------------------------------------------------+
1989| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1990+-------------------------+--------------------------------------------------------------------------------------------------------------+
1991| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1992+-------------------------+--------------------------------------------------------------------------------------------------------------+
1993| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1994+-------------------------+--------------------------------------------------------------------------------------------------------------+
1995
1996.. _t_vector:
1997
1998Vector Type
1999"""""""""""
2000
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002001:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002002
2003A vector type is a simple derived type that represents a vector of
2004elements. Vector types are used when multiple primitive data are
2005operated in parallel using a single instruction (SIMD). A vector type
2006requires a size (number of elements) and an underlying primitive data
2007type. Vector types are considered :ref:`first class <t_firstclass>`.
2008
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002009:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002010
2011::
2012
2013 < <# elements> x <elementtype> >
2014
2015The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002016elementtype may be any integer, floating point or pointer type. Vectors
2017of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002018
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002019:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002020
2021+-------------------+--------------------------------------------------+
2022| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2023+-------------------+--------------------------------------------------+
2024| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2025+-------------------+--------------------------------------------------+
2026| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2027+-------------------+--------------------------------------------------+
2028| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2029+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002030
2031.. _t_label:
2032
2033Label Type
2034^^^^^^^^^^
2035
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002036:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002037
2038The label type represents code labels.
2039
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002040:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002041
2042::
2043
2044 label
2045
2046.. _t_metadata:
2047
2048Metadata Type
2049^^^^^^^^^^^^^
2050
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002051:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002052
2053The metadata type represents embedded metadata. No derived types may be
2054created from metadata except for :ref:`function <t_function>` arguments.
2055
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002056:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002057
2058::
2059
2060 metadata
2061
Sean Silvab084af42012-12-07 10:36:55 +00002062.. _t_aggregate:
2063
2064Aggregate Types
2065^^^^^^^^^^^^^^^
2066
2067Aggregate Types are a subset of derived types that can contain multiple
2068member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2069aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2070aggregate types.
2071
2072.. _t_array:
2073
2074Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002075""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002076
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002077:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002078
2079The array type is a very simple derived type that arranges elements
2080sequentially in memory. The array type requires a size (number of
2081elements) and an underlying data type.
2082
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002083:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002084
2085::
2086
2087 [<# elements> x <elementtype>]
2088
2089The number of elements is a constant integer value; ``elementtype`` may
2090be any type with a size.
2091
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002092:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002093
2094+------------------+--------------------------------------+
2095| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2096+------------------+--------------------------------------+
2097| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2098+------------------+--------------------------------------+
2099| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2100+------------------+--------------------------------------+
2101
2102Here are some examples of multidimensional arrays:
2103
2104+-----------------------------+----------------------------------------------------------+
2105| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2106+-----------------------------+----------------------------------------------------------+
2107| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2108+-----------------------------+----------------------------------------------------------+
2109| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2110+-----------------------------+----------------------------------------------------------+
2111
2112There is no restriction on indexing beyond the end of the array implied
2113by a static type (though there are restrictions on indexing beyond the
2114bounds of an allocated object in some cases). This means that
2115single-dimension 'variable sized array' addressing can be implemented in
2116LLVM with a zero length array type. An implementation of 'pascal style
2117arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2118example.
2119
Sean Silvab084af42012-12-07 10:36:55 +00002120.. _t_struct:
2121
2122Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002123""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002124
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002125:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002126
2127The structure type is used to represent a collection of data members
2128together in memory. The elements of a structure may be any type that has
2129a size.
2130
2131Structures in memory are accessed using '``load``' and '``store``' by
2132getting a pointer to a field with the '``getelementptr``' instruction.
2133Structures in registers are accessed using the '``extractvalue``' and
2134'``insertvalue``' instructions.
2135
2136Structures may optionally be "packed" structures, which indicate that
2137the alignment of the struct is one byte, and that there is no padding
2138between the elements. In non-packed structs, padding between field types
2139is inserted as defined by the DataLayout string in the module, which is
2140required to match what the underlying code generator expects.
2141
2142Structures can either be "literal" or "identified". A literal structure
2143is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2144identified types are always defined at the top level with a name.
2145Literal types are uniqued by their contents and can never be recursive
2146or opaque since there is no way to write one. Identified types can be
2147recursive, can be opaqued, and are never uniqued.
2148
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002149:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002150
2151::
2152
2153 %T1 = type { <type list> } ; Identified normal struct type
2154 %T2 = type <{ <type list> }> ; Identified packed struct type
2155
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002156:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002157
2158+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2159| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2160+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002161| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002162+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2163| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2164+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2165
2166.. _t_opaque:
2167
2168Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002169""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002170
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002171:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002172
2173Opaque structure types are used to represent named structure types that
2174do not have a body specified. This corresponds (for example) to the C
2175notion of a forward declared structure.
2176
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002177:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002178
2179::
2180
2181 %X = type opaque
2182 %52 = type opaque
2183
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002184:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002185
2186+--------------+-------------------+
2187| ``opaque`` | An opaque type. |
2188+--------------+-------------------+
2189
Sean Silva1703e702014-04-08 21:06:22 +00002190.. _constants:
2191
Sean Silvab084af42012-12-07 10:36:55 +00002192Constants
2193=========
2194
2195LLVM has several different basic types of constants. This section
2196describes them all and their syntax.
2197
2198Simple Constants
2199----------------
2200
2201**Boolean constants**
2202 The two strings '``true``' and '``false``' are both valid constants
2203 of the ``i1`` type.
2204**Integer constants**
2205 Standard integers (such as '4') are constants of the
2206 :ref:`integer <t_integer>` type. Negative numbers may be used with
2207 integer types.
2208**Floating point constants**
2209 Floating point constants use standard decimal notation (e.g.
2210 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2211 hexadecimal notation (see below). The assembler requires the exact
2212 decimal value of a floating-point constant. For example, the
2213 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2214 decimal in binary. Floating point constants must have a :ref:`floating
2215 point <t_floating>` type.
2216**Null pointer constants**
2217 The identifier '``null``' is recognized as a null pointer constant
2218 and must be of :ref:`pointer type <t_pointer>`.
2219
2220The one non-intuitive notation for constants is the hexadecimal form of
2221floating point constants. For example, the form
2222'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2223than) '``double 4.5e+15``'. The only time hexadecimal floating point
2224constants are required (and the only time that they are generated by the
2225disassembler) is when a floating point constant must be emitted but it
2226cannot be represented as a decimal floating point number in a reasonable
2227number of digits. For example, NaN's, infinities, and other special
2228values are represented in their IEEE hexadecimal format so that assembly
2229and disassembly do not cause any bits to change in the constants.
2230
2231When using the hexadecimal form, constants of types half, float, and
2232double are represented using the 16-digit form shown above (which
2233matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002234must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002235precision, respectively. Hexadecimal format is always used for long
2236double, and there are three forms of long double. The 80-bit format used
2237by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2238128-bit format used by PowerPC (two adjacent doubles) is represented by
2239``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002240represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2241will only work if they match the long double format on your target.
2242The IEEE 16-bit format (half precision) is represented by ``0xH``
2243followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2244(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002245
Reid Kleckner9a16d082014-03-05 02:41:37 +00002246There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002247
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002248.. _complexconstants:
2249
Sean Silvab084af42012-12-07 10:36:55 +00002250Complex Constants
2251-----------------
2252
2253Complex constants are a (potentially recursive) combination of simple
2254constants and smaller complex constants.
2255
2256**Structure constants**
2257 Structure constants are represented with notation similar to
2258 structure type definitions (a comma separated list of elements,
2259 surrounded by braces (``{}``)). For example:
2260 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2261 "``@G = external global i32``". Structure constants must have
2262 :ref:`structure type <t_struct>`, and the number and types of elements
2263 must match those specified by the type.
2264**Array constants**
2265 Array constants are represented with notation similar to array type
2266 definitions (a comma separated list of elements, surrounded by
2267 square brackets (``[]``)). For example:
2268 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2269 :ref:`array type <t_array>`, and the number and types of elements must
2270 match those specified by the type.
2271**Vector constants**
2272 Vector constants are represented with notation similar to vector
2273 type definitions (a comma separated list of elements, surrounded by
2274 less-than/greater-than's (``<>``)). For example:
2275 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2276 must have :ref:`vector type <t_vector>`, and the number and types of
2277 elements must match those specified by the type.
2278**Zero initialization**
2279 The string '``zeroinitializer``' can be used to zero initialize a
2280 value to zero of *any* type, including scalar and
2281 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2282 having to print large zero initializers (e.g. for large arrays) and
2283 is always exactly equivalent to using explicit zero initializers.
2284**Metadata node**
2285 A metadata node is a structure-like constant with :ref:`metadata
2286 type <t_metadata>`. For example:
2287 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2288 constants that are meant to be interpreted as part of the
2289 instruction stream, metadata is a place to attach additional
2290 information such as debug info.
2291
2292Global Variable and Function Addresses
2293--------------------------------------
2294
2295The addresses of :ref:`global variables <globalvars>` and
2296:ref:`functions <functionstructure>` are always implicitly valid
2297(link-time) constants. These constants are explicitly referenced when
2298the :ref:`identifier for the global <identifiers>` is used and always have
2299:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2300file:
2301
2302.. code-block:: llvm
2303
2304 @X = global i32 17
2305 @Y = global i32 42
2306 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2307
2308.. _undefvalues:
2309
2310Undefined Values
2311----------------
2312
2313The string '``undef``' can be used anywhere a constant is expected, and
2314indicates that the user of the value may receive an unspecified
2315bit-pattern. Undefined values may be of any type (other than '``label``'
2316or '``void``') and be used anywhere a constant is permitted.
2317
2318Undefined values are useful because they indicate to the compiler that
2319the program is well defined no matter what value is used. This gives the
2320compiler more freedom to optimize. Here are some examples of
2321(potentially surprising) transformations that are valid (in pseudo IR):
2322
2323.. code-block:: llvm
2324
2325 %A = add %X, undef
2326 %B = sub %X, undef
2327 %C = xor %X, undef
2328 Safe:
2329 %A = undef
2330 %B = undef
2331 %C = undef
2332
2333This is safe because all of the output bits are affected by the undef
2334bits. Any output bit can have a zero or one depending on the input bits.
2335
2336.. code-block:: llvm
2337
2338 %A = or %X, undef
2339 %B = and %X, undef
2340 Safe:
2341 %A = -1
2342 %B = 0
2343 Unsafe:
2344 %A = undef
2345 %B = undef
2346
2347These logical operations have bits that are not always affected by the
2348input. For example, if ``%X`` has a zero bit, then the output of the
2349'``and``' operation will always be a zero for that bit, no matter what
2350the corresponding bit from the '``undef``' is. As such, it is unsafe to
2351optimize or assume that the result of the '``and``' is '``undef``'.
2352However, it is safe to assume that all bits of the '``undef``' could be
23530, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2354all the bits of the '``undef``' operand to the '``or``' could be set,
2355allowing the '``or``' to be folded to -1.
2356
2357.. code-block:: llvm
2358
2359 %A = select undef, %X, %Y
2360 %B = select undef, 42, %Y
2361 %C = select %X, %Y, undef
2362 Safe:
2363 %A = %X (or %Y)
2364 %B = 42 (or %Y)
2365 %C = %Y
2366 Unsafe:
2367 %A = undef
2368 %B = undef
2369 %C = undef
2370
2371This set of examples shows that undefined '``select``' (and conditional
2372branch) conditions can go *either way*, but they have to come from one
2373of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2374both known to have a clear low bit, then ``%A`` would have to have a
2375cleared low bit. However, in the ``%C`` example, the optimizer is
2376allowed to assume that the '``undef``' operand could be the same as
2377``%Y``, allowing the whole '``select``' to be eliminated.
2378
2379.. code-block:: llvm
2380
2381 %A = xor undef, undef
2382
2383 %B = undef
2384 %C = xor %B, %B
2385
2386 %D = undef
2387 %E = icmp lt %D, 4
2388 %F = icmp gte %D, 4
2389
2390 Safe:
2391 %A = undef
2392 %B = undef
2393 %C = undef
2394 %D = undef
2395 %E = undef
2396 %F = undef
2397
2398This example points out that two '``undef``' operands are not
2399necessarily the same. This can be surprising to people (and also matches
2400C semantics) where they assume that "``X^X``" is always zero, even if
2401``X`` is undefined. This isn't true for a number of reasons, but the
2402short answer is that an '``undef``' "variable" can arbitrarily change
2403its value over its "live range". This is true because the variable
2404doesn't actually *have a live range*. Instead, the value is logically
2405read from arbitrary registers that happen to be around when needed, so
2406the value is not necessarily consistent over time. In fact, ``%A`` and
2407``%C`` need to have the same semantics or the core LLVM "replace all
2408uses with" concept would not hold.
2409
2410.. code-block:: llvm
2411
2412 %A = fdiv undef, %X
2413 %B = fdiv %X, undef
2414 Safe:
2415 %A = undef
2416 b: unreachable
2417
2418These examples show the crucial difference between an *undefined value*
2419and *undefined behavior*. An undefined value (like '``undef``') is
2420allowed to have an arbitrary bit-pattern. This means that the ``%A``
2421operation can be constant folded to '``undef``', because the '``undef``'
2422could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2423However, in the second example, we can make a more aggressive
2424assumption: because the ``undef`` is allowed to be an arbitrary value,
2425we are allowed to assume that it could be zero. Since a divide by zero
2426has *undefined behavior*, we are allowed to assume that the operation
2427does not execute at all. This allows us to delete the divide and all
2428code after it. Because the undefined operation "can't happen", the
2429optimizer can assume that it occurs in dead code.
2430
2431.. code-block:: llvm
2432
2433 a: store undef -> %X
2434 b: store %X -> undef
2435 Safe:
2436 a: <deleted>
2437 b: unreachable
2438
2439These examples reiterate the ``fdiv`` example: a store *of* an undefined
2440value can be assumed to not have any effect; we can assume that the
2441value is overwritten with bits that happen to match what was already
2442there. However, a store *to* an undefined location could clobber
2443arbitrary memory, therefore, it has undefined behavior.
2444
2445.. _poisonvalues:
2446
2447Poison Values
2448-------------
2449
2450Poison values are similar to :ref:`undef values <undefvalues>`, however
2451they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002452that cannot evoke side effects has nevertheless detected a condition
2453that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002454
2455There is currently no way of representing a poison value in the IR; they
2456only exist when produced by operations such as :ref:`add <i_add>` with
2457the ``nsw`` flag.
2458
2459Poison value behavior is defined in terms of value *dependence*:
2460
2461- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2462- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2463 their dynamic predecessor basic block.
2464- Function arguments depend on the corresponding actual argument values
2465 in the dynamic callers of their functions.
2466- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2467 instructions that dynamically transfer control back to them.
2468- :ref:`Invoke <i_invoke>` instructions depend on the
2469 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2470 call instructions that dynamically transfer control back to them.
2471- Non-volatile loads and stores depend on the most recent stores to all
2472 of the referenced memory addresses, following the order in the IR
2473 (including loads and stores implied by intrinsics such as
2474 :ref:`@llvm.memcpy <int_memcpy>`.)
2475- An instruction with externally visible side effects depends on the
2476 most recent preceding instruction with externally visible side
2477 effects, following the order in the IR. (This includes :ref:`volatile
2478 operations <volatile>`.)
2479- An instruction *control-depends* on a :ref:`terminator
2480 instruction <terminators>` if the terminator instruction has
2481 multiple successors and the instruction is always executed when
2482 control transfers to one of the successors, and may not be executed
2483 when control is transferred to another.
2484- Additionally, an instruction also *control-depends* on a terminator
2485 instruction if the set of instructions it otherwise depends on would
2486 be different if the terminator had transferred control to a different
2487 successor.
2488- Dependence is transitive.
2489
Richard Smith32dbdf62014-07-31 04:25:36 +00002490Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2491with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002492on a poison value has undefined behavior.
2493
2494Here are some examples:
2495
2496.. code-block:: llvm
2497
2498 entry:
2499 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2500 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2501 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2502 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2503
2504 store i32 %poison, i32* @g ; Poison value stored to memory.
2505 %poison2 = load i32* @g ; Poison value loaded back from memory.
2506
2507 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2508
2509 %narrowaddr = bitcast i32* @g to i16*
2510 %wideaddr = bitcast i32* @g to i64*
2511 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2512 %poison4 = load i64* %wideaddr ; Returns a poison value.
2513
2514 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2515 br i1 %cmp, label %true, label %end ; Branch to either destination.
2516
2517 true:
2518 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2519 ; it has undefined behavior.
2520 br label %end
2521
2522 end:
2523 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2524 ; Both edges into this PHI are
2525 ; control-dependent on %cmp, so this
2526 ; always results in a poison value.
2527
2528 store volatile i32 0, i32* @g ; This would depend on the store in %true
2529 ; if %cmp is true, or the store in %entry
2530 ; otherwise, so this is undefined behavior.
2531
2532 br i1 %cmp, label %second_true, label %second_end
2533 ; The same branch again, but this time the
2534 ; true block doesn't have side effects.
2535
2536 second_true:
2537 ; No side effects!
2538 ret void
2539
2540 second_end:
2541 store volatile i32 0, i32* @g ; This time, the instruction always depends
2542 ; on the store in %end. Also, it is
2543 ; control-equivalent to %end, so this is
2544 ; well-defined (ignoring earlier undefined
2545 ; behavior in this example).
2546
2547.. _blockaddress:
2548
2549Addresses of Basic Blocks
2550-------------------------
2551
2552``blockaddress(@function, %block)``
2553
2554The '``blockaddress``' constant computes the address of the specified
2555basic block in the specified function, and always has an ``i8*`` type.
2556Taking the address of the entry block is illegal.
2557
2558This value only has defined behavior when used as an operand to the
2559':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2560against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002561undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002562no label is equal to the null pointer. This may be passed around as an
2563opaque pointer sized value as long as the bits are not inspected. This
2564allows ``ptrtoint`` and arithmetic to be performed on these values so
2565long as the original value is reconstituted before the ``indirectbr``
2566instruction.
2567
2568Finally, some targets may provide defined semantics when using the value
2569as the operand to an inline assembly, but that is target specific.
2570
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002571.. _constantexprs:
2572
Sean Silvab084af42012-12-07 10:36:55 +00002573Constant Expressions
2574--------------------
2575
2576Constant expressions are used to allow expressions involving other
2577constants to be used as constants. Constant expressions may be of any
2578:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2579that does not have side effects (e.g. load and call are not supported).
2580The following is the syntax for constant expressions:
2581
2582``trunc (CST to TYPE)``
2583 Truncate a constant to another type. The bit size of CST must be
2584 larger than the bit size of TYPE. Both types must be integers.
2585``zext (CST to TYPE)``
2586 Zero extend a constant to another type. The bit size of CST must be
2587 smaller than the bit size of TYPE. Both types must be integers.
2588``sext (CST to TYPE)``
2589 Sign extend a constant to another type. The bit size of CST must be
2590 smaller than the bit size of TYPE. Both types must be integers.
2591``fptrunc (CST to TYPE)``
2592 Truncate a floating point constant to another floating point type.
2593 The size of CST must be larger than the size of TYPE. Both types
2594 must be floating point.
2595``fpext (CST to TYPE)``
2596 Floating point extend a constant to another type. The size of CST
2597 must be smaller or equal to the size of TYPE. Both types must be
2598 floating point.
2599``fptoui (CST to TYPE)``
2600 Convert a floating point constant to the corresponding unsigned
2601 integer constant. TYPE must be a scalar or vector integer type. CST
2602 must be of scalar or vector floating point type. Both CST and TYPE
2603 must be scalars, or vectors of the same number of elements. If the
2604 value won't fit in the integer type, the results are undefined.
2605``fptosi (CST to TYPE)``
2606 Convert a floating point constant to the corresponding signed
2607 integer constant. TYPE must be a scalar or vector integer type. CST
2608 must be of scalar or vector floating point type. Both CST and TYPE
2609 must be scalars, or vectors of the same number of elements. If the
2610 value won't fit in the integer type, the results are undefined.
2611``uitofp (CST to TYPE)``
2612 Convert an unsigned integer constant to the corresponding floating
2613 point constant. TYPE must be a scalar or vector floating point type.
2614 CST must be of scalar or vector integer type. Both CST and TYPE must
2615 be scalars, or vectors of the same number of elements. If the value
2616 won't fit in the floating point type, the results are undefined.
2617``sitofp (CST to TYPE)``
2618 Convert a signed integer constant to the corresponding floating
2619 point constant. TYPE must be a scalar or vector floating point type.
2620 CST must be of scalar or vector integer type. Both CST and TYPE must
2621 be scalars, or vectors of the same number of elements. If the value
2622 won't fit in the floating point type, the results are undefined.
2623``ptrtoint (CST to TYPE)``
2624 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002625 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002626 pointer type. The ``CST`` value is zero extended, truncated, or
2627 unchanged to make it fit in ``TYPE``.
2628``inttoptr (CST to TYPE)``
2629 Convert an integer constant to a pointer constant. TYPE must be a
2630 pointer type. CST must be of integer type. The CST value is zero
2631 extended, truncated, or unchanged to make it fit in a pointer size.
2632 This one is *really* dangerous!
2633``bitcast (CST to TYPE)``
2634 Convert a constant, CST, to another TYPE. The constraints of the
2635 operands are the same as those for the :ref:`bitcast
2636 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002637``addrspacecast (CST to TYPE)``
2638 Convert a constant pointer or constant vector of pointer, CST, to another
2639 TYPE in a different address space. The constraints of the operands are the
2640 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002641``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2642 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2643 constants. As with the :ref:`getelementptr <i_getelementptr>`
2644 instruction, the index list may have zero or more indexes, which are
2645 required to make sense for the type of "CSTPTR".
2646``select (COND, VAL1, VAL2)``
2647 Perform the :ref:`select operation <i_select>` on constants.
2648``icmp COND (VAL1, VAL2)``
2649 Performs the :ref:`icmp operation <i_icmp>` on constants.
2650``fcmp COND (VAL1, VAL2)``
2651 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2652``extractelement (VAL, IDX)``
2653 Perform the :ref:`extractelement operation <i_extractelement>` on
2654 constants.
2655``insertelement (VAL, ELT, IDX)``
2656 Perform the :ref:`insertelement operation <i_insertelement>` on
2657 constants.
2658``shufflevector (VEC1, VEC2, IDXMASK)``
2659 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2660 constants.
2661``extractvalue (VAL, IDX0, IDX1, ...)``
2662 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2663 constants. The index list is interpreted in a similar manner as
2664 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2665 least one index value must be specified.
2666``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2667 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2668 The index list is interpreted in a similar manner as indices in a
2669 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2670 value must be specified.
2671``OPCODE (LHS, RHS)``
2672 Perform the specified operation of the LHS and RHS constants. OPCODE
2673 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2674 binary <bitwiseops>` operations. The constraints on operands are
2675 the same as those for the corresponding instruction (e.g. no bitwise
2676 operations on floating point values are allowed).
2677
2678Other Values
2679============
2680
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002681.. _inlineasmexprs:
2682
Sean Silvab084af42012-12-07 10:36:55 +00002683Inline Assembler Expressions
2684----------------------------
2685
2686LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2687Inline Assembly <moduleasm>`) through the use of a special value. This
2688value represents the inline assembler as a string (containing the
2689instructions to emit), a list of operand constraints (stored as a
2690string), a flag that indicates whether or not the inline asm expression
2691has side effects, and a flag indicating whether the function containing
2692the asm needs to align its stack conservatively. An example inline
2693assembler expression is:
2694
2695.. code-block:: llvm
2696
2697 i32 (i32) asm "bswap $0", "=r,r"
2698
2699Inline assembler expressions may **only** be used as the callee operand
2700of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2701Thus, typically we have:
2702
2703.. code-block:: llvm
2704
2705 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2706
2707Inline asms with side effects not visible in the constraint list must be
2708marked as having side effects. This is done through the use of the
2709'``sideeffect``' keyword, like so:
2710
2711.. code-block:: llvm
2712
2713 call void asm sideeffect "eieio", ""()
2714
2715In some cases inline asms will contain code that will not work unless
2716the stack is aligned in some way, such as calls or SSE instructions on
2717x86, yet will not contain code that does that alignment within the asm.
2718The compiler should make conservative assumptions about what the asm
2719might contain and should generate its usual stack alignment code in the
2720prologue if the '``alignstack``' keyword is present:
2721
2722.. code-block:: llvm
2723
2724 call void asm alignstack "eieio", ""()
2725
2726Inline asms also support using non-standard assembly dialects. The
2727assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2728the inline asm is using the Intel dialect. Currently, ATT and Intel are
2729the only supported dialects. An example is:
2730
2731.. code-block:: llvm
2732
2733 call void asm inteldialect "eieio", ""()
2734
2735If multiple keywords appear the '``sideeffect``' keyword must come
2736first, the '``alignstack``' keyword second and the '``inteldialect``'
2737keyword last.
2738
2739Inline Asm Metadata
2740^^^^^^^^^^^^^^^^^^^
2741
2742The call instructions that wrap inline asm nodes may have a
2743"``!srcloc``" MDNode attached to it that contains a list of constant
2744integers. If present, the code generator will use the integer as the
2745location cookie value when report errors through the ``LLVMContext``
2746error reporting mechanisms. This allows a front-end to correlate backend
2747errors that occur with inline asm back to the source code that produced
2748it. For example:
2749
2750.. code-block:: llvm
2751
2752 call void asm sideeffect "something bad", ""(), !srcloc !42
2753 ...
2754 !42 = !{ i32 1234567 }
2755
2756It is up to the front-end to make sense of the magic numbers it places
2757in the IR. If the MDNode contains multiple constants, the code generator
2758will use the one that corresponds to the line of the asm that the error
2759occurs on.
2760
2761.. _metadata:
2762
2763Metadata Nodes and Metadata Strings
2764-----------------------------------
2765
2766LLVM IR allows metadata to be attached to instructions in the program
2767that can convey extra information about the code to the optimizers and
2768code generator. One example application of metadata is source-level
2769debug information. There are two metadata primitives: strings and nodes.
2770All metadata has the ``metadata`` type and is identified in syntax by a
2771preceding exclamation point ('``!``').
2772
2773A metadata string is a string surrounded by double quotes. It can
2774contain any character by escaping non-printable characters with
2775"``\xx``" where "``xx``" is the two digit hex code. For example:
2776"``!"test\00"``".
2777
2778Metadata nodes are represented with notation similar to structure
2779constants (a comma separated list of elements, surrounded by braces and
2780preceded by an exclamation point). Metadata nodes can have any values as
2781their operand. For example:
2782
2783.. code-block:: llvm
2784
2785 !{ metadata !"test\00", i32 10}
2786
2787A :ref:`named metadata <namedmetadatastructure>` is a collection of
2788metadata nodes, which can be looked up in the module symbol table. For
2789example:
2790
2791.. code-block:: llvm
2792
2793 !foo = metadata !{!4, !3}
2794
2795Metadata can be used as function arguments. Here ``llvm.dbg.value``
2796function is using two metadata arguments:
2797
2798.. code-block:: llvm
2799
2800 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2801
2802Metadata can be attached with an instruction. Here metadata ``!21`` is
2803attached to the ``add`` instruction using the ``!dbg`` identifier:
2804
2805.. code-block:: llvm
2806
2807 %indvar.next = add i64 %indvar, 1, !dbg !21
2808
2809More information about specific metadata nodes recognized by the
2810optimizers and code generator is found below.
2811
2812'``tbaa``' Metadata
2813^^^^^^^^^^^^^^^^^^^
2814
2815In LLVM IR, memory does not have types, so LLVM's own type system is not
2816suitable for doing TBAA. Instead, metadata is added to the IR to
2817describe a type system of a higher level language. This can be used to
2818implement typical C/C++ TBAA, but it can also be used to implement
2819custom alias analysis behavior for other languages.
2820
2821The current metadata format is very simple. TBAA metadata nodes have up
2822to three fields, e.g.:
2823
2824.. code-block:: llvm
2825
2826 !0 = metadata !{ metadata !"an example type tree" }
2827 !1 = metadata !{ metadata !"int", metadata !0 }
2828 !2 = metadata !{ metadata !"float", metadata !0 }
2829 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2830
2831The first field is an identity field. It can be any value, usually a
2832metadata string, which uniquely identifies the type. The most important
2833name in the tree is the name of the root node. Two trees with different
2834root node names are entirely disjoint, even if they have leaves with
2835common names.
2836
2837The second field identifies the type's parent node in the tree, or is
2838null or omitted for a root node. A type is considered to alias all of
2839its descendants and all of its ancestors in the tree. Also, a type is
2840considered to alias all types in other trees, so that bitcode produced
2841from multiple front-ends is handled conservatively.
2842
2843If the third field is present, it's an integer which if equal to 1
2844indicates that the type is "constant" (meaning
2845``pointsToConstantMemory`` should return true; see `other useful
2846AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2847
2848'``tbaa.struct``' Metadata
2849^^^^^^^^^^^^^^^^^^^^^^^^^^
2850
2851The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2852aggregate assignment operations in C and similar languages, however it
2853is defined to copy a contiguous region of memory, which is more than
2854strictly necessary for aggregate types which contain holes due to
2855padding. Also, it doesn't contain any TBAA information about the fields
2856of the aggregate.
2857
2858``!tbaa.struct`` metadata can describe which memory subregions in a
2859memcpy are padding and what the TBAA tags of the struct are.
2860
2861The current metadata format is very simple. ``!tbaa.struct`` metadata
2862nodes are a list of operands which are in conceptual groups of three.
2863For each group of three, the first operand gives the byte offset of a
2864field in bytes, the second gives its size in bytes, and the third gives
2865its tbaa tag. e.g.:
2866
2867.. code-block:: llvm
2868
2869 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2870
2871This describes a struct with two fields. The first is at offset 0 bytes
2872with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2873and has size 4 bytes and has tbaa tag !2.
2874
2875Note that the fields need not be contiguous. In this example, there is a
28764 byte gap between the two fields. This gap represents padding which
2877does not carry useful data and need not be preserved.
2878
Hal Finkel94146652014-07-24 14:25:39 +00002879'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00002880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00002881
2882``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2883noalias memory-access sets. This means that some collection of memory access
2884instructions (loads, stores, memory-accessing calls, etc.) that carry
2885``noalias`` metadata can specifically be specified not to alias with some other
2886collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00002887Each type of metadata specifies a list of scopes where each scope has an id and
2888a domain. When evaluating an aliasing query, if for some some domain, the set
2889of scopes with that domain in one instruction's ``alias.scope`` list is a
2890subset of (or qual to) the set of scopes for that domain in another
2891instruction's ``noalias`` list, then the two memory accesses are assumed not to
2892alias.
Hal Finkel94146652014-07-24 14:25:39 +00002893
Hal Finkel029cde62014-07-25 15:50:02 +00002894The metadata identifying each domain is itself a list containing one or two
2895entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00002896string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00002897self-reference can be used to create globally unique domain names. A
2898descriptive string may optionally be provided as a second list entry.
2899
2900The metadata identifying each scope is also itself a list containing two or
2901three entries. The first entry is the name of the scope. Note that if the name
2902is a string then it can be combined accross functions and translation units. A
2903self-reference can be used to create globally unique scope names. A metadata
2904reference to the scope's domain is the second entry. A descriptive string may
2905optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00002906
2907For example,
2908
2909.. code-block:: llvm
2910
Hal Finkel029cde62014-07-25 15:50:02 +00002911 ; Two scope domains:
Hal Finkel94146652014-07-24 14:25:39 +00002912 !0 = metadata !{metadata !0}
Hal Finkel029cde62014-07-25 15:50:02 +00002913 !1 = metadata !{metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002914
Hal Finkel029cde62014-07-25 15:50:02 +00002915 ; Some scopes in these domains:
2916 !2 = metadata !{metadata !2, metadata !0}
2917 !3 = metadata !{metadata !3, metadata !0}
2918 !4 = metadata !{metadata !4, metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002919
Hal Finkel029cde62014-07-25 15:50:02 +00002920 ; Some scope lists:
2921 !5 = metadata !{metadata !4} ; A list containing only scope !4
2922 !6 = metadata !{metadata !4, metadata !3, metadata !2}
2923 !7 = metadata !{metadata !3}
Hal Finkel94146652014-07-24 14:25:39 +00002924
2925 ; These two instructions don't alias:
Hal Finkel029cde62014-07-25 15:50:02 +00002926 %0 = load float* %c, align 4, !alias.scope !5
2927 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00002928
Hal Finkel029cde62014-07-25 15:50:02 +00002929 ; These two instructions also don't alias (for domain !1, the set of scopes
2930 ; in the !alias.scope equals that in the !noalias list):
2931 %2 = load float* %c, align 4, !alias.scope !5
2932 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00002933
Hal Finkel029cde62014-07-25 15:50:02 +00002934 ; These two instructions don't alias (for domain !0, the set of scopes in
2935 ; the !noalias list is not a superset of, or equal to, the scopes in the
2936 ; !alias.scope list):
2937 %2 = load float* %c, align 4, !alias.scope !6
2938 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00002939
Sean Silvab084af42012-12-07 10:36:55 +00002940'``fpmath``' Metadata
2941^^^^^^^^^^^^^^^^^^^^^
2942
2943``fpmath`` metadata may be attached to any instruction of floating point
2944type. It can be used to express the maximum acceptable error in the
2945result of that instruction, in ULPs, thus potentially allowing the
2946compiler to use a more efficient but less accurate method of computing
2947it. ULP is defined as follows:
2948
2949 If ``x`` is a real number that lies between two finite consecutive
2950 floating-point numbers ``a`` and ``b``, without being equal to one
2951 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2952 distance between the two non-equal finite floating-point numbers
2953 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2954
2955The metadata node shall consist of a single positive floating point
2956number representing the maximum relative error, for example:
2957
2958.. code-block:: llvm
2959
2960 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2961
2962'``range``' Metadata
2963^^^^^^^^^^^^^^^^^^^^
2964
Jingyue Wu37fcb592014-06-19 16:50:16 +00002965``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2966integer types. It expresses the possible ranges the loaded value or the value
2967returned by the called function at this call site is in. The ranges are
2968represented with a flattened list of integers. The loaded value or the value
2969returned is known to be in the union of the ranges defined by each consecutive
2970pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00002971
2972- The type must match the type loaded by the instruction.
2973- The pair ``a,b`` represents the range ``[a,b)``.
2974- Both ``a`` and ``b`` are constants.
2975- The range is allowed to wrap.
2976- The range should not represent the full or empty set. That is,
2977 ``a!=b``.
2978
2979In addition, the pairs must be in signed order of the lower bound and
2980they must be non-contiguous.
2981
2982Examples:
2983
2984.. code-block:: llvm
2985
2986 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2987 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00002988 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
2989 %d = invoke i8 @bar() to label %cont
2990 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00002991 ...
2992 !0 = metadata !{ i8 0, i8 2 }
2993 !1 = metadata !{ i8 255, i8 2 }
2994 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2995 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2996
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002997'``llvm.loop``'
2998^^^^^^^^^^^^^^^
2999
3000It is sometimes useful to attach information to loop constructs. Currently,
3001loop metadata is implemented as metadata attached to the branch instruction
3002in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003003guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003004specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003005
3006The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003007itself to avoid merging it with any other identifier metadata, e.g.,
3008during module linkage or function inlining. That is, each loop should refer
3009to their own identification metadata even if they reside in separate functions.
3010The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003011constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003012
3013.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003014
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003015 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003016 !1 = metadata !{ metadata !1 }
3017
Mark Heffernan893752a2014-07-18 19:24:51 +00003018The loop identifier metadata can be used to specify additional
3019per-loop metadata. Any operands after the first operand can be treated
3020as user-defined metadata. For example the ``llvm.loop.unroll.count``
3021suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003022
Paul Redmond5fdf8362013-05-28 20:00:34 +00003023.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003024
Paul Redmond5fdf8362013-05-28 20:00:34 +00003025 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3026 ...
3027 !0 = metadata !{ metadata !0, metadata !1 }
Mark Heffernan9d20e422014-07-21 23:11:03 +00003028 !1 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003029
Mark Heffernan9d20e422014-07-21 23:11:03 +00003030'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003032
Mark Heffernan9d20e422014-07-21 23:11:03 +00003033Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3034used to control per-loop vectorization and interleaving parameters such as
3035vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003036conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003037``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3038optimization hints and the optimizer will only interleave and vectorize loops if
3039it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3040which contains information about loop-carried memory dependencies can be helpful
3041in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003042
Mark Heffernan9d20e422014-07-21 23:11:03 +00003043'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3045
Mark Heffernan9d20e422014-07-21 23:11:03 +00003046This metadata suggests an interleave count to the loop interleaver.
3047The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003048second operand is an integer specifying the interleave count. For
3049example:
3050
3051.. code-block:: llvm
3052
Mark Heffernan9d20e422014-07-21 23:11:03 +00003053 !0 = metadata !{ metadata !"llvm.loop.interleave.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003054
Mark Heffernan9d20e422014-07-21 23:11:03 +00003055Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3056multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3057then the interleave count will be determined automatically.
3058
3059'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003061
3062This metadata selectively enables or disables vectorization for the loop. The
3063first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3064is a bit. If the bit operand value is 1 vectorization is enabled. A value of
30650 disables vectorization:
3066
3067.. code-block:: llvm
3068
3069 !0 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 0 }
3070 !1 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 1 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003071
3072'``llvm.loop.vectorize.width``' Metadata
3073^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3074
3075This metadata sets the target width of the vectorizer. The first
3076operand is the string ``llvm.loop.vectorize.width`` and the second
3077operand is an integer specifying the width. For example:
3078
3079.. code-block:: llvm
3080
3081 !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 }
3082
3083Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3084vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
30850 or if the loop does not have this metadata the width will be
3086determined automatically.
3087
3088'``llvm.loop.unroll``'
3089^^^^^^^^^^^^^^^^^^^^^^
3090
3091Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3092optimization hints such as the unroll factor. ``llvm.loop.unroll``
3093metadata should be used in conjunction with ``llvm.loop`` loop
3094identification metadata. The ``llvm.loop.unroll`` metadata are only
3095optimization hints and the unrolling will only be performed if the
3096optimizer believes it is safe to do so.
3097
Mark Heffernan893752a2014-07-18 19:24:51 +00003098'``llvm.loop.unroll.count``' Metadata
3099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3100
3101This metadata suggests an unroll factor to the loop unroller. The
3102first operand is the string ``llvm.loop.unroll.count`` and the second
3103operand is a positive integer specifying the unroll factor. For
3104example:
3105
3106.. code-block:: llvm
3107
3108 !0 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
3109
3110If the trip count of the loop is less than the unroll count the loop
3111will be partially unrolled.
3112
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003113'``llvm.loop.unroll.disable``' Metadata
3114^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3115
3116This metadata either disables loop unrolling. The metadata has a single operand
3117which is the string ``llvm.loop.unroll.disable``. For example:
3118
3119.. code-block:: llvm
3120
3121 !0 = metadata !{ metadata !"llvm.loop.unroll.disable" }
3122
3123'``llvm.loop.unroll.full``' Metadata
3124^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3125
3126This metadata either suggests that the loop should be unrolled fully. The
3127metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3128For example:
3129
3130.. code-block:: llvm
3131
3132 !0 = metadata !{ metadata !"llvm.loop.unroll.full" }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003133
3134'``llvm.mem``'
3135^^^^^^^^^^^^^^^
3136
3137Metadata types used to annotate memory accesses with information helpful
3138for optimizations are prefixed with ``llvm.mem``.
3139
3140'``llvm.mem.parallel_loop_access``' Metadata
3141^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3142
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003143The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3144or metadata containing a list of loop identifiers for nested loops.
3145The metadata is attached to memory accessing instructions and denotes that
3146no loop carried memory dependence exist between it and other instructions denoted
3147with the same loop identifier.
3148
3149Precisely, given two instructions ``m1`` and ``m2`` that both have the
3150``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3151set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003152carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003153``L2``.
3154
3155As a special case, if all memory accessing instructions in a loop have
3156``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3157loop has no loop carried memory dependences and is considered to be a parallel
3158loop.
3159
3160Note that if not all memory access instructions have such metadata referring to
3161the loop, then the loop is considered not being trivially parallel. Additional
3162memory dependence analysis is required to make that determination. As a fail
3163safe mechanism, this causes loops that were originally parallel to be considered
3164sequential (if optimization passes that are unaware of the parallel semantics
3165insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003166
3167Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003168both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003169metadata types that refer to the same loop identifier metadata.
3170
3171.. code-block:: llvm
3172
3173 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003174 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003175 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003176 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003177 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003178 ...
3179 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003180
3181 for.end:
3182 ...
3183 !0 = metadata !{ metadata !0 }
3184
3185It is also possible to have nested parallel loops. In that case the
3186memory accesses refer to a list of loop identifier metadata nodes instead of
3187the loop identifier metadata node directly:
3188
3189.. code-block:: llvm
3190
3191 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003192 ...
3193 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3194 ...
3195 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003196
3197 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003198 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003199 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003200 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003201 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003202 ...
3203 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003204
3205 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003206 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003207 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003208 ...
3209 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003210
3211 outer.for.end: ; preds = %for.body
3212 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00003213 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
3214 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
3215 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003216
Sean Silvab084af42012-12-07 10:36:55 +00003217Module Flags Metadata
3218=====================
3219
3220Information about the module as a whole is difficult to convey to LLVM's
3221subsystems. The LLVM IR isn't sufficient to transmit this information.
3222The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003223this. These flags are in the form of key / value pairs --- much like a
3224dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003225look it up.
3226
3227The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3228Each triplet has the following form:
3229
3230- The first element is a *behavior* flag, which specifies the behavior
3231 when two (or more) modules are merged together, and it encounters two
3232 (or more) metadata with the same ID. The supported behaviors are
3233 described below.
3234- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003235 metadata. Each module may only have one flag entry for each unique ID (not
3236 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003237- The third element is the value of the flag.
3238
3239When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003240``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3241each unique metadata ID string, there will be exactly one entry in the merged
3242modules ``llvm.module.flags`` metadata table, and the value for that entry will
3243be determined by the merge behavior flag, as described below. The only exception
3244is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003245
3246The following behaviors are supported:
3247
3248.. list-table::
3249 :header-rows: 1
3250 :widths: 10 90
3251
3252 * - Value
3253 - Behavior
3254
3255 * - 1
3256 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003257 Emits an error if two values disagree, otherwise the resulting value
3258 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003259
3260 * - 2
3261 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003262 Emits a warning if two values disagree. The result value will be the
3263 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003264
3265 * - 3
3266 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003267 Adds a requirement that another module flag be present and have a
3268 specified value after linking is performed. The value must be a
3269 metadata pair, where the first element of the pair is the ID of the
3270 module flag to be restricted, and the second element of the pair is
3271 the value the module flag should be restricted to. This behavior can
3272 be used to restrict the allowable results (via triggering of an
3273 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003274
3275 * - 4
3276 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003277 Uses the specified value, regardless of the behavior or value of the
3278 other module. If both modules specify **Override**, but the values
3279 differ, an error will be emitted.
3280
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003281 * - 5
3282 - **Append**
3283 Appends the two values, which are required to be metadata nodes.
3284
3285 * - 6
3286 - **AppendUnique**
3287 Appends the two values, which are required to be metadata
3288 nodes. However, duplicate entries in the second list are dropped
3289 during the append operation.
3290
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003291It is an error for a particular unique flag ID to have multiple behaviors,
3292except in the case of **Require** (which adds restrictions on another metadata
3293value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003294
3295An example of module flags:
3296
3297.. code-block:: llvm
3298
3299 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3300 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3301 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3302 !3 = metadata !{ i32 3, metadata !"qux",
3303 metadata !{
3304 metadata !"foo", i32 1
3305 }
3306 }
3307 !llvm.module.flags = !{ !0, !1, !2, !3 }
3308
3309- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3310 if two or more ``!"foo"`` flags are seen is to emit an error if their
3311 values are not equal.
3312
3313- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3314 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003315 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003316
3317- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3318 behavior if two or more ``!"qux"`` flags are seen is to emit a
3319 warning if their values are not equal.
3320
3321- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3322
3323 ::
3324
3325 metadata !{ metadata !"foo", i32 1 }
3326
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003327 The behavior is to emit an error if the ``llvm.module.flags`` does not
3328 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3329 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003330
3331Objective-C Garbage Collection Module Flags Metadata
3332----------------------------------------------------
3333
3334On the Mach-O platform, Objective-C stores metadata about garbage
3335collection in a special section called "image info". The metadata
3336consists of a version number and a bitmask specifying what types of
3337garbage collection are supported (if any) by the file. If two or more
3338modules are linked together their garbage collection metadata needs to
3339be merged rather than appended together.
3340
3341The Objective-C garbage collection module flags metadata consists of the
3342following key-value pairs:
3343
3344.. list-table::
3345 :header-rows: 1
3346 :widths: 30 70
3347
3348 * - Key
3349 - Value
3350
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003351 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003352 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003353
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003354 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003355 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003356 always 0.
3357
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003358 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003359 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003360 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3361 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3362 Objective-C ABI version 2.
3363
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003364 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003365 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003366 not. Valid values are 0, for no garbage collection, and 2, for garbage
3367 collection supported.
3368
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003369 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003370 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003371 If present, its value must be 6. This flag requires that the
3372 ``Objective-C Garbage Collection`` flag have the value 2.
3373
3374Some important flag interactions:
3375
3376- If a module with ``Objective-C Garbage Collection`` set to 0 is
3377 merged with a module with ``Objective-C Garbage Collection`` set to
3378 2, then the resulting module has the
3379 ``Objective-C Garbage Collection`` flag set to 0.
3380- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3381 merged with a module with ``Objective-C GC Only`` set to 6.
3382
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003383Automatic Linker Flags Module Flags Metadata
3384--------------------------------------------
3385
3386Some targets support embedding flags to the linker inside individual object
3387files. Typically this is used in conjunction with language extensions which
3388allow source files to explicitly declare the libraries they depend on, and have
3389these automatically be transmitted to the linker via object files.
3390
3391These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003392using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003393to be ``AppendUnique``, and the value for the key is expected to be a metadata
3394node which should be a list of other metadata nodes, each of which should be a
3395list of metadata strings defining linker options.
3396
3397For example, the following metadata section specifies two separate sets of
3398linker options, presumably to link against ``libz`` and the ``Cocoa``
3399framework::
3400
Michael Liaoa7699082013-03-06 18:24:34 +00003401 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003402 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003403 metadata !{ metadata !"-lz" },
3404 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003405 !llvm.module.flags = !{ !0 }
3406
3407The metadata encoding as lists of lists of options, as opposed to a collapsed
3408list of options, is chosen so that the IR encoding can use multiple option
3409strings to specify e.g., a single library, while still having that specifier be
3410preserved as an atomic element that can be recognized by a target specific
3411assembly writer or object file emitter.
3412
3413Each individual option is required to be either a valid option for the target's
3414linker, or an option that is reserved by the target specific assembly writer or
3415object file emitter. No other aspect of these options is defined by the IR.
3416
Oliver Stannard5dc29342014-06-20 10:08:11 +00003417C type width Module Flags Metadata
3418----------------------------------
3419
3420The ARM backend emits a section into each generated object file describing the
3421options that it was compiled with (in a compiler-independent way) to prevent
3422linking incompatible objects, and to allow automatic library selection. Some
3423of these options are not visible at the IR level, namely wchar_t width and enum
3424width.
3425
3426To pass this information to the backend, these options are encoded in module
3427flags metadata, using the following key-value pairs:
3428
3429.. list-table::
3430 :header-rows: 1
3431 :widths: 30 70
3432
3433 * - Key
3434 - Value
3435
3436 * - short_wchar
3437 - * 0 --- sizeof(wchar_t) == 4
3438 * 1 --- sizeof(wchar_t) == 2
3439
3440 * - short_enum
3441 - * 0 --- Enums are at least as large as an ``int``.
3442 * 1 --- Enums are stored in the smallest integer type which can
3443 represent all of its values.
3444
3445For example, the following metadata section specifies that the module was
3446compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3447enum is the smallest type which can represent all of its values::
3448
3449 !llvm.module.flags = !{!0, !1}
3450 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1}
3451 !1 = metadata !{i32 1, metadata !"short_enum", i32 0}
3452
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003453.. _intrinsicglobalvariables:
3454
Sean Silvab084af42012-12-07 10:36:55 +00003455Intrinsic Global Variables
3456==========================
3457
3458LLVM has a number of "magic" global variables that contain data that
3459affect code generation or other IR semantics. These are documented here.
3460All globals of this sort should have a section specified as
3461"``llvm.metadata``". This section and all globals that start with
3462"``llvm.``" are reserved for use by LLVM.
3463
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003464.. _gv_llvmused:
3465
Sean Silvab084af42012-12-07 10:36:55 +00003466The '``llvm.used``' Global Variable
3467-----------------------------------
3468
Rafael Espindola74f2e462013-04-22 14:58:02 +00003469The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003470:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003471pointers to named global variables, functions and aliases which may optionally
3472have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003473use of it is:
3474
3475.. code-block:: llvm
3476
3477 @X = global i8 4
3478 @Y = global i32 123
3479
3480 @llvm.used = appending global [2 x i8*] [
3481 i8* @X,
3482 i8* bitcast (i32* @Y to i8*)
3483 ], section "llvm.metadata"
3484
Rafael Espindola74f2e462013-04-22 14:58:02 +00003485If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3486and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003487symbol that it cannot see (which is why they have to be named). For example, if
3488a variable has internal linkage and no references other than that from the
3489``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3490references from inline asms and other things the compiler cannot "see", and
3491corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003492
3493On some targets, the code generator must emit a directive to the
3494assembler or object file to prevent the assembler and linker from
3495molesting the symbol.
3496
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003497.. _gv_llvmcompilerused:
3498
Sean Silvab084af42012-12-07 10:36:55 +00003499The '``llvm.compiler.used``' Global Variable
3500--------------------------------------------
3501
3502The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3503directive, except that it only prevents the compiler from touching the
3504symbol. On targets that support it, this allows an intelligent linker to
3505optimize references to the symbol without being impeded as it would be
3506by ``@llvm.used``.
3507
3508This is a rare construct that should only be used in rare circumstances,
3509and should not be exposed to source languages.
3510
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003511.. _gv_llvmglobalctors:
3512
Sean Silvab084af42012-12-07 10:36:55 +00003513The '``llvm.global_ctors``' Global Variable
3514-------------------------------------------
3515
3516.. code-block:: llvm
3517
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003518 %0 = type { i32, void ()*, i8* }
3519 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003520
3521The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003522functions, priorities, and an optional associated global or function.
3523The functions referenced by this array will be called in ascending order
3524of priority (i.e. lowest first) when the module is loaded. The order of
3525functions with the same priority is not defined.
3526
3527If the third field is present, non-null, and points to a global variable
3528or function, the initializer function will only run if the associated
3529data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003530
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003531.. _llvmglobaldtors:
3532
Sean Silvab084af42012-12-07 10:36:55 +00003533The '``llvm.global_dtors``' Global Variable
3534-------------------------------------------
3535
3536.. code-block:: llvm
3537
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003538 %0 = type { i32, void ()*, i8* }
3539 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003540
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003541The ``@llvm.global_dtors`` array contains a list of destructor
3542functions, priorities, and an optional associated global or function.
3543The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003544order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003545order of functions with the same priority is not defined.
3546
3547If the third field is present, non-null, and points to a global variable
3548or function, the destructor function will only run if the associated
3549data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003550
3551Instruction Reference
3552=====================
3553
3554The LLVM instruction set consists of several different classifications
3555of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3556instructions <binaryops>`, :ref:`bitwise binary
3557instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3558:ref:`other instructions <otherops>`.
3559
3560.. _terminators:
3561
3562Terminator Instructions
3563-----------------------
3564
3565As mentioned :ref:`previously <functionstructure>`, every basic block in a
3566program ends with a "Terminator" instruction, which indicates which
3567block should be executed after the current block is finished. These
3568terminator instructions typically yield a '``void``' value: they produce
3569control flow, not values (the one exception being the
3570':ref:`invoke <i_invoke>`' instruction).
3571
3572The terminator instructions are: ':ref:`ret <i_ret>`',
3573':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3574':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3575':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3576
3577.. _i_ret:
3578
3579'``ret``' Instruction
3580^^^^^^^^^^^^^^^^^^^^^
3581
3582Syntax:
3583"""""""
3584
3585::
3586
3587 ret <type> <value> ; Return a value from a non-void function
3588 ret void ; Return from void function
3589
3590Overview:
3591"""""""""
3592
3593The '``ret``' instruction is used to return control flow (and optionally
3594a value) from a function back to the caller.
3595
3596There are two forms of the '``ret``' instruction: one that returns a
3597value and then causes control flow, and one that just causes control
3598flow to occur.
3599
3600Arguments:
3601""""""""""
3602
3603The '``ret``' instruction optionally accepts a single argument, the
3604return value. The type of the return value must be a ':ref:`first
3605class <t_firstclass>`' type.
3606
3607A function is not :ref:`well formed <wellformed>` if it it has a non-void
3608return type and contains a '``ret``' instruction with no return value or
3609a return value with a type that does not match its type, or if it has a
3610void return type and contains a '``ret``' instruction with a return
3611value.
3612
3613Semantics:
3614""""""""""
3615
3616When the '``ret``' instruction is executed, control flow returns back to
3617the calling function's context. If the caller is a
3618":ref:`call <i_call>`" instruction, execution continues at the
3619instruction after the call. If the caller was an
3620":ref:`invoke <i_invoke>`" instruction, execution continues at the
3621beginning of the "normal" destination block. If the instruction returns
3622a value, that value shall set the call or invoke instruction's return
3623value.
3624
3625Example:
3626""""""""
3627
3628.. code-block:: llvm
3629
3630 ret i32 5 ; Return an integer value of 5
3631 ret void ; Return from a void function
3632 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3633
3634.. _i_br:
3635
3636'``br``' Instruction
3637^^^^^^^^^^^^^^^^^^^^
3638
3639Syntax:
3640"""""""
3641
3642::
3643
3644 br i1 <cond>, label <iftrue>, label <iffalse>
3645 br label <dest> ; Unconditional branch
3646
3647Overview:
3648"""""""""
3649
3650The '``br``' instruction is used to cause control flow to transfer to a
3651different basic block in the current function. There are two forms of
3652this instruction, corresponding to a conditional branch and an
3653unconditional branch.
3654
3655Arguments:
3656""""""""""
3657
3658The conditional branch form of the '``br``' instruction takes a single
3659'``i1``' value and two '``label``' values. The unconditional form of the
3660'``br``' instruction takes a single '``label``' value as a target.
3661
3662Semantics:
3663""""""""""
3664
3665Upon execution of a conditional '``br``' instruction, the '``i1``'
3666argument is evaluated. If the value is ``true``, control flows to the
3667'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3668to the '``iffalse``' ``label`` argument.
3669
3670Example:
3671""""""""
3672
3673.. code-block:: llvm
3674
3675 Test:
3676 %cond = icmp eq i32 %a, %b
3677 br i1 %cond, label %IfEqual, label %IfUnequal
3678 IfEqual:
3679 ret i32 1
3680 IfUnequal:
3681 ret i32 0
3682
3683.. _i_switch:
3684
3685'``switch``' Instruction
3686^^^^^^^^^^^^^^^^^^^^^^^^
3687
3688Syntax:
3689"""""""
3690
3691::
3692
3693 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3694
3695Overview:
3696"""""""""
3697
3698The '``switch``' instruction is used to transfer control flow to one of
3699several different places. It is a generalization of the '``br``'
3700instruction, allowing a branch to occur to one of many possible
3701destinations.
3702
3703Arguments:
3704""""""""""
3705
3706The '``switch``' instruction uses three parameters: an integer
3707comparison value '``value``', a default '``label``' destination, and an
3708array of pairs of comparison value constants and '``label``'s. The table
3709is not allowed to contain duplicate constant entries.
3710
3711Semantics:
3712""""""""""
3713
3714The ``switch`` instruction specifies a table of values and destinations.
3715When the '``switch``' instruction is executed, this table is searched
3716for the given value. If the value is found, control flow is transferred
3717to the corresponding destination; otherwise, control flow is transferred
3718to the default destination.
3719
3720Implementation:
3721"""""""""""""""
3722
3723Depending on properties of the target machine and the particular
3724``switch`` instruction, this instruction may be code generated in
3725different ways. For example, it could be generated as a series of
3726chained conditional branches or with a lookup table.
3727
3728Example:
3729""""""""
3730
3731.. code-block:: llvm
3732
3733 ; Emulate a conditional br instruction
3734 %Val = zext i1 %value to i32
3735 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3736
3737 ; Emulate an unconditional br instruction
3738 switch i32 0, label %dest [ ]
3739
3740 ; Implement a jump table:
3741 switch i32 %val, label %otherwise [ i32 0, label %onzero
3742 i32 1, label %onone
3743 i32 2, label %ontwo ]
3744
3745.. _i_indirectbr:
3746
3747'``indirectbr``' Instruction
3748^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3749
3750Syntax:
3751"""""""
3752
3753::
3754
3755 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3756
3757Overview:
3758"""""""""
3759
3760The '``indirectbr``' instruction implements an indirect branch to a
3761label within the current function, whose address is specified by
3762"``address``". Address must be derived from a
3763:ref:`blockaddress <blockaddress>` constant.
3764
3765Arguments:
3766""""""""""
3767
3768The '``address``' argument is the address of the label to jump to. The
3769rest of the arguments indicate the full set of possible destinations
3770that the address may point to. Blocks are allowed to occur multiple
3771times in the destination list, though this isn't particularly useful.
3772
3773This destination list is required so that dataflow analysis has an
3774accurate understanding of the CFG.
3775
3776Semantics:
3777""""""""""
3778
3779Control transfers to the block specified in the address argument. All
3780possible destination blocks must be listed in the label list, otherwise
3781this instruction has undefined behavior. This implies that jumps to
3782labels defined in other functions have undefined behavior as well.
3783
3784Implementation:
3785"""""""""""""""
3786
3787This is typically implemented with a jump through a register.
3788
3789Example:
3790""""""""
3791
3792.. code-block:: llvm
3793
3794 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3795
3796.. _i_invoke:
3797
3798'``invoke``' Instruction
3799^^^^^^^^^^^^^^^^^^^^^^^^
3800
3801Syntax:
3802"""""""
3803
3804::
3805
3806 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3807 to label <normal label> unwind label <exception label>
3808
3809Overview:
3810"""""""""
3811
3812The '``invoke``' instruction causes control to transfer to a specified
3813function, with the possibility of control flow transfer to either the
3814'``normal``' label or the '``exception``' label. If the callee function
3815returns with the "``ret``" instruction, control flow will return to the
3816"normal" label. If the callee (or any indirect callees) returns via the
3817":ref:`resume <i_resume>`" instruction or other exception handling
3818mechanism, control is interrupted and continued at the dynamically
3819nearest "exception" label.
3820
3821The '``exception``' label is a `landing
3822pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3823'``exception``' label is required to have the
3824":ref:`landingpad <i_landingpad>`" instruction, which contains the
3825information about the behavior of the program after unwinding happens,
3826as its first non-PHI instruction. The restrictions on the
3827"``landingpad``" instruction's tightly couples it to the "``invoke``"
3828instruction, so that the important information contained within the
3829"``landingpad``" instruction can't be lost through normal code motion.
3830
3831Arguments:
3832""""""""""
3833
3834This instruction requires several arguments:
3835
3836#. The optional "cconv" marker indicates which :ref:`calling
3837 convention <callingconv>` the call should use. If none is
3838 specified, the call defaults to using C calling conventions.
3839#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3840 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3841 are valid here.
3842#. '``ptr to function ty``': shall be the signature of the pointer to
3843 function value being invoked. In most cases, this is a direct
3844 function invocation, but indirect ``invoke``'s are just as possible,
3845 branching off an arbitrary pointer to function value.
3846#. '``function ptr val``': An LLVM value containing a pointer to a
3847 function to be invoked.
3848#. '``function args``': argument list whose types match the function
3849 signature argument types and parameter attributes. All arguments must
3850 be of :ref:`first class <t_firstclass>` type. If the function signature
3851 indicates the function accepts a variable number of arguments, the
3852 extra arguments can be specified.
3853#. '``normal label``': the label reached when the called function
3854 executes a '``ret``' instruction.
3855#. '``exception label``': the label reached when a callee returns via
3856 the :ref:`resume <i_resume>` instruction or other exception handling
3857 mechanism.
3858#. The optional :ref:`function attributes <fnattrs>` list. Only
3859 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3860 attributes are valid here.
3861
3862Semantics:
3863""""""""""
3864
3865This instruction is designed to operate as a standard '``call``'
3866instruction in most regards. The primary difference is that it
3867establishes an association with a label, which is used by the runtime
3868library to unwind the stack.
3869
3870This instruction is used in languages with destructors to ensure that
3871proper cleanup is performed in the case of either a ``longjmp`` or a
3872thrown exception. Additionally, this is important for implementation of
3873'``catch``' clauses in high-level languages that support them.
3874
3875For the purposes of the SSA form, the definition of the value returned
3876by the '``invoke``' instruction is deemed to occur on the edge from the
3877current block to the "normal" label. If the callee unwinds then no
3878return value is available.
3879
3880Example:
3881""""""""
3882
3883.. code-block:: llvm
3884
3885 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003886 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003887 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003888 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003889
3890.. _i_resume:
3891
3892'``resume``' Instruction
3893^^^^^^^^^^^^^^^^^^^^^^^^
3894
3895Syntax:
3896"""""""
3897
3898::
3899
3900 resume <type> <value>
3901
3902Overview:
3903"""""""""
3904
3905The '``resume``' instruction is a terminator instruction that has no
3906successors.
3907
3908Arguments:
3909""""""""""
3910
3911The '``resume``' instruction requires one argument, which must have the
3912same type as the result of any '``landingpad``' instruction in the same
3913function.
3914
3915Semantics:
3916""""""""""
3917
3918The '``resume``' instruction resumes propagation of an existing
3919(in-flight) exception whose unwinding was interrupted with a
3920:ref:`landingpad <i_landingpad>` instruction.
3921
3922Example:
3923""""""""
3924
3925.. code-block:: llvm
3926
3927 resume { i8*, i32 } %exn
3928
3929.. _i_unreachable:
3930
3931'``unreachable``' Instruction
3932^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3933
3934Syntax:
3935"""""""
3936
3937::
3938
3939 unreachable
3940
3941Overview:
3942"""""""""
3943
3944The '``unreachable``' instruction has no defined semantics. This
3945instruction is used to inform the optimizer that a particular portion of
3946the code is not reachable. This can be used to indicate that the code
3947after a no-return function cannot be reached, and other facts.
3948
3949Semantics:
3950""""""""""
3951
3952The '``unreachable``' instruction has no defined semantics.
3953
3954.. _binaryops:
3955
3956Binary Operations
3957-----------------
3958
3959Binary operators are used to do most of the computation in a program.
3960They require two operands of the same type, execute an operation on
3961them, and produce a single value. The operands might represent multiple
3962data, as is the case with the :ref:`vector <t_vector>` data type. The
3963result value has the same type as its operands.
3964
3965There are several different binary operators:
3966
3967.. _i_add:
3968
3969'``add``' Instruction
3970^^^^^^^^^^^^^^^^^^^^^
3971
3972Syntax:
3973"""""""
3974
3975::
3976
Tim Northover675a0962014-06-13 14:24:23 +00003977 <result> = add <ty> <op1>, <op2> ; yields ty:result
3978 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
3979 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
3980 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003981
3982Overview:
3983"""""""""
3984
3985The '``add``' instruction returns the sum of its two operands.
3986
3987Arguments:
3988""""""""""
3989
3990The two arguments to the '``add``' instruction must be
3991:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3992arguments must have identical types.
3993
3994Semantics:
3995""""""""""
3996
3997The value produced is the integer sum of the two operands.
3998
3999If the sum has unsigned overflow, the result returned is the
4000mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4001the result.
4002
4003Because LLVM integers use a two's complement representation, this
4004instruction is appropriate for both signed and unsigned integers.
4005
4006``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4007respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4008result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4009unsigned and/or signed overflow, respectively, occurs.
4010
4011Example:
4012""""""""
4013
4014.. code-block:: llvm
4015
Tim Northover675a0962014-06-13 14:24:23 +00004016 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004017
4018.. _i_fadd:
4019
4020'``fadd``' Instruction
4021^^^^^^^^^^^^^^^^^^^^^^
4022
4023Syntax:
4024"""""""
4025
4026::
4027
Tim Northover675a0962014-06-13 14:24:23 +00004028 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004029
4030Overview:
4031"""""""""
4032
4033The '``fadd``' instruction returns the sum of its two operands.
4034
4035Arguments:
4036""""""""""
4037
4038The two arguments to the '``fadd``' instruction must be :ref:`floating
4039point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4040Both arguments must have identical types.
4041
4042Semantics:
4043""""""""""
4044
4045The value produced is the floating point sum of the two operands. This
4046instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4047which are optimization hints to enable otherwise unsafe floating point
4048optimizations:
4049
4050Example:
4051""""""""
4052
4053.. code-block:: llvm
4054
Tim Northover675a0962014-06-13 14:24:23 +00004055 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004056
4057'``sub``' Instruction
4058^^^^^^^^^^^^^^^^^^^^^
4059
4060Syntax:
4061"""""""
4062
4063::
4064
Tim Northover675a0962014-06-13 14:24:23 +00004065 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4066 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4067 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4068 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004069
4070Overview:
4071"""""""""
4072
4073The '``sub``' instruction returns the difference of its two operands.
4074
4075Note that the '``sub``' instruction is used to represent the '``neg``'
4076instruction present in most other intermediate representations.
4077
4078Arguments:
4079""""""""""
4080
4081The two arguments to the '``sub``' instruction must be
4082:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4083arguments must have identical types.
4084
4085Semantics:
4086""""""""""
4087
4088The value produced is the integer difference of the two operands.
4089
4090If the difference has unsigned overflow, the result returned is the
4091mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4092the result.
4093
4094Because LLVM integers use a two's complement representation, this
4095instruction is appropriate for both signed and unsigned integers.
4096
4097``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4098respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4099result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4100unsigned and/or signed overflow, respectively, occurs.
4101
4102Example:
4103""""""""
4104
4105.. code-block:: llvm
4106
Tim Northover675a0962014-06-13 14:24:23 +00004107 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4108 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004109
4110.. _i_fsub:
4111
4112'``fsub``' Instruction
4113^^^^^^^^^^^^^^^^^^^^^^
4114
4115Syntax:
4116"""""""
4117
4118::
4119
Tim Northover675a0962014-06-13 14:24:23 +00004120 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004121
4122Overview:
4123"""""""""
4124
4125The '``fsub``' instruction returns the difference of its two operands.
4126
4127Note that the '``fsub``' instruction is used to represent the '``fneg``'
4128instruction present in most other intermediate representations.
4129
4130Arguments:
4131""""""""""
4132
4133The two arguments to the '``fsub``' instruction must be :ref:`floating
4134point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4135Both arguments must have identical types.
4136
4137Semantics:
4138""""""""""
4139
4140The value produced is the floating point difference of the two operands.
4141This instruction can also take any number of :ref:`fast-math
4142flags <fastmath>`, which are optimization hints to enable otherwise
4143unsafe floating point optimizations:
4144
4145Example:
4146""""""""
4147
4148.. code-block:: llvm
4149
Tim Northover675a0962014-06-13 14:24:23 +00004150 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4151 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004152
4153'``mul``' Instruction
4154^^^^^^^^^^^^^^^^^^^^^
4155
4156Syntax:
4157"""""""
4158
4159::
4160
Tim Northover675a0962014-06-13 14:24:23 +00004161 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4162 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4163 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4164 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004165
4166Overview:
4167"""""""""
4168
4169The '``mul``' instruction returns the product of its two operands.
4170
4171Arguments:
4172""""""""""
4173
4174The two arguments to the '``mul``' instruction must be
4175:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4176arguments must have identical types.
4177
4178Semantics:
4179""""""""""
4180
4181The value produced is the integer product of the two operands.
4182
4183If the result of the multiplication has unsigned overflow, the result
4184returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4185bit width of the result.
4186
4187Because LLVM integers use a two's complement representation, and the
4188result is the same width as the operands, this instruction returns the
4189correct result for both signed and unsigned integers. If a full product
4190(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4191sign-extended or zero-extended as appropriate to the width of the full
4192product.
4193
4194``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4195respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4196result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4197unsigned and/or signed overflow, respectively, occurs.
4198
4199Example:
4200""""""""
4201
4202.. code-block:: llvm
4203
Tim Northover675a0962014-06-13 14:24:23 +00004204 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004205
4206.. _i_fmul:
4207
4208'``fmul``' Instruction
4209^^^^^^^^^^^^^^^^^^^^^^
4210
4211Syntax:
4212"""""""
4213
4214::
4215
Tim Northover675a0962014-06-13 14:24:23 +00004216 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004217
4218Overview:
4219"""""""""
4220
4221The '``fmul``' instruction returns the product of its two operands.
4222
4223Arguments:
4224""""""""""
4225
4226The two arguments to the '``fmul``' instruction must be :ref:`floating
4227point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4228Both arguments must have identical types.
4229
4230Semantics:
4231""""""""""
4232
4233The value produced is the floating point product of the two operands.
4234This instruction can also take any number of :ref:`fast-math
4235flags <fastmath>`, which are optimization hints to enable otherwise
4236unsafe floating point optimizations:
4237
4238Example:
4239""""""""
4240
4241.. code-block:: llvm
4242
Tim Northover675a0962014-06-13 14:24:23 +00004243 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004244
4245'``udiv``' Instruction
4246^^^^^^^^^^^^^^^^^^^^^^
4247
4248Syntax:
4249"""""""
4250
4251::
4252
Tim Northover675a0962014-06-13 14:24:23 +00004253 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4254 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004255
4256Overview:
4257"""""""""
4258
4259The '``udiv``' instruction returns the quotient of its two operands.
4260
4261Arguments:
4262""""""""""
4263
4264The two arguments to the '``udiv``' instruction must be
4265:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4266arguments must have identical types.
4267
4268Semantics:
4269""""""""""
4270
4271The value produced is the unsigned integer quotient of the two operands.
4272
4273Note that unsigned integer division and signed integer division are
4274distinct operations; for signed integer division, use '``sdiv``'.
4275
4276Division by zero leads to undefined behavior.
4277
4278If the ``exact`` keyword is present, the result value of the ``udiv`` is
4279a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4280such, "((a udiv exact b) mul b) == a").
4281
4282Example:
4283""""""""
4284
4285.. code-block:: llvm
4286
Tim Northover675a0962014-06-13 14:24:23 +00004287 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004288
4289'``sdiv``' Instruction
4290^^^^^^^^^^^^^^^^^^^^^^
4291
4292Syntax:
4293"""""""
4294
4295::
4296
Tim Northover675a0962014-06-13 14:24:23 +00004297 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4298 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004299
4300Overview:
4301"""""""""
4302
4303The '``sdiv``' instruction returns the quotient of its two operands.
4304
4305Arguments:
4306""""""""""
4307
4308The two arguments to the '``sdiv``' instruction must be
4309:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4310arguments must have identical types.
4311
4312Semantics:
4313""""""""""
4314
4315The value produced is the signed integer quotient of the two operands
4316rounded towards zero.
4317
4318Note that signed integer division and unsigned integer division are
4319distinct operations; for unsigned integer division, use '``udiv``'.
4320
4321Division by zero leads to undefined behavior. Overflow also leads to
4322undefined behavior; this is a rare case, but can occur, for example, by
4323doing a 32-bit division of -2147483648 by -1.
4324
4325If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4326a :ref:`poison value <poisonvalues>` if the result would be rounded.
4327
4328Example:
4329""""""""
4330
4331.. code-block:: llvm
4332
Tim Northover675a0962014-06-13 14:24:23 +00004333 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004334
4335.. _i_fdiv:
4336
4337'``fdiv``' Instruction
4338^^^^^^^^^^^^^^^^^^^^^^
4339
4340Syntax:
4341"""""""
4342
4343::
4344
Tim Northover675a0962014-06-13 14:24:23 +00004345 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004346
4347Overview:
4348"""""""""
4349
4350The '``fdiv``' instruction returns the quotient of its two operands.
4351
4352Arguments:
4353""""""""""
4354
4355The two arguments to the '``fdiv``' instruction must be :ref:`floating
4356point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4357Both arguments must have identical types.
4358
4359Semantics:
4360""""""""""
4361
4362The value produced is the floating point quotient of the two operands.
4363This instruction can also take any number of :ref:`fast-math
4364flags <fastmath>`, which are optimization hints to enable otherwise
4365unsafe floating point optimizations:
4366
4367Example:
4368""""""""
4369
4370.. code-block:: llvm
4371
Tim Northover675a0962014-06-13 14:24:23 +00004372 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004373
4374'``urem``' Instruction
4375^^^^^^^^^^^^^^^^^^^^^^
4376
4377Syntax:
4378"""""""
4379
4380::
4381
Tim Northover675a0962014-06-13 14:24:23 +00004382 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004383
4384Overview:
4385"""""""""
4386
4387The '``urem``' instruction returns the remainder from the unsigned
4388division of its two arguments.
4389
4390Arguments:
4391""""""""""
4392
4393The two arguments to the '``urem``' instruction must be
4394:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4395arguments must have identical types.
4396
4397Semantics:
4398""""""""""
4399
4400This instruction returns the unsigned integer *remainder* of a division.
4401This instruction always performs an unsigned division to get the
4402remainder.
4403
4404Note that unsigned integer remainder and signed integer remainder are
4405distinct operations; for signed integer remainder, use '``srem``'.
4406
4407Taking the remainder of a division by zero leads to undefined behavior.
4408
4409Example:
4410""""""""
4411
4412.. code-block:: llvm
4413
Tim Northover675a0962014-06-13 14:24:23 +00004414 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004415
4416'``srem``' Instruction
4417^^^^^^^^^^^^^^^^^^^^^^
4418
4419Syntax:
4420"""""""
4421
4422::
4423
Tim Northover675a0962014-06-13 14:24:23 +00004424 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004425
4426Overview:
4427"""""""""
4428
4429The '``srem``' instruction returns the remainder from the signed
4430division of its two operands. This instruction can also take
4431:ref:`vector <t_vector>` versions of the values in which case the elements
4432must be integers.
4433
4434Arguments:
4435""""""""""
4436
4437The two arguments to the '``srem``' instruction must be
4438:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4439arguments must have identical types.
4440
4441Semantics:
4442""""""""""
4443
4444This instruction returns the *remainder* of a division (where the result
4445is either zero or has the same sign as the dividend, ``op1``), not the
4446*modulo* operator (where the result is either zero or has the same sign
4447as the divisor, ``op2``) of a value. For more information about the
4448difference, see `The Math
4449Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4450table of how this is implemented in various languages, please see
4451`Wikipedia: modulo
4452operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4453
4454Note that signed integer remainder and unsigned integer remainder are
4455distinct operations; for unsigned integer remainder, use '``urem``'.
4456
4457Taking the remainder of a division by zero leads to undefined behavior.
4458Overflow also leads to undefined behavior; this is a rare case, but can
4459occur, for example, by taking the remainder of a 32-bit division of
4460-2147483648 by -1. (The remainder doesn't actually overflow, but this
4461rule lets srem be implemented using instructions that return both the
4462result of the division and the remainder.)
4463
4464Example:
4465""""""""
4466
4467.. code-block:: llvm
4468
Tim Northover675a0962014-06-13 14:24:23 +00004469 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004470
4471.. _i_frem:
4472
4473'``frem``' Instruction
4474^^^^^^^^^^^^^^^^^^^^^^
4475
4476Syntax:
4477"""""""
4478
4479::
4480
Tim Northover675a0962014-06-13 14:24:23 +00004481 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004482
4483Overview:
4484"""""""""
4485
4486The '``frem``' instruction returns the remainder from the division of
4487its two operands.
4488
4489Arguments:
4490""""""""""
4491
4492The two arguments to the '``frem``' instruction must be :ref:`floating
4493point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4494Both arguments must have identical types.
4495
4496Semantics:
4497""""""""""
4498
4499This instruction returns the *remainder* of a division. The remainder
4500has the same sign as the dividend. This instruction can also take any
4501number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4502to enable otherwise unsafe floating point optimizations:
4503
4504Example:
4505""""""""
4506
4507.. code-block:: llvm
4508
Tim Northover675a0962014-06-13 14:24:23 +00004509 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004510
4511.. _bitwiseops:
4512
4513Bitwise Binary Operations
4514-------------------------
4515
4516Bitwise binary operators are used to do various forms of bit-twiddling
4517in a program. They are generally very efficient instructions and can
4518commonly be strength reduced from other instructions. They require two
4519operands of the same type, execute an operation on them, and produce a
4520single value. The resulting value is the same type as its operands.
4521
4522'``shl``' Instruction
4523^^^^^^^^^^^^^^^^^^^^^
4524
4525Syntax:
4526"""""""
4527
4528::
4529
Tim Northover675a0962014-06-13 14:24:23 +00004530 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4531 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4532 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4533 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004534
4535Overview:
4536"""""""""
4537
4538The '``shl``' instruction returns the first operand shifted to the left
4539a specified number of bits.
4540
4541Arguments:
4542""""""""""
4543
4544Both arguments to the '``shl``' instruction must be the same
4545:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4546'``op2``' is treated as an unsigned value.
4547
4548Semantics:
4549""""""""""
4550
4551The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4552where ``n`` is the width of the result. If ``op2`` is (statically or
4553dynamically) negative or equal to or larger than the number of bits in
4554``op1``, the result is undefined. If the arguments are vectors, each
4555vector element of ``op1`` is shifted by the corresponding shift amount
4556in ``op2``.
4557
4558If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4559value <poisonvalues>` if it shifts out any non-zero bits. If the
4560``nsw`` keyword is present, then the shift produces a :ref:`poison
4561value <poisonvalues>` if it shifts out any bits that disagree with the
4562resultant sign bit. As such, NUW/NSW have the same semantics as they
4563would if the shift were expressed as a mul instruction with the same
4564nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4565
4566Example:
4567""""""""
4568
4569.. code-block:: llvm
4570
Tim Northover675a0962014-06-13 14:24:23 +00004571 <result> = shl i32 4, %var ; yields i32: 4 << %var
4572 <result> = shl i32 4, 2 ; yields i32: 16
4573 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004574 <result> = shl i32 1, 32 ; undefined
4575 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4576
4577'``lshr``' Instruction
4578^^^^^^^^^^^^^^^^^^^^^^
4579
4580Syntax:
4581"""""""
4582
4583::
4584
Tim Northover675a0962014-06-13 14:24:23 +00004585 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4586 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004587
4588Overview:
4589"""""""""
4590
4591The '``lshr``' instruction (logical shift right) returns the first
4592operand shifted to the right a specified number of bits with zero fill.
4593
4594Arguments:
4595""""""""""
4596
4597Both arguments to the '``lshr``' instruction must be the same
4598:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4599'``op2``' is treated as an unsigned value.
4600
4601Semantics:
4602""""""""""
4603
4604This instruction always performs a logical shift right operation. The
4605most significant bits of the result will be filled with zero bits after
4606the shift. If ``op2`` is (statically or dynamically) equal to or larger
4607than the number of bits in ``op1``, the result is undefined. If the
4608arguments are vectors, each vector element of ``op1`` is shifted by the
4609corresponding shift amount in ``op2``.
4610
4611If the ``exact`` keyword is present, the result value of the ``lshr`` is
4612a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4613non-zero.
4614
4615Example:
4616""""""""
4617
4618.. code-block:: llvm
4619
Tim Northover675a0962014-06-13 14:24:23 +00004620 <result> = lshr i32 4, 1 ; yields i32:result = 2
4621 <result> = lshr i32 4, 2 ; yields i32:result = 1
4622 <result> = lshr i8 4, 3 ; yields i8:result = 0
4623 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004624 <result> = lshr i32 1, 32 ; undefined
4625 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4626
4627'``ashr``' Instruction
4628^^^^^^^^^^^^^^^^^^^^^^
4629
4630Syntax:
4631"""""""
4632
4633::
4634
Tim Northover675a0962014-06-13 14:24:23 +00004635 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4636 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004637
4638Overview:
4639"""""""""
4640
4641The '``ashr``' instruction (arithmetic shift right) returns the first
4642operand shifted to the right a specified number of bits with sign
4643extension.
4644
4645Arguments:
4646""""""""""
4647
4648Both arguments to the '``ashr``' instruction must be the same
4649:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4650'``op2``' is treated as an unsigned value.
4651
4652Semantics:
4653""""""""""
4654
4655This instruction always performs an arithmetic shift right operation,
4656The most significant bits of the result will be filled with the sign bit
4657of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4658than the number of bits in ``op1``, the result is undefined. If the
4659arguments are vectors, each vector element of ``op1`` is shifted by the
4660corresponding shift amount in ``op2``.
4661
4662If the ``exact`` keyword is present, the result value of the ``ashr`` is
4663a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4664non-zero.
4665
4666Example:
4667""""""""
4668
4669.. code-block:: llvm
4670
Tim Northover675a0962014-06-13 14:24:23 +00004671 <result> = ashr i32 4, 1 ; yields i32:result = 2
4672 <result> = ashr i32 4, 2 ; yields i32:result = 1
4673 <result> = ashr i8 4, 3 ; yields i8:result = 0
4674 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004675 <result> = ashr i32 1, 32 ; undefined
4676 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4677
4678'``and``' Instruction
4679^^^^^^^^^^^^^^^^^^^^^
4680
4681Syntax:
4682"""""""
4683
4684::
4685
Tim Northover675a0962014-06-13 14:24:23 +00004686 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004687
4688Overview:
4689"""""""""
4690
4691The '``and``' instruction returns the bitwise logical and of its two
4692operands.
4693
4694Arguments:
4695""""""""""
4696
4697The two arguments to the '``and``' instruction must be
4698:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4699arguments must have identical types.
4700
4701Semantics:
4702""""""""""
4703
4704The truth table used for the '``and``' instruction is:
4705
4706+-----+-----+-----+
4707| In0 | In1 | Out |
4708+-----+-----+-----+
4709| 0 | 0 | 0 |
4710+-----+-----+-----+
4711| 0 | 1 | 0 |
4712+-----+-----+-----+
4713| 1 | 0 | 0 |
4714+-----+-----+-----+
4715| 1 | 1 | 1 |
4716+-----+-----+-----+
4717
4718Example:
4719""""""""
4720
4721.. code-block:: llvm
4722
Tim Northover675a0962014-06-13 14:24:23 +00004723 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4724 <result> = and i32 15, 40 ; yields i32:result = 8
4725 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004726
4727'``or``' Instruction
4728^^^^^^^^^^^^^^^^^^^^
4729
4730Syntax:
4731"""""""
4732
4733::
4734
Tim Northover675a0962014-06-13 14:24:23 +00004735 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004736
4737Overview:
4738"""""""""
4739
4740The '``or``' instruction returns the bitwise logical inclusive or of its
4741two operands.
4742
4743Arguments:
4744""""""""""
4745
4746The two arguments to the '``or``' instruction must be
4747:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4748arguments must have identical types.
4749
4750Semantics:
4751""""""""""
4752
4753The truth table used for the '``or``' instruction is:
4754
4755+-----+-----+-----+
4756| In0 | In1 | Out |
4757+-----+-----+-----+
4758| 0 | 0 | 0 |
4759+-----+-----+-----+
4760| 0 | 1 | 1 |
4761+-----+-----+-----+
4762| 1 | 0 | 1 |
4763+-----+-----+-----+
4764| 1 | 1 | 1 |
4765+-----+-----+-----+
4766
4767Example:
4768""""""""
4769
4770::
4771
Tim Northover675a0962014-06-13 14:24:23 +00004772 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4773 <result> = or i32 15, 40 ; yields i32:result = 47
4774 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004775
4776'``xor``' Instruction
4777^^^^^^^^^^^^^^^^^^^^^
4778
4779Syntax:
4780"""""""
4781
4782::
4783
Tim Northover675a0962014-06-13 14:24:23 +00004784 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004785
4786Overview:
4787"""""""""
4788
4789The '``xor``' instruction returns the bitwise logical exclusive or of
4790its two operands. The ``xor`` is used to implement the "one's
4791complement" operation, which is the "~" operator in C.
4792
4793Arguments:
4794""""""""""
4795
4796The two arguments to the '``xor``' instruction must be
4797:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4798arguments must have identical types.
4799
4800Semantics:
4801""""""""""
4802
4803The truth table used for the '``xor``' instruction is:
4804
4805+-----+-----+-----+
4806| In0 | In1 | Out |
4807+-----+-----+-----+
4808| 0 | 0 | 0 |
4809+-----+-----+-----+
4810| 0 | 1 | 1 |
4811+-----+-----+-----+
4812| 1 | 0 | 1 |
4813+-----+-----+-----+
4814| 1 | 1 | 0 |
4815+-----+-----+-----+
4816
4817Example:
4818""""""""
4819
4820.. code-block:: llvm
4821
Tim Northover675a0962014-06-13 14:24:23 +00004822 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4823 <result> = xor i32 15, 40 ; yields i32:result = 39
4824 <result> = xor i32 4, 8 ; yields i32:result = 12
4825 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004826
4827Vector Operations
4828-----------------
4829
4830LLVM supports several instructions to represent vector operations in a
4831target-independent manner. These instructions cover the element-access
4832and vector-specific operations needed to process vectors effectively.
4833While LLVM does directly support these vector operations, many
4834sophisticated algorithms will want to use target-specific intrinsics to
4835take full advantage of a specific target.
4836
4837.. _i_extractelement:
4838
4839'``extractelement``' Instruction
4840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4841
4842Syntax:
4843"""""""
4844
4845::
4846
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004847 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004848
4849Overview:
4850"""""""""
4851
4852The '``extractelement``' instruction extracts a single scalar element
4853from a vector at a specified index.
4854
4855Arguments:
4856""""""""""
4857
4858The first operand of an '``extractelement``' instruction is a value of
4859:ref:`vector <t_vector>` type. The second operand is an index indicating
4860the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004861variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004862
4863Semantics:
4864""""""""""
4865
4866The result is a scalar of the same type as the element type of ``val``.
4867Its value is the value at position ``idx`` of ``val``. If ``idx``
4868exceeds the length of ``val``, the results are undefined.
4869
4870Example:
4871""""""""
4872
4873.. code-block:: llvm
4874
4875 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4876
4877.. _i_insertelement:
4878
4879'``insertelement``' Instruction
4880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4881
4882Syntax:
4883"""""""
4884
4885::
4886
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004887 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004888
4889Overview:
4890"""""""""
4891
4892The '``insertelement``' instruction inserts a scalar element into a
4893vector at a specified index.
4894
4895Arguments:
4896""""""""""
4897
4898The first operand of an '``insertelement``' instruction is a value of
4899:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4900type must equal the element type of the first operand. The third operand
4901is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004902index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004903
4904Semantics:
4905""""""""""
4906
4907The result is a vector of the same type as ``val``. Its element values
4908are those of ``val`` except at position ``idx``, where it gets the value
4909``elt``. If ``idx`` exceeds the length of ``val``, the results are
4910undefined.
4911
4912Example:
4913""""""""
4914
4915.. code-block:: llvm
4916
4917 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4918
4919.. _i_shufflevector:
4920
4921'``shufflevector``' Instruction
4922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4923
4924Syntax:
4925"""""""
4926
4927::
4928
4929 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4930
4931Overview:
4932"""""""""
4933
4934The '``shufflevector``' instruction constructs a permutation of elements
4935from two input vectors, returning a vector with the same element type as
4936the input and length that is the same as the shuffle mask.
4937
4938Arguments:
4939""""""""""
4940
4941The first two operands of a '``shufflevector``' instruction are vectors
4942with the same type. The third argument is a shuffle mask whose element
4943type is always 'i32'. The result of the instruction is a vector whose
4944length is the same as the shuffle mask and whose element type is the
4945same as the element type of the first two operands.
4946
4947The shuffle mask operand is required to be a constant vector with either
4948constant integer or undef values.
4949
4950Semantics:
4951""""""""""
4952
4953The elements of the two input vectors are numbered from left to right
4954across both of the vectors. The shuffle mask operand specifies, for each
4955element of the result vector, which element of the two input vectors the
4956result element gets. The element selector may be undef (meaning "don't
4957care") and the second operand may be undef if performing a shuffle from
4958only one vector.
4959
4960Example:
4961""""""""
4962
4963.. code-block:: llvm
4964
4965 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4966 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4967 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4968 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4969 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4970 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4971 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4972 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4973
4974Aggregate Operations
4975--------------------
4976
4977LLVM supports several instructions for working with
4978:ref:`aggregate <t_aggregate>` values.
4979
4980.. _i_extractvalue:
4981
4982'``extractvalue``' Instruction
4983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4984
4985Syntax:
4986"""""""
4987
4988::
4989
4990 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4991
4992Overview:
4993"""""""""
4994
4995The '``extractvalue``' instruction extracts the value of a member field
4996from an :ref:`aggregate <t_aggregate>` value.
4997
4998Arguments:
4999""""""""""
5000
5001The first operand of an '``extractvalue``' instruction is a value of
5002:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5003constant indices to specify which value to extract in a similar manner
5004as indices in a '``getelementptr``' instruction.
5005
5006The major differences to ``getelementptr`` indexing are:
5007
5008- Since the value being indexed is not a pointer, the first index is
5009 omitted and assumed to be zero.
5010- At least one index must be specified.
5011- Not only struct indices but also array indices must be in bounds.
5012
5013Semantics:
5014""""""""""
5015
5016The result is the value at the position in the aggregate specified by
5017the index operands.
5018
5019Example:
5020""""""""
5021
5022.. code-block:: llvm
5023
5024 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5025
5026.. _i_insertvalue:
5027
5028'``insertvalue``' Instruction
5029^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5030
5031Syntax:
5032"""""""
5033
5034::
5035
5036 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5037
5038Overview:
5039"""""""""
5040
5041The '``insertvalue``' instruction inserts a value into a member field in
5042an :ref:`aggregate <t_aggregate>` value.
5043
5044Arguments:
5045""""""""""
5046
5047The first operand of an '``insertvalue``' instruction is a value of
5048:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5049a first-class value to insert. The following operands are constant
5050indices indicating the position at which to insert the value in a
5051similar manner as indices in a '``extractvalue``' instruction. The value
5052to insert must have the same type as the value identified by the
5053indices.
5054
5055Semantics:
5056""""""""""
5057
5058The result is an aggregate of the same type as ``val``. Its value is
5059that of ``val`` except that the value at the position specified by the
5060indices is that of ``elt``.
5061
5062Example:
5063""""""""
5064
5065.. code-block:: llvm
5066
5067 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5068 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
5069 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
5070
5071.. _memoryops:
5072
5073Memory Access and Addressing Operations
5074---------------------------------------
5075
5076A key design point of an SSA-based representation is how it represents
5077memory. In LLVM, no memory locations are in SSA form, which makes things
5078very simple. This section describes how to read, write, and allocate
5079memory in LLVM.
5080
5081.. _i_alloca:
5082
5083'``alloca``' Instruction
5084^^^^^^^^^^^^^^^^^^^^^^^^
5085
5086Syntax:
5087"""""""
5088
5089::
5090
Tim Northover675a0962014-06-13 14:24:23 +00005091 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005092
5093Overview:
5094"""""""""
5095
5096The '``alloca``' instruction allocates memory on the stack frame of the
5097currently executing function, to be automatically released when this
5098function returns to its caller. The object is always allocated in the
5099generic address space (address space zero).
5100
5101Arguments:
5102""""""""""
5103
5104The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5105bytes of memory on the runtime stack, returning a pointer of the
5106appropriate type to the program. If "NumElements" is specified, it is
5107the number of elements allocated, otherwise "NumElements" is defaulted
5108to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005109allocation is guaranteed to be aligned to at least that boundary. The
5110alignment may not be greater than ``1 << 29``. If not specified, or if
5111zero, the target can choose to align the allocation on any convenient
5112boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005113
5114'``type``' may be any sized type.
5115
5116Semantics:
5117""""""""""
5118
5119Memory is allocated; a pointer is returned. The operation is undefined
5120if there is insufficient stack space for the allocation. '``alloca``'d
5121memory is automatically released when the function returns. The
5122'``alloca``' instruction is commonly used to represent automatic
5123variables that must have an address available. When the function returns
5124(either with the ``ret`` or ``resume`` instructions), the memory is
5125reclaimed. Allocating zero bytes is legal, but the result is undefined.
5126The order in which memory is allocated (ie., which way the stack grows)
5127is not specified.
5128
5129Example:
5130""""""""
5131
5132.. code-block:: llvm
5133
Tim Northover675a0962014-06-13 14:24:23 +00005134 %ptr = alloca i32 ; yields i32*:ptr
5135 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5136 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5137 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005138
5139.. _i_load:
5140
5141'``load``' Instruction
5142^^^^^^^^^^^^^^^^^^^^^^
5143
5144Syntax:
5145"""""""
5146
5147::
5148
5149 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
5150 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5151 !<index> = !{ i32 1 }
5152
5153Overview:
5154"""""""""
5155
5156The '``load``' instruction is used to read from memory.
5157
5158Arguments:
5159""""""""""
5160
Eli Bendersky239a78b2013-04-17 20:17:08 +00005161The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005162from which to load. The pointer must point to a :ref:`first
5163class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5164then the optimizer is not allowed to modify the number or order of
5165execution of this ``load`` with other :ref:`volatile
5166operations <volatile>`.
5167
5168If the ``load`` is marked as ``atomic``, it takes an extra
5169:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5170``release`` and ``acq_rel`` orderings are not valid on ``load``
5171instructions. Atomic loads produce :ref:`defined <memmodel>` results
5172when they may see multiple atomic stores. The type of the pointee must
5173be an integer type whose bit width is a power of two greater than or
5174equal to eight and less than or equal to a target-specific size limit.
5175``align`` must be explicitly specified on atomic loads, and the load has
5176undefined behavior if the alignment is not set to a value which is at
5177least the size in bytes of the pointee. ``!nontemporal`` does not have
5178any defined semantics for atomic loads.
5179
5180The optional constant ``align`` argument specifies the alignment of the
5181operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005182or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005183alignment for the target. It is the responsibility of the code emitter
5184to ensure that the alignment information is correct. Overestimating the
5185alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005186may produce less efficient code. An alignment of 1 is always safe. The
5187maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005188
5189The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005190metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005191``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005192metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005193that this load is not expected to be reused in the cache. The code
5194generator may select special instructions to save cache bandwidth, such
5195as the ``MOVNT`` instruction on x86.
5196
5197The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005198metadata name ``<index>`` corresponding to a metadata node with no
5199entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00005200instruction tells the optimizer and code generator that this load
5201address points to memory which does not change value during program
5202execution. The optimizer may then move this load around, for example, by
5203hoisting it out of loops using loop invariant code motion.
5204
5205Semantics:
5206""""""""""
5207
5208The location of memory pointed to is loaded. If the value being loaded
5209is of scalar type then the number of bytes read does not exceed the
5210minimum number of bytes needed to hold all bits of the type. For
5211example, loading an ``i24`` reads at most three bytes. When loading a
5212value of a type like ``i20`` with a size that is not an integral number
5213of bytes, the result is undefined if the value was not originally
5214written using a store of the same type.
5215
5216Examples:
5217"""""""""
5218
5219.. code-block:: llvm
5220
Tim Northover675a0962014-06-13 14:24:23 +00005221 %ptr = alloca i32 ; yields i32*:ptr
5222 store i32 3, i32* %ptr ; yields void
5223 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005224
5225.. _i_store:
5226
5227'``store``' Instruction
5228^^^^^^^^^^^^^^^^^^^^^^^
5229
5230Syntax:
5231"""""""
5232
5233::
5234
Tim Northover675a0962014-06-13 14:24:23 +00005235 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5236 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005237
5238Overview:
5239"""""""""
5240
5241The '``store``' instruction is used to write to memory.
5242
5243Arguments:
5244""""""""""
5245
Eli Benderskyca380842013-04-17 17:17:20 +00005246There are two arguments to the ``store`` instruction: a value to store
5247and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005248operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005249the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005250then the optimizer is not allowed to modify the number or order of
5251execution of this ``store`` with other :ref:`volatile
5252operations <volatile>`.
5253
5254If the ``store`` is marked as ``atomic``, it takes an extra
5255:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5256``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5257instructions. Atomic loads produce :ref:`defined <memmodel>` results
5258when they may see multiple atomic stores. The type of the pointee must
5259be an integer type whose bit width is a power of two greater than or
5260equal to eight and less than or equal to a target-specific size limit.
5261``align`` must be explicitly specified on atomic stores, and the store
5262has undefined behavior if the alignment is not set to a value which is
5263at least the size in bytes of the pointee. ``!nontemporal`` does not
5264have any defined semantics for atomic stores.
5265
Eli Benderskyca380842013-04-17 17:17:20 +00005266The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005267operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005268or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005269alignment for the target. It is the responsibility of the code emitter
5270to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005271alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005272alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005273safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005274
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005275The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005276name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005277value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005278tells the optimizer and code generator that this load is not expected to
5279be reused in the cache. The code generator may select special
5280instructions to save cache bandwidth, such as the MOVNT instruction on
5281x86.
5282
5283Semantics:
5284""""""""""
5285
Eli Benderskyca380842013-04-17 17:17:20 +00005286The contents of memory are updated to contain ``<value>`` at the
5287location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005288of scalar type then the number of bytes written does not exceed the
5289minimum number of bytes needed to hold all bits of the type. For
5290example, storing an ``i24`` writes at most three bytes. When writing a
5291value of a type like ``i20`` with a size that is not an integral number
5292of bytes, it is unspecified what happens to the extra bits that do not
5293belong to the type, but they will typically be overwritten.
5294
5295Example:
5296""""""""
5297
5298.. code-block:: llvm
5299
Tim Northover675a0962014-06-13 14:24:23 +00005300 %ptr = alloca i32 ; yields i32*:ptr
5301 store i32 3, i32* %ptr ; yields void
5302 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005303
5304.. _i_fence:
5305
5306'``fence``' Instruction
5307^^^^^^^^^^^^^^^^^^^^^^^
5308
5309Syntax:
5310"""""""
5311
5312::
5313
Tim Northover675a0962014-06-13 14:24:23 +00005314 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005315
5316Overview:
5317"""""""""
5318
5319The '``fence``' instruction is used to introduce happens-before edges
5320between operations.
5321
5322Arguments:
5323""""""""""
5324
5325'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5326defines what *synchronizes-with* edges they add. They can only be given
5327``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5328
5329Semantics:
5330""""""""""
5331
5332A fence A which has (at least) ``release`` ordering semantics
5333*synchronizes with* a fence B with (at least) ``acquire`` ordering
5334semantics if and only if there exist atomic operations X and Y, both
5335operating on some atomic object M, such that A is sequenced before X, X
5336modifies M (either directly or through some side effect of a sequence
5337headed by X), Y is sequenced before B, and Y observes M. This provides a
5338*happens-before* dependency between A and B. Rather than an explicit
5339``fence``, one (but not both) of the atomic operations X or Y might
5340provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5341still *synchronize-with* the explicit ``fence`` and establish the
5342*happens-before* edge.
5343
5344A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5345``acquire`` and ``release`` semantics specified above, participates in
5346the global program order of other ``seq_cst`` operations and/or fences.
5347
5348The optional ":ref:`singlethread <singlethread>`" argument specifies
5349that the fence only synchronizes with other fences in the same thread.
5350(This is useful for interacting with signal handlers.)
5351
5352Example:
5353""""""""
5354
5355.. code-block:: llvm
5356
Tim Northover675a0962014-06-13 14:24:23 +00005357 fence acquire ; yields void
5358 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005359
5360.. _i_cmpxchg:
5361
5362'``cmpxchg``' Instruction
5363^^^^^^^^^^^^^^^^^^^^^^^^^
5364
5365Syntax:
5366"""""""
5367
5368::
5369
Tim Northover675a0962014-06-13 14:24:23 +00005370 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005371
5372Overview:
5373"""""""""
5374
5375The '``cmpxchg``' instruction is used to atomically modify memory. It
5376loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005377equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005378
5379Arguments:
5380""""""""""
5381
5382There are three arguments to the '``cmpxchg``' instruction: an address
5383to operate on, a value to compare to the value currently be at that
5384address, and a new value to place at that address if the compared values
5385are equal. The type of '<cmp>' must be an integer type whose bit width
5386is a power of two greater than or equal to eight and less than or equal
5387to a target-specific size limit. '<cmp>' and '<new>' must have the same
5388type, and the type of '<pointer>' must be a pointer to that type. If the
5389``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5390to modify the number or order of execution of this ``cmpxchg`` with
5391other :ref:`volatile operations <volatile>`.
5392
Tim Northovere94a5182014-03-11 10:48:52 +00005393The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005394``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5395must be at least ``monotonic``, the ordering constraint on failure must be no
5396stronger than that on success, and the failure ordering cannot be either
5397``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005398
5399The optional "``singlethread``" argument declares that the ``cmpxchg``
5400is only atomic with respect to code (usually signal handlers) running in
5401the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5402respect to all other code in the system.
5403
5404The pointer passed into cmpxchg must have alignment greater than or
5405equal to the size in memory of the operand.
5406
5407Semantics:
5408""""""""""
5409
Tim Northover420a2162014-06-13 14:24:07 +00005410The contents of memory at the location specified by the '``<pointer>``' operand
5411is read and compared to '``<cmp>``'; if the read value is the equal, the
5412'``<new>``' is written. The original value at the location is returned, together
5413with a flag indicating success (true) or failure (false).
5414
5415If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5416permitted: the operation may not write ``<new>`` even if the comparison
5417matched.
5418
5419If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5420if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005421
Tim Northovere94a5182014-03-11 10:48:52 +00005422A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5423identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5424load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005425
5426Example:
5427""""""""
5428
5429.. code-block:: llvm
5430
5431 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005432 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005433 br label %loop
5434
5435 loop:
5436 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5437 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005438 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005439 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5440 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005441 br i1 %success, label %done, label %loop
5442
5443 done:
5444 ...
5445
5446.. _i_atomicrmw:
5447
5448'``atomicrmw``' Instruction
5449^^^^^^^^^^^^^^^^^^^^^^^^^^^
5450
5451Syntax:
5452"""""""
5453
5454::
5455
Tim Northover675a0962014-06-13 14:24:23 +00005456 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005457
5458Overview:
5459"""""""""
5460
5461The '``atomicrmw``' instruction is used to atomically modify memory.
5462
5463Arguments:
5464""""""""""
5465
5466There are three arguments to the '``atomicrmw``' instruction: an
5467operation to apply, an address whose value to modify, an argument to the
5468operation. The operation must be one of the following keywords:
5469
5470- xchg
5471- add
5472- sub
5473- and
5474- nand
5475- or
5476- xor
5477- max
5478- min
5479- umax
5480- umin
5481
5482The type of '<value>' must be an integer type whose bit width is a power
5483of two greater than or equal to eight and less than or equal to a
5484target-specific size limit. The type of the '``<pointer>``' operand must
5485be a pointer to that type. If the ``atomicrmw`` is marked as
5486``volatile``, then the optimizer is not allowed to modify the number or
5487order of execution of this ``atomicrmw`` with other :ref:`volatile
5488operations <volatile>`.
5489
5490Semantics:
5491""""""""""
5492
5493The contents of memory at the location specified by the '``<pointer>``'
5494operand are atomically read, modified, and written back. The original
5495value at the location is returned. The modification is specified by the
5496operation argument:
5497
5498- xchg: ``*ptr = val``
5499- add: ``*ptr = *ptr + val``
5500- sub: ``*ptr = *ptr - val``
5501- and: ``*ptr = *ptr & val``
5502- nand: ``*ptr = ~(*ptr & val)``
5503- or: ``*ptr = *ptr | val``
5504- xor: ``*ptr = *ptr ^ val``
5505- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5506- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5507- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5508 comparison)
5509- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5510 comparison)
5511
5512Example:
5513""""""""
5514
5515.. code-block:: llvm
5516
Tim Northover675a0962014-06-13 14:24:23 +00005517 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005518
5519.. _i_getelementptr:
5520
5521'``getelementptr``' Instruction
5522^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5523
5524Syntax:
5525"""""""
5526
5527::
5528
5529 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5530 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5531 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5532
5533Overview:
5534"""""""""
5535
5536The '``getelementptr``' instruction is used to get the address of a
5537subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5538address calculation only and does not access memory.
5539
5540Arguments:
5541""""""""""
5542
5543The first argument is always a pointer or a vector of pointers, and
5544forms the basis of the calculation. The remaining arguments are indices
5545that indicate which of the elements of the aggregate object are indexed.
5546The interpretation of each index is dependent on the type being indexed
5547into. The first index always indexes the pointer value given as the
5548first argument, the second index indexes a value of the type pointed to
5549(not necessarily the value directly pointed to, since the first index
5550can be non-zero), etc. The first type indexed into must be a pointer
5551value, subsequent types can be arrays, vectors, and structs. Note that
5552subsequent types being indexed into can never be pointers, since that
5553would require loading the pointer before continuing calculation.
5554
5555The type of each index argument depends on the type it is indexing into.
5556When indexing into a (optionally packed) structure, only ``i32`` integer
5557**constants** are allowed (when using a vector of indices they must all
5558be the **same** ``i32`` integer constant). When indexing into an array,
5559pointer or vector, integers of any width are allowed, and they are not
5560required to be constant. These integers are treated as signed values
5561where relevant.
5562
5563For example, let's consider a C code fragment and how it gets compiled
5564to LLVM:
5565
5566.. code-block:: c
5567
5568 struct RT {
5569 char A;
5570 int B[10][20];
5571 char C;
5572 };
5573 struct ST {
5574 int X;
5575 double Y;
5576 struct RT Z;
5577 };
5578
5579 int *foo(struct ST *s) {
5580 return &s[1].Z.B[5][13];
5581 }
5582
5583The LLVM code generated by Clang is:
5584
5585.. code-block:: llvm
5586
5587 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5588 %struct.ST = type { i32, double, %struct.RT }
5589
5590 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5591 entry:
5592 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5593 ret i32* %arrayidx
5594 }
5595
5596Semantics:
5597""""""""""
5598
5599In the example above, the first index is indexing into the
5600'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5601= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5602indexes into the third element of the structure, yielding a
5603'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5604structure. The third index indexes into the second element of the
5605structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5606dimensions of the array are subscripted into, yielding an '``i32``'
5607type. The '``getelementptr``' instruction returns a pointer to this
5608element, thus computing a value of '``i32*``' type.
5609
5610Note that it is perfectly legal to index partially through a structure,
5611returning a pointer to an inner element. Because of this, the LLVM code
5612for the given testcase is equivalent to:
5613
5614.. code-block:: llvm
5615
5616 define i32* @foo(%struct.ST* %s) {
5617 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5618 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5619 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5620 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5621 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5622 ret i32* %t5
5623 }
5624
5625If the ``inbounds`` keyword is present, the result value of the
5626``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5627pointer is not an *in bounds* address of an allocated object, or if any
5628of the addresses that would be formed by successive addition of the
5629offsets implied by the indices to the base address with infinitely
5630precise signed arithmetic are not an *in bounds* address of that
5631allocated object. The *in bounds* addresses for an allocated object are
5632all the addresses that point into the object, plus the address one byte
5633past the end. In cases where the base is a vector of pointers the
5634``inbounds`` keyword applies to each of the computations element-wise.
5635
5636If the ``inbounds`` keyword is not present, the offsets are added to the
5637base address with silently-wrapping two's complement arithmetic. If the
5638offsets have a different width from the pointer, they are sign-extended
5639or truncated to the width of the pointer. The result value of the
5640``getelementptr`` may be outside the object pointed to by the base
5641pointer. The result value may not necessarily be used to access memory
5642though, even if it happens to point into allocated storage. See the
5643:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5644information.
5645
5646The getelementptr instruction is often confusing. For some more insight
5647into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5648
5649Example:
5650""""""""
5651
5652.. code-block:: llvm
5653
5654 ; yields [12 x i8]*:aptr
5655 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5656 ; yields i8*:vptr
5657 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5658 ; yields i8*:eptr
5659 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5660 ; yields i32*:iptr
5661 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5662
5663In cases where the pointer argument is a vector of pointers, each index
5664must be a vector with the same number of elements. For example:
5665
5666.. code-block:: llvm
5667
5668 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5669
5670Conversion Operations
5671---------------------
5672
5673The instructions in this category are the conversion instructions
5674(casting) which all take a single operand and a type. They perform
5675various bit conversions on the operand.
5676
5677'``trunc .. to``' Instruction
5678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5679
5680Syntax:
5681"""""""
5682
5683::
5684
5685 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5686
5687Overview:
5688"""""""""
5689
5690The '``trunc``' instruction truncates its operand to the type ``ty2``.
5691
5692Arguments:
5693""""""""""
5694
5695The '``trunc``' instruction takes a value to trunc, and a type to trunc
5696it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5697of the same number of integers. The bit size of the ``value`` must be
5698larger than the bit size of the destination type, ``ty2``. Equal sized
5699types are not allowed.
5700
5701Semantics:
5702""""""""""
5703
5704The '``trunc``' instruction truncates the high order bits in ``value``
5705and converts the remaining bits to ``ty2``. Since the source size must
5706be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5707It will always truncate bits.
5708
5709Example:
5710""""""""
5711
5712.. code-block:: llvm
5713
5714 %X = trunc i32 257 to i8 ; yields i8:1
5715 %Y = trunc i32 123 to i1 ; yields i1:true
5716 %Z = trunc i32 122 to i1 ; yields i1:false
5717 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5718
5719'``zext .. to``' Instruction
5720^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5721
5722Syntax:
5723"""""""
5724
5725::
5726
5727 <result> = zext <ty> <value> to <ty2> ; yields ty2
5728
5729Overview:
5730"""""""""
5731
5732The '``zext``' instruction zero extends its operand to type ``ty2``.
5733
5734Arguments:
5735""""""""""
5736
5737The '``zext``' instruction takes a value to cast, and a type to cast it
5738to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5739the same number of integers. The bit size of the ``value`` must be
5740smaller than the bit size of the destination type, ``ty2``.
5741
5742Semantics:
5743""""""""""
5744
5745The ``zext`` fills the high order bits of the ``value`` with zero bits
5746until it reaches the size of the destination type, ``ty2``.
5747
5748When zero extending from i1, the result will always be either 0 or 1.
5749
5750Example:
5751""""""""
5752
5753.. code-block:: llvm
5754
5755 %X = zext i32 257 to i64 ; yields i64:257
5756 %Y = zext i1 true to i32 ; yields i32:1
5757 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5758
5759'``sext .. to``' Instruction
5760^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5761
5762Syntax:
5763"""""""
5764
5765::
5766
5767 <result> = sext <ty> <value> to <ty2> ; yields ty2
5768
5769Overview:
5770"""""""""
5771
5772The '``sext``' sign extends ``value`` to the type ``ty2``.
5773
5774Arguments:
5775""""""""""
5776
5777The '``sext``' instruction takes a value to cast, and a type to cast it
5778to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5779the same number of integers. The bit size of the ``value`` must be
5780smaller than the bit size of the destination type, ``ty2``.
5781
5782Semantics:
5783""""""""""
5784
5785The '``sext``' instruction performs a sign extension by copying the sign
5786bit (highest order bit) of the ``value`` until it reaches the bit size
5787of the type ``ty2``.
5788
5789When sign extending from i1, the extension always results in -1 or 0.
5790
5791Example:
5792""""""""
5793
5794.. code-block:: llvm
5795
5796 %X = sext i8 -1 to i16 ; yields i16 :65535
5797 %Y = sext i1 true to i32 ; yields i32:-1
5798 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5799
5800'``fptrunc .. to``' Instruction
5801^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5802
5803Syntax:
5804"""""""
5805
5806::
5807
5808 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5809
5810Overview:
5811"""""""""
5812
5813The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5814
5815Arguments:
5816""""""""""
5817
5818The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5819value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5820The size of ``value`` must be larger than the size of ``ty2``. This
5821implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5822
5823Semantics:
5824""""""""""
5825
5826The '``fptrunc``' instruction truncates a ``value`` from a larger
5827:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5828point <t_floating>` type. If the value cannot fit within the
5829destination type, ``ty2``, then the results are undefined.
5830
5831Example:
5832""""""""
5833
5834.. code-block:: llvm
5835
5836 %X = fptrunc double 123.0 to float ; yields float:123.0
5837 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5838
5839'``fpext .. to``' Instruction
5840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5841
5842Syntax:
5843"""""""
5844
5845::
5846
5847 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5848
5849Overview:
5850"""""""""
5851
5852The '``fpext``' extends a floating point ``value`` to a larger floating
5853point value.
5854
5855Arguments:
5856""""""""""
5857
5858The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5859``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5860to. The source type must be smaller than the destination type.
5861
5862Semantics:
5863""""""""""
5864
5865The '``fpext``' instruction extends the ``value`` from a smaller
5866:ref:`floating point <t_floating>` type to a larger :ref:`floating
5867point <t_floating>` type. The ``fpext`` cannot be used to make a
5868*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5869*no-op cast* for a floating point cast.
5870
5871Example:
5872""""""""
5873
5874.. code-block:: llvm
5875
5876 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5877 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5878
5879'``fptoui .. to``' Instruction
5880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5881
5882Syntax:
5883"""""""
5884
5885::
5886
5887 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5888
5889Overview:
5890"""""""""
5891
5892The '``fptoui``' converts a floating point ``value`` to its unsigned
5893integer equivalent of type ``ty2``.
5894
5895Arguments:
5896""""""""""
5897
5898The '``fptoui``' instruction takes a value to cast, which must be a
5899scalar or vector :ref:`floating point <t_floating>` value, and a type to
5900cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5901``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5902type with the same number of elements as ``ty``
5903
5904Semantics:
5905""""""""""
5906
5907The '``fptoui``' instruction converts its :ref:`floating
5908point <t_floating>` operand into the nearest (rounding towards zero)
5909unsigned integer value. If the value cannot fit in ``ty2``, the results
5910are undefined.
5911
5912Example:
5913""""""""
5914
5915.. code-block:: llvm
5916
5917 %X = fptoui double 123.0 to i32 ; yields i32:123
5918 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5919 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5920
5921'``fptosi .. to``' Instruction
5922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5923
5924Syntax:
5925"""""""
5926
5927::
5928
5929 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5930
5931Overview:
5932"""""""""
5933
5934The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5935``value`` to type ``ty2``.
5936
5937Arguments:
5938""""""""""
5939
5940The '``fptosi``' instruction takes a value to cast, which must be a
5941scalar or vector :ref:`floating point <t_floating>` value, and a type to
5942cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5943``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5944type with the same number of elements as ``ty``
5945
5946Semantics:
5947""""""""""
5948
5949The '``fptosi``' instruction converts its :ref:`floating
5950point <t_floating>` operand into the nearest (rounding towards zero)
5951signed integer value. If the value cannot fit in ``ty2``, the results
5952are undefined.
5953
5954Example:
5955""""""""
5956
5957.. code-block:: llvm
5958
5959 %X = fptosi double -123.0 to i32 ; yields i32:-123
5960 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5961 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5962
5963'``uitofp .. to``' Instruction
5964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5965
5966Syntax:
5967"""""""
5968
5969::
5970
5971 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5972
5973Overview:
5974"""""""""
5975
5976The '``uitofp``' instruction regards ``value`` as an unsigned integer
5977and converts that value to the ``ty2`` type.
5978
5979Arguments:
5980""""""""""
5981
5982The '``uitofp``' instruction takes a value to cast, which must be a
5983scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5984``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5985``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5986type with the same number of elements as ``ty``
5987
5988Semantics:
5989""""""""""
5990
5991The '``uitofp``' instruction interprets its operand as an unsigned
5992integer quantity and converts it to the corresponding floating point
5993value. If the value cannot fit in the floating point value, the results
5994are undefined.
5995
5996Example:
5997""""""""
5998
5999.. code-block:: llvm
6000
6001 %X = uitofp i32 257 to float ; yields float:257.0
6002 %Y = uitofp i8 -1 to double ; yields double:255.0
6003
6004'``sitofp .. to``' Instruction
6005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6006
6007Syntax:
6008"""""""
6009
6010::
6011
6012 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6013
6014Overview:
6015"""""""""
6016
6017The '``sitofp``' instruction regards ``value`` as a signed integer and
6018converts that value to the ``ty2`` type.
6019
6020Arguments:
6021""""""""""
6022
6023The '``sitofp``' instruction takes a value to cast, which must be a
6024scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6025``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6026``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6027type with the same number of elements as ``ty``
6028
6029Semantics:
6030""""""""""
6031
6032The '``sitofp``' instruction interprets its operand as a signed integer
6033quantity and converts it to the corresponding floating point value. If
6034the value cannot fit in the floating point value, the results are
6035undefined.
6036
6037Example:
6038""""""""
6039
6040.. code-block:: llvm
6041
6042 %X = sitofp i32 257 to float ; yields float:257.0
6043 %Y = sitofp i8 -1 to double ; yields double:-1.0
6044
6045.. _i_ptrtoint:
6046
6047'``ptrtoint .. to``' Instruction
6048^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6049
6050Syntax:
6051"""""""
6052
6053::
6054
6055 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6056
6057Overview:
6058"""""""""
6059
6060The '``ptrtoint``' instruction converts the pointer or a vector of
6061pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6062
6063Arguments:
6064""""""""""
6065
6066The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6067a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6068type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6069a vector of integers type.
6070
6071Semantics:
6072""""""""""
6073
6074The '``ptrtoint``' instruction converts ``value`` to integer type
6075``ty2`` by interpreting the pointer value as an integer and either
6076truncating or zero extending that value to the size of the integer type.
6077If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6078``value`` is larger than ``ty2`` then a truncation is done. If they are
6079the same size, then nothing is done (*no-op cast*) other than a type
6080change.
6081
6082Example:
6083""""""""
6084
6085.. code-block:: llvm
6086
6087 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6088 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6089 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6090
6091.. _i_inttoptr:
6092
6093'``inttoptr .. to``' Instruction
6094^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6095
6096Syntax:
6097"""""""
6098
6099::
6100
6101 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6102
6103Overview:
6104"""""""""
6105
6106The '``inttoptr``' instruction converts an integer ``value`` to a
6107pointer type, ``ty2``.
6108
6109Arguments:
6110""""""""""
6111
6112The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6113cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6114type.
6115
6116Semantics:
6117""""""""""
6118
6119The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6120applying either a zero extension or a truncation depending on the size
6121of the integer ``value``. If ``value`` is larger than the size of a
6122pointer then a truncation is done. If ``value`` is smaller than the size
6123of a pointer then a zero extension is done. If they are the same size,
6124nothing is done (*no-op cast*).
6125
6126Example:
6127""""""""
6128
6129.. code-block:: llvm
6130
6131 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6132 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6133 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6134 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6135
6136.. _i_bitcast:
6137
6138'``bitcast .. to``' Instruction
6139^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6140
6141Syntax:
6142"""""""
6143
6144::
6145
6146 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6147
6148Overview:
6149"""""""""
6150
6151The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6152changing any bits.
6153
6154Arguments:
6155""""""""""
6156
6157The '``bitcast``' instruction takes a value to cast, which must be a
6158non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006159also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6160bit sizes of ``value`` and the destination type, ``ty2``, must be
6161identical. If the source type is a pointer, the destination type must
6162also be a pointer of the same size. This instruction supports bitwise
6163conversion of vectors to integers and to vectors of other types (as
6164long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006165
6166Semantics:
6167""""""""""
6168
Matt Arsenault24b49c42013-07-31 17:49:08 +00006169The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6170is always a *no-op cast* because no bits change with this
6171conversion. The conversion is done as if the ``value`` had been stored
6172to memory and read back as type ``ty2``. Pointer (or vector of
6173pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006174pointers) types with the same address space through this instruction.
6175To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6176or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006177
6178Example:
6179""""""""
6180
6181.. code-block:: llvm
6182
6183 %X = bitcast i8 255 to i8 ; yields i8 :-1
6184 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6185 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6186 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6187
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006188.. _i_addrspacecast:
6189
6190'``addrspacecast .. to``' Instruction
6191^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6192
6193Syntax:
6194"""""""
6195
6196::
6197
6198 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6199
6200Overview:
6201"""""""""
6202
6203The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6204address space ``n`` to type ``pty2`` in address space ``m``.
6205
6206Arguments:
6207""""""""""
6208
6209The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6210to cast and a pointer type to cast it to, which must have a different
6211address space.
6212
6213Semantics:
6214""""""""""
6215
6216The '``addrspacecast``' instruction converts the pointer value
6217``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006218value modification, depending on the target and the address space
6219pair. Pointer conversions within the same address space must be
6220performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006221conversion is legal then both result and operand refer to the same memory
6222location.
6223
6224Example:
6225""""""""
6226
6227.. code-block:: llvm
6228
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006229 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6230 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6231 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006232
Sean Silvab084af42012-12-07 10:36:55 +00006233.. _otherops:
6234
6235Other Operations
6236----------------
6237
6238The instructions in this category are the "miscellaneous" instructions,
6239which defy better classification.
6240
6241.. _i_icmp:
6242
6243'``icmp``' Instruction
6244^^^^^^^^^^^^^^^^^^^^^^
6245
6246Syntax:
6247"""""""
6248
6249::
6250
Tim Northover675a0962014-06-13 14:24:23 +00006251 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006252
6253Overview:
6254"""""""""
6255
6256The '``icmp``' instruction returns a boolean value or a vector of
6257boolean values based on comparison of its two integer, integer vector,
6258pointer, or pointer vector operands.
6259
6260Arguments:
6261""""""""""
6262
6263The '``icmp``' instruction takes three operands. The first operand is
6264the condition code indicating the kind of comparison to perform. It is
6265not a value, just a keyword. The possible condition code are:
6266
6267#. ``eq``: equal
6268#. ``ne``: not equal
6269#. ``ugt``: unsigned greater than
6270#. ``uge``: unsigned greater or equal
6271#. ``ult``: unsigned less than
6272#. ``ule``: unsigned less or equal
6273#. ``sgt``: signed greater than
6274#. ``sge``: signed greater or equal
6275#. ``slt``: signed less than
6276#. ``sle``: signed less or equal
6277
6278The remaining two arguments must be :ref:`integer <t_integer>` or
6279:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6280must also be identical types.
6281
6282Semantics:
6283""""""""""
6284
6285The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6286code given as ``cond``. The comparison performed always yields either an
6287:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6288
6289#. ``eq``: yields ``true`` if the operands are equal, ``false``
6290 otherwise. No sign interpretation is necessary or performed.
6291#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6292 otherwise. No sign interpretation is necessary or performed.
6293#. ``ugt``: interprets the operands as unsigned values and yields
6294 ``true`` if ``op1`` is greater than ``op2``.
6295#. ``uge``: interprets the operands as unsigned values and yields
6296 ``true`` if ``op1`` is greater than or equal to ``op2``.
6297#. ``ult``: interprets the operands as unsigned values and yields
6298 ``true`` if ``op1`` is less than ``op2``.
6299#. ``ule``: interprets the operands as unsigned values and yields
6300 ``true`` if ``op1`` is less than or equal to ``op2``.
6301#. ``sgt``: interprets the operands as signed values and yields ``true``
6302 if ``op1`` is greater than ``op2``.
6303#. ``sge``: interprets the operands as signed values and yields ``true``
6304 if ``op1`` is greater than or equal to ``op2``.
6305#. ``slt``: interprets the operands as signed values and yields ``true``
6306 if ``op1`` is less than ``op2``.
6307#. ``sle``: interprets the operands as signed values and yields ``true``
6308 if ``op1`` is less than or equal to ``op2``.
6309
6310If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6311are compared as if they were integers.
6312
6313If the operands are integer vectors, then they are compared element by
6314element. The result is an ``i1`` vector with the same number of elements
6315as the values being compared. Otherwise, the result is an ``i1``.
6316
6317Example:
6318""""""""
6319
6320.. code-block:: llvm
6321
6322 <result> = icmp eq i32 4, 5 ; yields: result=false
6323 <result> = icmp ne float* %X, %X ; yields: result=false
6324 <result> = icmp ult i16 4, 5 ; yields: result=true
6325 <result> = icmp sgt i16 4, 5 ; yields: result=false
6326 <result> = icmp ule i16 -4, 5 ; yields: result=false
6327 <result> = icmp sge i16 4, 5 ; yields: result=false
6328
6329Note that the code generator does not yet support vector types with the
6330``icmp`` instruction.
6331
6332.. _i_fcmp:
6333
6334'``fcmp``' Instruction
6335^^^^^^^^^^^^^^^^^^^^^^
6336
6337Syntax:
6338"""""""
6339
6340::
6341
Tim Northover675a0962014-06-13 14:24:23 +00006342 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006343
6344Overview:
6345"""""""""
6346
6347The '``fcmp``' instruction returns a boolean value or vector of boolean
6348values based on comparison of its operands.
6349
6350If the operands are floating point scalars, then the result type is a
6351boolean (:ref:`i1 <t_integer>`).
6352
6353If the operands are floating point vectors, then the result type is a
6354vector of boolean with the same number of elements as the operands being
6355compared.
6356
6357Arguments:
6358""""""""""
6359
6360The '``fcmp``' instruction takes three operands. The first operand is
6361the condition code indicating the kind of comparison to perform. It is
6362not a value, just a keyword. The possible condition code are:
6363
6364#. ``false``: no comparison, always returns false
6365#. ``oeq``: ordered and equal
6366#. ``ogt``: ordered and greater than
6367#. ``oge``: ordered and greater than or equal
6368#. ``olt``: ordered and less than
6369#. ``ole``: ordered and less than or equal
6370#. ``one``: ordered and not equal
6371#. ``ord``: ordered (no nans)
6372#. ``ueq``: unordered or equal
6373#. ``ugt``: unordered or greater than
6374#. ``uge``: unordered or greater than or equal
6375#. ``ult``: unordered or less than
6376#. ``ule``: unordered or less than or equal
6377#. ``une``: unordered or not equal
6378#. ``uno``: unordered (either nans)
6379#. ``true``: no comparison, always returns true
6380
6381*Ordered* means that neither operand is a QNAN while *unordered* means
6382that either operand may be a QNAN.
6383
6384Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6385point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6386type. They must have identical types.
6387
6388Semantics:
6389""""""""""
6390
6391The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6392condition code given as ``cond``. If the operands are vectors, then the
6393vectors are compared element by element. Each comparison performed
6394always yields an :ref:`i1 <t_integer>` result, as follows:
6395
6396#. ``false``: always yields ``false``, regardless of operands.
6397#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6398 is equal to ``op2``.
6399#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6400 is greater than ``op2``.
6401#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6402 is greater than or equal to ``op2``.
6403#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6404 is less than ``op2``.
6405#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6406 is less than or equal to ``op2``.
6407#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6408 is not equal to ``op2``.
6409#. ``ord``: yields ``true`` if both operands are not a QNAN.
6410#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6411 equal to ``op2``.
6412#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6413 greater than ``op2``.
6414#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6415 greater than or equal to ``op2``.
6416#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6417 less than ``op2``.
6418#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6419 less than or equal to ``op2``.
6420#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6421 not equal to ``op2``.
6422#. ``uno``: yields ``true`` if either operand is a QNAN.
6423#. ``true``: always yields ``true``, regardless of operands.
6424
6425Example:
6426""""""""
6427
6428.. code-block:: llvm
6429
6430 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6431 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6432 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6433 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6434
6435Note that the code generator does not yet support vector types with the
6436``fcmp`` instruction.
6437
6438.. _i_phi:
6439
6440'``phi``' Instruction
6441^^^^^^^^^^^^^^^^^^^^^
6442
6443Syntax:
6444"""""""
6445
6446::
6447
6448 <result> = phi <ty> [ <val0>, <label0>], ...
6449
6450Overview:
6451"""""""""
6452
6453The '``phi``' instruction is used to implement the φ node in the SSA
6454graph representing the function.
6455
6456Arguments:
6457""""""""""
6458
6459The type of the incoming values is specified with the first type field.
6460After this, the '``phi``' instruction takes a list of pairs as
6461arguments, with one pair for each predecessor basic block of the current
6462block. Only values of :ref:`first class <t_firstclass>` type may be used as
6463the value arguments to the PHI node. Only labels may be used as the
6464label arguments.
6465
6466There must be no non-phi instructions between the start of a basic block
6467and the PHI instructions: i.e. PHI instructions must be first in a basic
6468block.
6469
6470For the purposes of the SSA form, the use of each incoming value is
6471deemed to occur on the edge from the corresponding predecessor block to
6472the current block (but after any definition of an '``invoke``'
6473instruction's return value on the same edge).
6474
6475Semantics:
6476""""""""""
6477
6478At runtime, the '``phi``' instruction logically takes on the value
6479specified by the pair corresponding to the predecessor basic block that
6480executed just prior to the current block.
6481
6482Example:
6483""""""""
6484
6485.. code-block:: llvm
6486
6487 Loop: ; Infinite loop that counts from 0 on up...
6488 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6489 %nextindvar = add i32 %indvar, 1
6490 br label %Loop
6491
6492.. _i_select:
6493
6494'``select``' Instruction
6495^^^^^^^^^^^^^^^^^^^^^^^^
6496
6497Syntax:
6498"""""""
6499
6500::
6501
6502 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6503
6504 selty is either i1 or {<N x i1>}
6505
6506Overview:
6507"""""""""
6508
6509The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006510condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006511
6512Arguments:
6513""""""""""
6514
6515The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6516values indicating the condition, and two values of the same :ref:`first
6517class <t_firstclass>` type. If the val1/val2 are vectors and the
6518condition is a scalar, then entire vectors are selected, not individual
6519elements.
6520
6521Semantics:
6522""""""""""
6523
6524If the condition is an i1 and it evaluates to 1, the instruction returns
6525the first value argument; otherwise, it returns the second value
6526argument.
6527
6528If the condition is a vector of i1, then the value arguments must be
6529vectors of the same size, and the selection is done element by element.
6530
6531Example:
6532""""""""
6533
6534.. code-block:: llvm
6535
6536 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6537
6538.. _i_call:
6539
6540'``call``' Instruction
6541^^^^^^^^^^^^^^^^^^^^^^
6542
6543Syntax:
6544"""""""
6545
6546::
6547
Reid Kleckner5772b772014-04-24 20:14:34 +00006548 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006549
6550Overview:
6551"""""""""
6552
6553The '``call``' instruction represents a simple function call.
6554
6555Arguments:
6556""""""""""
6557
6558This instruction requires several arguments:
6559
Reid Kleckner5772b772014-04-24 20:14:34 +00006560#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6561 should perform tail call optimization. The ``tail`` marker is a hint that
6562 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6563 means that the call must be tail call optimized in order for the program to
6564 be correct. The ``musttail`` marker provides these guarantees:
6565
6566 #. The call will not cause unbounded stack growth if it is part of a
6567 recursive cycle in the call graph.
6568 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6569 forwarded in place.
6570
6571 Both markers imply that the callee does not access allocas or varargs from
6572 the caller. Calls marked ``musttail`` must obey the following additional
6573 rules:
6574
6575 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6576 or a pointer bitcast followed by a ret instruction.
6577 - The ret instruction must return the (possibly bitcasted) value
6578 produced by the call or void.
6579 - The caller and callee prototypes must match. Pointer types of
6580 parameters or return types may differ in pointee type, but not
6581 in address space.
6582 - The calling conventions of the caller and callee must match.
6583 - All ABI-impacting function attributes, such as sret, byval, inreg,
6584 returned, and inalloca, must match.
6585
6586 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6587 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006588
6589 - Caller and callee both have the calling convention ``fastcc``.
6590 - The call is in tail position (ret immediately follows call and ret
6591 uses value of call or is void).
6592 - Option ``-tailcallopt`` is enabled, or
6593 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006594 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006595 met. <CodeGenerator.html#tailcallopt>`_
6596
6597#. The optional "cconv" marker indicates which :ref:`calling
6598 convention <callingconv>` the call should use. If none is
6599 specified, the call defaults to using C calling conventions. The
6600 calling convention of the call must match the calling convention of
6601 the target function, or else the behavior is undefined.
6602#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6603 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6604 are valid here.
6605#. '``ty``': the type of the call instruction itself which is also the
6606 type of the return value. Functions that return no value are marked
6607 ``void``.
6608#. '``fnty``': shall be the signature of the pointer to function value
6609 being invoked. The argument types must match the types implied by
6610 this signature. This type can be omitted if the function is not
6611 varargs and if the function type does not return a pointer to a
6612 function.
6613#. '``fnptrval``': An LLVM value containing a pointer to a function to
6614 be invoked. In most cases, this is a direct function invocation, but
6615 indirect ``call``'s are just as possible, calling an arbitrary pointer
6616 to function value.
6617#. '``function args``': argument list whose types match the function
6618 signature argument types and parameter attributes. All arguments must
6619 be of :ref:`first class <t_firstclass>` type. If the function signature
6620 indicates the function accepts a variable number of arguments, the
6621 extra arguments can be specified.
6622#. The optional :ref:`function attributes <fnattrs>` list. Only
6623 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6624 attributes are valid here.
6625
6626Semantics:
6627""""""""""
6628
6629The '``call``' instruction is used to cause control flow to transfer to
6630a specified function, with its incoming arguments bound to the specified
6631values. Upon a '``ret``' instruction in the called function, control
6632flow continues with the instruction after the function call, and the
6633return value of the function is bound to the result argument.
6634
6635Example:
6636""""""""
6637
6638.. code-block:: llvm
6639
6640 %retval = call i32 @test(i32 %argc)
6641 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6642 %X = tail call i32 @foo() ; yields i32
6643 %Y = tail call fastcc i32 @foo() ; yields i32
6644 call void %foo(i8 97 signext)
6645
6646 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006647 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006648 %gr = extractvalue %struct.A %r, 0 ; yields i32
6649 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6650 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6651 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6652
6653llvm treats calls to some functions with names and arguments that match
6654the standard C99 library as being the C99 library functions, and may
6655perform optimizations or generate code for them under that assumption.
6656This is something we'd like to change in the future to provide better
6657support for freestanding environments and non-C-based languages.
6658
6659.. _i_va_arg:
6660
6661'``va_arg``' Instruction
6662^^^^^^^^^^^^^^^^^^^^^^^^
6663
6664Syntax:
6665"""""""
6666
6667::
6668
6669 <resultval> = va_arg <va_list*> <arglist>, <argty>
6670
6671Overview:
6672"""""""""
6673
6674The '``va_arg``' instruction is used to access arguments passed through
6675the "variable argument" area of a function call. It is used to implement
6676the ``va_arg`` macro in C.
6677
6678Arguments:
6679""""""""""
6680
6681This instruction takes a ``va_list*`` value and the type of the
6682argument. It returns a value of the specified argument type and
6683increments the ``va_list`` to point to the next argument. The actual
6684type of ``va_list`` is target specific.
6685
6686Semantics:
6687""""""""""
6688
6689The '``va_arg``' instruction loads an argument of the specified type
6690from the specified ``va_list`` and causes the ``va_list`` to point to
6691the next argument. For more information, see the variable argument
6692handling :ref:`Intrinsic Functions <int_varargs>`.
6693
6694It is legal for this instruction to be called in a function which does
6695not take a variable number of arguments, for example, the ``vfprintf``
6696function.
6697
6698``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6699function <intrinsics>` because it takes a type as an argument.
6700
6701Example:
6702""""""""
6703
6704See the :ref:`variable argument processing <int_varargs>` section.
6705
6706Note that the code generator does not yet fully support va\_arg on many
6707targets. Also, it does not currently support va\_arg with aggregate
6708types on any target.
6709
6710.. _i_landingpad:
6711
6712'``landingpad``' Instruction
6713^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6714
6715Syntax:
6716"""""""
6717
6718::
6719
6720 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6721 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6722
6723 <clause> := catch <type> <value>
6724 <clause> := filter <array constant type> <array constant>
6725
6726Overview:
6727"""""""""
6728
6729The '``landingpad``' instruction is used by `LLVM's exception handling
6730system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006731is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006732code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6733defines values supplied by the personality function (``pers_fn``) upon
6734re-entry to the function. The ``resultval`` has the type ``resultty``.
6735
6736Arguments:
6737""""""""""
6738
6739This instruction takes a ``pers_fn`` value. This is the personality
6740function associated with the unwinding mechanism. The optional
6741``cleanup`` flag indicates that the landing pad block is a cleanup.
6742
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006743A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006744contains the global variable representing the "type" that may be caught
6745or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6746clause takes an array constant as its argument. Use
6747"``[0 x i8**] undef``" for a filter which cannot throw. The
6748'``landingpad``' instruction must contain *at least* one ``clause`` or
6749the ``cleanup`` flag.
6750
6751Semantics:
6752""""""""""
6753
6754The '``landingpad``' instruction defines the values which are set by the
6755personality function (``pers_fn``) upon re-entry to the function, and
6756therefore the "result type" of the ``landingpad`` instruction. As with
6757calling conventions, how the personality function results are
6758represented in LLVM IR is target specific.
6759
6760The clauses are applied in order from top to bottom. If two
6761``landingpad`` instructions are merged together through inlining, the
6762clauses from the calling function are appended to the list of clauses.
6763When the call stack is being unwound due to an exception being thrown,
6764the exception is compared against each ``clause`` in turn. If it doesn't
6765match any of the clauses, and the ``cleanup`` flag is not set, then
6766unwinding continues further up the call stack.
6767
6768The ``landingpad`` instruction has several restrictions:
6769
6770- A landing pad block is a basic block which is the unwind destination
6771 of an '``invoke``' instruction.
6772- A landing pad block must have a '``landingpad``' instruction as its
6773 first non-PHI instruction.
6774- There can be only one '``landingpad``' instruction within the landing
6775 pad block.
6776- A basic block that is not a landing pad block may not include a
6777 '``landingpad``' instruction.
6778- All '``landingpad``' instructions in a function must have the same
6779 personality function.
6780
6781Example:
6782""""""""
6783
6784.. code-block:: llvm
6785
6786 ;; A landing pad which can catch an integer.
6787 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6788 catch i8** @_ZTIi
6789 ;; A landing pad that is a cleanup.
6790 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6791 cleanup
6792 ;; A landing pad which can catch an integer and can only throw a double.
6793 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6794 catch i8** @_ZTIi
6795 filter [1 x i8**] [@_ZTId]
6796
6797.. _intrinsics:
6798
6799Intrinsic Functions
6800===================
6801
6802LLVM supports the notion of an "intrinsic function". These functions
6803have well known names and semantics and are required to follow certain
6804restrictions. Overall, these intrinsics represent an extension mechanism
6805for the LLVM language that does not require changing all of the
6806transformations in LLVM when adding to the language (or the bitcode
6807reader/writer, the parser, etc...).
6808
6809Intrinsic function names must all start with an "``llvm.``" prefix. This
6810prefix is reserved in LLVM for intrinsic names; thus, function names may
6811not begin with this prefix. Intrinsic functions must always be external
6812functions: you cannot define the body of intrinsic functions. Intrinsic
6813functions may only be used in call or invoke instructions: it is illegal
6814to take the address of an intrinsic function. Additionally, because
6815intrinsic functions are part of the LLVM language, it is required if any
6816are added that they be documented here.
6817
6818Some intrinsic functions can be overloaded, i.e., the intrinsic
6819represents a family of functions that perform the same operation but on
6820different data types. Because LLVM can represent over 8 million
6821different integer types, overloading is used commonly to allow an
6822intrinsic function to operate on any integer type. One or more of the
6823argument types or the result type can be overloaded to accept any
6824integer type. Argument types may also be defined as exactly matching a
6825previous argument's type or the result type. This allows an intrinsic
6826function which accepts multiple arguments, but needs all of them to be
6827of the same type, to only be overloaded with respect to a single
6828argument or the result.
6829
6830Overloaded intrinsics will have the names of its overloaded argument
6831types encoded into its function name, each preceded by a period. Only
6832those types which are overloaded result in a name suffix. Arguments
6833whose type is matched against another type do not. For example, the
6834``llvm.ctpop`` function can take an integer of any width and returns an
6835integer of exactly the same integer width. This leads to a family of
6836functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6837``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6838overloaded, and only one type suffix is required. Because the argument's
6839type is matched against the return type, it does not require its own
6840name suffix.
6841
6842To learn how to add an intrinsic function, please see the `Extending
6843LLVM Guide <ExtendingLLVM.html>`_.
6844
6845.. _int_varargs:
6846
6847Variable Argument Handling Intrinsics
6848-------------------------------------
6849
6850Variable argument support is defined in LLVM with the
6851:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6852functions. These functions are related to the similarly named macros
6853defined in the ``<stdarg.h>`` header file.
6854
6855All of these functions operate on arguments that use a target-specific
6856value type "``va_list``". The LLVM assembly language reference manual
6857does not define what this type is, so all transformations should be
6858prepared to handle these functions regardless of the type used.
6859
6860This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6861variable argument handling intrinsic functions are used.
6862
6863.. code-block:: llvm
6864
6865 define i32 @test(i32 %X, ...) {
6866 ; Initialize variable argument processing
6867 %ap = alloca i8*
6868 %ap2 = bitcast i8** %ap to i8*
6869 call void @llvm.va_start(i8* %ap2)
6870
6871 ; Read a single integer argument
6872 %tmp = va_arg i8** %ap, i32
6873
6874 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6875 %aq = alloca i8*
6876 %aq2 = bitcast i8** %aq to i8*
6877 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6878 call void @llvm.va_end(i8* %aq2)
6879
6880 ; Stop processing of arguments.
6881 call void @llvm.va_end(i8* %ap2)
6882 ret i32 %tmp
6883 }
6884
6885 declare void @llvm.va_start(i8*)
6886 declare void @llvm.va_copy(i8*, i8*)
6887 declare void @llvm.va_end(i8*)
6888
6889.. _int_va_start:
6890
6891'``llvm.va_start``' Intrinsic
6892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6893
6894Syntax:
6895"""""""
6896
6897::
6898
Nick Lewycky04f6de02013-09-11 22:04:52 +00006899 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006900
6901Overview:
6902"""""""""
6903
6904The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6905subsequent use by ``va_arg``.
6906
6907Arguments:
6908""""""""""
6909
6910The argument is a pointer to a ``va_list`` element to initialize.
6911
6912Semantics:
6913""""""""""
6914
6915The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6916available in C. In a target-dependent way, it initializes the
6917``va_list`` element to which the argument points, so that the next call
6918to ``va_arg`` will produce the first variable argument passed to the
6919function. Unlike the C ``va_start`` macro, this intrinsic does not need
6920to know the last argument of the function as the compiler can figure
6921that out.
6922
6923'``llvm.va_end``' Intrinsic
6924^^^^^^^^^^^^^^^^^^^^^^^^^^^
6925
6926Syntax:
6927"""""""
6928
6929::
6930
6931 declare void @llvm.va_end(i8* <arglist>)
6932
6933Overview:
6934"""""""""
6935
6936The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6937initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6938
6939Arguments:
6940""""""""""
6941
6942The argument is a pointer to a ``va_list`` to destroy.
6943
6944Semantics:
6945""""""""""
6946
6947The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6948available in C. In a target-dependent way, it destroys the ``va_list``
6949element to which the argument points. Calls to
6950:ref:`llvm.va_start <int_va_start>` and
6951:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6952``llvm.va_end``.
6953
6954.. _int_va_copy:
6955
6956'``llvm.va_copy``' Intrinsic
6957^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6958
6959Syntax:
6960"""""""
6961
6962::
6963
6964 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6965
6966Overview:
6967"""""""""
6968
6969The '``llvm.va_copy``' intrinsic copies the current argument position
6970from the source argument list to the destination argument list.
6971
6972Arguments:
6973""""""""""
6974
6975The first argument is a pointer to a ``va_list`` element to initialize.
6976The second argument is a pointer to a ``va_list`` element to copy from.
6977
6978Semantics:
6979""""""""""
6980
6981The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6982available in C. In a target-dependent way, it copies the source
6983``va_list`` element into the destination ``va_list`` element. This
6984intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6985arbitrarily complex and require, for example, memory allocation.
6986
6987Accurate Garbage Collection Intrinsics
6988--------------------------------------
6989
6990LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6991(GC) requires the implementation and generation of these intrinsics.
6992These intrinsics allow identification of :ref:`GC roots on the
6993stack <int_gcroot>`, as well as garbage collector implementations that
6994require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6995Front-ends for type-safe garbage collected languages should generate
6996these intrinsics to make use of the LLVM garbage collectors. For more
6997details, see `Accurate Garbage Collection with
6998LLVM <GarbageCollection.html>`_.
6999
7000The garbage collection intrinsics only operate on objects in the generic
7001address space (address space zero).
7002
7003.. _int_gcroot:
7004
7005'``llvm.gcroot``' Intrinsic
7006^^^^^^^^^^^^^^^^^^^^^^^^^^^
7007
7008Syntax:
7009"""""""
7010
7011::
7012
7013 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7014
7015Overview:
7016"""""""""
7017
7018The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7019the code generator, and allows some metadata to be associated with it.
7020
7021Arguments:
7022""""""""""
7023
7024The first argument specifies the address of a stack object that contains
7025the root pointer. The second pointer (which must be either a constant or
7026a global value address) contains the meta-data to be associated with the
7027root.
7028
7029Semantics:
7030""""""""""
7031
7032At runtime, a call to this intrinsic stores a null pointer into the
7033"ptrloc" location. At compile-time, the code generator generates
7034information to allow the runtime to find the pointer at GC safe points.
7035The '``llvm.gcroot``' intrinsic may only be used in a function which
7036:ref:`specifies a GC algorithm <gc>`.
7037
7038.. _int_gcread:
7039
7040'``llvm.gcread``' Intrinsic
7041^^^^^^^^^^^^^^^^^^^^^^^^^^^
7042
7043Syntax:
7044"""""""
7045
7046::
7047
7048 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7049
7050Overview:
7051"""""""""
7052
7053The '``llvm.gcread``' intrinsic identifies reads of references from heap
7054locations, allowing garbage collector implementations that require read
7055barriers.
7056
7057Arguments:
7058""""""""""
7059
7060The second argument is the address to read from, which should be an
7061address allocated from the garbage collector. The first object is a
7062pointer to the start of the referenced object, if needed by the language
7063runtime (otherwise null).
7064
7065Semantics:
7066""""""""""
7067
7068The '``llvm.gcread``' intrinsic has the same semantics as a load
7069instruction, but may be replaced with substantially more complex code by
7070the garbage collector runtime, as needed. The '``llvm.gcread``'
7071intrinsic may only be used in a function which :ref:`specifies a GC
7072algorithm <gc>`.
7073
7074.. _int_gcwrite:
7075
7076'``llvm.gcwrite``' Intrinsic
7077^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7078
7079Syntax:
7080"""""""
7081
7082::
7083
7084 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7085
7086Overview:
7087"""""""""
7088
7089The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7090locations, allowing garbage collector implementations that require write
7091barriers (such as generational or reference counting collectors).
7092
7093Arguments:
7094""""""""""
7095
7096The first argument is the reference to store, the second is the start of
7097the object to store it to, and the third is the address of the field of
7098Obj to store to. If the runtime does not require a pointer to the
7099object, Obj may be null.
7100
7101Semantics:
7102""""""""""
7103
7104The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7105instruction, but may be replaced with substantially more complex code by
7106the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7107intrinsic may only be used in a function which :ref:`specifies a GC
7108algorithm <gc>`.
7109
7110Code Generator Intrinsics
7111-------------------------
7112
7113These intrinsics are provided by LLVM to expose special features that
7114may only be implemented with code generator support.
7115
7116'``llvm.returnaddress``' Intrinsic
7117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7118
7119Syntax:
7120"""""""
7121
7122::
7123
7124 declare i8 *@llvm.returnaddress(i32 <level>)
7125
7126Overview:
7127"""""""""
7128
7129The '``llvm.returnaddress``' intrinsic attempts to compute a
7130target-specific value indicating the return address of the current
7131function or one of its callers.
7132
7133Arguments:
7134""""""""""
7135
7136The argument to this intrinsic indicates which function to return the
7137address for. Zero indicates the calling function, one indicates its
7138caller, etc. The argument is **required** to be a constant integer
7139value.
7140
7141Semantics:
7142""""""""""
7143
7144The '``llvm.returnaddress``' intrinsic either returns a pointer
7145indicating the return address of the specified call frame, or zero if it
7146cannot be identified. The value returned by this intrinsic is likely to
7147be incorrect or 0 for arguments other than zero, so it should only be
7148used for debugging purposes.
7149
7150Note that calling this intrinsic does not prevent function inlining or
7151other aggressive transformations, so the value returned may not be that
7152of the obvious source-language caller.
7153
7154'``llvm.frameaddress``' Intrinsic
7155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7156
7157Syntax:
7158"""""""
7159
7160::
7161
7162 declare i8* @llvm.frameaddress(i32 <level>)
7163
7164Overview:
7165"""""""""
7166
7167The '``llvm.frameaddress``' intrinsic attempts to return the
7168target-specific frame pointer value for the specified stack frame.
7169
7170Arguments:
7171""""""""""
7172
7173The argument to this intrinsic indicates which function to return the
7174frame pointer for. Zero indicates the calling function, one indicates
7175its caller, etc. The argument is **required** to be a constant integer
7176value.
7177
7178Semantics:
7179""""""""""
7180
7181The '``llvm.frameaddress``' intrinsic either returns a pointer
7182indicating the frame address of the specified call frame, or zero if it
7183cannot be identified. The value returned by this intrinsic is likely to
7184be incorrect or 0 for arguments other than zero, so it should only be
7185used for debugging purposes.
7186
7187Note that calling this intrinsic does not prevent function inlining or
7188other aggressive transformations, so the value returned may not be that
7189of the obvious source-language caller.
7190
Renato Golinc7aea402014-05-06 16:51:25 +00007191.. _int_read_register:
7192.. _int_write_register:
7193
7194'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7195^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7196
7197Syntax:
7198"""""""
7199
7200::
7201
7202 declare i32 @llvm.read_register.i32(metadata)
7203 declare i64 @llvm.read_register.i64(metadata)
7204 declare void @llvm.write_register.i32(metadata, i32 @value)
7205 declare void @llvm.write_register.i64(metadata, i64 @value)
7206 !0 = metadata !{metadata !"sp\00"}
7207
7208Overview:
7209"""""""""
7210
7211The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7212provides access to the named register. The register must be valid on
7213the architecture being compiled to. The type needs to be compatible
7214with the register being read.
7215
7216Semantics:
7217""""""""""
7218
7219The '``llvm.read_register``' intrinsic returns the current value of the
7220register, where possible. The '``llvm.write_register``' intrinsic sets
7221the current value of the register, where possible.
7222
7223This is useful to implement named register global variables that need
7224to always be mapped to a specific register, as is common practice on
7225bare-metal programs including OS kernels.
7226
7227The compiler doesn't check for register availability or use of the used
7228register in surrounding code, including inline assembly. Because of that,
7229allocatable registers are not supported.
7230
7231Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007232architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007233work is needed to support other registers and even more so, allocatable
7234registers.
7235
Sean Silvab084af42012-12-07 10:36:55 +00007236.. _int_stacksave:
7237
7238'``llvm.stacksave``' Intrinsic
7239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7240
7241Syntax:
7242"""""""
7243
7244::
7245
7246 declare i8* @llvm.stacksave()
7247
7248Overview:
7249"""""""""
7250
7251The '``llvm.stacksave``' intrinsic is used to remember the current state
7252of the function stack, for use with
7253:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7254implementing language features like scoped automatic variable sized
7255arrays in C99.
7256
7257Semantics:
7258""""""""""
7259
7260This intrinsic returns a opaque pointer value that can be passed to
7261:ref:`llvm.stackrestore <int_stackrestore>`. When an
7262``llvm.stackrestore`` intrinsic is executed with a value saved from
7263``llvm.stacksave``, it effectively restores the state of the stack to
7264the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7265practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7266were allocated after the ``llvm.stacksave`` was executed.
7267
7268.. _int_stackrestore:
7269
7270'``llvm.stackrestore``' Intrinsic
7271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7272
7273Syntax:
7274"""""""
7275
7276::
7277
7278 declare void @llvm.stackrestore(i8* %ptr)
7279
7280Overview:
7281"""""""""
7282
7283The '``llvm.stackrestore``' intrinsic is used to restore the state of
7284the function stack to the state it was in when the corresponding
7285:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7286useful for implementing language features like scoped automatic variable
7287sized arrays in C99.
7288
7289Semantics:
7290""""""""""
7291
7292See the description for :ref:`llvm.stacksave <int_stacksave>`.
7293
7294'``llvm.prefetch``' Intrinsic
7295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7296
7297Syntax:
7298"""""""
7299
7300::
7301
7302 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7303
7304Overview:
7305"""""""""
7306
7307The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7308insert a prefetch instruction if supported; otherwise, it is a noop.
7309Prefetches have no effect on the behavior of the program but can change
7310its performance characteristics.
7311
7312Arguments:
7313""""""""""
7314
7315``address`` is the address to be prefetched, ``rw`` is the specifier
7316determining if the fetch should be for a read (0) or write (1), and
7317``locality`` is a temporal locality specifier ranging from (0) - no
7318locality, to (3) - extremely local keep in cache. The ``cache type``
7319specifies whether the prefetch is performed on the data (1) or
7320instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7321arguments must be constant integers.
7322
7323Semantics:
7324""""""""""
7325
7326This intrinsic does not modify the behavior of the program. In
7327particular, prefetches cannot trap and do not produce a value. On
7328targets that support this intrinsic, the prefetch can provide hints to
7329the processor cache for better performance.
7330
7331'``llvm.pcmarker``' Intrinsic
7332^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7333
7334Syntax:
7335"""""""
7336
7337::
7338
7339 declare void @llvm.pcmarker(i32 <id>)
7340
7341Overview:
7342"""""""""
7343
7344The '``llvm.pcmarker``' intrinsic is a method to export a Program
7345Counter (PC) in a region of code to simulators and other tools. The
7346method is target specific, but it is expected that the marker will use
7347exported symbols to transmit the PC of the marker. The marker makes no
7348guarantees that it will remain with any specific instruction after
7349optimizations. It is possible that the presence of a marker will inhibit
7350optimizations. The intended use is to be inserted after optimizations to
7351allow correlations of simulation runs.
7352
7353Arguments:
7354""""""""""
7355
7356``id`` is a numerical id identifying the marker.
7357
7358Semantics:
7359""""""""""
7360
7361This intrinsic does not modify the behavior of the program. Backends
7362that do not support this intrinsic may ignore it.
7363
7364'``llvm.readcyclecounter``' Intrinsic
7365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7366
7367Syntax:
7368"""""""
7369
7370::
7371
7372 declare i64 @llvm.readcyclecounter()
7373
7374Overview:
7375"""""""""
7376
7377The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7378counter register (or similar low latency, high accuracy clocks) on those
7379targets that support it. On X86, it should map to RDTSC. On Alpha, it
7380should map to RPCC. As the backing counters overflow quickly (on the
7381order of 9 seconds on alpha), this should only be used for small
7382timings.
7383
7384Semantics:
7385""""""""""
7386
7387When directly supported, reading the cycle counter should not modify any
7388memory. Implementations are allowed to either return a application
7389specific value or a system wide value. On backends without support, this
7390is lowered to a constant 0.
7391
Tim Northoverbc933082013-05-23 19:11:20 +00007392Note that runtime support may be conditional on the privilege-level code is
7393running at and the host platform.
7394
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007395'``llvm.clear_cache``' Intrinsic
7396^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7397
7398Syntax:
7399"""""""
7400
7401::
7402
7403 declare void @llvm.clear_cache(i8*, i8*)
7404
7405Overview:
7406"""""""""
7407
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007408The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7409in the specified range to the execution unit of the processor. On
7410targets with non-unified instruction and data cache, the implementation
7411flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007412
7413Semantics:
7414""""""""""
7415
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007416On platforms with coherent instruction and data caches (e.g. x86), this
7417intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007418cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007419instructions or a system call, if cache flushing requires special
7420privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007421
Sean Silvad02bf3e2014-04-07 22:29:53 +00007422The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007423time library.
Renato Golin93010e62014-03-26 14:01:32 +00007424
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007425This instrinsic does *not* empty the instruction pipeline. Modifications
7426of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007427
Sean Silvab084af42012-12-07 10:36:55 +00007428Standard C Library Intrinsics
7429-----------------------------
7430
7431LLVM provides intrinsics for a few important standard C library
7432functions. These intrinsics allow source-language front-ends to pass
7433information about the alignment of the pointer arguments to the code
7434generator, providing opportunity for more efficient code generation.
7435
7436.. _int_memcpy:
7437
7438'``llvm.memcpy``' Intrinsic
7439^^^^^^^^^^^^^^^^^^^^^^^^^^^
7440
7441Syntax:
7442"""""""
7443
7444This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7445integer bit width and for different address spaces. Not all targets
7446support all bit widths however.
7447
7448::
7449
7450 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7451 i32 <len>, i32 <align>, i1 <isvolatile>)
7452 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7453 i64 <len>, i32 <align>, i1 <isvolatile>)
7454
7455Overview:
7456"""""""""
7457
7458The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7459source location to the destination location.
7460
7461Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7462intrinsics do not return a value, takes extra alignment/isvolatile
7463arguments and the pointers can be in specified address spaces.
7464
7465Arguments:
7466""""""""""
7467
7468The first argument is a pointer to the destination, the second is a
7469pointer to the source. The third argument is an integer argument
7470specifying the number of bytes to copy, the fourth argument is the
7471alignment of the source and destination locations, and the fifth is a
7472boolean indicating a volatile access.
7473
7474If the call to this intrinsic has an alignment value that is not 0 or 1,
7475then the caller guarantees that both the source and destination pointers
7476are aligned to that boundary.
7477
7478If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7479a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7480very cleanly specified and it is unwise to depend on it.
7481
7482Semantics:
7483""""""""""
7484
7485The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7486source location to the destination location, which are not allowed to
7487overlap. It copies "len" bytes of memory over. If the argument is known
7488to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007489argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007490
7491'``llvm.memmove``' Intrinsic
7492^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7493
7494Syntax:
7495"""""""
7496
7497This is an overloaded intrinsic. You can use llvm.memmove on any integer
7498bit width and for different address space. Not all targets support all
7499bit widths however.
7500
7501::
7502
7503 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7504 i32 <len>, i32 <align>, i1 <isvolatile>)
7505 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7506 i64 <len>, i32 <align>, i1 <isvolatile>)
7507
7508Overview:
7509"""""""""
7510
7511The '``llvm.memmove.*``' intrinsics move a block of memory from the
7512source location to the destination location. It is similar to the
7513'``llvm.memcpy``' intrinsic but allows the two memory locations to
7514overlap.
7515
7516Note that, unlike the standard libc function, the ``llvm.memmove.*``
7517intrinsics do not return a value, takes extra alignment/isvolatile
7518arguments and the pointers can be in specified address spaces.
7519
7520Arguments:
7521""""""""""
7522
7523The first argument is a pointer to the destination, the second is a
7524pointer to the source. The third argument is an integer argument
7525specifying the number of bytes to copy, the fourth argument is the
7526alignment of the source and destination locations, and the fifth is a
7527boolean indicating a volatile access.
7528
7529If the call to this intrinsic has an alignment value that is not 0 or 1,
7530then the caller guarantees that the source and destination pointers are
7531aligned to that boundary.
7532
7533If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7534is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7535not very cleanly specified and it is unwise to depend on it.
7536
7537Semantics:
7538""""""""""
7539
7540The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7541source location to the destination location, which may overlap. It
7542copies "len" bytes of memory over. If the argument is known to be
7543aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007544otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007545
7546'``llvm.memset.*``' Intrinsics
7547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7548
7549Syntax:
7550"""""""
7551
7552This is an overloaded intrinsic. You can use llvm.memset on any integer
7553bit width and for different address spaces. However, not all targets
7554support all bit widths.
7555
7556::
7557
7558 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7559 i32 <len>, i32 <align>, i1 <isvolatile>)
7560 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7561 i64 <len>, i32 <align>, i1 <isvolatile>)
7562
7563Overview:
7564"""""""""
7565
7566The '``llvm.memset.*``' intrinsics fill a block of memory with a
7567particular byte value.
7568
7569Note that, unlike the standard libc function, the ``llvm.memset``
7570intrinsic does not return a value and takes extra alignment/volatile
7571arguments. Also, the destination can be in an arbitrary address space.
7572
7573Arguments:
7574""""""""""
7575
7576The first argument is a pointer to the destination to fill, the second
7577is the byte value with which to fill it, the third argument is an
7578integer argument specifying the number of bytes to fill, and the fourth
7579argument is the known alignment of the destination location.
7580
7581If the call to this intrinsic has an alignment value that is not 0 or 1,
7582then the caller guarantees that the destination pointer is aligned to
7583that boundary.
7584
7585If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7586a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7587very cleanly specified and it is unwise to depend on it.
7588
7589Semantics:
7590""""""""""
7591
7592The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7593at the destination location. If the argument is known to be aligned to
7594some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007595it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007596
7597'``llvm.sqrt.*``' Intrinsic
7598^^^^^^^^^^^^^^^^^^^^^^^^^^^
7599
7600Syntax:
7601"""""""
7602
7603This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7604floating point or vector of floating point type. Not all targets support
7605all types however.
7606
7607::
7608
7609 declare float @llvm.sqrt.f32(float %Val)
7610 declare double @llvm.sqrt.f64(double %Val)
7611 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7612 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7613 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7614
7615Overview:
7616"""""""""
7617
7618The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7619returning the same value as the libm '``sqrt``' functions would. Unlike
7620``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7621negative numbers other than -0.0 (which allows for better optimization,
7622because there is no need to worry about errno being set).
7623``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7624
7625Arguments:
7626""""""""""
7627
7628The argument and return value are floating point numbers of the same
7629type.
7630
7631Semantics:
7632""""""""""
7633
7634This function returns the sqrt of the specified operand if it is a
7635nonnegative floating point number.
7636
7637'``llvm.powi.*``' Intrinsic
7638^^^^^^^^^^^^^^^^^^^^^^^^^^^
7639
7640Syntax:
7641"""""""
7642
7643This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7644floating point or vector of floating point type. Not all targets support
7645all types however.
7646
7647::
7648
7649 declare float @llvm.powi.f32(float %Val, i32 %power)
7650 declare double @llvm.powi.f64(double %Val, i32 %power)
7651 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7652 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7653 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7654
7655Overview:
7656"""""""""
7657
7658The '``llvm.powi.*``' intrinsics return the first operand raised to the
7659specified (positive or negative) power. The order of evaluation of
7660multiplications is not defined. When a vector of floating point type is
7661used, the second argument remains a scalar integer value.
7662
7663Arguments:
7664""""""""""
7665
7666The second argument is an integer power, and the first is a value to
7667raise to that power.
7668
7669Semantics:
7670""""""""""
7671
7672This function returns the first value raised to the second power with an
7673unspecified sequence of rounding operations.
7674
7675'``llvm.sin.*``' Intrinsic
7676^^^^^^^^^^^^^^^^^^^^^^^^^^
7677
7678Syntax:
7679"""""""
7680
7681This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7682floating point or vector of floating point type. Not all targets support
7683all types however.
7684
7685::
7686
7687 declare float @llvm.sin.f32(float %Val)
7688 declare double @llvm.sin.f64(double %Val)
7689 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7690 declare fp128 @llvm.sin.f128(fp128 %Val)
7691 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7692
7693Overview:
7694"""""""""
7695
7696The '``llvm.sin.*``' intrinsics return the sine of the operand.
7697
7698Arguments:
7699""""""""""
7700
7701The argument and return value are floating point numbers of the same
7702type.
7703
7704Semantics:
7705""""""""""
7706
7707This function returns the sine of the specified operand, returning the
7708same values as the libm ``sin`` functions would, and handles error
7709conditions in the same way.
7710
7711'``llvm.cos.*``' Intrinsic
7712^^^^^^^^^^^^^^^^^^^^^^^^^^
7713
7714Syntax:
7715"""""""
7716
7717This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7718floating point or vector of floating point type. Not all targets support
7719all types however.
7720
7721::
7722
7723 declare float @llvm.cos.f32(float %Val)
7724 declare double @llvm.cos.f64(double %Val)
7725 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7726 declare fp128 @llvm.cos.f128(fp128 %Val)
7727 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7728
7729Overview:
7730"""""""""
7731
7732The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7733
7734Arguments:
7735""""""""""
7736
7737The argument and return value are floating point numbers of the same
7738type.
7739
7740Semantics:
7741""""""""""
7742
7743This function returns the cosine of the specified operand, returning the
7744same values as the libm ``cos`` functions would, and handles error
7745conditions in the same way.
7746
7747'``llvm.pow.*``' Intrinsic
7748^^^^^^^^^^^^^^^^^^^^^^^^^^
7749
7750Syntax:
7751"""""""
7752
7753This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7754floating point or vector of floating point type. Not all targets support
7755all types however.
7756
7757::
7758
7759 declare float @llvm.pow.f32(float %Val, float %Power)
7760 declare double @llvm.pow.f64(double %Val, double %Power)
7761 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7762 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7763 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7764
7765Overview:
7766"""""""""
7767
7768The '``llvm.pow.*``' intrinsics return the first operand raised to the
7769specified (positive or negative) power.
7770
7771Arguments:
7772""""""""""
7773
7774The second argument is a floating point power, and the first is a value
7775to raise to that power.
7776
7777Semantics:
7778""""""""""
7779
7780This function returns the first value raised to the second power,
7781returning the same values as the libm ``pow`` functions would, and
7782handles error conditions in the same way.
7783
7784'``llvm.exp.*``' Intrinsic
7785^^^^^^^^^^^^^^^^^^^^^^^^^^
7786
7787Syntax:
7788"""""""
7789
7790This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7791floating point or vector of floating point type. Not all targets support
7792all types however.
7793
7794::
7795
7796 declare float @llvm.exp.f32(float %Val)
7797 declare double @llvm.exp.f64(double %Val)
7798 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7799 declare fp128 @llvm.exp.f128(fp128 %Val)
7800 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7801
7802Overview:
7803"""""""""
7804
7805The '``llvm.exp.*``' intrinsics perform the exp function.
7806
7807Arguments:
7808""""""""""
7809
7810The argument and return value are floating point numbers of the same
7811type.
7812
7813Semantics:
7814""""""""""
7815
7816This function returns the same values as the libm ``exp`` functions
7817would, and handles error conditions in the same way.
7818
7819'``llvm.exp2.*``' Intrinsic
7820^^^^^^^^^^^^^^^^^^^^^^^^^^^
7821
7822Syntax:
7823"""""""
7824
7825This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7826floating point or vector of floating point type. Not all targets support
7827all types however.
7828
7829::
7830
7831 declare float @llvm.exp2.f32(float %Val)
7832 declare double @llvm.exp2.f64(double %Val)
7833 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7834 declare fp128 @llvm.exp2.f128(fp128 %Val)
7835 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7836
7837Overview:
7838"""""""""
7839
7840The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7841
7842Arguments:
7843""""""""""
7844
7845The argument and return value are floating point numbers of the same
7846type.
7847
7848Semantics:
7849""""""""""
7850
7851This function returns the same values as the libm ``exp2`` functions
7852would, and handles error conditions in the same way.
7853
7854'``llvm.log.*``' Intrinsic
7855^^^^^^^^^^^^^^^^^^^^^^^^^^
7856
7857Syntax:
7858"""""""
7859
7860This is an overloaded intrinsic. You can use ``llvm.log`` on any
7861floating point or vector of floating point type. Not all targets support
7862all types however.
7863
7864::
7865
7866 declare float @llvm.log.f32(float %Val)
7867 declare double @llvm.log.f64(double %Val)
7868 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7869 declare fp128 @llvm.log.f128(fp128 %Val)
7870 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7871
7872Overview:
7873"""""""""
7874
7875The '``llvm.log.*``' intrinsics perform the log function.
7876
7877Arguments:
7878""""""""""
7879
7880The argument and return value are floating point numbers of the same
7881type.
7882
7883Semantics:
7884""""""""""
7885
7886This function returns the same values as the libm ``log`` functions
7887would, and handles error conditions in the same way.
7888
7889'``llvm.log10.*``' Intrinsic
7890^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7891
7892Syntax:
7893"""""""
7894
7895This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7896floating point or vector of floating point type. Not all targets support
7897all types however.
7898
7899::
7900
7901 declare float @llvm.log10.f32(float %Val)
7902 declare double @llvm.log10.f64(double %Val)
7903 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7904 declare fp128 @llvm.log10.f128(fp128 %Val)
7905 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7906
7907Overview:
7908"""""""""
7909
7910The '``llvm.log10.*``' intrinsics perform the log10 function.
7911
7912Arguments:
7913""""""""""
7914
7915The argument and return value are floating point numbers of the same
7916type.
7917
7918Semantics:
7919""""""""""
7920
7921This function returns the same values as the libm ``log10`` functions
7922would, and handles error conditions in the same way.
7923
7924'``llvm.log2.*``' Intrinsic
7925^^^^^^^^^^^^^^^^^^^^^^^^^^^
7926
7927Syntax:
7928"""""""
7929
7930This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7931floating point or vector of floating point type. Not all targets support
7932all types however.
7933
7934::
7935
7936 declare float @llvm.log2.f32(float %Val)
7937 declare double @llvm.log2.f64(double %Val)
7938 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7939 declare fp128 @llvm.log2.f128(fp128 %Val)
7940 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7941
7942Overview:
7943"""""""""
7944
7945The '``llvm.log2.*``' intrinsics perform the log2 function.
7946
7947Arguments:
7948""""""""""
7949
7950The argument and return value are floating point numbers of the same
7951type.
7952
7953Semantics:
7954""""""""""
7955
7956This function returns the same values as the libm ``log2`` functions
7957would, and handles error conditions in the same way.
7958
7959'``llvm.fma.*``' Intrinsic
7960^^^^^^^^^^^^^^^^^^^^^^^^^^
7961
7962Syntax:
7963"""""""
7964
7965This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7966floating point or vector of floating point type. Not all targets support
7967all types however.
7968
7969::
7970
7971 declare float @llvm.fma.f32(float %a, float %b, float %c)
7972 declare double @llvm.fma.f64(double %a, double %b, double %c)
7973 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7974 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7975 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7976
7977Overview:
7978"""""""""
7979
7980The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7981operation.
7982
7983Arguments:
7984""""""""""
7985
7986The argument and return value are floating point numbers of the same
7987type.
7988
7989Semantics:
7990""""""""""
7991
7992This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007993would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007994
7995'``llvm.fabs.*``' Intrinsic
7996^^^^^^^^^^^^^^^^^^^^^^^^^^^
7997
7998Syntax:
7999"""""""
8000
8001This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8002floating point or vector of floating point type. Not all targets support
8003all types however.
8004
8005::
8006
8007 declare float @llvm.fabs.f32(float %Val)
8008 declare double @llvm.fabs.f64(double %Val)
8009 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
8010 declare fp128 @llvm.fabs.f128(fp128 %Val)
8011 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
8012
8013Overview:
8014"""""""""
8015
8016The '``llvm.fabs.*``' intrinsics return the absolute value of the
8017operand.
8018
8019Arguments:
8020""""""""""
8021
8022The argument and return value are floating point numbers of the same
8023type.
8024
8025Semantics:
8026""""""""""
8027
8028This function returns the same values as the libm ``fabs`` functions
8029would, and handles error conditions in the same way.
8030
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008031'``llvm.copysign.*``' Intrinsic
8032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8033
8034Syntax:
8035"""""""
8036
8037This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8038floating point or vector of floating point type. Not all targets support
8039all types however.
8040
8041::
8042
8043 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8044 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8045 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8046 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8047 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8048
8049Overview:
8050"""""""""
8051
8052The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8053first operand and the sign of the second operand.
8054
8055Arguments:
8056""""""""""
8057
8058The arguments and return value are floating point numbers of the same
8059type.
8060
8061Semantics:
8062""""""""""
8063
8064This function returns the same values as the libm ``copysign``
8065functions would, and handles error conditions in the same way.
8066
Sean Silvab084af42012-12-07 10:36:55 +00008067'``llvm.floor.*``' Intrinsic
8068^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8069
8070Syntax:
8071"""""""
8072
8073This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8074floating point or vector of floating point type. Not all targets support
8075all types however.
8076
8077::
8078
8079 declare float @llvm.floor.f32(float %Val)
8080 declare double @llvm.floor.f64(double %Val)
8081 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8082 declare fp128 @llvm.floor.f128(fp128 %Val)
8083 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8084
8085Overview:
8086"""""""""
8087
8088The '``llvm.floor.*``' intrinsics return the floor of the operand.
8089
8090Arguments:
8091""""""""""
8092
8093The argument and return value are floating point numbers of the same
8094type.
8095
8096Semantics:
8097""""""""""
8098
8099This function returns the same values as the libm ``floor`` functions
8100would, and handles error conditions in the same way.
8101
8102'``llvm.ceil.*``' Intrinsic
8103^^^^^^^^^^^^^^^^^^^^^^^^^^^
8104
8105Syntax:
8106"""""""
8107
8108This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8109floating point or vector of floating point type. Not all targets support
8110all types however.
8111
8112::
8113
8114 declare float @llvm.ceil.f32(float %Val)
8115 declare double @llvm.ceil.f64(double %Val)
8116 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8117 declare fp128 @llvm.ceil.f128(fp128 %Val)
8118 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8119
8120Overview:
8121"""""""""
8122
8123The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8124
8125Arguments:
8126""""""""""
8127
8128The argument and return value are floating point numbers of the same
8129type.
8130
8131Semantics:
8132""""""""""
8133
8134This function returns the same values as the libm ``ceil`` functions
8135would, and handles error conditions in the same way.
8136
8137'``llvm.trunc.*``' Intrinsic
8138^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8139
8140Syntax:
8141"""""""
8142
8143This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8144floating point or vector of floating point type. Not all targets support
8145all types however.
8146
8147::
8148
8149 declare float @llvm.trunc.f32(float %Val)
8150 declare double @llvm.trunc.f64(double %Val)
8151 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8152 declare fp128 @llvm.trunc.f128(fp128 %Val)
8153 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8154
8155Overview:
8156"""""""""
8157
8158The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8159nearest integer not larger in magnitude than the operand.
8160
8161Arguments:
8162""""""""""
8163
8164The argument and return value are floating point numbers of the same
8165type.
8166
8167Semantics:
8168""""""""""
8169
8170This function returns the same values as the libm ``trunc`` functions
8171would, and handles error conditions in the same way.
8172
8173'``llvm.rint.*``' Intrinsic
8174^^^^^^^^^^^^^^^^^^^^^^^^^^^
8175
8176Syntax:
8177"""""""
8178
8179This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8180floating point or vector of floating point type. Not all targets support
8181all types however.
8182
8183::
8184
8185 declare float @llvm.rint.f32(float %Val)
8186 declare double @llvm.rint.f64(double %Val)
8187 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8188 declare fp128 @llvm.rint.f128(fp128 %Val)
8189 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8190
8191Overview:
8192"""""""""
8193
8194The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8195nearest integer. It may raise an inexact floating-point exception if the
8196operand isn't an integer.
8197
8198Arguments:
8199""""""""""
8200
8201The argument and return value are floating point numbers of the same
8202type.
8203
8204Semantics:
8205""""""""""
8206
8207This function returns the same values as the libm ``rint`` functions
8208would, and handles error conditions in the same way.
8209
8210'``llvm.nearbyint.*``' Intrinsic
8211^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8212
8213Syntax:
8214"""""""
8215
8216This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8217floating point or vector of floating point type. Not all targets support
8218all types however.
8219
8220::
8221
8222 declare float @llvm.nearbyint.f32(float %Val)
8223 declare double @llvm.nearbyint.f64(double %Val)
8224 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8225 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8226 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8227
8228Overview:
8229"""""""""
8230
8231The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8232nearest integer.
8233
8234Arguments:
8235""""""""""
8236
8237The argument and return value are floating point numbers of the same
8238type.
8239
8240Semantics:
8241""""""""""
8242
8243This function returns the same values as the libm ``nearbyint``
8244functions would, and handles error conditions in the same way.
8245
Hal Finkel171817e2013-08-07 22:49:12 +00008246'``llvm.round.*``' Intrinsic
8247^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8248
8249Syntax:
8250"""""""
8251
8252This is an overloaded intrinsic. You can use ``llvm.round`` on any
8253floating point or vector of floating point type. Not all targets support
8254all types however.
8255
8256::
8257
8258 declare float @llvm.round.f32(float %Val)
8259 declare double @llvm.round.f64(double %Val)
8260 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8261 declare fp128 @llvm.round.f128(fp128 %Val)
8262 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8263
8264Overview:
8265"""""""""
8266
8267The '``llvm.round.*``' intrinsics returns the operand rounded to the
8268nearest integer.
8269
8270Arguments:
8271""""""""""
8272
8273The argument and return value are floating point numbers of the same
8274type.
8275
8276Semantics:
8277""""""""""
8278
8279This function returns the same values as the libm ``round``
8280functions would, and handles error conditions in the same way.
8281
Sean Silvab084af42012-12-07 10:36:55 +00008282Bit Manipulation Intrinsics
8283---------------------------
8284
8285LLVM provides intrinsics for a few important bit manipulation
8286operations. These allow efficient code generation for some algorithms.
8287
8288'``llvm.bswap.*``' Intrinsics
8289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8290
8291Syntax:
8292"""""""
8293
8294This is an overloaded intrinsic function. You can use bswap on any
8295integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8296
8297::
8298
8299 declare i16 @llvm.bswap.i16(i16 <id>)
8300 declare i32 @llvm.bswap.i32(i32 <id>)
8301 declare i64 @llvm.bswap.i64(i64 <id>)
8302
8303Overview:
8304"""""""""
8305
8306The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8307values with an even number of bytes (positive multiple of 16 bits).
8308These are useful for performing operations on data that is not in the
8309target's native byte order.
8310
8311Semantics:
8312""""""""""
8313
8314The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8315and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8316intrinsic returns an i32 value that has the four bytes of the input i32
8317swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8318returned i32 will have its bytes in 3, 2, 1, 0 order. The
8319``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8320concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8321respectively).
8322
8323'``llvm.ctpop.*``' Intrinsic
8324^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8325
8326Syntax:
8327"""""""
8328
8329This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8330bit width, or on any vector with integer elements. Not all targets
8331support all bit widths or vector types, however.
8332
8333::
8334
8335 declare i8 @llvm.ctpop.i8(i8 <src>)
8336 declare i16 @llvm.ctpop.i16(i16 <src>)
8337 declare i32 @llvm.ctpop.i32(i32 <src>)
8338 declare i64 @llvm.ctpop.i64(i64 <src>)
8339 declare i256 @llvm.ctpop.i256(i256 <src>)
8340 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8341
8342Overview:
8343"""""""""
8344
8345The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8346in a value.
8347
8348Arguments:
8349""""""""""
8350
8351The only argument is the value to be counted. The argument may be of any
8352integer type, or a vector with integer elements. The return type must
8353match the argument type.
8354
8355Semantics:
8356""""""""""
8357
8358The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8359each element of a vector.
8360
8361'``llvm.ctlz.*``' Intrinsic
8362^^^^^^^^^^^^^^^^^^^^^^^^^^^
8363
8364Syntax:
8365"""""""
8366
8367This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8368integer bit width, or any vector whose elements are integers. Not all
8369targets support all bit widths or vector types, however.
8370
8371::
8372
8373 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8374 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8375 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8376 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8377 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8378 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8379
8380Overview:
8381"""""""""
8382
8383The '``llvm.ctlz``' family of intrinsic functions counts the number of
8384leading zeros in a variable.
8385
8386Arguments:
8387""""""""""
8388
8389The first argument is the value to be counted. This argument may be of
8390any integer type, or a vectory with integer element type. The return
8391type must match the first argument type.
8392
8393The second argument must be a constant and is a flag to indicate whether
8394the intrinsic should ensure that a zero as the first argument produces a
8395defined result. Historically some architectures did not provide a
8396defined result for zero values as efficiently, and many algorithms are
8397now predicated on avoiding zero-value inputs.
8398
8399Semantics:
8400""""""""""
8401
8402The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8403zeros in a variable, or within each element of the vector. If
8404``src == 0`` then the result is the size in bits of the type of ``src``
8405if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8406``llvm.ctlz(i32 2) = 30``.
8407
8408'``llvm.cttz.*``' Intrinsic
8409^^^^^^^^^^^^^^^^^^^^^^^^^^^
8410
8411Syntax:
8412"""""""
8413
8414This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8415integer bit width, or any vector of integer elements. Not all targets
8416support all bit widths or vector types, however.
8417
8418::
8419
8420 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8421 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8422 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8423 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8424 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8425 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8426
8427Overview:
8428"""""""""
8429
8430The '``llvm.cttz``' family of intrinsic functions counts the number of
8431trailing zeros.
8432
8433Arguments:
8434""""""""""
8435
8436The first argument is the value to be counted. This argument may be of
8437any integer type, or a vectory with integer element type. The return
8438type must match the first argument type.
8439
8440The second argument must be a constant and is a flag to indicate whether
8441the intrinsic should ensure that a zero as the first argument produces a
8442defined result. Historically some architectures did not provide a
8443defined result for zero values as efficiently, and many algorithms are
8444now predicated on avoiding zero-value inputs.
8445
8446Semantics:
8447""""""""""
8448
8449The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8450zeros in a variable, or within each element of a vector. If ``src == 0``
8451then the result is the size in bits of the type of ``src`` if
8452``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8453``llvm.cttz(2) = 1``.
8454
8455Arithmetic with Overflow Intrinsics
8456-----------------------------------
8457
8458LLVM provides intrinsics for some arithmetic with overflow operations.
8459
8460'``llvm.sadd.with.overflow.*``' Intrinsics
8461^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8462
8463Syntax:
8464"""""""
8465
8466This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8467on any integer bit width.
8468
8469::
8470
8471 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8472 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8473 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8474
8475Overview:
8476"""""""""
8477
8478The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8479a signed addition of the two arguments, and indicate whether an overflow
8480occurred during the signed summation.
8481
8482Arguments:
8483""""""""""
8484
8485The arguments (%a and %b) and the first element of the result structure
8486may be of integer types of any bit width, but they must have the same
8487bit width. The second element of the result structure must be of type
8488``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8489addition.
8490
8491Semantics:
8492""""""""""
8493
8494The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008495a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008496first element of which is the signed summation, and the second element
8497of which is a bit specifying if the signed summation resulted in an
8498overflow.
8499
8500Examples:
8501"""""""""
8502
8503.. code-block:: llvm
8504
8505 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8506 %sum = extractvalue {i32, i1} %res, 0
8507 %obit = extractvalue {i32, i1} %res, 1
8508 br i1 %obit, label %overflow, label %normal
8509
8510'``llvm.uadd.with.overflow.*``' Intrinsics
8511^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8512
8513Syntax:
8514"""""""
8515
8516This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8517on any integer bit width.
8518
8519::
8520
8521 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8522 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8523 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8524
8525Overview:
8526"""""""""
8527
8528The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8529an unsigned addition of the two arguments, and indicate whether a carry
8530occurred during the unsigned summation.
8531
8532Arguments:
8533""""""""""
8534
8535The arguments (%a and %b) and the first element of the result structure
8536may be of integer types of any bit width, but they must have the same
8537bit width. The second element of the result structure must be of type
8538``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8539addition.
8540
8541Semantics:
8542""""""""""
8543
8544The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008545an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008546first element of which is the sum, and the second element of which is a
8547bit specifying if the unsigned summation resulted in a carry.
8548
8549Examples:
8550"""""""""
8551
8552.. code-block:: llvm
8553
8554 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8555 %sum = extractvalue {i32, i1} %res, 0
8556 %obit = extractvalue {i32, i1} %res, 1
8557 br i1 %obit, label %carry, label %normal
8558
8559'``llvm.ssub.with.overflow.*``' Intrinsics
8560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8561
8562Syntax:
8563"""""""
8564
8565This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8566on any integer bit width.
8567
8568::
8569
8570 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8571 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8572 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8573
8574Overview:
8575"""""""""
8576
8577The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8578a signed subtraction of the two arguments, and indicate whether an
8579overflow occurred during the signed subtraction.
8580
8581Arguments:
8582""""""""""
8583
8584The arguments (%a and %b) and the first element of the result structure
8585may be of integer types of any bit width, but they must have the same
8586bit width. The second element of the result structure must be of type
8587``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8588subtraction.
8589
8590Semantics:
8591""""""""""
8592
8593The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008594a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008595first element of which is the subtraction, and the second element of
8596which is a bit specifying if the signed subtraction resulted in an
8597overflow.
8598
8599Examples:
8600"""""""""
8601
8602.. code-block:: llvm
8603
8604 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8605 %sum = extractvalue {i32, i1} %res, 0
8606 %obit = extractvalue {i32, i1} %res, 1
8607 br i1 %obit, label %overflow, label %normal
8608
8609'``llvm.usub.with.overflow.*``' Intrinsics
8610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8611
8612Syntax:
8613"""""""
8614
8615This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8616on any integer bit width.
8617
8618::
8619
8620 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8621 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8622 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8623
8624Overview:
8625"""""""""
8626
8627The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8628an unsigned subtraction of the two arguments, and indicate whether an
8629overflow occurred during the unsigned subtraction.
8630
8631Arguments:
8632""""""""""
8633
8634The arguments (%a and %b) and the first element of the result structure
8635may be of integer types of any bit width, but they must have the same
8636bit width. The second element of the result structure must be of type
8637``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8638subtraction.
8639
8640Semantics:
8641""""""""""
8642
8643The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008644an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008645the first element of which is the subtraction, and the second element of
8646which is a bit specifying if the unsigned subtraction resulted in an
8647overflow.
8648
8649Examples:
8650"""""""""
8651
8652.. code-block:: llvm
8653
8654 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8655 %sum = extractvalue {i32, i1} %res, 0
8656 %obit = extractvalue {i32, i1} %res, 1
8657 br i1 %obit, label %overflow, label %normal
8658
8659'``llvm.smul.with.overflow.*``' Intrinsics
8660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8661
8662Syntax:
8663"""""""
8664
8665This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8666on any integer bit width.
8667
8668::
8669
8670 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8671 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8672 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8673
8674Overview:
8675"""""""""
8676
8677The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8678a signed multiplication of the two arguments, and indicate whether an
8679overflow occurred during the signed multiplication.
8680
8681Arguments:
8682""""""""""
8683
8684The arguments (%a and %b) and the first element of the result structure
8685may be of integer types of any bit width, but they must have the same
8686bit width. The second element of the result structure must be of type
8687``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8688multiplication.
8689
8690Semantics:
8691""""""""""
8692
8693The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008694a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008695the first element of which is the multiplication, and the second element
8696of which is a bit specifying if the signed multiplication resulted in an
8697overflow.
8698
8699Examples:
8700"""""""""
8701
8702.. code-block:: llvm
8703
8704 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8705 %sum = extractvalue {i32, i1} %res, 0
8706 %obit = extractvalue {i32, i1} %res, 1
8707 br i1 %obit, label %overflow, label %normal
8708
8709'``llvm.umul.with.overflow.*``' Intrinsics
8710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8711
8712Syntax:
8713"""""""
8714
8715This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8716on any integer bit width.
8717
8718::
8719
8720 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8721 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8722 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8723
8724Overview:
8725"""""""""
8726
8727The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8728a unsigned multiplication of the two arguments, and indicate whether an
8729overflow occurred during the unsigned multiplication.
8730
8731Arguments:
8732""""""""""
8733
8734The arguments (%a and %b) and the first element of the result structure
8735may be of integer types of any bit width, but they must have the same
8736bit width. The second element of the result structure must be of type
8737``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8738multiplication.
8739
8740Semantics:
8741""""""""""
8742
8743The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008744an unsigned multiplication of the two arguments. They return a structure ---
8745the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008746element of which is a bit specifying if the unsigned multiplication
8747resulted in an overflow.
8748
8749Examples:
8750"""""""""
8751
8752.. code-block:: llvm
8753
8754 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8755 %sum = extractvalue {i32, i1} %res, 0
8756 %obit = extractvalue {i32, i1} %res, 1
8757 br i1 %obit, label %overflow, label %normal
8758
8759Specialised Arithmetic Intrinsics
8760---------------------------------
8761
8762'``llvm.fmuladd.*``' Intrinsic
8763^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8764
8765Syntax:
8766"""""""
8767
8768::
8769
8770 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8771 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8772
8773Overview:
8774"""""""""
8775
8776The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008777expressions that can be fused if the code generator determines that (a) the
8778target instruction set has support for a fused operation, and (b) that the
8779fused operation is more efficient than the equivalent, separate pair of mul
8780and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008781
8782Arguments:
8783""""""""""
8784
8785The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8786multiplicands, a and b, and an addend c.
8787
8788Semantics:
8789""""""""""
8790
8791The expression:
8792
8793::
8794
8795 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8796
8797is equivalent to the expression a \* b + c, except that rounding will
8798not be performed between the multiplication and addition steps if the
8799code generator fuses the operations. Fusion is not guaranteed, even if
8800the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008801corresponding llvm.fma.\* intrinsic function should be used
8802instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008803
8804Examples:
8805"""""""""
8806
8807.. code-block:: llvm
8808
Tim Northover675a0962014-06-13 14:24:23 +00008809 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00008810
8811Half Precision Floating Point Intrinsics
8812----------------------------------------
8813
8814For most target platforms, half precision floating point is a
8815storage-only format. This means that it is a dense encoding (in memory)
8816but does not support computation in the format.
8817
8818This means that code must first load the half-precision floating point
8819value as an i16, then convert it to float with
8820:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8821then be performed on the float value (including extending to double
8822etc). To store the value back to memory, it is first converted to float
8823if needed, then converted to i16 with
8824:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8825i16 value.
8826
8827.. _int_convert_to_fp16:
8828
8829'``llvm.convert.to.fp16``' Intrinsic
8830^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8831
8832Syntax:
8833"""""""
8834
8835::
8836
Tim Northoverfd7e4242014-07-17 10:51:23 +00008837 declare i16 @llvm.convert.to.fp16.f32(float %a)
8838 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00008839
8840Overview:
8841"""""""""
8842
Tim Northoverfd7e4242014-07-17 10:51:23 +00008843The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8844conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00008845
8846Arguments:
8847""""""""""
8848
8849The intrinsic function contains single argument - the value to be
8850converted.
8851
8852Semantics:
8853""""""""""
8854
Tim Northoverfd7e4242014-07-17 10:51:23 +00008855The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8856conventional floating point format to half precision floating point format. The
8857return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00008858
8859Examples:
8860"""""""""
8861
8862.. code-block:: llvm
8863
Tim Northoverfd7e4242014-07-17 10:51:23 +00008864 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00008865 store i16 %res, i16* @x, align 2
8866
8867.. _int_convert_from_fp16:
8868
8869'``llvm.convert.from.fp16``' Intrinsic
8870^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8871
8872Syntax:
8873"""""""
8874
8875::
8876
Tim Northoverfd7e4242014-07-17 10:51:23 +00008877 declare float @llvm.convert.from.fp16.f32(i16 %a)
8878 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008879
8880Overview:
8881"""""""""
8882
8883The '``llvm.convert.from.fp16``' intrinsic function performs a
8884conversion from half precision floating point format to single precision
8885floating point format.
8886
8887Arguments:
8888""""""""""
8889
8890The intrinsic function contains single argument - the value to be
8891converted.
8892
8893Semantics:
8894""""""""""
8895
8896The '``llvm.convert.from.fp16``' intrinsic function performs a
8897conversion from half single precision floating point format to single
8898precision floating point format. The input half-float value is
8899represented by an ``i16`` value.
8900
8901Examples:
8902"""""""""
8903
8904.. code-block:: llvm
8905
8906 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00008907 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008908
8909Debugger Intrinsics
8910-------------------
8911
8912The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8913prefix), are described in the `LLVM Source Level
8914Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8915document.
8916
8917Exception Handling Intrinsics
8918-----------------------------
8919
8920The LLVM exception handling intrinsics (which all start with
8921``llvm.eh.`` prefix), are described in the `LLVM Exception
8922Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8923
8924.. _int_trampoline:
8925
8926Trampoline Intrinsics
8927---------------------
8928
8929These intrinsics make it possible to excise one parameter, marked with
8930the :ref:`nest <nest>` attribute, from a function. The result is a
8931callable function pointer lacking the nest parameter - the caller does
8932not need to provide a value for it. Instead, the value to use is stored
8933in advance in a "trampoline", a block of memory usually allocated on the
8934stack, which also contains code to splice the nest value into the
8935argument list. This is used to implement the GCC nested function address
8936extension.
8937
8938For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8939then the resulting function pointer has signature ``i32 (i32, i32)*``.
8940It can be created as follows:
8941
8942.. code-block:: llvm
8943
8944 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8945 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8946 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8947 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8948 %fp = bitcast i8* %p to i32 (i32, i32)*
8949
8950The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8951``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8952
8953.. _int_it:
8954
8955'``llvm.init.trampoline``' Intrinsic
8956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8957
8958Syntax:
8959"""""""
8960
8961::
8962
8963 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8964
8965Overview:
8966"""""""""
8967
8968This fills the memory pointed to by ``tramp`` with executable code,
8969turning it into a trampoline.
8970
8971Arguments:
8972""""""""""
8973
8974The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8975pointers. The ``tramp`` argument must point to a sufficiently large and
8976sufficiently aligned block of memory; this memory is written to by the
8977intrinsic. Note that the size and the alignment are target-specific -
8978LLVM currently provides no portable way of determining them, so a
8979front-end that generates this intrinsic needs to have some
8980target-specific knowledge. The ``func`` argument must hold a function
8981bitcast to an ``i8*``.
8982
8983Semantics:
8984""""""""""
8985
8986The block of memory pointed to by ``tramp`` is filled with target
8987dependent code, turning it into a function. Then ``tramp`` needs to be
8988passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8989be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8990function's signature is the same as that of ``func`` with any arguments
8991marked with the ``nest`` attribute removed. At most one such ``nest``
8992argument is allowed, and it must be of pointer type. Calling the new
8993function is equivalent to calling ``func`` with the same argument list,
8994but with ``nval`` used for the missing ``nest`` argument. If, after
8995calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8996modified, then the effect of any later call to the returned function
8997pointer is undefined.
8998
8999.. _int_at:
9000
9001'``llvm.adjust.trampoline``' Intrinsic
9002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9003
9004Syntax:
9005"""""""
9006
9007::
9008
9009 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9010
9011Overview:
9012"""""""""
9013
9014This performs any required machine-specific adjustment to the address of
9015a trampoline (passed as ``tramp``).
9016
9017Arguments:
9018""""""""""
9019
9020``tramp`` must point to a block of memory which already has trampoline
9021code filled in by a previous call to
9022:ref:`llvm.init.trampoline <int_it>`.
9023
9024Semantics:
9025""""""""""
9026
9027On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009028different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009029intrinsic returns the executable address corresponding to ``tramp``
9030after performing the required machine specific adjustments. The pointer
9031returned can then be :ref:`bitcast and executed <int_trampoline>`.
9032
9033Memory Use Markers
9034------------------
9035
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009036This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00009037memory objects and ranges where variables are immutable.
9038
Reid Klecknera534a382013-12-19 02:14:12 +00009039.. _int_lifestart:
9040
Sean Silvab084af42012-12-07 10:36:55 +00009041'``llvm.lifetime.start``' Intrinsic
9042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9043
9044Syntax:
9045"""""""
9046
9047::
9048
9049 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9050
9051Overview:
9052"""""""""
9053
9054The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9055object's lifetime.
9056
9057Arguments:
9058""""""""""
9059
9060The first argument is a constant integer representing the size of the
9061object, or -1 if it is variable sized. The second argument is a pointer
9062to the object.
9063
9064Semantics:
9065""""""""""
9066
9067This intrinsic indicates that before this point in the code, the value
9068of the memory pointed to by ``ptr`` is dead. This means that it is known
9069to never be used and has an undefined value. A load from the pointer
9070that precedes this intrinsic can be replaced with ``'undef'``.
9071
Reid Klecknera534a382013-12-19 02:14:12 +00009072.. _int_lifeend:
9073
Sean Silvab084af42012-12-07 10:36:55 +00009074'``llvm.lifetime.end``' Intrinsic
9075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9076
9077Syntax:
9078"""""""
9079
9080::
9081
9082 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9083
9084Overview:
9085"""""""""
9086
9087The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9088object's lifetime.
9089
9090Arguments:
9091""""""""""
9092
9093The first argument is a constant integer representing the size of the
9094object, or -1 if it is variable sized. The second argument is a pointer
9095to the object.
9096
9097Semantics:
9098""""""""""
9099
9100This intrinsic indicates that after this point in the code, the value of
9101the memory pointed to by ``ptr`` is dead. This means that it is known to
9102never be used and has an undefined value. Any stores into the memory
9103object following this intrinsic may be removed as dead.
9104
9105'``llvm.invariant.start``' Intrinsic
9106^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9107
9108Syntax:
9109"""""""
9110
9111::
9112
9113 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9114
9115Overview:
9116"""""""""
9117
9118The '``llvm.invariant.start``' intrinsic specifies that the contents of
9119a memory object will not change.
9120
9121Arguments:
9122""""""""""
9123
9124The first argument is a constant integer representing the size of the
9125object, or -1 if it is variable sized. The second argument is a pointer
9126to the object.
9127
9128Semantics:
9129""""""""""
9130
9131This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9132the return value, the referenced memory location is constant and
9133unchanging.
9134
9135'``llvm.invariant.end``' Intrinsic
9136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9137
9138Syntax:
9139"""""""
9140
9141::
9142
9143 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9144
9145Overview:
9146"""""""""
9147
9148The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9149memory object are mutable.
9150
9151Arguments:
9152""""""""""
9153
9154The first argument is the matching ``llvm.invariant.start`` intrinsic.
9155The second argument is a constant integer representing the size of the
9156object, or -1 if it is variable sized and the third argument is a
9157pointer to the object.
9158
9159Semantics:
9160""""""""""
9161
9162This intrinsic indicates that the memory is mutable again.
9163
9164General Intrinsics
9165------------------
9166
9167This class of intrinsics is designed to be generic and has no specific
9168purpose.
9169
9170'``llvm.var.annotation``' Intrinsic
9171^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9172
9173Syntax:
9174"""""""
9175
9176::
9177
9178 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9179
9180Overview:
9181"""""""""
9182
9183The '``llvm.var.annotation``' intrinsic.
9184
9185Arguments:
9186""""""""""
9187
9188The first argument is a pointer to a value, the second is a pointer to a
9189global string, the third is a pointer to a global string which is the
9190source file name, and the last argument is the line number.
9191
9192Semantics:
9193""""""""""
9194
9195This intrinsic allows annotation of local variables with arbitrary
9196strings. This can be useful for special purpose optimizations that want
9197to look for these annotations. These have no other defined use; they are
9198ignored by code generation and optimization.
9199
Michael Gottesman88d18832013-03-26 00:34:27 +00009200'``llvm.ptr.annotation.*``' Intrinsic
9201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9202
9203Syntax:
9204"""""""
9205
9206This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9207pointer to an integer of any width. *NOTE* you must specify an address space for
9208the pointer. The identifier for the default address space is the integer
9209'``0``'.
9210
9211::
9212
9213 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9214 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9215 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9216 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9217 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9218
9219Overview:
9220"""""""""
9221
9222The '``llvm.ptr.annotation``' intrinsic.
9223
9224Arguments:
9225""""""""""
9226
9227The first argument is a pointer to an integer value of arbitrary bitwidth
9228(result of some expression), the second is a pointer to a global string, the
9229third is a pointer to a global string which is the source file name, and the
9230last argument is the line number. It returns the value of the first argument.
9231
9232Semantics:
9233""""""""""
9234
9235This intrinsic allows annotation of a pointer to an integer with arbitrary
9236strings. This can be useful for special purpose optimizations that want to look
9237for these annotations. These have no other defined use; they are ignored by code
9238generation and optimization.
9239
Sean Silvab084af42012-12-07 10:36:55 +00009240'``llvm.annotation.*``' Intrinsic
9241^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9242
9243Syntax:
9244"""""""
9245
9246This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9247any integer bit width.
9248
9249::
9250
9251 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9252 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9253 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9254 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9255 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9256
9257Overview:
9258"""""""""
9259
9260The '``llvm.annotation``' intrinsic.
9261
9262Arguments:
9263""""""""""
9264
9265The first argument is an integer value (result of some expression), the
9266second is a pointer to a global string, the third is a pointer to a
9267global string which is the source file name, and the last argument is
9268the line number. It returns the value of the first argument.
9269
9270Semantics:
9271""""""""""
9272
9273This intrinsic allows annotations to be put on arbitrary expressions
9274with arbitrary strings. This can be useful for special purpose
9275optimizations that want to look for these annotations. These have no
9276other defined use; they are ignored by code generation and optimization.
9277
9278'``llvm.trap``' Intrinsic
9279^^^^^^^^^^^^^^^^^^^^^^^^^
9280
9281Syntax:
9282"""""""
9283
9284::
9285
9286 declare void @llvm.trap() noreturn nounwind
9287
9288Overview:
9289"""""""""
9290
9291The '``llvm.trap``' intrinsic.
9292
9293Arguments:
9294""""""""""
9295
9296None.
9297
9298Semantics:
9299""""""""""
9300
9301This intrinsic is lowered to the target dependent trap instruction. If
9302the target does not have a trap instruction, this intrinsic will be
9303lowered to a call of the ``abort()`` function.
9304
9305'``llvm.debugtrap``' Intrinsic
9306^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9307
9308Syntax:
9309"""""""
9310
9311::
9312
9313 declare void @llvm.debugtrap() nounwind
9314
9315Overview:
9316"""""""""
9317
9318The '``llvm.debugtrap``' intrinsic.
9319
9320Arguments:
9321""""""""""
9322
9323None.
9324
9325Semantics:
9326""""""""""
9327
9328This intrinsic is lowered to code which is intended to cause an
9329execution trap with the intention of requesting the attention of a
9330debugger.
9331
9332'``llvm.stackprotector``' Intrinsic
9333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9334
9335Syntax:
9336"""""""
9337
9338::
9339
9340 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9341
9342Overview:
9343"""""""""
9344
9345The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9346onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9347is placed on the stack before local variables.
9348
9349Arguments:
9350""""""""""
9351
9352The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9353The first argument is the value loaded from the stack guard
9354``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9355enough space to hold the value of the guard.
9356
9357Semantics:
9358""""""""""
9359
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009360This intrinsic causes the prologue/epilogue inserter to force the position of
9361the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9362to ensure that if a local variable on the stack is overwritten, it will destroy
9363the value of the guard. When the function exits, the guard on the stack is
9364checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9365different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9366calling the ``__stack_chk_fail()`` function.
9367
9368'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009369^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009370
9371Syntax:
9372"""""""
9373
9374::
9375
9376 declare void @llvm.stackprotectorcheck(i8** <guard>)
9377
9378Overview:
9379"""""""""
9380
9381The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009382created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009383``__stack_chk_fail()`` function.
9384
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009385Arguments:
9386""""""""""
9387
9388The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9389the variable ``@__stack_chk_guard``.
9390
9391Semantics:
9392""""""""""
9393
9394This intrinsic is provided to perform the stack protector check by comparing
9395``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9396values do not match call the ``__stack_chk_fail()`` function.
9397
9398The reason to provide this as an IR level intrinsic instead of implementing it
9399via other IR operations is that in order to perform this operation at the IR
9400level without an intrinsic, one would need to create additional basic blocks to
9401handle the success/failure cases. This makes it difficult to stop the stack
9402protector check from disrupting sibling tail calls in Codegen. With this
9403intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009404codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009405
Sean Silvab084af42012-12-07 10:36:55 +00009406'``llvm.objectsize``' Intrinsic
9407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9408
9409Syntax:
9410"""""""
9411
9412::
9413
9414 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9415 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9416
9417Overview:
9418"""""""""
9419
9420The ``llvm.objectsize`` intrinsic is designed to provide information to
9421the optimizers to determine at compile time whether a) an operation
9422(like memcpy) will overflow a buffer that corresponds to an object, or
9423b) that a runtime check for overflow isn't necessary. An object in this
9424context means an allocation of a specific class, structure, array, or
9425other object.
9426
9427Arguments:
9428""""""""""
9429
9430The ``llvm.objectsize`` intrinsic takes two arguments. The first
9431argument is a pointer to or into the ``object``. The second argument is
9432a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9433or -1 (if false) when the object size is unknown. The second argument
9434only accepts constants.
9435
9436Semantics:
9437""""""""""
9438
9439The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9440the size of the object concerned. If the size cannot be determined at
9441compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9442on the ``min`` argument).
9443
9444'``llvm.expect``' Intrinsic
9445^^^^^^^^^^^^^^^^^^^^^^^^^^^
9446
9447Syntax:
9448"""""""
9449
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009450This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9451integer bit width.
9452
Sean Silvab084af42012-12-07 10:36:55 +00009453::
9454
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009455 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009456 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9457 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9458
9459Overview:
9460"""""""""
9461
9462The ``llvm.expect`` intrinsic provides information about expected (the
9463most probable) value of ``val``, which can be used by optimizers.
9464
9465Arguments:
9466""""""""""
9467
9468The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9469a value. The second argument is an expected value, this needs to be a
9470constant value, variables are not allowed.
9471
9472Semantics:
9473""""""""""
9474
9475This intrinsic is lowered to the ``val``.
9476
Hal Finkel93046912014-07-25 21:13:35 +00009477'``llvm.assume``' Intrinsic
9478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9479
9480Syntax:
9481"""""""
9482
9483::
9484
9485 declare void @llvm.assume(i1 %cond)
9486
9487Overview:
9488"""""""""
9489
9490The ``llvm.assume`` allows the optimizer to assume that the provided
9491condition is true. This information can then be used in simplifying other parts
9492of the code.
9493
9494Arguments:
9495""""""""""
9496
9497The condition which the optimizer may assume is always true.
9498
9499Semantics:
9500""""""""""
9501
9502The intrinsic allows the optimizer to assume that the provided condition is
9503always true whenever the control flow reaches the intrinsic call. No code is
9504generated for this intrinsic, and instructions that contribute only to the
9505provided condition are not used for code generation. If the condition is
9506violated during execution, the behavior is undefined.
9507
9508Please note that optimizer might limit the transformations performed on values
9509used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9510only used to form the intrinsic's input argument. This might prove undesirable
9511if the extra information provided by the ``llvm.assume`` intrinsic does cause
9512sufficient overall improvement in code quality. For this reason,
9513``llvm.assume`` should not be used to document basic mathematical invariants
9514that the optimizer can otherwise deduce or facts that are of little use to the
9515optimizer.
9516
Sean Silvab084af42012-12-07 10:36:55 +00009517'``llvm.donothing``' Intrinsic
9518^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9519
9520Syntax:
9521"""""""
9522
9523::
9524
9525 declare void @llvm.donothing() nounwind readnone
9526
9527Overview:
9528"""""""""
9529
9530The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9531only intrinsic that can be called with an invoke instruction.
9532
9533Arguments:
9534""""""""""
9535
9536None.
9537
9538Semantics:
9539""""""""""
9540
9541This intrinsic does nothing, and it's removed by optimizers and ignored
9542by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009543
9544Stack Map Intrinsics
9545--------------------
9546
9547LLVM provides experimental intrinsics to support runtime patching
9548mechanisms commonly desired in dynamic language JITs. These intrinsics
9549are described in :doc:`StackMaps`.