blob: a310240804d343a950c3e67929eadaaf0b7e8769 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Richard Smith32dbdf62014-07-31 04:25:36 +000078 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000165 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000173 !0 = metadata !{i32 42, null, metadata !"string"}
174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
351 arguments into registers but allows them to be dynamcially
352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
356 This calling convention attempts to make the code in the caller as little
357 intrusive as possible. This calling convention behaves identical to the `C`
358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
371 of code that doesn't many registers. The cold path might need to call out to
372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Bob Wilson85b24f22014-06-12 20:40:33 +0000524Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000591Variables and aliasaes can have a
592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
599 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000600
Sean Silvab084af42012-12-07 10:36:55 +0000601For example, the following defines a global in a numbered address space
602with an initializer, section, and alignment:
603
604.. code-block:: llvm
605
606 @G = addrspace(5) constant float 1.0, section "foo", align 4
607
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000608The following example just declares a global variable
609
610.. code-block:: llvm
611
612 @G = external global i32
613
Sean Silvab084af42012-12-07 10:36:55 +0000614The following example defines a thread-local global with the
615``initialexec`` TLS model:
616
617.. code-block:: llvm
618
619 @G = thread_local(initialexec) global i32 0, align 4
620
621.. _functionstructure:
622
623Functions
624---------
625
626LLVM function definitions consist of the "``define``" keyword, an
627optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000628style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
629an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000630an optional ``unnamed_addr`` attribute, a return type, an optional
631:ref:`parameter attribute <paramattrs>` for the return type, a function
632name, a (possibly empty) argument list (each with optional :ref:`parameter
633attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000634an optional section, an optional alignment,
635an optional :ref:`comdat <langref_comdats>`,
636an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000637curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000638
639LLVM function declarations consist of the "``declare``" keyword, an
640optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000641style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
642an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000643an optional ``unnamed_addr`` attribute, a return type, an optional
644:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000645name, a possibly empty list of arguments, an optional alignment, an optional
646:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000647
Bill Wendling6822ecb2013-10-27 05:09:12 +0000648A function definition contains a list of basic blocks, forming the CFG (Control
649Flow Graph) for the function. Each basic block may optionally start with a label
650(giving the basic block a symbol table entry), contains a list of instructions,
651and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
652function return). If an explicit label is not provided, a block is assigned an
653implicit numbered label, using the next value from the same counter as used for
654unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
655entry block does not have an explicit label, it will be assigned label "%0",
656then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000657
658The first basic block in a function is special in two ways: it is
659immediately executed on entrance to the function, and it is not allowed
660to have predecessor basic blocks (i.e. there can not be any branches to
661the entry block of a function). Because the block can have no
662predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
663
664LLVM allows an explicit section to be specified for functions. If the
665target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000666Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000667
668An explicit alignment may be specified for a function. If not present,
669or if the alignment is set to zero, the alignment of the function is set
670by the target to whatever it feels convenient. If an explicit alignment
671is specified, the function is forced to have at least that much
672alignment. All alignments must be a power of 2.
673
674If the ``unnamed_addr`` attribute is given, the address is know to not
675be significant and two identical functions can be merged.
676
677Syntax::
678
Nico Rieck7157bb72014-01-14 15:22:47 +0000679 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000680 [cconv] [ret attrs]
681 <ResultType> @<FunctionName> ([argument list])
David Majnemerdad0a642014-06-27 18:19:56 +0000682 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>]
683 [align N] [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000684
Dan Liew2661dfc2014-08-20 15:06:30 +0000685The argument list is a comma seperated sequence of arguments where each
686argument is of the following form
687
688Syntax::
689
690 <type> [parameter Attrs] [name]
691
692
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000693.. _langref_aliases:
694
Sean Silvab084af42012-12-07 10:36:55 +0000695Aliases
696-------
697
Rafael Espindola64c1e182014-06-03 02:41:57 +0000698Aliases, unlike function or variables, don't create any new data. They
699are just a new symbol and metadata for an existing position.
700
701Aliases have a name and an aliasee that is either a global value or a
702constant expression.
703
Nico Rieck7157bb72014-01-14 15:22:47 +0000704Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000705:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
706<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000707
708Syntax::
709
Rafael Espindola464fe022014-07-30 22:51:54 +0000710 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000711
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000712The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000713``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000714might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000715
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000716Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000717the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
718to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000719
Rafael Espindola64c1e182014-06-03 02:41:57 +0000720Since aliases are only a second name, some restrictions apply, of which
721some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000722
Rafael Espindola64c1e182014-06-03 02:41:57 +0000723* The expression defining the aliasee must be computable at assembly
724 time. Since it is just a name, no relocations can be used.
725
726* No alias in the expression can be weak as the possibility of the
727 intermediate alias being overridden cannot be represented in an
728 object file.
729
730* No global value in the expression can be a declaration, since that
731 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000732
David Majnemerdad0a642014-06-27 18:19:56 +0000733.. _langref_comdats:
734
735Comdats
736-------
737
738Comdat IR provides access to COFF and ELF object file COMDAT functionality.
739
Richard Smith32dbdf62014-07-31 04:25:36 +0000740Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000741specify this key will only end up in the final object file if the linker chooses
742that key over some other key. Aliases are placed in the same COMDAT that their
743aliasee computes to, if any.
744
745Comdats have a selection kind to provide input on how the linker should
746choose between keys in two different object files.
747
748Syntax::
749
750 $<Name> = comdat SelectionKind
751
752The selection kind must be one of the following:
753
754``any``
755 The linker may choose any COMDAT key, the choice is arbitrary.
756``exactmatch``
757 The linker may choose any COMDAT key but the sections must contain the
758 same data.
759``largest``
760 The linker will choose the section containing the largest COMDAT key.
761``noduplicates``
762 The linker requires that only section with this COMDAT key exist.
763``samesize``
764 The linker may choose any COMDAT key but the sections must contain the
765 same amount of data.
766
767Note that the Mach-O platform doesn't support COMDATs and ELF only supports
768``any`` as a selection kind.
769
770Here is an example of a COMDAT group where a function will only be selected if
771the COMDAT key's section is the largest:
772
773.. code-block:: llvm
774
775 $foo = comdat largest
776 @foo = global i32 2, comdat $foo
777
778 define void @bar() comdat $foo {
779 ret void
780 }
781
782In a COFF object file, this will create a COMDAT section with selection kind
783``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
784and another COMDAT section with selection kind
785``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
786section and contains the contents of the ``@baz`` symbol.
787
788There are some restrictions on the properties of the global object.
789It, or an alias to it, must have the same name as the COMDAT group when
790targeting COFF.
791The contents and size of this object may be used during link-time to determine
792which COMDAT groups get selected depending on the selection kind.
793Because the name of the object must match the name of the COMDAT group, the
794linkage of the global object must not be local; local symbols can get renamed
795if a collision occurs in the symbol table.
796
797The combined use of COMDATS and section attributes may yield surprising results.
798For example:
799
800.. code-block:: llvm
801
802 $foo = comdat any
803 $bar = comdat any
804 @g1 = global i32 42, section "sec", comdat $foo
805 @g2 = global i32 42, section "sec", comdat $bar
806
807From the object file perspective, this requires the creation of two sections
808with the same name. This is necessary because both globals belong to different
809COMDAT groups and COMDATs, at the object file level, are represented by
810sections.
811
812Note that certain IR constructs like global variables and functions may create
813COMDATs in the object file in addition to any which are specified using COMDAT
814IR. This arises, for example, when a global variable has linkonce_odr linkage.
815
Sean Silvab084af42012-12-07 10:36:55 +0000816.. _namedmetadatastructure:
817
818Named Metadata
819--------------
820
821Named metadata is a collection of metadata. :ref:`Metadata
822nodes <metadata>` (but not metadata strings) are the only valid
823operands for a named metadata.
824
825Syntax::
826
827 ; Some unnamed metadata nodes, which are referenced by the named metadata.
828 !0 = metadata !{metadata !"zero"}
829 !1 = metadata !{metadata !"one"}
830 !2 = metadata !{metadata !"two"}
831 ; A named metadata.
832 !name = !{!0, !1, !2}
833
834.. _paramattrs:
835
836Parameter Attributes
837--------------------
838
839The return type and each parameter of a function type may have a set of
840*parameter attributes* associated with them. Parameter attributes are
841used to communicate additional information about the result or
842parameters of a function. Parameter attributes are considered to be part
843of the function, not of the function type, so functions with different
844parameter attributes can have the same function type.
845
846Parameter attributes are simple keywords that follow the type specified.
847If multiple parameter attributes are needed, they are space separated.
848For example:
849
850.. code-block:: llvm
851
852 declare i32 @printf(i8* noalias nocapture, ...)
853 declare i32 @atoi(i8 zeroext)
854 declare signext i8 @returns_signed_char()
855
856Note that any attributes for the function result (``nounwind``,
857``readonly``) come immediately after the argument list.
858
859Currently, only the following parameter attributes are defined:
860
861``zeroext``
862 This indicates to the code generator that the parameter or return
863 value should be zero-extended to the extent required by the target's
864 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
865 the caller (for a parameter) or the callee (for a return value).
866``signext``
867 This indicates to the code generator that the parameter or return
868 value should be sign-extended to the extent required by the target's
869 ABI (which is usually 32-bits) by the caller (for a parameter) or
870 the callee (for a return value).
871``inreg``
872 This indicates that this parameter or return value should be treated
873 in a special target-dependent fashion during while emitting code for
874 a function call or return (usually, by putting it in a register as
875 opposed to memory, though some targets use it to distinguish between
876 two different kinds of registers). Use of this attribute is
877 target-specific.
878``byval``
879 This indicates that the pointer parameter should really be passed by
880 value to the function. The attribute implies that a hidden copy of
881 the pointee is made between the caller and the callee, so the callee
882 is unable to modify the value in the caller. This attribute is only
883 valid on LLVM pointer arguments. It is generally used to pass
884 structs and arrays by value, but is also valid on pointers to
885 scalars. The copy is considered to belong to the caller not the
886 callee (for example, ``readonly`` functions should not write to
887 ``byval`` parameters). This is not a valid attribute for return
888 values.
889
890 The byval attribute also supports specifying an alignment with the
891 align attribute. It indicates the alignment of the stack slot to
892 form and the known alignment of the pointer specified to the call
893 site. If the alignment is not specified, then the code generator
894 makes a target-specific assumption.
895
Reid Klecknera534a382013-12-19 02:14:12 +0000896.. _attr_inalloca:
897
898``inalloca``
899
Reid Kleckner60d3a832014-01-16 22:59:24 +0000900 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000901 address of outgoing stack arguments. An ``inalloca`` argument must
902 be a pointer to stack memory produced by an ``alloca`` instruction.
903 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000904 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000905 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000906
Reid Kleckner436c42e2014-01-17 23:58:17 +0000907 An argument allocation may be used by a call at most once because
908 the call may deallocate it. The ``inalloca`` attribute cannot be
909 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000910 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
911 ``inalloca`` attribute also disables LLVM's implicit lowering of
912 large aggregate return values, which means that frontend authors
913 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000914
Reid Kleckner60d3a832014-01-16 22:59:24 +0000915 When the call site is reached, the argument allocation must have
916 been the most recent stack allocation that is still live, or the
917 results are undefined. It is possible to allocate additional stack
918 space after an argument allocation and before its call site, but it
919 must be cleared off with :ref:`llvm.stackrestore
920 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000921
922 See :doc:`InAlloca` for more information on how to use this
923 attribute.
924
Sean Silvab084af42012-12-07 10:36:55 +0000925``sret``
926 This indicates that the pointer parameter specifies the address of a
927 structure that is the return value of the function in the source
928 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000929 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000930 not to trap and to be properly aligned. This may only be applied to
931 the first parameter. This is not a valid attribute for return
932 values.
Sean Silva1703e702014-04-08 21:06:22 +0000933
Hal Finkelccc70902014-07-22 16:58:55 +0000934``align <n>``
935 This indicates that the pointer value may be assumed by the optimizer to
936 have the specified alignment.
937
938 Note that this attribute has additional semantics when combined with the
939 ``byval`` attribute.
940
Sean Silva1703e702014-04-08 21:06:22 +0000941.. _noalias:
942
Sean Silvab084af42012-12-07 10:36:55 +0000943``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000944 This indicates that pointer values :ref:`based <pointeraliasing>` on
Richard Smith32dbdf62014-07-31 04:25:36 +0000945 the argument or return value do not alias pointer values that are
Sean Silvab084af42012-12-07 10:36:55 +0000946 not *based* on it, ignoring certain "irrelevant" dependencies. For a
947 call to the parent function, dependencies between memory references
948 from before or after the call and from those during the call are
949 "irrelevant" to the ``noalias`` keyword for the arguments and return
950 value used in that call. The caller shares the responsibility with
951 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000952 details, please see the discussion of the NoAlias response in :ref:`alias
953 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000954
955 Note that this definition of ``noalias`` is intentionally similar
956 to the definition of ``restrict`` in C99 for function arguments,
957 though it is slightly weaker.
958
959 For function return values, C99's ``restrict`` is not meaningful,
960 while LLVM's ``noalias`` is.
961``nocapture``
962 This indicates that the callee does not make any copies of the
963 pointer that outlive the callee itself. This is not a valid
964 attribute for return values.
965
966.. _nest:
967
968``nest``
969 This indicates that the pointer parameter can be excised using the
970 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000971 attribute for return values and can only be applied to one parameter.
972
973``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000974 This indicates that the function always returns the argument as its return
975 value. This is an optimization hint to the code generator when generating
976 the caller, allowing tail call optimization and omission of register saves
977 and restores in some cases; it is not checked or enforced when generating
978 the callee. The parameter and the function return type must be valid
979 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
980 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000981
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000982``nonnull``
983 This indicates that the parameter or return pointer is not null. This
984 attribute may only be applied to pointer typed parameters. This is not
985 checked or enforced by LLVM, the caller must ensure that the pointer
986 passed in is non-null, or the callee must ensure that the returned pointer
987 is non-null.
988
Hal Finkelb0407ba2014-07-18 15:51:28 +0000989``dereferenceable(<n>)``
990 This indicates that the parameter or return pointer is dereferenceable. This
991 attribute may only be applied to pointer typed parameters. A pointer that
992 is dereferenceable can be loaded from speculatively without a risk of
993 trapping. The number of bytes known to be dereferenceable must be provided
994 in parentheses. It is legal for the number of bytes to be less than the
995 size of the pointee type. The ``nonnull`` attribute does not imply
996 dereferenceability (consider a pointer to one element past the end of an
997 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
998 ``addrspace(0)`` (which is the default address space).
999
Sean Silvab084af42012-12-07 10:36:55 +00001000.. _gc:
1001
1002Garbage Collector Names
1003-----------------------
1004
1005Each function may specify a garbage collector name, which is simply a
1006string:
1007
1008.. code-block:: llvm
1009
1010 define void @f() gc "name" { ... }
1011
1012The compiler declares the supported values of *name*. Specifying a
Richard Smith32dbdf62014-07-31 04:25:36 +00001013collector will cause the compiler to alter its output in order to
Sean Silvab084af42012-12-07 10:36:55 +00001014support the named garbage collection algorithm.
1015
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001016.. _prefixdata:
1017
1018Prefix Data
1019-----------
1020
1021Prefix data is data associated with a function which the code generator
1022will emit immediately before the function body. The purpose of this feature
1023is to allow frontends to associate language-specific runtime metadata with
1024specific functions and make it available through the function pointer while
1025still allowing the function pointer to be called. To access the data for a
1026given function, a program may bitcast the function pointer to a pointer to
1027the constant's type. This implies that the IR symbol points to the start
1028of the prefix data.
1029
1030To maintain the semantics of ordinary function calls, the prefix data must
1031have a particular format. Specifically, it must begin with a sequence of
1032bytes which decode to a sequence of machine instructions, valid for the
1033module's target, which transfer control to the point immediately succeeding
1034the prefix data, without performing any other visible action. This allows
1035the inliner and other passes to reason about the semantics of the function
1036definition without needing to reason about the prefix data. Obviously this
1037makes the format of the prefix data highly target dependent.
1038
Peter Collingbourne213358a2013-09-23 20:14:21 +00001039Prefix data is laid out as if it were an initializer for a global variable
1040of the prefix data's type. No padding is automatically placed between the
1041prefix data and the function body. If padding is required, it must be part
1042of the prefix data.
1043
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001044A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
1045which encodes the ``nop`` instruction:
1046
1047.. code-block:: llvm
1048
1049 define void @f() prefix i8 144 { ... }
1050
1051Generally prefix data can be formed by encoding a relative branch instruction
1052which skips the metadata, as in this example of valid prefix data for the
1053x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1054
1055.. code-block:: llvm
1056
1057 %0 = type <{ i8, i8, i8* }>
1058
1059 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
1060
1061A function may have prefix data but no body. This has similar semantics
1062to the ``available_externally`` linkage in that the data may be used by the
1063optimizers but will not be emitted in the object file.
1064
Bill Wendling63b88192013-02-06 06:52:58 +00001065.. _attrgrp:
1066
1067Attribute Groups
1068----------------
1069
1070Attribute groups are groups of attributes that are referenced by objects within
1071the IR. They are important for keeping ``.ll`` files readable, because a lot of
1072functions will use the same set of attributes. In the degenerative case of a
1073``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1074group will capture the important command line flags used to build that file.
1075
1076An attribute group is a module-level object. To use an attribute group, an
1077object references the attribute group's ID (e.g. ``#37``). An object may refer
1078to more than one attribute group. In that situation, the attributes from the
1079different groups are merged.
1080
1081Here is an example of attribute groups for a function that should always be
1082inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1083
1084.. code-block:: llvm
1085
1086 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001087 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001088
1089 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001090 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001091
1092 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1093 define void @f() #0 #1 { ... }
1094
Sean Silvab084af42012-12-07 10:36:55 +00001095.. _fnattrs:
1096
1097Function Attributes
1098-------------------
1099
1100Function attributes are set to communicate additional information about
1101a function. Function attributes are considered to be part of the
1102function, not of the function type, so functions with different function
1103attributes can have the same function type.
1104
1105Function attributes are simple keywords that follow the type specified.
1106If multiple attributes are needed, they are space separated. For
1107example:
1108
1109.. code-block:: llvm
1110
1111 define void @f() noinline { ... }
1112 define void @f() alwaysinline { ... }
1113 define void @f() alwaysinline optsize { ... }
1114 define void @f() optsize { ... }
1115
Sean Silvab084af42012-12-07 10:36:55 +00001116``alignstack(<n>)``
1117 This attribute indicates that, when emitting the prologue and
1118 epilogue, the backend should forcibly align the stack pointer.
1119 Specify the desired alignment, which must be a power of two, in
1120 parentheses.
1121``alwaysinline``
1122 This attribute indicates that the inliner should attempt to inline
1123 this function into callers whenever possible, ignoring any active
1124 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001125``builtin``
1126 This indicates that the callee function at a call site should be
1127 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001128 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001129 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001130 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001131``cold``
1132 This attribute indicates that this function is rarely called. When
1133 computing edge weights, basic blocks post-dominated by a cold
1134 function call are also considered to be cold; and, thus, given low
1135 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001136``inlinehint``
1137 This attribute indicates that the source code contained a hint that
1138 inlining this function is desirable (such as the "inline" keyword in
1139 C/C++). It is just a hint; it imposes no requirements on the
1140 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001141``jumptable``
1142 This attribute indicates that the function should be added to a
1143 jump-instruction table at code-generation time, and that all address-taken
1144 references to this function should be replaced with a reference to the
1145 appropriate jump-instruction-table function pointer. Note that this creates
1146 a new pointer for the original function, which means that code that depends
1147 on function-pointer identity can break. So, any function annotated with
1148 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001149``minsize``
1150 This attribute suggests that optimization passes and code generator
1151 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001152 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001153 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001154``naked``
1155 This attribute disables prologue / epilogue emission for the
1156 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001157``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001158 This indicates that the callee function at a call site is not recognized as
1159 a built-in function. LLVM will retain the original call and not replace it
1160 with equivalent code based on the semantics of the built-in function, unless
1161 the call site uses the ``builtin`` attribute. This is valid at call sites
1162 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001163``noduplicate``
1164 This attribute indicates that calls to the function cannot be
1165 duplicated. A call to a ``noduplicate`` function may be moved
1166 within its parent function, but may not be duplicated within
1167 its parent function.
1168
1169 A function containing a ``noduplicate`` call may still
1170 be an inlining candidate, provided that the call is not
1171 duplicated by inlining. That implies that the function has
1172 internal linkage and only has one call site, so the original
1173 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001174``noimplicitfloat``
1175 This attributes disables implicit floating point instructions.
1176``noinline``
1177 This attribute indicates that the inliner should never inline this
1178 function in any situation. This attribute may not be used together
1179 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001180``nonlazybind``
1181 This attribute suppresses lazy symbol binding for the function. This
1182 may make calls to the function faster, at the cost of extra program
1183 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001184``noredzone``
1185 This attribute indicates that the code generator should not use a
1186 red zone, even if the target-specific ABI normally permits it.
1187``noreturn``
1188 This function attribute indicates that the function never returns
1189 normally. This produces undefined behavior at runtime if the
1190 function ever does dynamically return.
1191``nounwind``
1192 This function attribute indicates that the function never returns
1193 with an unwind or exceptional control flow. If the function does
1194 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001195``optnone``
1196 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001197 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001198 exception of interprocedural optimization passes.
1199 This attribute cannot be used together with the ``alwaysinline``
1200 attribute; this attribute is also incompatible
1201 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001202
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001203 This attribute requires the ``noinline`` attribute to be specified on
1204 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001205 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001206 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001207``optsize``
1208 This attribute suggests that optimization passes and code generator
1209 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001210 and otherwise do optimizations specifically to reduce code size as
1211 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001212``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001213 On a function, this attribute indicates that the function computes its
1214 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001215 without dereferencing any pointer arguments or otherwise accessing
1216 any mutable state (e.g. memory, control registers, etc) visible to
1217 caller functions. It does not write through any pointer arguments
1218 (including ``byval`` arguments) and never changes any state visible
1219 to callers. This means that it cannot unwind exceptions by calling
1220 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001221
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001222 On an argument, this attribute indicates that the function does not
1223 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001224 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001225``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001226 On a function, this attribute indicates that the function does not write
1227 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001228 modify any state (e.g. memory, control registers, etc) visible to
1229 caller functions. It may dereference pointer arguments and read
1230 state that may be set in the caller. A readonly function always
1231 returns the same value (or unwinds an exception identically) when
1232 called with the same set of arguments and global state. It cannot
1233 unwind an exception by calling the ``C++`` exception throwing
1234 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001235
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001236 On an argument, this attribute indicates that the function does not write
1237 through this pointer argument, even though it may write to the memory that
1238 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001239``returns_twice``
1240 This attribute indicates that this function can return twice. The C
1241 ``setjmp`` is an example of such a function. The compiler disables
1242 some optimizations (like tail calls) in the caller of these
1243 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001244``sanitize_address``
1245 This attribute indicates that AddressSanitizer checks
1246 (dynamic address safety analysis) are enabled for this function.
1247``sanitize_memory``
1248 This attribute indicates that MemorySanitizer checks (dynamic detection
1249 of accesses to uninitialized memory) are enabled for this function.
1250``sanitize_thread``
1251 This attribute indicates that ThreadSanitizer checks
1252 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001253``ssp``
1254 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001255 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001256 placed on the stack before the local variables that's checked upon
1257 return from the function to see if it has been overwritten. A
1258 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001259 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001260
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001261 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1262 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1263 - Calls to alloca() with variable sizes or constant sizes greater than
1264 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001265
Josh Magee24c7f062014-02-01 01:36:16 +00001266 Variables that are identified as requiring a protector will be arranged
1267 on the stack such that they are adjacent to the stack protector guard.
1268
Sean Silvab084af42012-12-07 10:36:55 +00001269 If a function that has an ``ssp`` attribute is inlined into a
1270 function that doesn't have an ``ssp`` attribute, then the resulting
1271 function will have an ``ssp`` attribute.
1272``sspreq``
1273 This attribute indicates that the function should *always* emit a
1274 stack smashing protector. This overrides the ``ssp`` function
1275 attribute.
1276
Josh Magee24c7f062014-02-01 01:36:16 +00001277 Variables that are identified as requiring a protector will be arranged
1278 on the stack such that they are adjacent to the stack protector guard.
1279 The specific layout rules are:
1280
1281 #. Large arrays and structures containing large arrays
1282 (``>= ssp-buffer-size``) are closest to the stack protector.
1283 #. Small arrays and structures containing small arrays
1284 (``< ssp-buffer-size``) are 2nd closest to the protector.
1285 #. Variables that have had their address taken are 3rd closest to the
1286 protector.
1287
Sean Silvab084af42012-12-07 10:36:55 +00001288 If a function that has an ``sspreq`` attribute is inlined into a
1289 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001290 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1291 an ``sspreq`` attribute.
1292``sspstrong``
1293 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001294 protector. This attribute causes a strong heuristic to be used when
1295 determining if a function needs stack protectors. The strong heuristic
1296 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001297
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001298 - Arrays of any size and type
1299 - Aggregates containing an array of any size and type.
1300 - Calls to alloca().
1301 - Local variables that have had their address taken.
1302
Josh Magee24c7f062014-02-01 01:36:16 +00001303 Variables that are identified as requiring a protector will be arranged
1304 on the stack such that they are adjacent to the stack protector guard.
1305 The specific layout rules are:
1306
1307 #. Large arrays and structures containing large arrays
1308 (``>= ssp-buffer-size``) are closest to the stack protector.
1309 #. Small arrays and structures containing small arrays
1310 (``< ssp-buffer-size``) are 2nd closest to the protector.
1311 #. Variables that have had their address taken are 3rd closest to the
1312 protector.
1313
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001314 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001315
1316 If a function that has an ``sspstrong`` attribute is inlined into a
1317 function that doesn't have an ``sspstrong`` attribute, then the
1318 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001319``uwtable``
1320 This attribute indicates that the ABI being targeted requires that
1321 an unwind table entry be produce for this function even if we can
1322 show that no exceptions passes by it. This is normally the case for
1323 the ELF x86-64 abi, but it can be disabled for some compilation
1324 units.
Sean Silvab084af42012-12-07 10:36:55 +00001325
1326.. _moduleasm:
1327
1328Module-Level Inline Assembly
1329----------------------------
1330
1331Modules may contain "module-level inline asm" blocks, which corresponds
1332to the GCC "file scope inline asm" blocks. These blocks are internally
1333concatenated by LLVM and treated as a single unit, but may be separated
1334in the ``.ll`` file if desired. The syntax is very simple:
1335
1336.. code-block:: llvm
1337
1338 module asm "inline asm code goes here"
1339 module asm "more can go here"
1340
1341The strings can contain any character by escaping non-printable
1342characters. The escape sequence used is simply "\\xx" where "xx" is the
1343two digit hex code for the number.
1344
1345The inline asm code is simply printed to the machine code .s file when
1346assembly code is generated.
1347
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001348.. _langref_datalayout:
1349
Sean Silvab084af42012-12-07 10:36:55 +00001350Data Layout
1351-----------
1352
1353A module may specify a target specific data layout string that specifies
1354how data is to be laid out in memory. The syntax for the data layout is
1355simply:
1356
1357.. code-block:: llvm
1358
1359 target datalayout = "layout specification"
1360
1361The *layout specification* consists of a list of specifications
1362separated by the minus sign character ('-'). Each specification starts
1363with a letter and may include other information after the letter to
1364define some aspect of the data layout. The specifications accepted are
1365as follows:
1366
1367``E``
1368 Specifies that the target lays out data in big-endian form. That is,
1369 the bits with the most significance have the lowest address
1370 location.
1371``e``
1372 Specifies that the target lays out data in little-endian form. That
1373 is, the bits with the least significance have the lowest address
1374 location.
1375``S<size>``
1376 Specifies the natural alignment of the stack in bits. Alignment
1377 promotion of stack variables is limited to the natural stack
1378 alignment to avoid dynamic stack realignment. The stack alignment
1379 must be a multiple of 8-bits. If omitted, the natural stack
1380 alignment defaults to "unspecified", which does not prevent any
1381 alignment promotions.
1382``p[n]:<size>:<abi>:<pref>``
1383 This specifies the *size* of a pointer and its ``<abi>`` and
1384 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001385 bits. The address space, ``n`` is optional, and if not specified,
1386 denotes the default address space 0. The value of ``n`` must be
1387 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001388``i<size>:<abi>:<pref>``
1389 This specifies the alignment for an integer type of a given bit
1390 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1391``v<size>:<abi>:<pref>``
1392 This specifies the alignment for a vector type of a given bit
1393 ``<size>``.
1394``f<size>:<abi>:<pref>``
1395 This specifies the alignment for a floating point type of a given bit
1396 ``<size>``. Only values of ``<size>`` that are supported by the target
1397 will work. 32 (float) and 64 (double) are supported on all targets; 80
1398 or 128 (different flavors of long double) are also supported on some
1399 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001400``a:<abi>:<pref>``
1401 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001402``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001403 If present, specifies that llvm names are mangled in the output. The
1404 options are
1405
1406 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1407 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1408 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1409 symbols get a ``_`` prefix.
1410 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1411 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001412``n<size1>:<size2>:<size3>...``
1413 This specifies a set of native integer widths for the target CPU in
1414 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1415 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1416 this set are considered to support most general arithmetic operations
1417 efficiently.
1418
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001419On every specification that takes a ``<abi>:<pref>``, specifying the
1420``<pref>`` alignment is optional. If omitted, the preceding ``:``
1421should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1422
Sean Silvab084af42012-12-07 10:36:55 +00001423When constructing the data layout for a given target, LLVM starts with a
1424default set of specifications which are then (possibly) overridden by
1425the specifications in the ``datalayout`` keyword. The default
1426specifications are given in this list:
1427
1428- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001429- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1430- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1431 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001432- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001433- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1434- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1435- ``i16:16:16`` - i16 is 16-bit aligned
1436- ``i32:32:32`` - i32 is 32-bit aligned
1437- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1438 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001439- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001440- ``f32:32:32`` - float is 32-bit aligned
1441- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001442- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001443- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1444- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001445- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001446
1447When LLVM is determining the alignment for a given type, it uses the
1448following rules:
1449
1450#. If the type sought is an exact match for one of the specifications,
1451 that specification is used.
1452#. If no match is found, and the type sought is an integer type, then
1453 the smallest integer type that is larger than the bitwidth of the
1454 sought type is used. If none of the specifications are larger than
1455 the bitwidth then the largest integer type is used. For example,
1456 given the default specifications above, the i7 type will use the
1457 alignment of i8 (next largest) while both i65 and i256 will use the
1458 alignment of i64 (largest specified).
1459#. If no match is found, and the type sought is a vector type, then the
1460 largest vector type that is smaller than the sought vector type will
1461 be used as a fall back. This happens because <128 x double> can be
1462 implemented in terms of 64 <2 x double>, for example.
1463
1464The function of the data layout string may not be what you expect.
1465Notably, this is not a specification from the frontend of what alignment
1466the code generator should use.
1467
1468Instead, if specified, the target data layout is required to match what
1469the ultimate *code generator* expects. This string is used by the
1470mid-level optimizers to improve code, and this only works if it matches
1471what the ultimate code generator uses. If you would like to generate IR
1472that does not embed this target-specific detail into the IR, then you
1473don't have to specify the string. This will disable some optimizations
1474that require precise layout information, but this also prevents those
1475optimizations from introducing target specificity into the IR.
1476
Bill Wendling5cc90842013-10-18 23:41:25 +00001477.. _langref_triple:
1478
1479Target Triple
1480-------------
1481
1482A module may specify a target triple string that describes the target
1483host. The syntax for the target triple is simply:
1484
1485.. code-block:: llvm
1486
1487 target triple = "x86_64-apple-macosx10.7.0"
1488
1489The *target triple* string consists of a series of identifiers delimited
1490by the minus sign character ('-'). The canonical forms are:
1491
1492::
1493
1494 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1495 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1496
1497This information is passed along to the backend so that it generates
1498code for the proper architecture. It's possible to override this on the
1499command line with the ``-mtriple`` command line option.
1500
Sean Silvab084af42012-12-07 10:36:55 +00001501.. _pointeraliasing:
1502
1503Pointer Aliasing Rules
1504----------------------
1505
1506Any memory access must be done through a pointer value associated with
1507an address range of the memory access, otherwise the behavior is
1508undefined. Pointer values are associated with address ranges according
1509to the following rules:
1510
1511- A pointer value is associated with the addresses associated with any
1512 value it is *based* on.
1513- An address of a global variable is associated with the address range
1514 of the variable's storage.
1515- The result value of an allocation instruction is associated with the
1516 address range of the allocated storage.
1517- A null pointer in the default address-space is associated with no
1518 address.
1519- An integer constant other than zero or a pointer value returned from
1520 a function not defined within LLVM may be associated with address
1521 ranges allocated through mechanisms other than those provided by
1522 LLVM. Such ranges shall not overlap with any ranges of addresses
1523 allocated by mechanisms provided by LLVM.
1524
1525A pointer value is *based* on another pointer value according to the
1526following rules:
1527
1528- A pointer value formed from a ``getelementptr`` operation is *based*
1529 on the first operand of the ``getelementptr``.
1530- The result value of a ``bitcast`` is *based* on the operand of the
1531 ``bitcast``.
1532- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1533 values that contribute (directly or indirectly) to the computation of
1534 the pointer's value.
1535- The "*based* on" relationship is transitive.
1536
1537Note that this definition of *"based"* is intentionally similar to the
1538definition of *"based"* in C99, though it is slightly weaker.
1539
1540LLVM IR does not associate types with memory. The result type of a
1541``load`` merely indicates the size and alignment of the memory from
1542which to load, as well as the interpretation of the value. The first
1543operand type of a ``store`` similarly only indicates the size and
1544alignment of the store.
1545
1546Consequently, type-based alias analysis, aka TBAA, aka
1547``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1548:ref:`Metadata <metadata>` may be used to encode additional information
1549which specialized optimization passes may use to implement type-based
1550alias analysis.
1551
1552.. _volatile:
1553
1554Volatile Memory Accesses
1555------------------------
1556
1557Certain memory accesses, such as :ref:`load <i_load>`'s,
1558:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1559marked ``volatile``. The optimizers must not change the number of
1560volatile operations or change their order of execution relative to other
1561volatile operations. The optimizers *may* change the order of volatile
1562operations relative to non-volatile operations. This is not Java's
1563"volatile" and has no cross-thread synchronization behavior.
1564
Andrew Trick89fc5a62013-01-30 21:19:35 +00001565IR-level volatile loads and stores cannot safely be optimized into
1566llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1567flagged volatile. Likewise, the backend should never split or merge
1568target-legal volatile load/store instructions.
1569
Andrew Trick7e6f9282013-01-31 00:49:39 +00001570.. admonition:: Rationale
1571
1572 Platforms may rely on volatile loads and stores of natively supported
1573 data width to be executed as single instruction. For example, in C
1574 this holds for an l-value of volatile primitive type with native
1575 hardware support, but not necessarily for aggregate types. The
1576 frontend upholds these expectations, which are intentionally
1577 unspecified in the IR. The rules above ensure that IR transformation
1578 do not violate the frontend's contract with the language.
1579
Sean Silvab084af42012-12-07 10:36:55 +00001580.. _memmodel:
1581
1582Memory Model for Concurrent Operations
1583--------------------------------------
1584
1585The LLVM IR does not define any way to start parallel threads of
1586execution or to register signal handlers. Nonetheless, there are
1587platform-specific ways to create them, and we define LLVM IR's behavior
1588in their presence. This model is inspired by the C++0x memory model.
1589
1590For a more informal introduction to this model, see the :doc:`Atomics`.
1591
1592We define a *happens-before* partial order as the least partial order
1593that
1594
1595- Is a superset of single-thread program order, and
1596- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1597 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1598 techniques, like pthread locks, thread creation, thread joining,
1599 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1600 Constraints <ordering>`).
1601
1602Note that program order does not introduce *happens-before* edges
1603between a thread and signals executing inside that thread.
1604
1605Every (defined) read operation (load instructions, memcpy, atomic
1606loads/read-modify-writes, etc.) R reads a series of bytes written by
1607(defined) write operations (store instructions, atomic
1608stores/read-modify-writes, memcpy, etc.). For the purposes of this
1609section, initialized globals are considered to have a write of the
1610initializer which is atomic and happens before any other read or write
1611of the memory in question. For each byte of a read R, R\ :sub:`byte`
1612may see any write to the same byte, except:
1613
1614- If write\ :sub:`1` happens before write\ :sub:`2`, and
1615 write\ :sub:`2` happens before R\ :sub:`byte`, then
1616 R\ :sub:`byte` does not see write\ :sub:`1`.
1617- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1618 R\ :sub:`byte` does not see write\ :sub:`3`.
1619
1620Given that definition, R\ :sub:`byte` is defined as follows:
1621
1622- If R is volatile, the result is target-dependent. (Volatile is
1623 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001624 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001625 like normal memory. It does not generally provide cross-thread
1626 synchronization.)
1627- Otherwise, if there is no write to the same byte that happens before
1628 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1629- Otherwise, if R\ :sub:`byte` may see exactly one write,
1630 R\ :sub:`byte` returns the value written by that write.
1631- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1632 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1633 Memory Ordering Constraints <ordering>` section for additional
1634 constraints on how the choice is made.
1635- Otherwise R\ :sub:`byte` returns ``undef``.
1636
1637R returns the value composed of the series of bytes it read. This
1638implies that some bytes within the value may be ``undef`` **without**
1639the entire value being ``undef``. Note that this only defines the
1640semantics of the operation; it doesn't mean that targets will emit more
1641than one instruction to read the series of bytes.
1642
1643Note that in cases where none of the atomic intrinsics are used, this
1644model places only one restriction on IR transformations on top of what
1645is required for single-threaded execution: introducing a store to a byte
1646which might not otherwise be stored is not allowed in general.
1647(Specifically, in the case where another thread might write to and read
1648from an address, introducing a store can change a load that may see
1649exactly one write into a load that may see multiple writes.)
1650
1651.. _ordering:
1652
1653Atomic Memory Ordering Constraints
1654----------------------------------
1655
1656Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1657:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1658:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001659ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001660the same address they *synchronize with*. These semantics are borrowed
1661from Java and C++0x, but are somewhat more colloquial. If these
1662descriptions aren't precise enough, check those specs (see spec
1663references in the :doc:`atomics guide <Atomics>`).
1664:ref:`fence <i_fence>` instructions treat these orderings somewhat
1665differently since they don't take an address. See that instruction's
1666documentation for details.
1667
1668For a simpler introduction to the ordering constraints, see the
1669:doc:`Atomics`.
1670
1671``unordered``
1672 The set of values that can be read is governed by the happens-before
1673 partial order. A value cannot be read unless some operation wrote
1674 it. This is intended to provide a guarantee strong enough to model
1675 Java's non-volatile shared variables. This ordering cannot be
1676 specified for read-modify-write operations; it is not strong enough
1677 to make them atomic in any interesting way.
1678``monotonic``
1679 In addition to the guarantees of ``unordered``, there is a single
1680 total order for modifications by ``monotonic`` operations on each
1681 address. All modification orders must be compatible with the
1682 happens-before order. There is no guarantee that the modification
1683 orders can be combined to a global total order for the whole program
1684 (and this often will not be possible). The read in an atomic
1685 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1686 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1687 order immediately before the value it writes. If one atomic read
1688 happens before another atomic read of the same address, the later
1689 read must see the same value or a later value in the address's
1690 modification order. This disallows reordering of ``monotonic`` (or
1691 stronger) operations on the same address. If an address is written
1692 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1693 read that address repeatedly, the other threads must eventually see
1694 the write. This corresponds to the C++0x/C1x
1695 ``memory_order_relaxed``.
1696``acquire``
1697 In addition to the guarantees of ``monotonic``, a
1698 *synchronizes-with* edge may be formed with a ``release`` operation.
1699 This is intended to model C++'s ``memory_order_acquire``.
1700``release``
1701 In addition to the guarantees of ``monotonic``, if this operation
1702 writes a value which is subsequently read by an ``acquire``
1703 operation, it *synchronizes-with* that operation. (This isn't a
1704 complete description; see the C++0x definition of a release
1705 sequence.) This corresponds to the C++0x/C1x
1706 ``memory_order_release``.
1707``acq_rel`` (acquire+release)
1708 Acts as both an ``acquire`` and ``release`` operation on its
1709 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1710``seq_cst`` (sequentially consistent)
1711 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001712 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001713 writes), there is a global total order on all
1714 sequentially-consistent operations on all addresses, which is
1715 consistent with the *happens-before* partial order and with the
1716 modification orders of all the affected addresses. Each
1717 sequentially-consistent read sees the last preceding write to the
1718 same address in this global order. This corresponds to the C++0x/C1x
1719 ``memory_order_seq_cst`` and Java volatile.
1720
1721.. _singlethread:
1722
1723If an atomic operation is marked ``singlethread``, it only *synchronizes
1724with* or participates in modification and seq\_cst total orderings with
1725other operations running in the same thread (for example, in signal
1726handlers).
1727
1728.. _fastmath:
1729
1730Fast-Math Flags
1731---------------
1732
1733LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1734:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1735:ref:`frem <i_frem>`) have the following flags that can set to enable
1736otherwise unsafe floating point operations
1737
1738``nnan``
1739 No NaNs - Allow optimizations to assume the arguments and result are not
1740 NaN. Such optimizations are required to retain defined behavior over
1741 NaNs, but the value of the result is undefined.
1742
1743``ninf``
1744 No Infs - Allow optimizations to assume the arguments and result are not
1745 +/-Inf. Such optimizations are required to retain defined behavior over
1746 +/-Inf, but the value of the result is undefined.
1747
1748``nsz``
1749 No Signed Zeros - Allow optimizations to treat the sign of a zero
1750 argument or result as insignificant.
1751
1752``arcp``
1753 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1754 argument rather than perform division.
1755
1756``fast``
1757 Fast - Allow algebraically equivalent transformations that may
1758 dramatically change results in floating point (e.g. reassociate). This
1759 flag implies all the others.
1760
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001761.. _uselistorder:
1762
1763Use-list Order Directives
1764-------------------------
1765
1766Use-list directives encode the in-memory order of each use-list, allowing the
1767order to be recreated. ``<order-indexes>`` is a comma-separated list of
1768indexes that are assigned to the referenced value's uses. The referenced
1769value's use-list is immediately sorted by these indexes.
1770
1771Use-list directives may appear at function scope or global scope. They are not
1772instructions, and have no effect on the semantics of the IR. When they're at
1773function scope, they must appear after the terminator of the final basic block.
1774
1775If basic blocks have their address taken via ``blockaddress()`` expressions,
1776``uselistorder_bb`` can be used to reorder their use-lists from outside their
1777function's scope.
1778
1779:Syntax:
1780
1781::
1782
1783 uselistorder <ty> <value>, { <order-indexes> }
1784 uselistorder_bb @function, %block { <order-indexes> }
1785
1786:Examples:
1787
1788::
1789
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001790 define void @foo(i32 %arg1, i32 %arg2) {
1791 entry:
1792 ; ... instructions ...
1793 bb:
1794 ; ... instructions ...
1795
1796 ; At function scope.
1797 uselistorder i32 %arg1, { 1, 0, 2 }
1798 uselistorder label %bb, { 1, 0 }
1799 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001800
1801 ; At global scope.
1802 uselistorder i32* @global, { 1, 2, 0 }
1803 uselistorder i32 7, { 1, 0 }
1804 uselistorder i32 (i32) @bar, { 1, 0 }
1805 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1806
Sean Silvab084af42012-12-07 10:36:55 +00001807.. _typesystem:
1808
1809Type System
1810===========
1811
1812The LLVM type system is one of the most important features of the
1813intermediate representation. Being typed enables a number of
1814optimizations to be performed on the intermediate representation
1815directly, without having to do extra analyses on the side before the
1816transformation. A strong type system makes it easier to read the
1817generated code and enables novel analyses and transformations that are
1818not feasible to perform on normal three address code representations.
1819
Rafael Espindola08013342013-12-07 19:34:20 +00001820.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001821
Rafael Espindola08013342013-12-07 19:34:20 +00001822Void Type
1823---------
Sean Silvab084af42012-12-07 10:36:55 +00001824
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001825:Overview:
1826
Rafael Espindola08013342013-12-07 19:34:20 +00001827
1828The void type does not represent any value and has no size.
1829
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001830:Syntax:
1831
Rafael Espindola08013342013-12-07 19:34:20 +00001832
1833::
1834
1835 void
Sean Silvab084af42012-12-07 10:36:55 +00001836
1837
Rafael Espindola08013342013-12-07 19:34:20 +00001838.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001839
Rafael Espindola08013342013-12-07 19:34:20 +00001840Function Type
1841-------------
Sean Silvab084af42012-12-07 10:36:55 +00001842
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001843:Overview:
1844
Sean Silvab084af42012-12-07 10:36:55 +00001845
Rafael Espindola08013342013-12-07 19:34:20 +00001846The function type can be thought of as a function signature. It consists of a
1847return type and a list of formal parameter types. The return type of a function
1848type is a void type or first class type --- except for :ref:`label <t_label>`
1849and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001850
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001851:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001852
Rafael Espindola08013342013-12-07 19:34:20 +00001853::
Sean Silvab084af42012-12-07 10:36:55 +00001854
Rafael Espindola08013342013-12-07 19:34:20 +00001855 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001856
Rafael Espindola08013342013-12-07 19:34:20 +00001857...where '``<parameter list>``' is a comma-separated list of type
1858specifiers. Optionally, the parameter list may include a type ``...``, which
1859indicates that the function takes a variable number of arguments. Variable
1860argument functions can access their arguments with the :ref:`variable argument
1861handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1862except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001863
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001864:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001865
Rafael Espindola08013342013-12-07 19:34:20 +00001866+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1867| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1868+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1869| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1870+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1871| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1872+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1873| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1874+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1875
1876.. _t_firstclass:
1877
1878First Class Types
1879-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001880
1881The :ref:`first class <t_firstclass>` types are perhaps the most important.
1882Values of these types are the only ones which can be produced by
1883instructions.
1884
Rafael Espindola08013342013-12-07 19:34:20 +00001885.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001886
Rafael Espindola08013342013-12-07 19:34:20 +00001887Single Value Types
1888^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001889
Rafael Espindola08013342013-12-07 19:34:20 +00001890These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001891
1892.. _t_integer:
1893
1894Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001895""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001896
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001897:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001898
1899The integer type is a very simple type that simply specifies an
1900arbitrary bit width for the integer type desired. Any bit width from 1
1901bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1902
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001903:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001904
1905::
1906
1907 iN
1908
1909The number of bits the integer will occupy is specified by the ``N``
1910value.
1911
1912Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001913*********
Sean Silvab084af42012-12-07 10:36:55 +00001914
1915+----------------+------------------------------------------------+
1916| ``i1`` | a single-bit integer. |
1917+----------------+------------------------------------------------+
1918| ``i32`` | a 32-bit integer. |
1919+----------------+------------------------------------------------+
1920| ``i1942652`` | a really big integer of over 1 million bits. |
1921+----------------+------------------------------------------------+
1922
1923.. _t_floating:
1924
1925Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001926""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001927
1928.. list-table::
1929 :header-rows: 1
1930
1931 * - Type
1932 - Description
1933
1934 * - ``half``
1935 - 16-bit floating point value
1936
1937 * - ``float``
1938 - 32-bit floating point value
1939
1940 * - ``double``
1941 - 64-bit floating point value
1942
1943 * - ``fp128``
1944 - 128-bit floating point value (112-bit mantissa)
1945
1946 * - ``x86_fp80``
1947 - 80-bit floating point value (X87)
1948
1949 * - ``ppc_fp128``
1950 - 128-bit floating point value (two 64-bits)
1951
Reid Kleckner9a16d082014-03-05 02:41:37 +00001952X86_mmx Type
1953""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001954
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001955:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001956
Reid Kleckner9a16d082014-03-05 02:41:37 +00001957The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001958machine. The operations allowed on it are quite limited: parameters and
1959return values, load and store, and bitcast. User-specified MMX
1960instructions are represented as intrinsic or asm calls with arguments
1961and/or results of this type. There are no arrays, vectors or constants
1962of this type.
1963
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001964:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001965
1966::
1967
Reid Kleckner9a16d082014-03-05 02:41:37 +00001968 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001969
Sean Silvab084af42012-12-07 10:36:55 +00001970
Rafael Espindola08013342013-12-07 19:34:20 +00001971.. _t_pointer:
1972
1973Pointer Type
1974""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001975
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001976:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001977
Rafael Espindola08013342013-12-07 19:34:20 +00001978The pointer type is used to specify memory locations. Pointers are
1979commonly used to reference objects in memory.
1980
1981Pointer types may have an optional address space attribute defining the
1982numbered address space where the pointed-to object resides. The default
1983address space is number zero. The semantics of non-zero address spaces
1984are target-specific.
1985
1986Note that LLVM does not permit pointers to void (``void*``) nor does it
1987permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001988
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001989:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001990
1991::
1992
Rafael Espindola08013342013-12-07 19:34:20 +00001993 <type> *
1994
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001995:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001996
1997+-------------------------+--------------------------------------------------------------------------------------------------------------+
1998| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1999+-------------------------+--------------------------------------------------------------------------------------------------------------+
2000| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2001+-------------------------+--------------------------------------------------------------------------------------------------------------+
2002| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2003+-------------------------+--------------------------------------------------------------------------------------------------------------+
2004
2005.. _t_vector:
2006
2007Vector Type
2008"""""""""""
2009
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002010:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002011
2012A vector type is a simple derived type that represents a vector of
2013elements. Vector types are used when multiple primitive data are
2014operated in parallel using a single instruction (SIMD). A vector type
2015requires a size (number of elements) and an underlying primitive data
2016type. Vector types are considered :ref:`first class <t_firstclass>`.
2017
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002018:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002019
2020::
2021
2022 < <# elements> x <elementtype> >
2023
2024The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002025elementtype may be any integer, floating point or pointer type. Vectors
2026of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002027
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002028:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002029
2030+-------------------+--------------------------------------------------+
2031| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2032+-------------------+--------------------------------------------------+
2033| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2034+-------------------+--------------------------------------------------+
2035| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2036+-------------------+--------------------------------------------------+
2037| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2038+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002039
2040.. _t_label:
2041
2042Label Type
2043^^^^^^^^^^
2044
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002045:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002046
2047The label type represents code labels.
2048
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002049:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002050
2051::
2052
2053 label
2054
2055.. _t_metadata:
2056
2057Metadata Type
2058^^^^^^^^^^^^^
2059
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002060:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002061
2062The metadata type represents embedded metadata. No derived types may be
2063created from metadata except for :ref:`function <t_function>` arguments.
2064
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002065:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002066
2067::
2068
2069 metadata
2070
Sean Silvab084af42012-12-07 10:36:55 +00002071.. _t_aggregate:
2072
2073Aggregate Types
2074^^^^^^^^^^^^^^^
2075
2076Aggregate Types are a subset of derived types that can contain multiple
2077member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2078aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2079aggregate types.
2080
2081.. _t_array:
2082
2083Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002084""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002085
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002086:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002087
2088The array type is a very simple derived type that arranges elements
2089sequentially in memory. The array type requires a size (number of
2090elements) and an underlying data type.
2091
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002092:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002093
2094::
2095
2096 [<# elements> x <elementtype>]
2097
2098The number of elements is a constant integer value; ``elementtype`` may
2099be any type with a size.
2100
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002101:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002102
2103+------------------+--------------------------------------+
2104| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2105+------------------+--------------------------------------+
2106| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2107+------------------+--------------------------------------+
2108| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2109+------------------+--------------------------------------+
2110
2111Here are some examples of multidimensional arrays:
2112
2113+-----------------------------+----------------------------------------------------------+
2114| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2115+-----------------------------+----------------------------------------------------------+
2116| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2117+-----------------------------+----------------------------------------------------------+
2118| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2119+-----------------------------+----------------------------------------------------------+
2120
2121There is no restriction on indexing beyond the end of the array implied
2122by a static type (though there are restrictions on indexing beyond the
2123bounds of an allocated object in some cases). This means that
2124single-dimension 'variable sized array' addressing can be implemented in
2125LLVM with a zero length array type. An implementation of 'pascal style
2126arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2127example.
2128
Sean Silvab084af42012-12-07 10:36:55 +00002129.. _t_struct:
2130
2131Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002132""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002133
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002134:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002135
2136The structure type is used to represent a collection of data members
2137together in memory. The elements of a structure may be any type that has
2138a size.
2139
2140Structures in memory are accessed using '``load``' and '``store``' by
2141getting a pointer to a field with the '``getelementptr``' instruction.
2142Structures in registers are accessed using the '``extractvalue``' and
2143'``insertvalue``' instructions.
2144
2145Structures may optionally be "packed" structures, which indicate that
2146the alignment of the struct is one byte, and that there is no padding
2147between the elements. In non-packed structs, padding between field types
2148is inserted as defined by the DataLayout string in the module, which is
2149required to match what the underlying code generator expects.
2150
2151Structures can either be "literal" or "identified". A literal structure
2152is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2153identified types are always defined at the top level with a name.
2154Literal types are uniqued by their contents and can never be recursive
2155or opaque since there is no way to write one. Identified types can be
2156recursive, can be opaqued, and are never uniqued.
2157
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002158:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002159
2160::
2161
2162 %T1 = type { <type list> } ; Identified normal struct type
2163 %T2 = type <{ <type list> }> ; Identified packed struct type
2164
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002165:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002166
2167+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2168| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2169+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002170| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002171+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2172| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2173+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2174
2175.. _t_opaque:
2176
2177Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002178""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002179
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002180:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002181
2182Opaque structure types are used to represent named structure types that
2183do not have a body specified. This corresponds (for example) to the C
2184notion of a forward declared structure.
2185
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002186:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002187
2188::
2189
2190 %X = type opaque
2191 %52 = type opaque
2192
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002193:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002194
2195+--------------+-------------------+
2196| ``opaque`` | An opaque type. |
2197+--------------+-------------------+
2198
Sean Silva1703e702014-04-08 21:06:22 +00002199.. _constants:
2200
Sean Silvab084af42012-12-07 10:36:55 +00002201Constants
2202=========
2203
2204LLVM has several different basic types of constants. This section
2205describes them all and their syntax.
2206
2207Simple Constants
2208----------------
2209
2210**Boolean constants**
2211 The two strings '``true``' and '``false``' are both valid constants
2212 of the ``i1`` type.
2213**Integer constants**
2214 Standard integers (such as '4') are constants of the
2215 :ref:`integer <t_integer>` type. Negative numbers may be used with
2216 integer types.
2217**Floating point constants**
2218 Floating point constants use standard decimal notation (e.g.
2219 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2220 hexadecimal notation (see below). The assembler requires the exact
2221 decimal value of a floating-point constant. For example, the
2222 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2223 decimal in binary. Floating point constants must have a :ref:`floating
2224 point <t_floating>` type.
2225**Null pointer constants**
2226 The identifier '``null``' is recognized as a null pointer constant
2227 and must be of :ref:`pointer type <t_pointer>`.
2228
2229The one non-intuitive notation for constants is the hexadecimal form of
2230floating point constants. For example, the form
2231'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2232than) '``double 4.5e+15``'. The only time hexadecimal floating point
2233constants are required (and the only time that they are generated by the
2234disassembler) is when a floating point constant must be emitted but it
2235cannot be represented as a decimal floating point number in a reasonable
2236number of digits. For example, NaN's, infinities, and other special
2237values are represented in their IEEE hexadecimal format so that assembly
2238and disassembly do not cause any bits to change in the constants.
2239
2240When using the hexadecimal form, constants of types half, float, and
2241double are represented using the 16-digit form shown above (which
2242matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002243must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002244precision, respectively. Hexadecimal format is always used for long
2245double, and there are three forms of long double. The 80-bit format used
2246by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2247128-bit format used by PowerPC (two adjacent doubles) is represented by
2248``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002249represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2250will only work if they match the long double format on your target.
2251The IEEE 16-bit format (half precision) is represented by ``0xH``
2252followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2253(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002254
Reid Kleckner9a16d082014-03-05 02:41:37 +00002255There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002256
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002257.. _complexconstants:
2258
Sean Silvab084af42012-12-07 10:36:55 +00002259Complex Constants
2260-----------------
2261
2262Complex constants are a (potentially recursive) combination of simple
2263constants and smaller complex constants.
2264
2265**Structure constants**
2266 Structure constants are represented with notation similar to
2267 structure type definitions (a comma separated list of elements,
2268 surrounded by braces (``{}``)). For example:
2269 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2270 "``@G = external global i32``". Structure constants must have
2271 :ref:`structure type <t_struct>`, and the number and types of elements
2272 must match those specified by the type.
2273**Array constants**
2274 Array constants are represented with notation similar to array type
2275 definitions (a comma separated list of elements, surrounded by
2276 square brackets (``[]``)). For example:
2277 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2278 :ref:`array type <t_array>`, and the number and types of elements must
2279 match those specified by the type.
2280**Vector constants**
2281 Vector constants are represented with notation similar to vector
2282 type definitions (a comma separated list of elements, surrounded by
2283 less-than/greater-than's (``<>``)). For example:
2284 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2285 must have :ref:`vector type <t_vector>`, and the number and types of
2286 elements must match those specified by the type.
2287**Zero initialization**
2288 The string '``zeroinitializer``' can be used to zero initialize a
2289 value to zero of *any* type, including scalar and
2290 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2291 having to print large zero initializers (e.g. for large arrays) and
2292 is always exactly equivalent to using explicit zero initializers.
2293**Metadata node**
2294 A metadata node is a structure-like constant with :ref:`metadata
2295 type <t_metadata>`. For example:
2296 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2297 constants that are meant to be interpreted as part of the
2298 instruction stream, metadata is a place to attach additional
2299 information such as debug info.
2300
2301Global Variable and Function Addresses
2302--------------------------------------
2303
2304The addresses of :ref:`global variables <globalvars>` and
2305:ref:`functions <functionstructure>` are always implicitly valid
2306(link-time) constants. These constants are explicitly referenced when
2307the :ref:`identifier for the global <identifiers>` is used and always have
2308:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2309file:
2310
2311.. code-block:: llvm
2312
2313 @X = global i32 17
2314 @Y = global i32 42
2315 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2316
2317.. _undefvalues:
2318
2319Undefined Values
2320----------------
2321
2322The string '``undef``' can be used anywhere a constant is expected, and
2323indicates that the user of the value may receive an unspecified
2324bit-pattern. Undefined values may be of any type (other than '``label``'
2325or '``void``') and be used anywhere a constant is permitted.
2326
2327Undefined values are useful because they indicate to the compiler that
2328the program is well defined no matter what value is used. This gives the
2329compiler more freedom to optimize. Here are some examples of
2330(potentially surprising) transformations that are valid (in pseudo IR):
2331
2332.. code-block:: llvm
2333
2334 %A = add %X, undef
2335 %B = sub %X, undef
2336 %C = xor %X, undef
2337 Safe:
2338 %A = undef
2339 %B = undef
2340 %C = undef
2341
2342This is safe because all of the output bits are affected by the undef
2343bits. Any output bit can have a zero or one depending on the input bits.
2344
2345.. code-block:: llvm
2346
2347 %A = or %X, undef
2348 %B = and %X, undef
2349 Safe:
2350 %A = -1
2351 %B = 0
2352 Unsafe:
2353 %A = undef
2354 %B = undef
2355
2356These logical operations have bits that are not always affected by the
2357input. For example, if ``%X`` has a zero bit, then the output of the
2358'``and``' operation will always be a zero for that bit, no matter what
2359the corresponding bit from the '``undef``' is. As such, it is unsafe to
2360optimize or assume that the result of the '``and``' is '``undef``'.
2361However, it is safe to assume that all bits of the '``undef``' could be
23620, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2363all the bits of the '``undef``' operand to the '``or``' could be set,
2364allowing the '``or``' to be folded to -1.
2365
2366.. code-block:: llvm
2367
2368 %A = select undef, %X, %Y
2369 %B = select undef, 42, %Y
2370 %C = select %X, %Y, undef
2371 Safe:
2372 %A = %X (or %Y)
2373 %B = 42 (or %Y)
2374 %C = %Y
2375 Unsafe:
2376 %A = undef
2377 %B = undef
2378 %C = undef
2379
2380This set of examples shows that undefined '``select``' (and conditional
2381branch) conditions can go *either way*, but they have to come from one
2382of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2383both known to have a clear low bit, then ``%A`` would have to have a
2384cleared low bit. However, in the ``%C`` example, the optimizer is
2385allowed to assume that the '``undef``' operand could be the same as
2386``%Y``, allowing the whole '``select``' to be eliminated.
2387
2388.. code-block:: llvm
2389
2390 %A = xor undef, undef
2391
2392 %B = undef
2393 %C = xor %B, %B
2394
2395 %D = undef
2396 %E = icmp lt %D, 4
2397 %F = icmp gte %D, 4
2398
2399 Safe:
2400 %A = undef
2401 %B = undef
2402 %C = undef
2403 %D = undef
2404 %E = undef
2405 %F = undef
2406
2407This example points out that two '``undef``' operands are not
2408necessarily the same. This can be surprising to people (and also matches
2409C semantics) where they assume that "``X^X``" is always zero, even if
2410``X`` is undefined. This isn't true for a number of reasons, but the
2411short answer is that an '``undef``' "variable" can arbitrarily change
2412its value over its "live range". This is true because the variable
2413doesn't actually *have a live range*. Instead, the value is logically
2414read from arbitrary registers that happen to be around when needed, so
2415the value is not necessarily consistent over time. In fact, ``%A`` and
2416``%C`` need to have the same semantics or the core LLVM "replace all
2417uses with" concept would not hold.
2418
2419.. code-block:: llvm
2420
2421 %A = fdiv undef, %X
2422 %B = fdiv %X, undef
2423 Safe:
2424 %A = undef
2425 b: unreachable
2426
2427These examples show the crucial difference between an *undefined value*
2428and *undefined behavior*. An undefined value (like '``undef``') is
2429allowed to have an arbitrary bit-pattern. This means that the ``%A``
2430operation can be constant folded to '``undef``', because the '``undef``'
2431could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2432However, in the second example, we can make a more aggressive
2433assumption: because the ``undef`` is allowed to be an arbitrary value,
2434we are allowed to assume that it could be zero. Since a divide by zero
2435has *undefined behavior*, we are allowed to assume that the operation
2436does not execute at all. This allows us to delete the divide and all
2437code after it. Because the undefined operation "can't happen", the
2438optimizer can assume that it occurs in dead code.
2439
2440.. code-block:: llvm
2441
2442 a: store undef -> %X
2443 b: store %X -> undef
2444 Safe:
2445 a: <deleted>
2446 b: unreachable
2447
2448These examples reiterate the ``fdiv`` example: a store *of* an undefined
2449value can be assumed to not have any effect; we can assume that the
2450value is overwritten with bits that happen to match what was already
2451there. However, a store *to* an undefined location could clobber
2452arbitrary memory, therefore, it has undefined behavior.
2453
2454.. _poisonvalues:
2455
2456Poison Values
2457-------------
2458
2459Poison values are similar to :ref:`undef values <undefvalues>`, however
2460they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002461that cannot evoke side effects has nevertheless detected a condition
2462that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002463
2464There is currently no way of representing a poison value in the IR; they
2465only exist when produced by operations such as :ref:`add <i_add>` with
2466the ``nsw`` flag.
2467
2468Poison value behavior is defined in terms of value *dependence*:
2469
2470- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2471- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2472 their dynamic predecessor basic block.
2473- Function arguments depend on the corresponding actual argument values
2474 in the dynamic callers of their functions.
2475- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2476 instructions that dynamically transfer control back to them.
2477- :ref:`Invoke <i_invoke>` instructions depend on the
2478 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2479 call instructions that dynamically transfer control back to them.
2480- Non-volatile loads and stores depend on the most recent stores to all
2481 of the referenced memory addresses, following the order in the IR
2482 (including loads and stores implied by intrinsics such as
2483 :ref:`@llvm.memcpy <int_memcpy>`.)
2484- An instruction with externally visible side effects depends on the
2485 most recent preceding instruction with externally visible side
2486 effects, following the order in the IR. (This includes :ref:`volatile
2487 operations <volatile>`.)
2488- An instruction *control-depends* on a :ref:`terminator
2489 instruction <terminators>` if the terminator instruction has
2490 multiple successors and the instruction is always executed when
2491 control transfers to one of the successors, and may not be executed
2492 when control is transferred to another.
2493- Additionally, an instruction also *control-depends* on a terminator
2494 instruction if the set of instructions it otherwise depends on would
2495 be different if the terminator had transferred control to a different
2496 successor.
2497- Dependence is transitive.
2498
Richard Smith32dbdf62014-07-31 04:25:36 +00002499Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2500with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002501on a poison value has undefined behavior.
2502
2503Here are some examples:
2504
2505.. code-block:: llvm
2506
2507 entry:
2508 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2509 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2510 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2511 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2512
2513 store i32 %poison, i32* @g ; Poison value stored to memory.
2514 %poison2 = load i32* @g ; Poison value loaded back from memory.
2515
2516 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2517
2518 %narrowaddr = bitcast i32* @g to i16*
2519 %wideaddr = bitcast i32* @g to i64*
2520 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2521 %poison4 = load i64* %wideaddr ; Returns a poison value.
2522
2523 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2524 br i1 %cmp, label %true, label %end ; Branch to either destination.
2525
2526 true:
2527 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2528 ; it has undefined behavior.
2529 br label %end
2530
2531 end:
2532 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2533 ; Both edges into this PHI are
2534 ; control-dependent on %cmp, so this
2535 ; always results in a poison value.
2536
2537 store volatile i32 0, i32* @g ; This would depend on the store in %true
2538 ; if %cmp is true, or the store in %entry
2539 ; otherwise, so this is undefined behavior.
2540
2541 br i1 %cmp, label %second_true, label %second_end
2542 ; The same branch again, but this time the
2543 ; true block doesn't have side effects.
2544
2545 second_true:
2546 ; No side effects!
2547 ret void
2548
2549 second_end:
2550 store volatile i32 0, i32* @g ; This time, the instruction always depends
2551 ; on the store in %end. Also, it is
2552 ; control-equivalent to %end, so this is
2553 ; well-defined (ignoring earlier undefined
2554 ; behavior in this example).
2555
2556.. _blockaddress:
2557
2558Addresses of Basic Blocks
2559-------------------------
2560
2561``blockaddress(@function, %block)``
2562
2563The '``blockaddress``' constant computes the address of the specified
2564basic block in the specified function, and always has an ``i8*`` type.
2565Taking the address of the entry block is illegal.
2566
2567This value only has defined behavior when used as an operand to the
2568':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2569against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002570undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002571no label is equal to the null pointer. This may be passed around as an
2572opaque pointer sized value as long as the bits are not inspected. This
2573allows ``ptrtoint`` and arithmetic to be performed on these values so
2574long as the original value is reconstituted before the ``indirectbr``
2575instruction.
2576
2577Finally, some targets may provide defined semantics when using the value
2578as the operand to an inline assembly, but that is target specific.
2579
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002580.. _constantexprs:
2581
Sean Silvab084af42012-12-07 10:36:55 +00002582Constant Expressions
2583--------------------
2584
2585Constant expressions are used to allow expressions involving other
2586constants to be used as constants. Constant expressions may be of any
2587:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2588that does not have side effects (e.g. load and call are not supported).
2589The following is the syntax for constant expressions:
2590
2591``trunc (CST to TYPE)``
2592 Truncate a constant to another type. The bit size of CST must be
2593 larger than the bit size of TYPE. Both types must be integers.
2594``zext (CST to TYPE)``
2595 Zero extend a constant to another type. The bit size of CST must be
2596 smaller than the bit size of TYPE. Both types must be integers.
2597``sext (CST to TYPE)``
2598 Sign extend a constant to another type. The bit size of CST must be
2599 smaller than the bit size of TYPE. Both types must be integers.
2600``fptrunc (CST to TYPE)``
2601 Truncate a floating point constant to another floating point type.
2602 The size of CST must be larger than the size of TYPE. Both types
2603 must be floating point.
2604``fpext (CST to TYPE)``
2605 Floating point extend a constant to another type. The size of CST
2606 must be smaller or equal to the size of TYPE. Both types must be
2607 floating point.
2608``fptoui (CST to TYPE)``
2609 Convert a floating point constant to the corresponding unsigned
2610 integer constant. TYPE must be a scalar or vector integer type. CST
2611 must be of scalar or vector floating point type. Both CST and TYPE
2612 must be scalars, or vectors of the same number of elements. If the
2613 value won't fit in the integer type, the results are undefined.
2614``fptosi (CST to TYPE)``
2615 Convert a floating point constant to the corresponding signed
2616 integer constant. TYPE must be a scalar or vector integer type. CST
2617 must be of scalar or vector floating point type. Both CST and TYPE
2618 must be scalars, or vectors of the same number of elements. If the
2619 value won't fit in the integer type, the results are undefined.
2620``uitofp (CST to TYPE)``
2621 Convert an unsigned integer constant to the corresponding floating
2622 point constant. TYPE must be a scalar or vector floating point type.
2623 CST must be of scalar or vector integer type. Both CST and TYPE must
2624 be scalars, or vectors of the same number of elements. If the value
2625 won't fit in the floating point type, the results are undefined.
2626``sitofp (CST to TYPE)``
2627 Convert a signed integer constant to the corresponding floating
2628 point constant. TYPE must be a scalar or vector floating point type.
2629 CST must be of scalar or vector integer type. Both CST and TYPE must
2630 be scalars, or vectors of the same number of elements. If the value
2631 won't fit in the floating point type, the results are undefined.
2632``ptrtoint (CST to TYPE)``
2633 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002634 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002635 pointer type. The ``CST`` value is zero extended, truncated, or
2636 unchanged to make it fit in ``TYPE``.
2637``inttoptr (CST to TYPE)``
2638 Convert an integer constant to a pointer constant. TYPE must be a
2639 pointer type. CST must be of integer type. The CST value is zero
2640 extended, truncated, or unchanged to make it fit in a pointer size.
2641 This one is *really* dangerous!
2642``bitcast (CST to TYPE)``
2643 Convert a constant, CST, to another TYPE. The constraints of the
2644 operands are the same as those for the :ref:`bitcast
2645 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002646``addrspacecast (CST to TYPE)``
2647 Convert a constant pointer or constant vector of pointer, CST, to another
2648 TYPE in a different address space. The constraints of the operands are the
2649 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002650``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2651 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2652 constants. As with the :ref:`getelementptr <i_getelementptr>`
2653 instruction, the index list may have zero or more indexes, which are
2654 required to make sense for the type of "CSTPTR".
2655``select (COND, VAL1, VAL2)``
2656 Perform the :ref:`select operation <i_select>` on constants.
2657``icmp COND (VAL1, VAL2)``
2658 Performs the :ref:`icmp operation <i_icmp>` on constants.
2659``fcmp COND (VAL1, VAL2)``
2660 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2661``extractelement (VAL, IDX)``
2662 Perform the :ref:`extractelement operation <i_extractelement>` on
2663 constants.
2664``insertelement (VAL, ELT, IDX)``
2665 Perform the :ref:`insertelement operation <i_insertelement>` on
2666 constants.
2667``shufflevector (VEC1, VEC2, IDXMASK)``
2668 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2669 constants.
2670``extractvalue (VAL, IDX0, IDX1, ...)``
2671 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2672 constants. The index list is interpreted in a similar manner as
2673 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2674 least one index value must be specified.
2675``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2676 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2677 The index list is interpreted in a similar manner as indices in a
2678 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2679 value must be specified.
2680``OPCODE (LHS, RHS)``
2681 Perform the specified operation of the LHS and RHS constants. OPCODE
2682 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2683 binary <bitwiseops>` operations. The constraints on operands are
2684 the same as those for the corresponding instruction (e.g. no bitwise
2685 operations on floating point values are allowed).
2686
2687Other Values
2688============
2689
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002690.. _inlineasmexprs:
2691
Sean Silvab084af42012-12-07 10:36:55 +00002692Inline Assembler Expressions
2693----------------------------
2694
2695LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2696Inline Assembly <moduleasm>`) through the use of a special value. This
2697value represents the inline assembler as a string (containing the
2698instructions to emit), a list of operand constraints (stored as a
2699string), a flag that indicates whether or not the inline asm expression
2700has side effects, and a flag indicating whether the function containing
2701the asm needs to align its stack conservatively. An example inline
2702assembler expression is:
2703
2704.. code-block:: llvm
2705
2706 i32 (i32) asm "bswap $0", "=r,r"
2707
2708Inline assembler expressions may **only** be used as the callee operand
2709of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2710Thus, typically we have:
2711
2712.. code-block:: llvm
2713
2714 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2715
2716Inline asms with side effects not visible in the constraint list must be
2717marked as having side effects. This is done through the use of the
2718'``sideeffect``' keyword, like so:
2719
2720.. code-block:: llvm
2721
2722 call void asm sideeffect "eieio", ""()
2723
2724In some cases inline asms will contain code that will not work unless
2725the stack is aligned in some way, such as calls or SSE instructions on
2726x86, yet will not contain code that does that alignment within the asm.
2727The compiler should make conservative assumptions about what the asm
2728might contain and should generate its usual stack alignment code in the
2729prologue if the '``alignstack``' keyword is present:
2730
2731.. code-block:: llvm
2732
2733 call void asm alignstack "eieio", ""()
2734
2735Inline asms also support using non-standard assembly dialects. The
2736assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2737the inline asm is using the Intel dialect. Currently, ATT and Intel are
2738the only supported dialects. An example is:
2739
2740.. code-block:: llvm
2741
2742 call void asm inteldialect "eieio", ""()
2743
2744If multiple keywords appear the '``sideeffect``' keyword must come
2745first, the '``alignstack``' keyword second and the '``inteldialect``'
2746keyword last.
2747
2748Inline Asm Metadata
2749^^^^^^^^^^^^^^^^^^^
2750
2751The call instructions that wrap inline asm nodes may have a
2752"``!srcloc``" MDNode attached to it that contains a list of constant
2753integers. If present, the code generator will use the integer as the
2754location cookie value when report errors through the ``LLVMContext``
2755error reporting mechanisms. This allows a front-end to correlate backend
2756errors that occur with inline asm back to the source code that produced
2757it. For example:
2758
2759.. code-block:: llvm
2760
2761 call void asm sideeffect "something bad", ""(), !srcloc !42
2762 ...
2763 !42 = !{ i32 1234567 }
2764
2765It is up to the front-end to make sense of the magic numbers it places
2766in the IR. If the MDNode contains multiple constants, the code generator
2767will use the one that corresponds to the line of the asm that the error
2768occurs on.
2769
2770.. _metadata:
2771
2772Metadata Nodes and Metadata Strings
2773-----------------------------------
2774
2775LLVM IR allows metadata to be attached to instructions in the program
2776that can convey extra information about the code to the optimizers and
2777code generator. One example application of metadata is source-level
2778debug information. There are two metadata primitives: strings and nodes.
2779All metadata has the ``metadata`` type and is identified in syntax by a
2780preceding exclamation point ('``!``').
2781
2782A metadata string is a string surrounded by double quotes. It can
2783contain any character by escaping non-printable characters with
2784"``\xx``" where "``xx``" is the two digit hex code. For example:
2785"``!"test\00"``".
2786
2787Metadata nodes are represented with notation similar to structure
2788constants (a comma separated list of elements, surrounded by braces and
2789preceded by an exclamation point). Metadata nodes can have any values as
2790their operand. For example:
2791
2792.. code-block:: llvm
2793
2794 !{ metadata !"test\00", i32 10}
2795
2796A :ref:`named metadata <namedmetadatastructure>` is a collection of
2797metadata nodes, which can be looked up in the module symbol table. For
2798example:
2799
2800.. code-block:: llvm
2801
2802 !foo = metadata !{!4, !3}
2803
2804Metadata can be used as function arguments. Here ``llvm.dbg.value``
2805function is using two metadata arguments:
2806
2807.. code-block:: llvm
2808
2809 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2810
2811Metadata can be attached with an instruction. Here metadata ``!21`` is
2812attached to the ``add`` instruction using the ``!dbg`` identifier:
2813
2814.. code-block:: llvm
2815
2816 %indvar.next = add i64 %indvar, 1, !dbg !21
2817
2818More information about specific metadata nodes recognized by the
2819optimizers and code generator is found below.
2820
2821'``tbaa``' Metadata
2822^^^^^^^^^^^^^^^^^^^
2823
2824In LLVM IR, memory does not have types, so LLVM's own type system is not
2825suitable for doing TBAA. Instead, metadata is added to the IR to
2826describe a type system of a higher level language. This can be used to
2827implement typical C/C++ TBAA, but it can also be used to implement
2828custom alias analysis behavior for other languages.
2829
2830The current metadata format is very simple. TBAA metadata nodes have up
2831to three fields, e.g.:
2832
2833.. code-block:: llvm
2834
2835 !0 = metadata !{ metadata !"an example type tree" }
2836 !1 = metadata !{ metadata !"int", metadata !0 }
2837 !2 = metadata !{ metadata !"float", metadata !0 }
2838 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2839
2840The first field is an identity field. It can be any value, usually a
2841metadata string, which uniquely identifies the type. The most important
2842name in the tree is the name of the root node. Two trees with different
2843root node names are entirely disjoint, even if they have leaves with
2844common names.
2845
2846The second field identifies the type's parent node in the tree, or is
2847null or omitted for a root node. A type is considered to alias all of
2848its descendants and all of its ancestors in the tree. Also, a type is
2849considered to alias all types in other trees, so that bitcode produced
2850from multiple front-ends is handled conservatively.
2851
2852If the third field is present, it's an integer which if equal to 1
2853indicates that the type is "constant" (meaning
2854``pointsToConstantMemory`` should return true; see `other useful
2855AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2856
2857'``tbaa.struct``' Metadata
2858^^^^^^^^^^^^^^^^^^^^^^^^^^
2859
2860The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2861aggregate assignment operations in C and similar languages, however it
2862is defined to copy a contiguous region of memory, which is more than
2863strictly necessary for aggregate types which contain holes due to
2864padding. Also, it doesn't contain any TBAA information about the fields
2865of the aggregate.
2866
2867``!tbaa.struct`` metadata can describe which memory subregions in a
2868memcpy are padding and what the TBAA tags of the struct are.
2869
2870The current metadata format is very simple. ``!tbaa.struct`` metadata
2871nodes are a list of operands which are in conceptual groups of three.
2872For each group of three, the first operand gives the byte offset of a
2873field in bytes, the second gives its size in bytes, and the third gives
2874its tbaa tag. e.g.:
2875
2876.. code-block:: llvm
2877
2878 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2879
2880This describes a struct with two fields. The first is at offset 0 bytes
2881with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2882and has size 4 bytes and has tbaa tag !2.
2883
2884Note that the fields need not be contiguous. In this example, there is a
28854 byte gap between the two fields. This gap represents padding which
2886does not carry useful data and need not be preserved.
2887
Hal Finkel94146652014-07-24 14:25:39 +00002888'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00002889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00002890
2891``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2892noalias memory-access sets. This means that some collection of memory access
2893instructions (loads, stores, memory-accessing calls, etc.) that carry
2894``noalias`` metadata can specifically be specified not to alias with some other
2895collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00002896Each type of metadata specifies a list of scopes where each scope has an id and
2897a domain. When evaluating an aliasing query, if for some some domain, the set
2898of scopes with that domain in one instruction's ``alias.scope`` list is a
2899subset of (or qual to) the set of scopes for that domain in another
2900instruction's ``noalias`` list, then the two memory accesses are assumed not to
2901alias.
Hal Finkel94146652014-07-24 14:25:39 +00002902
Hal Finkel029cde62014-07-25 15:50:02 +00002903The metadata identifying each domain is itself a list containing one or two
2904entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00002905string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00002906self-reference can be used to create globally unique domain names. A
2907descriptive string may optionally be provided as a second list entry.
2908
2909The metadata identifying each scope is also itself a list containing two or
2910three entries. The first entry is the name of the scope. Note that if the name
2911is a string then it can be combined accross functions and translation units. A
2912self-reference can be used to create globally unique scope names. A metadata
2913reference to the scope's domain is the second entry. A descriptive string may
2914optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00002915
2916For example,
2917
2918.. code-block:: llvm
2919
Hal Finkel029cde62014-07-25 15:50:02 +00002920 ; Two scope domains:
Hal Finkel94146652014-07-24 14:25:39 +00002921 !0 = metadata !{metadata !0}
Hal Finkel029cde62014-07-25 15:50:02 +00002922 !1 = metadata !{metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002923
Hal Finkel029cde62014-07-25 15:50:02 +00002924 ; Some scopes in these domains:
2925 !2 = metadata !{metadata !2, metadata !0}
2926 !3 = metadata !{metadata !3, metadata !0}
2927 !4 = metadata !{metadata !4, metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002928
Hal Finkel029cde62014-07-25 15:50:02 +00002929 ; Some scope lists:
2930 !5 = metadata !{metadata !4} ; A list containing only scope !4
2931 !6 = metadata !{metadata !4, metadata !3, metadata !2}
2932 !7 = metadata !{metadata !3}
Hal Finkel94146652014-07-24 14:25:39 +00002933
2934 ; These two instructions don't alias:
Hal Finkel029cde62014-07-25 15:50:02 +00002935 %0 = load float* %c, align 4, !alias.scope !5
2936 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00002937
Hal Finkel029cde62014-07-25 15:50:02 +00002938 ; These two instructions also don't alias (for domain !1, the set of scopes
2939 ; in the !alias.scope equals that in the !noalias list):
2940 %2 = load float* %c, align 4, !alias.scope !5
2941 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00002942
Hal Finkel029cde62014-07-25 15:50:02 +00002943 ; These two instructions don't alias (for domain !0, the set of scopes in
2944 ; the !noalias list is not a superset of, or equal to, the scopes in the
2945 ; !alias.scope list):
2946 %2 = load float* %c, align 4, !alias.scope !6
2947 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00002948
Sean Silvab084af42012-12-07 10:36:55 +00002949'``fpmath``' Metadata
2950^^^^^^^^^^^^^^^^^^^^^
2951
2952``fpmath`` metadata may be attached to any instruction of floating point
2953type. It can be used to express the maximum acceptable error in the
2954result of that instruction, in ULPs, thus potentially allowing the
2955compiler to use a more efficient but less accurate method of computing
2956it. ULP is defined as follows:
2957
2958 If ``x`` is a real number that lies between two finite consecutive
2959 floating-point numbers ``a`` and ``b``, without being equal to one
2960 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2961 distance between the two non-equal finite floating-point numbers
2962 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2963
2964The metadata node shall consist of a single positive floating point
2965number representing the maximum relative error, for example:
2966
2967.. code-block:: llvm
2968
2969 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2970
2971'``range``' Metadata
2972^^^^^^^^^^^^^^^^^^^^
2973
Jingyue Wu37fcb592014-06-19 16:50:16 +00002974``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2975integer types. It expresses the possible ranges the loaded value or the value
2976returned by the called function at this call site is in. The ranges are
2977represented with a flattened list of integers. The loaded value or the value
2978returned is known to be in the union of the ranges defined by each consecutive
2979pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00002980
2981- The type must match the type loaded by the instruction.
2982- The pair ``a,b`` represents the range ``[a,b)``.
2983- Both ``a`` and ``b`` are constants.
2984- The range is allowed to wrap.
2985- The range should not represent the full or empty set. That is,
2986 ``a!=b``.
2987
2988In addition, the pairs must be in signed order of the lower bound and
2989they must be non-contiguous.
2990
2991Examples:
2992
2993.. code-block:: llvm
2994
2995 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2996 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00002997 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
2998 %d = invoke i8 @bar() to label %cont
2999 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00003000 ...
3001 !0 = metadata !{ i8 0, i8 2 }
3002 !1 = metadata !{ i8 255, i8 2 }
3003 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
3004 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
3005
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003006'``llvm.loop``'
3007^^^^^^^^^^^^^^^
3008
3009It is sometimes useful to attach information to loop constructs. Currently,
3010loop metadata is implemented as metadata attached to the branch instruction
3011in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003012guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003013specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003014
3015The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003016itself to avoid merging it with any other identifier metadata, e.g.,
3017during module linkage or function inlining. That is, each loop should refer
3018to their own identification metadata even if they reside in separate functions.
3019The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003020constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003021
3022.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003023
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003024 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003025 !1 = metadata !{ metadata !1 }
3026
Mark Heffernan893752a2014-07-18 19:24:51 +00003027The loop identifier metadata can be used to specify additional
3028per-loop metadata. Any operands after the first operand can be treated
3029as user-defined metadata. For example the ``llvm.loop.unroll.count``
3030suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003031
Paul Redmond5fdf8362013-05-28 20:00:34 +00003032.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003033
Paul Redmond5fdf8362013-05-28 20:00:34 +00003034 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3035 ...
3036 !0 = metadata !{ metadata !0, metadata !1 }
Mark Heffernan9d20e422014-07-21 23:11:03 +00003037 !1 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003038
Mark Heffernan9d20e422014-07-21 23:11:03 +00003039'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003041
Mark Heffernan9d20e422014-07-21 23:11:03 +00003042Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3043used to control per-loop vectorization and interleaving parameters such as
3044vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003045conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003046``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3047optimization hints and the optimizer will only interleave and vectorize loops if
3048it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3049which contains information about loop-carried memory dependencies can be helpful
3050in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003051
Mark Heffernan9d20e422014-07-21 23:11:03 +00003052'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003053^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3054
Mark Heffernan9d20e422014-07-21 23:11:03 +00003055This metadata suggests an interleave count to the loop interleaver.
3056The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003057second operand is an integer specifying the interleave count. For
3058example:
3059
3060.. code-block:: llvm
3061
Mark Heffernan9d20e422014-07-21 23:11:03 +00003062 !0 = metadata !{ metadata !"llvm.loop.interleave.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003063
Mark Heffernan9d20e422014-07-21 23:11:03 +00003064Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3065multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3066then the interleave count will be determined automatically.
3067
3068'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003069^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003070
3071This metadata selectively enables or disables vectorization for the loop. The
3072first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3073is a bit. If the bit operand value is 1 vectorization is enabled. A value of
30740 disables vectorization:
3075
3076.. code-block:: llvm
3077
3078 !0 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 0 }
3079 !1 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 1 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003080
3081'``llvm.loop.vectorize.width``' Metadata
3082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3083
3084This metadata sets the target width of the vectorizer. The first
3085operand is the string ``llvm.loop.vectorize.width`` and the second
3086operand is an integer specifying the width. For example:
3087
3088.. code-block:: llvm
3089
3090 !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 }
3091
3092Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3093vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
30940 or if the loop does not have this metadata the width will be
3095determined automatically.
3096
3097'``llvm.loop.unroll``'
3098^^^^^^^^^^^^^^^^^^^^^^
3099
3100Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3101optimization hints such as the unroll factor. ``llvm.loop.unroll``
3102metadata should be used in conjunction with ``llvm.loop`` loop
3103identification metadata. The ``llvm.loop.unroll`` metadata are only
3104optimization hints and the unrolling will only be performed if the
3105optimizer believes it is safe to do so.
3106
Mark Heffernan893752a2014-07-18 19:24:51 +00003107'``llvm.loop.unroll.count``' Metadata
3108^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3109
3110This metadata suggests an unroll factor to the loop unroller. The
3111first operand is the string ``llvm.loop.unroll.count`` and the second
3112operand is a positive integer specifying the unroll factor. For
3113example:
3114
3115.. code-block:: llvm
3116
3117 !0 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
3118
3119If the trip count of the loop is less than the unroll count the loop
3120will be partially unrolled.
3121
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003122'``llvm.loop.unroll.disable``' Metadata
3123^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3124
3125This metadata either disables loop unrolling. The metadata has a single operand
3126which is the string ``llvm.loop.unroll.disable``. For example:
3127
3128.. code-block:: llvm
3129
3130 !0 = metadata !{ metadata !"llvm.loop.unroll.disable" }
3131
3132'``llvm.loop.unroll.full``' Metadata
3133^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3134
3135This metadata either suggests that the loop should be unrolled fully. The
3136metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3137For example:
3138
3139.. code-block:: llvm
3140
3141 !0 = metadata !{ metadata !"llvm.loop.unroll.full" }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003142
3143'``llvm.mem``'
3144^^^^^^^^^^^^^^^
3145
3146Metadata types used to annotate memory accesses with information helpful
3147for optimizations are prefixed with ``llvm.mem``.
3148
3149'``llvm.mem.parallel_loop_access``' Metadata
3150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3151
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003152The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3153or metadata containing a list of loop identifiers for nested loops.
3154The metadata is attached to memory accessing instructions and denotes that
3155no loop carried memory dependence exist between it and other instructions denoted
3156with the same loop identifier.
3157
3158Precisely, given two instructions ``m1`` and ``m2`` that both have the
3159``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3160set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003161carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003162``L2``.
3163
3164As a special case, if all memory accessing instructions in a loop have
3165``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3166loop has no loop carried memory dependences and is considered to be a parallel
3167loop.
3168
3169Note that if not all memory access instructions have such metadata referring to
3170the loop, then the loop is considered not being trivially parallel. Additional
3171memory dependence analysis is required to make that determination. As a fail
3172safe mechanism, this causes loops that were originally parallel to be considered
3173sequential (if optimization passes that are unaware of the parallel semantics
3174insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003175
3176Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003177both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003178metadata types that refer to the same loop identifier metadata.
3179
3180.. code-block:: llvm
3181
3182 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003183 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003184 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003185 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003186 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003187 ...
3188 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003189
3190 for.end:
3191 ...
3192 !0 = metadata !{ metadata !0 }
3193
3194It is also possible to have nested parallel loops. In that case the
3195memory accesses refer to a list of loop identifier metadata nodes instead of
3196the loop identifier metadata node directly:
3197
3198.. code-block:: llvm
3199
3200 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003201 ...
3202 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3203 ...
3204 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003205
3206 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003207 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003208 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003209 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003210 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003211 ...
3212 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003213
3214 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003215 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003216 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003217 ...
3218 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003219
3220 outer.for.end: ; preds = %for.body
3221 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00003222 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
3223 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
3224 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003225
Sean Silvab084af42012-12-07 10:36:55 +00003226Module Flags Metadata
3227=====================
3228
3229Information about the module as a whole is difficult to convey to LLVM's
3230subsystems. The LLVM IR isn't sufficient to transmit this information.
3231The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003232this. These flags are in the form of key / value pairs --- much like a
3233dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003234look it up.
3235
3236The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3237Each triplet has the following form:
3238
3239- The first element is a *behavior* flag, which specifies the behavior
3240 when two (or more) modules are merged together, and it encounters two
3241 (or more) metadata with the same ID. The supported behaviors are
3242 described below.
3243- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003244 metadata. Each module may only have one flag entry for each unique ID (not
3245 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003246- The third element is the value of the flag.
3247
3248When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003249``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3250each unique metadata ID string, there will be exactly one entry in the merged
3251modules ``llvm.module.flags`` metadata table, and the value for that entry will
3252be determined by the merge behavior flag, as described below. The only exception
3253is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003254
3255The following behaviors are supported:
3256
3257.. list-table::
3258 :header-rows: 1
3259 :widths: 10 90
3260
3261 * - Value
3262 - Behavior
3263
3264 * - 1
3265 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003266 Emits an error if two values disagree, otherwise the resulting value
3267 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003268
3269 * - 2
3270 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003271 Emits a warning if two values disagree. The result value will be the
3272 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003273
3274 * - 3
3275 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003276 Adds a requirement that another module flag be present and have a
3277 specified value after linking is performed. The value must be a
3278 metadata pair, where the first element of the pair is the ID of the
3279 module flag to be restricted, and the second element of the pair is
3280 the value the module flag should be restricted to. This behavior can
3281 be used to restrict the allowable results (via triggering of an
3282 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003283
3284 * - 4
3285 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003286 Uses the specified value, regardless of the behavior or value of the
3287 other module. If both modules specify **Override**, but the values
3288 differ, an error will be emitted.
3289
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003290 * - 5
3291 - **Append**
3292 Appends the two values, which are required to be metadata nodes.
3293
3294 * - 6
3295 - **AppendUnique**
3296 Appends the two values, which are required to be metadata
3297 nodes. However, duplicate entries in the second list are dropped
3298 during the append operation.
3299
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003300It is an error for a particular unique flag ID to have multiple behaviors,
3301except in the case of **Require** (which adds restrictions on another metadata
3302value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003303
3304An example of module flags:
3305
3306.. code-block:: llvm
3307
3308 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3309 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3310 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3311 !3 = metadata !{ i32 3, metadata !"qux",
3312 metadata !{
3313 metadata !"foo", i32 1
3314 }
3315 }
3316 !llvm.module.flags = !{ !0, !1, !2, !3 }
3317
3318- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3319 if two or more ``!"foo"`` flags are seen is to emit an error if their
3320 values are not equal.
3321
3322- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3323 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003324 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003325
3326- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3327 behavior if two or more ``!"qux"`` flags are seen is to emit a
3328 warning if their values are not equal.
3329
3330- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3331
3332 ::
3333
3334 metadata !{ metadata !"foo", i32 1 }
3335
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003336 The behavior is to emit an error if the ``llvm.module.flags`` does not
3337 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3338 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003339
3340Objective-C Garbage Collection Module Flags Metadata
3341----------------------------------------------------
3342
3343On the Mach-O platform, Objective-C stores metadata about garbage
3344collection in a special section called "image info". The metadata
3345consists of a version number and a bitmask specifying what types of
3346garbage collection are supported (if any) by the file. If two or more
3347modules are linked together their garbage collection metadata needs to
3348be merged rather than appended together.
3349
3350The Objective-C garbage collection module flags metadata consists of the
3351following key-value pairs:
3352
3353.. list-table::
3354 :header-rows: 1
3355 :widths: 30 70
3356
3357 * - Key
3358 - Value
3359
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003360 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003361 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003362
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003363 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003364 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003365 always 0.
3366
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003367 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003368 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003369 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3370 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3371 Objective-C ABI version 2.
3372
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003373 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003374 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003375 not. Valid values are 0, for no garbage collection, and 2, for garbage
3376 collection supported.
3377
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003378 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003379 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003380 If present, its value must be 6. This flag requires that the
3381 ``Objective-C Garbage Collection`` flag have the value 2.
3382
3383Some important flag interactions:
3384
3385- If a module with ``Objective-C Garbage Collection`` set to 0 is
3386 merged with a module with ``Objective-C Garbage Collection`` set to
3387 2, then the resulting module has the
3388 ``Objective-C Garbage Collection`` flag set to 0.
3389- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3390 merged with a module with ``Objective-C GC Only`` set to 6.
3391
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003392Automatic Linker Flags Module Flags Metadata
3393--------------------------------------------
3394
3395Some targets support embedding flags to the linker inside individual object
3396files. Typically this is used in conjunction with language extensions which
3397allow source files to explicitly declare the libraries they depend on, and have
3398these automatically be transmitted to the linker via object files.
3399
3400These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003401using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003402to be ``AppendUnique``, and the value for the key is expected to be a metadata
3403node which should be a list of other metadata nodes, each of which should be a
3404list of metadata strings defining linker options.
3405
3406For example, the following metadata section specifies two separate sets of
3407linker options, presumably to link against ``libz`` and the ``Cocoa``
3408framework::
3409
Michael Liaoa7699082013-03-06 18:24:34 +00003410 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003411 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003412 metadata !{ metadata !"-lz" },
3413 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003414 !llvm.module.flags = !{ !0 }
3415
3416The metadata encoding as lists of lists of options, as opposed to a collapsed
3417list of options, is chosen so that the IR encoding can use multiple option
3418strings to specify e.g., a single library, while still having that specifier be
3419preserved as an atomic element that can be recognized by a target specific
3420assembly writer or object file emitter.
3421
3422Each individual option is required to be either a valid option for the target's
3423linker, or an option that is reserved by the target specific assembly writer or
3424object file emitter. No other aspect of these options is defined by the IR.
3425
Oliver Stannard5dc29342014-06-20 10:08:11 +00003426C type width Module Flags Metadata
3427----------------------------------
3428
3429The ARM backend emits a section into each generated object file describing the
3430options that it was compiled with (in a compiler-independent way) to prevent
3431linking incompatible objects, and to allow automatic library selection. Some
3432of these options are not visible at the IR level, namely wchar_t width and enum
3433width.
3434
3435To pass this information to the backend, these options are encoded in module
3436flags metadata, using the following key-value pairs:
3437
3438.. list-table::
3439 :header-rows: 1
3440 :widths: 30 70
3441
3442 * - Key
3443 - Value
3444
3445 * - short_wchar
3446 - * 0 --- sizeof(wchar_t) == 4
3447 * 1 --- sizeof(wchar_t) == 2
3448
3449 * - short_enum
3450 - * 0 --- Enums are at least as large as an ``int``.
3451 * 1 --- Enums are stored in the smallest integer type which can
3452 represent all of its values.
3453
3454For example, the following metadata section specifies that the module was
3455compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3456enum is the smallest type which can represent all of its values::
3457
3458 !llvm.module.flags = !{!0, !1}
3459 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1}
3460 !1 = metadata !{i32 1, metadata !"short_enum", i32 0}
3461
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003462.. _intrinsicglobalvariables:
3463
Sean Silvab084af42012-12-07 10:36:55 +00003464Intrinsic Global Variables
3465==========================
3466
3467LLVM has a number of "magic" global variables that contain data that
3468affect code generation or other IR semantics. These are documented here.
3469All globals of this sort should have a section specified as
3470"``llvm.metadata``". This section and all globals that start with
3471"``llvm.``" are reserved for use by LLVM.
3472
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003473.. _gv_llvmused:
3474
Sean Silvab084af42012-12-07 10:36:55 +00003475The '``llvm.used``' Global Variable
3476-----------------------------------
3477
Rafael Espindola74f2e462013-04-22 14:58:02 +00003478The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003479:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003480pointers to named global variables, functions and aliases which may optionally
3481have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003482use of it is:
3483
3484.. code-block:: llvm
3485
3486 @X = global i8 4
3487 @Y = global i32 123
3488
3489 @llvm.used = appending global [2 x i8*] [
3490 i8* @X,
3491 i8* bitcast (i32* @Y to i8*)
3492 ], section "llvm.metadata"
3493
Rafael Espindola74f2e462013-04-22 14:58:02 +00003494If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3495and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003496symbol that it cannot see (which is why they have to be named). For example, if
3497a variable has internal linkage and no references other than that from the
3498``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3499references from inline asms and other things the compiler cannot "see", and
3500corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003501
3502On some targets, the code generator must emit a directive to the
3503assembler or object file to prevent the assembler and linker from
3504molesting the symbol.
3505
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003506.. _gv_llvmcompilerused:
3507
Sean Silvab084af42012-12-07 10:36:55 +00003508The '``llvm.compiler.used``' Global Variable
3509--------------------------------------------
3510
3511The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3512directive, except that it only prevents the compiler from touching the
3513symbol. On targets that support it, this allows an intelligent linker to
3514optimize references to the symbol without being impeded as it would be
3515by ``@llvm.used``.
3516
3517This is a rare construct that should only be used in rare circumstances,
3518and should not be exposed to source languages.
3519
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003520.. _gv_llvmglobalctors:
3521
Sean Silvab084af42012-12-07 10:36:55 +00003522The '``llvm.global_ctors``' Global Variable
3523-------------------------------------------
3524
3525.. code-block:: llvm
3526
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003527 %0 = type { i32, void ()*, i8* }
3528 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003529
3530The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003531functions, priorities, and an optional associated global or function.
3532The functions referenced by this array will be called in ascending order
3533of priority (i.e. lowest first) when the module is loaded. The order of
3534functions with the same priority is not defined.
3535
3536If the third field is present, non-null, and points to a global variable
3537or function, the initializer function will only run if the associated
3538data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003539
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003540.. _llvmglobaldtors:
3541
Sean Silvab084af42012-12-07 10:36:55 +00003542The '``llvm.global_dtors``' Global Variable
3543-------------------------------------------
3544
3545.. code-block:: llvm
3546
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003547 %0 = type { i32, void ()*, i8* }
3548 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003549
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003550The ``@llvm.global_dtors`` array contains a list of destructor
3551functions, priorities, and an optional associated global or function.
3552The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003553order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003554order of functions with the same priority is not defined.
3555
3556If the third field is present, non-null, and points to a global variable
3557or function, the destructor function will only run if the associated
3558data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003559
3560Instruction Reference
3561=====================
3562
3563The LLVM instruction set consists of several different classifications
3564of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3565instructions <binaryops>`, :ref:`bitwise binary
3566instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3567:ref:`other instructions <otherops>`.
3568
3569.. _terminators:
3570
3571Terminator Instructions
3572-----------------------
3573
3574As mentioned :ref:`previously <functionstructure>`, every basic block in a
3575program ends with a "Terminator" instruction, which indicates which
3576block should be executed after the current block is finished. These
3577terminator instructions typically yield a '``void``' value: they produce
3578control flow, not values (the one exception being the
3579':ref:`invoke <i_invoke>`' instruction).
3580
3581The terminator instructions are: ':ref:`ret <i_ret>`',
3582':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3583':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3584':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3585
3586.. _i_ret:
3587
3588'``ret``' Instruction
3589^^^^^^^^^^^^^^^^^^^^^
3590
3591Syntax:
3592"""""""
3593
3594::
3595
3596 ret <type> <value> ; Return a value from a non-void function
3597 ret void ; Return from void function
3598
3599Overview:
3600"""""""""
3601
3602The '``ret``' instruction is used to return control flow (and optionally
3603a value) from a function back to the caller.
3604
3605There are two forms of the '``ret``' instruction: one that returns a
3606value and then causes control flow, and one that just causes control
3607flow to occur.
3608
3609Arguments:
3610""""""""""
3611
3612The '``ret``' instruction optionally accepts a single argument, the
3613return value. The type of the return value must be a ':ref:`first
3614class <t_firstclass>`' type.
3615
3616A function is not :ref:`well formed <wellformed>` if it it has a non-void
3617return type and contains a '``ret``' instruction with no return value or
3618a return value with a type that does not match its type, or if it has a
3619void return type and contains a '``ret``' instruction with a return
3620value.
3621
3622Semantics:
3623""""""""""
3624
3625When the '``ret``' instruction is executed, control flow returns back to
3626the calling function's context. If the caller is a
3627":ref:`call <i_call>`" instruction, execution continues at the
3628instruction after the call. If the caller was an
3629":ref:`invoke <i_invoke>`" instruction, execution continues at the
3630beginning of the "normal" destination block. If the instruction returns
3631a value, that value shall set the call or invoke instruction's return
3632value.
3633
3634Example:
3635""""""""
3636
3637.. code-block:: llvm
3638
3639 ret i32 5 ; Return an integer value of 5
3640 ret void ; Return from a void function
3641 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3642
3643.. _i_br:
3644
3645'``br``' Instruction
3646^^^^^^^^^^^^^^^^^^^^
3647
3648Syntax:
3649"""""""
3650
3651::
3652
3653 br i1 <cond>, label <iftrue>, label <iffalse>
3654 br label <dest> ; Unconditional branch
3655
3656Overview:
3657"""""""""
3658
3659The '``br``' instruction is used to cause control flow to transfer to a
3660different basic block in the current function. There are two forms of
3661this instruction, corresponding to a conditional branch and an
3662unconditional branch.
3663
3664Arguments:
3665""""""""""
3666
3667The conditional branch form of the '``br``' instruction takes a single
3668'``i1``' value and two '``label``' values. The unconditional form of the
3669'``br``' instruction takes a single '``label``' value as a target.
3670
3671Semantics:
3672""""""""""
3673
3674Upon execution of a conditional '``br``' instruction, the '``i1``'
3675argument is evaluated. If the value is ``true``, control flows to the
3676'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3677to the '``iffalse``' ``label`` argument.
3678
3679Example:
3680""""""""
3681
3682.. code-block:: llvm
3683
3684 Test:
3685 %cond = icmp eq i32 %a, %b
3686 br i1 %cond, label %IfEqual, label %IfUnequal
3687 IfEqual:
3688 ret i32 1
3689 IfUnequal:
3690 ret i32 0
3691
3692.. _i_switch:
3693
3694'``switch``' Instruction
3695^^^^^^^^^^^^^^^^^^^^^^^^
3696
3697Syntax:
3698"""""""
3699
3700::
3701
3702 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3703
3704Overview:
3705"""""""""
3706
3707The '``switch``' instruction is used to transfer control flow to one of
3708several different places. It is a generalization of the '``br``'
3709instruction, allowing a branch to occur to one of many possible
3710destinations.
3711
3712Arguments:
3713""""""""""
3714
3715The '``switch``' instruction uses three parameters: an integer
3716comparison value '``value``', a default '``label``' destination, and an
3717array of pairs of comparison value constants and '``label``'s. The table
3718is not allowed to contain duplicate constant entries.
3719
3720Semantics:
3721""""""""""
3722
3723The ``switch`` instruction specifies a table of values and destinations.
3724When the '``switch``' instruction is executed, this table is searched
3725for the given value. If the value is found, control flow is transferred
3726to the corresponding destination; otherwise, control flow is transferred
3727to the default destination.
3728
3729Implementation:
3730"""""""""""""""
3731
3732Depending on properties of the target machine and the particular
3733``switch`` instruction, this instruction may be code generated in
3734different ways. For example, it could be generated as a series of
3735chained conditional branches or with a lookup table.
3736
3737Example:
3738""""""""
3739
3740.. code-block:: llvm
3741
3742 ; Emulate a conditional br instruction
3743 %Val = zext i1 %value to i32
3744 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3745
3746 ; Emulate an unconditional br instruction
3747 switch i32 0, label %dest [ ]
3748
3749 ; Implement a jump table:
3750 switch i32 %val, label %otherwise [ i32 0, label %onzero
3751 i32 1, label %onone
3752 i32 2, label %ontwo ]
3753
3754.. _i_indirectbr:
3755
3756'``indirectbr``' Instruction
3757^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3758
3759Syntax:
3760"""""""
3761
3762::
3763
3764 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3765
3766Overview:
3767"""""""""
3768
3769The '``indirectbr``' instruction implements an indirect branch to a
3770label within the current function, whose address is specified by
3771"``address``". Address must be derived from a
3772:ref:`blockaddress <blockaddress>` constant.
3773
3774Arguments:
3775""""""""""
3776
3777The '``address``' argument is the address of the label to jump to. The
3778rest of the arguments indicate the full set of possible destinations
3779that the address may point to. Blocks are allowed to occur multiple
3780times in the destination list, though this isn't particularly useful.
3781
3782This destination list is required so that dataflow analysis has an
3783accurate understanding of the CFG.
3784
3785Semantics:
3786""""""""""
3787
3788Control transfers to the block specified in the address argument. All
3789possible destination blocks must be listed in the label list, otherwise
3790this instruction has undefined behavior. This implies that jumps to
3791labels defined in other functions have undefined behavior as well.
3792
3793Implementation:
3794"""""""""""""""
3795
3796This is typically implemented with a jump through a register.
3797
3798Example:
3799""""""""
3800
3801.. code-block:: llvm
3802
3803 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3804
3805.. _i_invoke:
3806
3807'``invoke``' Instruction
3808^^^^^^^^^^^^^^^^^^^^^^^^
3809
3810Syntax:
3811"""""""
3812
3813::
3814
3815 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3816 to label <normal label> unwind label <exception label>
3817
3818Overview:
3819"""""""""
3820
3821The '``invoke``' instruction causes control to transfer to a specified
3822function, with the possibility of control flow transfer to either the
3823'``normal``' label or the '``exception``' label. If the callee function
3824returns with the "``ret``" instruction, control flow will return to the
3825"normal" label. If the callee (or any indirect callees) returns via the
3826":ref:`resume <i_resume>`" instruction or other exception handling
3827mechanism, control is interrupted and continued at the dynamically
3828nearest "exception" label.
3829
3830The '``exception``' label is a `landing
3831pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3832'``exception``' label is required to have the
3833":ref:`landingpad <i_landingpad>`" instruction, which contains the
3834information about the behavior of the program after unwinding happens,
3835as its first non-PHI instruction. The restrictions on the
3836"``landingpad``" instruction's tightly couples it to the "``invoke``"
3837instruction, so that the important information contained within the
3838"``landingpad``" instruction can't be lost through normal code motion.
3839
3840Arguments:
3841""""""""""
3842
3843This instruction requires several arguments:
3844
3845#. The optional "cconv" marker indicates which :ref:`calling
3846 convention <callingconv>` the call should use. If none is
3847 specified, the call defaults to using C calling conventions.
3848#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3849 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3850 are valid here.
3851#. '``ptr to function ty``': shall be the signature of the pointer to
3852 function value being invoked. In most cases, this is a direct
3853 function invocation, but indirect ``invoke``'s are just as possible,
3854 branching off an arbitrary pointer to function value.
3855#. '``function ptr val``': An LLVM value containing a pointer to a
3856 function to be invoked.
3857#. '``function args``': argument list whose types match the function
3858 signature argument types and parameter attributes. All arguments must
3859 be of :ref:`first class <t_firstclass>` type. If the function signature
3860 indicates the function accepts a variable number of arguments, the
3861 extra arguments can be specified.
3862#. '``normal label``': the label reached when the called function
3863 executes a '``ret``' instruction.
3864#. '``exception label``': the label reached when a callee returns via
3865 the :ref:`resume <i_resume>` instruction or other exception handling
3866 mechanism.
3867#. The optional :ref:`function attributes <fnattrs>` list. Only
3868 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3869 attributes are valid here.
3870
3871Semantics:
3872""""""""""
3873
3874This instruction is designed to operate as a standard '``call``'
3875instruction in most regards. The primary difference is that it
3876establishes an association with a label, which is used by the runtime
3877library to unwind the stack.
3878
3879This instruction is used in languages with destructors to ensure that
3880proper cleanup is performed in the case of either a ``longjmp`` or a
3881thrown exception. Additionally, this is important for implementation of
3882'``catch``' clauses in high-level languages that support them.
3883
3884For the purposes of the SSA form, the definition of the value returned
3885by the '``invoke``' instruction is deemed to occur on the edge from the
3886current block to the "normal" label. If the callee unwinds then no
3887return value is available.
3888
3889Example:
3890""""""""
3891
3892.. code-block:: llvm
3893
3894 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003895 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003896 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003897 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003898
3899.. _i_resume:
3900
3901'``resume``' Instruction
3902^^^^^^^^^^^^^^^^^^^^^^^^
3903
3904Syntax:
3905"""""""
3906
3907::
3908
3909 resume <type> <value>
3910
3911Overview:
3912"""""""""
3913
3914The '``resume``' instruction is a terminator instruction that has no
3915successors.
3916
3917Arguments:
3918""""""""""
3919
3920The '``resume``' instruction requires one argument, which must have the
3921same type as the result of any '``landingpad``' instruction in the same
3922function.
3923
3924Semantics:
3925""""""""""
3926
3927The '``resume``' instruction resumes propagation of an existing
3928(in-flight) exception whose unwinding was interrupted with a
3929:ref:`landingpad <i_landingpad>` instruction.
3930
3931Example:
3932""""""""
3933
3934.. code-block:: llvm
3935
3936 resume { i8*, i32 } %exn
3937
3938.. _i_unreachable:
3939
3940'``unreachable``' Instruction
3941^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3942
3943Syntax:
3944"""""""
3945
3946::
3947
3948 unreachable
3949
3950Overview:
3951"""""""""
3952
3953The '``unreachable``' instruction has no defined semantics. This
3954instruction is used to inform the optimizer that a particular portion of
3955the code is not reachable. This can be used to indicate that the code
3956after a no-return function cannot be reached, and other facts.
3957
3958Semantics:
3959""""""""""
3960
3961The '``unreachable``' instruction has no defined semantics.
3962
3963.. _binaryops:
3964
3965Binary Operations
3966-----------------
3967
3968Binary operators are used to do most of the computation in a program.
3969They require two operands of the same type, execute an operation on
3970them, and produce a single value. The operands might represent multiple
3971data, as is the case with the :ref:`vector <t_vector>` data type. The
3972result value has the same type as its operands.
3973
3974There are several different binary operators:
3975
3976.. _i_add:
3977
3978'``add``' Instruction
3979^^^^^^^^^^^^^^^^^^^^^
3980
3981Syntax:
3982"""""""
3983
3984::
3985
Tim Northover675a0962014-06-13 14:24:23 +00003986 <result> = add <ty> <op1>, <op2> ; yields ty:result
3987 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
3988 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
3989 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003990
3991Overview:
3992"""""""""
3993
3994The '``add``' instruction returns the sum of its two operands.
3995
3996Arguments:
3997""""""""""
3998
3999The two arguments to the '``add``' instruction must be
4000:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4001arguments must have identical types.
4002
4003Semantics:
4004""""""""""
4005
4006The value produced is the integer sum of the two operands.
4007
4008If the sum has unsigned overflow, the result returned is the
4009mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4010the result.
4011
4012Because LLVM integers use a two's complement representation, this
4013instruction is appropriate for both signed and unsigned integers.
4014
4015``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4016respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4017result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4018unsigned and/or signed overflow, respectively, occurs.
4019
4020Example:
4021""""""""
4022
4023.. code-block:: llvm
4024
Tim Northover675a0962014-06-13 14:24:23 +00004025 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004026
4027.. _i_fadd:
4028
4029'``fadd``' Instruction
4030^^^^^^^^^^^^^^^^^^^^^^
4031
4032Syntax:
4033"""""""
4034
4035::
4036
Tim Northover675a0962014-06-13 14:24:23 +00004037 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004038
4039Overview:
4040"""""""""
4041
4042The '``fadd``' instruction returns the sum of its two operands.
4043
4044Arguments:
4045""""""""""
4046
4047The two arguments to the '``fadd``' instruction must be :ref:`floating
4048point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4049Both arguments must have identical types.
4050
4051Semantics:
4052""""""""""
4053
4054The value produced is the floating point sum of the two operands. This
4055instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4056which are optimization hints to enable otherwise unsafe floating point
4057optimizations:
4058
4059Example:
4060""""""""
4061
4062.. code-block:: llvm
4063
Tim Northover675a0962014-06-13 14:24:23 +00004064 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004065
4066'``sub``' Instruction
4067^^^^^^^^^^^^^^^^^^^^^
4068
4069Syntax:
4070"""""""
4071
4072::
4073
Tim Northover675a0962014-06-13 14:24:23 +00004074 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4075 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4076 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4077 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004078
4079Overview:
4080"""""""""
4081
4082The '``sub``' instruction returns the difference of its two operands.
4083
4084Note that the '``sub``' instruction is used to represent the '``neg``'
4085instruction present in most other intermediate representations.
4086
4087Arguments:
4088""""""""""
4089
4090The two arguments to the '``sub``' instruction must be
4091:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4092arguments must have identical types.
4093
4094Semantics:
4095""""""""""
4096
4097The value produced is the integer difference of the two operands.
4098
4099If the difference has unsigned overflow, the result returned is the
4100mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4101the result.
4102
4103Because LLVM integers use a two's complement representation, this
4104instruction is appropriate for both signed and unsigned integers.
4105
4106``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4107respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4108result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4109unsigned and/or signed overflow, respectively, occurs.
4110
4111Example:
4112""""""""
4113
4114.. code-block:: llvm
4115
Tim Northover675a0962014-06-13 14:24:23 +00004116 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4117 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004118
4119.. _i_fsub:
4120
4121'``fsub``' Instruction
4122^^^^^^^^^^^^^^^^^^^^^^
4123
4124Syntax:
4125"""""""
4126
4127::
4128
Tim Northover675a0962014-06-13 14:24:23 +00004129 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004130
4131Overview:
4132"""""""""
4133
4134The '``fsub``' instruction returns the difference of its two operands.
4135
4136Note that the '``fsub``' instruction is used to represent the '``fneg``'
4137instruction present in most other intermediate representations.
4138
4139Arguments:
4140""""""""""
4141
4142The two arguments to the '``fsub``' instruction must be :ref:`floating
4143point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4144Both arguments must have identical types.
4145
4146Semantics:
4147""""""""""
4148
4149The value produced is the floating point difference of the two operands.
4150This instruction can also take any number of :ref:`fast-math
4151flags <fastmath>`, which are optimization hints to enable otherwise
4152unsafe floating point optimizations:
4153
4154Example:
4155""""""""
4156
4157.. code-block:: llvm
4158
Tim Northover675a0962014-06-13 14:24:23 +00004159 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4160 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004161
4162'``mul``' Instruction
4163^^^^^^^^^^^^^^^^^^^^^
4164
4165Syntax:
4166"""""""
4167
4168::
4169
Tim Northover675a0962014-06-13 14:24:23 +00004170 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4171 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4172 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4173 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004174
4175Overview:
4176"""""""""
4177
4178The '``mul``' instruction returns the product of its two operands.
4179
4180Arguments:
4181""""""""""
4182
4183The two arguments to the '``mul``' instruction must be
4184:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4185arguments must have identical types.
4186
4187Semantics:
4188""""""""""
4189
4190The value produced is the integer product of the two operands.
4191
4192If the result of the multiplication has unsigned overflow, the result
4193returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4194bit width of the result.
4195
4196Because LLVM integers use a two's complement representation, and the
4197result is the same width as the operands, this instruction returns the
4198correct result for both signed and unsigned integers. If a full product
4199(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4200sign-extended or zero-extended as appropriate to the width of the full
4201product.
4202
4203``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4204respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4205result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4206unsigned and/or signed overflow, respectively, occurs.
4207
4208Example:
4209""""""""
4210
4211.. code-block:: llvm
4212
Tim Northover675a0962014-06-13 14:24:23 +00004213 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004214
4215.. _i_fmul:
4216
4217'``fmul``' Instruction
4218^^^^^^^^^^^^^^^^^^^^^^
4219
4220Syntax:
4221"""""""
4222
4223::
4224
Tim Northover675a0962014-06-13 14:24:23 +00004225 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004226
4227Overview:
4228"""""""""
4229
4230The '``fmul``' instruction returns the product of its two operands.
4231
4232Arguments:
4233""""""""""
4234
4235The two arguments to the '``fmul``' instruction must be :ref:`floating
4236point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4237Both arguments must have identical types.
4238
4239Semantics:
4240""""""""""
4241
4242The value produced is the floating point product of the two operands.
4243This instruction can also take any number of :ref:`fast-math
4244flags <fastmath>`, which are optimization hints to enable otherwise
4245unsafe floating point optimizations:
4246
4247Example:
4248""""""""
4249
4250.. code-block:: llvm
4251
Tim Northover675a0962014-06-13 14:24:23 +00004252 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004253
4254'``udiv``' Instruction
4255^^^^^^^^^^^^^^^^^^^^^^
4256
4257Syntax:
4258"""""""
4259
4260::
4261
Tim Northover675a0962014-06-13 14:24:23 +00004262 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4263 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004264
4265Overview:
4266"""""""""
4267
4268The '``udiv``' instruction returns the quotient of its two operands.
4269
4270Arguments:
4271""""""""""
4272
4273The two arguments to the '``udiv``' instruction must be
4274:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4275arguments must have identical types.
4276
4277Semantics:
4278""""""""""
4279
4280The value produced is the unsigned integer quotient of the two operands.
4281
4282Note that unsigned integer division and signed integer division are
4283distinct operations; for signed integer division, use '``sdiv``'.
4284
4285Division by zero leads to undefined behavior.
4286
4287If the ``exact`` keyword is present, the result value of the ``udiv`` is
4288a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4289such, "((a udiv exact b) mul b) == a").
4290
4291Example:
4292""""""""
4293
4294.. code-block:: llvm
4295
Tim Northover675a0962014-06-13 14:24:23 +00004296 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004297
4298'``sdiv``' Instruction
4299^^^^^^^^^^^^^^^^^^^^^^
4300
4301Syntax:
4302"""""""
4303
4304::
4305
Tim Northover675a0962014-06-13 14:24:23 +00004306 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4307 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004308
4309Overview:
4310"""""""""
4311
4312The '``sdiv``' instruction returns the quotient of its two operands.
4313
4314Arguments:
4315""""""""""
4316
4317The two arguments to the '``sdiv``' instruction must be
4318:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4319arguments must have identical types.
4320
4321Semantics:
4322""""""""""
4323
4324The value produced is the signed integer quotient of the two operands
4325rounded towards zero.
4326
4327Note that signed integer division and unsigned integer division are
4328distinct operations; for unsigned integer division, use '``udiv``'.
4329
4330Division by zero leads to undefined behavior. Overflow also leads to
4331undefined behavior; this is a rare case, but can occur, for example, by
4332doing a 32-bit division of -2147483648 by -1.
4333
4334If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4335a :ref:`poison value <poisonvalues>` if the result would be rounded.
4336
4337Example:
4338""""""""
4339
4340.. code-block:: llvm
4341
Tim Northover675a0962014-06-13 14:24:23 +00004342 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004343
4344.. _i_fdiv:
4345
4346'``fdiv``' Instruction
4347^^^^^^^^^^^^^^^^^^^^^^
4348
4349Syntax:
4350"""""""
4351
4352::
4353
Tim Northover675a0962014-06-13 14:24:23 +00004354 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004355
4356Overview:
4357"""""""""
4358
4359The '``fdiv``' instruction returns the quotient of its two operands.
4360
4361Arguments:
4362""""""""""
4363
4364The two arguments to the '``fdiv``' instruction must be :ref:`floating
4365point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4366Both arguments must have identical types.
4367
4368Semantics:
4369""""""""""
4370
4371The value produced is the floating point quotient of the two operands.
4372This instruction can also take any number of :ref:`fast-math
4373flags <fastmath>`, which are optimization hints to enable otherwise
4374unsafe floating point optimizations:
4375
4376Example:
4377""""""""
4378
4379.. code-block:: llvm
4380
Tim Northover675a0962014-06-13 14:24:23 +00004381 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004382
4383'``urem``' Instruction
4384^^^^^^^^^^^^^^^^^^^^^^
4385
4386Syntax:
4387"""""""
4388
4389::
4390
Tim Northover675a0962014-06-13 14:24:23 +00004391 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004392
4393Overview:
4394"""""""""
4395
4396The '``urem``' instruction returns the remainder from the unsigned
4397division of its two arguments.
4398
4399Arguments:
4400""""""""""
4401
4402The two arguments to the '``urem``' instruction must be
4403:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4404arguments must have identical types.
4405
4406Semantics:
4407""""""""""
4408
4409This instruction returns the unsigned integer *remainder* of a division.
4410This instruction always performs an unsigned division to get the
4411remainder.
4412
4413Note that unsigned integer remainder and signed integer remainder are
4414distinct operations; for signed integer remainder, use '``srem``'.
4415
4416Taking the remainder of a division by zero leads to undefined behavior.
4417
4418Example:
4419""""""""
4420
4421.. code-block:: llvm
4422
Tim Northover675a0962014-06-13 14:24:23 +00004423 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004424
4425'``srem``' Instruction
4426^^^^^^^^^^^^^^^^^^^^^^
4427
4428Syntax:
4429"""""""
4430
4431::
4432
Tim Northover675a0962014-06-13 14:24:23 +00004433 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004434
4435Overview:
4436"""""""""
4437
4438The '``srem``' instruction returns the remainder from the signed
4439division of its two operands. This instruction can also take
4440:ref:`vector <t_vector>` versions of the values in which case the elements
4441must be integers.
4442
4443Arguments:
4444""""""""""
4445
4446The two arguments to the '``srem``' instruction must be
4447:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4448arguments must have identical types.
4449
4450Semantics:
4451""""""""""
4452
4453This instruction returns the *remainder* of a division (where the result
4454is either zero or has the same sign as the dividend, ``op1``), not the
4455*modulo* operator (where the result is either zero or has the same sign
4456as the divisor, ``op2``) of a value. For more information about the
4457difference, see `The Math
4458Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4459table of how this is implemented in various languages, please see
4460`Wikipedia: modulo
4461operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4462
4463Note that signed integer remainder and unsigned integer remainder are
4464distinct operations; for unsigned integer remainder, use '``urem``'.
4465
4466Taking the remainder of a division by zero leads to undefined behavior.
4467Overflow also leads to undefined behavior; this is a rare case, but can
4468occur, for example, by taking the remainder of a 32-bit division of
4469-2147483648 by -1. (The remainder doesn't actually overflow, but this
4470rule lets srem be implemented using instructions that return both the
4471result of the division and the remainder.)
4472
4473Example:
4474""""""""
4475
4476.. code-block:: llvm
4477
Tim Northover675a0962014-06-13 14:24:23 +00004478 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004479
4480.. _i_frem:
4481
4482'``frem``' Instruction
4483^^^^^^^^^^^^^^^^^^^^^^
4484
4485Syntax:
4486"""""""
4487
4488::
4489
Tim Northover675a0962014-06-13 14:24:23 +00004490 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004491
4492Overview:
4493"""""""""
4494
4495The '``frem``' instruction returns the remainder from the division of
4496its two operands.
4497
4498Arguments:
4499""""""""""
4500
4501The two arguments to the '``frem``' instruction must be :ref:`floating
4502point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4503Both arguments must have identical types.
4504
4505Semantics:
4506""""""""""
4507
4508This instruction returns the *remainder* of a division. The remainder
4509has the same sign as the dividend. This instruction can also take any
4510number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4511to enable otherwise unsafe floating point optimizations:
4512
4513Example:
4514""""""""
4515
4516.. code-block:: llvm
4517
Tim Northover675a0962014-06-13 14:24:23 +00004518 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004519
4520.. _bitwiseops:
4521
4522Bitwise Binary Operations
4523-------------------------
4524
4525Bitwise binary operators are used to do various forms of bit-twiddling
4526in a program. They are generally very efficient instructions and can
4527commonly be strength reduced from other instructions. They require two
4528operands of the same type, execute an operation on them, and produce a
4529single value. The resulting value is the same type as its operands.
4530
4531'``shl``' Instruction
4532^^^^^^^^^^^^^^^^^^^^^
4533
4534Syntax:
4535"""""""
4536
4537::
4538
Tim Northover675a0962014-06-13 14:24:23 +00004539 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4540 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4541 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4542 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004543
4544Overview:
4545"""""""""
4546
4547The '``shl``' instruction returns the first operand shifted to the left
4548a specified number of bits.
4549
4550Arguments:
4551""""""""""
4552
4553Both arguments to the '``shl``' instruction must be the same
4554:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4555'``op2``' is treated as an unsigned value.
4556
4557Semantics:
4558""""""""""
4559
4560The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4561where ``n`` is the width of the result. If ``op2`` is (statically or
4562dynamically) negative or equal to or larger than the number of bits in
4563``op1``, the result is undefined. If the arguments are vectors, each
4564vector element of ``op1`` is shifted by the corresponding shift amount
4565in ``op2``.
4566
4567If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4568value <poisonvalues>` if it shifts out any non-zero bits. If the
4569``nsw`` keyword is present, then the shift produces a :ref:`poison
4570value <poisonvalues>` if it shifts out any bits that disagree with the
4571resultant sign bit. As such, NUW/NSW have the same semantics as they
4572would if the shift were expressed as a mul instruction with the same
4573nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4574
4575Example:
4576""""""""
4577
4578.. code-block:: llvm
4579
Tim Northover675a0962014-06-13 14:24:23 +00004580 <result> = shl i32 4, %var ; yields i32: 4 << %var
4581 <result> = shl i32 4, 2 ; yields i32: 16
4582 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004583 <result> = shl i32 1, 32 ; undefined
4584 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4585
4586'``lshr``' Instruction
4587^^^^^^^^^^^^^^^^^^^^^^
4588
4589Syntax:
4590"""""""
4591
4592::
4593
Tim Northover675a0962014-06-13 14:24:23 +00004594 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4595 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004596
4597Overview:
4598"""""""""
4599
4600The '``lshr``' instruction (logical shift right) returns the first
4601operand shifted to the right a specified number of bits with zero fill.
4602
4603Arguments:
4604""""""""""
4605
4606Both arguments to the '``lshr``' instruction must be the same
4607:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4608'``op2``' is treated as an unsigned value.
4609
4610Semantics:
4611""""""""""
4612
4613This instruction always performs a logical shift right operation. The
4614most significant bits of the result will be filled with zero bits after
4615the shift. If ``op2`` is (statically or dynamically) equal to or larger
4616than the number of bits in ``op1``, the result is undefined. If the
4617arguments are vectors, each vector element of ``op1`` is shifted by the
4618corresponding shift amount in ``op2``.
4619
4620If the ``exact`` keyword is present, the result value of the ``lshr`` is
4621a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4622non-zero.
4623
4624Example:
4625""""""""
4626
4627.. code-block:: llvm
4628
Tim Northover675a0962014-06-13 14:24:23 +00004629 <result> = lshr i32 4, 1 ; yields i32:result = 2
4630 <result> = lshr i32 4, 2 ; yields i32:result = 1
4631 <result> = lshr i8 4, 3 ; yields i8:result = 0
4632 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004633 <result> = lshr i32 1, 32 ; undefined
4634 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4635
4636'``ashr``' Instruction
4637^^^^^^^^^^^^^^^^^^^^^^
4638
4639Syntax:
4640"""""""
4641
4642::
4643
Tim Northover675a0962014-06-13 14:24:23 +00004644 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4645 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004646
4647Overview:
4648"""""""""
4649
4650The '``ashr``' instruction (arithmetic shift right) returns the first
4651operand shifted to the right a specified number of bits with sign
4652extension.
4653
4654Arguments:
4655""""""""""
4656
4657Both arguments to the '``ashr``' instruction must be the same
4658:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4659'``op2``' is treated as an unsigned value.
4660
4661Semantics:
4662""""""""""
4663
4664This instruction always performs an arithmetic shift right operation,
4665The most significant bits of the result will be filled with the sign bit
4666of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4667than the number of bits in ``op1``, the result is undefined. If the
4668arguments are vectors, each vector element of ``op1`` is shifted by the
4669corresponding shift amount in ``op2``.
4670
4671If the ``exact`` keyword is present, the result value of the ``ashr`` is
4672a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4673non-zero.
4674
4675Example:
4676""""""""
4677
4678.. code-block:: llvm
4679
Tim Northover675a0962014-06-13 14:24:23 +00004680 <result> = ashr i32 4, 1 ; yields i32:result = 2
4681 <result> = ashr i32 4, 2 ; yields i32:result = 1
4682 <result> = ashr i8 4, 3 ; yields i8:result = 0
4683 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004684 <result> = ashr i32 1, 32 ; undefined
4685 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4686
4687'``and``' Instruction
4688^^^^^^^^^^^^^^^^^^^^^
4689
4690Syntax:
4691"""""""
4692
4693::
4694
Tim Northover675a0962014-06-13 14:24:23 +00004695 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004696
4697Overview:
4698"""""""""
4699
4700The '``and``' instruction returns the bitwise logical and of its two
4701operands.
4702
4703Arguments:
4704""""""""""
4705
4706The two arguments to the '``and``' instruction must be
4707:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4708arguments must have identical types.
4709
4710Semantics:
4711""""""""""
4712
4713The truth table used for the '``and``' instruction is:
4714
4715+-----+-----+-----+
4716| In0 | In1 | Out |
4717+-----+-----+-----+
4718| 0 | 0 | 0 |
4719+-----+-----+-----+
4720| 0 | 1 | 0 |
4721+-----+-----+-----+
4722| 1 | 0 | 0 |
4723+-----+-----+-----+
4724| 1 | 1 | 1 |
4725+-----+-----+-----+
4726
4727Example:
4728""""""""
4729
4730.. code-block:: llvm
4731
Tim Northover675a0962014-06-13 14:24:23 +00004732 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4733 <result> = and i32 15, 40 ; yields i32:result = 8
4734 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004735
4736'``or``' Instruction
4737^^^^^^^^^^^^^^^^^^^^
4738
4739Syntax:
4740"""""""
4741
4742::
4743
Tim Northover675a0962014-06-13 14:24:23 +00004744 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004745
4746Overview:
4747"""""""""
4748
4749The '``or``' instruction returns the bitwise logical inclusive or of its
4750two operands.
4751
4752Arguments:
4753""""""""""
4754
4755The two arguments to the '``or``' instruction must be
4756:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4757arguments must have identical types.
4758
4759Semantics:
4760""""""""""
4761
4762The truth table used for the '``or``' instruction is:
4763
4764+-----+-----+-----+
4765| In0 | In1 | Out |
4766+-----+-----+-----+
4767| 0 | 0 | 0 |
4768+-----+-----+-----+
4769| 0 | 1 | 1 |
4770+-----+-----+-----+
4771| 1 | 0 | 1 |
4772+-----+-----+-----+
4773| 1 | 1 | 1 |
4774+-----+-----+-----+
4775
4776Example:
4777""""""""
4778
4779::
4780
Tim Northover675a0962014-06-13 14:24:23 +00004781 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4782 <result> = or i32 15, 40 ; yields i32:result = 47
4783 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004784
4785'``xor``' Instruction
4786^^^^^^^^^^^^^^^^^^^^^
4787
4788Syntax:
4789"""""""
4790
4791::
4792
Tim Northover675a0962014-06-13 14:24:23 +00004793 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004794
4795Overview:
4796"""""""""
4797
4798The '``xor``' instruction returns the bitwise logical exclusive or of
4799its two operands. The ``xor`` is used to implement the "one's
4800complement" operation, which is the "~" operator in C.
4801
4802Arguments:
4803""""""""""
4804
4805The two arguments to the '``xor``' instruction must be
4806:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4807arguments must have identical types.
4808
4809Semantics:
4810""""""""""
4811
4812The truth table used for the '``xor``' instruction is:
4813
4814+-----+-----+-----+
4815| In0 | In1 | Out |
4816+-----+-----+-----+
4817| 0 | 0 | 0 |
4818+-----+-----+-----+
4819| 0 | 1 | 1 |
4820+-----+-----+-----+
4821| 1 | 0 | 1 |
4822+-----+-----+-----+
4823| 1 | 1 | 0 |
4824+-----+-----+-----+
4825
4826Example:
4827""""""""
4828
4829.. code-block:: llvm
4830
Tim Northover675a0962014-06-13 14:24:23 +00004831 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4832 <result> = xor i32 15, 40 ; yields i32:result = 39
4833 <result> = xor i32 4, 8 ; yields i32:result = 12
4834 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004835
4836Vector Operations
4837-----------------
4838
4839LLVM supports several instructions to represent vector operations in a
4840target-independent manner. These instructions cover the element-access
4841and vector-specific operations needed to process vectors effectively.
4842While LLVM does directly support these vector operations, many
4843sophisticated algorithms will want to use target-specific intrinsics to
4844take full advantage of a specific target.
4845
4846.. _i_extractelement:
4847
4848'``extractelement``' Instruction
4849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4850
4851Syntax:
4852"""""""
4853
4854::
4855
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004856 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004857
4858Overview:
4859"""""""""
4860
4861The '``extractelement``' instruction extracts a single scalar element
4862from a vector at a specified index.
4863
4864Arguments:
4865""""""""""
4866
4867The first operand of an '``extractelement``' instruction is a value of
4868:ref:`vector <t_vector>` type. The second operand is an index indicating
4869the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004870variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004871
4872Semantics:
4873""""""""""
4874
4875The result is a scalar of the same type as the element type of ``val``.
4876Its value is the value at position ``idx`` of ``val``. If ``idx``
4877exceeds the length of ``val``, the results are undefined.
4878
4879Example:
4880""""""""
4881
4882.. code-block:: llvm
4883
4884 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4885
4886.. _i_insertelement:
4887
4888'``insertelement``' Instruction
4889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4890
4891Syntax:
4892"""""""
4893
4894::
4895
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004896 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004897
4898Overview:
4899"""""""""
4900
4901The '``insertelement``' instruction inserts a scalar element into a
4902vector at a specified index.
4903
4904Arguments:
4905""""""""""
4906
4907The first operand of an '``insertelement``' instruction is a value of
4908:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4909type must equal the element type of the first operand. The third operand
4910is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004911index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004912
4913Semantics:
4914""""""""""
4915
4916The result is a vector of the same type as ``val``. Its element values
4917are those of ``val`` except at position ``idx``, where it gets the value
4918``elt``. If ``idx`` exceeds the length of ``val``, the results are
4919undefined.
4920
4921Example:
4922""""""""
4923
4924.. code-block:: llvm
4925
4926 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4927
4928.. _i_shufflevector:
4929
4930'``shufflevector``' Instruction
4931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4932
4933Syntax:
4934"""""""
4935
4936::
4937
4938 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4939
4940Overview:
4941"""""""""
4942
4943The '``shufflevector``' instruction constructs a permutation of elements
4944from two input vectors, returning a vector with the same element type as
4945the input and length that is the same as the shuffle mask.
4946
4947Arguments:
4948""""""""""
4949
4950The first two operands of a '``shufflevector``' instruction are vectors
4951with the same type. The third argument is a shuffle mask whose element
4952type is always 'i32'. The result of the instruction is a vector whose
4953length is the same as the shuffle mask and whose element type is the
4954same as the element type of the first two operands.
4955
4956The shuffle mask operand is required to be a constant vector with either
4957constant integer or undef values.
4958
4959Semantics:
4960""""""""""
4961
4962The elements of the two input vectors are numbered from left to right
4963across both of the vectors. The shuffle mask operand specifies, for each
4964element of the result vector, which element of the two input vectors the
4965result element gets. The element selector may be undef (meaning "don't
4966care") and the second operand may be undef if performing a shuffle from
4967only one vector.
4968
4969Example:
4970""""""""
4971
4972.. code-block:: llvm
4973
4974 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4975 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4976 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4977 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4978 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4979 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4980 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4981 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4982
4983Aggregate Operations
4984--------------------
4985
4986LLVM supports several instructions for working with
4987:ref:`aggregate <t_aggregate>` values.
4988
4989.. _i_extractvalue:
4990
4991'``extractvalue``' Instruction
4992^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4993
4994Syntax:
4995"""""""
4996
4997::
4998
4999 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5000
5001Overview:
5002"""""""""
5003
5004The '``extractvalue``' instruction extracts the value of a member field
5005from an :ref:`aggregate <t_aggregate>` value.
5006
5007Arguments:
5008""""""""""
5009
5010The first operand of an '``extractvalue``' instruction is a value of
5011:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5012constant indices to specify which value to extract in a similar manner
5013as indices in a '``getelementptr``' instruction.
5014
5015The major differences to ``getelementptr`` indexing are:
5016
5017- Since the value being indexed is not a pointer, the first index is
5018 omitted and assumed to be zero.
5019- At least one index must be specified.
5020- Not only struct indices but also array indices must be in bounds.
5021
5022Semantics:
5023""""""""""
5024
5025The result is the value at the position in the aggregate specified by
5026the index operands.
5027
5028Example:
5029""""""""
5030
5031.. code-block:: llvm
5032
5033 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5034
5035.. _i_insertvalue:
5036
5037'``insertvalue``' Instruction
5038^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5039
5040Syntax:
5041"""""""
5042
5043::
5044
5045 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5046
5047Overview:
5048"""""""""
5049
5050The '``insertvalue``' instruction inserts a value into a member field in
5051an :ref:`aggregate <t_aggregate>` value.
5052
5053Arguments:
5054""""""""""
5055
5056The first operand of an '``insertvalue``' instruction is a value of
5057:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5058a first-class value to insert. The following operands are constant
5059indices indicating the position at which to insert the value in a
5060similar manner as indices in a '``extractvalue``' instruction. The value
5061to insert must have the same type as the value identified by the
5062indices.
5063
5064Semantics:
5065""""""""""
5066
5067The result is an aggregate of the same type as ``val``. Its value is
5068that of ``val`` except that the value at the position specified by the
5069indices is that of ``elt``.
5070
5071Example:
5072""""""""
5073
5074.. code-block:: llvm
5075
5076 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5077 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
5078 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
5079
5080.. _memoryops:
5081
5082Memory Access and Addressing Operations
5083---------------------------------------
5084
5085A key design point of an SSA-based representation is how it represents
5086memory. In LLVM, no memory locations are in SSA form, which makes things
5087very simple. This section describes how to read, write, and allocate
5088memory in LLVM.
5089
5090.. _i_alloca:
5091
5092'``alloca``' Instruction
5093^^^^^^^^^^^^^^^^^^^^^^^^
5094
5095Syntax:
5096"""""""
5097
5098::
5099
Tim Northover675a0962014-06-13 14:24:23 +00005100 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005101
5102Overview:
5103"""""""""
5104
5105The '``alloca``' instruction allocates memory on the stack frame of the
5106currently executing function, to be automatically released when this
5107function returns to its caller. The object is always allocated in the
5108generic address space (address space zero).
5109
5110Arguments:
5111""""""""""
5112
5113The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5114bytes of memory on the runtime stack, returning a pointer of the
5115appropriate type to the program. If "NumElements" is specified, it is
5116the number of elements allocated, otherwise "NumElements" is defaulted
5117to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005118allocation is guaranteed to be aligned to at least that boundary. The
5119alignment may not be greater than ``1 << 29``. If not specified, or if
5120zero, the target can choose to align the allocation on any convenient
5121boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005122
5123'``type``' may be any sized type.
5124
5125Semantics:
5126""""""""""
5127
5128Memory is allocated; a pointer is returned. The operation is undefined
5129if there is insufficient stack space for the allocation. '``alloca``'d
5130memory is automatically released when the function returns. The
5131'``alloca``' instruction is commonly used to represent automatic
5132variables that must have an address available. When the function returns
5133(either with the ``ret`` or ``resume`` instructions), the memory is
5134reclaimed. Allocating zero bytes is legal, but the result is undefined.
5135The order in which memory is allocated (ie., which way the stack grows)
5136is not specified.
5137
5138Example:
5139""""""""
5140
5141.. code-block:: llvm
5142
Tim Northover675a0962014-06-13 14:24:23 +00005143 %ptr = alloca i32 ; yields i32*:ptr
5144 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5145 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5146 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005147
5148.. _i_load:
5149
5150'``load``' Instruction
5151^^^^^^^^^^^^^^^^^^^^^^
5152
5153Syntax:
5154"""""""
5155
5156::
5157
5158 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
5159 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5160 !<index> = !{ i32 1 }
5161
5162Overview:
5163"""""""""
5164
5165The '``load``' instruction is used to read from memory.
5166
5167Arguments:
5168""""""""""
5169
Eli Bendersky239a78b2013-04-17 20:17:08 +00005170The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005171from which to load. The pointer must point to a :ref:`first
5172class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5173then the optimizer is not allowed to modify the number or order of
5174execution of this ``load`` with other :ref:`volatile
5175operations <volatile>`.
5176
5177If the ``load`` is marked as ``atomic``, it takes an extra
5178:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5179``release`` and ``acq_rel`` orderings are not valid on ``load``
5180instructions. Atomic loads produce :ref:`defined <memmodel>` results
5181when they may see multiple atomic stores. The type of the pointee must
5182be an integer type whose bit width is a power of two greater than or
5183equal to eight and less than or equal to a target-specific size limit.
5184``align`` must be explicitly specified on atomic loads, and the load has
5185undefined behavior if the alignment is not set to a value which is at
5186least the size in bytes of the pointee. ``!nontemporal`` does not have
5187any defined semantics for atomic loads.
5188
5189The optional constant ``align`` argument specifies the alignment of the
5190operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005191or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005192alignment for the target. It is the responsibility of the code emitter
5193to ensure that the alignment information is correct. Overestimating the
5194alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005195may produce less efficient code. An alignment of 1 is always safe. The
5196maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005197
5198The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005199metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005200``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005201metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005202that this load is not expected to be reused in the cache. The code
5203generator may select special instructions to save cache bandwidth, such
5204as the ``MOVNT`` instruction on x86.
5205
5206The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005207metadata name ``<index>`` corresponding to a metadata node with no
5208entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00005209instruction tells the optimizer and code generator that this load
5210address points to memory which does not change value during program
5211execution. The optimizer may then move this load around, for example, by
5212hoisting it out of loops using loop invariant code motion.
5213
5214Semantics:
5215""""""""""
5216
5217The location of memory pointed to is loaded. If the value being loaded
5218is of scalar type then the number of bytes read does not exceed the
5219minimum number of bytes needed to hold all bits of the type. For
5220example, loading an ``i24`` reads at most three bytes. When loading a
5221value of a type like ``i20`` with a size that is not an integral number
5222of bytes, the result is undefined if the value was not originally
5223written using a store of the same type.
5224
5225Examples:
5226"""""""""
5227
5228.. code-block:: llvm
5229
Tim Northover675a0962014-06-13 14:24:23 +00005230 %ptr = alloca i32 ; yields i32*:ptr
5231 store i32 3, i32* %ptr ; yields void
5232 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005233
5234.. _i_store:
5235
5236'``store``' Instruction
5237^^^^^^^^^^^^^^^^^^^^^^^
5238
5239Syntax:
5240"""""""
5241
5242::
5243
Tim Northover675a0962014-06-13 14:24:23 +00005244 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5245 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005246
5247Overview:
5248"""""""""
5249
5250The '``store``' instruction is used to write to memory.
5251
5252Arguments:
5253""""""""""
5254
Eli Benderskyca380842013-04-17 17:17:20 +00005255There are two arguments to the ``store`` instruction: a value to store
5256and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005257operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005258the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005259then the optimizer is not allowed to modify the number or order of
5260execution of this ``store`` with other :ref:`volatile
5261operations <volatile>`.
5262
5263If the ``store`` is marked as ``atomic``, it takes an extra
5264:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5265``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5266instructions. Atomic loads produce :ref:`defined <memmodel>` results
5267when they may see multiple atomic stores. The type of the pointee must
5268be an integer type whose bit width is a power of two greater than or
5269equal to eight and less than or equal to a target-specific size limit.
5270``align`` must be explicitly specified on atomic stores, and the store
5271has undefined behavior if the alignment is not set to a value which is
5272at least the size in bytes of the pointee. ``!nontemporal`` does not
5273have any defined semantics for atomic stores.
5274
Eli Benderskyca380842013-04-17 17:17:20 +00005275The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005276operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005277or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005278alignment for the target. It is the responsibility of the code emitter
5279to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005280alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005281alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005282safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005283
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005284The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005285name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005286value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005287tells the optimizer and code generator that this load is not expected to
5288be reused in the cache. The code generator may select special
5289instructions to save cache bandwidth, such as the MOVNT instruction on
5290x86.
5291
5292Semantics:
5293""""""""""
5294
Eli Benderskyca380842013-04-17 17:17:20 +00005295The contents of memory are updated to contain ``<value>`` at the
5296location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005297of scalar type then the number of bytes written does not exceed the
5298minimum number of bytes needed to hold all bits of the type. For
5299example, storing an ``i24`` writes at most three bytes. When writing a
5300value of a type like ``i20`` with a size that is not an integral number
5301of bytes, it is unspecified what happens to the extra bits that do not
5302belong to the type, but they will typically be overwritten.
5303
5304Example:
5305""""""""
5306
5307.. code-block:: llvm
5308
Tim Northover675a0962014-06-13 14:24:23 +00005309 %ptr = alloca i32 ; yields i32*:ptr
5310 store i32 3, i32* %ptr ; yields void
5311 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005312
5313.. _i_fence:
5314
5315'``fence``' Instruction
5316^^^^^^^^^^^^^^^^^^^^^^^
5317
5318Syntax:
5319"""""""
5320
5321::
5322
Tim Northover675a0962014-06-13 14:24:23 +00005323 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005324
5325Overview:
5326"""""""""
5327
5328The '``fence``' instruction is used to introduce happens-before edges
5329between operations.
5330
5331Arguments:
5332""""""""""
5333
5334'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5335defines what *synchronizes-with* edges they add. They can only be given
5336``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5337
5338Semantics:
5339""""""""""
5340
5341A fence A which has (at least) ``release`` ordering semantics
5342*synchronizes with* a fence B with (at least) ``acquire`` ordering
5343semantics if and only if there exist atomic operations X and Y, both
5344operating on some atomic object M, such that A is sequenced before X, X
5345modifies M (either directly or through some side effect of a sequence
5346headed by X), Y is sequenced before B, and Y observes M. This provides a
5347*happens-before* dependency between A and B. Rather than an explicit
5348``fence``, one (but not both) of the atomic operations X or Y might
5349provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5350still *synchronize-with* the explicit ``fence`` and establish the
5351*happens-before* edge.
5352
5353A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5354``acquire`` and ``release`` semantics specified above, participates in
5355the global program order of other ``seq_cst`` operations and/or fences.
5356
5357The optional ":ref:`singlethread <singlethread>`" argument specifies
5358that the fence only synchronizes with other fences in the same thread.
5359(This is useful for interacting with signal handlers.)
5360
5361Example:
5362""""""""
5363
5364.. code-block:: llvm
5365
Tim Northover675a0962014-06-13 14:24:23 +00005366 fence acquire ; yields void
5367 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005368
5369.. _i_cmpxchg:
5370
5371'``cmpxchg``' Instruction
5372^^^^^^^^^^^^^^^^^^^^^^^^^
5373
5374Syntax:
5375"""""""
5376
5377::
5378
Tim Northover675a0962014-06-13 14:24:23 +00005379 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005380
5381Overview:
5382"""""""""
5383
5384The '``cmpxchg``' instruction is used to atomically modify memory. It
5385loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005386equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005387
5388Arguments:
5389""""""""""
5390
5391There are three arguments to the '``cmpxchg``' instruction: an address
5392to operate on, a value to compare to the value currently be at that
5393address, and a new value to place at that address if the compared values
5394are equal. The type of '<cmp>' must be an integer type whose bit width
5395is a power of two greater than or equal to eight and less than or equal
5396to a target-specific size limit. '<cmp>' and '<new>' must have the same
5397type, and the type of '<pointer>' must be a pointer to that type. If the
5398``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5399to modify the number or order of execution of this ``cmpxchg`` with
5400other :ref:`volatile operations <volatile>`.
5401
Tim Northovere94a5182014-03-11 10:48:52 +00005402The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005403``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5404must be at least ``monotonic``, the ordering constraint on failure must be no
5405stronger than that on success, and the failure ordering cannot be either
5406``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005407
5408The optional "``singlethread``" argument declares that the ``cmpxchg``
5409is only atomic with respect to code (usually signal handlers) running in
5410the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5411respect to all other code in the system.
5412
5413The pointer passed into cmpxchg must have alignment greater than or
5414equal to the size in memory of the operand.
5415
5416Semantics:
5417""""""""""
5418
Tim Northover420a2162014-06-13 14:24:07 +00005419The contents of memory at the location specified by the '``<pointer>``' operand
5420is read and compared to '``<cmp>``'; if the read value is the equal, the
5421'``<new>``' is written. The original value at the location is returned, together
5422with a flag indicating success (true) or failure (false).
5423
5424If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5425permitted: the operation may not write ``<new>`` even if the comparison
5426matched.
5427
5428If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5429if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005430
Tim Northovere94a5182014-03-11 10:48:52 +00005431A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5432identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5433load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005434
5435Example:
5436""""""""
5437
5438.. code-block:: llvm
5439
5440 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005441 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005442 br label %loop
5443
5444 loop:
5445 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5446 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005447 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005448 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5449 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005450 br i1 %success, label %done, label %loop
5451
5452 done:
5453 ...
5454
5455.. _i_atomicrmw:
5456
5457'``atomicrmw``' Instruction
5458^^^^^^^^^^^^^^^^^^^^^^^^^^^
5459
5460Syntax:
5461"""""""
5462
5463::
5464
Tim Northover675a0962014-06-13 14:24:23 +00005465 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005466
5467Overview:
5468"""""""""
5469
5470The '``atomicrmw``' instruction is used to atomically modify memory.
5471
5472Arguments:
5473""""""""""
5474
5475There are three arguments to the '``atomicrmw``' instruction: an
5476operation to apply, an address whose value to modify, an argument to the
5477operation. The operation must be one of the following keywords:
5478
5479- xchg
5480- add
5481- sub
5482- and
5483- nand
5484- or
5485- xor
5486- max
5487- min
5488- umax
5489- umin
5490
5491The type of '<value>' must be an integer type whose bit width is a power
5492of two greater than or equal to eight and less than or equal to a
5493target-specific size limit. The type of the '``<pointer>``' operand must
5494be a pointer to that type. If the ``atomicrmw`` is marked as
5495``volatile``, then the optimizer is not allowed to modify the number or
5496order of execution of this ``atomicrmw`` with other :ref:`volatile
5497operations <volatile>`.
5498
5499Semantics:
5500""""""""""
5501
5502The contents of memory at the location specified by the '``<pointer>``'
5503operand are atomically read, modified, and written back. The original
5504value at the location is returned. The modification is specified by the
5505operation argument:
5506
5507- xchg: ``*ptr = val``
5508- add: ``*ptr = *ptr + val``
5509- sub: ``*ptr = *ptr - val``
5510- and: ``*ptr = *ptr & val``
5511- nand: ``*ptr = ~(*ptr & val)``
5512- or: ``*ptr = *ptr | val``
5513- xor: ``*ptr = *ptr ^ val``
5514- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5515- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5516- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5517 comparison)
5518- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5519 comparison)
5520
5521Example:
5522""""""""
5523
5524.. code-block:: llvm
5525
Tim Northover675a0962014-06-13 14:24:23 +00005526 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005527
5528.. _i_getelementptr:
5529
5530'``getelementptr``' Instruction
5531^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5532
5533Syntax:
5534"""""""
5535
5536::
5537
5538 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5539 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5540 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5541
5542Overview:
5543"""""""""
5544
5545The '``getelementptr``' instruction is used to get the address of a
5546subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5547address calculation only and does not access memory.
5548
5549Arguments:
5550""""""""""
5551
5552The first argument is always a pointer or a vector of pointers, and
5553forms the basis of the calculation. The remaining arguments are indices
5554that indicate which of the elements of the aggregate object are indexed.
5555The interpretation of each index is dependent on the type being indexed
5556into. The first index always indexes the pointer value given as the
5557first argument, the second index indexes a value of the type pointed to
5558(not necessarily the value directly pointed to, since the first index
5559can be non-zero), etc. The first type indexed into must be a pointer
5560value, subsequent types can be arrays, vectors, and structs. Note that
5561subsequent types being indexed into can never be pointers, since that
5562would require loading the pointer before continuing calculation.
5563
5564The type of each index argument depends on the type it is indexing into.
5565When indexing into a (optionally packed) structure, only ``i32`` integer
5566**constants** are allowed (when using a vector of indices they must all
5567be the **same** ``i32`` integer constant). When indexing into an array,
5568pointer or vector, integers of any width are allowed, and they are not
5569required to be constant. These integers are treated as signed values
5570where relevant.
5571
5572For example, let's consider a C code fragment and how it gets compiled
5573to LLVM:
5574
5575.. code-block:: c
5576
5577 struct RT {
5578 char A;
5579 int B[10][20];
5580 char C;
5581 };
5582 struct ST {
5583 int X;
5584 double Y;
5585 struct RT Z;
5586 };
5587
5588 int *foo(struct ST *s) {
5589 return &s[1].Z.B[5][13];
5590 }
5591
5592The LLVM code generated by Clang is:
5593
5594.. code-block:: llvm
5595
5596 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5597 %struct.ST = type { i32, double, %struct.RT }
5598
5599 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5600 entry:
5601 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5602 ret i32* %arrayidx
5603 }
5604
5605Semantics:
5606""""""""""
5607
5608In the example above, the first index is indexing into the
5609'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5610= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5611indexes into the third element of the structure, yielding a
5612'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5613structure. The third index indexes into the second element of the
5614structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5615dimensions of the array are subscripted into, yielding an '``i32``'
5616type. The '``getelementptr``' instruction returns a pointer to this
5617element, thus computing a value of '``i32*``' type.
5618
5619Note that it is perfectly legal to index partially through a structure,
5620returning a pointer to an inner element. Because of this, the LLVM code
5621for the given testcase is equivalent to:
5622
5623.. code-block:: llvm
5624
5625 define i32* @foo(%struct.ST* %s) {
5626 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5627 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5628 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5629 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5630 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5631 ret i32* %t5
5632 }
5633
5634If the ``inbounds`` keyword is present, the result value of the
5635``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5636pointer is not an *in bounds* address of an allocated object, or if any
5637of the addresses that would be formed by successive addition of the
5638offsets implied by the indices to the base address with infinitely
5639precise signed arithmetic are not an *in bounds* address of that
5640allocated object. The *in bounds* addresses for an allocated object are
5641all the addresses that point into the object, plus the address one byte
5642past the end. In cases where the base is a vector of pointers the
5643``inbounds`` keyword applies to each of the computations element-wise.
5644
5645If the ``inbounds`` keyword is not present, the offsets are added to the
5646base address with silently-wrapping two's complement arithmetic. If the
5647offsets have a different width from the pointer, they are sign-extended
5648or truncated to the width of the pointer. The result value of the
5649``getelementptr`` may be outside the object pointed to by the base
5650pointer. The result value may not necessarily be used to access memory
5651though, even if it happens to point into allocated storage. See the
5652:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5653information.
5654
5655The getelementptr instruction is often confusing. For some more insight
5656into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5657
5658Example:
5659""""""""
5660
5661.. code-block:: llvm
5662
5663 ; yields [12 x i8]*:aptr
5664 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5665 ; yields i8*:vptr
5666 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5667 ; yields i8*:eptr
5668 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5669 ; yields i32*:iptr
5670 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5671
5672In cases where the pointer argument is a vector of pointers, each index
5673must be a vector with the same number of elements. For example:
5674
5675.. code-block:: llvm
5676
5677 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5678
5679Conversion Operations
5680---------------------
5681
5682The instructions in this category are the conversion instructions
5683(casting) which all take a single operand and a type. They perform
5684various bit conversions on the operand.
5685
5686'``trunc .. to``' Instruction
5687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5688
5689Syntax:
5690"""""""
5691
5692::
5693
5694 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5695
5696Overview:
5697"""""""""
5698
5699The '``trunc``' instruction truncates its operand to the type ``ty2``.
5700
5701Arguments:
5702""""""""""
5703
5704The '``trunc``' instruction takes a value to trunc, and a type to trunc
5705it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5706of the same number of integers. The bit size of the ``value`` must be
5707larger than the bit size of the destination type, ``ty2``. Equal sized
5708types are not allowed.
5709
5710Semantics:
5711""""""""""
5712
5713The '``trunc``' instruction truncates the high order bits in ``value``
5714and converts the remaining bits to ``ty2``. Since the source size must
5715be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5716It will always truncate bits.
5717
5718Example:
5719""""""""
5720
5721.. code-block:: llvm
5722
5723 %X = trunc i32 257 to i8 ; yields i8:1
5724 %Y = trunc i32 123 to i1 ; yields i1:true
5725 %Z = trunc i32 122 to i1 ; yields i1:false
5726 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5727
5728'``zext .. to``' Instruction
5729^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5730
5731Syntax:
5732"""""""
5733
5734::
5735
5736 <result> = zext <ty> <value> to <ty2> ; yields ty2
5737
5738Overview:
5739"""""""""
5740
5741The '``zext``' instruction zero extends its operand to type ``ty2``.
5742
5743Arguments:
5744""""""""""
5745
5746The '``zext``' instruction takes a value to cast, and a type to cast it
5747to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5748the same number of integers. The bit size of the ``value`` must be
5749smaller than the bit size of the destination type, ``ty2``.
5750
5751Semantics:
5752""""""""""
5753
5754The ``zext`` fills the high order bits of the ``value`` with zero bits
5755until it reaches the size of the destination type, ``ty2``.
5756
5757When zero extending from i1, the result will always be either 0 or 1.
5758
5759Example:
5760""""""""
5761
5762.. code-block:: llvm
5763
5764 %X = zext i32 257 to i64 ; yields i64:257
5765 %Y = zext i1 true to i32 ; yields i32:1
5766 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5767
5768'``sext .. to``' Instruction
5769^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5770
5771Syntax:
5772"""""""
5773
5774::
5775
5776 <result> = sext <ty> <value> to <ty2> ; yields ty2
5777
5778Overview:
5779"""""""""
5780
5781The '``sext``' sign extends ``value`` to the type ``ty2``.
5782
5783Arguments:
5784""""""""""
5785
5786The '``sext``' instruction takes a value to cast, and a type to cast it
5787to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5788the same number of integers. The bit size of the ``value`` must be
5789smaller than the bit size of the destination type, ``ty2``.
5790
5791Semantics:
5792""""""""""
5793
5794The '``sext``' instruction performs a sign extension by copying the sign
5795bit (highest order bit) of the ``value`` until it reaches the bit size
5796of the type ``ty2``.
5797
5798When sign extending from i1, the extension always results in -1 or 0.
5799
5800Example:
5801""""""""
5802
5803.. code-block:: llvm
5804
5805 %X = sext i8 -1 to i16 ; yields i16 :65535
5806 %Y = sext i1 true to i32 ; yields i32:-1
5807 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5808
5809'``fptrunc .. to``' Instruction
5810^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5811
5812Syntax:
5813"""""""
5814
5815::
5816
5817 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5818
5819Overview:
5820"""""""""
5821
5822The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5823
5824Arguments:
5825""""""""""
5826
5827The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5828value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5829The size of ``value`` must be larger than the size of ``ty2``. This
5830implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5831
5832Semantics:
5833""""""""""
5834
5835The '``fptrunc``' instruction truncates a ``value`` from a larger
5836:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5837point <t_floating>` type. If the value cannot fit within the
5838destination type, ``ty2``, then the results are undefined.
5839
5840Example:
5841""""""""
5842
5843.. code-block:: llvm
5844
5845 %X = fptrunc double 123.0 to float ; yields float:123.0
5846 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5847
5848'``fpext .. to``' Instruction
5849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5850
5851Syntax:
5852"""""""
5853
5854::
5855
5856 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5857
5858Overview:
5859"""""""""
5860
5861The '``fpext``' extends a floating point ``value`` to a larger floating
5862point value.
5863
5864Arguments:
5865""""""""""
5866
5867The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5868``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5869to. The source type must be smaller than the destination type.
5870
5871Semantics:
5872""""""""""
5873
5874The '``fpext``' instruction extends the ``value`` from a smaller
5875:ref:`floating point <t_floating>` type to a larger :ref:`floating
5876point <t_floating>` type. The ``fpext`` cannot be used to make a
5877*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5878*no-op cast* for a floating point cast.
5879
5880Example:
5881""""""""
5882
5883.. code-block:: llvm
5884
5885 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5886 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5887
5888'``fptoui .. to``' Instruction
5889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5890
5891Syntax:
5892"""""""
5893
5894::
5895
5896 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5897
5898Overview:
5899"""""""""
5900
5901The '``fptoui``' converts a floating point ``value`` to its unsigned
5902integer equivalent of type ``ty2``.
5903
5904Arguments:
5905""""""""""
5906
5907The '``fptoui``' instruction takes a value to cast, which must be a
5908scalar or vector :ref:`floating point <t_floating>` value, and a type to
5909cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5910``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5911type with the same number of elements as ``ty``
5912
5913Semantics:
5914""""""""""
5915
5916The '``fptoui``' instruction converts its :ref:`floating
5917point <t_floating>` operand into the nearest (rounding towards zero)
5918unsigned integer value. If the value cannot fit in ``ty2``, the results
5919are undefined.
5920
5921Example:
5922""""""""
5923
5924.. code-block:: llvm
5925
5926 %X = fptoui double 123.0 to i32 ; yields i32:123
5927 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5928 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5929
5930'``fptosi .. to``' Instruction
5931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5932
5933Syntax:
5934"""""""
5935
5936::
5937
5938 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5939
5940Overview:
5941"""""""""
5942
5943The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5944``value`` to type ``ty2``.
5945
5946Arguments:
5947""""""""""
5948
5949The '``fptosi``' instruction takes a value to cast, which must be a
5950scalar or vector :ref:`floating point <t_floating>` value, and a type to
5951cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5952``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5953type with the same number of elements as ``ty``
5954
5955Semantics:
5956""""""""""
5957
5958The '``fptosi``' instruction converts its :ref:`floating
5959point <t_floating>` operand into the nearest (rounding towards zero)
5960signed integer value. If the value cannot fit in ``ty2``, the results
5961are undefined.
5962
5963Example:
5964""""""""
5965
5966.. code-block:: llvm
5967
5968 %X = fptosi double -123.0 to i32 ; yields i32:-123
5969 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5970 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5971
5972'``uitofp .. to``' Instruction
5973^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5974
5975Syntax:
5976"""""""
5977
5978::
5979
5980 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5981
5982Overview:
5983"""""""""
5984
5985The '``uitofp``' instruction regards ``value`` as an unsigned integer
5986and converts that value to the ``ty2`` type.
5987
5988Arguments:
5989""""""""""
5990
5991The '``uitofp``' instruction takes a value to cast, which must be a
5992scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5993``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5994``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5995type with the same number of elements as ``ty``
5996
5997Semantics:
5998""""""""""
5999
6000The '``uitofp``' instruction interprets its operand as an unsigned
6001integer quantity and converts it to the corresponding floating point
6002value. If the value cannot fit in the floating point value, the results
6003are undefined.
6004
6005Example:
6006""""""""
6007
6008.. code-block:: llvm
6009
6010 %X = uitofp i32 257 to float ; yields float:257.0
6011 %Y = uitofp i8 -1 to double ; yields double:255.0
6012
6013'``sitofp .. to``' Instruction
6014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6015
6016Syntax:
6017"""""""
6018
6019::
6020
6021 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6022
6023Overview:
6024"""""""""
6025
6026The '``sitofp``' instruction regards ``value`` as a signed integer and
6027converts that value to the ``ty2`` type.
6028
6029Arguments:
6030""""""""""
6031
6032The '``sitofp``' instruction takes a value to cast, which must be a
6033scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6034``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6035``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6036type with the same number of elements as ``ty``
6037
6038Semantics:
6039""""""""""
6040
6041The '``sitofp``' instruction interprets its operand as a signed integer
6042quantity and converts it to the corresponding floating point value. If
6043the value cannot fit in the floating point value, the results are
6044undefined.
6045
6046Example:
6047""""""""
6048
6049.. code-block:: llvm
6050
6051 %X = sitofp i32 257 to float ; yields float:257.0
6052 %Y = sitofp i8 -1 to double ; yields double:-1.0
6053
6054.. _i_ptrtoint:
6055
6056'``ptrtoint .. to``' Instruction
6057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6058
6059Syntax:
6060"""""""
6061
6062::
6063
6064 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6065
6066Overview:
6067"""""""""
6068
6069The '``ptrtoint``' instruction converts the pointer or a vector of
6070pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6071
6072Arguments:
6073""""""""""
6074
6075The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6076a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6077type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6078a vector of integers type.
6079
6080Semantics:
6081""""""""""
6082
6083The '``ptrtoint``' instruction converts ``value`` to integer type
6084``ty2`` by interpreting the pointer value as an integer and either
6085truncating or zero extending that value to the size of the integer type.
6086If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6087``value`` is larger than ``ty2`` then a truncation is done. If they are
6088the same size, then nothing is done (*no-op cast*) other than a type
6089change.
6090
6091Example:
6092""""""""
6093
6094.. code-block:: llvm
6095
6096 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6097 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6098 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6099
6100.. _i_inttoptr:
6101
6102'``inttoptr .. to``' Instruction
6103^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6104
6105Syntax:
6106"""""""
6107
6108::
6109
6110 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6111
6112Overview:
6113"""""""""
6114
6115The '``inttoptr``' instruction converts an integer ``value`` to a
6116pointer type, ``ty2``.
6117
6118Arguments:
6119""""""""""
6120
6121The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6122cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6123type.
6124
6125Semantics:
6126""""""""""
6127
6128The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6129applying either a zero extension or a truncation depending on the size
6130of the integer ``value``. If ``value`` is larger than the size of a
6131pointer then a truncation is done. If ``value`` is smaller than the size
6132of a pointer then a zero extension is done. If they are the same size,
6133nothing is done (*no-op cast*).
6134
6135Example:
6136""""""""
6137
6138.. code-block:: llvm
6139
6140 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6141 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6142 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6143 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6144
6145.. _i_bitcast:
6146
6147'``bitcast .. to``' Instruction
6148^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6149
6150Syntax:
6151"""""""
6152
6153::
6154
6155 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6156
6157Overview:
6158"""""""""
6159
6160The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6161changing any bits.
6162
6163Arguments:
6164""""""""""
6165
6166The '``bitcast``' instruction takes a value to cast, which must be a
6167non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006168also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6169bit sizes of ``value`` and the destination type, ``ty2``, must be
6170identical. If the source type is a pointer, the destination type must
6171also be a pointer of the same size. This instruction supports bitwise
6172conversion of vectors to integers and to vectors of other types (as
6173long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006174
6175Semantics:
6176""""""""""
6177
Matt Arsenault24b49c42013-07-31 17:49:08 +00006178The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6179is always a *no-op cast* because no bits change with this
6180conversion. The conversion is done as if the ``value`` had been stored
6181to memory and read back as type ``ty2``. Pointer (or vector of
6182pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006183pointers) types with the same address space through this instruction.
6184To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6185or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006186
6187Example:
6188""""""""
6189
6190.. code-block:: llvm
6191
6192 %X = bitcast i8 255 to i8 ; yields i8 :-1
6193 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6194 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6195 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6196
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006197.. _i_addrspacecast:
6198
6199'``addrspacecast .. to``' Instruction
6200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6201
6202Syntax:
6203"""""""
6204
6205::
6206
6207 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6208
6209Overview:
6210"""""""""
6211
6212The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6213address space ``n`` to type ``pty2`` in address space ``m``.
6214
6215Arguments:
6216""""""""""
6217
6218The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6219to cast and a pointer type to cast it to, which must have a different
6220address space.
6221
6222Semantics:
6223""""""""""
6224
6225The '``addrspacecast``' instruction converts the pointer value
6226``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006227value modification, depending on the target and the address space
6228pair. Pointer conversions within the same address space must be
6229performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006230conversion is legal then both result and operand refer to the same memory
6231location.
6232
6233Example:
6234""""""""
6235
6236.. code-block:: llvm
6237
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006238 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6239 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6240 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006241
Sean Silvab084af42012-12-07 10:36:55 +00006242.. _otherops:
6243
6244Other Operations
6245----------------
6246
6247The instructions in this category are the "miscellaneous" instructions,
6248which defy better classification.
6249
6250.. _i_icmp:
6251
6252'``icmp``' Instruction
6253^^^^^^^^^^^^^^^^^^^^^^
6254
6255Syntax:
6256"""""""
6257
6258::
6259
Tim Northover675a0962014-06-13 14:24:23 +00006260 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006261
6262Overview:
6263"""""""""
6264
6265The '``icmp``' instruction returns a boolean value or a vector of
6266boolean values based on comparison of its two integer, integer vector,
6267pointer, or pointer vector operands.
6268
6269Arguments:
6270""""""""""
6271
6272The '``icmp``' instruction takes three operands. The first operand is
6273the condition code indicating the kind of comparison to perform. It is
6274not a value, just a keyword. The possible condition code are:
6275
6276#. ``eq``: equal
6277#. ``ne``: not equal
6278#. ``ugt``: unsigned greater than
6279#. ``uge``: unsigned greater or equal
6280#. ``ult``: unsigned less than
6281#. ``ule``: unsigned less or equal
6282#. ``sgt``: signed greater than
6283#. ``sge``: signed greater or equal
6284#. ``slt``: signed less than
6285#. ``sle``: signed less or equal
6286
6287The remaining two arguments must be :ref:`integer <t_integer>` or
6288:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6289must also be identical types.
6290
6291Semantics:
6292""""""""""
6293
6294The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6295code given as ``cond``. The comparison performed always yields either an
6296:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6297
6298#. ``eq``: yields ``true`` if the operands are equal, ``false``
6299 otherwise. No sign interpretation is necessary or performed.
6300#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6301 otherwise. No sign interpretation is necessary or performed.
6302#. ``ugt``: interprets the operands as unsigned values and yields
6303 ``true`` if ``op1`` is greater than ``op2``.
6304#. ``uge``: interprets the operands as unsigned values and yields
6305 ``true`` if ``op1`` is greater than or equal to ``op2``.
6306#. ``ult``: interprets the operands as unsigned values and yields
6307 ``true`` if ``op1`` is less than ``op2``.
6308#. ``ule``: interprets the operands as unsigned values and yields
6309 ``true`` if ``op1`` is less than or equal to ``op2``.
6310#. ``sgt``: interprets the operands as signed values and yields ``true``
6311 if ``op1`` is greater than ``op2``.
6312#. ``sge``: interprets the operands as signed values and yields ``true``
6313 if ``op1`` is greater than or equal to ``op2``.
6314#. ``slt``: interprets the operands as signed values and yields ``true``
6315 if ``op1`` is less than ``op2``.
6316#. ``sle``: interprets the operands as signed values and yields ``true``
6317 if ``op1`` is less than or equal to ``op2``.
6318
6319If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6320are compared as if they were integers.
6321
6322If the operands are integer vectors, then they are compared element by
6323element. The result is an ``i1`` vector with the same number of elements
6324as the values being compared. Otherwise, the result is an ``i1``.
6325
6326Example:
6327""""""""
6328
6329.. code-block:: llvm
6330
6331 <result> = icmp eq i32 4, 5 ; yields: result=false
6332 <result> = icmp ne float* %X, %X ; yields: result=false
6333 <result> = icmp ult i16 4, 5 ; yields: result=true
6334 <result> = icmp sgt i16 4, 5 ; yields: result=false
6335 <result> = icmp ule i16 -4, 5 ; yields: result=false
6336 <result> = icmp sge i16 4, 5 ; yields: result=false
6337
6338Note that the code generator does not yet support vector types with the
6339``icmp`` instruction.
6340
6341.. _i_fcmp:
6342
6343'``fcmp``' Instruction
6344^^^^^^^^^^^^^^^^^^^^^^
6345
6346Syntax:
6347"""""""
6348
6349::
6350
Tim Northover675a0962014-06-13 14:24:23 +00006351 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006352
6353Overview:
6354"""""""""
6355
6356The '``fcmp``' instruction returns a boolean value or vector of boolean
6357values based on comparison of its operands.
6358
6359If the operands are floating point scalars, then the result type is a
6360boolean (:ref:`i1 <t_integer>`).
6361
6362If the operands are floating point vectors, then the result type is a
6363vector of boolean with the same number of elements as the operands being
6364compared.
6365
6366Arguments:
6367""""""""""
6368
6369The '``fcmp``' instruction takes three operands. The first operand is
6370the condition code indicating the kind of comparison to perform. It is
6371not a value, just a keyword. The possible condition code are:
6372
6373#. ``false``: no comparison, always returns false
6374#. ``oeq``: ordered and equal
6375#. ``ogt``: ordered and greater than
6376#. ``oge``: ordered and greater than or equal
6377#. ``olt``: ordered and less than
6378#. ``ole``: ordered and less than or equal
6379#. ``one``: ordered and not equal
6380#. ``ord``: ordered (no nans)
6381#. ``ueq``: unordered or equal
6382#. ``ugt``: unordered or greater than
6383#. ``uge``: unordered or greater than or equal
6384#. ``ult``: unordered or less than
6385#. ``ule``: unordered or less than or equal
6386#. ``une``: unordered or not equal
6387#. ``uno``: unordered (either nans)
6388#. ``true``: no comparison, always returns true
6389
6390*Ordered* means that neither operand is a QNAN while *unordered* means
6391that either operand may be a QNAN.
6392
6393Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6394point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6395type. They must have identical types.
6396
6397Semantics:
6398""""""""""
6399
6400The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6401condition code given as ``cond``. If the operands are vectors, then the
6402vectors are compared element by element. Each comparison performed
6403always yields an :ref:`i1 <t_integer>` result, as follows:
6404
6405#. ``false``: always yields ``false``, regardless of operands.
6406#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6407 is equal to ``op2``.
6408#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6409 is greater than ``op2``.
6410#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6411 is greater than or equal to ``op2``.
6412#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6413 is less than ``op2``.
6414#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6415 is less than or equal to ``op2``.
6416#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6417 is not equal to ``op2``.
6418#. ``ord``: yields ``true`` if both operands are not a QNAN.
6419#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6420 equal to ``op2``.
6421#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6422 greater than ``op2``.
6423#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6424 greater than or equal to ``op2``.
6425#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6426 less than ``op2``.
6427#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6428 less than or equal to ``op2``.
6429#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6430 not equal to ``op2``.
6431#. ``uno``: yields ``true`` if either operand is a QNAN.
6432#. ``true``: always yields ``true``, regardless of operands.
6433
6434Example:
6435""""""""
6436
6437.. code-block:: llvm
6438
6439 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6440 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6441 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6442 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6443
6444Note that the code generator does not yet support vector types with the
6445``fcmp`` instruction.
6446
6447.. _i_phi:
6448
6449'``phi``' Instruction
6450^^^^^^^^^^^^^^^^^^^^^
6451
6452Syntax:
6453"""""""
6454
6455::
6456
6457 <result> = phi <ty> [ <val0>, <label0>], ...
6458
6459Overview:
6460"""""""""
6461
6462The '``phi``' instruction is used to implement the φ node in the SSA
6463graph representing the function.
6464
6465Arguments:
6466""""""""""
6467
6468The type of the incoming values is specified with the first type field.
6469After this, the '``phi``' instruction takes a list of pairs as
6470arguments, with one pair for each predecessor basic block of the current
6471block. Only values of :ref:`first class <t_firstclass>` type may be used as
6472the value arguments to the PHI node. Only labels may be used as the
6473label arguments.
6474
6475There must be no non-phi instructions between the start of a basic block
6476and the PHI instructions: i.e. PHI instructions must be first in a basic
6477block.
6478
6479For the purposes of the SSA form, the use of each incoming value is
6480deemed to occur on the edge from the corresponding predecessor block to
6481the current block (but after any definition of an '``invoke``'
6482instruction's return value on the same edge).
6483
6484Semantics:
6485""""""""""
6486
6487At runtime, the '``phi``' instruction logically takes on the value
6488specified by the pair corresponding to the predecessor basic block that
6489executed just prior to the current block.
6490
6491Example:
6492""""""""
6493
6494.. code-block:: llvm
6495
6496 Loop: ; Infinite loop that counts from 0 on up...
6497 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6498 %nextindvar = add i32 %indvar, 1
6499 br label %Loop
6500
6501.. _i_select:
6502
6503'``select``' Instruction
6504^^^^^^^^^^^^^^^^^^^^^^^^
6505
6506Syntax:
6507"""""""
6508
6509::
6510
6511 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6512
6513 selty is either i1 or {<N x i1>}
6514
6515Overview:
6516"""""""""
6517
6518The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006519condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006520
6521Arguments:
6522""""""""""
6523
6524The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6525values indicating the condition, and two values of the same :ref:`first
6526class <t_firstclass>` type. If the val1/val2 are vectors and the
6527condition is a scalar, then entire vectors are selected, not individual
6528elements.
6529
6530Semantics:
6531""""""""""
6532
6533If the condition is an i1 and it evaluates to 1, the instruction returns
6534the first value argument; otherwise, it returns the second value
6535argument.
6536
6537If the condition is a vector of i1, then the value arguments must be
6538vectors of the same size, and the selection is done element by element.
6539
6540Example:
6541""""""""
6542
6543.. code-block:: llvm
6544
6545 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6546
6547.. _i_call:
6548
6549'``call``' Instruction
6550^^^^^^^^^^^^^^^^^^^^^^
6551
6552Syntax:
6553"""""""
6554
6555::
6556
Reid Kleckner5772b772014-04-24 20:14:34 +00006557 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006558
6559Overview:
6560"""""""""
6561
6562The '``call``' instruction represents a simple function call.
6563
6564Arguments:
6565""""""""""
6566
6567This instruction requires several arguments:
6568
Reid Kleckner5772b772014-04-24 20:14:34 +00006569#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6570 should perform tail call optimization. The ``tail`` marker is a hint that
6571 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6572 means that the call must be tail call optimized in order for the program to
6573 be correct. The ``musttail`` marker provides these guarantees:
6574
6575 #. The call will not cause unbounded stack growth if it is part of a
6576 recursive cycle in the call graph.
6577 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6578 forwarded in place.
6579
6580 Both markers imply that the callee does not access allocas or varargs from
6581 the caller. Calls marked ``musttail`` must obey the following additional
6582 rules:
6583
6584 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6585 or a pointer bitcast followed by a ret instruction.
6586 - The ret instruction must return the (possibly bitcasted) value
6587 produced by the call or void.
6588 - The caller and callee prototypes must match. Pointer types of
6589 parameters or return types may differ in pointee type, but not
6590 in address space.
6591 - The calling conventions of the caller and callee must match.
6592 - All ABI-impacting function attributes, such as sret, byval, inreg,
6593 returned, and inalloca, must match.
6594
6595 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6596 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006597
6598 - Caller and callee both have the calling convention ``fastcc``.
6599 - The call is in tail position (ret immediately follows call and ret
6600 uses value of call or is void).
6601 - Option ``-tailcallopt`` is enabled, or
6602 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006603 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006604 met. <CodeGenerator.html#tailcallopt>`_
6605
6606#. The optional "cconv" marker indicates which :ref:`calling
6607 convention <callingconv>` the call should use. If none is
6608 specified, the call defaults to using C calling conventions. The
6609 calling convention of the call must match the calling convention of
6610 the target function, or else the behavior is undefined.
6611#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6612 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6613 are valid here.
6614#. '``ty``': the type of the call instruction itself which is also the
6615 type of the return value. Functions that return no value are marked
6616 ``void``.
6617#. '``fnty``': shall be the signature of the pointer to function value
6618 being invoked. The argument types must match the types implied by
6619 this signature. This type can be omitted if the function is not
6620 varargs and if the function type does not return a pointer to a
6621 function.
6622#. '``fnptrval``': An LLVM value containing a pointer to a function to
6623 be invoked. In most cases, this is a direct function invocation, but
6624 indirect ``call``'s are just as possible, calling an arbitrary pointer
6625 to function value.
6626#. '``function args``': argument list whose types match the function
6627 signature argument types and parameter attributes. All arguments must
6628 be of :ref:`first class <t_firstclass>` type. If the function signature
6629 indicates the function accepts a variable number of arguments, the
6630 extra arguments can be specified.
6631#. The optional :ref:`function attributes <fnattrs>` list. Only
6632 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6633 attributes are valid here.
6634
6635Semantics:
6636""""""""""
6637
6638The '``call``' instruction is used to cause control flow to transfer to
6639a specified function, with its incoming arguments bound to the specified
6640values. Upon a '``ret``' instruction in the called function, control
6641flow continues with the instruction after the function call, and the
6642return value of the function is bound to the result argument.
6643
6644Example:
6645""""""""
6646
6647.. code-block:: llvm
6648
6649 %retval = call i32 @test(i32 %argc)
6650 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6651 %X = tail call i32 @foo() ; yields i32
6652 %Y = tail call fastcc i32 @foo() ; yields i32
6653 call void %foo(i8 97 signext)
6654
6655 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006656 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006657 %gr = extractvalue %struct.A %r, 0 ; yields i32
6658 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6659 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6660 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6661
6662llvm treats calls to some functions with names and arguments that match
6663the standard C99 library as being the C99 library functions, and may
6664perform optimizations or generate code for them under that assumption.
6665This is something we'd like to change in the future to provide better
6666support for freestanding environments and non-C-based languages.
6667
6668.. _i_va_arg:
6669
6670'``va_arg``' Instruction
6671^^^^^^^^^^^^^^^^^^^^^^^^
6672
6673Syntax:
6674"""""""
6675
6676::
6677
6678 <resultval> = va_arg <va_list*> <arglist>, <argty>
6679
6680Overview:
6681"""""""""
6682
6683The '``va_arg``' instruction is used to access arguments passed through
6684the "variable argument" area of a function call. It is used to implement
6685the ``va_arg`` macro in C.
6686
6687Arguments:
6688""""""""""
6689
6690This instruction takes a ``va_list*`` value and the type of the
6691argument. It returns a value of the specified argument type and
6692increments the ``va_list`` to point to the next argument. The actual
6693type of ``va_list`` is target specific.
6694
6695Semantics:
6696""""""""""
6697
6698The '``va_arg``' instruction loads an argument of the specified type
6699from the specified ``va_list`` and causes the ``va_list`` to point to
6700the next argument. For more information, see the variable argument
6701handling :ref:`Intrinsic Functions <int_varargs>`.
6702
6703It is legal for this instruction to be called in a function which does
6704not take a variable number of arguments, for example, the ``vfprintf``
6705function.
6706
6707``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6708function <intrinsics>` because it takes a type as an argument.
6709
6710Example:
6711""""""""
6712
6713See the :ref:`variable argument processing <int_varargs>` section.
6714
6715Note that the code generator does not yet fully support va\_arg on many
6716targets. Also, it does not currently support va\_arg with aggregate
6717types on any target.
6718
6719.. _i_landingpad:
6720
6721'``landingpad``' Instruction
6722^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6723
6724Syntax:
6725"""""""
6726
6727::
6728
6729 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6730 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6731
6732 <clause> := catch <type> <value>
6733 <clause> := filter <array constant type> <array constant>
6734
6735Overview:
6736"""""""""
6737
6738The '``landingpad``' instruction is used by `LLVM's exception handling
6739system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006740is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006741code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6742defines values supplied by the personality function (``pers_fn``) upon
6743re-entry to the function. The ``resultval`` has the type ``resultty``.
6744
6745Arguments:
6746""""""""""
6747
6748This instruction takes a ``pers_fn`` value. This is the personality
6749function associated with the unwinding mechanism. The optional
6750``cleanup`` flag indicates that the landing pad block is a cleanup.
6751
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006752A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006753contains the global variable representing the "type" that may be caught
6754or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6755clause takes an array constant as its argument. Use
6756"``[0 x i8**] undef``" for a filter which cannot throw. The
6757'``landingpad``' instruction must contain *at least* one ``clause`` or
6758the ``cleanup`` flag.
6759
6760Semantics:
6761""""""""""
6762
6763The '``landingpad``' instruction defines the values which are set by the
6764personality function (``pers_fn``) upon re-entry to the function, and
6765therefore the "result type" of the ``landingpad`` instruction. As with
6766calling conventions, how the personality function results are
6767represented in LLVM IR is target specific.
6768
6769The clauses are applied in order from top to bottom. If two
6770``landingpad`` instructions are merged together through inlining, the
6771clauses from the calling function are appended to the list of clauses.
6772When the call stack is being unwound due to an exception being thrown,
6773the exception is compared against each ``clause`` in turn. If it doesn't
6774match any of the clauses, and the ``cleanup`` flag is not set, then
6775unwinding continues further up the call stack.
6776
6777The ``landingpad`` instruction has several restrictions:
6778
6779- A landing pad block is a basic block which is the unwind destination
6780 of an '``invoke``' instruction.
6781- A landing pad block must have a '``landingpad``' instruction as its
6782 first non-PHI instruction.
6783- There can be only one '``landingpad``' instruction within the landing
6784 pad block.
6785- A basic block that is not a landing pad block may not include a
6786 '``landingpad``' instruction.
6787- All '``landingpad``' instructions in a function must have the same
6788 personality function.
6789
6790Example:
6791""""""""
6792
6793.. code-block:: llvm
6794
6795 ;; A landing pad which can catch an integer.
6796 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6797 catch i8** @_ZTIi
6798 ;; A landing pad that is a cleanup.
6799 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6800 cleanup
6801 ;; A landing pad which can catch an integer and can only throw a double.
6802 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6803 catch i8** @_ZTIi
6804 filter [1 x i8**] [@_ZTId]
6805
6806.. _intrinsics:
6807
6808Intrinsic Functions
6809===================
6810
6811LLVM supports the notion of an "intrinsic function". These functions
6812have well known names and semantics and are required to follow certain
6813restrictions. Overall, these intrinsics represent an extension mechanism
6814for the LLVM language that does not require changing all of the
6815transformations in LLVM when adding to the language (or the bitcode
6816reader/writer, the parser, etc...).
6817
6818Intrinsic function names must all start with an "``llvm.``" prefix. This
6819prefix is reserved in LLVM for intrinsic names; thus, function names may
6820not begin with this prefix. Intrinsic functions must always be external
6821functions: you cannot define the body of intrinsic functions. Intrinsic
6822functions may only be used in call or invoke instructions: it is illegal
6823to take the address of an intrinsic function. Additionally, because
6824intrinsic functions are part of the LLVM language, it is required if any
6825are added that they be documented here.
6826
6827Some intrinsic functions can be overloaded, i.e., the intrinsic
6828represents a family of functions that perform the same operation but on
6829different data types. Because LLVM can represent over 8 million
6830different integer types, overloading is used commonly to allow an
6831intrinsic function to operate on any integer type. One or more of the
6832argument types or the result type can be overloaded to accept any
6833integer type. Argument types may also be defined as exactly matching a
6834previous argument's type or the result type. This allows an intrinsic
6835function which accepts multiple arguments, but needs all of them to be
6836of the same type, to only be overloaded with respect to a single
6837argument or the result.
6838
6839Overloaded intrinsics will have the names of its overloaded argument
6840types encoded into its function name, each preceded by a period. Only
6841those types which are overloaded result in a name suffix. Arguments
6842whose type is matched against another type do not. For example, the
6843``llvm.ctpop`` function can take an integer of any width and returns an
6844integer of exactly the same integer width. This leads to a family of
6845functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6846``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6847overloaded, and only one type suffix is required. Because the argument's
6848type is matched against the return type, it does not require its own
6849name suffix.
6850
6851To learn how to add an intrinsic function, please see the `Extending
6852LLVM Guide <ExtendingLLVM.html>`_.
6853
6854.. _int_varargs:
6855
6856Variable Argument Handling Intrinsics
6857-------------------------------------
6858
6859Variable argument support is defined in LLVM with the
6860:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6861functions. These functions are related to the similarly named macros
6862defined in the ``<stdarg.h>`` header file.
6863
6864All of these functions operate on arguments that use a target-specific
6865value type "``va_list``". The LLVM assembly language reference manual
6866does not define what this type is, so all transformations should be
6867prepared to handle these functions regardless of the type used.
6868
6869This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6870variable argument handling intrinsic functions are used.
6871
6872.. code-block:: llvm
6873
6874 define i32 @test(i32 %X, ...) {
6875 ; Initialize variable argument processing
6876 %ap = alloca i8*
6877 %ap2 = bitcast i8** %ap to i8*
6878 call void @llvm.va_start(i8* %ap2)
6879
6880 ; Read a single integer argument
6881 %tmp = va_arg i8** %ap, i32
6882
6883 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6884 %aq = alloca i8*
6885 %aq2 = bitcast i8** %aq to i8*
6886 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6887 call void @llvm.va_end(i8* %aq2)
6888
6889 ; Stop processing of arguments.
6890 call void @llvm.va_end(i8* %ap2)
6891 ret i32 %tmp
6892 }
6893
6894 declare void @llvm.va_start(i8*)
6895 declare void @llvm.va_copy(i8*, i8*)
6896 declare void @llvm.va_end(i8*)
6897
6898.. _int_va_start:
6899
6900'``llvm.va_start``' Intrinsic
6901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6902
6903Syntax:
6904"""""""
6905
6906::
6907
Nick Lewycky04f6de02013-09-11 22:04:52 +00006908 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006909
6910Overview:
6911"""""""""
6912
6913The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6914subsequent use by ``va_arg``.
6915
6916Arguments:
6917""""""""""
6918
6919The argument is a pointer to a ``va_list`` element to initialize.
6920
6921Semantics:
6922""""""""""
6923
6924The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6925available in C. In a target-dependent way, it initializes the
6926``va_list`` element to which the argument points, so that the next call
6927to ``va_arg`` will produce the first variable argument passed to the
6928function. Unlike the C ``va_start`` macro, this intrinsic does not need
6929to know the last argument of the function as the compiler can figure
6930that out.
6931
6932'``llvm.va_end``' Intrinsic
6933^^^^^^^^^^^^^^^^^^^^^^^^^^^
6934
6935Syntax:
6936"""""""
6937
6938::
6939
6940 declare void @llvm.va_end(i8* <arglist>)
6941
6942Overview:
6943"""""""""
6944
6945The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6946initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6947
6948Arguments:
6949""""""""""
6950
6951The argument is a pointer to a ``va_list`` to destroy.
6952
6953Semantics:
6954""""""""""
6955
6956The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6957available in C. In a target-dependent way, it destroys the ``va_list``
6958element to which the argument points. Calls to
6959:ref:`llvm.va_start <int_va_start>` and
6960:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6961``llvm.va_end``.
6962
6963.. _int_va_copy:
6964
6965'``llvm.va_copy``' Intrinsic
6966^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6967
6968Syntax:
6969"""""""
6970
6971::
6972
6973 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6974
6975Overview:
6976"""""""""
6977
6978The '``llvm.va_copy``' intrinsic copies the current argument position
6979from the source argument list to the destination argument list.
6980
6981Arguments:
6982""""""""""
6983
6984The first argument is a pointer to a ``va_list`` element to initialize.
6985The second argument is a pointer to a ``va_list`` element to copy from.
6986
6987Semantics:
6988""""""""""
6989
6990The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6991available in C. In a target-dependent way, it copies the source
6992``va_list`` element into the destination ``va_list`` element. This
6993intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6994arbitrarily complex and require, for example, memory allocation.
6995
6996Accurate Garbage Collection Intrinsics
6997--------------------------------------
6998
6999LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
7000(GC) requires the implementation and generation of these intrinsics.
7001These intrinsics allow identification of :ref:`GC roots on the
7002stack <int_gcroot>`, as well as garbage collector implementations that
7003require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
7004Front-ends for type-safe garbage collected languages should generate
7005these intrinsics to make use of the LLVM garbage collectors. For more
7006details, see `Accurate Garbage Collection with
7007LLVM <GarbageCollection.html>`_.
7008
7009The garbage collection intrinsics only operate on objects in the generic
7010address space (address space zero).
7011
7012.. _int_gcroot:
7013
7014'``llvm.gcroot``' Intrinsic
7015^^^^^^^^^^^^^^^^^^^^^^^^^^^
7016
7017Syntax:
7018"""""""
7019
7020::
7021
7022 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7023
7024Overview:
7025"""""""""
7026
7027The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7028the code generator, and allows some metadata to be associated with it.
7029
7030Arguments:
7031""""""""""
7032
7033The first argument specifies the address of a stack object that contains
7034the root pointer. The second pointer (which must be either a constant or
7035a global value address) contains the meta-data to be associated with the
7036root.
7037
7038Semantics:
7039""""""""""
7040
7041At runtime, a call to this intrinsic stores a null pointer into the
7042"ptrloc" location. At compile-time, the code generator generates
7043information to allow the runtime to find the pointer at GC safe points.
7044The '``llvm.gcroot``' intrinsic may only be used in a function which
7045:ref:`specifies a GC algorithm <gc>`.
7046
7047.. _int_gcread:
7048
7049'``llvm.gcread``' Intrinsic
7050^^^^^^^^^^^^^^^^^^^^^^^^^^^
7051
7052Syntax:
7053"""""""
7054
7055::
7056
7057 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7058
7059Overview:
7060"""""""""
7061
7062The '``llvm.gcread``' intrinsic identifies reads of references from heap
7063locations, allowing garbage collector implementations that require read
7064barriers.
7065
7066Arguments:
7067""""""""""
7068
7069The second argument is the address to read from, which should be an
7070address allocated from the garbage collector. The first object is a
7071pointer to the start of the referenced object, if needed by the language
7072runtime (otherwise null).
7073
7074Semantics:
7075""""""""""
7076
7077The '``llvm.gcread``' intrinsic has the same semantics as a load
7078instruction, but may be replaced with substantially more complex code by
7079the garbage collector runtime, as needed. The '``llvm.gcread``'
7080intrinsic may only be used in a function which :ref:`specifies a GC
7081algorithm <gc>`.
7082
7083.. _int_gcwrite:
7084
7085'``llvm.gcwrite``' Intrinsic
7086^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7087
7088Syntax:
7089"""""""
7090
7091::
7092
7093 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7094
7095Overview:
7096"""""""""
7097
7098The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7099locations, allowing garbage collector implementations that require write
7100barriers (such as generational or reference counting collectors).
7101
7102Arguments:
7103""""""""""
7104
7105The first argument is the reference to store, the second is the start of
7106the object to store it to, and the third is the address of the field of
7107Obj to store to. If the runtime does not require a pointer to the
7108object, Obj may be null.
7109
7110Semantics:
7111""""""""""
7112
7113The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7114instruction, but may be replaced with substantially more complex code by
7115the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7116intrinsic may only be used in a function which :ref:`specifies a GC
7117algorithm <gc>`.
7118
7119Code Generator Intrinsics
7120-------------------------
7121
7122These intrinsics are provided by LLVM to expose special features that
7123may only be implemented with code generator support.
7124
7125'``llvm.returnaddress``' Intrinsic
7126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7127
7128Syntax:
7129"""""""
7130
7131::
7132
7133 declare i8 *@llvm.returnaddress(i32 <level>)
7134
7135Overview:
7136"""""""""
7137
7138The '``llvm.returnaddress``' intrinsic attempts to compute a
7139target-specific value indicating the return address of the current
7140function or one of its callers.
7141
7142Arguments:
7143""""""""""
7144
7145The argument to this intrinsic indicates which function to return the
7146address for. Zero indicates the calling function, one indicates its
7147caller, etc. The argument is **required** to be a constant integer
7148value.
7149
7150Semantics:
7151""""""""""
7152
7153The '``llvm.returnaddress``' intrinsic either returns a pointer
7154indicating the return address of the specified call frame, or zero if it
7155cannot be identified. The value returned by this intrinsic is likely to
7156be incorrect or 0 for arguments other than zero, so it should only be
7157used for debugging purposes.
7158
7159Note that calling this intrinsic does not prevent function inlining or
7160other aggressive transformations, so the value returned may not be that
7161of the obvious source-language caller.
7162
7163'``llvm.frameaddress``' Intrinsic
7164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7165
7166Syntax:
7167"""""""
7168
7169::
7170
7171 declare i8* @llvm.frameaddress(i32 <level>)
7172
7173Overview:
7174"""""""""
7175
7176The '``llvm.frameaddress``' intrinsic attempts to return the
7177target-specific frame pointer value for the specified stack frame.
7178
7179Arguments:
7180""""""""""
7181
7182The argument to this intrinsic indicates which function to return the
7183frame pointer for. Zero indicates the calling function, one indicates
7184its caller, etc. The argument is **required** to be a constant integer
7185value.
7186
7187Semantics:
7188""""""""""
7189
7190The '``llvm.frameaddress``' intrinsic either returns a pointer
7191indicating the frame address of the specified call frame, or zero if it
7192cannot be identified. The value returned by this intrinsic is likely to
7193be incorrect or 0 for arguments other than zero, so it should only be
7194used for debugging purposes.
7195
7196Note that calling this intrinsic does not prevent function inlining or
7197other aggressive transformations, so the value returned may not be that
7198of the obvious source-language caller.
7199
Renato Golinc7aea402014-05-06 16:51:25 +00007200.. _int_read_register:
7201.. _int_write_register:
7202
7203'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7204^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7205
7206Syntax:
7207"""""""
7208
7209::
7210
7211 declare i32 @llvm.read_register.i32(metadata)
7212 declare i64 @llvm.read_register.i64(metadata)
7213 declare void @llvm.write_register.i32(metadata, i32 @value)
7214 declare void @llvm.write_register.i64(metadata, i64 @value)
7215 !0 = metadata !{metadata !"sp\00"}
7216
7217Overview:
7218"""""""""
7219
7220The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7221provides access to the named register. The register must be valid on
7222the architecture being compiled to. The type needs to be compatible
7223with the register being read.
7224
7225Semantics:
7226""""""""""
7227
7228The '``llvm.read_register``' intrinsic returns the current value of the
7229register, where possible. The '``llvm.write_register``' intrinsic sets
7230the current value of the register, where possible.
7231
7232This is useful to implement named register global variables that need
7233to always be mapped to a specific register, as is common practice on
7234bare-metal programs including OS kernels.
7235
7236The compiler doesn't check for register availability or use of the used
7237register in surrounding code, including inline assembly. Because of that,
7238allocatable registers are not supported.
7239
7240Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007241architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007242work is needed to support other registers and even more so, allocatable
7243registers.
7244
Sean Silvab084af42012-12-07 10:36:55 +00007245.. _int_stacksave:
7246
7247'``llvm.stacksave``' Intrinsic
7248^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7249
7250Syntax:
7251"""""""
7252
7253::
7254
7255 declare i8* @llvm.stacksave()
7256
7257Overview:
7258"""""""""
7259
7260The '``llvm.stacksave``' intrinsic is used to remember the current state
7261of the function stack, for use with
7262:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7263implementing language features like scoped automatic variable sized
7264arrays in C99.
7265
7266Semantics:
7267""""""""""
7268
7269This intrinsic returns a opaque pointer value that can be passed to
7270:ref:`llvm.stackrestore <int_stackrestore>`. When an
7271``llvm.stackrestore`` intrinsic is executed with a value saved from
7272``llvm.stacksave``, it effectively restores the state of the stack to
7273the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7274practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7275were allocated after the ``llvm.stacksave`` was executed.
7276
7277.. _int_stackrestore:
7278
7279'``llvm.stackrestore``' Intrinsic
7280^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7281
7282Syntax:
7283"""""""
7284
7285::
7286
7287 declare void @llvm.stackrestore(i8* %ptr)
7288
7289Overview:
7290"""""""""
7291
7292The '``llvm.stackrestore``' intrinsic is used to restore the state of
7293the function stack to the state it was in when the corresponding
7294:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7295useful for implementing language features like scoped automatic variable
7296sized arrays in C99.
7297
7298Semantics:
7299""""""""""
7300
7301See the description for :ref:`llvm.stacksave <int_stacksave>`.
7302
7303'``llvm.prefetch``' Intrinsic
7304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7305
7306Syntax:
7307"""""""
7308
7309::
7310
7311 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7312
7313Overview:
7314"""""""""
7315
7316The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7317insert a prefetch instruction if supported; otherwise, it is a noop.
7318Prefetches have no effect on the behavior of the program but can change
7319its performance characteristics.
7320
7321Arguments:
7322""""""""""
7323
7324``address`` is the address to be prefetched, ``rw`` is the specifier
7325determining if the fetch should be for a read (0) or write (1), and
7326``locality`` is a temporal locality specifier ranging from (0) - no
7327locality, to (3) - extremely local keep in cache. The ``cache type``
7328specifies whether the prefetch is performed on the data (1) or
7329instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7330arguments must be constant integers.
7331
7332Semantics:
7333""""""""""
7334
7335This intrinsic does not modify the behavior of the program. In
7336particular, prefetches cannot trap and do not produce a value. On
7337targets that support this intrinsic, the prefetch can provide hints to
7338the processor cache for better performance.
7339
7340'``llvm.pcmarker``' Intrinsic
7341^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7342
7343Syntax:
7344"""""""
7345
7346::
7347
7348 declare void @llvm.pcmarker(i32 <id>)
7349
7350Overview:
7351"""""""""
7352
7353The '``llvm.pcmarker``' intrinsic is a method to export a Program
7354Counter (PC) in a region of code to simulators and other tools. The
7355method is target specific, but it is expected that the marker will use
7356exported symbols to transmit the PC of the marker. The marker makes no
7357guarantees that it will remain with any specific instruction after
7358optimizations. It is possible that the presence of a marker will inhibit
7359optimizations. The intended use is to be inserted after optimizations to
7360allow correlations of simulation runs.
7361
7362Arguments:
7363""""""""""
7364
7365``id`` is a numerical id identifying the marker.
7366
7367Semantics:
7368""""""""""
7369
7370This intrinsic does not modify the behavior of the program. Backends
7371that do not support this intrinsic may ignore it.
7372
7373'``llvm.readcyclecounter``' Intrinsic
7374^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7375
7376Syntax:
7377"""""""
7378
7379::
7380
7381 declare i64 @llvm.readcyclecounter()
7382
7383Overview:
7384"""""""""
7385
7386The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7387counter register (or similar low latency, high accuracy clocks) on those
7388targets that support it. On X86, it should map to RDTSC. On Alpha, it
7389should map to RPCC. As the backing counters overflow quickly (on the
7390order of 9 seconds on alpha), this should only be used for small
7391timings.
7392
7393Semantics:
7394""""""""""
7395
7396When directly supported, reading the cycle counter should not modify any
7397memory. Implementations are allowed to either return a application
7398specific value or a system wide value. On backends without support, this
7399is lowered to a constant 0.
7400
Tim Northoverbc933082013-05-23 19:11:20 +00007401Note that runtime support may be conditional on the privilege-level code is
7402running at and the host platform.
7403
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007404'``llvm.clear_cache``' Intrinsic
7405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7406
7407Syntax:
7408"""""""
7409
7410::
7411
7412 declare void @llvm.clear_cache(i8*, i8*)
7413
7414Overview:
7415"""""""""
7416
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007417The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7418in the specified range to the execution unit of the processor. On
7419targets with non-unified instruction and data cache, the implementation
7420flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007421
7422Semantics:
7423""""""""""
7424
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007425On platforms with coherent instruction and data caches (e.g. x86), this
7426intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007427cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007428instructions or a system call, if cache flushing requires special
7429privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007430
Sean Silvad02bf3e2014-04-07 22:29:53 +00007431The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007432time library.
Renato Golin93010e62014-03-26 14:01:32 +00007433
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007434This instrinsic does *not* empty the instruction pipeline. Modifications
7435of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007436
Sean Silvab084af42012-12-07 10:36:55 +00007437Standard C Library Intrinsics
7438-----------------------------
7439
7440LLVM provides intrinsics for a few important standard C library
7441functions. These intrinsics allow source-language front-ends to pass
7442information about the alignment of the pointer arguments to the code
7443generator, providing opportunity for more efficient code generation.
7444
7445.. _int_memcpy:
7446
7447'``llvm.memcpy``' Intrinsic
7448^^^^^^^^^^^^^^^^^^^^^^^^^^^
7449
7450Syntax:
7451"""""""
7452
7453This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7454integer bit width and for different address spaces. Not all targets
7455support all bit widths however.
7456
7457::
7458
7459 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7460 i32 <len>, i32 <align>, i1 <isvolatile>)
7461 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7462 i64 <len>, i32 <align>, i1 <isvolatile>)
7463
7464Overview:
7465"""""""""
7466
7467The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7468source location to the destination location.
7469
7470Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7471intrinsics do not return a value, takes extra alignment/isvolatile
7472arguments and the pointers can be in specified address spaces.
7473
7474Arguments:
7475""""""""""
7476
7477The first argument is a pointer to the destination, the second is a
7478pointer to the source. The third argument is an integer argument
7479specifying the number of bytes to copy, the fourth argument is the
7480alignment of the source and destination locations, and the fifth is a
7481boolean indicating a volatile access.
7482
7483If the call to this intrinsic has an alignment value that is not 0 or 1,
7484then the caller guarantees that both the source and destination pointers
7485are aligned to that boundary.
7486
7487If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7488a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7489very cleanly specified and it is unwise to depend on it.
7490
7491Semantics:
7492""""""""""
7493
7494The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7495source location to the destination location, which are not allowed to
7496overlap. It copies "len" bytes of memory over. If the argument is known
7497to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007498argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007499
7500'``llvm.memmove``' Intrinsic
7501^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7502
7503Syntax:
7504"""""""
7505
7506This is an overloaded intrinsic. You can use llvm.memmove on any integer
7507bit width and for different address space. Not all targets support all
7508bit widths however.
7509
7510::
7511
7512 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7513 i32 <len>, i32 <align>, i1 <isvolatile>)
7514 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7515 i64 <len>, i32 <align>, i1 <isvolatile>)
7516
7517Overview:
7518"""""""""
7519
7520The '``llvm.memmove.*``' intrinsics move a block of memory from the
7521source location to the destination location. It is similar to the
7522'``llvm.memcpy``' intrinsic but allows the two memory locations to
7523overlap.
7524
7525Note that, unlike the standard libc function, the ``llvm.memmove.*``
7526intrinsics do not return a value, takes extra alignment/isvolatile
7527arguments and the pointers can be in specified address spaces.
7528
7529Arguments:
7530""""""""""
7531
7532The first argument is a pointer to the destination, the second is a
7533pointer to the source. The third argument is an integer argument
7534specifying the number of bytes to copy, the fourth argument is the
7535alignment of the source and destination locations, and the fifth is a
7536boolean indicating a volatile access.
7537
7538If the call to this intrinsic has an alignment value that is not 0 or 1,
7539then the caller guarantees that the source and destination pointers are
7540aligned to that boundary.
7541
7542If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7543is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7544not very cleanly specified and it is unwise to depend on it.
7545
7546Semantics:
7547""""""""""
7548
7549The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7550source location to the destination location, which may overlap. It
7551copies "len" bytes of memory over. If the argument is known to be
7552aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007553otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007554
7555'``llvm.memset.*``' Intrinsics
7556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7557
7558Syntax:
7559"""""""
7560
7561This is an overloaded intrinsic. You can use llvm.memset on any integer
7562bit width and for different address spaces. However, not all targets
7563support all bit widths.
7564
7565::
7566
7567 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7568 i32 <len>, i32 <align>, i1 <isvolatile>)
7569 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7570 i64 <len>, i32 <align>, i1 <isvolatile>)
7571
7572Overview:
7573"""""""""
7574
7575The '``llvm.memset.*``' intrinsics fill a block of memory with a
7576particular byte value.
7577
7578Note that, unlike the standard libc function, the ``llvm.memset``
7579intrinsic does not return a value and takes extra alignment/volatile
7580arguments. Also, the destination can be in an arbitrary address space.
7581
7582Arguments:
7583""""""""""
7584
7585The first argument is a pointer to the destination to fill, the second
7586is the byte value with which to fill it, the third argument is an
7587integer argument specifying the number of bytes to fill, and the fourth
7588argument is the known alignment of the destination location.
7589
7590If the call to this intrinsic has an alignment value that is not 0 or 1,
7591then the caller guarantees that the destination pointer is aligned to
7592that boundary.
7593
7594If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7595a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7596very cleanly specified and it is unwise to depend on it.
7597
7598Semantics:
7599""""""""""
7600
7601The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7602at the destination location. If the argument is known to be aligned to
7603some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007604it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007605
7606'``llvm.sqrt.*``' Intrinsic
7607^^^^^^^^^^^^^^^^^^^^^^^^^^^
7608
7609Syntax:
7610"""""""
7611
7612This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7613floating point or vector of floating point type. Not all targets support
7614all types however.
7615
7616::
7617
7618 declare float @llvm.sqrt.f32(float %Val)
7619 declare double @llvm.sqrt.f64(double %Val)
7620 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7621 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7622 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7623
7624Overview:
7625"""""""""
7626
7627The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7628returning the same value as the libm '``sqrt``' functions would. Unlike
7629``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7630negative numbers other than -0.0 (which allows for better optimization,
7631because there is no need to worry about errno being set).
7632``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7633
7634Arguments:
7635""""""""""
7636
7637The argument and return value are floating point numbers of the same
7638type.
7639
7640Semantics:
7641""""""""""
7642
7643This function returns the sqrt of the specified operand if it is a
7644nonnegative floating point number.
7645
7646'``llvm.powi.*``' Intrinsic
7647^^^^^^^^^^^^^^^^^^^^^^^^^^^
7648
7649Syntax:
7650"""""""
7651
7652This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7653floating point or vector of floating point type. Not all targets support
7654all types however.
7655
7656::
7657
7658 declare float @llvm.powi.f32(float %Val, i32 %power)
7659 declare double @llvm.powi.f64(double %Val, i32 %power)
7660 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7661 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7662 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7663
7664Overview:
7665"""""""""
7666
7667The '``llvm.powi.*``' intrinsics return the first operand raised to the
7668specified (positive or negative) power. The order of evaluation of
7669multiplications is not defined. When a vector of floating point type is
7670used, the second argument remains a scalar integer value.
7671
7672Arguments:
7673""""""""""
7674
7675The second argument is an integer power, and the first is a value to
7676raise to that power.
7677
7678Semantics:
7679""""""""""
7680
7681This function returns the first value raised to the second power with an
7682unspecified sequence of rounding operations.
7683
7684'``llvm.sin.*``' Intrinsic
7685^^^^^^^^^^^^^^^^^^^^^^^^^^
7686
7687Syntax:
7688"""""""
7689
7690This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7691floating point or vector of floating point type. Not all targets support
7692all types however.
7693
7694::
7695
7696 declare float @llvm.sin.f32(float %Val)
7697 declare double @llvm.sin.f64(double %Val)
7698 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7699 declare fp128 @llvm.sin.f128(fp128 %Val)
7700 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7701
7702Overview:
7703"""""""""
7704
7705The '``llvm.sin.*``' intrinsics return the sine of the operand.
7706
7707Arguments:
7708""""""""""
7709
7710The argument and return value are floating point numbers of the same
7711type.
7712
7713Semantics:
7714""""""""""
7715
7716This function returns the sine of the specified operand, returning the
7717same values as the libm ``sin`` functions would, and handles error
7718conditions in the same way.
7719
7720'``llvm.cos.*``' Intrinsic
7721^^^^^^^^^^^^^^^^^^^^^^^^^^
7722
7723Syntax:
7724"""""""
7725
7726This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7727floating point or vector of floating point type. Not all targets support
7728all types however.
7729
7730::
7731
7732 declare float @llvm.cos.f32(float %Val)
7733 declare double @llvm.cos.f64(double %Val)
7734 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7735 declare fp128 @llvm.cos.f128(fp128 %Val)
7736 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7737
7738Overview:
7739"""""""""
7740
7741The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7742
7743Arguments:
7744""""""""""
7745
7746The argument and return value are floating point numbers of the same
7747type.
7748
7749Semantics:
7750""""""""""
7751
7752This function returns the cosine of the specified operand, returning the
7753same values as the libm ``cos`` functions would, and handles error
7754conditions in the same way.
7755
7756'``llvm.pow.*``' Intrinsic
7757^^^^^^^^^^^^^^^^^^^^^^^^^^
7758
7759Syntax:
7760"""""""
7761
7762This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7763floating point or vector of floating point type. Not all targets support
7764all types however.
7765
7766::
7767
7768 declare float @llvm.pow.f32(float %Val, float %Power)
7769 declare double @llvm.pow.f64(double %Val, double %Power)
7770 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7771 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7772 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7773
7774Overview:
7775"""""""""
7776
7777The '``llvm.pow.*``' intrinsics return the first operand raised to the
7778specified (positive or negative) power.
7779
7780Arguments:
7781""""""""""
7782
7783The second argument is a floating point power, and the first is a value
7784to raise to that power.
7785
7786Semantics:
7787""""""""""
7788
7789This function returns the first value raised to the second power,
7790returning the same values as the libm ``pow`` functions would, and
7791handles error conditions in the same way.
7792
7793'``llvm.exp.*``' Intrinsic
7794^^^^^^^^^^^^^^^^^^^^^^^^^^
7795
7796Syntax:
7797"""""""
7798
7799This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7800floating point or vector of floating point type. Not all targets support
7801all types however.
7802
7803::
7804
7805 declare float @llvm.exp.f32(float %Val)
7806 declare double @llvm.exp.f64(double %Val)
7807 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7808 declare fp128 @llvm.exp.f128(fp128 %Val)
7809 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7810
7811Overview:
7812"""""""""
7813
7814The '``llvm.exp.*``' intrinsics perform the exp function.
7815
7816Arguments:
7817""""""""""
7818
7819The argument and return value are floating point numbers of the same
7820type.
7821
7822Semantics:
7823""""""""""
7824
7825This function returns the same values as the libm ``exp`` functions
7826would, and handles error conditions in the same way.
7827
7828'``llvm.exp2.*``' Intrinsic
7829^^^^^^^^^^^^^^^^^^^^^^^^^^^
7830
7831Syntax:
7832"""""""
7833
7834This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7835floating point or vector of floating point type. Not all targets support
7836all types however.
7837
7838::
7839
7840 declare float @llvm.exp2.f32(float %Val)
7841 declare double @llvm.exp2.f64(double %Val)
7842 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7843 declare fp128 @llvm.exp2.f128(fp128 %Val)
7844 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7845
7846Overview:
7847"""""""""
7848
7849The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7850
7851Arguments:
7852""""""""""
7853
7854The argument and return value are floating point numbers of the same
7855type.
7856
7857Semantics:
7858""""""""""
7859
7860This function returns the same values as the libm ``exp2`` functions
7861would, and handles error conditions in the same way.
7862
7863'``llvm.log.*``' Intrinsic
7864^^^^^^^^^^^^^^^^^^^^^^^^^^
7865
7866Syntax:
7867"""""""
7868
7869This is an overloaded intrinsic. You can use ``llvm.log`` on any
7870floating point or vector of floating point type. Not all targets support
7871all types however.
7872
7873::
7874
7875 declare float @llvm.log.f32(float %Val)
7876 declare double @llvm.log.f64(double %Val)
7877 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7878 declare fp128 @llvm.log.f128(fp128 %Val)
7879 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7880
7881Overview:
7882"""""""""
7883
7884The '``llvm.log.*``' intrinsics perform the log function.
7885
7886Arguments:
7887""""""""""
7888
7889The argument and return value are floating point numbers of the same
7890type.
7891
7892Semantics:
7893""""""""""
7894
7895This function returns the same values as the libm ``log`` functions
7896would, and handles error conditions in the same way.
7897
7898'``llvm.log10.*``' Intrinsic
7899^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7900
7901Syntax:
7902"""""""
7903
7904This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7905floating point or vector of floating point type. Not all targets support
7906all types however.
7907
7908::
7909
7910 declare float @llvm.log10.f32(float %Val)
7911 declare double @llvm.log10.f64(double %Val)
7912 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7913 declare fp128 @llvm.log10.f128(fp128 %Val)
7914 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7915
7916Overview:
7917"""""""""
7918
7919The '``llvm.log10.*``' intrinsics perform the log10 function.
7920
7921Arguments:
7922""""""""""
7923
7924The argument and return value are floating point numbers of the same
7925type.
7926
7927Semantics:
7928""""""""""
7929
7930This function returns the same values as the libm ``log10`` functions
7931would, and handles error conditions in the same way.
7932
7933'``llvm.log2.*``' Intrinsic
7934^^^^^^^^^^^^^^^^^^^^^^^^^^^
7935
7936Syntax:
7937"""""""
7938
7939This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7940floating point or vector of floating point type. Not all targets support
7941all types however.
7942
7943::
7944
7945 declare float @llvm.log2.f32(float %Val)
7946 declare double @llvm.log2.f64(double %Val)
7947 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7948 declare fp128 @llvm.log2.f128(fp128 %Val)
7949 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7950
7951Overview:
7952"""""""""
7953
7954The '``llvm.log2.*``' intrinsics perform the log2 function.
7955
7956Arguments:
7957""""""""""
7958
7959The argument and return value are floating point numbers of the same
7960type.
7961
7962Semantics:
7963""""""""""
7964
7965This function returns the same values as the libm ``log2`` functions
7966would, and handles error conditions in the same way.
7967
7968'``llvm.fma.*``' Intrinsic
7969^^^^^^^^^^^^^^^^^^^^^^^^^^
7970
7971Syntax:
7972"""""""
7973
7974This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7975floating point or vector of floating point type. Not all targets support
7976all types however.
7977
7978::
7979
7980 declare float @llvm.fma.f32(float %a, float %b, float %c)
7981 declare double @llvm.fma.f64(double %a, double %b, double %c)
7982 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7983 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7984 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7985
7986Overview:
7987"""""""""
7988
7989The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7990operation.
7991
7992Arguments:
7993""""""""""
7994
7995The argument and return value are floating point numbers of the same
7996type.
7997
7998Semantics:
7999""""""""""
8000
8001This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008002would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00008003
8004'``llvm.fabs.*``' Intrinsic
8005^^^^^^^^^^^^^^^^^^^^^^^^^^^
8006
8007Syntax:
8008"""""""
8009
8010This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8011floating point or vector of floating point type. Not all targets support
8012all types however.
8013
8014::
8015
8016 declare float @llvm.fabs.f32(float %Val)
8017 declare double @llvm.fabs.f64(double %Val)
8018 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
8019 declare fp128 @llvm.fabs.f128(fp128 %Val)
8020 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
8021
8022Overview:
8023"""""""""
8024
8025The '``llvm.fabs.*``' intrinsics return the absolute value of the
8026operand.
8027
8028Arguments:
8029""""""""""
8030
8031The argument and return value are floating point numbers of the same
8032type.
8033
8034Semantics:
8035""""""""""
8036
8037This function returns the same values as the libm ``fabs`` functions
8038would, and handles error conditions in the same way.
8039
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008040'``llvm.copysign.*``' Intrinsic
8041^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8042
8043Syntax:
8044"""""""
8045
8046This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8047floating point or vector of floating point type. Not all targets support
8048all types however.
8049
8050::
8051
8052 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8053 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8054 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8055 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8056 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8057
8058Overview:
8059"""""""""
8060
8061The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8062first operand and the sign of the second operand.
8063
8064Arguments:
8065""""""""""
8066
8067The arguments and return value are floating point numbers of the same
8068type.
8069
8070Semantics:
8071""""""""""
8072
8073This function returns the same values as the libm ``copysign``
8074functions would, and handles error conditions in the same way.
8075
Sean Silvab084af42012-12-07 10:36:55 +00008076'``llvm.floor.*``' Intrinsic
8077^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8078
8079Syntax:
8080"""""""
8081
8082This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8083floating point or vector of floating point type. Not all targets support
8084all types however.
8085
8086::
8087
8088 declare float @llvm.floor.f32(float %Val)
8089 declare double @llvm.floor.f64(double %Val)
8090 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8091 declare fp128 @llvm.floor.f128(fp128 %Val)
8092 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8093
8094Overview:
8095"""""""""
8096
8097The '``llvm.floor.*``' intrinsics return the floor of the operand.
8098
8099Arguments:
8100""""""""""
8101
8102The argument and return value are floating point numbers of the same
8103type.
8104
8105Semantics:
8106""""""""""
8107
8108This function returns the same values as the libm ``floor`` functions
8109would, and handles error conditions in the same way.
8110
8111'``llvm.ceil.*``' Intrinsic
8112^^^^^^^^^^^^^^^^^^^^^^^^^^^
8113
8114Syntax:
8115"""""""
8116
8117This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8118floating point or vector of floating point type. Not all targets support
8119all types however.
8120
8121::
8122
8123 declare float @llvm.ceil.f32(float %Val)
8124 declare double @llvm.ceil.f64(double %Val)
8125 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8126 declare fp128 @llvm.ceil.f128(fp128 %Val)
8127 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8128
8129Overview:
8130"""""""""
8131
8132The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8133
8134Arguments:
8135""""""""""
8136
8137The argument and return value are floating point numbers of the same
8138type.
8139
8140Semantics:
8141""""""""""
8142
8143This function returns the same values as the libm ``ceil`` functions
8144would, and handles error conditions in the same way.
8145
8146'``llvm.trunc.*``' Intrinsic
8147^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8148
8149Syntax:
8150"""""""
8151
8152This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8153floating point or vector of floating point type. Not all targets support
8154all types however.
8155
8156::
8157
8158 declare float @llvm.trunc.f32(float %Val)
8159 declare double @llvm.trunc.f64(double %Val)
8160 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8161 declare fp128 @llvm.trunc.f128(fp128 %Val)
8162 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8163
8164Overview:
8165"""""""""
8166
8167The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8168nearest integer not larger in magnitude than the operand.
8169
8170Arguments:
8171""""""""""
8172
8173The argument and return value are floating point numbers of the same
8174type.
8175
8176Semantics:
8177""""""""""
8178
8179This function returns the same values as the libm ``trunc`` functions
8180would, and handles error conditions in the same way.
8181
8182'``llvm.rint.*``' Intrinsic
8183^^^^^^^^^^^^^^^^^^^^^^^^^^^
8184
8185Syntax:
8186"""""""
8187
8188This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8189floating point or vector of floating point type. Not all targets support
8190all types however.
8191
8192::
8193
8194 declare float @llvm.rint.f32(float %Val)
8195 declare double @llvm.rint.f64(double %Val)
8196 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8197 declare fp128 @llvm.rint.f128(fp128 %Val)
8198 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8199
8200Overview:
8201"""""""""
8202
8203The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8204nearest integer. It may raise an inexact floating-point exception if the
8205operand isn't an integer.
8206
8207Arguments:
8208""""""""""
8209
8210The argument and return value are floating point numbers of the same
8211type.
8212
8213Semantics:
8214""""""""""
8215
8216This function returns the same values as the libm ``rint`` functions
8217would, and handles error conditions in the same way.
8218
8219'``llvm.nearbyint.*``' Intrinsic
8220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8221
8222Syntax:
8223"""""""
8224
8225This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8226floating point or vector of floating point type. Not all targets support
8227all types however.
8228
8229::
8230
8231 declare float @llvm.nearbyint.f32(float %Val)
8232 declare double @llvm.nearbyint.f64(double %Val)
8233 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8234 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8235 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8236
8237Overview:
8238"""""""""
8239
8240The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8241nearest integer.
8242
8243Arguments:
8244""""""""""
8245
8246The argument and return value are floating point numbers of the same
8247type.
8248
8249Semantics:
8250""""""""""
8251
8252This function returns the same values as the libm ``nearbyint``
8253functions would, and handles error conditions in the same way.
8254
Hal Finkel171817e2013-08-07 22:49:12 +00008255'``llvm.round.*``' Intrinsic
8256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8257
8258Syntax:
8259"""""""
8260
8261This is an overloaded intrinsic. You can use ``llvm.round`` on any
8262floating point or vector of floating point type. Not all targets support
8263all types however.
8264
8265::
8266
8267 declare float @llvm.round.f32(float %Val)
8268 declare double @llvm.round.f64(double %Val)
8269 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8270 declare fp128 @llvm.round.f128(fp128 %Val)
8271 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8272
8273Overview:
8274"""""""""
8275
8276The '``llvm.round.*``' intrinsics returns the operand rounded to the
8277nearest integer.
8278
8279Arguments:
8280""""""""""
8281
8282The argument and return value are floating point numbers of the same
8283type.
8284
8285Semantics:
8286""""""""""
8287
8288This function returns the same values as the libm ``round``
8289functions would, and handles error conditions in the same way.
8290
Sean Silvab084af42012-12-07 10:36:55 +00008291Bit Manipulation Intrinsics
8292---------------------------
8293
8294LLVM provides intrinsics for a few important bit manipulation
8295operations. These allow efficient code generation for some algorithms.
8296
8297'``llvm.bswap.*``' Intrinsics
8298^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8299
8300Syntax:
8301"""""""
8302
8303This is an overloaded intrinsic function. You can use bswap on any
8304integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8305
8306::
8307
8308 declare i16 @llvm.bswap.i16(i16 <id>)
8309 declare i32 @llvm.bswap.i32(i32 <id>)
8310 declare i64 @llvm.bswap.i64(i64 <id>)
8311
8312Overview:
8313"""""""""
8314
8315The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8316values with an even number of bytes (positive multiple of 16 bits).
8317These are useful for performing operations on data that is not in the
8318target's native byte order.
8319
8320Semantics:
8321""""""""""
8322
8323The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8324and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8325intrinsic returns an i32 value that has the four bytes of the input i32
8326swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8327returned i32 will have its bytes in 3, 2, 1, 0 order. The
8328``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8329concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8330respectively).
8331
8332'``llvm.ctpop.*``' Intrinsic
8333^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8334
8335Syntax:
8336"""""""
8337
8338This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8339bit width, or on any vector with integer elements. Not all targets
8340support all bit widths or vector types, however.
8341
8342::
8343
8344 declare i8 @llvm.ctpop.i8(i8 <src>)
8345 declare i16 @llvm.ctpop.i16(i16 <src>)
8346 declare i32 @llvm.ctpop.i32(i32 <src>)
8347 declare i64 @llvm.ctpop.i64(i64 <src>)
8348 declare i256 @llvm.ctpop.i256(i256 <src>)
8349 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8350
8351Overview:
8352"""""""""
8353
8354The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8355in a value.
8356
8357Arguments:
8358""""""""""
8359
8360The only argument is the value to be counted. The argument may be of any
8361integer type, or a vector with integer elements. The return type must
8362match the argument type.
8363
8364Semantics:
8365""""""""""
8366
8367The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8368each element of a vector.
8369
8370'``llvm.ctlz.*``' Intrinsic
8371^^^^^^^^^^^^^^^^^^^^^^^^^^^
8372
8373Syntax:
8374"""""""
8375
8376This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8377integer bit width, or any vector whose elements are integers. Not all
8378targets support all bit widths or vector types, however.
8379
8380::
8381
8382 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8383 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8384 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8385 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8386 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8387 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8388
8389Overview:
8390"""""""""
8391
8392The '``llvm.ctlz``' family of intrinsic functions counts the number of
8393leading zeros in a variable.
8394
8395Arguments:
8396""""""""""
8397
8398The first argument is the value to be counted. This argument may be of
8399any integer type, or a vectory with integer element type. The return
8400type must match the first argument type.
8401
8402The second argument must be a constant and is a flag to indicate whether
8403the intrinsic should ensure that a zero as the first argument produces a
8404defined result. Historically some architectures did not provide a
8405defined result for zero values as efficiently, and many algorithms are
8406now predicated on avoiding zero-value inputs.
8407
8408Semantics:
8409""""""""""
8410
8411The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8412zeros in a variable, or within each element of the vector. If
8413``src == 0`` then the result is the size in bits of the type of ``src``
8414if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8415``llvm.ctlz(i32 2) = 30``.
8416
8417'``llvm.cttz.*``' Intrinsic
8418^^^^^^^^^^^^^^^^^^^^^^^^^^^
8419
8420Syntax:
8421"""""""
8422
8423This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8424integer bit width, or any vector of integer elements. Not all targets
8425support all bit widths or vector types, however.
8426
8427::
8428
8429 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8430 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8431 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8432 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8433 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8434 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8435
8436Overview:
8437"""""""""
8438
8439The '``llvm.cttz``' family of intrinsic functions counts the number of
8440trailing zeros.
8441
8442Arguments:
8443""""""""""
8444
8445The first argument is the value to be counted. This argument may be of
8446any integer type, or a vectory with integer element type. The return
8447type must match the first argument type.
8448
8449The second argument must be a constant and is a flag to indicate whether
8450the intrinsic should ensure that a zero as the first argument produces a
8451defined result. Historically some architectures did not provide a
8452defined result for zero values as efficiently, and many algorithms are
8453now predicated on avoiding zero-value inputs.
8454
8455Semantics:
8456""""""""""
8457
8458The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8459zeros in a variable, or within each element of a vector. If ``src == 0``
8460then the result is the size in bits of the type of ``src`` if
8461``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8462``llvm.cttz(2) = 1``.
8463
8464Arithmetic with Overflow Intrinsics
8465-----------------------------------
8466
8467LLVM provides intrinsics for some arithmetic with overflow operations.
8468
8469'``llvm.sadd.with.overflow.*``' Intrinsics
8470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8471
8472Syntax:
8473"""""""
8474
8475This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8476on any integer bit width.
8477
8478::
8479
8480 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8481 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8482 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8483
8484Overview:
8485"""""""""
8486
8487The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8488a signed addition of the two arguments, and indicate whether an overflow
8489occurred during the signed summation.
8490
8491Arguments:
8492""""""""""
8493
8494The arguments (%a and %b) and the first element of the result structure
8495may be of integer types of any bit width, but they must have the same
8496bit width. The second element of the result structure must be of type
8497``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8498addition.
8499
8500Semantics:
8501""""""""""
8502
8503The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008504a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008505first element of which is the signed summation, and the second element
8506of which is a bit specifying if the signed summation resulted in an
8507overflow.
8508
8509Examples:
8510"""""""""
8511
8512.. code-block:: llvm
8513
8514 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8515 %sum = extractvalue {i32, i1} %res, 0
8516 %obit = extractvalue {i32, i1} %res, 1
8517 br i1 %obit, label %overflow, label %normal
8518
8519'``llvm.uadd.with.overflow.*``' Intrinsics
8520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8521
8522Syntax:
8523"""""""
8524
8525This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8526on any integer bit width.
8527
8528::
8529
8530 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8531 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8532 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8533
8534Overview:
8535"""""""""
8536
8537The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8538an unsigned addition of the two arguments, and indicate whether a carry
8539occurred during the unsigned summation.
8540
8541Arguments:
8542""""""""""
8543
8544The arguments (%a and %b) and the first element of the result structure
8545may be of integer types of any bit width, but they must have the same
8546bit width. The second element of the result structure must be of type
8547``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8548addition.
8549
8550Semantics:
8551""""""""""
8552
8553The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008554an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008555first element of which is the sum, and the second element of which is a
8556bit specifying if the unsigned summation resulted in a carry.
8557
8558Examples:
8559"""""""""
8560
8561.. code-block:: llvm
8562
8563 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8564 %sum = extractvalue {i32, i1} %res, 0
8565 %obit = extractvalue {i32, i1} %res, 1
8566 br i1 %obit, label %carry, label %normal
8567
8568'``llvm.ssub.with.overflow.*``' Intrinsics
8569^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8570
8571Syntax:
8572"""""""
8573
8574This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8575on any integer bit width.
8576
8577::
8578
8579 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8580 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8581 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8582
8583Overview:
8584"""""""""
8585
8586The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8587a signed subtraction of the two arguments, and indicate whether an
8588overflow occurred during the signed subtraction.
8589
8590Arguments:
8591""""""""""
8592
8593The arguments (%a and %b) and the first element of the result structure
8594may be of integer types of any bit width, but they must have the same
8595bit width. The second element of the result structure must be of type
8596``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8597subtraction.
8598
8599Semantics:
8600""""""""""
8601
8602The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008603a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008604first element of which is the subtraction, and the second element of
8605which is a bit specifying if the signed subtraction resulted in an
8606overflow.
8607
8608Examples:
8609"""""""""
8610
8611.. code-block:: llvm
8612
8613 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8614 %sum = extractvalue {i32, i1} %res, 0
8615 %obit = extractvalue {i32, i1} %res, 1
8616 br i1 %obit, label %overflow, label %normal
8617
8618'``llvm.usub.with.overflow.*``' Intrinsics
8619^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8620
8621Syntax:
8622"""""""
8623
8624This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8625on any integer bit width.
8626
8627::
8628
8629 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8630 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8631 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8632
8633Overview:
8634"""""""""
8635
8636The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8637an unsigned subtraction of the two arguments, and indicate whether an
8638overflow occurred during the unsigned subtraction.
8639
8640Arguments:
8641""""""""""
8642
8643The arguments (%a and %b) and the first element of the result structure
8644may be of integer types of any bit width, but they must have the same
8645bit width. The second element of the result structure must be of type
8646``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8647subtraction.
8648
8649Semantics:
8650""""""""""
8651
8652The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008653an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008654the first element of which is the subtraction, and the second element of
8655which is a bit specifying if the unsigned subtraction resulted in an
8656overflow.
8657
8658Examples:
8659"""""""""
8660
8661.. code-block:: llvm
8662
8663 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8664 %sum = extractvalue {i32, i1} %res, 0
8665 %obit = extractvalue {i32, i1} %res, 1
8666 br i1 %obit, label %overflow, label %normal
8667
8668'``llvm.smul.with.overflow.*``' Intrinsics
8669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8670
8671Syntax:
8672"""""""
8673
8674This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8675on any integer bit width.
8676
8677::
8678
8679 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8680 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8681 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8682
8683Overview:
8684"""""""""
8685
8686The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8687a signed multiplication of the two arguments, and indicate whether an
8688overflow occurred during the signed multiplication.
8689
8690Arguments:
8691""""""""""
8692
8693The arguments (%a and %b) and the first element of the result structure
8694may be of integer types of any bit width, but they must have the same
8695bit width. The second element of the result structure must be of type
8696``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8697multiplication.
8698
8699Semantics:
8700""""""""""
8701
8702The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008703a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008704the first element of which is the multiplication, and the second element
8705of which is a bit specifying if the signed multiplication resulted in an
8706overflow.
8707
8708Examples:
8709"""""""""
8710
8711.. code-block:: llvm
8712
8713 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8714 %sum = extractvalue {i32, i1} %res, 0
8715 %obit = extractvalue {i32, i1} %res, 1
8716 br i1 %obit, label %overflow, label %normal
8717
8718'``llvm.umul.with.overflow.*``' Intrinsics
8719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8720
8721Syntax:
8722"""""""
8723
8724This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8725on any integer bit width.
8726
8727::
8728
8729 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8730 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8731 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8732
8733Overview:
8734"""""""""
8735
8736The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8737a unsigned multiplication of the two arguments, and indicate whether an
8738overflow occurred during the unsigned multiplication.
8739
8740Arguments:
8741""""""""""
8742
8743The arguments (%a and %b) and the first element of the result structure
8744may be of integer types of any bit width, but they must have the same
8745bit width. The second element of the result structure must be of type
8746``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8747multiplication.
8748
8749Semantics:
8750""""""""""
8751
8752The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008753an unsigned multiplication of the two arguments. They return a structure ---
8754the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008755element of which is a bit specifying if the unsigned multiplication
8756resulted in an overflow.
8757
8758Examples:
8759"""""""""
8760
8761.. code-block:: llvm
8762
8763 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8764 %sum = extractvalue {i32, i1} %res, 0
8765 %obit = extractvalue {i32, i1} %res, 1
8766 br i1 %obit, label %overflow, label %normal
8767
8768Specialised Arithmetic Intrinsics
8769---------------------------------
8770
8771'``llvm.fmuladd.*``' Intrinsic
8772^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8773
8774Syntax:
8775"""""""
8776
8777::
8778
8779 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8780 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8781
8782Overview:
8783"""""""""
8784
8785The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008786expressions that can be fused if the code generator determines that (a) the
8787target instruction set has support for a fused operation, and (b) that the
8788fused operation is more efficient than the equivalent, separate pair of mul
8789and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008790
8791Arguments:
8792""""""""""
8793
8794The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8795multiplicands, a and b, and an addend c.
8796
8797Semantics:
8798""""""""""
8799
8800The expression:
8801
8802::
8803
8804 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8805
8806is equivalent to the expression a \* b + c, except that rounding will
8807not be performed between the multiplication and addition steps if the
8808code generator fuses the operations. Fusion is not guaranteed, even if
8809the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008810corresponding llvm.fma.\* intrinsic function should be used
8811instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008812
8813Examples:
8814"""""""""
8815
8816.. code-block:: llvm
8817
Tim Northover675a0962014-06-13 14:24:23 +00008818 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00008819
8820Half Precision Floating Point Intrinsics
8821----------------------------------------
8822
8823For most target platforms, half precision floating point is a
8824storage-only format. This means that it is a dense encoding (in memory)
8825but does not support computation in the format.
8826
8827This means that code must first load the half-precision floating point
8828value as an i16, then convert it to float with
8829:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8830then be performed on the float value (including extending to double
8831etc). To store the value back to memory, it is first converted to float
8832if needed, then converted to i16 with
8833:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8834i16 value.
8835
8836.. _int_convert_to_fp16:
8837
8838'``llvm.convert.to.fp16``' Intrinsic
8839^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8840
8841Syntax:
8842"""""""
8843
8844::
8845
Tim Northoverfd7e4242014-07-17 10:51:23 +00008846 declare i16 @llvm.convert.to.fp16.f32(float %a)
8847 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00008848
8849Overview:
8850"""""""""
8851
Tim Northoverfd7e4242014-07-17 10:51:23 +00008852The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8853conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00008854
8855Arguments:
8856""""""""""
8857
8858The intrinsic function contains single argument - the value to be
8859converted.
8860
8861Semantics:
8862""""""""""
8863
Tim Northoverfd7e4242014-07-17 10:51:23 +00008864The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8865conventional floating point format to half precision floating point format. The
8866return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00008867
8868Examples:
8869"""""""""
8870
8871.. code-block:: llvm
8872
Tim Northoverfd7e4242014-07-17 10:51:23 +00008873 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00008874 store i16 %res, i16* @x, align 2
8875
8876.. _int_convert_from_fp16:
8877
8878'``llvm.convert.from.fp16``' Intrinsic
8879^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8880
8881Syntax:
8882"""""""
8883
8884::
8885
Tim Northoverfd7e4242014-07-17 10:51:23 +00008886 declare float @llvm.convert.from.fp16.f32(i16 %a)
8887 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008888
8889Overview:
8890"""""""""
8891
8892The '``llvm.convert.from.fp16``' intrinsic function performs a
8893conversion from half precision floating point format to single precision
8894floating point format.
8895
8896Arguments:
8897""""""""""
8898
8899The intrinsic function contains single argument - the value to be
8900converted.
8901
8902Semantics:
8903""""""""""
8904
8905The '``llvm.convert.from.fp16``' intrinsic function performs a
8906conversion from half single precision floating point format to single
8907precision floating point format. The input half-float value is
8908represented by an ``i16`` value.
8909
8910Examples:
8911"""""""""
8912
8913.. code-block:: llvm
8914
8915 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00008916 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008917
8918Debugger Intrinsics
8919-------------------
8920
8921The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8922prefix), are described in the `LLVM Source Level
8923Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8924document.
8925
8926Exception Handling Intrinsics
8927-----------------------------
8928
8929The LLVM exception handling intrinsics (which all start with
8930``llvm.eh.`` prefix), are described in the `LLVM Exception
8931Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8932
8933.. _int_trampoline:
8934
8935Trampoline Intrinsics
8936---------------------
8937
8938These intrinsics make it possible to excise one parameter, marked with
8939the :ref:`nest <nest>` attribute, from a function. The result is a
8940callable function pointer lacking the nest parameter - the caller does
8941not need to provide a value for it. Instead, the value to use is stored
8942in advance in a "trampoline", a block of memory usually allocated on the
8943stack, which also contains code to splice the nest value into the
8944argument list. This is used to implement the GCC nested function address
8945extension.
8946
8947For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8948then the resulting function pointer has signature ``i32 (i32, i32)*``.
8949It can be created as follows:
8950
8951.. code-block:: llvm
8952
8953 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8954 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8955 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8956 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8957 %fp = bitcast i8* %p to i32 (i32, i32)*
8958
8959The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8960``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8961
8962.. _int_it:
8963
8964'``llvm.init.trampoline``' Intrinsic
8965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8966
8967Syntax:
8968"""""""
8969
8970::
8971
8972 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8973
8974Overview:
8975"""""""""
8976
8977This fills the memory pointed to by ``tramp`` with executable code,
8978turning it into a trampoline.
8979
8980Arguments:
8981""""""""""
8982
8983The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8984pointers. The ``tramp`` argument must point to a sufficiently large and
8985sufficiently aligned block of memory; this memory is written to by the
8986intrinsic. Note that the size and the alignment are target-specific -
8987LLVM currently provides no portable way of determining them, so a
8988front-end that generates this intrinsic needs to have some
8989target-specific knowledge. The ``func`` argument must hold a function
8990bitcast to an ``i8*``.
8991
8992Semantics:
8993""""""""""
8994
8995The block of memory pointed to by ``tramp`` is filled with target
8996dependent code, turning it into a function. Then ``tramp`` needs to be
8997passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8998be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8999function's signature is the same as that of ``func`` with any arguments
9000marked with the ``nest`` attribute removed. At most one such ``nest``
9001argument is allowed, and it must be of pointer type. Calling the new
9002function is equivalent to calling ``func`` with the same argument list,
9003but with ``nval`` used for the missing ``nest`` argument. If, after
9004calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9005modified, then the effect of any later call to the returned function
9006pointer is undefined.
9007
9008.. _int_at:
9009
9010'``llvm.adjust.trampoline``' Intrinsic
9011^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9012
9013Syntax:
9014"""""""
9015
9016::
9017
9018 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9019
9020Overview:
9021"""""""""
9022
9023This performs any required machine-specific adjustment to the address of
9024a trampoline (passed as ``tramp``).
9025
9026Arguments:
9027""""""""""
9028
9029``tramp`` must point to a block of memory which already has trampoline
9030code filled in by a previous call to
9031:ref:`llvm.init.trampoline <int_it>`.
9032
9033Semantics:
9034""""""""""
9035
9036On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009037different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009038intrinsic returns the executable address corresponding to ``tramp``
9039after performing the required machine specific adjustments. The pointer
9040returned can then be :ref:`bitcast and executed <int_trampoline>`.
9041
9042Memory Use Markers
9043------------------
9044
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009045This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00009046memory objects and ranges where variables are immutable.
9047
Reid Klecknera534a382013-12-19 02:14:12 +00009048.. _int_lifestart:
9049
Sean Silvab084af42012-12-07 10:36:55 +00009050'``llvm.lifetime.start``' Intrinsic
9051^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9052
9053Syntax:
9054"""""""
9055
9056::
9057
9058 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9059
9060Overview:
9061"""""""""
9062
9063The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9064object's lifetime.
9065
9066Arguments:
9067""""""""""
9068
9069The first argument is a constant integer representing the size of the
9070object, or -1 if it is variable sized. The second argument is a pointer
9071to the object.
9072
9073Semantics:
9074""""""""""
9075
9076This intrinsic indicates that before this point in the code, the value
9077of the memory pointed to by ``ptr`` is dead. This means that it is known
9078to never be used and has an undefined value. A load from the pointer
9079that precedes this intrinsic can be replaced with ``'undef'``.
9080
Reid Klecknera534a382013-12-19 02:14:12 +00009081.. _int_lifeend:
9082
Sean Silvab084af42012-12-07 10:36:55 +00009083'``llvm.lifetime.end``' Intrinsic
9084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9085
9086Syntax:
9087"""""""
9088
9089::
9090
9091 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9092
9093Overview:
9094"""""""""
9095
9096The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9097object's lifetime.
9098
9099Arguments:
9100""""""""""
9101
9102The first argument is a constant integer representing the size of the
9103object, or -1 if it is variable sized. The second argument is a pointer
9104to the object.
9105
9106Semantics:
9107""""""""""
9108
9109This intrinsic indicates that after this point in the code, the value of
9110the memory pointed to by ``ptr`` is dead. This means that it is known to
9111never be used and has an undefined value. Any stores into the memory
9112object following this intrinsic may be removed as dead.
9113
9114'``llvm.invariant.start``' Intrinsic
9115^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9116
9117Syntax:
9118"""""""
9119
9120::
9121
9122 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9123
9124Overview:
9125"""""""""
9126
9127The '``llvm.invariant.start``' intrinsic specifies that the contents of
9128a memory object will not change.
9129
9130Arguments:
9131""""""""""
9132
9133The first argument is a constant integer representing the size of the
9134object, or -1 if it is variable sized. The second argument is a pointer
9135to the object.
9136
9137Semantics:
9138""""""""""
9139
9140This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9141the return value, the referenced memory location is constant and
9142unchanging.
9143
9144'``llvm.invariant.end``' Intrinsic
9145^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9146
9147Syntax:
9148"""""""
9149
9150::
9151
9152 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9153
9154Overview:
9155"""""""""
9156
9157The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9158memory object are mutable.
9159
9160Arguments:
9161""""""""""
9162
9163The first argument is the matching ``llvm.invariant.start`` intrinsic.
9164The second argument is a constant integer representing the size of the
9165object, or -1 if it is variable sized and the third argument is a
9166pointer to the object.
9167
9168Semantics:
9169""""""""""
9170
9171This intrinsic indicates that the memory is mutable again.
9172
9173General Intrinsics
9174------------------
9175
9176This class of intrinsics is designed to be generic and has no specific
9177purpose.
9178
9179'``llvm.var.annotation``' Intrinsic
9180^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9181
9182Syntax:
9183"""""""
9184
9185::
9186
9187 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9188
9189Overview:
9190"""""""""
9191
9192The '``llvm.var.annotation``' intrinsic.
9193
9194Arguments:
9195""""""""""
9196
9197The first argument is a pointer to a value, the second is a pointer to a
9198global string, the third is a pointer to a global string which is the
9199source file name, and the last argument is the line number.
9200
9201Semantics:
9202""""""""""
9203
9204This intrinsic allows annotation of local variables with arbitrary
9205strings. This can be useful for special purpose optimizations that want
9206to look for these annotations. These have no other defined use; they are
9207ignored by code generation and optimization.
9208
Michael Gottesman88d18832013-03-26 00:34:27 +00009209'``llvm.ptr.annotation.*``' Intrinsic
9210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9211
9212Syntax:
9213"""""""
9214
9215This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9216pointer to an integer of any width. *NOTE* you must specify an address space for
9217the pointer. The identifier for the default address space is the integer
9218'``0``'.
9219
9220::
9221
9222 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9223 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9224 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9225 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9226 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9227
9228Overview:
9229"""""""""
9230
9231The '``llvm.ptr.annotation``' intrinsic.
9232
9233Arguments:
9234""""""""""
9235
9236The first argument is a pointer to an integer value of arbitrary bitwidth
9237(result of some expression), the second is a pointer to a global string, the
9238third is a pointer to a global string which is the source file name, and the
9239last argument is the line number. It returns the value of the first argument.
9240
9241Semantics:
9242""""""""""
9243
9244This intrinsic allows annotation of a pointer to an integer with arbitrary
9245strings. This can be useful for special purpose optimizations that want to look
9246for these annotations. These have no other defined use; they are ignored by code
9247generation and optimization.
9248
Sean Silvab084af42012-12-07 10:36:55 +00009249'``llvm.annotation.*``' Intrinsic
9250^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9251
9252Syntax:
9253"""""""
9254
9255This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9256any integer bit width.
9257
9258::
9259
9260 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9261 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9262 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9263 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9264 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9265
9266Overview:
9267"""""""""
9268
9269The '``llvm.annotation``' intrinsic.
9270
9271Arguments:
9272""""""""""
9273
9274The first argument is an integer value (result of some expression), the
9275second is a pointer to a global string, the third is a pointer to a
9276global string which is the source file name, and the last argument is
9277the line number. It returns the value of the first argument.
9278
9279Semantics:
9280""""""""""
9281
9282This intrinsic allows annotations to be put on arbitrary expressions
9283with arbitrary strings. This can be useful for special purpose
9284optimizations that want to look for these annotations. These have no
9285other defined use; they are ignored by code generation and optimization.
9286
9287'``llvm.trap``' Intrinsic
9288^^^^^^^^^^^^^^^^^^^^^^^^^
9289
9290Syntax:
9291"""""""
9292
9293::
9294
9295 declare void @llvm.trap() noreturn nounwind
9296
9297Overview:
9298"""""""""
9299
9300The '``llvm.trap``' intrinsic.
9301
9302Arguments:
9303""""""""""
9304
9305None.
9306
9307Semantics:
9308""""""""""
9309
9310This intrinsic is lowered to the target dependent trap instruction. If
9311the target does not have a trap instruction, this intrinsic will be
9312lowered to a call of the ``abort()`` function.
9313
9314'``llvm.debugtrap``' Intrinsic
9315^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9316
9317Syntax:
9318"""""""
9319
9320::
9321
9322 declare void @llvm.debugtrap() nounwind
9323
9324Overview:
9325"""""""""
9326
9327The '``llvm.debugtrap``' intrinsic.
9328
9329Arguments:
9330""""""""""
9331
9332None.
9333
9334Semantics:
9335""""""""""
9336
9337This intrinsic is lowered to code which is intended to cause an
9338execution trap with the intention of requesting the attention of a
9339debugger.
9340
9341'``llvm.stackprotector``' Intrinsic
9342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9343
9344Syntax:
9345"""""""
9346
9347::
9348
9349 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9350
9351Overview:
9352"""""""""
9353
9354The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9355onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9356is placed on the stack before local variables.
9357
9358Arguments:
9359""""""""""
9360
9361The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9362The first argument is the value loaded from the stack guard
9363``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9364enough space to hold the value of the guard.
9365
9366Semantics:
9367""""""""""
9368
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009369This intrinsic causes the prologue/epilogue inserter to force the position of
9370the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9371to ensure that if a local variable on the stack is overwritten, it will destroy
9372the value of the guard. When the function exits, the guard on the stack is
9373checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9374different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9375calling the ``__stack_chk_fail()`` function.
9376
9377'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009379
9380Syntax:
9381"""""""
9382
9383::
9384
9385 declare void @llvm.stackprotectorcheck(i8** <guard>)
9386
9387Overview:
9388"""""""""
9389
9390The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009391created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009392``__stack_chk_fail()`` function.
9393
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009394Arguments:
9395""""""""""
9396
9397The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9398the variable ``@__stack_chk_guard``.
9399
9400Semantics:
9401""""""""""
9402
9403This intrinsic is provided to perform the stack protector check by comparing
9404``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9405values do not match call the ``__stack_chk_fail()`` function.
9406
9407The reason to provide this as an IR level intrinsic instead of implementing it
9408via other IR operations is that in order to perform this operation at the IR
9409level without an intrinsic, one would need to create additional basic blocks to
9410handle the success/failure cases. This makes it difficult to stop the stack
9411protector check from disrupting sibling tail calls in Codegen. With this
9412intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009413codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009414
Sean Silvab084af42012-12-07 10:36:55 +00009415'``llvm.objectsize``' Intrinsic
9416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9417
9418Syntax:
9419"""""""
9420
9421::
9422
9423 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9424 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9425
9426Overview:
9427"""""""""
9428
9429The ``llvm.objectsize`` intrinsic is designed to provide information to
9430the optimizers to determine at compile time whether a) an operation
9431(like memcpy) will overflow a buffer that corresponds to an object, or
9432b) that a runtime check for overflow isn't necessary. An object in this
9433context means an allocation of a specific class, structure, array, or
9434other object.
9435
9436Arguments:
9437""""""""""
9438
9439The ``llvm.objectsize`` intrinsic takes two arguments. The first
9440argument is a pointer to or into the ``object``. The second argument is
9441a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9442or -1 (if false) when the object size is unknown. The second argument
9443only accepts constants.
9444
9445Semantics:
9446""""""""""
9447
9448The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9449the size of the object concerned. If the size cannot be determined at
9450compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9451on the ``min`` argument).
9452
9453'``llvm.expect``' Intrinsic
9454^^^^^^^^^^^^^^^^^^^^^^^^^^^
9455
9456Syntax:
9457"""""""
9458
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009459This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9460integer bit width.
9461
Sean Silvab084af42012-12-07 10:36:55 +00009462::
9463
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009464 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009465 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9466 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9467
9468Overview:
9469"""""""""
9470
9471The ``llvm.expect`` intrinsic provides information about expected (the
9472most probable) value of ``val``, which can be used by optimizers.
9473
9474Arguments:
9475""""""""""
9476
9477The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9478a value. The second argument is an expected value, this needs to be a
9479constant value, variables are not allowed.
9480
9481Semantics:
9482""""""""""
9483
9484This intrinsic is lowered to the ``val``.
9485
Hal Finkel93046912014-07-25 21:13:35 +00009486'``llvm.assume``' Intrinsic
9487^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9488
9489Syntax:
9490"""""""
9491
9492::
9493
9494 declare void @llvm.assume(i1 %cond)
9495
9496Overview:
9497"""""""""
9498
9499The ``llvm.assume`` allows the optimizer to assume that the provided
9500condition is true. This information can then be used in simplifying other parts
9501of the code.
9502
9503Arguments:
9504""""""""""
9505
9506The condition which the optimizer may assume is always true.
9507
9508Semantics:
9509""""""""""
9510
9511The intrinsic allows the optimizer to assume that the provided condition is
9512always true whenever the control flow reaches the intrinsic call. No code is
9513generated for this intrinsic, and instructions that contribute only to the
9514provided condition are not used for code generation. If the condition is
9515violated during execution, the behavior is undefined.
9516
9517Please note that optimizer might limit the transformations performed on values
9518used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9519only used to form the intrinsic's input argument. This might prove undesirable
9520if the extra information provided by the ``llvm.assume`` intrinsic does cause
9521sufficient overall improvement in code quality. For this reason,
9522``llvm.assume`` should not be used to document basic mathematical invariants
9523that the optimizer can otherwise deduce or facts that are of little use to the
9524optimizer.
9525
Sean Silvab084af42012-12-07 10:36:55 +00009526'``llvm.donothing``' Intrinsic
9527^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9528
9529Syntax:
9530"""""""
9531
9532::
9533
9534 declare void @llvm.donothing() nounwind readnone
9535
9536Overview:
9537"""""""""
9538
9539The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9540only intrinsic that can be called with an invoke instruction.
9541
9542Arguments:
9543""""""""""
9544
9545None.
9546
9547Semantics:
9548""""""""""
9549
9550This intrinsic does nothing, and it's removed by optimizers and ignored
9551by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009552
9553Stack Map Intrinsics
9554--------------------
9555
9556LLVM provides experimental intrinsics to support runtime patching
9557mechanisms commonly desired in dynamic language JITs. These intrinsics
9558are described in :doc:`StackMaps`.